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Chapter 1

Introduction

1.1 Background

This thesis treats a number of aspects of subspace methods for various eigenvalue prob-
lems. In this section we discuss the origin of eigenvalue problems, while the next section
gives an introduction to the mathematical side. For more information see the references
in Section 1.7.

Vibrations and their corresponding eigenvalues (or frequencies) arise in science, engi-
neering, and daily life. Matrix eigenvalue problems come from a large number of areas,
such as

e chemistry (chemical reactions, energy levels of a molecule),

e mechanics (design of earthquake resistant buildings)

e dynamical systems (stability, bifurcation analysis of systems depending on a pa-
rameter),

Markov chains (stationary distribution of random processes),
magneto-hydrodynamics,

oceanography,

econormics,

signal and image processing,

control theory,

pattern recognition,

and statistics.

Eigenvalues and eigenvectors give valuable information about the behavior and prop-
erties of a matrix; therefore it may not be surprising that eigenvalue problems have been
the subject of study for over one and a half century, partly before the current matrix
notation became standard. Depending on the application, one is interested in one or
more eigenvalues at the end of the spectrum, or rather in eigenvalues in the interior of
the spectrum, or in the number of eigenvalues in an interval.

Methods for eigenvalue problems are often subdivided into two categories. The first
category, the direct methods such as the QR-method and the divide-and-conquer method,
aims to (accurately) find all eigenvalues of relatively small (say order 10%) matrices.
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Although these approaches work in an iterative way, they are called direct because they
are (almost) guaranteed to converge in a fixed number of steps. These methods are
efficient, and the underlying mathematics is quite well understood.

Many applications however, for instance in chemistry, give rise to eigenvalue problems
where the size of the matrix easily exceeds one million. These problems often come from
discretized partial differential equations; typically only a small portion of the eigenvalues
is needed. Moreover, the matrices are often sparse, this means that the matrix contains
relatively many entries which are zero. Therefore, one can compute a matrix-vector
product economically, that is, quickly, also for large matrices. For these matrices, the
direct approaches are often intractable, because they consume too much computer time
and/or memory, even on modern (and future) computers. Because of all these reasons,
iterative methods, and in particular the important subclass of subspace methods, are
often the ones of choice for large sparse matrices. In a subspace method, the matrix is
projected onto a low-dimensional subspace; the projected matrix is then solved by direct
methods. In this way, we get approximate eigenpairs from a low-dimensional subspace.

For large sparse problems, there is often no such a thing as “the best method”. The
method of choice may depend upon certain properties of the matrix (structure, size),
the data of interest (what, to which accuracy), the available operations (transpose of
the matrix, preconditioner), and the machine architecture. In this thesis, we hope to
give a contribution to the interesting and active field of subspace methods for eigenvalue
problems. We study various eigenvalue problems, namely

the (standard) eigenvalue problem,

the generalized eigenvalue problem,

the singular value problem,

the polynomial eigenvalue problem,

and the multiparameter eigenvalue problem.

The standard and generalized eigenproblem are the most common ones, originating
from numerous applications. The singular value problem plays an important role in
applications such as signal and image processing, control theory, pattern recognition,
statistics, and search engines for the internet. But it also has a central position in the
numerical linear algebra itself, for instance for the least squares problem, the numerical
rank of a matrix, angles between subspaces, the sensitivity (condition) of the solution of
linear systems, the pseudospectrum, and the (Euclidean) norm of a matrix.

The polynomial eigenvalue problem arises in the study of the vibrations of a me-
chanical system caused by an external force (the effects of the wind on a bridge), in the
simulation of electronic circuits, and in fluid mechanics.

An example of the origin of the multiparameter eigenvalue problem is the mathemat-
ical physics when the method of separation of variables is used to solve boundary value
problems.

An overview of the contributions of this thesis will follow in Section 1.5.
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1.2 Various eigenvalue problems

We now briefly describe the mathematical formulation of the different types of eigenvalue
problems that are studied. For more information we refer to [5] and other references
collected in Section 1.7. See the appendix and Section 1.6 for notations that are used.

1.2.1 The standard eigenvalue problem

The (standard) eigenvalue problem (EP) is to find nontrivial solutions (i.e., A € C,
z € C*"\{0}) to
Az = Az, (1.2.1)

were A is a complex n X n matrix. Here \ is an eigenvalue, x is a (right) eigenvector,
and (A, z) is called an eigenpair. A vector y € C"\{0} satisfying y*A = A\y* is a left
eigenvector. When A is normal (A*A = AA*), there exists an orthonormal basis of
eigenvectors. In this case, a right eigenvector is also a left eigenvector corresponding to
the same eigenvalue. When A is Hermitian (A = A*), then, in addition, the spectrum,
the set of all eigenvalues, is a subset of R. Real symmetric matrices (A € R™", A = AT)
have a real spectrum and an orthonormal basis of real eigenvectors. A matrix is complex
symmetric if A € C*" and A = AT. Although these matrices are in general not normal,
they have the property that if z is an eigenvector corresponding to a simple eigenvalue,
then 7 is the corresponding left eigenvector.

1.2.2 The singular value problem

Although the singular value problem (SVP) does not contain the word “eigenvalue”, it is
closely related to the (Hermitian) eigenproblem. Given the m X n matrix A, the singular
value problem is to find a singular triple (o, u,v), where ¢ > 0, and u € C™\{0} and
v € C"\{0} satisfy

Av = ou,

Ay = ow.

Here, o is called a singular value, u a left singular vector, and v a right singular vector.
The singular value problem gives rise to two different equivalent Hermitian eigenvalue
problems. First, the nonzero eigenvalues of the n x n matrix A*A or the m x m matrix
AA* are the squares of the nonzero singular values of A. Their eigenvectors are the right
and left singular vectors of A, respectively. Second, the eigenvalues of the augmented

matrix
0 A
A* 0

are plus and minus the singular values of A, and we can extract the left and right singular
vectors from the eigenvectors by taking the first and second part (see Section 3.2). The
singular value problem is subject of study in Chapters 3 and 4.
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1.2.3 The generalized eigenvalue problem

The generalized eigenvalue problem (GEP)
Az = ABx

is a generalization of the EP. As for the EP, A\ is an eigenvalue, x # 0 is a (right)
eigenvector, and a vector y # 0 satisfying y*A = A\y*B is a left eigenvector. When B
is nonsingular, this problem can be transformed to a standard eigenvalue problem by
left multiplying by the inverse of B, although computationally, this is often unattractive
to do. Therefore, and also because a singular B leads to new properties unique to the
generalized eigenvalue problem, this problem fully deserves its own treatment. The GEP
will be the subject of Section 2.7.1.

1.2.4 The polynomial eigenvalue problem

The polynomial eigenvalue problem (PEP)
(NA A N4+ + XA + 4g) 2 =0

is a generalization of the EP and the GEP. The concepts of eigenvalue and left and
right eigenvector are defined similarly as for these problems. In particular, I = 2 gives
the quadratic eigenvalue problem (QEP), and [ = 1 yields the GEP. Aspects of the
polynomial eigenvalue problem are discussed in Chapter 8 and in Section 2.7.3.

1.2.5 The multiparameter eigenvalue problem

The multiparameter eigenvalue problem (MEP) is another generalization of the EP and
the GEP. Here the problem is to find a k-tuple values A = (), ..., \;) € C* and nonzero
vectors x; € C" for 2 = 1,...,k such that

k
(V;O—ZAJ'V;J'>.’L’Z':0, 7;:1,...,147,
=1

where the Vj; are n; x n; matrices over C. When k = 1, this yields the GEP.
The k-tuple A € C is called an eigenvalue and the tensor product & = 7,R2,®- - -z,
is the corresponding (right) eigenvector. A left eigenvector can be defined similarly. The

multiparameter problem, and in particular the two-parameter eigenvalue problem, is the
subject of Chapters 5, 6, and 7.

1.2.6 Relations

Relations between the various eigenvalue problems are summarized in Tables 1.1 and 1.2
(“1” stands for “can lead to”, and “C” means “is a special case of”):
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TABLE 1.1: Acronyms for the various eigenvalue problems

acronym meaning

SEP symmetric eigenvalue problem

SVP singular value problem

HEP Hermitian eigenvalue problem

NEP normal eigenvalue problem

CSEP complex symmetric eigenvalue problem
EP standard eigenvalue problem

GEP generalized eigenvalue problem

QEP quadratic eigenvalue problem

PEP polynomial eigenvalue problem

MEP multiparameter eigenvalue problem

TABLE 1.2: Relations between the various eigenvalue problems

C QEP C PEP
SEP ¢ HEP ¢ NEP ¢ EP C GEP
4 U C MEP
SVP CSEP

1.3 Subspace methods

In this section we consider the standard eigenvalue problem (1.2.1). As mentioned in
Section 1.1, subspace methods may be used for the numerical solution of eigenvalue
problems. The idea of subspace methods is to compute accurate eigenpairs from low-
dimensional subspaces. This approach reduces computational time and memory usage
and thus enables us to tackle larger problems that are too expensive for methods that
work in the entire space.

A subspace method to find an eigenpair works as follows. We start with a given search
subspace from which approximations to eigenpairs are computed (eztraction). In the
extraction we usually have to solve a smaller eigenvalue problem of the same type as the
original one. After each step we expand the subspace by a new direction (ezpansion). In
some methods, but not all, the expansion depends upon the selected approximation. The
idea is that, as the search subspace grows, the eigenpair approximations will converge
to an eigenpair of the original problem. In order to keep computation costs low, we
usually do not expand the search space to the whole space. If the process does not
converge in a certain number of iterations, then the method is restarted with a few
selected approximations as the basis of a new search space. If one or more eigenpairs
have already been found, and we want to find other pairs, we can use deflation techniques
to avoid finding the same pair again.

In the following subsections we discuss various aspects of subspace methods. For an
overview of subspace methods see [5] and other references in Section 1.7.
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1.3.1 Subspace extraction

Let U be a k-dimensional search space (a subspace of C* or R"), where one should think
of the typical situation £ < n. Subspace extraction deals with the question: having the
search space U, how do we get approximate eigenpairs (0, u), so # =~ X\ and u = z, with
u € U? Given 0 and u, the residual is defined by r = Au — fu. When (6, u) is an exact
eigenpair, the residual is zero. To find approximate eigenpairs, a common approach is
to impose a Galerkin condition on the residual, that is, to require that the residual is
orthogonal to a certain test space. In the Ritz—Galerkin approach, the test space is equal
to the search space, while in Petrov—-Galerkin variants it is not. The approximations
that arise in this way are called Ritz/Petrov values and Ritz/Petrov vectors (respectively
Ritz/Petrov pairs). In this context, it should be noted that some authors only use the
terms Ritz value and Ritz vector when A is Hermitian. In this case, the Ritz—Galerkin
approach is also called the Rayleigh—Ritz method. Sometimes this name is also used for
non-Hermitian matrices.

Especially for interior eigenvalues, the performance of Rayleigh-Ritz can be disap-
pointing, in the sense that the resulting approximations are of poor quality (see, e.g., [82,
p. 282]). One option is to compute a refined Ritz vector after the Rayleigh-Ritz process
(see, e.g., [43] and [82, p. 289]). Another alternative that may lead to better approximate
eigenpairs is the harmonic Rayleigh—Ritz procedure (see, e.g., [82, p. 292]). In this thesis
we will consider generalizations of standard Rayleigh-Ritz, harmonic Rayleigh-Ritz, and
refined Ritz vectors for various eigenvalue problems.

1.3.2 Subspace expansion

Some subspace methods perform a simple action for the subspace expansion: they (im-
plicitly) multiply a vector repeatedly by the matrix A. For Hermitian A, this gives the
Lanczos method [51], for non-Hermitian A this leads to Arnoldi [2]. Both of these meth-
ods construct a Krylov subspace of dimension k generated by A and a starting vector u:

Ky (A, u) = spanf{u, Au, ..., A¥ 1y},

Other methods use the residual r to expand the search space. The Davidson method
[19] preconditions this residual. Jacobi-Davidson (JD) [75] expands the search space
by the (approximate) solution of the so-called correction equation, see Section 2.2. The
fact that in these methods all iterates are stored to build up a search space is referred
to as subspace acceleration. When, as in Jacobi—Davidson, the expansion can be seen
as a Newton step, one also speaks of an accelerated Newton method. Often one does
not solve the Newton equation to full precision, in this case the term accelerated inezxact
Newton is used. In this thesis, we will generalize the Jacobi-Davidson method to other
eigenvalue problems.

1.3.3 Two-sided subspace methods

Characteristic for (ordinary or one-sided) subspace methods is that the test space co-
incides with the search space, or some transformation of the search space. Two-sided
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subspace methods, on the other hand, build up a search space and a test space inde-
pendently of each other. Two-sided Lanczos [51] uses multiplication by A and by A*
for this goal. In Chapter 2 we present a two-sided Jacobi-Davidson method. A pro of
two-sided methods is that the subspace extraction may yield better approximations to
the eigenpair; sometimes the resulting projected system is also easier to solve. Some of
the cons are that two-sided methods are often more expensive per step and that they
may suffer from a breakdown. The oblique projections may also cause problems with
stability.

1.3.4 Asymptotic convergence

In exact arithmetic and if no breakdown occurs, all subspace methods will (trivially)
converge in a finite number of steps in the absence of restarts. In [90, p. 652], the
following is stated about the convergence of Ritz values to eigenvalues:

“Strictly mathematically speaking it is not very meaningful, of course, to
speak of convergence and convergence behavior of Ritz values, in view of
the finiteness of the set of Ritz values. However, as is well known, in many
practical situations one or more extremal eigenvalues are approximated by
the corresponding Ritz values to a sufficient degree of accuracy long before
their degree reaches the dimension of the matrix, and in this stage of the
process those Ritz values display a behavior which is very reminiscent of that
of a converging infinite sequence close to its limit. It is this that we have in
mind when speaking of convergence and convergence behavior.”

One can make similar statements about the convergence of approximate eigenvectors
and the subspace method itself. Thus, by the “asymptotic convergence” of subspace
methods, we mean the convergence behavior of these methods in a situation where we
have a (very) good approximation to an eigenpair, rather than the situation where the
dimension of the subspace goes to infinity.

1.4 Various issues

1.4.1 Modified Gram—-Schmidt

In a search space method, it is often of practical importance to have an orthonormal basis
of a subspace at one’s disposal. A common tool to obtain such a basis is the Gram-—
Schmidt algorithm. It is well known (see for example [31, pp. 231-232]) that classical
Gram—-Schmidt may lose orthogonality in finite precision arithmetic. Modified Gram-
Schmidt, which rearranges the calculations, does a better job, but still can be insufficient
in the case of an almost dependent set of vectors. Moreover, the method is not paral-
lelizable. Repeating the (modified) Gram-Schmidt method once gives good numerical
properties (“twice is enough”, see, for instance, the discussion in [7, Section 2.4.5]).

In this thesis, we will denote any numerically stable form of Gram-Schmidt, (such
as repeated (modified) Gram—Schmidt) by the acronym MGS because most readers will
be more familiar with this than with RGS or RMGS.
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1.4.2 Perturbation theory

When we have approximated an eigenpair, we may be interested in the error. While it is
often expensive (or impossible) to compute or bound the (forward) error, the backward
error may be readily available. This is a measure of the perturbation of the matrix that
is necessary such that the computed eigenpair is an exact eigenpair of the perturbed
matrix. The condition number of an eigenvalue (or eigenvector) gives information about
the sensitivity of that eigenvalue (or eigenvector) for perturbations in the matrix. The
pseudospectrum of a matrix gives a graphical oversight of the sensitivity of more (or all)
eigenvalues at the same time. The following relation often holds approximately:

forward error < condition number - backward error.

Chapter 7 is dedicated to perturbation theory of the multiparameter eigenvalue problem:;
see Section 1.7 for references on the subject of perturbation theory and pseudospectra.

1.4.3 Numerical experiments

Most numerical experiments are carried out in MATLAB 5 on a SUN workstation. We use
some typical MATLAB notation in the thesis, such as diag(1 : n) for the diagonal matrix
constructed from scalars 1,...,n and [ | for the empty matrix; see also the appendix on
notations. When we used MATLAB’s function rand(m,n) to create a m X n matrix with
random entries (chosen from a uniform distribution on the interval (0,1)), we first put the
“seed” to zero by the command “rand(’seed’,0)” so that our results are reproducible.
Additionally, we used MAPLE 5 for Section 8.4.

As mentioned in Section 1.1, most of the methods developed in this thesis are designed
for large sparse matrices. We would like to remark that partly due to limitations of
MATLAB, the size of the matrices in the numerical experiments does not exceed O(10%).
Although we realize that some practical matters have to be taken care of for (much) larger
matrices, we do not expect major obstacles in an implementation. Moreover, although
preconditioning is an important (or even crucial) subject, we do not pay special attention
to the choice of a preconditioner in this thesis. In most cases, we take an (inexact) LU
decomposition, often based on a target.

MATLAB codes of all methods are available from the author on request.

1.5 Overview

Part of this thesis is formed by four chapters that consider Jacobi—Davidson type methods
for various eigenvalues problems:

e for the (nonnormal) standard, complex symmetric, generalized, and polynomial
eigenvalue problem in Chapter 2;

e for the singular value problem in Chapter 3 (with Chapter 4 as a continuation);

e and for the multiparameter eigenvalue problem (especially the case of two param-
eters) in Chapters 5 en 6.
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To begin with, we study two Jacobi-Davidson type methods for nonnormal matrices,
called two-sided and alternating Jacobi—-Davidson in Chapter 2. For these matrices, the
right and left eigenvectors are generally not identical, as is the case for normal matrices.
This motivates the presence of two search spaces, one for the right, and one for the
left eigenvector. The search space for the left vector is the test space for the right
vector and vice versa. The correction equation, that serves for the expansion of the
search spaces, contains oblique projections, instead of the orthogonal projections that
are characteristic for the standard Jacobi-Davidson method. These methods can be
applied to the standard, the complex symmetric, the generalized, and the polynomial
eigenvalue problem.

Chapter 3 introduces a Jacobi—Davidson type method for the singular value problem.
As in Chapter 2 we have two search spaces, this time one for the right, and one for the left
singular vector. This gives rise to a method with cubic convergence when the correction
equation is solved exactly. In practice, this equation will often be solved inexactly, re-
sulting in linear convergence. The method can be seen as an accelerated inexact Newton
process and as an accelerated inexact Rayleigh quotient iteration. In Chapter 4, special
attention is given to the approximation of the smallest and interior singular values. For
these values, the standard Galerkin subspace extraction is no longer satisfactory. Just as
for the standard eigenvalue problem, harmonic and refined approaches are more promis-
ing. We also discuss applications of the methods to the least squares problem and the
approximation of a matrix by means of a truncated singular value decomposition.

Chapters 5 and 6 treat a Jacobi—Davidson type method for the multiparameter eigen-
value problem, in particular for the case of two parameters. In Chapter 5 we consider
the so-called right definite multiparameter eigenvalue problem. In the case of two pa-
rameters, we have again two search spaces, one for each of the components of the de-
composable tensor. The extraction of the search space is done by a generalization of the
Rayleigh—Ritz method, that ensures monotonic convergence to the extreme eigenvalues.
For the subspace expansion, we present two different correction equations: one with
orthogonal one-dimensional projections which neglect second-order terms, and one with
two-dimensional oblique projections that only disregards third-order terms. Because
standard deflation techniques are not applicable for this problem, we use a selection
criterion for the Ritz values when we are interested in more eigenpairs.

In Chapter 6, we study the wider class of the nonsingular multiparameter eigenvalue
problems. This is a challenging problem, where we need many techniques to attack it.
For instance, we choose here for a two-sided approach (different test and search spaces),
comparable to Chapter 2.

In Chapter 7, we examine numerical important aspects of the multiparameter prob-
lem: backward error and condition of eigenvalues and eigenvectors. These concepts give
an indication how good a certain obtained approximation is, and how sensitive the eigen-
values and eigenvectors are for perturbations in the problem. Also, the pseudospectrum
for the multiparameter problem is introduced. This may give an impression of the sen-
sitivities of a couple or all eigenvalues.

For the standard eigenvalue problem, the extraction of Ritz pairs from a search space
is well studied. For the polynomial eigenvalue problem the situation is less clear. In
Chapter 8, we consider approximations to an eigenvalue that can be obtained from a
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certain search space. The emphasis is on the quadratic eigenvalue problem and one-
dimensional search spaces. Three new methods are given, based on a Galerkin or min-
imum residual approach. The methods are compared using perturbation results and
backward errors, and then generalized to general polynomial problems and extraction
from more-dimensional search spaces.

In Chapter 9, we develop probabilistic bounds for the extreme eigenvalues of a Her-
mitian matrix with the Lanczos method. These bounds are obtained with Lanczos, Ritz
and Chebyshev polynomials. Because we assume that the starting vector contains a
sufficient component of the desired eigendirection, we thus get bounds that are correct
with a certain (large) probability. The bounds may be used as a stopping criterion. As a
second application of the techniques, we get an estimation for the number of steps of the
Lanczos method that are (still) necessary to get an extreme eigenvalue with a prescribed
tolerance.

Chapters 2 through 9 have appeared as separate papers. For this thesis, they have all
been edited to some extent, varying from small editorial changes, to enlargement by
extra subsections. Some notations have been changed to ensure uniformity. Chapter 2
(without Section 2.7.2) is based on [38]:

M. E. HOCHSTENBACH, G. L. G. SLEUPEN, Two-sided and alternating Jacobi—
Davidson, Lin. Alg. Appl. 358(1-3), pp. 145-172, 2003, reprinted with permission
from Elsevier

while Section 2.7.2 is a summary of [1]:

P. ArRBENZ, M. E. HOCHSTENBACH, A Jacobi—Davidson method for complex
symmetric matrices, Preprint 1255, Dept. of Math., Utrecht University, Septem-
ber 2002.

Chapters 3 and 4 are essentially [33]:

M. E. HOCHSTENBACH, A Jacobi—Davidson type SVD method, SIAM J. on Sci.
Comp. 23(2), pp. 606-628, 2001. Second place student paper competition 6th
Copper Mountain Conference 2000

and the following-up paper [34]:

M. E. HOCHSTENBACH, Harmonic and refined extraction methods for the singular
value problem, with applications in least squares problems, Preprint 1263, Dept. of
Math., Utrecht University, December 2002. Winner travel award student /new PhD
paper competition 6th International Symposium on Iterative Methods in Scientific
Computing,

but the chapters have been integrated and extended (Sections 3.6.2 and 3.7.9 are new).
Chapter 5 is based on [36]:

M. E. HOCHSTENBACH, B. PLESTENJAK, A Jacobi-Davidson type method for a

right definite two-parameter eigenvalue problem, SIAM J. on Matrix Anal. Appl.
24(2), pp. 392-410, 2002,

but Sections 5.4.3, 5.4.4, and 5.7 are new. Chapter 6 is the following-up paper [35]:
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M. E. HOCHSTENBACH, T. KOSIR, B. PLESTENJAK, A Jacobi—Davidson type
method for the two-parameter eigenvalue problem, Preprint 1262, Dept. of Math.,
Utrecht University, November 2002.

Chapter 7 is [37]:

M. E. HOCHSTENBACH, B. PLESTENJAK, Backward error, condition and pseu-

dospectra for the multiparameter eigenvalue problem, Preprint 1225, Dept. of
Math., Utrecht University, February 2002.

Chapter 8 is [39]:

M. E. HOCHSTENBACH, H. A. VAN DER VORST, Alternatives to the Rayleigh quo-
tient for the quadratic eigenvalue problem, Preprint 1212, Dept. of Math., Utrecht
University, November 2001. Accepted for publication in STAM J. on Sci. Comp.
Winner student/new PhD paper competition 7th Copper Mountain Conference
2002.

Chapter 9 has appeared as [95]

J. L. M. vAN DORSSELAER, M. E. HOCHSTENBACH, H. A. VAN DER VORST,

Computing probabilistic bounds for extreme eigenvalues of symmetric matrices with
the Lanczos method, STAM J. on Matrix Anal. Appl. 22(3), pp. 837-852, 2000.

Table 1.3 gives an overview of the contents of some of the chapters with respect to
the two main aspects of subspace methods: extraction and expansion.

TABLE 1.3: Contents of some of the chapters, with respect to subspace extraction and expansion.

problem extraction expansion

EP Ch. 2 Ch. 2
SVP Ch. 3,4 Ch. 3
CSEP Sec. 2.7.2  Sec. 2.7.2
GEP Sec. 2.7.1  Sec. 2.7.1
QEP Ch. 8 Sec. 2.7.3
PEP Sec. 8.3.1 Sec. 2.7.3
MEP Ch. 5,6 Ch. 5,6

1.6 Notations

In this thesis we use the standard conventions in numerical linear algebra, sometimes
called the Householder notation. Capital Roman letters denote matrices or operators.
Vectors are indicated by lowercase Roman letters, and lowercase Greek letters stand
for scalars. A script letter (e.g., i) denotes a subspace, where it is a custom that the
corresponding capital Roman letter (e.g., U) stands for a matrix of which the columns
form a (often, but not always, orthonormal) basis for that subspace. We call such a
matrix a search matriz. Letters in boldface denote a tuple of corresponding items, for
instance, A stands for a tuple of matrices, and a for a tuple of scalars.
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There are, however, some exceptions on the general rules above, for example m
and n are standardly used for the size of a matrix. Sometimes the usual notations
can also be slightly overloaded. For example, u denotes an approximation to a right
eigenvector (Chapter 2), but also an approximation to a left singular vector (Chapters 3
and 4). Likewise, v is used for an approximation to a left eigenvector, but also for
an approximation to a right singular vector. The same notational overload concerns x
(right eigenvector as well as left singular vector), and y (left eigenvector and right singular
vector). An approximation to an eigenvalue ) is often indicated by 6 or p (to stress the
fact that it is a Rayleigh quotient).

While many notations are summarized in the table in an appendix, we like to highlight
some specific ones. In this thesis ||-|| (without subscript) always stands for the Euclidean
norm || - ||o. By span(A), the space spanned by the columns of A is meant. Be warned:
while \;(A) is used for the jth smallest eigenvalue of a Hermitian A, 0;(A) denotes the
jth largest singular value of A. The letter x is used for both the condition number of
an eigenvalue x(\) and that of a matrix x(A) = ||A4]| - ||A™"||. Besides for a matrix, the
letter B is used in Chapter 7 for Euler’s beta function B(a, 3). The letter e is used in
e;, the jth canonical vector, and for “error vectors”.

In addition to Table 1.1, Table 1.4 lists acronyms that are used in the thesis.

TABLE 1.4: Acronyms used in the thesis.

Acronym meaning
Bi-MGS  MGS for bi-orthogonal bases

BiCG bi-conjugate gradients
COCG complex orthogonal conjugate gradients
CSYM solver for a complex symmetric linear system

GMRES  generalized minimum residual method
MINRES minimum residual method

JD Jacobi-Davidson

JDCS Jacobi—Davidson for the complex symmetric eigenvalue problem
JDSVD Jacobi—Davidson for the singular value problem

MGS numerically stable form of Gram—-Schmidt

MGS-CS  MGS for a complex orthogonal basis

MV matrix-vector product

QMR quasi-minimal residual method

RQI Rayleigh quotient iteration

SVD singular value decomposition

1.7 Literature

Valuable sources for eigenvalue problems in general are (in reverse chronological order)
Van der Vorst [91], Stewart [82], Bai et. al. [5], Saad [69], Stewart & Sun [83], Horn &
Johnson [40, 41], Golub & van Loan [31], Parlett [61], Varga [98], and Wilkinson [101].
Some of the papers and books that are cited throughout the thesis, are especially relevant
for topics as in Table 1.5 (per topic in chronological order).
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TABLE 1.5: Some references divided per topic.

subject references
origin of eigenvalue problems 69]
review on eigenvalue problems 92 5, 30

symmetric eigenvalue problem
Lanczos

two-sided Lanczos

Arnoldi

Davidson

Jacobi-Davidson

Lanczos bidiagonalization

complex symmetric eigenvalue problem
quadratic eigenvalue problem
polynomial eigenvalue problem
multiparameter eigenvalue problem
singular value problem
perturbation theory
pseudospectrum

Rayleigh quotient iteration
harmonic Rayleigh-Ritz

refined Ritz vectors

accelerated inexact Newton

least squares problem

Chebyshev polynomials

5 73,76, 78, 81, 23, 77, 89]
8, 29, 17, 71]

8]

6]
0, 73, 84, 85

,4,8,9,10, 11, 13, 79, 100, 21, 6, 47, 64, 65]
9, 17, 41, 96, 97, 63]

6, 83]

7, 88, 85]

5, 56, 50, 60, 61]

4, 58, 82, 74]
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Chapter 2

Two-sided and alternating
Jacobi—Davidson

Abstract. We discuss two variants of a two-sided Jacobi—Davidson method,
which have asymptotically cubic convergence for nonnormal matrices, and aim
to find both right and left eigenvectors. These methods can be seen as Jacobi-
Davidson analogues of Ostrowski’s two-sided Rayleigh quotient iteration. Some
relations between (exact and inexact) two-sided Jacobi-Davidson and (exact and
inexact) two-sided Rayleigh quotient iteration are given, together with convergence
rates.

Furthermore, we introduce an alternating Jacobi—-Davidson process that can be
seen as the Jacobi-Davidson analogue of Parlett’s alternating Rayleigh quotient
iteration. The methods are extended to the generalized, complex symmetric, and
polynomial eigenproblem. Advantages of the methods are illustrated by numerical
examples.

Key words: Jacobi—Davidson, Rayleigh quotient iteration, Ostrowski’s two-sided
Rayleigh quotient iteration, Parlett’s alternating Rayleigh quotient iteration, two-
sided Lanczos, correction equation, nonnormal matrix, accelerated inexact Newton,
rate of convergence, generalized eigenproblem, complex symmetric eigenproblem,
polynomial eigenproblem.

AMS subject classification: 65F15, 65F50.

2.1 Introduction

We are interested in the computation of one or more eigenvalues and the corresponding
left and right eigenvectors of the (possibly nonnormal) matrix A. It is well known that
when Rayleigh quotient iteration (RQI) converges to a simple eigenvalue of a normal
matrix, the asymptotic convergence rate is cubic (see, for example, [60, p. 683] and [61,
p. 77]). For a nonnormal eigenvalue of a nonnormal matrix, RQI has locally quadratic
convergence at best [60, p. 688].

*Based on joint work with Gerard L. G. Sleijpen and Peter Arbenz, see Section 1.5.
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Ostrowski’s two-sided RQI [55] works with the two-sided (or generalized) Rayleigh
quotient
v*Au

v*UY

where v and v are approximate right and left eigenvectors. It can be shown that when
two-sided RQI converges to a simple eigenvalue, the local convergence is cubic (see [60,
p. 689] and Section 2.3). In (two-sided) RQI, one has to solve linear systems of the form
(A—6I)u = u. For large sparse matrices, these computations, and therefore (two-sided)
RQI as a whole, may be less attractive.

Jacobi-Davidson (JD) [75] is an efficient method to compute a few eigenvalues and
corresponding (right) eigenvectors of A. The essence of JD is its correction equation,
where the shifted operator A — 61 is restricted to the subspace orthogonal to the current
approximation to an eigenvector. When we solve this equation exactly, then JD can be
considered as accelerated RQI (see [75] and Section 2.3).

Because of this, it is of interest to investigate JD analogues of two-sided RQI, leading
to an acceleration of two-sided RQI. The idea of a two-sided JD is already, though
somewhat hidden, present in [73], in particular in Remark 3.5 and Section 5.1.3. We
will see that two-sided JD has two search spaces, one for the right and one for the left
eigenvector. When the correction equations are solved exactly, the method has locally
cubic convergence.

In practice, it is neither necessary nor advisable to solve the correction equation in
the JD method accurately. Instead, we may solve it only approximately, for instance to
a certain precision. This principle can also be applied to the two-sided processes, leading
to inexact two-sided JD and inexact two-sided RQI. At the price of slower convergence,
the methods thus become computationally more attractive. An attempt to merge the
two search spaces of two-sided JD gives rise to alternating JD, which can be viewed as
an acceleration of Parlett’s alternating RQI [60].

This chapter has been organized as follows. Section 2.2 introduces some notations
and definitions and gives a presentation of JD. In Section 2.3 we review Ostrowski’s two-
sided RQI, and in Section 2.4 we consider two flavors of two-sided JD. Inexact variants
of these two-sided methods, and some relations between them, as well as convergence
rates, can be found in Section 2.5. Section 2.6 proposes alternating JD, and Section 2.7
extends the two-sided methods to the complex symmetric, generalized, and polynomial
eigenvalue problem. In Section 2.8 we discuss various aspects of the methods. Numerical
experiments are presented in Section 2.9, and a discussion and some conclusions can be
found in Section 2.10.

O(u,v) :=

I

2.2 Jacobi—-Davidson and Rayleigh quotient itera-
tion

Let us first introduce some notations. Throughout this chapter, A denotes a simple
eigenvalue of the n x n matrix A, n > 1, with  and y as its normalized right and left
eigenvectors. The (finite) condition of A is equal to k(A\) := |y*z|~'. Approximations
to the eigentriple are indicated by 6 for the eigenvalue and wu,v for the right and left
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eigenvectors. We assume that 6 is not equal to an eigenvalue of A, which is equivalent to
the assumption that A—#1I is invertible. To avoid confusion, we remark that, throughout
this chapter, the word “right” is used as the opposite of “left” (e.g., right eigenvector
versus left eigenvector), and does not have the meaning of “correct”.

Since £ y, (A—AI)|,+ : y — y* is invertible; in particular it has a finite condition
number, denoted by x((A—ATI)|,.). Later in this chapter, we use the following definition.

Definition 2.2.1 (cf. [83, p. 145]) We define the effective condition number of a nonzero
matrix C as

ke(C) = [|IC| - |CT[| = Omax(C) / min ;(C),

0;#0
where CT is the pseudoinverse of C, and the o(C)s are the singular values of C. @
Next, we give a presentation of “standard” JD, such that two-sided JD will follow
as a natural generalization for nonnormal matrices in Section 2.4. The JD method [75]
consists of two ingredients. The first part, the well-known Rayleigh—Ritz approach, deals
with the question: having a k-dimensional search space U (where one should think of the

typical situation k£ < n), how do we get an approximate eigenpair (6, u), where u € U?
Let the columns of U form an orthonormal basis for I/, and define the residual r by

r:= Au — Ou.
Imposing the Ritz—Galerkin condition on the residual
r=Au—0u LU, (2.2.1)

and writing u = Uc (where ¢ is a k-dimensional vector), we find that (6, c) should be a
solution of the low-dimensional projected eigenproblem

U*AUc = b,

so a Ritz pair (6,u) = (0,Uc) is a backtransformed eigenpair of the projected matriz
U*AU. In particular, if (6, u) is a Ritz pair, we have

0= 0u) = LA

. and 7 L u,

u*u

that is, 0 is the Rayleigh quotient of u and the corresponding residual is orthogonal to u.
The second ingredient of JD gives an answer to the question: having an approximate

eigenpair (6,u) to (A, z), how do we expand the search space U to get an even better

approximation? For this, JD looks for an orthogonal correction s L u such that

Alu+s)=Au+s),

i.e., such that v + s is a multiple of the eigenvector x. This equation can be rewritten
to obtain
(A—0I)s=—r+ (A—0)u+ (A —0)s. (2.2.2)
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During the process, A, and hence also the last two terms on the right-hand side, are
unknown. We neglect the term (A — 6)s, this may be seen as “throwing away second
order terms” (both A —# and s will be asymptotically small). This suggests that JD is in
fact a Newton method, which is true indeed [76]. (When we choose 6 to be the two-sided
Rayleigh quotient, then A — € is second order, so (A — 6)s is a third order term, and we
may even expect cubic convergence, see Sections 2.3 and 2.4.)

Then we are interested in the projection of (2.2.2) (without the third term on the
right-hand side) that maps u (and so the second term on the right-hand side) to 0 and
keeps r fixed. Because r L u, this projection is I — uu*, the orthogonal projection onto
the orthogonal complement of u. The result of neglecting the third term of (2.2.2) and
projecting the equation is

(I —uu™)(A—60I)s = —r.

Using
(I —uu*)s = s,

we derive the JD correction equation:
(I —uwu*)(A—00)(I —uu*)s = —r where s L u, (2.2.3)

from which we see that the operator A — I is restricted to the orthogonal complement
of u. In practice, (2.2.3) is often solved only approzimately (or inezactly), for example
by an iterative method, e.g. a few steps of (preconditioned) GMRES. The approximate
solution is used to expand the search space U, this is called subspace acceleration. JD can
therefore be viewed as an accelerated inexact Newton method for the eigenvalue problem
[76].

However, when we solve (2.2.3) exactly, then we find (see [75])

s=—(A=0)""r+a(A—0I)'u=—-u+a(A—0I)"u,

where o = (u* (A — 1)~ u) ! is such that s L u. JD uses s to expand the search space
U. Since already u € U, we get the same subspace expansion using s = (A — 01 )71 u.
Here we recognize a step of RQI, and we conclude that ezact JD (i.e., JD where we solve
the correction equation exactly) can also be seen as accelerated RQI.

In RQI, when the approximations (f,uy) converge, they converge asymptotically
cubically for normal matrices:

Theorem 2.2.2 (Constant of cubic convergence of RQI.) If A is normal and
up — T as k — 0o, then

lim o — 2]/ lug — ] < 1.
k—00

Proof: See [60, p. 633]. O

The underlying reason for the cubic convergence is the following property of the
Rayleigh quotient for normal matrices [60, p. 681]:

u* Au

0(u) = ——— is stationary <= wu is an eigenvector of A. (2.2.4)
uru
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(Recall that stationary means that all directional derivatives are zero.) We have already
seen that exact JD can be considered as accelerated RQI. Because JD uses subspace
acceleration, it will trivially converge in a finite number of steps. Yet, in view of Sec-
tion 1.3.4, we can speak of the asymptotic convergence of JD. When we neglect the
effect of the subspace acceleration on the asymptotic convergence, JD “inherits” the
asymptotic convergence of RQI. This explains the expression that “Jacobi-Davidson has
asymptotically cubic convergence for normal matrices.”

2.3 Two-sided Rayleigh quotient iteration

If A is nonnormal, property (2.2.4) is lost for nonnormal eigenvalues. This implies that
RQI (and therefore also exact JD) converges asymptotically at best (only) quadratically
to a nonnormal eigenpair (A, z) [60, p. 688]. But instead of (2.2.4), we have the following
property for the two-sided Rayleigh quotient 0(u,v) [60, p. 688]:

0(u, v) = v* is stationary u and v are right and left eigenvector

v*u of A with eigenvalue 6 and v*u # 0. (2.3.1)

Because of this property, one may expect cubic convergence for simple eigenvalues of
nonnormal matrices when we approximate the left and the right eigenvector simultane-
ously. For this reason Ostrowski proposes a two-sided Rayleigh quotient iteration [55].
In every step of this method, we solve the two equations

(A — gkI)uk—H = Ug and (A - HkI)*Uk—H = Vg, (232)

for ug,1 and vyyq, respectively, where 6 = 6(ug, vg). This leads to Algorithm 2.3.1.

Input: initial vectors u; and v, with unit norm, such that viu; # 0
Output: an eigentriple of A (or failure)

for £k =1,2,...
Compute 0y := Oy, (ur,vi) = UE;::’“
If A— 01 is singular, solve (A — 0xI)x = 0 and (A — 6;])*y = 0 and stop
Solve (A — 6 I)ugr1 = ug and normalize ugyq
Solve (A — 6 I)*vp1 = vr and normalize vgyq
If Vjy1Uk+1 = 0 then method fails

A

ALGORITHM 2.3.1: Ostrowski’s two-sided Rayleigh quotient iteration [55]

In [60, p. 689] it is shown that when this two-sided RQI converges to a simple eigen-
value, it has locally cubic convergence. However, the following theorem states that the
speed of the cubic convergence might be significantly slower in the nonnormal case. Note
that by writing

U = (my )Uk+<1_$y )uk and v, = (y:r )vk—i-(I—yx )vk,
Y Y T*y T*y
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we see that u; and v, can be written in the form
ug = (T + 0dy) and  vg = Bi(y + exer), (2.3.3)
where 0y, e, > 0, dp Ly, e, L x, and uyg, vk, x,y, dg, and e, all have unit norm.

Theorem 2.3.1 (Locally cubic convergence of two-sided RQI.) Suppose that uy
and vy converge to x and y, respectively, as k — oo. Then 0, — A, and

Skp1 < Y0ier + hoot. and epy1 < Yoper + hoo.t.

Here

7 = KA)R((A = AD)|yL),
and h.o.t. stands for “higher order terms in 6y and e;” (i.e., in the statement above h.o.t.
stands for terms of order O(6iel), where i+ j > 3).

Proof: This is a slight extension of a result in [60, p. 689], where Parlett shows that
(in our notation) there exist nonzero a1, Bxy1 such that

Uppr = (@ + G (A — ) (A — 0,1) ™" dy),
Vb1 = Brr1(y +ex(A—0k)" (A — D) "e),

where
e; (A — A )dy

YT + Opeperdy

Qk — A= 6]65]6
Hence
|)\ - 9k| = 5k8kﬁ()\)|62(14 — )\I)dk| + h.o.t. (234)
Since (A — A)~" exists on yt, and (A — AI) * exists on =, we have
- -1
(A= 6D)  dill < 11 ((A=AD)]ys) [+ hodt.
1(A = 0:D) "ex]] < [I((A = AD)]ge) | + heo.t.
We can conclude that
< Grerk(N)K((A = AI)],1) + hoo.t.,
err1 < Operk(N)K((A— AI)*[;1) +h.o.t.

The proof is completed by the observation

k(A= AD)|) = me(<1—z*y;) (A= AI) (I—zi))

() o)

= K((A=AM)"[p1).

|

Comparing Theorems 2.2.2 and 2.3.1, one may observe two differences. First, Theo-
rem 2.2.2 can also be expressed in terms of the angle Z(ug,x) (see [61, Theorem 4.7.1]),
but in the nonnormal case this is not obvious. Second, because of the possibly large
constant of Theorem 2.3.1, the cubic convergence may have less significance in practice.
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2.4 Two-sided Jacobi—Davidson

Inspired by two-sided RQI, we design a two-sided JD method. We work with two search
spaces, U for the right and V for the left eigenvector. Suppose that we have k-dimensional
search spaces U and V, and approximations v € U and v € V to the right and left
eigenvectors, u £ v. We now would like to take

v*Au

v*U

0=0(u,v) =

as approximation to the eigenvalue. Note that this holds if and only if (A — 01)u L v
and (A — @I)*v L u. This suggests the imposition of Petrov-Galerkin conditions on the
right residual r, and left residual r, to determine approximate eigenvectors u and v:

ry =(A—60Nu LYV and r,:=(A—-0I)"v LU.

Now write u = Uc and v = Vd, where the columns of U and V form bases for ¢/ and V
(not necessarily orthogonal, see Sections 2.4.1 and 2.4.2), and ¢ and d are k-dimensional
vectors. We see that the desired ¢ and d are the right and left eigenvectors corresponding
to the eigenvalue 6 of the projected (generalized) eigensystem

V*AUc=0V*Uc and U*AVd=0U*Vd. (2.4.1)

To expand the search spaces U and V), the two-sided JD method looks for corrections s
and t (not necessarily orthogonal, see Sections 2.4.1 and 2.4.2) such that

Au+s)=AMu+s) and A*(v+1t)=Av+1).
For the right correction equation this means (cf. (2.2.2))
(A=0D)s=—r,+ (A —0)u+ (A —0)s. (2.4.2)

As in the previous section, we consider the projection of this equation that maps u to
0 and fixes 7,. In this situation r, L v, so the sought (oblique) projector is given by
P=1- :f”u P is an approximation to the spectral projector, just as I — uu* is in the
normal case (see Section 2.2). When we neglect (A — 6)s, which is now of third order
(see (2.3.4)), and project (2.4.2), this yields

(1 - “”*) (A= 0D)s = —r,. (2.4.3)

v*U

In a similar way we get for the left correction equation

(1 _ “f) (A—0I)"t = —r,. (2.4.4)

u-v

We now discuss two variants of the two-sided JD approach: one where the columns of U
and V' are bi-orthogonal, and one where both U and V' have orthogonal columns.
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2.4.1 The columns of the search spaces bi-orthogonal

For the first variant of two-sided JD, we want the columns of U and V' to be bi-orthogonal,
that is, V*U should be a diagonal matrix. This is a natural idea, because the right
eigenvector corresponding to a particular eigenvalue is orthogonal to the left eigenvector
corresponding to a different eigenvalue. This choice has the advantage that the projected
eigenproblem (2.4.1) is easily transformed into a standard eigenproblem. Since in this
variant we look for bi-orthogonal corrections s | v and ¢t | u, the correction equations
(2.4.3) and (2.4.4) can be written as

(I—UU*)(A—QI) <[—“”*>s = —ra  (sLw),

v*u v*u
<1—”f)(A—91)*(1—mf)t = —r, (tLu).
u*v u*v

The operator in the first equation is the conjugate transpose of the operator in the second
equation, so these equations may be solved simultaneously by bi-conjugate gradients
(BiCG). Note that BiCG tries to solve two equations; but often only one approximate
solution is used, the other solution solves a shadow equation and has no practical interest.
In this situation we do use both approximate solutions from BiCG; r, takes the role of the
shadow residual. Of course, we can also deal with the correction equations separately; for
instance we may try to solve each of them by a few steps of (preconditioned) GMRES,
see the numerical experiments. The resulting algorithm for the computation of the
eigenvalue with the largest magnitude is shown in Algorithm 2.4.2.

If one is interested in other eigenvalues, one should change the choice in Step 4 of
Algorithm 2.4.2 accordingly (possibly using refined or harmonic Ritz vectors). Also
remember that V;*Uj is a diagonal matrix. In Step 2 of the algorithm, Bi-MGS stands
for (repeated) bi-modified Gram-Schmidt, used to make the columns of Uy and V} bi-
orthogonal in a numerically stable way.

Note that if the algorithm terminates, we have in general found only one eigenvector,
say the right eigenvector, to the prescribed tolerance. Often we will also have a good
approximation to the left eigenvector (see also the numerical experiments), but this is
not necessarily the case. In any case, it is not sensible to continue with the algorithm,
for we would then perform superfluous calculations for one of the eigenvectors. If we
want to have both eigenvectors accurately, then, at the end of Algorithm 2.4.2, it suffices
to (reasonably accurately) solve ¢ 1 v from the system

(I —vv")(A—=0D)" (I —vv")t = —ry, (2.4.5)

where v is the (often good) approximate left eigenvector from Algorithm 2.4.2. Solving
one such system will in general be enough, since  is a very good approximation to A.
Instead of (2.4.5), we may also solve a correction equation with oblique projections, but
experiments suggest that (2.4.5) uses less computational effort.

2.4.2 The columns of both search spaces orthogonal

Another obvious idea is to keep the columns of both U and V orthogonal. Because in
this variant we look for updates s 1 u, t L v, the two correction equations now take the
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Input: a device to compute Az and A*x for arbitrary =z,
starting vectors u; and vy (viu; # 0), and a tolerance

Output: an approximation (6, u,v) to an eigentriple of A
satisfying min{||(A — 61)u]|,||(A — 0D)*v||} < e

1. s=wu1, t =101, UO:[LVE]:[]
for k=1,2,...

2. (Uk, Vi) = Bi-MGS (Ug—1, Vi—1,s,1)
3. Compute kth column of Wy, = AU,

Compute kth row and column of Hy, = VW,
4. Compute eigentriples (8, ¢,d) of the matrix (V,G*Uk)_1 (Vi AUL)

and select one (e.g., 8 with largest magnitude)

5. u = Uge/ |Ukell, v = Vid/||Vad]), (6 = 552
6. ry = (A —00)u = Wie/||Ukc|| — u

ry = (A —6D)*v
7. Stop if min{||ry||,||rv||} <€ (and compute second vector at will)
8. Solve (approximately) s L v, t L u from

(1-w)@a-on (1-2)s= -,
(1-22) a-on (1-25)t=-r,

ALGORITHM 2.4.2: Bi-orthogonal two-sided Jacobi-Davidson

form
(I—2)(A—0) (I —wu)s = —r, (s L u), (2.4.6)
(I—2)(A=0D)* (I —w*)t = —r, (t Lw). o

This leads to Algorithm 2.4.3 for the computation of the eigenvalue with the largest
magnitude. In Step 2 of the algorithm, MGS stands for modified Gram—Schmidt, used
to make the columns of Uy and Vj orthogonal. A problem in this variant is that the
operator in the first equation in (2.4.6) maps u® onto v', while the operator in the
second equation maps v onto ul. As also observed in [73, Section 3.3], it is unnatural
to repeat such an operator, so it seems unattractive to solve the equations in (2.4.6) by
a Krylov solver.

As has been noted in [73], we can fix this by working with a preconditioner M for
A — 6I. We know [73] that the inverse of the projected preconditioner

(I_uv )M(I—uu*):uL—H)L

v*U

M 1uu* uv*
I—-———— |\ MY T- cpt L
( u*M‘1u> ( U*u> v

For the first equation, this operator maps v+ back to u*, while

M~ *vv* vu*
I——— | M (] -
( U*M*U) ( u*v)

is given by
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for the second equation maps u* back to v*. Let us study the simplest case, M = I, for
a moment. Then we get

(I —wu*)(A—00)(I —uu*)s = — (I —uu*)ry,
(I —vv*)(A=00)* (I —vv*)t = — (I —vv")r,.
We recognize these equations as the correction equations of standard JD (2.2.3) applied
to A and A*; so for this special case we get a version of two-sided JD where the correction

equations are of the same form as in standard JD. Of course, preconditioning may also
be useful to speed up the convergence of the inner iteration.

(2.4.7)

Input: a device to compute Az and A*zx for arbitrary z,
starting vectors u; and v; (viu; # 0), and a tolerance €

Output: an approximation (6, u,v) to an eigentriple of A
satisfying min{||(A — 01)u]||,||(A — 0D)*v||} < e

1. s =wu1,t =1, UO:[]aVb:[]
for k=1,2,...

2. Uk = MGS (Uk_l,s)

Vi = MGS (Vi_1,1t)
3. Compute kth column of Wy, = AU

Compute kth row and column of H = V;*Wj,
4. Compute eigentriples (6, ¢,d) of the pencil (V;* AUy, V,*Uy)

and select one (e.g., § with largest magnitude)

5. u=Ukc, v =Vid, (§ = LAL)
6. ry = (A —00u=Wyc—6u

ry = (A —6I)*v
7. Stop if min{||ry]|, ||7v||} <€ (and compute second vector at will)
8. Solve (approximately) s L u, t L v from

(I— “”*) (A—00) (I —uu*)s=—ry

v*u

(I_ UL) (A—0I)* (I —vv*)t = —r,

ALGORITHM 2.4.3: Orthogonal two-sided Jacobi-Davidson

The following theorem states that exact two-sided JD, like two-sided RQI, has locally
cubic convergence.

Theorem 2.4.1 If the two correction equations (2.4.3) and (2.4.4) are solved ezactly,
both the bi-orthogonal and the orthogonal variant of the two-sided JD process converge
asymptotically cubically to an eigenvalue, if that eigenvalue is simple.

Proof: The solution to (2.4.3) is
s=—-u+C(A—0I)"u

In the bi-orthogonal variant s L v, so ¢ = v*u/(v* (A —60I) ' u). In the orthogonal
variant s L u, then ¢ = (u* (4 —0I) " u)~'. We recognize the updated vector u + s
as a multiple of the one from two-sided RQI. For the left correction equation we have a
similar expression. Now apply Theorem 2.3.1. O
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2.5 Inexact two-sided RQI and Jacobi—Davidson

In Section 2.1 we have already mentioned that JD and RQI are in practice often very
expensive when we solve the linear systems, occuring in the methods ((2.3.2), respectively
(2.4.3) and (2.4.4)), accurately. In this section, we therefore consider inexact variants. In
Sections 2.5.1 and 2.5.2, we investigate two-sided RQI and two-sided JD when the linear
systems are solved to a certain precision (minimal residual approach). In Section 2.5.3, a
relation between two-sided RQI and two-sided JD is established, when the linear systems
are solved by a number of BiCG-steps (bi-orthogonal residual approach).

2.5.1 Inexact two-sided RQI

In [80] and [89], the authors study inexact RQI for Hermitian matrices. They show that
the asymptotic convergence rate under certain assumptions is quadratic. Here we give a
generalization for inexact two-sided RQI.

Consider the situation where we solve the two equations (2.3.2) of the two-sided RQI
method inexactly, by which we mean that we are contented with u.1,vx11 satisfying

(A —0D)upy —ugl| <& <1 and  |[(A—0) v — g < & < 1. (2.5.1)

Note that if we have nonsingular preconditioners M; ~ A — 0I and M, ~ (A — 6I)*,
such that
I(A—6nM =1 <& and [[(A—01)'My" —I|| < &,

then only one action with each preconditioner (that is, take g1 := M, “uy and vy =
M, ') is enough to satisfy (2.5.1). However, since A — 61 is almost singular if 6 ~ A,
it is not a realistic assumption to have such preconditioners at our disposal.

To study the convergence rate of inexact two-sided RQI, the following lemma is useful.

Lemma 2.5.1 Letv = S(y+ece), e L x (cf. (2.3.3)). The following statements are true:

@ -] =[] = s
) |- 2),.| < JTTER00:
(c) |22 UL( < er(N).

Proof: Define Q := I — %~ By examining the eigenpairs of Q*Q we see that all singular

yra”
values of Q restricted to the space span{z,y}* are equal to one. Likewise, the singular
values of I — () restricted to the space y are zero. Therefore, one may check that, up to

a normalizing constant, argmax,_, % =y — (z*y)r, and argmax,_, W =y, both

with maximum |y*z|~'. This proves (a). (In fact, this is a special case of the result that
for all projections 0 # P # I, we have ||P|| = ||[I — P|| [45].) Using y = 8 v — e, we
get that I — ;ym =1+ E;f; on the subspace v'. Similar to the proof of (a), it is only
of interest to consider the singular values of this operator on the subspace span{z,e}*.
Now ||Qe||? = |le+¢ (y*z) " z||> = 1 +€%k(\)?, because e | z. Because in general e [ v,

. . * . * L
(b) follows. Finally, (c) can be proved by noting that 2> = —e 7= on v O
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From the proof of part (a), we see that, when k(\) is very large, argmax(] — ;”ym) ~

argmax(%). This implies that when the right eigenvector z and the corresponding left
eigenvector y are nearly orthogonal, the decomposition v = gz 4+ 12d, d L y, has (almost
equally) large ; and 7, components. We are now ready to state the following result. As

in Theorem 2.2.2, h.o.t. stands for “higher order terms in J; and &;”.

Theorem 2.5.2 (Locally quadratic convergence of inexact two-sided RQI, gen-
eralization of [80, Corollary 4.3] and [89, Proposition 2.2].) Suppose that
max{&;,&} - k(A) < 1. For one step of inexact two-sided RQI, where the equations
are solved inexactly according to (2.5.1), we have (using the notation in (2.3.3))

Opr1 < 110kex + h.o.t.  and exy1 < Yo0per + h.o.t.

Here

= KOR(A = D) TR (=1,

Proof: From the first equation of (2.5.1) we know that there exists a £,0<E<E, and
a unit vector f such that B
(A — 0;J)uk+1 = Ug +ff

Decomposing f in an z-component and a component orthogonal to y, we get using
Lemma 2.5.1(a) that

(A — le)ukﬂ =ar+ g&;

where d L y, [a| > |ax| — &6(0), and 8 < |6k + £15()). Moreover, we have the
estimates
lag| =1+h.ot., and |Bg] =1+ h.o.t. (2.5.2)

The value of v; now follows, analogous to the proof of Theorem 2.3.1, from bounding
|0/, and 7, is derived in a similar manner. O

When we have preconditioners at our disposal, we may also try to solve the (left)
preconditioned equations to a certain precision, e.g.

1My (A = 0D uper —w) | < & < 1,

Just as for Theorem 2.5.2, one can prove that this yields locally quadratic convergence,
now with constants

k(M) Ml
1= &r(N)[[ M|

¥ = k(M) k(A = AI)[,1) (1=1,2).

As 0 = ), the condition number of the matrix A — ;I increases. Therefore, it may
get more and more expensive to solve (2.5.1) to a certain tolerance. This provides a
motivation to study inexact two-sided JD.
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2.5.2 Inexact two-sided Jacobi—Davidson

In [89], the author studies inexact JD for Hermitian matrices. He shows that the asymp-
totic convergence rate is linear under certain assumptions. Here we give a generalization
for two-sided JD.

Consider the situation where we solve the two equations (2.4.3) and (2.4.4) of the
two-sided JD method inexactly, by which we mean that we are satisfied with s | v and
t L u (bi-orthogonal variant) or 3 L u and ¢ | v (orthogonal variant) where

‘ <I - :vu> (A =005+ 74| <& 7l (2.5.3)
and
vy ~
' (I - mv) (A=00)t+r| < &llrall, (2.5.4)

for some 0 < &1, & < 1. The next theorem states that the resulting local convergence is
linear.

Theorem 2.5.3 (Locally linear convergence of inexact two-sided JD, gener-
alization of [89, Theorem 4.1]) For one step of inexact bi-orthogonal two-sided JD,
when the equations are solved inezxactly according to (2.5.3) and (2.5.4), we have (using
the notation in (2.3.3))

Opr1 < Y10k + h.o.t. and epy1 < Yok + h.o.L.
Here
i =&R((A—=AM)|,)  (1=1,2).

The orthogonal variant of two-sided JD has locally linear convergence as well.
Proof: For clarity, we leave out the index k. Write P = I — :j”u Let us first consider
the bi-orthogonal variant of Section 2.4.1, where s L v. From (2.5.3) we know that there

exists a E, 0< Eg &1, and a unit vector f 1 v such that

P(A—=01)P5 = —ry + & ||ra|f- (2.5.5)
From (2.4.2) we can see that the “real” update s L v satisfies
P(A—M)Ps = —r,,

hence
P(A—0I)Ps= —r, + (A—0)s. (2.5.6)

Both u+ s (s L v) and u — add (d L y) are multiples of the eigenvector z, and (2.5.2)
and Lemma 2.5.1(b),(c) give that ||s|| = 0 + h.o.t. Subtracting (2.5.6) from (2.5.5) gives

P(A—01)P(5 = 5) = E|lrllf — (A = 0)s.
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The operator P(A — AI)P is a bijection from v* to v and
- 1
I (P(A=0D)P)|,2) " [ =l (A= ADy) || +heot.

For the norm of the residual we have by (2.3.4)

lrull = lla((A = 0)z + 6(A = 81)d)|
= 0||(A—0I)d| +h.o.t.
< 6||[(A—0I)[,| +h.o.t.
= 0[[(A—=A)|,.|| +h.o.t.

S0
|5 — || < 6&ik((A— A)[,1) +hoo.t.

The term (5 — s) L v represents the error in the updated vector v + 5. Again using
Lemma 2.5.1(b),(c), we get dx+1 = ||S — s|| + h.o.t. This proves the statement for the bi-
orthogonal variant. Now consider the orthogonal variant of Section 2.4.2. The essential
difference is that s | u. Along the same lines, it can be shown that

[[rull < [I(A = AL) |51 []][s]] + h.o.t.
In the same way as in the proof for the bi-orthogonal case, we get
15— s|| < &m((A = AL, |1s]l + O([1s]1?),

where (A — \I)|,. is interpreted as operator from z' to y*. This estimate means locally
linear convergence. 0

Comparing inexact two-sided RQI with inexact two-sided JD, we remark that it is by
no means possible to conclude from Theorems 2.5.2 and 2.5.3 that “inexact two-sided RQI
is faster that inexact two-sided JD”. Firstly, the theorems only make a statement about
the local, not the global, rate of convergence. In fact, it can happen that inexact two-
sided RQI does not converge at all (see the numerical experiments), while inexact two-
sided JD trivially converges in a finite number of steps. Secondly and more importantly,
the theorems do not tell how much effort it takes to solve the equations in question
((2.5.1) versus (2.5.3) and (2.5.4)) to a certain precision. In the proof of the previous
theorem we have seen that the effective condition number of (I — %) (A—61) (I — %)
approaches £((A — AI)[,.) as @ — A, u = x, v — ¥y, while the condition number of
A—0I is unbounded as @ — A. Therefore, it may be much more difficult to solve (2.5.1).
Thirdly, in the next section we show that the solutions to the linear systems are the
same if the systems are solved by unpreconditioned BiCG with a fixed number of steps.

2.5.3 Relation between inexact two-sided JD and inexact two-
sided RQI

We have already seen that two-sided JD is equivalent to accelerated two-sided RQI if
all linear systems ((2.3.2) and (2.4.3), (2.4.4)) are solved exactly. In [72], the somewhat
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surprizing result is proved that for Hermitian matrices, standard JD is equivalent to
accelerated RQI when all linear equations are solved by a certain number of steps of
conjugate gradients. We generalize this result, and show that two-sided JD for nonnormal
matrices is also equivalent to accelerated two-sided RQI, if the linear systems are solved
by a certain number of steps of BiCG. In the next lemma, C plays the role of A — 61.

Lemma 2.5.4 (Generalization of [81, Lemma 4.1].) Let P =1 —* and r = Cu.
Then for allm > 1,

span{u,r, (PCP)r,...,(PCP)™ 'r} = span{u,r,Cr,...,C™ 'r}.

Proof: Let K,, = span{u, r, Cr, ..., C™ 'r} and L,, = span{u, r, (PCP)r, ...,
(PCP)™1r}. The proof is by induction. For m = 1, the claim is evidently true. Now
assume that K; = £; for all j < m. If a € L,,, then there exist b € £; = K4, and
¢ € L1 =K1 such that a = b+ (PCP)c. Writing out the projection P, we get

o = b+(1—“f)c<1—“f>c
vTuU vtu

= prce—YC0us ((v Cu)(v'e) v Cc) .

v*u (v*u)? vy

Now Cc € K,,,, and all other terms are in &y, so a € K., and L, C IC,,.

If £, is of full rank, then the lemma is proved. Otherwise, let j be the largest index
such that £; is full rank. Then £;;; = £; = K;. Now let ¢ € K;. Then we deduce
that also PC'Pc € K;. From an equation similar to the one displayed above, we see that
Cc e Kj, so Kj11 = K. By induction we have £, = L; =K; =K, forallm > j. O

Proposition 2.5.5 (Generalization of [72, Proposition 3.2].) Let u and v be ap-
prorimate eigenvectors. Let S,,, tm be the approzimate solutions to the right and left JD
correction equation ((2.4.3) and (2.4.4)) respectively, obtained by m steps of the BiCG
method, without suffering from a breakdown. Let Uy and Uy,y1 be the approrimate
solutions to the two-sided RQI equations (2.3.2), obtained by m+1 steps of BiCG. Then
there exist iy, o such that

Ums1 = (U +5m), and Uy = (v +tn).

Proof: Let the columns of W,,, and Z,, be bi-orthogonal bases for respectively span{r,,
P(A—-06I)Pry, ..., (P(A—=0I)P)™ 'r,} and span{r,, P*(A — 0I)*P*r,, ..., (P*(A —
6I)*P*)™1r,}, respectively. Apply BiCG to the JD correction equations; then 5, and
tm are of the form 3, = W,,w, t, = Zmz, where w, z are solutions of

ZP(A—-0)PW,w=—-2"r, and W] P*(A—-0I)"P'Z,z=—-W]r,.
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Now note that W>v = 0 and Z}u = 0, so PW,, = W,,, and P*Z,, = Z,,. Hence w, 2
solve
Zn(A—-0DWpw=—-2Z"r, and W) (A—01)"Z,z=—-W,r,.

On the other hand, according to Lemma 2.5.4, the columns of [u W, ] and [v Z,, ]
are bi-orthogonal bases for span{u, (A — 6@)u,...,(A — 8I)™ 'u} and span{v, (4 —
O0)*v,...,((A — 0I)*)™ v}, respectively. Hence, BiCG applied to the two-sided RQI
equations gives approximations U, 1 and v,,,1 of the form u,, 1 = W,,p + 14, Upy1 =
Zmq + ov, where p, q, i1, j1o are determined by the Petrov-Galerkin conditions

T | _ | vu ~ | e | | vt
Aol ] we #[m]=[E) e

- [U*(A—Hf)u v (A —0)W,, }

where

A= Ze (A0l Z5(A—6DW,,
The terms Z*u and W}*v in (2.5.7) vanish. From the (twice) last n — 1 equations in
(2.5.7) we get

Zp(A=0DWyp = —mZ;,(A— 01y,
Wy (A—-01)Z,q = —uW, (A—6I)%.

Because of the assumption that no breakdown is encountered, Z7, (A—601)W,, is invertible
and the proposition is proved. O

Commenting on the number of BiCG-steps in the previous proposition, we note that
it is natural that two-sided RQI needs one step more (m + 1 versus m), because two-
sided JD already uses a matrix-vector multiplication to compute the residual. Based on
this proposition, it is tempting to conclude that two-sided JD and two-sided RQI are
equivalent. But the proposition only gives a statement for the situation when the linear
systems ((2.3.2) and (2.4.3), (2.4.4)) are solved by unpreconditioned BiCG; and even
then JD uses subspace acceleration, and RQI does not. Preconditioning can be included
in JD and RQI in such a way that Proposition 2.5.5 still holds for the preconditioned
methods. However, this preconditioning for JD will not be the one described in [73, 75]
and seems to be less effective.

2.6 Alternating Jacobi—Davidson

Theoretically, RQI does not need to converge globally. Parlett [60] proposes a different
generalization of RQI to ensure global convergence, which he calls alternating Rayleigh
quotient iteration; see Algorithm 2.6.4.

This method is somewhat counter-intuitive, because (A4 — 1)~ and (A — 0I)~* are
used alternatingly on the iterates. For fixed 6, every two steps of the algorithm result
in one action with ((A — 6I)*(A — 6I))"". This method could therefore be interpreted
as an attempt to find the smallest singular value and corresponding singular vectors of
A—0I. As such, it can be considered as a method for the singular value problem, rather
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Input: initial vector u; with unit norm
Output: an eigenvalue of A with its right and left eigenvector

for k=1,3,...
1.  Compute 0y = 6(up) = uj Auy,
2. Solve (A — 0xI)up41 = ur and normalize ug1

3. Compute 011 = O(ugy1) = uj, Augyr
4. Solve (A — Ogy1)*ugr2 = ugs1 and normalize ugyo
If A— 6y or (A —0x11)* happen to be singular, solve the eigenvectors.

ALGORITHM 2.6.4: Parlett’s alternating Rayleigh quotient iteration [60]

than one for the eigenvalue problem. But because a matrix has a zero eigenvalue if and
only if it has a zero singular value, the method can asymptotically (that is, for § ~ \)
also be regarded as an eigenvalue method. Parlett [60, p. 692] shows that the (only)
advantage of this process is that it converges for all starting vectors, while it has a big
drawback: the asymptotic convergence is in general only linear with factor close to one
(1 — k(X\)™%) when applied to nonnormal matrices.

Alternating RQI gives us inspiration for a new JD variant, which we call alternating
Jacobi—Davidson. The idea is to accelerate Parlett’s process, building up one (orthogo-
nal) search space for both the left and the right eigenvector. Every odd step focuses on
approximating the right eigenvector, every even step on approximating the left eigenvec-
tor, see Algorithm 2.6.5.

Because of the subspace acceleration, the convergence behavior of alternating JD is
much better than that of alternating RQI. For nonnormal matrices, the odd or even
steps alone garantee us quadratic convergence (when the correction equations are solved
exactly). For normal matrices, one can check that alternating JD does exactly the same
as standard JD, so with the same amount of work we get cubic convergence. Our hope
is that alternating JD will have fast convergence for (slightly) nonnormal matrices with
only a modest amount of extra work. Numerical experiments show that alternating JD
can be faster that standard JD (see Section 2.9).

2.7 Extensions

In this section we extend the two-sided methods to the generalized and polynomial
eigenproblem, and we discuss the application of the methods to the complex symmetric
eigenproblem, which can be seen as a special case.

2.7.1 The generalized eigenproblem

Two-sided and alternating JD can easily be generalized. Let us examine the adaptations
to apply two-sided JD to the generalized eigenproblem Az = ABx. The Galerkin con-
ditions (A —0B)u L V and (A — 0B)*v L U lead to the two-sided Rayleigh quotient for
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Input: a device to compute Az and A*z for arbitrary x,
a starting vector y;, and a tolerance .
Output: an approximation (8, u,v) to the largest eigenvalue of A and its
left and right eigenvector satisfying min{||(4 — 81)u||, [|(A — 8I)*v||} < e.

1. S:yla}/o:[]

for k=1,2,...
2. Yk = MGS (Yk_l,s)
3. Compute kth column of Z, = AY}
Compute kth row and column of M;, = Y};*Z;
4. Compute eigenpairs (and select one)
(0,c¢) of My =Y,;rAY}, (k even)
(0,c) of M} =Y A*Y; (k odd)
5. y =Ye
6. r=(A-0Dy=Zyx—06y (k even)
r=(A—-60I)*y (k odd)
7. Stop if ||7|| <& (and compute second vector at will)
8. Solve (approximately) s L u from

(I —uu*)(A—-60DI)(I —uu*)s = —r (k even)
(I —uu*)(A—-6D)*(I —uu*)s =—-r (k odd)

ALGORITHM 2.6.5: Alternating Jacobi-Davidson

the generalized eigenvalue problem
v*Au
v*Bu’
where u and v are the backtransformed right and left eigenvectors of the projected pencil

(V*AU, V*BU). For bi-orthogonal two-sided JD, one possibility for the right correction
equation is

(1 - qugu> (A—0B) (1 - %) s=—(A—0Bu (sl B%). (27.1)

(For other options, see [73].) If we solve this correction equations exactly, then we get
s=—-u+((A—60B)"" Bu

(¢ such that s L B*v), so that exact two-sided JD can also in this case be viewed as
accelerated “generalized two-sided RQI” (see e.g. [61, Theorem 15.9.3] for the symmetric
case), leading to cubic convergence:

Proposition 2.7.1 Let B be nonsingular, and let A be a simple eigenvalue of B~ A.
Then exact two-sided JD converges locally cubically.

Proof: Note that (A — 6B)™" Bu = (B™*A —6I) 'u and apply Theorem 2.3.1. O

Note that we get cubic convergence using aAu + S Bu instead of Bu as well, because
Au and Bu are asymptotically linear dependent.
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2.7.2 The complex symmetric eigenvalue problem

Let us now apply the methods to the complex symmetric eigenvalue problem
Az = Az,

where the large and sparse matrix A is complex symmetric: A = AT € C™". Eigenvalue
problems of this type, and of the related generalized complex symmetric eigenvalue
problem

Ax = \Bzx, B invertible,

where both A and B are complex symmetric are becoming of increasing importance in
applications, most notably in the field of electro-magnetic simulations.

Notice that complex symmetric matrices are not Hermitian. So, they do not possess
the favorable properties of Hermitian matrices. In particular, complex symmetric ma-
trices may have complex eigenvalues, and can be arbitrarily nonnormal. In fact, every
matrix is similar to a complex symmetric matrix [27, 40], whence it may be arbitrarily
difficult to a (standard or generalized) complex symmetric eigenproblem.

Nevertheless, complex symmetric matrices do have special properties. If x is a right
eigenvector of A, Az = )z, then it is also a left eigenvector, in the sense that 27 A = \z7.
Eigenvectors z,y corresponding to different eigenvalues A # p are complex orthogonal,
i.e., they satisfy

(z,y)r =y 'z =0. (2.7.2)

If A is diagonalizable then the diagonalization can be realized by a complex orthogonal
matrix @, Q1Q = I [40].

We call the (indefinite) bilinear form (z,y)r in (2.7.2)—somewhat abusively—an
“nner product”. For brevity, we write x L y if two vectors x and y are complex
orthogonal. A vector x is called quasi-null if (x,z)7 = 0.

When treating the generalized complex symmetric eigenvalue problem it is natural
to use the indefinite bilinear form

[z,y]r := (=, By)r =y Bx. (2.7.3)

The matrix B~'A is then complex symmetric with respect to [z,y|r as A is complex
symmetric with respect to (z,y)r. We therefore restrict the discussion to the standard
complex symmetric eigenvalue problem.

A number of algorithms have been designed for solving complex symmetric linear
systems of equations. In [93], the bi-conjugate gradient algorithm is modified to obtain
the complex conjugate gradient algorithm COCG. The idea is to set the initial shadow
vector equal to the initial residual. (If one works with the Euclidean inner product, the
shadow vector has to be the complex conjugate of the initial residual, see [93].) With
regard to the relation among right and left eigenvectors mentioned before this choice
of the shadow vector is natural. The same idea is used to adapt the quasi-minimal
residual (QMR) algorithm to the complex symmetric case [26]. In COCG and QMR, the
same Krylov subspaces are generated. However, the approximate solutions are extracted
differently from these subspaces. In [16] an algorithm, CSYM, is introduced that is
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closely related to the special form that the singular value decomposition (or Takagi
factorization) takes on for complex symmetric matrices [40]. Every complex symmetric
matrix is unitarily similar to a complex symmetric tridiagonal matrix. CSYM constructs
the three-term recurrence that holds among the columns of the unitary matrix that
realizes the similarity transformation. Notice that CSYM is not a Krylov subspace
method.

With respect to methods for solving complex symmetric eigenvalue problems, a Lanc-
z0s type eigensolver employing the bilinear form (2.7.2) is proposed in [18, Chapter 6.
We apply the two-sided JD method to the complex symmetric eigenvalue problem. We
give a short summary of the results, for a more extensive discussion, as well as some
experiments for complex symmetric generalized eigenvalue problems, see [1]. In contrast
to the complex symmetric methods mentioned before, our Jacobi-Davidson algorithm
for the complex symmetric eigenproblem, which we denote by JDCS, can be transcribed
quite easily into a solver for the generalized complex symmetric eigenvalue problem.

Assume that )\ is a simple eigenvalue, then it has a finite condition x(A). Because
‘—1

oo > Kk(A) = \:CT:C|_1 = |(z,z)r| ",

an eigenvector corresponding to a simple eigenvalue is not quasi-null whence it can be
“normalized” such that (z,z)r =1 [31, p. 323].

Given an approximate eigenvector u with Euclidean norm one, the corresponding
eigenvalue is usually approximated by the Rayleigh quotient 6(u) (see Section 2.2). Al-
ternatively, with regard to the “inner product” (2.7.2), we can also define the Rayleigh
quotient by
ul Au

uTu
One may check that for complex symmetric A, the latter definition has the desirable
property (cf. (2.3.1))

p=pu):=

p(u) is stationary <= wu is an eigenvector of A, and u not quasi-null. (2.7.4)

"y xxl ws (1 xxl "
S\ 2Tx x2Tx )

we see that u can be written in the form (cf. (2.3.3))

By writing

u = ax + dd,
where o + 6> =1, (d,d)r = 1 and = 11 d = 0. Direct computation shows that
A—p=08d (A — A)d.
So, we conclude that (cf. (2.3.4))
A —p| = O(6?), (2.7.5)

while |[A — @] is in general “only” O(d). (The reason for the last statement is that in
general the eigenvectors are not stationary points of §(u).) Therefore, the Rayleigh



2.7. Extensions 35

quotient p is asymptotically (i.e., when u converges to x) more accurate than the usual
Rayleigh quotient 6.

The crucial observation in this subsection is that if &/ is the search space for the
(right) eigenvector, then with regard to the “inner product” (2.7.2), U forms a search
space for the left eigenvector of equal quality. So, the fundamental difference with the
two-sided Jacobi-Davidson algorithm is that as we build up a right search space (i.e.,
a search space for the right eigenvector), we get a reasonable left search space for free.
We do not have to (approximately) solve a left correction equation as in the two-sided
Jacobi-Davidson algorithm.

In view of (2.7.4) and (2.7.5), we take, instead of the usual Ritz—Galerkin condition on
the residual (2.2.1), the same condition but with respect to the “inner product” (2.7.2):

r=Au—pu lr U,

Writing u = Uc, ¢ € C*, we find that (p,c) should be a solution of the projected

eigenproblem
UTAUc = pUTUe.

Therefore, it is practical that the search matrix U has complex orthogonal columns,
UTU = I (note that this will not always be possible). This is achieved by a variant of
MGS, denoted by MGS-CS. We have two possible choices for a correction equation for
JDCS: one looking for an orthogonal update s; L u, or one looking for a complex orthog-
onal update so L7 u. The first option leads to a correction equation with orthogonal
projections (cf. (2.2.3))

(I —uu")(A—pl)(I—uu")s; =—(A—0I)u, s1 L u.

Note that the right-hand side contains € instead of p to ensure its orthogonality to w.
The constraint s, L u gives a correction equation with oblique projections; in this case,
the left and right equation (2.4.3) and (2.4.4) reduce to one equation:

T T
(I — %) (A — pI) (I — %) sy = —(A = plu, So Lo u. (2.7.6)
The operator in this equation is complex symmetric. So, we can try to solve (2.7.6)
by a linear solver that is especially designed for complex symmetric systems, such as
CSYM [16], complex symmetric QMR [26], or COCG [93]. The Jacobi-Davidson type
algorithm JDCS is summarized in Algorithm 2.7.6.

The results of Section 2.5 can easily be carried over to the complex symmetric eigen-
value problem. For instance, the asymptotic convergence of exact JDCS (where one
solves the correction equation exactly) is cubic, while the convergence of the inexact
variant (fixed norm reduction in inner iteration) is linear.

2.7.3 The polynomial eigenproblem

We now derive the right correction equation of two-sided JD for the polynomial eigen-
problem
p(A)z =0, (2.7.7)
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Input: a device to compute Az for arbitrary z, a starting vector u;, and a tolerance
Output: an approximation (p,u) to an eigenpair of A satisfying ||Au — pu|| < e

1. s = Uy, U() = [ ]
for k=1,2,...
2. Ur = MGS-CS (Ug—1, s)
3. Compute kth column of Wy, = AUy

Compute kth row and column of Hy = U kT Wy,

4. Compute the eigenpair (p,c) of Ul AU}, that is closest to the target 7
5. u = Ugce [ ||Ugcl|
6. r = (A — pl)u=Wie/||Ukc| — pu
7. Stop if ||r|| < e
8. Solve (approximately) for either sy L u or sy L7 u from
(I—uwu*)(A—p)(I —uu*)sy = —(A—00)u,
T T
(1-#)(A-pD) (I-%%) s = —(4-pDu,
respectively

ALGORITHM 2.7.6: Jacobi-Davidson for the complex symmetric eigenvalue problem

where
pN) = NA + AT A -+ XA+ A

Suppose that we have approximate right and left eigenvector u € U and v € V, where
U and V are, as before, the right and left search spaces. The Petrov-Galerkin condition
p(@)u LV implies that § = 0(u, v) satisfies

Z(U*Alu) 6' = 0. (2.7.8)

l

To derive Newton’s method for (2.7.7), consider

p(6) (u+ h) — p(8)(u) = p(6)(h) + ) 1 0"1Azugh +O([1Al).

Differentiating (2.7.8) with respect to u gives
00
Lot A) 0715 4 3 04, = 0
so with the notation z := p'(f)u = Y, 16" "' Aju we find that, if v*z # 0,

= (Zz (mlu)el—l) v (Z M) == () (o).

Hence, the Jacobian 6’5—(:') is equal to (I -

zv*
v*z

) p(#), and a Newton step solves s from

(I - ) p(0)s = —p(6)u,

v*2
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where p(f)u can be seen as the (right) residual for the polynomial eigenvalue problem.
This is the right correction equation for the polynomial eigenvalue problem; see also [73,
(8.4)], where the result is stated without derivation. For the special case [ = 1 this
leads to (2.7.1), and if, in addition, A; = —I, we get (2.4.3). Because this two-sided
process is a Newton method, we expect locally quadratic convergence. This is, under
some conditions, true indeed [50, Theorem 2].

2.8 Various issues

2.8.1 Time complexity

We examine the time complexity of one outer iteration step of the methods introduced
in this chapter (applied to the standard eigenvalue problem). Let k& be the dimension of
the search spaces, and let m be the number of steps with a linear solver (e.g., GMRES
or BiCG) to solve the correction equation. One may check that in each of the methods
we need O(k?) time to solve the small projected eigenproblems. The number of matrix-
vector multiplications (MVs) with A and A* per outer iteration are summarized in the
following table. For comparison, we also display standard JD in the table.

TABLE 2.1: Number of matrix-vector multiplications per outer iteration of each of the methods.

method # MVs with A # MVs with A*
standard JD m+1 0
two-sided JD (bi-orthogonal and orthogonal) m+ 1 m+1
alternating JD (even step) m+1 0
alternating JD (odd step) 1 m+1
JDCS m+1 0

For the number of actions with a preconditioner, replace m + 1 by m. Hence, two-
sided Jacobi—Davidson is approximately twice as expensive as standard Jacobi-Davidson,
alternating Jacobi-Davidson and JDCS. The same statement holds with respect to the
storage requirements.

2.8.2 Deflation

If we have found one or more eigentriples of A, and we want to find another, we can
deflate to avoid finding the same value again. Suppose that we have already found the
right eigenvectors z; and corresponding left eigenvectors ;. Then it can be verified that,
if we found the exact vectors,

i_ Ty _ Tl
A_H<I yz‘*%’) A H(I yi*%‘)

has the same eigentriples as A, except that the found eigenvalues are transformed to
ZETO0S.
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2.8.3 Comparison with two-sided Lanczos

Suppose that we do not solve the corrections equations (2.4.3) and (2.4.4), but just take
S5=r,=(A—-0Nuand t = r, = (A — 0I)*v. Because of the orthogonalization at
Step 2 of Algorithm 2.4.2, this is equivalent to taking § = Au and ¢ = A*v, which is
the subspace expansion of two-sided Lanczos. Therefore two-sided JD may, besides as a
generalization of standard JD, also be regarded as a generalization of two-sided Lanczos.

2.8.4 Breakdown

Like two-sided Lanczos, two-sided JD may suffer from a breakdown, but in two-sided
JD this can easily be overcome. First, BICG (which we may use to solve the correction
equations) may break down. Second, in the bi-orthogonal variant, the computed updates
5 and ¢ may be (nearly) orthogonal. Realizing that our aim is to compute an eigenvalue
and not to solve the correction equation accurately, we see that these breakdowns are not
an intrinsic problem. In both cases, we can simply restart the method, or take different
(e.g., random) approximate solutions to the correction equation.

2.9 Numerical experiments

Our experiments are coded in MATLAB and executed on a SUN workstation. We have
already seen that JD has different convergence behavior for normal (cubic convergence)
and nonnormal matrices (quadratic convergence); this in contrary to two-sided JD. The
following lemma implies that two-sided JD does “feel” a difference, but this is only
noticeable in the norm of the residuals, and not in the aproximations to the eigenvalue.

Lemma 2.9.1 Let A = XAY* be a diagonalizable matriz (so Y* = X~1). If there are
no rounding errors, and two-sided JD’s correction equations (2.4.3) and (2.4.4) in step
k are solved by my, steps of a Krylov method (without preconditioning), then two-sided
JD applied to

(a) A, with starting vectors uy and vy, and
(b) A, with starting vectors, uy := Y*u; and vy := X*v;

gives “the same” approrimations: 1/9\;c = 0. Moreover, Uy = Y*uy and v, = X*v;. In
particular, if A is normal, then ||ug|| = ||uk|| and ||Ue]| = ||vel|-

Proof: The first approximate eigenvalues are the same in both cases:

5. viAuy v XAY*u;  viAup 0
1= —— = = =: V1.
vl vi(XY*)ur vl

For the right residuals in the first step of the method we have 7 = (A — 0.1 Yuy =
(A —6,1)Y*uy, so X7 = 7{). In the same way we find a similar relation for the left
residuals: Y?f,l) = rz(,l). So ﬁl) = Y*rq(f) and ﬁ,l) = X*rq(,l). Denote by K,,(A,r) the
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Krylov subspace of dimension m, generated by A and r. For the Krylov subspaces we
have (generalization of [61, p. 264]):

Ko (A, 1) = Ko (XAY™, X7) = XK, (A, 7LD),

and likewise K (A%, 1Y) = K (YA*X*, Y7Y) = Y, (A%, 7). With little extra work
one can check that same relations hold for the shifted and prOJected matrices that are
present in the correction equations, for instance

* * Fover Fover?
<1— u ) (A - 01) (1— u ) - X <I— ”A) (A — 6 (I—ﬂ) v*,
v*u v*u *Uu V¥

So, using the notation P=1-

£

<)

?2

17

Ko(P(A = 601)P, 7)) = XK, (P(A — 01)P, 7).
We conclude that the approximate solutions from the first correction equations sat-
isfy 50 = y*sW and 1V = X*¢®. By induction we can prove that Uk Y*X and
V = X*V,, so the projected matrices are the same in both cases: Hk = V,CAU;c =
VifAU, = Hj. In particular, the approximations to the eigenvalues are the same, and
the approximate eigenvectors (ug,vy) and (g, vy) are transformations of each other:
Ur = Y*uy and Uy = X*vg. In particular, if A is normal, then X and Y are orthogonal,
and so [[7x| = [[r«|l- O

In the same way one may verify the next lemma.

Lemma 2.9.2 With the assumptions and notations of the previous lemma, if the equa-
tions of two-sided RQI (see (2.3.2) ) in step k are solved by my, steps of a Krylov method
(without preconditioning), then two-sided RQI applied to

(a) A, with starting vectors u; and vy, and
(b) A, with starting vectors, Uy := Y*u; and v := X* v,

gives “the same” approrimations: ’0\,9 = 0. Moreover, uy, = Y*u, and v, = X*v,. In
particular, if A is normal, then ||ug|| = ||uk|| and ||Uk]| = ||vel|-

Experiment 2.9.3 Because of these results, our first example is A = diag(1 : 100). In
Figure 2.1(a) we compare exact two-sided RQI (solid line) and inexact two-sided RQI
(dashed line). We take for u; and v; the 100th basisvector plus 0.2 times a random
vector (MATLAB’s function rand, ‘seed’ 0), and take & = & = 0.5 in (2.5.1). In this
figure, we show the error |\ — 6| in the approximation to the eigenvalue X\. One may see
the somewhat faster convergence for ordinary RQI. What we do not see in the figure is
that inexact two-sided RQI converges to A = 100, while exact two-sided RQI converges
to A = 79. Apperently, without subpace acceleration it is impossible to guide the process
to the desired eigenvalue.
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FIGURE 2.1: (a) The convergence of exact (solid line) and inexact (tolerance 0.5, dashed line)
two-sided RQI for diag(1 : 100). (b) The difference of the two-sided Rayleigh quotient (%2-A%) and the

v*u
right Rayleigh quotient (“;;‘L“) for exact (solid line) and inexact (tolerance 0.5, dashed line) two-sided
RQI for A = tridiag(1, —2,1.2) of size 100 x 100.

Figure 2.1(b) is an example of the fact that inexact two-sided RQI does not need to
converge. Here A = tridiag(1l,—2,1.2). that is, A is the 100 x 100 tridiagonal matrix
with stencil [1 —2 1.2], u; and v; are random vectors, and & = & = 0.5. We plot
the difference between the two-sided Rayleigh quotient ((u,v) = 2A%) and the right

. ) . .o
Rayleigh quotient (§(u) = “A%). For inexact two-sided RQI, this difference (and the
difference % — %) stabilizes. A small comfort is the fact that two-sided RQI can
diagnose itself that there is a misconvergence. %)
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FIGURE 2.2: (a) The convergence histories of bi-orthogonal two-sided JD (dash), orthogonal

two-sided JD (dash-dot), alternating JD (dot), and JD (solid) for the tridiagonal matrix with stencil

[-1 2 1.2] of size 100 x 100. All correction equations are solved by five steps of GMRES. (b) The same
as (a), but now 10 steps of GMRES.
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Experiment 2.9.4 Next, we experiment with two-sided JD variants. For Figure 2.2(a),
we look for the eigenvalue with the largest magnitude for the 100 x 100 tridiagonal matrix
with stencil [ =1 2 1.2]. The starting vectors are random, and the correction equations
are solved by 5 steps of unpreconditioned GMRES. All eigenvalues have real part equal
to 2, and come in complex conjugate pairs. Note that, for the two-sided methods, the
plotted line always represents min{||ry||, ||7,||}. The horizontal dashed line shows the
stopping tolerance. We see that alternating JD is faster (also measured in matrix-vector
products (MVs)) than standard JD. For orthogonal two-sided JD we choose the variant
of (2.4.7). The method uses fewer iterations, but more MVs than standard JD. The
convergence is very irregular; this might be improved using a target when one suspects
that the process is converging. Bi-orthogonal two-sided JD almost converges, but then
shows irregular behavior, and does not converge within 60 iterations. Using a target
may be a good idea here as well.

For Figure 2.2(b), we change only the number of inner iteration steps to 10. Bi-
orthogonal two-sided JD uses the fewest number of iterations. It uses slightly more
MVs than JD. However, earlier in the process we already have more information. For
instance, after 21 iterations of bi-orthogonal two-sided JD, x(\) = 56.45 is already
approximated to a relative error of 0.5%: the condition number is well approximated
before the method starts to converge. (Twenty-one iteration steps may not seem to be
“early in the process”. However, with an initial space that is “rich” in the direction of
the desired eigenvector, the initial stage of slow convergence will be absent. We will have
such a situation when we continue the process for the second eigenvalue after detection
of the first one.) Upon termination, the norms of the residuals are ||r,|| ~ 3.9-10"® and
|70l & 2.5-107°. Using only four extra MVs to find u more accurately (see (2.4.5)),
we have ||7,]| & 9.3 - 107°. This experiment is also an illustration of the situation that

0(u,v) is often more accurate than #(u) and 6(v): we have [ — (u,v)| = 3.6 - 1071,
while |\ — 0(u)| ~ 3.4-107% and |\ — O(v)| =~ 1.6 - 10!, Alternating JD uses slightly
more MVs than standard JD, but approximates the condition of the eigenvalue after
47 iterations up to 0.1% relative accuracy. Moreover, upon termination, the norms of
both residuals are small (||r,|| &~ 3.8 -107® and ||r,|| ~ 8.9-107%). Note the irregular

convergence of the orthogonal variant of two-sided JD. @

Experiment 2.9.5 As the next example, we take SHERMAN4 (size 1104, available
from the Matrix Market [53]), u; random, and v; = Au;. We solve the correction
equations by 25 steps, see Figure 2.3(a). Now two-sided bi-orthogonal JD with BiCG is
(also measured in MVs) the fastest method. Bi-orthogonal two-sided JD with GMRES
and orthogonal two-sided JD with GMRES use fewer iterations, but more MVs than
standard JD. Alternating JD is somewhat slower than standard JD, but finds the two
eigenvectors with ||| & 2.4-107% and ||r,|| &~ 1.5- 1072, Also in this example, the
two-sided methods approximate x(\) well already a few steps before termination.

For Figure 2.3(b), we take a symmetric matrix, the 1000 x 1000 matrix SHERMANT.
The starting vectors are the same as for (a). We solve the correction equations such that
the relative residuals (£ and & in (2.5.1), (2.5.3), and (2.5.4)) are less than 0.7. The
convergence of the two-sided methods looks roughly linear (cf. Section 2.5, the number of
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FIGURE 2.3: (a) The convergence histories of bi-orthogonal two-sided JD (with BiCG, dash-star),
bi-orthogonal two-sided JD (GMRES, dash), orthogonal two-sided JD (GMRES, dash-dot), alternating
JD (GMRES, dot), and JD (GMRES, solid) for the matrix SHERMAN4. All correction equations
are solved by 5 steps of GMRES. (b) The convergence histories of bi-orthogonal two-sided JD (dash),

orthogonal two-sided JD (dash-dot), and JD (solid) for the matrix SHERMANT1, as a function of the
MVs. All correction equations are solved to precision (& = &) 0.7 by GMRES.

MVs per iteration is also almost constant), while standard JD does not converge within
175 MVs. The history of alternating JD is the same as that of JD, since the matrix is
normal.

%)
2.10 Conclusions

We have discussed an alternative approach to find eigenvalues and eigenvectors of a

nonnormal matrix. Two-sided JD is a natural generalization of standard JD for nonnor-
mal matrices. Without further demonstration, we mention that most of the techniques
known in JD (such as preconditioning the correction equation, using a target, restarting,
and using refined Ritz vectors) carry over to two-sided JD.

At the introduction of two-sided JD, we have focussed on the fast convergence of the
method: exact two-sided JD has asymptotically cubic convergence for simple eigenvalues
of nonnormal matrices. However, in practice this might not be the most important
advantage of the method. Another benefit is the fact that already during the process,
we have approximations to both the left and and the right eigenvector. We can use this
information for an estimation of the condition of the eigenvalue x(A). This, in turn, can

be used as an error estimation

A =01 S sW)Irll,

which can serve as a stopping criterion. Moreover, when we spot an eigenvalue with

(possibly) a high condition, we may want to try to avoid it (using a target) when we are
not interested in it, or stop the method and continue with standard JD.

During or after the process we can compare the three Rayleigh quotients 6(u), 6(v),
O(u,v) to check for misconvergence, that is, check to see if they converge to the same
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value. Moreover, from (2.3.1) it is clear that #(u, v) can be more accurate (O(dey)) than
6(u) and f(v) (O(dk) or O(gx)), and this is confirmed by numerical experiments.

Compared with two-sided Lanczos, two-sided JD is more flexible, in the sense that
we can restart with any vectors we like, and add some extra vectors to the subspaces.
Two-sided JD is also more stable than two-sided Lanczos, in the sense that it can easily
cope with breakdown, no look-ahead versions are necessary (see Section 2.8.4).

Of course, compared with standard JD, two-sided JD has also disadvantages. First
of all, we need the action of multiplication by A*. Two-sided JD costs approximately
twice the work per iteration compared with standard JD, and also roughly twice the
storage. One could argue that by two steps of ordinary RQI (or JD) one gets the fourth
degree of the error, in contrast to the third degree by one step of two-sided RQI (or JD).
Ostrowski [56, p. 472] states that

“from this point of view, even in the case of a non-Hermitian matrix, the use
of the ordinary Rayleigh quotient iteration appears to be not only permissible
but even advisable”.

However, Parlett [60, Remark 3, p. 689] criticizes this statement (in the context of dense
methods).

Because of the two-sided Rayleigh quotient and the oblique projections, two-sided
JD may have difficulties with eigenvalues with a large condition, affecting the stability
of the method. This can result in loss of accuracy in determining \; the order remarks
above have little significance if () is huge.

In conclusion, two-sided JD is a natural alternative to standard JD and two-sided
Lanczos for nonnormal matrices, especially in situations where the matrix is nonnormal
(but not pathetically so) and when it is of interest to have approximations to the left
eigenvector and condition of the eigenvalue during the process. Alternating JD may also
give good results, especially if the matrix is slightly nonnormal.

The methods can be extended to the complex symmetric, generalized, and polynomial
eigenvalue problem.

Acknowledgments The largest part of this chapter has been reprinted from Lin. Alg.
Appl. 358(1-3), M. E. Hochstenbach and G. L. G. Sleijpen, Two-sided and alternating
Jacobi-Davidson, pp. 145-172, Copyright (2003), with permission from Elsevier.






Chapter 3

A Jacobi—Davidson type SVD
method

Abstract. We discuss a new method for the iterative computation of a portion
of the singular values and vectors of a large sparse matrix. Similar to the Jacobi-
Davidson method for the eigenvalue problem, we compute in each step a correction
by (approximately) solving a correction equation. We give a few variants of this
Jacobi-Davidson SVD (JDSVD) method with their theoretical properties. It is
shown that JDSVD can be seen as an (inexact) accelerated Newton scheme. We
experimentally compare the method with some other iterative SVD methods.

Key words: Jacobi-Davidson, singular value decomposition (SVD), singular
values, singular vectors, norm, augmented matrix, Rayleigh quotient, correction
equation, accelerated inexact Newton, refining singular values.

AMS subject classification: 65F15, 65F50 (65F35).

3.1 Introduction

Suppose that we want to compute one or more singular values, and the corresponding
singular vectors, of the real m x n matrix A. (For convenience, we first consider real
matrices, see Section 3.7.9 for complex matrices.) This subject has already been studied
from a number of different viewpoints [28, 29, 17, 96, 97, 63], for example, to determine
a few of the largest or smallest singular triples. This partial SVD can be computed in
two different ways using equivalent eigenvalue decompositions.

The first is to compute some eigenvalues and eigenvectors of the n x n matrix ATA
or the m x m matrix AA”T. For large (sparse) matrices, direct methods like the QR
method are unattractive, but there exist several iterative methods. In [63], for example,
(block) Lanczos [51] and Davidson [19] are applied to ATA. Another candidate is Jacobi—
Davidson [75]. Note that it is in general not advisable (or necessary) to explicitly form
the product ATA. The nonzero eigenvalues of ATA and AAT are the squares of the
nonzero singular values of A. This works positively for the separation of large singular
values, but it forces a clustering of small ones. Moreover, it can be hard to find very
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small singular values (relative to the largest singular value) accurately. Apart from this,
the approaches via ATA or AAT are asymmetric: in the process we approximate only
one of the two singular vectors. The second vector can be obtained from the first by a
multiplication by A or AT, but this may introduce extra loss of accuracy. Besides, when
we have approximations to both the left and right singular vector, we can use only one
of them as a starting vector for an iterative method.

A second approach is to compute some eigenvalues and eigenvectors of the augmented
matriz

[ o ] . (3.1.1)

This approach has its own advantages and disadvantages. The eigenvalues of the aug-
mented matrix are plus and minus the singular values of A, and we can extract the
left and right singular vectors from the eigenvectors by just taking the first and second
part (see Section 3.2). This makes an extra multiplication by A or AT unnecessary. We
do not have the drawback of squaring small singular values. On the negative side, the
augmented matrix is larger in size, and the smallest singular values are in the interior of
the spectrum.

The Lanczos method for the augmented matrix has been studied by a number of
authors [28, 29, 17]. The Lanczos process does not exploit the special (block or “two-
cyclic”) structure of the matrix, unless the starting vector is of the form (u,0) or (0, v).
This is essentially Lanczos bidiagonalization of A; see [31, p. 495].

We can also consider the Jacobi-Davidson method [75] for the augmented matrix.
This is an efficient method for the computation of a few eigenpairs, and it is of a different
nature in comparison to Lanczos. The essence of Jacobi-Davidson is its correction equa-
tion, where the shifted operator is restricted to the subspace orthogonal to the current
approximation to an eigenvector. When we solve this equation exactly, we can show that
the updated vector is the same as the one we would get by one step of Rayleigh quotient
iteration (RQI). But in practice one solves the Jacobi—Davidson correction equation only
approximately, and one accelerates the convergence by projecting the matrix onto the
subspace spanned by all iterates. Therefore, Jacobi-Davidson can also be viewed as an
accelerated inexact RQI.

“Standard” Jacobi-Davidson does not make use of the structure of the augmented
matrix. In this chapter we propose a Jacobi-Davidson variant that does take advantage of
the special structure of the matrix. Instead of searching the eigenvector in one subspace,
we search the left and right singular vectors in separate subspaces. We still solve a
correction equation for the augmented matrix, but we use different projections, and we
split the approximate solution of this equation for the expansion of the two search spaces.
More similarities and differences are discussed in Section 3.7.5.

After some preparations in Section 3.2, we introduce the new approach, which we call
the Jacobi-Davidson SVD (JDSVD), in Section 3.3. In Section 3.4, a few variants of the
algorithm with their properties are presented. In Section 3.5, we show that the JDSVD
process can be viewed as an accelerated (inexact) Newton scheme, and in Section 3.6 we
focus on convergence. Various aspects of the method are discussed in Section 3.7, and
after numerical examples in Section 3.8, we finish with conclusions in Section 3.9.
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3.2 Preliminaries
Let A be a real m x n matrix with SVD A = XYY and singular values
0<omn=0p<0p 1 <--- <09 <01 = Oax;

where p := min{m,n}. Denote the corresponding left and right singular vectors by z;
(1 <j<m)and y; (1 < j < n), respectively. If @ € R™ and b € R", then, for
convenience, we write [a’ b'' |7 € R™" also as (a, b).

Definition 3.2.1 Letu € R™, v € R*, X C R™, and Y C R". We say that [ﬂ e Rmtn

is double-orthogonal to the pair of subspaces (X,)) if both v L X and v L Y, which is
denoted by {ﬂ 1L [gf] The subspace {(a,b) € R™ x R* : uTa = v"h = 0} is denoted

by (u,v)*. %)

The following lemma gives a relation between the singular triples of A and the eigen-
pairs of the augmented matrix.

Lemma 3.2.2 (Jordan—Wielandt; see [83, Theorem 1.4.2]) The augmented matriz
(3.1.1) has eigenvalues

—01y...,—0p,0,...,0,0p,...,01
——

[m—n|

and eigenvectors
.Tj .
1<7<
{ t+y, ] (1<j<p)
corresponding to the £o; and, if m # n, additionally,

0

either [xj] n+1<j<m) or [
0 Yj

](m+1§jsm,
depending on whether m > n or n > m.

The next definition is the natural analogue of the definition of a simple eigenvalue
(see, e.g., [83, p. 15]). It is also defined in [82, p. 205].

Definition 3.2.3 We call g; a simple singular value of A if o; # o; for all j # 1. %)

The following lemma gives a link between a simple singular value of A and a simple
eigenvalue of ATA and AAT.

Lemma 3.2.4 Let 0 > 0. Then o is a simple singular value of A if and only if 02 is a
simple eigenvalue of ATA and AAT.
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Proof: The nonzero eigenvalues of ATA and AAT are just the squares of the nonzero
singular values of A (see, for example, [83, p. 31]). a

Note that the condition o > 0 in the previous lemma is necessary. For example, 0 is

a simple singular value of the 1 x 2 matrix A =[0 0], but it is not a simple eigenvalue
of ATA.

For future use, we mention the following well-known results. Recall from Section 1.6
that eigenvalues are ordered increasingly: Apin = A1 < -+ < A\ = Amax-

Lemma 3.2.5 (Weyl; see [101, pp. 101-102], [83, Corollary IV.4.9], and [61,
Theorem 10.3.1]) Let B and E be real symmetric nxn matrices. Then for all1 < j <n

Aj(B) + Anin(E) < Aj(B+ E) < Aj(B) + Amax(E).

Lemma 3.2.6 (see [41, (3.3.17)]) If B and E are m xn matrices, then for1 <1i, j <
p,andi+j <p+1,
0115-1(B + B) < 03(B) + 0,(E).

In particular, for j = 1 this yields 0;(B + E) < 0;(B) + 01(E) fori=1,...,p.

Lemma 3.2.7 (see [40, (7.3.8)]) Let B and E be real m x n matrices. Then
p

> (0;(B+E)—0;(B))* <||E]l%.

j=1

Lemma 3.2.8 (Unitary invariance of the singular values) IfU andV are orthog-

onal m X m and n Xn matrices, respectively, then for all1 < 7 < p we have O'j(UTAV) =
a;j(A). In particular, |[UTAV|| = || A]|.

Proof: The SVD of UTAV is just (UTX)X(VTY)T. The final statement follows from
the characterization of the matrix two-norm as the largest singular value. a

Lemma 3.2.9 (see [41, (3.1.3)]) Let B be an m x n matriz, and let B, denote a
submatriz of B obtained by deleting a total of | rows and/or columns from B. Then

j(B) = 0;(Bi) = 0j(B)

for 1 < j <p, where for a ¢ x r matriz X we set 0;(X) =0 if j > min{q,r}.
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3.3 The JDSVD correction equation

Suppose that we have k-dimensional search spaces Y C R™ and V C R" and lest spaces
U C R" and V C R*. To determine approximations #,7n to a singular value, and
u € U,v € V (of unit norm) to the corresponding left and right singular vectors, we
impose the double Galerkin condition with respect to U and V on the residual r:

u

Av—Hu]J_J_
N

r=r(0,n) = [ ATy — o (3.3.1)

Because u € U and v € V, we can write ©u = Uc and v = Vd, where the columns of
the m x k£ matrix U and the columns of the n x k matrix V' form bases for &/ and V,
respectively, and ¢, d € R¥. Then we want to find 6,7, ¢, and d that are solutions of

T _ T
{ UTAVd = 00U, (332)

VIATUe = anVd,

Wherg [7 and ‘7 are matrices with columns that form bases for Zj and ﬁ For test vectors
u € U and v € V, we have, in particular, that r L1 (@,); so if a’u # 0 and v # 0,

ulAv ATy
0= ——, = . 3.3.3
ul'y g vy ( )

This shows that the approximations § and n may differ. We discuss possible choices for u
and V and the resulting relations for # and v in the following section. For now, suppose
that we have approximations (u,v,0,n). We would like to have a double-orthogonal
correction (s,t) L1 (u,v) to (u,v) such that

{A(v—i—t) = o(u+s),

ATu+s5) = 1(v+1), (3.3.4)

where ¢ > 0 and 7 > 0 need not be equal because the vectors are not normalized.
However, since ATA(v+1) = o7(v +t), we have o7 = 02 for some 1 < i < p. Equations
(3.3.4) can be rearranged to obtain

-0, A s (0 —O)u (0 —0)s
[ At —nfn] [t] - { (T —n)v } " [ (=)t ]
Now neglect the last term on the right-hand side. This can be considered as “throwing
away second order terms” (asymptotically, 0 — 0, 7 — 7, s, and ¢ will all be small), and
suggests that JDSVD is in fact a Newton method, which is true indeed (see Section 3.5).
In fact, the disregarded terms are even of third order, from which we may expect cubic
convergence, see Sections 3.4.2 and 3.6.1. Because ¢ and 7 are unknown, we do not know

the differences (0 — #)u and (7 — n)v either. Therefore, we can consider the projection
of the last equation onto (%, 7)1+ along (u,v). This projection is given by

T

Ul
Im uly
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and it fixes r. Projecting the previous equation, we get

I, — uir” 0 —ol,, A S
[ . Ty ;o [ AT ] [ ; ] = —, (s,t) LL (u,v). (3.3.5)
no Ty "

Furthermore, since for every a € R™ and b € R” such that u’a # 0 and vTh # 0

s| _[s
tf |t}
(3.3.5) leads to the JDSVD correction equation

Ly—% 0 s
0 I, — b t

vTh

I, — ol 0

ula
T

[Im—% 0

L
LY
0 In-3Fm

]

i —r, (3.3.6)

where (s,t) LL (u,v). We see that in general, the operator in (3.3.6) is symmetric if
and only if @ and b are a nonzero multiple of % and v. It maps (u,v)** to (u,v)"".
In Sections 3.5 and 3.6 we explain why this process may lead to fast convergence, and
we will come to a generalized version of the correction equation. In the next section we
examine several choices for the Galerkin conditions (3.3.1).

3.4 Choices for the Galerkin conditions

Consider the eigenvalue problem for a symmetric matrix B, where we have one subspace
W that is used both as search space and test space. If the columns of W form an
orthonormal basis for W, then the projected matrix WTBW has some nice properties;
see [61, Section 11.4]. We will see that searching in two spaces, as in JDSVD, spreads
those properties over a few Galerkin choices. In this section we examine some obvious
choices.

3.4.1 The standard choice

Let us first take the test spaces U and V equal to the search spaces U and V, which we
will call the standard choice. If the columns of U and V' form orthonormal bases for U
and V), then with the notation H := UTAV, (3.3.2) reduces to

Hd=0c and H%c=nd. (3.4.1)

This gives approximations u = Uc and v = Vd, where ¢ and d are, respectively, left and
right singular vectors of H. With the requirement ||c|| = ||d|| = 1 and test vectors u = u
and v = v, we get

0 =n=u"Av. (3.4.2)

For reasons of symmetry, we choose a = u (= u) and b = v (= v) in (3.3.6). The
resulting algorithm for the computation of a singular triple (in particular the largest
triple) is given in Algorithm 3.4.1.
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Input: a device to compute Av and ATy for arbitrary u and v, starting vectors u; and vy,
and a tolerance e

Output: an approximation (6, u,v) to a singular triple of A satisfying {f}’uiagv] ‘ <e
1. S:’Lbl,t:’l)l, UOZ[],V():[]
for k=1,...

2. Uk = MGS(Uk_l,S)

Vie = MGS(Vg,_1,1)
3. Compute kth column of W, = AV},

Compute kth row and column of Hy, = UL AV}, = UT W,
4. Compute singular triples (6,¢,d) of Hy, (||c|| = ||d]| = 1)

and select one (for instance the largest)
u = Ugc, v="Vid
= [ Av — fu } _ [Wkd—eu]
ATy — v ATy — fv
Stop if ||r|| < e
Solve (approximately) an (s,t) L1 (u,v) from

I, —uu” 0 —0I,, A I, —uu® 0 s|_
0 I, —vwT AT -1, 0 I, —voT t | =7

®° N o o

ALGORITHM 3.4.1: The standard JDSVD algorithm for the singular value problem

In Step 2 of the algorithm, repeated (modified) Gram—Schmidt is used to make s and
t orthogonal to U, _; and Vi 1, and to expand the search spaces with the normalized
vectors. We omit the index k of all variables that are overwritten in every step. If we
are interested in another singular value, for example, the smallest, or the one closest
to a specific target, we should adjust our choice in Step 4 of the algorithm accordingly
(Chapter 4 will contain more details). The variant of Algorithm 3.4.1 is the only variant
of JDSVD for which the operator in (3.3.6) is symmetric and maps (u,v)™" in itself.
Other choices imply that the operator is not symmetric or maps (u,v)'* to a different
space. See also Section 3.7.4.

3.4.2 Optimality of this choice

In this section, we treat two theorems that indicate that the method resulting from this
standard Galerkin choice is optimal in some sense.

Suppose we have an m x k matrix U and an n x k matrix V. Then for any k£ x k
matrices K and L there are associated an m X k residual matriz Ry(K) and an n X k
residual matriz Ry(L):

Ri(K):=AV —UK and Ry(L):=A"U-VL.
Definition 3.4.1 (cf. [5, p. 19]) U and V are invariant singular subspaces if
Avcu and ATUCV.
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If there exist K and L such that the residual matrices are zero, then we have found
left and right invariant singular subspaces, i.e., invariant subspaces of ATA and AAT.
The following theorem states that if both U and V' have orthonormal columns, then
H :=UTAV and H? = VAU minimize the norm of these residual matrices, which is a
desirable property. It is a generalization of a result in the theory for eigenproblems (see
[61, Theorem 11.4.2] and [83, Theorem IV.1.15]), which deals with residuals of the form
AV - VK.

Theorem 3.4.2 For given m X k matriz U and n x k matriz V, let H = UTAV .

(a) If the columns of U are orthonormal, then for all k x k matrices K we have
|R1(H)|| < ||R:1(K)||. Moreover, H is unique with respect to the Frobenius norm
1R (H)||lr < ||Ri(K)||p with equality only when K = H.

(b) If the columns of V are orthonormal, then HT = VTATU minimizes the norm of
Ry(L), and HT is unique with respect to the Frobenius norm.

Proof: Suppose that the columns of U are orthonormal; then UXU = I, so

Ri(K)'Ry(K) = VTATAV + KTK - K"H - H'K
= V'ATAV — H"H + (K — H)"(K — H)
= Ry(H)"R,(H)+ (K — H)"(K — H).

Since (K — H)T(K — H) is positive semidefinite, it follows that
IR (K)I? = Amax(Ri (K)" Ri(K)) > Amax(Ri(H)" Ri(H)) = || Ry (H)|1%,

where we used Lemma 3.2.5 in the inequality. For uniqueness, we realize that ||B||% =
tr(B” B) for every real matrix B. Part (b) can be proved using the same methods. O

Now we focus on the singular values of H, which satisfy § = u? Av, where u and v
are approximate left and right singular vectors. This motivates the following definition.

Definition 3.4.3 For u,v # 0, we define the Rayleigh quotient for the singular value
problem of u and v by

TA
O(u,v) := iy
[l lv]]
%)
This Rayleigh quotient has the following (attactive) properties.
Theorem 3.4.4 Let u,v # 0. Then 0 = O(u,v) has the following properties:
(a) Av —0u L u and ATu — 0v L v iff ||u|| = ||v|]| (Ritz—Galerkin);
(b) 0 = argmin, ||[Av — aul| and 0 = argmin, ||[ATu — av|| iff ||lul| = ||v|]| (minimum

residual);
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(c) (u,v) is a stationary point of 0 iff u is a left singular vector, v is a corresponding
right singular vector, and ||ul| = ||v||;

(d) o1 = maxyuz00(u,v), (21,%1) = argmax, ., 0(u,v);

(e) Let u =z + de and v = y + ef be approrimate singular vectors corresponding to
the singular value o, where e L x and f L y are vectors of unit length. Then

10(u,v) — o] = O((6 + €)?).

Proof: Part (a) is obvious, (b) follows from (a), and for (c) we have

a9 _ 1 T ull, 7
5 @Y = [l (“ A = 0w, v) v )
00 . T AT loll, T
%(u,v) = Tl (v At — 0(u, v)mu )

Stationary means that all directional derivatives are zero, from which (c) follows. For
part (d), cf. [31, p. 74]. From 0(u,v) = (o +dee” Af)/+/(1 + 62)(1 + 2), part (e) follows
directly. O

In particular, the Rayleigh quotient minimizes the residual (b), and if u and v are
first order approximations to the singular vectors, their Rayleigh quotient is a second
order approximation to the singular value (e).

Motivated by Theorems 3.4.2 and 3.4.4, it seems attractive to take the k singular
values Hj(-k) of H; as approximations to the singular values of A. When U, and V}, have
orthonormal columns, we see by Lemma 3.2.8 that these approximations converge in a
finite number of steps to the singular values of A. In the following theorem we show that
the approximations to the singular values converge monotonically increasing.

Theorem 3.4.5 Let Hl(ck) <o < 0§’“) be the singular values of Hy := Ul AVy, where

U, and Vj have orthonormal columns. Then for all fired j and increasing k, the 0]@
converge monotonically increasing to the o;.

Proof: Hj is a submatrix of Hy,1, so Lemma 3.2.9 gives 0§-k+1) > 9](-'“) for1 <j <k
Because of the orthogonality of U, and Vj, the Hj(-k) converge to the o;. O

Remark 3.4.6 In practice, one often observes that the Oj(-k) converge strictly monoton-
ically to the o;. With the aid of [101, pp. 94-98], conditions could be formulated under
which the convergence is strict. %)

Note that the theorem does not say that the smallest approximations 0,(919) converge
monotonically (decreasing) to o,, because Lemma 3.2.9 only gives us Hl(clfll) < 0,(:1)1. For
example, if uy ~ z, and vy = y,_1, then H,Ek) ~ 0, so we see that the smallest approxi-
mation can in fact be (much) smaller than o,. Experiments show that the convergence

of the Hl(ck) can be irregular and slow (see Section 3.8). This is a serious difficulty of
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working with the augmented matrix, because the smallest singular values are in the in-
terior of its spectrum. We discuss this matter further in Sections 3.4.3, 3.7.4, 3.7.8, and
Chapter 4. The following theorem gives some relations between the singular values of
H; and those of A. It is a generalization of [61, Theorems 11.5.1 and 11.5.2] and [83,
Corollary 1V.4.15]. For clarity, we leave out the index &k as much as possible.

Theorem 3.4.7 For j =1,...,k, there exist singular values o of A which can be put
in one-one correspondence with the singular values 0; of H in such a way that

o — 03] < max {[|[Ry(E)|, | R2(HT)I} (1 <5 <)

Moreover,
k

2
D (o = 0;)” < |Ru(H)|[7 + | B(HT)
=1
Proof: Let the columns of U; and V| be orthonormal bases for the orthogonal comple-
ments of U and V, respectively. Then both [U U, ] and [V V] are orthogonal and

(3.4.3)

wotav vi= 5 by |+ e T

0 UTav, UTAV 0

Using Lemmas 3.2.8 and 3.2.6, respectively, we obtain for 1 < j < p = min{m,n}

0i(4) = o; (U ULJTAlV V1]) < 05 ([ l(L)I UfBWL D + Omax ([ Uf(jélv UTSWL D .

Now

U UJ"Ry(H) = [ UI?W } and [V Vi|]TRy(HT) = [ VngU } ,

so, because of the orthogonal invariance of the norm (see Lemma 3.2.8), ||R:i(H)|| =
|lUTAV || and ||Ro(HT)|| = ||[VIATU|| = ||[UTAV.||. Because

. ([{)I UfgvL D = (") | =(uiav),

there exist indices j' such that

([H 0 _y
o vrav, | ) =7

So the theorem’s first inequality is obtained by

0 UTAV, _ T T
wne (| iy U8 |) = max QuTav otaviy

= max {||Ry(H)||, || R(H")|}.

For the second inequality, apply Lemma 3.2.7 to the splitting of (3.4.3). O
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For the following proposition, we need the minimax theorem for singular values [41,
Theorem 3.1.2]
| Ax]]

0; = max min ,
XicRn 07zeX ||zl

(3.4.4)

where X7 ranges over all subspaces of R of dimension j.
The following proposition states that the singular values of Ul AV}, as approximations
to the largest singular values, are also not optimal in another sense.

Proposition 3.4.8 Let U, and V, have orthonormal columns. For 1 < j <k,
o;(ULAV,) < 0j(AVy) and o;(UFAVL) < 0,(AT0,).

Proof: This follows from the inequalities ||[UfAVyy| < ||[AViy|| and ||VIATU x| <
|ATUz|, and (3.4.4) O

We have seen that the o;(Ul AVj) increase monotonically and that they are bounded
above by both 0;(AVk) = A[/* (VT ATAV,) and 0;(A™U;) = A*(UT AA™Uy). This forms
one motivation to study other Galerkin choices. A second is the possibly irregular con-
vergence of the smallest singular value of Ul AV.

3.4.3 Other choices

We will briefly mention some other choices for the test spaces, but refer to Chapter 4
for an extensive discussion. Suppose that the columns of V' form an orthonormal basis
for V. By the Galerkin choice Y = AV, V =V, with test vectors u = Av, v = v, and
u=Uc, v="Vd, and ||v|| =1, (3.3.2) reduces to

VIATAVd = 0VIATUc,
{ VIATUe = nd. (345)
One can check that to satisfy the Galerkin conditions, (67, d) should be an eigenpair of
VTATAV. Now first suppose that VTATU is nonsingular. Note that in this case n # 0;
otherwise, VTATU would be singular. It follows that ¢ = n(VTATU)"'d, n = vTATu, and
0 = vTATAv/vTAu. When VTATU is singular, then this construction is impossible, but
in this case we can simply restart the process or add extra vectors to the search spaces
(see Section 3.7.2 and also Section 4.7).

With this Galerkin choice, # and 1 do not converge monotonically in general, but we
can apply well-known results from eigenvalue theory to ensure that their product does
converge monotonically to the squares of the singular values and also to the smallest. In
Section 3.7.4 we discuss the resulting correction equation.

__ Likewise, if the columns of U form an orthonormal basis for U, the Galerkin choice
U=U, V= AllU leads to the determination of (7, c), an eigenpair of UTAATU. These
two approaches are natural with respect to minimax considerations, as we will see now.
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Lemma 3.4.9 Let £ € [0,1]. Then we have the following minimaz property for singular
values:

At
0; = max min A +(1-9)

AT
, | AL g <5< p). (3.4.6)
sicrRm o0#sesi ||t IEll
TiCRr 0#teTd

Proof: This follows from (3.4.4) and the observation that A and A" have the same
singular values. O

When we have search spaces U and ), it is a natural idea to substitute &/ for R” and
Y for R in (3.4.6), as a generalization of a similar idea in the theory of eigenproblems;
see [61, p. 236]. This gives the following approximations to the singular values:

At
7, = max  min u-|—(1—§)
sSicu ozsesi ||t
Ticy 0#£teTd

A7)
Il

(3.4.7)

The following theorem relates these approximations to the Ritz values of ATA and AAT.
Theorem 3.4.10 7; = £(\//*(VTATAV)) + (1 — §)(\/*(UTAA™D)).

Proof: We have that 79 C V if and only if 79 = V79 := {Vt: ¢t € T} and 77 C RE.
So for the first term of the expression for the 7; we have that

At|)? tTVTATAVY
max min 1Al = max min ————— = )\;(VTATAV).
Ticy oreTs [H? Ficrr oxers I
For the second term we have a similar expression. O

When we take £ = 0 and & = 1 in Theorem 3.4.10, we recognize the Galerkin
approaches described in (3.4.5) and the discussion after that. They can essentially be
viewed as a two-sided approach to ATA or AA” | in the sense that we have approximations
to both the left and the right singular vector during the process. In Chapter 4, these
methods are called the U//-harmonic and V-harmonic extraction, and will be discussed in
more details.

As observed in Section 3.4.2, the standard Galerkin choice leads to monotone conver-
gence for the largest singular value, but it can imply irregular behavior for the smallest
singular value. As we will see in Section 4.2, a related problem is how to select the best
approximate vectors. Suppose for the moment that A is square and invertible. If the
minimal singular value is the one of interest, the above observation suggests to study
the singular values of A~1. In Chapter 4, we will pursue this approach, departing from
Galerkin conditions on A7!.

3.5 JDSVD as accelerated inexact Newton scheme

In [76], it is shown that the Jacobi-Davidson method can be interpreted as an accelerated
inexact Newton scheme [22] for the eigenvalue problem. Here we show that the same is
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true for JDSVD applied to the singular value problem. Define F' : R xR" — R xR" as

Av — Ou
F(U,U):: [AT _771):|a

where 6 = 0(u,v) and n = n(u,v) are as in (3.3.3). Thus the function F' is nonlinear.
Consider the singular value problem where we require the singular vectors z,y to be
scaled such that 7@ = 1 and y?b = 1 for certain vectors @ € R™ and b € R*. So we
look for solutions z, y of the equation F'(u,v) =0 in the “hyperplane”

{(u,v) eER" xR :u'a =1, ngzl}.

We introduce these @ and b to derive a more general form of the correction equation
(3.3.6). If (ug,vy) are approximations to the singular vectors, then the next New-
ton approximations (uyy1,vky1) are given by (ugi1,ves+1) = (uk,vk) + (Sk, tk), where
(s, tr) LL (@,b) satisfies

DF(uk’ Uk)(skvtk) = _F(Uk, Uk,) = —Tg.

Omitting the index k, one may check (remembering that 6 = 6(u,v) and n = n(u,v) are
as in (3.3.3)) that the Jacobian DF'(u,v) of F' is given by

v’

DF(u,v):[Im_Om 0

~T
i
In )

-01,, A
AT _nln .

Hence the correction equation of the Newton step is given by

[ _fém _;;1[ } [ i } =—r, where (s,t) LL (a@,b).

I, — =
For every a, b so that aZa # 0 and bTb # 0, this is equivalent to the slightly more general
form of the JDSVD correction equation (in comparison with (3.3.6)),

T

In,—% 0 ] [ s }
a’a i =—r, (3.5.1)
0 L—% | [t

[Im—% 0

T
K%Y
0 L3

AT _nIn

]

where (s,t) L1 (@,b). Note that the substitution @ = u and b = v gives (3.3.6).

If we keep a, b, @, b, 1, and ¥ fixed during the process, and if #7u, 7%v, @’ a, and bTb are
nonzero, then Newton iteration produces a series (ug, vx) that converges asymptotically
quadratically towards (z,y) if the starting vector (uq,v) is sufficiently close to (z,y).

But if we take a, b, a, 5, u, and v variable but converging to certain vectors, such that
the denominators in (3.5.1) do not vanish, we get asymptotically quadratic convergence
as well. The choice a =@ = @ = uy, and b = b = ¥ = v, leads to Algorithm 3.4.1. With
other Galerkin choices described in Section 3.4, the test vectors (u,v) are, in general,
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not equal to the approximations (u,v), and in this situation the vectors @ and b can be
useful; see Sections 3.6 and 3.7.4.

We see that JDSVD is a Newton scheme, accelerated by the usage of all previous iter-
ates and the projection of A on the subspace that they span. This subspace acceleration
accelerates the “prequadratic” phase of the method and ensures that we find a singular
triple in a finite number of steps. It may be expensive to solve the correction equation
exactly. Instead we may solve (3.5.1) approximately (see Section 3.6.2 and 3.7.1); the
resulting method is an accelerated inexact Newton scheme.

In [73], it is proved that if the correction equation is solved exactly, then Jacobi—
Davidson applied to a symmetric matrix has asymptotically cubic convergence. Because
the augmented matrix (3.1.1) is symmetric, we expect that JDSVD can also reach cubic
convergence. The next section shows that this expectation is correct indeed.

3.6 Convergence

In the previous section we have already seen that the correction equation represents a
Jacobian system in a Newton step. Now we focus on the asymptotic convergence (see
Section 1.3.4 for an informal definition). In Section 3.6.1, we study the convergence rate
of exact JDSVD (see [73] for similar observations for Jacobi-Davidson applied to the
eigenvalue problem), and in Section 3.6.2 the convergence rate of inexact JDSVD.

3.6.1 Exact JDSVD

In the correction equation (3.5.1), v and v are the current approximations and u and
v are test vectors, but we have not said much about choosing a, b, @, and b. These
vectors can vary per step. The next lemma and theorem show that exact JDSVD (that
is, JDSVD where we solve the correction equation exactly) has asymptotically cubic
convergence for specific choices of the test vectors u and v and the vectors @ and b. To
be precise, with ¢ small enough, if

Llug,z) =0() and ZL(vg,y) = O(e) (3.6.1)
and if

L(a,z) = O(e), Z(by)=0(), ZL(u,z)=0(), and Z(v,y)=0(e), (3.6.2)

then Z(ugy1,2) = O(e3) and Z(vgy1,y) = O(e3). Then the approximate singular values
(see (3.3.3)) converge cubically as well. The following lemma is a generalization of [73,
Lemma 3.1].

Lemma 3.6.1 Assume that Ay = ox and ATx = Ty, where o,7 > 0, and that \/oT is

a simple singular value of A. Let a, b, a, b, u, and v be such that W'z, v'y, a’a, ZTb,
~1

a x, and gTy are all nonzero. Then the map

—ol,, A
AT 11,

G = ]m_% 0
- 0 In—%

In—%2 0 ]

ru
I, - "
0 n BTh
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is a bijection from (a,b)*+ onto (u,v)*+.

Proof: Suppose (z1,22) LL (a,b) and G(z1,22) = 0. We show that z; = 2z = 0.
We have

—ol, A 2| | px

AT 11, 2| | vy

{ Azy = oz + px,

for certain u,v. Then

ATy = 120 +vy.

Multiplying the first equation by A7 and the second by A, we find

(ATA —o1l)2e = (ov+ Ty,
(AAT — o1z = (ov+TH)2.

So both z; and x belong to the kernel of (AAT — o7I)2, and both 2, and y belong to
the kernel of (ATA — o71)2. From the simplicity of o7 using Lemma 3.2.4, we have that
21 and 2o are multiples of z and v, respectively. Because z; L @, 2 L b, and a’z # 0,

gTy # 0, we conclude z; = 29 = 0. The bijectivity follows from comparing dimensions.
O

The next theorem, a generalization of [73, Theorem 3.2], shows the cubic convergence.

Theorem 3.6.2 With the assumptions of Lemma 3.6.1, if the initial vectors are close
enough to the singular vectors corresponding to a simple nonzero singular value (i.e., if
(3.6.1) holds), and if the correction equation is solved exactly, then for fized vectors u,
v, a, and 5, the JDSVD process has quadratic convergence. Moreover, if (3.6.2) holds,
then JDSVD has even cubic convergence.

Proof: For convenience write

~T
uY
P = Im ul'y
0 I, — %
no Ty

01, A L,— % 0
7B:[ Tm :|7Q:[ “a bET]'
A —nl, 0 n—

Then the correction equation (3.5.1) reads, for (5,¢) L1 (a,b),

PBQ(s,t) = PB(s,t) = —r = —B(u,v).

Suppose that 7 and ¥ are scalar multiples of the singular vectors x and y and that
(Z,9) = (u,v) + (s,t), where (s,t) LL (a,b), and [|(s,¢)|| = O(¢). Our first goal is to
show that [|(s — 5,t — t)|| = O(¢?). We know that there are o, 7 > 0 such that

- [ G- G- Te)

Therefore, we have

B(s,t) = =B(u,v) + ((c — 8)z, (T — n)y). (3.6.3)
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We multiply this on the left side by P and use the facts PB(u,v) = B(u,v) and P(u,v) =
0:
PB(s,t) = —B(u,v) + P((o — 0)s, (T —n)t). (3.6.4)

Subtracting PB(3,1) = —B(u, v) from (3.6.4), we get
PB(s —3,t —t) = P((oc — 0)s, (T — n)t). (3.6.5)

Multiplying (3.6.3) on the left by [g gr leads to

EE G [ P R

So for fixed @, U, @, and b we have ||[PB(s — 3,t — t)|| = O(¢?). Using Lemma 3.6.1 and
the assumption that the initial vectors are close enough to the singular vectors, we see
that PB in (3.6.5) is invertible, so ||(s — 5,t — )| = O(e?), which implies quadratic
convergence. But, if additionally (3.6.2) holds, then

—6u” zTAt T
5 S [ ]| =0 o= [ ]|+ o - 0
so from (3.6.6) we see that ||(c — 8,7 — n)|| = O(g?). We conclude that in this case the
convergence is even cubic. O

One may check that the hypotheses on u, v, a and b in the theorem are true when
we choose © and a equal to u; or Av, and v, and b equal to v, or ATuy in the process.
The cubic convergence can be observed in practice; see Section 3.8.

3.6.2 Inexact JDSVD

Similar to Section 2.5.2, we can show that inexact JDSVD will typically result in asymp-
totically linear convergence. Suppose that in every step, we solve the correction equation
inexactly, such that for 0 < £ < 1,5 L @ and ¢ L b satisfy

I, — 4 0 —0I,, A
0 I, - & AT —pI,

Theorem 3.6.3 (Locally linear convergence of inexact JDSVD) Suppose we solve
JDSVD’s correction equation inezactly according to (3.6.7). Then the method has locally
linear convergence.

T

I,—% 0 “g}+
bb” 7 r
0 I, -2 t

<£|I7|l-
(3.6.7)

Proof: With the same notation as in the proof of Theorem 3.6.2, we know by deﬁgition
that there exists a &, 0 < & < &, and a unit vector (e, f) LL (u,v), such that (s,¢) LL
(a, b) satisfies N

PBQGT) = —r +Elrll(e, f).
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When we subtract (3.6.4) from this equation, this gives

PBQ(E — 5.t —t) = E]lrll(e, /) = P((o = 0)s, (T — m)t).

From (3.6.4), we can deduce

el 5 2 I

The result follows from

ipeai-si-ol<é|[ 5m A ||[[1]]+oe

and the fact that PB(Q is invertible according to Lemma 3.6.1. a

3.7 Various issues

3.7.1 Solving the correction equation

We now translate a number of observations for Jacobi-Davidson in 75, 73] to the JDSVD
context. Consider the situation after k£ steps of the JDSVD algorithm. For easy reading,
we again leave out the index k. In this section we take for simplicity the Galerkin spaces
used in Section 3.4.1, but most arguments carry over to other choices. First we rewrite
the correction equation. Because of (s,t) L1 (u,v), we can eliminate the projections

and write (3.3.6) as
61, A s|_ " ou
AT or, |t | T B |

where « and 8 are determined by the requirement that (s,¢) L1 (u,v). If we have a
0l

nonsingular preconditioner M = [~ 7

;41 ], then we can take an approximation
- n

(5,8) = =M r+ M (au, fv). (3.7.1)

1. (cf. [75, p. 406, point 1]) If we approximate (s, t) simply by +r (by taking M = FI
and @« = § = 0), then, because of the orthogonalization at Step 2 of Algo-
rithm 3.4.1, this is equivalent to taking (3,%) = (Av, A"u). By induction one
can prove that for the special case where we take this simple approximation in

every step, we have
Z/le = Kk(AAT, ul) D K:k (AAT, A’Ul), Vzk = ICk (ATA, ’Ul) D ’Ck (ATA, ATul),

as long as the Krylov subspaces have a trivial intersection. Compare this with
Lanczos bidiagonalization, where

U, = Kp(AAT, Avy), Vi = Ki(ATA, vy).
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—0I, A

(cf. [75, p. 408, point 3]) If § is not equal to a singular value, then M = ["3z" o

is nonsingular and M~!r = (u,v). So for the updated vectors we have

=l AR e

We conclude that the exact JDSVD can be seen as an accelerated scaled RQI.

. (cf. [75, p. 409, point 4]) If we take M # [%m 4 ] M nonsingular, then with

AT —6I,
(3,%) = M~ (awu, Bv) we obtain an inexact shift and invert method. This may be
an attractive alternative if (3.7.2) is expensive.

. When we are interested in a singular value close to a specific target 7, we can

replace this in the left-hand side of the correction equation (3.3.6):

I, —uu” 0 —rl, A I, — uu® 0 s|_
0 I, — vo? AT 11, 0 I, —voT | ="

An advantage of this approach is that we avoid misconvergence to some unwanted
singular value “on the way.” For example, if we want to compute the largest sin-
gular value, we can use a known approximation of o, as a target. In practice,
T & ||A||, may be a good guess (see Section 3.8). For the minimal singular value,
we can take 7 = 0 or a small positive number as target. As soon as we notice that
the process starts to converge, we may replace the target in the correction equation
by the current approximation to the singular value again. A further advantage of
using a target for the largest singular value is that the resulting system is (almost)
definite, which is a favorable circumstance for the use of a preconditioner. Unfor-
tunately, for the smallest singular value we have a (“severely”) indefinite system.

. In practice we often solve (3.5.1) approximately by an iterative method: for ex-

ample, a few steps of GMRES or MINRES if the operator is symmetric (in case
of the standard Galerkin choice). We may use a (projected) preconditioner; see
Section 3.7.7.

3.7.2 Restart

A nice property of Jacobi—Davidson is its flexibility in restarting. JDSVD, too, has this
advantage: we can restart at every moment in the process with any number of vectors,
only keeping those parts of the search spaces that look promising, or possibly adding
some extra vectors. This is practical when the search spaces become large or to avoid a
breakdown in case of the nonstandard Galerkin choices. Of course, JDSVD can also be
started with search spaces of dimension larger than one. This may be favorable when we
look successively for singular triples of A and of a perturbed matrix A 4+ E, for instance
in the computation of pseudospectra.
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3.7.3 Deflation

We can compute multiple singular triples of A by using a deflation technique. If we have
found a singular triple of A, and we want to find another, we can deflate the augmented
matrix to avoid finding the same triple again. For JDSVD, this can be done as follows.
Suppose that X and Y contain the already found left and right singular vectors. Then
it can be checked that, if we found the exact vectors,

I, — XX7T 0 0 A I, — XXT 0
0 I, -YyYy? AT 0 0 I, -YY?”
has the same eigenvalues as the original augmented matrix, except that the found eigen-
values are transformed to zeros. The method can then be restarted with another ap-

proximate triple.

3.7.4 Correction equation with nonstandard Galerkin choices

In the case of nonstandard Galerkin choices (see Section 3.4.3 and Chapter 4), we may
have the situation that (u,v) # (u,v). Now we exploit the flexibility of (a,b) in (3.5.1):
by the choice B

(a,b) = (u,v) and (a,b) = (u, ) (3.7.3)
we ensure that the operator in (3.5.1) maps (@, v)1* onto itself, and that the asymptotic
convergence is cubic according to Theorem 3.6.2 (if the correction equation is solved
exactly). Another option is

(a,b) = (u,v) and (a, b) = (u,v), (3.7.4)

to make the operator in (3.5.1) symmetric. In this case the operator maps (u,v)*+ to

(w,v)1+. Therefore, we should use a left “preconditioner” that maps the image space
(@, )1+ bijectively onto the domain space (u,v)t (see also Section 3.8 and [73, 78]).

3.7.5 Comparison with Jacobi—Davidson on the augmented ma-
trix

It is interesting to compare JDSVD with Jacobi-Davidson on the augmented matrix,
starting with the “same” starting vector wy = (u1,v1)/v/2.

There are some analogies between Jacobi-Davidson and JDSVD. When their cor-
rection equations are solved exactly, both converge asymptotically cubically to a simple
eigenvalue of the augmented matrix. Moreover, the costs per iteration are almost the
same; the only difference is that in each step JDSVD needs a small SVD, while Jacobi—
Davidson needs a small eigenvalue decomposition. The storage requirements are also
comparable.

The main difference is the fact that JDSVD, by construction, searches in two (smaller)
subspaces, while Jacobi-Davidson has one search space. If Jacobi-Davidson solves its
correction equation exactly, then in fact it solves (3.7.2) with a = 8 [75]. This suggests
that JDSVD may cope better with “unbalanced” vectors, that is, vectors (u,v), where
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llu|| # ||v]]. An extreme example of this can be seen by taking a starting vector of the
form (z,0y) for 0 < § < 1. In contrast to Jacobi-Davidson, JDSVD terminates after
computing a zero residual.

Another (mostly theoretical) difference is the fact that JDSVD terminates for every
starting vector after at most max{m,n} iterations, and Jacobi-Davidson terminates on
the augmented matrix after at most m + n iterations. In Sections 3.8 and 4.10, we
compare the methods experimentally.

3.7.6 Refinement procedure

Suppose that we have found an approximate minimal right singular vector v = (1 —
62)1/ 2 Vmin+EVmax by an iterative method applied to A”A, so that sin / (v, vyin) = €. Then,
in the absence of other information, u = Av = (1 —£2)Y20 i Umin + €T maxUmax is the best
approximation to the left singular vector we have at our disposal. But tan Z(u, tumi,) ~
g?max = f(A)e, and this can be large. Moreover, |lul> = (1 —e?)o2,, + %02, can be an
inaccurate approximation to o2, and so may ||A%u||?/||u||*> be. See also Lemma 4.3.1.
Hence the approximations to small singular values, resulting from working with AZA,
may be inaccurate. In this situation, we may try to improve (or refine) the approximate
singular triple by a two-sided approach like JDSVD. The following lemma, a generaliza-
tion of [73, Theorem 3.5], gives a link with [20], where a system with a matrix of the

form

ax

-0, A —u 0
AT 01, 0 —v

T 0 0 0 (3.7.5)
0 20T 0 0
is used for improving an approximate singular triple.
Lemma 3.7.1 The JDSVD correction equation (3.5.1) is equivalent to
—9£m A —-u 0 S Ou — Av
A Ol | S e T
B

0 b 0 0 0
that is, if (s,t,a, B) is a solution of (3.7.6), then (s,t) is a solution of the correction

equation (3.5.1), and if (s,t) is a solution of (3.5.1), then there exist unique o, 3 such
that (s,t,«, ) is a solution of (3.7.6).

Proof: We use the same notation as in the proof of Theorem 3.6.2. System (3.7.6) is
equivalent to

B(s,t) — (au, fv) = —r and (s,t) LL (a,b).
By splitting the first equation in (%, 7)1+ and its complement, we obtain
PB(s,t) = -r,
a B (@' u)™! 0 u’ 0 Ik
B - 0 (@Tv)~t 0 o7 t |’

(s,t) LL (a,b).
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Note that we have used Pr = r, P(au,fv) = 0, and r L1 (u,v). The first and
third equation together are equivalent to the correction equation (3.5.1), and the second
equation determines o, 5 uniquely. O

Of course, this equivalence is valid only when both (3.7.6) and (3.5.1) are solved
exactly, not when we solve them approximately. In particular, when we substitute n = 0
and (a,b) = 2(u,v), the matrix in (3.7.6) becomes the one in (3.7.5).

3.7.7 Preconditioning the correction equation

The correction equation of JDSVD can be preconditioned in a manner similar to Jacobi—

Davidson (see, for example, [78]). We use the same notation as in the proof of Theo-

rem 3.6.2. Suppose that we have a preconditioner M for B. For left preconditioning we

are given (by,by) L L (u,v), and we have to solve for (z1,29) L L (a,b) from
PMQ(21,22) = (b1, b2).

Note that we project the preconditioner as well. Hence, for some «, £,

(21,22) = M~ (b1, by) — M~ (o, Bv),

and by left multiplication by @ and b¥ we obtain

a 9 TM—l u 0 a | _ a 9 ! ML by
0 b 0 v B 0 b by |-
Thus, we have

(21, 20) = I—M‘l[g 2} ([g %]TM—l[g SD_l[g %r M~ (by, by).

A recipe for computing (z1, 29) is given by the following four steps.
(1) Compute (@1, us) = M~1(u,0) and (v1,72) = M~1(0,v).

(2) Compute (by,by) = M~1(by, by).

T T

(3) Compute (a, §) from [%Tg; %Tg;} [‘;} = [%?1]

(4) Compute (z1,22) = (by, b)) — (s, Us) — B(D1, Ba).

An important observation is that Step (1) and the computation of the 2 x 2 matrix in
Step (3) have to be performed only once at the start of the iterative solution process of
the correction equation.
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3.7.8 Smallest singular value

As mentioned in Section 3.4.1, the standard variant of JDSVD may have difficulties with
finding the smallest singular value of a matrix. This is not surprising, because the small
singular values of A correspond to the interior eigenvalues of the augmented matrix. But
in many applications, e.g., the computation of pseudospectra, the smallest singular value
is just what we want to compute.

Although Chapter 4 will be largely devoted to this subject, here we already give a
clue. We can use JDSVD with the nonstandard Galerkin (harmonic) variants, mentioned
in Section 3.4.3, starting with zero, or a small positive number as a target, and solve
the correction equation rather accurately, possibly with the aid of a preconditioner; see
Section 3.8. In this way the method is close to a shift and invert iteration but less
expensive. Of course it is hereby advantageous to have a good initial triple (e.g., coming
from an iterative method on ATA); JDSVD (with nonstandard Galerkin) can then be
used as refinement procedure.

Suppose A is square and invertible, and we are interested in the smallest singular
value. If we have a preconditioner M = A, then, since

[f?T 61]_1: [AO_I A(;T], (3.7.7)

we may use this M to form a preconditioner for the augmented matrix.

3.7.9 JDSVD for complex matrices

When A is a complex matrix, then all methods in this chapter can be used when we
replace the transpose by the conjugate transpose. An alternative approach, to avoid
complex arithmetic, is to consider

[ | =L |

Then Av = gu and ATu = ov. However, a drawback of this system is that $(A) is the
multiset (A) |J X(A), which means that no singular value of A is simple, which is not
favorable for convergence in view of Section 3.6.

A _ [ Re(4) —Im(A)}’

Im(A)  Re(A)

3.7.10 Time complexity

With k the dimension of the search spaces and m the number of steps with a linear
solver (e.g., GMRES or MINRES) to solve the correction equation, one outer iteration
of JDSVD consumes O(k?) time to solve the small projected singular value problem, and
2m + 2 matrix-vector multiplications, half of which with A and half with A”. We have
to store bases for U and V; storage can be reduced by a restart.
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3.8 Numerical experiments

Our experiments are coded in MATLAB and are executed on a SUN workstation. The
following lemma implies that up to rounding errors, it is not a loss of generality to
consider (rectangular) diagonal matrices.

Lemma 3.8.1 If there are no rounding errors, and JDSVD’s correction equation (3.5.1)
in step k is solved by l steps of GMRES, then JDSVD applied to

(a) A= XXZYT, with starting vectors u; and vy,
(b) X, with starting vectors Uy := X' uy and vy := YT vy,

gives “the same” results; that is,

Hk = Ok and ||?k|| = ||Tk||
Proof: Define
o_[X" 0.
- 0 YT ’
then Q) is orthogonal, and one may verify that (u;,v;) = Q(uq,v1), 0, = Y, =

uF Avy =: 0, and 7, = Qr;. A well-known property of Krylov subspaces ensures that
(see [61, p. 264])

QTICZ([E?T %:|:?):ICZ<QT|:E?T %]:QaQT?>:ICl<|:£T §]7T>'

With little extra work one can check that the same relation holds for the shifted and
projected matrices that are present in the correction equation (3.5.1), where one should
bear in mind that all other vectors involved in the projectors (a, 5, u, v, a, and b) must
also be altered for the ¥-system in the obvious way. So the approximate solutions from
the correction equations satisfy (§1,%\1) = @(s1,t1). By induction we can prove that
ﬁk = XTU, and 1716 = YTV, so the projected matrices are the same in both cases:
?Ik = [7,? Evk = Ul' AV, = Hg. In particular, the approximations to the singular values
are the same, and the approximations (ug, vg) and (U, Uk) are orthogonal transformations
of each other: (U, vx) = Q(ug, vx) and 7, = Qrg, so ||Tx|| = ||7«l- O

For this reason, we first study some phenomena on A = diag(1 : 100) and A = diag(1 :
1000).

Experiment 3.8.2 In Figure 3.1(a), the solid line is the convergence history of (the
standard variant of Algorithm 3.4.1 of) JDSVD for the computation of the largest singu-
lar triple of A = diag(1 : 100). The starting vectors are the normalized v1 = vpay + 0.17,
where r is a vector with random entries, chosen from a uniform distribution on the
unit interval, and u; = Awv,/||Av,||. The dots represent the error in the approximation
Omax — 0,(ck). In all figures, a horizontal dotted line indicates the stopping tolerance.
We solve the correction equation by 200 steps of (unpreconditioned) GMRES. Because

the (augmented) matrices in the correction equation (Step 8 of Algorithm 3.4.1) are
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FIGURE 3.1: (a) The convergence history of the exact JDSVD algorithm for diag(1 : 100) as in
Algorithm 3.4.1: residual norm (solid line) and error in the approximations to gmax (dots). The horizon-
tal dotted line indicates the stopping tolerance. (b) Convergence for diag(1 : 1000) using, respectively,
5, 2, and a variable number of GMRES steps to solve the correction equation.

of size 200 x 200, this means (theoretically) exactly, so according to Theorem 3.6.2 we
expect cubic convergence. In Figure 3.1(a) we see, for instance, that the error in the
approximation in iteration number 5 decreases from ~ 1072 to ~ 10~".

In Figure 3.1(b), we take A = diag(1 : 1000), and u; and v; random vectors (as
described above) with unit norm. We experiment with the number of GMRES steps. For
the solid line, we solve the correction equation approximately by five steps of GMRES,
which we denote by GMRES;5, for the dashed line by GMRES,, and for the dotted
line by a variable number equal to max{2 - ([—log||r|[] + 1),0}. Measured in terms of
matrix-vector products (MVs), the variable choice is best, while GMRES,; and GMRES;
are comparable. An explanation of this is that when the initial approximations are not
good (as in this case), it is of no use to try hard to solve the correction equation in
the beginning. When we are almost converging, it may make sense to solve it more
accurately to get fast convergence. See also [78]. @

Experiment 3.8.3 In Figure 3.2(a) we compare, for A = diag(1 : 1000), the standard
JDSVD method for the three largest singular triples (solid), with Jacobi-Davidson on
the augmented matrix for the computation of the three largest eigenpairs (dashed), each
with GMRES;. For JDSVD, we take v; as a random vector, and u; = Av; /||Av:||. For
Jacobi-Davidson we take the “same” starting vector (u,v1)/v/2. We see that JDSVD is
faster for the first triple; for the second and third we restart with a good approximation,
and then the histories are similar.

In Figure 3.2(b), we do the same, but now using GMRES,. For the first two triples,
JDSVD is somewhat faster than Jacobi—Davidson, for the third JDSVD in the first
instance (mis)converges to the fourth largest singular value 997. Other experiments
also suggest that JDSVD is generally (somewhat) faster than Jacobi-Davidson on the
augmented matrix. In the following chapter we (practically) compare JDSVD and JD
to compute the smallest singular values. There JDSVD seems much more advantageous.
@
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FIGURE 3.2: (a) JDSVD (solid) and Jacobi-Davidson (dashed) for the three largest os of diag(1 :
1000). (b) The same as Figure 3.2(a), only with GMRES, to solve the correction equation.

Experiment 3.8.4 Next, we take some examples from the Matrix Market [53]. For
Figure 3.3(a), we apply different JDSVD variants to find the smallest singular triple
of PDE225 (0pin ~ 2.5-107"), using two random starting vectors and GMRES;, (no
preconditioning). In all variants, we take initially target 0, but when ||r|| < 1073, we
replace the target by the best approximations again (see Section 3.7.1, point 4). The
solid line is the standard choice; we see an irregular convergence history, as could be
expected (see Section 3.4). The dashed line represents the Galerkin choice (3.4.5), where
in the correction equation (3.5.1) we substitute (3.7.3). Finally, the dash-dotted line is
(3.4.5) with (3.7.4) substituted in (3.5.1). In the last case, as seen in Section 3.7.4, the
operator in (3.5.1) maps (u,v)** to (&, v)1*. Since in this case v = v but u # U, we use
a left “preconditioner” to handle the correction equation correctly. The preconditioned
identity

T T

0 I, | ™™ 0 I,

maps (%, 0)1+ back to (u,v)t.

In Figure 3.3(b), standard JDSVD’s approximations to the singular values during
this process are plotted. These are “standard”, nonharmonic estimates. Note the mono-
tone convergence of the approximations to the largest singular values but the irregular
behavior of the approximations to the smallest singular value. %)

Experiment 3.8.5 Next, we compare JDSVD with Lanczos bidiagonalization for the
computation of o,,,c. These methods are of a different nature. Lanczos bidiagonaliza-
tion can be viewed as an accelerated power method, while JDSVD can be seen as an
accelerated inexact RQI. An advantage of JDSVD is that we may use preconditioning
for the correction equation. Therefore, we expect that if we have a reasonable precondi-
tioner, and if preconditioning is relatively cheap in comparison to a multiplication by A
or AT then JDSVD can be cheaper than Lanczos bidiagonalization. On the other hand,
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FIGURE 3.3: (a) Three different JDSVD variants for the computation of omi, of PDE225: stan-

dard, (3.4.5) + (3.5.1) + (3.7.3), and (3.4.5) + (3.5.1) + (3.7.4). (b) (Nonharmonic) approximations to
the singular values by the standard variant.

if m > n, or if there is no good or cheap preconditioner available, then we expect that
Lanczos bidiagonalization will be better. Table 3.1 shows some test results.

For JDSVD, we take a target 7 =~ ||Al|_, in the hope that T & Omax. We make
an incomplete LU-decomposition (using a drop tolerance displayed in the table) of the
augmented matrix (3.1.1) minus 7 times the identity, and we use M = LU as a pre-
conditioner. The starting vector v; is the vector with all coordinates equal to one, and
is then normalized, and u; is a random vector. We solve the correction equation by
only preconditioning the residual (“0 steps of GMRES”). Lanczos bidiagonalization uses
vy as starting vector. Both methods stop if ||| < 107%. The matrix A; stands for
diag(1 : 100) + 0.1 - rand (100, 100), where rand(100, 100) denotes an 100 x 100 matrix
with random entries, chosen from a uniform distribution on the unit interval. See [63] for
more information on the origin and singular values of the other matrices. For JDSVD,
a pair is given, consisting of the number of MVs and the number of solves with L or U.
For Lanczos bidiagonalization we show the number of MVs. We use a straightforward
implementation of Lanczos bidiagonalization without any (partial) reorthogonalization;
for a more sophisticated implementation see, e.g., [52].

For the first two examples, the target 7 is relatively far from the largest singular
value (o0max =~ 0.66 for HOR131, omayx =~ 1.5 - 10° for PORES3). We see that Lanczos
bidiagonalization is cheaper than JDSVD when we take the preconditioning into account.
For SHERMANT1, the target is a reasonable approximation to oma, &~ 5.05. When we
take the preconditioning into account, bidiagonalization is still somewhat cheaper than
JDSVD. The last row of the table is an example where preconditioning is relatively cheap.
The reason for this is that we now take the diagonal of A, instead A itself, to form an
augmented matrix of the form (3.1.1) and to make an ILU-decomposition. Using far
more MVs, Lanczos bidiagonalization is (also counting the preconditioning) much more
expensive. %)

Experiment 3.8.6 Finally, in Table 3.2, we compare JDSVD for the computation of



3.8. Numerical experiments 71

TABLE 3.1: Some experiments with JDSVD to compute oy, using incomplete LU-factorizations
of the shifted augmented matrix. The number of MVs, and the number of solves with L or U is displayed
in the 5th column. The shift (or target) 7 (6th column) for the preconditioning is roughly taken to be
||A|lo- The last three columns give information on the incomplete LU-factorization: the drop tolerance
of ILU, and the resulting number of nonzeros of L and U. We compare JDSVD'’s results with the MVs
of Lanczos bidiagonalization applied to A (4th column).

Matrix Size nnz(A) | bidiag JDSVD 7 droptol | nnz(L) nnz(U)
HOR131 434 x 434 4182 30 (30,84) | 0.90 1le—2 1792 1792
PORES3 532 x 532 3474 80 (72,210) | 2e5 1le—1 1301 1300
SHERMAN1 1000 x 1000 3750 70 (18, 48) 5 le—2 4805 4803
Ay 100 x 100 10000 74 (40,114) | 106 1le—2 299 299

Omin With Lanczos bidiagonalization applied to A™'. We use the Galerkin choice (3.4.5)
for JDSVD. Note that the comparison with bidiagonalization is mainly meant to get
an idea of how well JDSVD performs. In practice, for large (sparse) A, it is often too
expensive to work with A=! and A=7 or (ATA) . For JDSVD, we take a small target
7 = 107°, drop tolerance 1072, and we test two different kinds of preconditioners. The
first type (odd rows in Table 3.2), represents an incomplete LU-decomposition for the
augmented matrix based on the target, just as in the previous example. The second
type of preconditioner (even rows in Table 3.2) is based on an ILU of A, see (3.7.7).
The starting vectors are the same as for Table 3.1. We solve the correction equation by
preconditioning only the residual (“0 steps of GMRES”). Both processes are continued
until ||r|| < 1077,

TABLE 3.2: Some experiments with JDSVD to compute omin. The numbers of MVs and solves
with L or U (fourth column), and the number of nonzeros of L and U are displayed. The odd rows
use an ILU of the augmented matrix, while the even rows exploit an ILU of A. We compare JDSVD’s
results with the number of MVs of Lanczos bidiagonalization applied to A~!.

Matrix Omin(A) | bidiag(A~!) JDSVD | nnz(L) nnz(U)
HOR131 1.5e—5 30 (24, 66) 20593 21167
(34,192) | 3623 8117
PORES3 2.7e—1 12 (38, 108) 3683 5491
(32,180) | 1727 2919
SHERMAN1 3.2e—4 16 (20, 54) 11575 11738
(24,132) | 5777 5853
A 9.5¢ 1 14 (26, 72) 200 200
(26, 144) | 3000 1430

We see that although JDSVD may in general use more MVs, it may be much cheaper
than Lanczos bidiagonalization applied to A~!, due to the sparsity of A, L, and U. Again
Ay serves as an example for the situation where preconditioning is relatively cheap, which
makes JDSVD attractive. The second kind of preconditioner strategy (ILU for square
A) looks worthwhile as an alternative to a preconditioner for the augmented matrix. We
also tried Lanczos bidiagonalization applied to A for the computation of o.,;,, but the



72 Chapter 3. A Jacobi—Davidson type SVD method

results were bad (262 MVs for A;, and more than 500 MVs for the other matrices). @

3.9 Conclusions

We have discussed an alternative approach for the computation of a few singular values
and vectors of a matrix. The JDSVD method searches in two separate subspaces, and it
can be interpreted as an inexact Newton method for the singular value problem. JDSVD
can also be seen as an accelerated inexact scaled RQI method. Therefore, the best results
may be expected when we have a good initial starting triple (refinement), but we can start
with any approximations. While the asymptotic convergence is cubic if the correction
equation is solved exactly, in practice we solve it approximately, and then the convergence
typically looks (super)linear. Although we mainly discussed the application of JDSVD for
the largest and smallest singular value, the method is in principle suitable for all singular
values (see also the next chapter). We may use preconditioning for the solution of the
correction equation. This can be a decisive factor for fast convergence. Experiments
indicate that JDSVD is a good competitor to other iterative SVD methods, in particular
when A is (almost) square and we have a reasonable, relatively cheap preconditioner for
the correction equation, or when the smallest singular triples are sought.



Chapter 4

Harmonic and refined extraction
methods for the singular value
problem, with applications in least
squares problems

Abstract. For the accurate approximation of the minimal singular triple (sin-
gular value and left and right singular vector), we may use two separate search
spaces, one for the left, and one for the right singular vector. In Lanczos bidiago-
nalization, for example, such search spaces are constructed. In Chapter 3, we have
proposed a Jacobi-Davidson type method for the singular value problem, where
solutions to certain correction equations are used to expand the search spaces.

As noted in the previous chapter, the standard Galerkin subspace extraction works
well for the computation of large singular triples, but may lead to unsatisfactory
approximations to small and interior triples. To overcome this problem for the
smallest triples, we propose three harmonic and a refined approach. All methods
are derived in a number of different ways. Two of these methods can also be
applied when we are interested in interior singular triples. Theoretical results as
well as numerical experiments indicate that the results of the alternative extraction
processes are often better than the standard approach. We show that when Lanczos
bidiagonalization is used to approximate the smallest singular triples, the standard,
harmonic, and refined extraction methods are essentially equivalent. This gives
more insight in the success of the use of Lanczos bidiagonalization to find the
smallest singular triples.

Finally, we present a novel method for the least squares problem, the success of
which is based on a good extraction process for the smallest singular triples. The
truncated SVD is also discussed in this context.

Key words: SVD, singular value problem, subspace method, subspace extrac-
tion, two-sided approach, harmonic extraction, refined extraction, Rayleigh quo-
tient, Lanczos bidiagonalization, Saad’s theorem, least squares problem, truncated
SVD.

AMS subject classification: 65F15, 65F50, (65F35, 93E24).
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4.1 Introduction

We study subspace methods for the computation of some singular triples (i.e., singular
values and their corresponding singular left and right vectors) for large sparse matrices.
The methods we consider are two-sided, i.e., they work with two search spaces: a search
space U for the left singular vector, and a search space V for the right singular vector.

A well-known example of a two-sided subspace method for the singular value problem
is the (Golub—Kahan—)Lanczos bidiagonalization ([28], see also [31, p. 495]). Chapter 3
has introduced a new method, JDSVD, based on Jacobi-Davidson type expansion tech-
niques. Besides a new subspace expansion process, some new nonstandard extraction
techniques have been suggested. In this chapter we analyze these, and other alternative
extractions in more detail.

Let us first introduce some notations. Let A be a real (large sparse) m x n matrix
with singular value decomposition (SVD) A = XYY and singular values

0<0omin=0p <0p—1 <--- <09 <01 = Opax;

where p := min{m,n}. The assumption that A is real is made for convenience only, the
adaptations for complex A are not difficult. Denote the left and right singular vectors
by z; (1 <j <m) and y; (1 <j < n), respectively. For later use, we also introduce a
second labeling for the singular values:

0.1 <09< - <o0_pp1 <0y, (4.1.1)

so that, if oy, > 0,
o_j(A) = o7 (AF),

where AT is the pseudoinverse of A. (Such a labeling is also used for eigenvalues in
[61]; one of its benefits is the matrix size independency of the indices of the smallest
values. This facilitates the formulation of results for those values.) By || - || we denote
the Euclidean norm, while x(A) is the condition number of A. For a subspace U, let Py
denote the orthogonal projection onto U; U denotes a “search matriz” whose columns
form an orthonormal basis for #. We write N'(A) for the nullspace of A, and e; for the
jth canonical vector. For a positive definite matrix B, the B-inner product is defined by

(z,y)s := y" Bu.

We denote the situation where (z,y)p =0 asz Lpg y.

This chapter has been organized as follows. Section 4.2 recalls the standard sub-
space extraction and some of its properties from Chapter 3, and presents a theorem like
Saad’s theorem on Rayleigh—Ritz approximations, that gives insight in the strength and
weakness of the standard extraction. Section 4.3 explores three variants of harmonic
extraction, based on certain Galerkin conditions on the inverse of the matrix. In Sec-
tion 4.4, we propose a refined extraction method. Section 4.5 discusses the Rayleigh
quotient for the singular value problem. We discuss the possibilities for interior singular
values in Section 4.6, and those for nonsquare or singular matrices in Section 4.7. In
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Section 4.8, we study the extraction methods for the special case of the Lanczos bidi-
agonalization, and show that all extraction methods for the smallest singular triples are
essentially equivalent. The application of the methods to the least squares problem and
the truncated SVD is the subject of Section 4.9. Numerical experiments are presented
in Section 4.10, and some conclusions are collected in Section 4.11.

4.2 Standard extraction

We first repeat part of the setting of Chapter 3. Given a left search space U and a right
search space V, we would like to determine an approximate left singular vector v € U
and an approximate right singular vector v € V. Throughout this chapter, we assume
that both AV and ATU are of full rank. (When they are not, the search spaces U or V
contain a singular vector corresponding to the singular value 0.)

Given (possibly different) approximations § and 7 to the same singular value, and
approximate left and right singular vectors u and v, the residual r is defined as

S N Av — 0u
Tl | T | ATu—mu |
These approximate values and vectors are determined by a double Galerkin condition as

follows. Write u = Uc and v = Vd, where it is understood that c,d # 0. The standard
extraction process is now derived from one of the two following equivalent conditions:

@ {AVd—ove LU,
AtUc—nVd L V.

(i) UTAVd = e,
VTATUc = 7nd.

Here, (i) can be regarded as the standard Galerkin conditions for the singular value
problem; the word “standard” reflects the fact that we choose the test spaces (on the
right-hand side of (i)) equal to the search spaces. Choosing the scaling ||c|| = ||d|| = 1,
we see from (ii) that ¢ and d are left and right singular vectors of

H:=UTAV

with singular value 6§ = n; stated differently: v = Uc and v = Vd are left and right
singular vectors of A with singular value # = n with respect to the subspaces ¢ and V.
Note that in this extraction process we have § = 7, for some other methods in Section 4.3
and 4.4 this will not be the case.

Recall from Chapter 3 that this H is optimal in the sense that it minimizes the
residual matrices

Ri(K):=AV —UK and Ry(L):=A"U-VIL, (4.2.1)

and that the singular values H,Ek) <--- <L HYC) of Hy := UL AV}, converge monotonically to
the singular values of A. However, the smallest singular values of H; may converge very
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irregularly to the smallest singular values of A. If the norms of the residual matrices
Ri(H) and Ry(HT) are small, then the largest singular values of H must be good ap-
proximations to the largest singular values of A (Theorem 3.4.7). The smallest singular
values of H are not necessarily good approximations to the smallest singular values of
A. So H will tend to be a better approximation to the “top” of the singular spectrum
of A than to the “bottom”. See also Section 4.9.2.

Now, we present another result that sheds more light on the standard extraction: a
theorem that expresses the quality of the approximate singular vectors produced by this
extraction in terms of the quality of the search spaces. For the Hermitian eigenvalue
problem, such a result has been proved by Saad (see [69, p. 136]). This result can be
extended to non-Hermitian matrices ([82, p. 286]). We first give a new short proof of
Saad’s result in terms of orthogonal projections, before we prove a similar result for the
singular value problem along the same lines.

Let P, denote the orthogonal projection onto span(u). Note that because u € U, the
projections satisfy

PuPu:PuPu:Pu

Suppose that we have a search space U for the Hermitian eigenproblem. The Rayleigh—
Ritz process for the eigenvalue problem Bz = Az (see, for instance, [61]) ensures that

P,BP,P, = 0P,. (4.2.2)

Theorem 4.2.1 (Saad, [69, p. 136]) Suppose that B is a Hermitian matriz with
eigenpair (A, x). Let (0,u) be the Ritz pair (with respect to the search space U), for
which 0 is the Ritz value closest to A. Then

2
sin(u, r) <4/1+ % sin(U, z),

v = ||Pu(B=X)(I- P,

in [6; — A
min [0; = Al

where

>
|

where 0; ranges over all Ritz values not equal to 6.
Proof: We start with
x=Pux+ (Py—P)x+ (I — Py)x.
Apply Py(B — M) on both sides, and use (4.2.2) to get
0=(0—\NP,x+ Py(B—\)(Py— P,)x+ Py(B— \)(I - Py)z, (4.2.3)
SO

—Py(B-A)I-P))z = (Py—P)([B-A)(Py— P,z
+ P, ((6—X) + (B—A)(Py—P,))x.
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Taking the square of the norms and using Pythagoras’ theorem leads to
0 |(Py = Pu)all” < [|(Pu — Pu)(B — AI)(Py — Pzl < v* | — Pu)a||*.
Since ||(I — Py)z|| = sin(U, z) and ||(I — P,)z|| = sin(u, z), the result now follows from

I(T = P)z|* = (I = Ro)all® + 1|(Pu — Pu)z]|*.

For the singular value problem, the standard extraction gives
PyAPy,P, =0P, and P,A"P,P,=0P,.

We are now in a position to prove a similar result for the standard extraction for the
singular value problem.

Theorem 4.2.2 (cf. Theorem 4.2.1) Let (0, x,y) be a singular triple of A, and (6, u, v)
be the approximate triple (derived with the standard extraction with respect to the search
spaces U and V), for which 0 is the value closest to o. Then

/ ~2
max{sin(u, z),sin(v,y)} < /1 + 2% max{sin(U, z),sin(V, y)},

7 = max{[|RAUI - B)I,[[(I - Pu)APy)|},
~ ming; 49 |0 — o when H is square,
min(ming, ¢ |6; — o[, 0) when H is nonsquare,

where

where 8; ranges over all approrimate singular values of H not equal to 6.

Proof: The proof follows the same line as the proof of Theorem 4.2.1, where we take
for B the augmented matrix (3.1.1), and make the following other substitutions in the
proof of Theorem 4.2.1: replace

0

P, |

xz Pu 0
acby[y], Puby[o Pv]’ and Puby[

o

One may check that we get (cf. (4.2.3))

o-nlf] - [ 2] 00wt ]

+ Pu 0 —ol A I—Pu 0 x
0 Py AT —ol 0 I—Py Yy )
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Since the last term on the right-hand side can be written as

PR

the norm of this term is bounded by

V2ymax{||(I = Py, [I(1 = P)yl}-
Furthermore, the smallest singular value of

Pu—Pu 0 —ol A Pu—Pu 0
0 Py—Pv AT —ol 0 PV_PU

is 0. The result now follows in the same way as in the proof of Theorem 4.2.1. O

The theorem states that when Z(U,z) — 0 and Z(V,y) — 0, the standard extraction
gives good Ritz vectors, unless the singular values of H are poorly separated (g ~ 0).
In fact, 6 becomes 0 in case of double singular values of H, see also Example 4.7.1. The
phenomenon of poorly separated Ritz values is also encountered in the Rayleigh-Ritz
method for eigenvalue problem; it is often not very serious: we may just continue with
the subspace method (by expanding the search spaces), at the next step the singular
values of H may be well separated.

A more serious problem of the standard extraction is that the theorem does not
predict which singular triple is the best: it is a problem of selection. Suppose that
u=73" v7;and v = )., 0;y; are approximate singular vectors of unit length; then
0 =u"Av =Y "_, v;0;0;. (We may assume 6 is nonnegative; otherwise, take —u instead
of u.) Now suppose that § ~ o, in the sense that 0y < 6 < oy, and that o; — 0 is
(much) smaller than # — 5. Then we conclude that 73 &~ 1 and 6; ~ 1, so u and v
are good approximations to z; and y;. But when § ~ o,, © and v are not necessarily
good approximations to z, and y,. For example, u could have a large component of
Zp—1 and a small component of z1, and v could have a large component of y, 5 and a
small component of y;. In conclusion, when we search for the largest singular value, it is
asymptotically safe to select the largest singular triple of H, but for the smallest triple
it is not safe to select the smallest approximate triple. See also Example 4.7.1.

Failure to select the best approximate vectors is especially dangerous when we use
restarts. At the moment of restart, selection of bad approximate singular vectors may
spoil the whole process.

4.3 Harmonic extractions

As seen in the previous section, the standard extraction process is satisfactory in the
quest for the largest singular values, but the approximations to the smallest singular
values often display a irregular convergence.

Here and in the next section we assume that A is nonsingular (which implies
that A is square);
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we will treat the general case in Section 4.7. Based on the observation that the smallest
singular values of A are the largest ones of A™!, it was briefly suggested in Section 3.4.3
to consider modified Galerkin conditions on A=7 and A~!. Here we work out this idea
in detail.

The following are equivalent:

i) ATTVd - 7UE L U,
AWUe-6"tvd L V.

(ii) { igTAfTVJ - QTUE
OVTA-IUe = VTvad.
The idea is now to choose the test spaces U and V in such a way, that we do not have to
work with the inverse of the (large sparse) matrices A and AT. Some terminology: in line
with nomenclature for the Rayleigh-Ritz procedure, u := Uc¢ and v := Vd are called left
and right harmonic singular vectors, 8 and 7 harmonic singular values, and (0,7, u,v)
a harmonic singular tuple. We remark that, similar to the harmonic Ritz values for
the eigenvalue problem, the harmonic Ritz values may be oo, see Example 4.7.1, and
Section 4.5 for a way to overcome this difficulty. o
Now we can make the following four choices for (U, V):

o (AV, ATU) gives the standard extraction of Section 4.2.
o (AATU, ATU) leads to the U-harmonic extraction, see Section 4.3.1.
o (AV, ATAY) is the V-harmonic extraction to be discussed in Section 4.3.1.

o (AATU, ATAV) gives the double harmonic extraction, examined in Section 4.3.2.

4.3.1 U-harmonic and V-harmonic extraction

In this subsection we only treat the V-harmonic extraction, the Z/-harmonic extraction
is derived by interchanging the roles of I/ and V), and those of A and A”. The following
are equivalent:

| ATTvd -5 L Ay,
(1) 177> -1y 7 T
A Uc—-0""Vd L A*AV.

i) AVd-0UE L AV,
ATU—[vd L V.

. vTATAVd = QVTATUE,
(iii) ~ o~
VTATUe = 7d.
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Here, (i) expresses that the V-harmonic method arises from Galerkin conditions on A~*
and AT with respect to modified test spaces. Item (ii) gives a derivation in terms of
Galerkin conditions on A and AT, but with different test spaces, compared with the
standard extraction of Section 4.2. From (iii), we see that VT ATAVd = (07)d, that
is, (gﬁ,@) is a Ritz pair of ATA with respect to the search space V. This is just the
well-known Raleigh-Ritz approach on A"A. The “secret”, however, is in the formation
of the vector ¢, and hence the approximate left singular vector u. We have ¢ = H 7T,
up to scaling (see Section 4.7 for the case that H is nonsquare or singular). Since H T
can be considered as a projected A~T, this suggests that the vector 7 = UH ~Tq may be
a much better approximation to the left singular vector than the “usual” approximation
Av = AVd. The following lemma substantiates this.

Lemma 4.3.1 Suppose that v is an approximation to the “smallest” right singular vector
Ymin- Lhen, denoting € := tan(v, Ymin), we have

k(A) e < tan(A™"w, Zyi) < e < tan(Av, Tym) < k(A)s,
where the inequalities are sharp.

Proof: Write v = Y, + €€, where e L yn,;, and |le|| = 1. Note that tan(v, ymin) = €.
Then for Av = i Tmin + £ Ae, we have tan(Av, ;) = o1, || Ae||, from which the last
two inequalities follow (sharp if e = y,_; and oyin = 0,—1, respectively € = ymax). Since
ATy =0} Tmin + A Te, we have tan(A T, Trin) = €0min|| A Te||, from which we get

the first two inequalities (sharp in the same circumstances as above). a

Concluding from the lemma, it would be ideal, given an approximate right vector v,
to take A~T7 as approximate left vector. In practice, the action with A=7 is often too
expensive, but H~7T is a, much cheaper, projected approximation to A~T. Numerical
experiments (see Section 4.10) confirm that & = UH Td may be a much more accurate
than AVd.

Since the (67); are Ritz values of ATA with respect to the subspace V, we can invoke
well-known results. We label the values in two different ways (cf. (4.1.1)):

07) < --- < (07): and (7)1 < --- < (67)_s.
Theorem 4.3.2 Let Ry = ATAV — V(VTATAV) = (I — VVT)ATAV. Then:

(a) for fizred j < p, and k > j, the ((077)5-’6))2 converge monotonically (up)to 012-:

(02 < ()2 < o2,

the ((977)(1?)2 converge monotonically (down)to o ;:

oty < ((em &) < ()’

J —Jj
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(b) for each j = 1,...,k, there exist singular values oy of A which can be put in
one-one correspondence with the (6n); in such a way that

k
0m); — o3| < |IRv| and Y ((0); —03)* < || Ryll%;

i=1

(c) let (On,v) be the Ritz pair of ATA where 0n is the Ritz value closest to 0. Then

[ 2
sin(v,y) < 4/1+ Z_Q sin(V, y),

where
w o= ||[Pv(ATA-o’I)I - B)],
0y = min |(0n); — o?|.
v o= min (60); - o

Proof: For (a) and (b), apply [61, Theorems 11.5.1 and 11.5.2] to A”A and AA”. Part
(c) is a corollary to Theorem 4.2.1, when we take B = ATA. O

4.3.2 Double harmonic extraction

We now give a number of possible derivations for the double harmonic extraction. The
following are equivalent:

A*TVJ iU L AATU,
(1) -1 1 T
Uc—0-'Vd 1 ATAY.

A TVd ’I'] UN J_AAT Z/{,
1(JC 1‘/vd J—ATA V.

ATVE—0"0Ud L U= AV,

(i) { Jd-7-Ve L V=AU

AVd - 0U% L AV,
ATUG—-7vd 1 ATu.

UTAVd = UTAATUC,
VT ATUE = VTATAV.
Here, ( ) states that the double harmonic method arises from Galerkin conditions on A~!

and A~7 with respect to modified test spaces. Item (ii) formulates the result with respect
to the standard search and test spaces, but with respect to a different inner product;
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note that both (-, -) g4m4 and (-, -) 447 are inner products because of the assumption that A
is nonsingular. Item (iii) derives the approach from the situation where we take modified
search and test spaces; as in the standard extraction, the test spaces are equal to the
search spaces. This notation in item is different from the other items (exchange of ¢ and
d, and of § and 7). The reason for this is the following. The vectors & = U d = AVd and
% = Vd = ATUZ will tend to be deficient in the direction of the smallest singular vectors.
So it is better to do a “free” step of inverse iteration and take u = A~"(ATU¢) = U¢ and
v = A_l(AVcZ) = Vd as approximate singular vectors. Similar remarks for the harmonic
vectors in the eigenvalue problem can be found in [54]. Item (iv) gives a derivation in
terms of Galerkin conditions on A and AT but with respect to different test spaces.
Finally, (v) can be interpreted as: (# ! =% 1,u,v) is a singular tuple of UT AV, where
ATU and AV are orthogonal, as the following analysis shows.
We introduce the QR decompositions

AV = QUGU and ATU = QgGV

(We choose for the letter “G”, because the letter “R” is already “overloaded”, and
because GGy and G{,Gy are Choleski decompositions of VT ATAV and UT AATU, re-
spectively. We choose for these subscripts since AV “lives in the U-space”, i.e., A maps
right to left singular vectors. Similarly, AT maps left to right singular vectors.) Note
that Gy and Gy are nonsingular because of the assumption that AV and ATU are of
full rank. Then

Qu=AVGy' and Qv = A"UG

are orthogonal and span AV and ATU, respectively. Then characterization (v) can be
written as

MGy UTAVG (Gud) = (Gvo),

0G;TVIATUG (Gye) = (Gpd).

When we normalize ¢ and d such that ||Gy¢]| = ||Gud|| = 1, we see that Gy ¢ and Gyd
are left and right singular vectors of

= QLA 'Qu =G, UTAVG,' = G,"HGY!

corresponding to singular value ! = 71. Analogously to (4.2.1), we define the residual
matrices

§1(K) = A7'Qu — QvK, §2(L) =A""Qv — QuL.

Then L
Ri(H™) = (I-QvQ{)A™'Qu = (I -QvQL)VGy,
Ro(H™) = (I-QuQH)A™"Qv =(I-QuQj)UG"

Note that a multiplication by A= or A=T is not necessary to compute the residual
matrices (which, in practice, will not be done anyway). The following theorem can be
proved applying Theorem 3.4.2 to A~! instead of A. Informally, it states that H-!

be considered as the best approximation to A~ over AY and ATU.
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Theorem 4.3.3 (cf. Theorem 3.4.2) For given m X k matriz Qu and n X k matriz
Qv with orthogonal columns, let H~! = QTA™1Qy.

(a) For all k x k matrices K we have |Ry(H~ DI <R 1(K)ﬂ. Moreover, H™" is unique
with respect to the Frobenius norm: IRy (H™V)||r < |Ry(K)||F with equality only
when K = H™',

(b) H-T minimizes the norm of Ry(L), and H™T is unique with respect to the Frobenius
norm.

Since H~! approximates A~!, we may take the singular values 8 < ... < 5(7]“,2
(notation: cf. (4.1.1)) of

H, = GuH,_'GY, (4.3.1)

as approximations to the o;(47") = o_;(A). By applying Theorems 3.4.5 and 3.4.7

to A~!, we get the following result, which states that all gk) ; converge monotonically
decreasing to the o_;.

Theorem 4.3.4 (cf. Theorems 3.4.5 and 3.4.7)
(a) For fized j <p, and k > j, the 5(_1? converge monotonically (down)to o_;:

oy <0 < ).

(b) For each j = 1,...,k, there exist singular values o_; of A which can be put in
one-one correspondence with the singular values 0_; of H in such a way that

o) —0-}1 < max {|Ry(H )|, | Ro(H )]}
Moreover,

N 0Tk — 0212 < Ry H Y+ | Bo(H )3

j=1

The previous two theorems indicate that the double harmonic approach indeed has
favorable properties in the quest for the smallest smgular triples. For instance, if the

norms of the residual matrices Ry (H~!) and R,(H™T) are small, then, since
‘0’:- _0 1|_‘U—J —]‘,
g —9’9—3

the smallest singular values of H must be good approximations to the small singular
values of A. So while H tends to approximate A well with respect to the largest singular
values, H tends to approximate A well with respect to the smallest singular values. See
also Section 4.9.2.
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4.4 Refined extraction

In this section we introduce another extraction process. The key idea is that the “mini-
mal” left and right singular vector of A minimize ||A”z|| and ||Ay||, respectively. When
we have search spaces i and V), it is a natural idea to extract those vectors that minimize
the norm of the matrix and its transpose over the search spaces. This approach amounts
to computing two SVDs of tall skinny matrices AV and ATU. It is somewhat similar
to the refined extraction in the Ritz method in the eigenvalue problem (see, for instance
[43] and [82, p. 289]), in the sense that we look for the minimal singular vector in a
search space; therefore we choose the name refined extraction.

With 4 = Uc and v = Vd, the following are equivalent (remind that we assume in
this section that A is nonsingular):

0 = min ,cp [ATul
(1) ~ _ ull=1 with @, D, respectively, as minimizing argument,
7 = min ,cy [|Av]
[l =1
T 'Us_ p-2Un . AT -
(i) (474) 1‘{\6/\ 0,\ Ve L vi=4 where 62 and 772 are maximal,
(44") ' Dd—720d 1 U:= AV

~ where #? and 7? are minimal.

(i) UTAATUS 0%
VITATAVd = 72d

Here, (i) expresses that 2 and ¥ minimize the matrix norm over ¢ and V. Item (ii) gives
a derivation in terms of a Galerkin condition on (A7A) ' and (AAT) ! Item (iii) states
that 7 and ¥ are the “smallest” Ritz vectors of AAT and ATA with respect to & and V),
respectively. R

We call 0 and 7 refined singular values, o and v refined singular vectors, and (0,7, 1, )
a refined singular tuple.

A difference between the refined approach and the harmonic approaches is that the
first leads to only one approximate triple instead of k ones; however, this can easily
be modified by computing more than just one smallest singular value and correspond-
ing vectors of AV and ATU, respectively. We label these values in two different ways
(cf. (4.1.1)):

O=0_,<--<0 and §=0,<--- <0,

and the 7)’s similarly. These approximations have the desirable property of monotonic
convergence.

Theorem 4.4.1 Define Ry = (I — UUT)AATU. Then:

(a) for fized j < p, and k > j, both éT_ICJ) and 774_]? converge monotonically (down)to o_;:

o_;j < @(_k;rl) < 5(_1? and o_; < 7/74_1?1) < 77(_13%
both 67](-16) and nA(jk) converge monotonically (up)to o;:

é\(jk) < égkﬂ) <o; and nA(jk) < 77§_k+1) < 0j;
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(b) for each j =1,...,k, there exist singular values oy and o of A which can be put
in one-one correspondence with the 0; and 0; in such a way that

87 — 05| < |Rul and 29 —03)* < | Rull%,

7j=1

5 — o < |IRvll  and Z 0 —05)" < || RyllE;

j=1
(¢) sin(U, Tmin) < 4/1 + 7 2 sm(Z/{,xmin) and  Sin(V, Ymin) < /1 + % sin(V, Ymin),
where
w = [[Pu(AAT — a2 )T = Pu)ll, w = [IPV(ATA = a2, )T — Py)],
5U = |532 min|’ 5V = |7 min|'

Proof: Follows from characterizations (i) or (iii), using the same techniques as in The-
orem 4.3.2. O

Advantages of this refined approach are good asymptotic vector extraction (o2, is

an exterior eigenvalue of ATA), and the fact that we have upper bounds for o;,. On the
other hand, the left and right singular vector are approximated completely independently.
It may thus happen that u ~ x and v & y are approximate vectors to singular vectors
corresponding to different singular values. In this case the Rayleigh quotient of the
vectors (see Section 4.5) is meaningless as approximate singular value.

Note that we can also formulate a result similar to part (c¢) of Theorem 4.4.1 for the
largest singular vectors. This also shows that the refined approach is equally useful for
the largest singular triples as for the smallest ones: just take the maximum instead of
the minimum in characterization (i) and (iii).

The next theorem, that can be seen as generalization of a result in [82, p. 290],
gives some idea how fast the refined approach converges to the minimal singular value.
In particular, it shows that, since Z(U,z) — 0 and Z(V,y) — 0 as the search spaces
expand, convergence is guaranteed.

Theorem 4.4.2
Omin + SI0(V, Ymin) Omax Omin + SIN(U, Tmin)Omax
\/1 — sin?(V, Ymin) \/1 — sin*(U, Trmin)
Proof: We only prove the first statement, the proof of the second one being similar.
Decompose Ymin = cvyyv + Svfv, where yy = VV*Yin/||VV*Ymin|| is the orthogonal

projection of ymi, onto V, ¢y = cos(V, Ymin), and sy = sin(V, ymn). Since Ayy =
(OminZTmin — SvAfyv)/cyv, we have by definition of a refined singular vector

[47]] < [[Ayv[| < (omin + sv | All)/cv-

|47]| < , and AT <

|

The next theorem gives a justification of the new methods: they retrieve singular
triples that are exactly present in ¢/ and V.
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Theorem 4.4.3 Let (0,z,y) be a singular triple of A with x = Uc and y = Vd. Then
(0,0,Uc,Vd) is both a harmonic and refined singular tuple.

Proof: This can be verified by calculating the left and right-hand sides of (iii) of Sec-
tion 4.3.1, (v) of Section 4.3.2, and (iii) of Section 4.4. O

The standard extraction method in principle also finds singular triples that are ex-
actly present in the search spaces. However, it may have difficulties selecting them, see
Example 4.7.1.

In the following table we summarize the properties of convergence of the different
extraction methods (Theorems 3.4.5, 4.3.2, 4.3.4, 4.4.1). A “+” stands for monotonic
convergence. A “~” means that we do not have monotonic convergence; as a result the
convergence can in practice be irregular and very slow.

TABLE 4.1: Properties of monotonic convergence of the extraction methods to omax and omin.

extraction Omax  Omin

standard +
U-, V-harmonic +
double-harmonic -
refined +

+ 4+ +

The table suggests that to find the smallest singular triples, one can use all methods
except the standard extraction, while for the largest singular values one can use all
methods except the double-harmonic extraction. This appears to be a good rule of
thumb indeed, see also Sections 4.10 and 4.11.

4.5 Rayleigh quotient for the singular value problem

In the harmonic Ritz approach for the eigenproblem, the harmonic Ritz value may be
a bad approximation to the eigenvalue (it can even be co), while the harmonic Ritz
vector may be of good quality; see, e.g., [78]. Therefore, it is advisable to discard the
harmonic Ritz value and, instead, approximate the eigenvalue by the Rayleigh quotient
of the harmonic Ritz vector.

In our case, we also encounter the situation that while the harmonic vectors may be
good, the harmonic value can be bad, see also Example 4.7.1. Therefore, we propose
to take the Rayleigh quotient (in the sense of the singular value problem), as defined in
Section 3.4.2 of the left and right approximate singular vector as an approximate singular
value.

One may check that we have the expressions as in Table 4.2 for the Rayleigh quotient
of approximate vectors in the standard and harmonic approaches.

So for the standard and harmonic methods we can obtain the Rayleigh quotient of the
approximate singular vectors at little (double-harmonic approach) or no (standard, U-,
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TABLE 4.2: Rayleigh quotients for the standard and harmonic extraction methods.

approach Rayleigh quotient of approximate vectors
standard 0=n
V-harmonic 7]
2 T 2 T
double-harmonic  IAVA" _ A Uell” _ AVd]|A" Uel
7 7 NG

and V-harmonic approaches) additional cost. Of course, we can also take the Rayleigh
quotient in the refined extraction process. For complex matrices, we should scale u and
v in such a way that their Rayleigh quotient is real and nonnegative.

4.6 Interior singular values

The extraction processes introduced in Section 4.3 and 4.4 are tailored for the smallest
(and, with exception of the double-harmonic approach, also useful for the largest) sin-
gular triples. Now we study the situation where we are interested in interior singular
values (and corresponding vectors) near a target 7 > 0. We present two methods that
can be seen as generalizations of the double-harmonic approach (Section 4.3.2) and the
refined approach (Section 4.4). We will see that for 7 = 0, the methods in this section
deduce to those of Sections 4.3 and 4.4.

For a Hermitian matrix B and a search space W, it is well known that instead of
standard Raleigh—Ritz, better results may be expected from the harmonic Ritz approach
(see, e.g., [82, p. 292])

WT(B - 71)*We= (0 — )WT(B — r)We,

where we are interested in the 6 closest to some (interior) target 7. When we take the
augmented matrix (3.1.1) for B, and “split up” W into a left and right space Y and V—

. U 0 . .
i.e., we take W = [ —then we get the harmonic extraction for target T > 0 for

0o Vv
the singular value problem: find the eigenpair(s) of the generalized symmetric eigenvalue
problem

—2rHT vrarav +o2r, | |d| =07 Br r || a

[UTAATU-i-TZIm —27H ][E} ~ T)[—TI H ][(ﬂ

for which @ is closest to 7. Here the matrix on the left-hand side is positive semidefinite.
Restated, the problem is to find the smallest eigenpairs of

UTAATU —TH g _7 -7l H EN
—THT  VTATAV d| HT —7J d |’

One may check that for 7 — oo we get the standard Galerkin approach of Section 4.2,
while 7 = 0 gives the double-harmonic approach of Section 4.3.2.
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A refined method for the approximation of interior singular triples is the minimization
over 7,d € R, |[¢] = [|d]| = 1 of

-7l A Ué; _ —7U AV ?\
AT -1, Vd o ATU -1V d

which amounts to the SVD of a tall skinny (m +n) x 2k matrix. For 7 = 0, we get back
the refined approach of Section 4.4.

We note that both approaches may fail to produce approximations to both the left
and right singular vectors, since it is not guaranteed that the computed ¢, d,¢, and d are
nonzero. Suppose, for example, that ¢ = 0 and d # 0. Then a possibility is to solve ¢
from H'¢ = d (as in the V-harmonic method). See the next section for the case of a
nonsquare or singular H.

Y

4.7 Nonsquare or singular matrices

Most characterizations of the extraction processes given above use A~! and A~7. More-
over, in the Y- and V-harmonic approach, we have to solve a system with H or HT.
We now show that no difficulties arise from a nonsquare or singular A, or from a sin-
gular H. We first show that such a nonsquare or singular A gives no problems for the
double-harmonic approach, using characterizations (iv) or (v) of Section 4.3.2. Let

U’ = (I — PN(AT))U and V, = ([ - PN’(A))V. (471)

Notice that A" := (I — Pyar)) A(I — Pyay) = A. By using characterization (iv) of the
double-harmonic method we obtain that

AVd—7U¢ L AV,
ATUE—60Vd 1 AU,

if and only if
AV'd—7U'c L AV,
ANTu'ec—-ovid L (AU

So for the double-harmonic approach we may assume without loss of generality that A is
nonsingular. Another way to see this is via item (v) in Section 4.3.2: since we assumed
that AV and ATU are of full rank, we see that nonsquare or singular A form no difficulty.

Though characterization (ii) of the refined approach (see Section 4.4) is suitable only
for nonsingular matrices, it can be seen from the items (i) and (iii) that nonsquare or
singular A give no problems. N

In the - and V-harmonic method, we have to solve a system of the form Hd = ¢
or H'¢ = d. Independent of the properties of A, the matrix H may be singular. In
this circumstance, the systems involving H or H? do not have a unique solution. This
is precisely the situation where infinite harmonic Ritz values may occur in the Y- and
V-harmonic method, see (iii) in Section 4.3.1.
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A possibility is then to solve the small system in a least squares sense, that is, take
the pseudoinverse: d = H*¢ or ¢ = (HT)*d. However, these vectors may be zero, in
that case the U- and V-harmonic approaches fail to give an approximation to one of the
two singular vectors. In numerical experiments, however, we have not encountered this
situation.

We mention that for nonsquare or singular matrices, the theorems in Sections 4.3
and 4.4 still hold, as far as the nonzero singular values are concerned.

The following examples illustrate some properties of the extraction methods.

Example 4.7.1 Take A = diag(1,2,3), and suppose that we try to find an approx-
imation to the smallest singular triple of A from the search spaces U = span(ey, e3),
and V = span(ey, e3). First we consider the standard extraction: the singular triples of
H = diag(1,0) lead to approximate singular triples (0, u,v) = (0, e3, e2) and (1, eq,¢€7).
So, although the standard extraction finds the smallest triple of A, it is not safe to
take the smallest (0, e3,e;) as an approximation to the smallest triple of A. Both the
U-harmonic and V-harmonic approach have to deal with a singular H. As discussed,
we could enlarge U and V (by for instance the residual vectors 71 and r5) to avoid the
singularity, or take the pseudoinverse for the systems involving H or H”. The latter
option gives (0,n,u,v) = (1,1, e1,e;) for both the #- and V-harmonic approach. The
double-harmonic approach finds the tuples (0,7, u,v) = (1,1,e1,e;) and (oo, 00, €3, €3).
Here it is safe to take the smallest tuple. (We can get rid of the infinite harmonic
value by taking the Rayleigh quotient of e3 and es: this gives the approximate value 0.
This is an example where it can be seen that the Rayleigh quotients often make more
sense than the harmonic values.) Finally, the refined approach gives the correct solution
(0,u,v) = (1,e1,e1). The conclusion is that in this example, the standard approach
is the only one having difficulties to determine the “smallest” singular vectors that are
present in the search spaces. @

Example 4.7.2 Let A be as in Example 4.7.1, and let U = V = span(ey, (e; + €3)/v/2).
Then H = diag(2,2) has a double singular value and the standard extraction does
not know which approximate vectors to take. The other methods do know how to
decide: for target 7 = 0, all three harmonic approaches and the refined approach take
(u,v) = (eq,e2) as approximate vectors with approximate singular value § = n = 2.
Also for target 7 = 2, the double-harmonic and refined method (see Section 4.6) yield
(2, ez, €2) as approximate triple. %)

4.8 Lanczos bidiagonalization

We now study the different extraction methods in the context of Lanczos bidiagonal-
ization. After k steps of Lanczos bidiagonalization with starting vector v; we have the
relations [31, p. 495]:
AV, = UiBypg,
{ AUy = VigaBl 4,
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where By and B/cT+1,k are a k x k upper, and a (k + 1) x k lower bidiagonal matrix,
respectively. This implies that the standard extraction process (see Section 4.2) takes
the singular triples of

Ui AV = By

as approximations to the singular triples of A. The V-harmonic method (see Sec-
tion 4.3.2, characterization (iii)) reduces to

B, Bixd = 0BLZ,
Ble = 7

Here By, is nonsingular due to the assumption that AV and ATU are of full rank. Hence,

one may check that the V-harmonic approach also takes the singular triples of By as

approximate singular triples. Similar remarks can be made for the ¢//-harmonic method.
Item (v) of the double-harmonic approach (Section 4.4) deduces to

MBikd = Brri1BLyi G,
OBL,¢ = BY,Byd.

Again we may assume that By is nonsingular. Then Bk’kcflvz 6¢ and Bk,k+1BkT+1,k5 =
(6m)c. Therefore, ¢ is a left singular vector of By, x1. When By ;1 and By, do not differ
much (as will be true when ¢ and V are nearly invariant singular subspaces), ¢ is close

to a left singular vector of By, and hence d is close to a right left singular vector of
Bk,k-
The refined approach considers

min ,cpe [[ATUke|| = min  epe [|Bii el
llell =1 llell = 1

min 4 cge [|AVid|| = min ege [|Begd],
lld] =1 ||| =1

to which the smallest (left and right, respectively) singular vectors of By ;41 and By
are the solutions.

We conclude that in Lanczos bidiagonalization (a two-sided subspace method where
we choose a specific subspace expansion), all extraction processes do essentially the same:
approximating singular triples of A by those of By or By j4+1. Since the new extraction
processes in this chapter are often good for the minimal singular triple, the standard
extraction is also fine in this case. This may be seen as an explanation why Lanczos
bidiagonalization is, besides for the largest singular values, also successful for the approx-
imation of the smallest singular triples. For other two-sided subspace methods, such as
JDSVD, the extraction processes may differ much, see also the numerical experiments.

Finally, for completeness, we give the extraction processes of Section 4.6 for interior
singular values in the case of Lanczos bidiagonalization. The double harmonic approach
attempts to determine (the “smallest”) eigenpairs of

Big+1Bl 1, —TBigk c _7 —7l; By c
—TBk,k BIZ?kBkyk d Bl?,lc —TIk d )
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The refined extraction for target 7 > 0 considers

min Ade - TUkC _ min Bk,kd —TC
¢, d € RF AUEC— T‘/;cd ¢,d € RF Bg+1,kc— le:—l—l,kd ’
llell = lldll = 1 llell = ||| = 1

where Ij 1 is the identity with an extra (k+1)th zero row. We conclude that in Lanczos
bidiagonalization, the extraction methods for the smallest singular triples are all more
or less equivalent, but the extraction methods for interior singular triples differ.

4.9 Applications

In this section, we study two applications where the new extraction processes can be
used: the least squares problem and the truncated SVD.

4.9.1 The least squares problem

The least squares problem
min ||b — Avl|,
v

with minimal norm solution
ATh =" o (z]b)y;, (4.9.1)
0 #0

has often been successfully attacked by methods based on Lanczos bidiagonalization.
For example, LSQR [59] chooses u; = b/, where = ||b||, and forms Uy and V}, such
that AUy, = Vi B[, and AV}, = Uy41Bi1,k- Suppose we look for a solution v € Vg, say
v = Vid. Then

[b — Av|| = [|BUk+1€, — AVid|| = ||BUk+1€1 — U1 Brsxd| = [|Be; — Bigrpd|,
where e, is the first unit vector in R¥*!. Now LSQR takes the approximation
v= ﬁVkB,'L_Lkgl. (4.9.2)

For other two-sided SVD methods, such as JDSVD (Chapter 3), we can use a similar
idea, although in general, we will not have short recurrences as in LSQR. Let U a test
space, yet to be determined, and let [[7 U | ] form an orthogonal basis. For ease omit
the index k. Then, again with fu; = b and v = Vd we get

Now we neglect the second part ||[UT(8Ue; — AVd)]|, this is equivalent to requiring

UT(BUe; — AV d)

b—Av||= || 2
1o = Avl H UT(8Ue, — AVd)

b—Av L U.
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The minimal norm solution to ming ||8UTUe; — UT AV d|| leads to
7= BV(UTAV)TU  Ue;.

To get a good solution, V(ﬁTAV)+(7T should be a good approximation to A*. Since
a pseudoinverse is mainly determined by its smallest singular values and vectors, we
realize that the extraction of those small singular triples from the search spaces U and
V is crucial. We have already seen that the choice U = U (leading to v = SV H"e,) is
often not satisfactory for the smallest singular triples. The choice U= AV as in the
V-harmonic and double-harmonic approaches, is more promising, since

v =argmin||b— Av|| iff b— Av L AV.

veY

With this choice, we have d = B(VTATAV) 1VTATUe;, = B(AV)TUe,, so d is the
least squares solution to min, ||fUe; — AVd||. Then v = SV (AV)*Ue;. For Lanczos
bidiagonalization, this gives v = BVkB,j,kel, which resembles the LSQR solution (4.9.2).

Since AV and HT = VTATU are already computed in the V-harmonic and double-
harmonic methods, these approaches can therefore also be useful for least square prob-
lems: they may give an approximate solution of the least squares problem at low addi-
tional costs during the process.

As already mentioned, methods such as JDSVD may need restarts and deflation from
time to time. When we would like to use these methods for the least squares problem,
special care has to be taken when the maximum dimension of the search space has been
reached (restart), or when a singular triple has been found (deflation). With restarts, we
have to ensure that b = fu; € U. Therefore, we restart with the span of the best (say)
[ — 1 left vectors in U, together with u; as the new left search space U (what “the best”
means, depends on the extraction method). For the new right search space V, we take
the span of the best [ — 1 right vectors in V, together with V(AV)*Ue;, the minimal
norm solution to min,ey ||b— Av||. Since we include the best approximation so far to the
least squares problem in the new search space V, we get monotonic convergence for the
least squares solution, that is,

16— Avgga[| < [|b — Avg |-

This is trivial when we expand the search space V, but by restarting in this way, it is
also valid at restarts.

Now consider deflation. Suppose we have detected a singular triple (o, z,y), where
o # 0. By decomposing

A= (I —22"AT —yy") + oxy” and b= (I —z2")b+ (zz")b,
we get

min [[b — Av[|* = min [|(/ — 22") (b — AU —yy")o)|I* + |2"b — oy v[".
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So we may conclude that the (minimal norm) solution v has a component o 'z7b in the
direction of y. This may also be seen from (4.9.1). With v = (I —yyT)v, we are left with
a deflated least squares problem

min ||(I — zz") (b — AD)]|.

vly

Hence, if a triple has been found, we restart with the best [ — 1 left vectors in ¢/ and
(I —zx")b as the new Y. (In this case, “the best” means the best vectors to find the next
singular triple.) For the new V, we take the best | — 1 right vectors in V, together with
(I —yy")v, where, as before, v = V(AV)*Ue, is the current best approximation to the
least squares problem. Of course, this procedure can be repeated when more singular
triples are found. See Section 4.10 for numerical experiments.

4.9.2 The truncated SVD

We may also use the standard and double-harmonic methods to give an approximation
to the truncated SVD of A. The solution to

min ||A — B||
rank(B)=k

is given by B = Ay = Z?Zl aja:ijT (unique if oy, is simple). Analogously, the solution
to

min ||AT — BY||
rank(B)=k

is given by B=A 4 := Z?:l o,jx,jyfj, where the sum is over nonzero singular values
of A (unique if o is simple).

In view of the discussed extraction processes, we expect that when U, and V, are
search spaces for the largest triples,

Py APy, = UUF AV, = U Hy V"

may be a reasonable approximation to Ax. Compare this with [71], where the authors use
the Lanczos bidiagonalization to approximate Ay by UkBk,kaT. Although the Lanczos
process has in principle short recurrences, (some) reorthogonalization of the vectors
appears to be necessary [71].

Now consider the situation that U}, and V) are search spaces for the smallest triples.
Then from (4.3.1), we know that H = GyH 'GT can be viewed as a projected ap-
proximation to A, which attempts to approximate the smallest portion of the singular
spectrum well. Hence, as a reasonable approximation to A_;, we may take

UHVTE = UGyH*GLVT.

See Section 4.10 for numerical experiments.
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4.10 Numerical experiments

The following experiments were carried out in MATLAB. For all experiments where the
random generator is used, we first put the “seed” to 0 so that our results are reproducible
(see Section 1.4.3).

Experiment 4.10.1 Up to rounding errors, it is not a loss of generality to consider
diagonal matrices (see Lemma 3.8.1). For the first example we take A = diag(1 : 100).
We build up four-dimensional search spaces U and V to find the minimal singular triple.
The first basis vector of the left search space U is u; = e; +eywy, where wy is a random
vector of unit length. We complement ¢/ by three random vectors. The right search
space V is formed in a similar way: take v; = e; +eywy, and add three random vectors.

We consider two cases. For the first we take ey = 1072 and ey = 10~!. This means
that the left search space is good, while the right search space is not very accurate. It
appears that

Z(U,e)~35-107 and Z(V,e;)~3.0-107},

these angles also give the best possible approximate vectors in ¢/ and V. For the second
case we take ey = ey = 1073, in other words: left and right search spaces of good quality.
In this case

/U,e)) ~35-107% and ~Z(V,e;) ~3.2-107%.

Table 4.3 gives the results of the 5 different extraction processes. We display the error in
the approximate vectors v and v, and the error in the approximate value p, the Rayleigh
quotient of v and v.

TABLE 4.3: The 5 different extraction processes for the minimal singular triple of A = diag(1 :
100). Column 2 to 4 are for ey = 1072 and ey = 10~!, while column 5 to 7 represent ey = ey = 1073

EUy = 1073, gy = 107! EUy = 1073, gy = 1073
method Z(u,e1) Z(v,e1) |omin —p| | L(u,e1)  Z(v,e1)  |Omin — pl
standard 1.9e—1 80e—1 28 —1 |40e—3 1le—2 25e—5
U-harmonic 3.5e—3 T76e—1 27e—1 |35e—3 1.0e—2 2.6e—5
V-harmonic 1.1e—2 31le—1 23e—2 |44e—-3 33¢—3 68e—5
double-harmonic | 3.6e—3 3.le—1 44e—2 |35e—3 33e¢—3 23e—7
refined 3.5e—3 3le—1 48—-2 |35e—3 33e—3 8le—-T7

Almost all errors of the new methods are smaller than those of the standard approach.
Moreover, the new approaches are almost optimal in most cases, by which we mean
that the extracted vectors are almost the best possible ones, given the search spaces.

In view of the factors /1 + }—j ~ 1.4 for both the Y- and V-harmonic approach (see

Theorem 4.3.2), and /1 + 2}—2 ~ 11 for the standard method (see Theorem 4.2.2), we

already could suspect that the harmonic approaches would be superior. We mention
that in the V-harmonic method, the approximate left vector & = UH 7d is indeed
much better that Av (cf. Lemma 4.3.1 and discussion). Similar remarks hold for the
U-harmonic method. @
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Experiment 4.10.2 For the other experiments, we use JDSVD, the Jacobi-Davidson
type method for the singular value problem introduced in Chapter 3. Unless mentioned
otherwise, we set the following parameters for JDSVD: the dimension of the search
spaces is at most 20, after which we restart with the best 10 vectors (remember that
the meaning of “the best” depends on the extraction method). We use the JDSVD
correction equation of the form

—(I, A I, —uu” 0 s|_ | Av—pu
AT I, 0 I, —wvol ||t | ATy —pv |-

Here u and v are the current approximate vectors, u and v are the test vectors (depending
on the extraction method; for example, in the V-harmonic approach we have u = Av,
v =), and we solve for orthogonal updates s L u and ¢ L v. On the right-hand side of
the correction equation, we take the Rayleigh quotient p(u,v) as approximate singular
value. In the beginning, the shift ¢ in the left-hand side of the correction equation is
taken to be the target 7. The reason for this is that the Rayleigh quotient p is not
likely to be accurate at that stage. So initially, the method behaves as an inexact
inverse iteration with target 7. When we are close to convergence, in the sense that
I7|| < 0.01, we take the shift ( equal to the Rayleigh quotient p. Then the methods
works as an inexact Rayleigh quotient iteration. We solve the correction equation (the
so-called “inner iteration”) approximately, by 10 steps of GMRES, preconditioned by the
projected identity (see Chapter 3; in practice, it is advisable to use a projected nontrivial
preconditioner if one is available). We continue with the method until ||r|| < le — 6.

We take the 1850 x 712 matrix wel11850 from the Matrix Market [53], with oy ~
1.6 - 1072, We perform 70 steps of JDSVD with double-harmonic extraction and target
7 = 0 to find the smallest singular triple. The starting vectors u; and v; are the vector of
all ones. For the (20-dimensional) search spaces after 70 steps of the method, it appears
that

=T
uyu
Im— 42 0

=T
vy
0 In Ty

/U,z)=4.9-10"* and Z(V,y)=3.8-107°.

With these search spaces, we test the different extraction processes, see the first four
columns of Table 4.4.

TABLE 4.4: The 5 different extraction processes for the minimal singular triple of well1850.
Column 2 to 4 are the extraction results for the 20-dimensional search spaces produced after 70 steps
of JDSVD. The last three columns give the number of outer steps needed for the computation of
the smallest singular triple, with 10, 20, and 30 steps of GMRES to solve the correction equations,
respectively.

method L(u, 61) Z(’U, 61) |Umin — p| GMRES:;y GMRES;y GMRES;3q
standard 16e+0 1.6e+0 1.0e—2 > 200 67 41
U-harmonic 1.0e—2 80e—3 8T7e—-7 155 72 41
V-harmonic 12e—2 6.7e—3 21e—7 171 67 41
double-harmonic | 1.2e—2 1.1e—2 13e—6 97 48 34
refined 1.0e—2 6.7e—3 89e—-7 97 51 36

We see that the standard approach fails completely, apparently due to the selection
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of the wrong triple (a situation similar to that in Example 4.7.1). The new extraction
methods perform reasonably well.

In the last three columns of Table 4.4, we give the number of outer iterations it takes
before JDSVD with the specific extraction method has detected the smallest singular
triple. For column 5, we use 10 steps of GMRES, for column 6 we perform 20 steps,
and for the last column 30 steps to solve the correction equations. It appears that
the less accurate we solve the correction equation (which is, of course, cheaper), the
more advantageous the new extraction methods are, especially the double-harmonic and
refined approach. @

Experiment 4.10.3 Next, for A = diag(l : 100), we perform 100 (outer) steps of
JDSVD with each of the extraction processes, and count how many singular triples we
find. See Table 4.5. For the second and third column we take target 7 = 0 (i.e., we
look for the smallest singular triples), for the fourth and fifth column 7 = 50.1 (interior
triples closest to 50.1), and for the last two columns 7 = 105 and 7 = oo (largest triples).

TABLE 4.5: The number of singular triples found within 100 outer iterations by the 5 different
extraction processes for A = diag(1 : 100). Columns 2 and 3 are for 7 = 0 (minimal singular triples),
respectively with no fix and fix = 0.01. Column 4 and 5 represent 7 = 50.1 (interior singular triples),
with 10 and 20 steps of GMRES, respectively, while for the last two columns 7 = 105 and 7 = o
(largest singular triples).

7=0 T =150.1 7T=105 | T=
method no fix fix | GMRES;g GMRES2q
standard 1 2 - 3 20 20
U-harmonic 1 4 - 3 17 20
V-harmonic 3 3 - 3 17 20
double-harmonic 3 7 1 4 20 -
refined 5 7 2 8 19 21

The “no fix” in the second column means that we take the shift ( in the left-hand
side of the correction equation equal to the Rayleigh quotient from the beginning. For
the results of column 3 through 6 we fix the target in the left-hand side of the correction
equation until ||r|| < 0.01. As can be seen from the second and third column, and as al-
ready has been suggested in Experiment 4.10.2, a “fix” gives better results than “no fix”.
Except for column 5, all correction equations are solved by 10 steps of unpreconditioned
GMRES.

We see that for small and interior triples the Y- and V-harmonic, and especially
the double-harmonic and refined methods are superior compared with the standard ap-
proach. For the largest triples all methods are fine, with the exception that the double-
harmonic needs a target 7 < oo. @

Experiment 4.10.4 In Figure 4.1 we compare the quality of extraction of the standard
(a) and double-harmonic (b) method during the search for the smallest singular triple
in Experiment 4.10.3. We plot Z(U,e;) (solid), Z(u,e;) (dashed), Z(V,e;) (dots), and
Z(v,e;) (dash-dot).
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FIGURE 4.1: The extraction results of the standard (a) and double-harmonic approach (b) for
the computation of the smallest singular triple of A = diag(1 : 100).

In the double-harmonic approach (b), in every step Z(u,e;) = Z(U,e;) and Z(v,e;) ~
Z(V,e1), so this extraction process is almost optimal. We might say that the extraction
is as good as the search spaces allow. In the standard extraction (a), the extraction is
often good, but sometimes bad. In the expansion step (solving the correction equation),
it is then unlikely to get a reasonable update, this can be regarded as the loss of one
outer iteration. But what is worse: if we restart in a situation of bad extraction with
few vectors, we may throw away the best part of the search space. @

Experiment 4.10.5 Next, we compare JDSVD with Jacobi-Davidson (JD) to compute
the smallest singular triples. We compare these methods with two different extraction
processes. For Figure 4.2(a), we use JD with harmonic Rayleigh-Ritz (see, for instance,
(82, p. 292]) to compute the eigenpairs of the augmented matrix (3.1.1) closest to target
7 = 0. Recall that finding an eigenpair of the augmented matrix gives full information
on a singular triple of A, and vice versa. For JDSVD, we take the double-harmonic
extraction method. All correction equations (JD and JDSVD) are solved approximately
by 5 steps of GMRES. As the initial vectors we take v; random and u; = Av;.

For Figure 4.2(b), JD uses refined Ritz vectors (see, for instance, [82, p. 289]), while
JDSVD uses the refined Ritz extraction of Section 4.4.

From Figure 4.2, it is clear that JDSVD easily beats JD with both extraction methods.
Part of an explanation of this fact could be that JD sees o, and —oni, as two different
eigenvalues of the augmented matrix. JDSVD avoids this “doubling”. @

Experiment 4.10.6 Now we illustrate the use the new extraction methods may have
in producing approximate solutions to least squares problems with a simple example.
Suppose we are interested in the problem

min ||b — Av],
where A = diag(1l : 100) and b is the vector of unit length with all entries equal. For

Figure 4.3, we run JDSVD with V-harmonic (a) and double-harmonic extraction (b)
with target 7 = 0 and starting vectors u; = v; = b.
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(a) (b)
FIGURE 4.2: JDSVD with double-harmonic approach versus JD with the harmonic Ritz approach

(a), and JDSVD with refined extraction versus JD with refined Ritz (b) for the computation of the
smallest singular triples of A = diag(1 : 100).
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FIGURE 4.3: The error and residual norm of the least squares solution produced by the V-

harmonic (a) and double-harmonic approach (b) during the computation of the three smallest singular
triples of A = diag(1 : 100).
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Depicted are the residual norm ||b — Av|| and the error ||[A~'b — v||. The numbers on
the horizontal axis (except the number 1) indicate that at that iteration step, a singular
triple is detected. We see that the errors decrease rapidly in the beginning; afterwards
the convergence is slower but for the residual norm still monotonic, as predicted in
Section 4.9.1. In particular, the true error seems to behave even more favorable than the
residual norm. @

Experiment 4.10.7 Finally, we illustrate the use of the extraction methods for the
approximation of truncated SVDs. We run JDSVD to compute the three largest (a),
respectively smallest (b) singular triples of A = diag(1 : 100). For (a) we use the standard
extraction, for (b) the double-harmonic extraction. The starting vectors u; and v, are
the vector of all ones, the target 7 is 0 for (a) and oo for (b).

P — truncated — truncated
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error
error

\
:
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10°° | 8 \
N \

10_ L L L L
3 17 22 27 3 23 47 67
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(a) (b)
FIGURE 4.4: JDSVD with standard (a) and double-harmonic (b) to approximate the truncated
SVDs A3 (a) and A_3 (b) of A = diag(1 : 100).

In Figure 4.4(a), we depict the error in the truncated SVD ||Py, APy, — As||, (here
Az = 2;0:098 j ejeJT, and in every step U3 and V5 represent the best three-dimensional part
of U and V), and the error in the “projected” truncated SVD ||UJ AV; — diag(98 : 100)]|.
For Figure 4.4(b), we give the error in the truncated SVD || Pay, A~ Pyry, — A_3|| (here
A3 = Z?Zl jeje; ) and the error in the “projected” truncated SVD ||Hz — diag(1 : 3)|
(b), where (cf. (4.3.1)) Hy = Gy H;'GY, with Hy = UL AVs, where U and Vi represent
the best three-dimensional part of & and V. The numbers (except the number 3) on the
horizontal axis in Figure 4.4 indicate the detection of a singular triple. For the “top”
truncated SVD (a), the convergence corresponds, not surprisingly, with the detection of

the singular triples. @

4.11 Conclusions

For the accurate approximation of the minimal singular triple, we may use two separate
subspaces. With respect to the subspace expansion, the Jacobi-Davidson SVD (inexact
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scaled RQI) is a competitor to Lanczos bidiagonalization when a (good) preconditioner
is available (see the previous chapter).

With respect to the subspace extraction, the standard approach (via H = UTAV)
is fine for large singular triples, while for small and interior triples, the harmonic or
refined approaches are recommended. For the extraction of the smallest singular triple in
Lanczos bidiagonalization we have seen that the standard, harmonic and refined approach
are essentially equivalent.

Based on the theory and supported by numerical experiments, we can do the following
recommendations:

e for the largest singular triples, we can choose any extraction method, except the
double-harmonic (although this method may also perform well if we have a target
T < 00); the standard extraction is preferable because it is the cheapest;

e for interior singular triples we opt for the double-harmonic or refined approach;

e for the smallest singular triples we suggest any method except the standard; the
double-harmonic and refined approach seem to be the most promising.

The V-harmonic and double-harmonic method can also serve to give an approximate
solution to a least squares problem; the standard and double-harmonic method can
approximate the truncated SVDs.



Chapter 5

A Jacobi—Davidson type method for
the right definite two-parameter
eigenvalue problem

Abstract. We present a new numerical iterative method for computing selected
eigenpairs of a right definite two-parameter eigenvalue problem. The method does
not need good initial approximations and is able to tackle large problems that are
too expensive for existing methods. The new method is similar to the Jacobi-
Davidson method for the eigenvalue problem. In each step, we first compute Ritz
pairs of a small projected right definite two-parameter eigenvalue problem and then
expand the search spaces using approximate solutions of appropriate correction
equations. We present two alternatives for the correction equations, introduce a
selection technique that makes it possible to compute more than one eigenpair,
and give some numerical results.

Key words: right definite two-parameter eigenvalue problem, subspace method,
Jacobi-Davidson, correction equation, Ritz pair, accelerated inexact Newton.

AMS subject classification: 65F15, 15A18, 15A69, 65F50.

5.1 Introduction

We are interested in computing one or more eigenpairs of a right definite two-parameter
eigenvalue problem

Az = ABix + pChx,

(5.1.1)
Ay = ABoy + uCoy,

where A;, B;, and C; are given real symmetric n; X n; matrices for s = 1,2 and A\, u € R,
z € R", y e R*™. A pair (A, u) is called an eigenvalue if it satisfies (5.1.1) for nonzero

*Based on joint work with Bor Plestenjak, see Section 1.5.
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vectors x,y. The tensor product x ® y is the corresponding eigenvector. The condition
for right definiteness is that the determinant

2Bz 2TCyz

5.1.2
y"Boy yTCoy (512)

is strictly positive for all nonzero vectors x € R", y € R". Right definiteness and
symmetry of the matrices A;, B;, and C; imply that there exist nin, linearly independent
eigenvectors for the problem (5.1.1) [4].

As mentioned in Section 1.1, multiparameter eigenvalue problems of this kind arise
in a variety of applications [3], particularly in mathematical physics when the method
of separation of variables is used to solve boundary value problems [100]. The result of
the separation is a two-parameter system of ordinary differential equations.

Two-parameter problems can be expressed as two coupled generalized eigenvalue
problems as follows. On the tensor product space S := R™ ® R" of the dimension
N := nyny, we define the matrices

Ay = B ®C;— (1 ® By,
Al = A1 ® CQ - Cl ® AQ, (513)
Ag == B1®A2—A1®Bz

(For details on the tensor product and the relation to the multiparameter eigenvalue
problem, see, for example, [4].) Since the tensor product of symmetric matrices is sym-
metric, A; is symmetric for + = 0,1, 2. By noting that

2I'Bix 2TCyz
2@y Ay(zQy) = ,
( y)" Ao y) yIBoy yTCyy
it can be seen that right definiteness of (5.1.1) is equivalent to the condition that Ay is
positive definite, see [4, Theorem 7.8.2]. It is also shown in [4] that Ay'A; and A 1A,
commute and that the problem (5.1.1) is equivalent to the associated problem

Alz = )\A()Z,

(5.1.4)
Doz = ploz
for decomposable tensors z € S, z = x®y. The eigenvectors of (5.1.1) are Ag-orthogonal,
i.e. if 21 ®y; and z2 ®y, are eigenvectors of (5.1.1) corresponding to different eigenvalues,
then
.T?Blfﬂz l‘{cll'g

=0. 5.1.5
leBz?J2 leC2y2 ( )

(21 ® y1) " Ag(z2 @ o) =
Decomposable tensors x; ® y; for i = 1,..., N form a complete basis for S.

There exist numerical methods for right definite two-parameter eigenvalue problems.
First of all, the associated problem (5.1.4) can be transformed in such a way that it
can be solved by numerical methods for simultaneous diagonalization of commutative
symmetric matrices [79, 42, 14]. This is only feasible for problems of low dimension as
the size of the matrices of the associated problem is N x N. Among other methods, we
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mention those based on Newton’s method [11], the gradient method [9, 10, 13], and the
minimal residual quotient iteration [8]. A deficiency of these methods is that they require
initial approximations close enough to the solution in order to avoid misconvergence.

The continuation method [70, 64] overcomes problems with initial approximations
but, since the ordering of the eigenvalues is not necessarily preserved in a continuation
step, we have to compute all eigenvalues even if we are interested only in a small portion.
In this chapter, we introduce a new numerical method which is similar to the Jacobi—
Davidson method for the one-parameter eigenvalue problem [75]. The method can be
used to compute selected eigenpairs and does not need good initial approximations.

Our method computes the exterior eigenvalue (A, ) of (5.1.1) which has the maximum
value of Acosa + psina for a given . We also present a version that computes the
interior eigenpair closest to a given pair (\g, o), i.e., the one with minimum (A — \g)? +
(1 — po)?.

The outline of this chapter is as follows. We generalize the Rayleigh-Ritz approach to
right definite two-parameter eigenvalue problems in Section 5.2. In Section 5.3 we present
a Jacobi-Davidson type method for right definite two-parameter eigenvalue problems
and introduce two alternatives for the correction equations. We discuss how the method
can be used for exterior and interior eigenvalues in Section 5.4. In Section 5.5, we
present a selection technique that allows us to compute more than one eigenpair. The
time complexity is given in Section 5.6 and the methods are extended to more than
two parameters in Section 5.7. Some numerical examples are presented in Section 5.8.
Conclusions are summarized in Section 5.9.

5.2 Subspace methods and Ritz pairs

The Jacobi-Davidson method [75] is one of the subspace methods that may be used for
the numerical solution of one-parameter eigenvalue problems. We will apply a Jacobi-
Davidson type method to (5.1.1). Recall from Section 1.3 that extraction and expansion
are two main themes in a subspace method. In this section we discuss the extraction, in
the next section the algorithm and the expansion.

For the standard eigenvalue problem, the Rayleigh-Ritz approach defines approxima-
tions to the eigenpairs that can be extracted from the given subspace (see for instance
[61]). We generalize the Rayleigh-Ritz approach for the two-parameter eigenvalue prob-
lem as follows. Suppose that the k-dimensional search subspaces U of R" and V), of
R™ are represented by matrices U, € R™** and V}, € R*** with orthonormal columns,
respectively. The Ritz—Galerkin conditions on the residuals

r = (A1 - O'B1 - TC’l)u L L{k,

(5.2.1)
To i= (A2 — O'BQ — TCQ)U 1 Vk,

where u € U \{0} and v € V,\{0}, lead to the smaller projected right definite two-
parameter problem
UgAlUkC = O'U]ZBlUkC + ’TU]ZClUkC,

9.2.2
V;CTAQV;Cd = OVkTBZWd+TVkT02%d, ( )
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where u = Upc # 0, v =V3d #0, ¢,d € R¥, and 0,7 € R.

We say that an eigenvalue (o,7) of (5.2.2) is a Ritz value for the two-parameter
eigenvalue problem (5.1.1) and subspaces U, and V. If (o, 7) is an eigenvalue of (5.2.2)
and c®d is the corresponding eigenvector, then u®wv is a Ritz vector, where u = Uyc and
v = Vid. Altogether, we obtain k? Ritz pairs that are approximations to the eigenpairs
of (5.1.1). It is easy to check that, if u ® v is a Ritz vector corresponding to the Ritz
value (o, 7), then o and 7 are equal to the tensor Rayleigh quotients [64]

(@ v)TA(u®@v) (W Aju) (v Co) — (uFCru)(vT Agw)
(u®v)TAg(u®v)  (uT Byu)(vTCyv) — (uTCyu)(vT Byv)’
(u@v)"Ay(u®@v)  (u"Byu)(v" Aw) — (u" Ayu)(v" Byv)
(u@v)TA¢(u®v)  (ulBiu)(vTCyv) — (uTCru)(vT Byv)’
In order to obtain Ritz values, we have to solve small right definite two-parameter
eigenvalue problems. For this purpose, one of the available numerical methods that
computes all eigenpairs of a small right definite two-parameter eigenvalue problem can

be used. For instance, the associated problem (5.1.4) can be solved using methods for
simultaneous diagonalization of two commutative symmetric matrices [79, 42, 14].

(5.2.3)

T =

5.3 A Jacobi—Davidson type method

The Jacobi-Davidson method [75] is a subspace method where approximate solutions of
certain correction equations are used to expand the search space. Jacobi-Davidson type
methods restrict the search for a new direction to the subspace that is orthogonal or
oblique to the last chosen Ritz vector.

In this chapter, we show that a Jacobi-Davidson type method can be applied to the
right definite two-parameter problem as well. A brief sketch of the method is presented
in Algorithm 5.3.1. In Step 4, we have to decide which Ritz pair to select. We give
details of this step in Section 5.4 where we discuss how to deal with exterior and interior
eigenvalues. In Step 8, we have to find new search directions to expand the search
subspaces. We will discuss two possible correction equations for Step 8 later in this
section.

To apply this algorithm we need to specify a tolerance £, a maximum number of steps
kmax, @ maximum dimension of the search subspaces l,.¢, and a number [ ;, < lphay that
specifies the dimension of the search subspaces after a restart.

A larger search space involves a larger projected problem (5.2.2). The existing meth-
ods are able to solve only low-dimensional two-parameter problems in a reasonable time.
Therefore, we expand the search spaces up to the preselected dimension /,,, and then
restart the algorithm. For a restart, we take the most promising l,,;, eigenvector approx-
imations as a basis for the initial search space.

Suppose that we have computed new directions s and ¢ for the search spaces Uy
and Vj.1, respectively. We expand the search spaces simply by adding new columns to
the matrices U, and V). For reasons of efficiency and stability we want orthonormal
columns, and, therefore, we orthonormalize s against Uy and t against V}, by a stable
form of the Gram—Schmidt orthonormalization.
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Input: initial vectors u; and v; with unit norm and a tolerance &
Output: an approximate eigenpair satisfying (||r1||? + ||r2||*)*/? < e

1. S:ulat:UI;UOZ[])%:[]
for k=1,..., knax
2. Expand the search subspaces.

Uk = MGS (Uk_l,s),
Vi = MGS (Vi—1,1)
3. Solve the projected right definite two-parameter eigenvalue problem
UgAlUkC = UUI;TBlUkC + TUchlUkC,
ViF Ao Vid = oV, BoVid + 7V,I CoVid.

4. Select an appropriate Ritz value (o, 7) and the corresponding Ritz vector u ® v,
where u = Uyc, v = Vjd.
5. Compute the residuals

r = (A1 - O'Bl —TCl)U,
re = (Ay — 0By — 7C5)v.

6. Stop if px = (||r1l]> + [Ir2]*)'/> <&
7. Restart. If the dimension of Uy and V}, exceeds lmax

then replace Uy, Vi with new orthonormal bases of dimension ln-
8. Compute new search directions s and ¢.

ALGORITHM 5.3.1: A Jacobi-Davidson type method for the right definite two-parameter eigen-
value problem

The next theorem expresses that, if the residuals (5.2.1) are small, then the Ritz value
(0,7) is a good approximation to an eigenvalue of (5.1.1). This justifies the criterion in
Step 6.

Theorem 5.3.1 If (o,7) is a Ritz value and ry,ro are the residuals (5.2.1), then there
exists an eigenvalue (A, 1) of the right definite two-parameter problem (5.1.1) such that

IN

A=al < JACUCHIrAl + ICa ),
=71 < 1A UB 2]l + [ B2l 1])-

N

Proof: To prove the theorem, we consider the associated problem (5.1.4). First, we
derive a relation between the residuals (5.2.1) and the residuals of the associated problem.
We denote

= A(u®v)—oA(u®v),

P = A(u®v) — 17A(uQv), (5.3.1)

where u,v are the normalized Ritz vectors from Step 4. From (5.1.3) and (5.2.1), it
follows that

P11 = —01U®T2+7‘1®02’U,
b2 = Biu®ry —ri ® Byv
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and we have the bounds

G2l + [1Call ],
[Ballllr2ll + 1 B2lllll-

11|

(5.3.2)
[P

<
<

Now we return to the residuals (5.3.1). As Ag is a symmetric positive definite matrix,
we can transform (5.3.1) into

A61/2p1 = Giw —ow, (5.3.3)
Aalﬂpg = Gow — Tw, e

where w = A(l)/z(u ®v) and G; = Aal/zAzAal/Z for 4 = 1,2. The matrices G; and Gy
are symmetric and an application of Bauer—Fike for the first equation of (5.3.3) gives

. —-1/2 —1/2 —
Jnin A —of < |4 Ppall/llwll < 11251 lpsll = A5 Il
€A(Gh)

Similarly, we get min,ea(g,) [t — 7| < [|Ag"||||p2||- When we insert (5.3.2) into these two
inequalities, we have proved the theorem. O

In the next theorem, we show that, if the Ritz vector u ® v is close to an eigenvector
z®y of problem (5.1.1), then the residuals 7y and 75 from (5.2.1) are of order O(||u—z||)
and O(||lv — y||), respectively. This shows that the criterion in Step 6 will be fulfilled if
the Ritz vector u ® v approximates an eigenvector of (5.1.1) well enough.

Theorem 5.3.2 Let (0,7) be a Ritz value of (5.1.1) with corresponding Ritz vector
uQ®uv, where u and v are normalized. If (u+ s) @ (v+1) is an eigenvector of (5.1.1) with
corresponding eigenvalue (A, i), then we can bound the error of (o,7) as

VA =0)2+ (p=1)2= O(lls|I” + II1]*) (5.3.4)
and the norm of the residuals r1,re from (5.2.1) as

Irall < 1AL = ABy — uCillllsll + O(llslI* + 11£]1%),

= (5.3.5)
Irall - < (|2 = ABy — uCol[lIt]l + O(ls]I* + [1¢l]*).
Proof: We write the residuals (5.2.1) as
rp = —(A; = AB;, — pCh)s+ (A= o0)Biu+ (p— 7)Chu, (5.3.6)
To = —(AQ — )\BQ — /,LCQ)t + ()\ - O')BQ’U + (,LL - ’T)CQ’U. e

When we multiply equations (5.3.6) by ul and v?, respectively, and take into account
that uTr; = vTry = 0, then we obtain

uI'Biu uTCu :| [ A—o } _ [ sT(A; — AB; — uCy)s

uT' By vTCyv w—r uT(Ay — ABy — pCo)t |- (5.3.7)
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The system (5.3.7) is nonsingular because of right definiteness. From (5.3.7), it follows
that

A—o B uI'Biu uTCiu ! sT(Ay — AB; — uCh)s _ 9 9
H[ p—T H‘ N H { vI'Byy  vTChu tT(Ay — ABy — uCa)t ||| — O(llsl® + 11t1%),

and we get (5.3.4). The bound (5.3.5) is now a result of (5.3.6) and (5.3.4). O

In the following two subsections, the expansion for our Jacobi-Davidson method is
discussed. We present two alternatives for the correction equations for the right definite
two-parameter eigenvalue problem. Let (o,7) be a Ritz value that approximates the
eigenvalue (A, i) of (5.1.1), and let u®v be its corresponding Ritz vector. Let us assume
that u and v are normalized.

5.3.1 Correction equations with orthogonal projections

The first alternative for the correction equations is a generalization of the approach
used in [75] for the one-parameter eigenvalue problem. We are searching for orthogonal
improvements of the vectors u and v of the form

Ai(u+s) = ABi(u—+s)+ uCi(u+ s), (5.3.8)
Ay(v+1t) = ABa(v+1t)+ puCsy(v +1t), (5.3.9)

where s | w and ¢ L v. Using the residuals of the Ritz vector u ® v and Ritz value (o, 7)
(5.2.1), we can rewrite (5.3.8) and (5.3.9) as

(Ay —oB, —71Cy)s = —-r+(A—o0)Biu+ (p—7)Cu (5.3.10)
+(A—0)Bys+ (p—7)Chs,

(A — 0By —1Cy)t = —ro+(A—0)Byv+ (p— 7)Cov (5.3.11)
+ (A= 0)Bat + (p— 7)Cat

In this subsection, we treat the equations (5.3.10) and (5.3.12) separately. From The-
orem 5.3.2, it follows that ||[(A — o) Byu+ (u—7)Ciul| = O(||s||* + ||£]]?). Asymptotically
(i.e., when u ® v is close to an eigenvector of (5.1.1)), s and ¢ are first order corrections
and (A—o)Byu+ (u—7)Chu represents some second order correction. In the same sense,
the term (A — 0)B;s + (u — 7)Cys can be interpreted as a third order correction.

If we ignore second and higher order terms in (5.3.10), then we obtain the equation

(A1 - 0'B1 — 7'01)8 = —TI. (5312)

Because 71 and s are orthogonal to u, we can multiply (5.3.12) with the orthogonal
projection I — vu® and write (I — uu?)s instead of s. Thus we obtain the correction
equation for the vector u

(I —uu™)(A; — 0By — 7C)(I — uu')s = —ry. (5.3.13)
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In a similar way, we obtain from (5.3.12) the correction equation for the vector v
(I —vvT)(Ay — 0By — 7Co) (I — vl )t = —rs. (5.3.14)

From (5.3.13) and (5.3.14), it is clear that the orthogonal projections preserve the
symmetry of the matrices. Another advantage of orthogonal projections is that they are
stable and easy to implement. The systems (5.3.13) and (5.3.14) for s and ¢ are not
of full rank but they are consistent. We solve them only approximately with a Krylov
subspace method with initial guess 0, for instance, by a few steps of MINRES. If we do
just one step of MINRES, then s and ¢ are scalar multiples of r; and 79, respectively,
and then, in the sense that we expand the search spaces by the residuals, we have an
Arnoldi type method, similar to the situation for the standard eigenproblem [75].

5.3.2 Correction equation with oblique projections

As in the correction equations with orthogonal projections we start with the equations
(5.3.10) and (5.3.12). We neglect the third order correction terms (A — 0)Bys + (u —
7)C1s and (A — 0)Bat + (u — 7)Cat, but rather than neglecting the second order terms
(A—o0)Biu+ (p — 7)Cru and (A — 0)Byv + (u — 7)Cav, we project them to 0 using an
oblique projection.

If we define

0 AQ—O'BQ—TCQ

r1
r= ,
T2

then we can reformulate (5.3.10) and (5.3.12) (without the neglected third order correc-
tion terms) as

D:|:A1—O'Bl—7'01 0 :|

and

D[i]:—T—i-()\—a)[g;j]+(,u—7')[g;j}.

Let V € R(Mm+72)%2 he a matrix with columns (for reasons of stability, preferably or-

thonormal) such that
_ Blu C'lu
span(V) = span <[ By } , [ Cyo }) ,

and let W € R(n1+n2)x2 [
u 0
W = [ 0 :| .

(5.3.15)

With the oblique projection

P=1-vWw'v)"'w"
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onto span(V)* along span(W), it follows that

_ By | Ciu | _
Pr=r and P [ By } =P [ Oy ] = 0. (5.3.16)

Therefore, from multiplying (5.3.15) by P we obtain

po:_r.

Furthermore, since s | v and ¢ 1 v it follows that

o[1]-[1]

and the result is the correction equation
PDP [ i } =—r (5.3.18)

for s L wandt L v.

The correction equation (5.3.18) is again not of full rank but consistent, and it is often
sufficient to solve it only approximately (e.g., by a few steps of GMRES). As before, if
we do one step of GMRES, then s and ¢ are scalar multiples of r; and ry, respectively.

The Jacobi-Davidson method for the one-parameter problem can be viewed as an
accelerated inexact Newton scheme [76]. In a similar manner, we now show that there
is a connection between the Jacobi-Davidson correction equation (5.3.18) and Newton’s
method for the right definite two-parameter eigenvalue problem in [64].

Eigenpairs of the two-parameter problem (5.1.1) are solutions of the equation

Alac — )\Bl.’L' — ,U,ClCU
Ay — ABay — nCoy

G(z,y, A\, p) = (27— 1)/2 = 0. (5.3.19)
(y"y—1)/2
If we apply Newton’s method to (5.3.19) and use u, v, o, 7 with ||u|| = ||v|| = 1 as an initial

approximation, then, in order to obtain the improved approximation u + s,v +t, A, u we
have to solve the system

A1 - O'B1 - TCl 0 —Blu —C’lu S —T1
0 A2 - 0-B2 — 7'02 _B2U —CQU 14 _ —T9
u® 0 0 0 A—o | | O
0 vl 0 0 U= 0

(5.3.20)

Lemma 5.3.3 The Jacobi-Davidson correction equation (5.3.18), where s L u and
t L v, is equivalent to Newton’s equation (5.8.20). That is, if (s,t) is a solution of
(5.3.18), then there exist unique X\, u such that (s,t,\—o, p—7) is a solution of (5.3.20),
and, if (s,t, A — o, — T) is a solution of (5.3.20), then (s,t) is a solution of (5.3.18).
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Proof: We can rewrite the equation (5.3.20) as

o[i]-raen[3]--n 8]

and s L u, t 1 v, which is exactly the equation (5.3.15) that appears in the derivation
of the Jacobi-Davidson correction equation (5.3.18). The proof now follows from the
relations (5.3.16) and (5.3.17), and the fact that ker(P) = span(V). O

This shows that the Jacobi-Davidson type method with the correction equation
(5.3.18) is a Newton scheme, accelerated by the projection of (5.1.1) onto the subspace of
all previous approximations. Therefore, we expect locally at least quadratic convergence
of the Jacobi-Davidson method when the correction equations are solved exactly.

5.4 Selection of Ritz values

In this section we present different options for the selection of Ritz values in Step 4 of
Algorithm 5.3.1.

5.4.1 Exterior eigenvalues

First, we discuss how to obtain the eigenvalue (A, ) of (5.1.1) with the maximum value
of \. We denote such an eigenvalue by (Amax, fmax). We show that, if we select the Ritz
value (o, 7) with the maximum value of ¢ in each Step 4 of Algorithm 5.3.1, then the
Ritz pairs will converge monotonically to an eigenpair of (5.1.1).

Lemma 5.4.1 Let (0,7) be the Ritz value for problem (5.1.1) and subspaces U,V with
the mazimum value of o. Then

D)
— 5.4.1
= erz?,%xe v (u®v)TAy(u® v) ( )
u,v # 0

Proof: Let the columns of U and V' be orthonormal bases for &/ and V), respectively.
It follows from (5.1.1), (5.1.4), and (5.2.2) that, if (o,7) is a Ritz value, then ¢ is an
eigenvalue of a symmetric definite pencil

UV)'AURV)-a(URV) A(UV). (5.4.2)
From the minimax theorem (cf. [31, p. 394]) it follows that
wl Aqw
g = max —_—

weuey wlAgw
w#0
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Since pencil (5.4.2) is related to the two-parameter problem (5.2.2), we can restrict w to
a decomposable tensor w = u ® v, where u € U and v € V. From this, (5.4.1) follows. O

If we select the Ritz value (o, 7) in Step 4 of Algorithm 5.3.1 with the maximum
o, then it follows from Lemma 5.4.1 that

Ok S Ok+1 S )\max-

We cannot, guarantee that the eigenvalue (A, ) of (5.1.1) to which (o, 7%) converges is
equal t0 (Amax, 4max), but convergence to a local optimum also may happen in the Jacobi-
Davidson method for the symmetric eigenproblem and in all projection methods. Our
numerical examples indicate that we usually do obtain the eigenvalue with the largest
value of .

We can use the algorithm to obtain the eigenvalue (A, i) of (5.1.1) with the maximum
value of Acosa + psina for a given parameter « if we apply the orthogonal linear
substitution

A = Ncosa—py'sina
]

= XNsina+ y cosa

to the problem (5.1.1). The associated two-parameter eigenproblem with this substitu-
tion is now

Az = N(cosaBj + sinaCy)zx + p'(— sin aB; + cos aCy)z,

5.4.3
Ayy = MN(cosaBy + sinaCy)y + p'(— sin aBy + cos aCl)y. ( )

The operator determinant A remains unchanged, and the substituted problem (5.4.3) is
right definite as well. Using orthogonal linear substitutions we can thus obtain exterior
eigenvalues of (5.1.1) in chosen directions in the (A, z)-plane.

Step 4 of Algorithm 5.3.1 can be modified in an obvious manner if we are interested
in the eigenvalue (), u) of (5.1.1) with the maximum value of \? + 2.

5.4.2 Interior eigenvalues

Suppose that we are interested in the eigenvalue (A, ) of (5.1.1) closest to a specific
target (Ao, i0). Let us denote such an eigenvalue as (Aint, fint)-

Similar to the algorithm for exterior eigenvalues, we decide to select the Ritz value
nearest to the target in each Step 4 of Algorithm 5.3.1. The convergence for interior Ritz
values is not as favorable as for the exterior ones. If a Ritz value (o, 7) is close enough
t0 (Amax, Mmax), then the Ritz vector corresponding to (o, 7) is a good approximation
to the eigenvector corresponding to (Amax, hmax)- On the contrary, if (o,7) is close to
(Aint, ping) then the Ritz vector corresponding to (o, 7) may be a poor approximation to
the eigenvector corresponding to (Aing, fint), just as in the real symmetric eigenproblem.

Numerical examples in Section 5.8 show that, although the convergence is very ir-
regular, the method can still be used to compute the eigenvalue closest to the target. It
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turns out that for interior eigenvalues, good search directions are needed, which may be
obtained by solving the correction equation more accurately. The number of GMRES
steps is of large influence. The more steps of GMRES we take, the better updates for
the approximate eigenvectors will be added to the search spaces. If we take too many
steps, then the method often converges to an eigenvalue (A, ) # (Ming, fing)- On the
other hand, if we take too few GMRES steps, then we need many outer iterations or we
have no convergence at all. Two alternative approaches are considered in the next two
subsections.

5.4.3 Harmonic Rayleigh—Ritz

If we are interested in interior eigenvalues of the standard or generalized eigenproblem
then one of the possible tools is harmonic Rayleigh—Ritz. This extraction method can be
derived from certain Galerkin conditions on the matrix (A—7I)~!, see, for instance, [75].
The shift-and-invert transformation ¢ — (¢ —7)~", a M6bius transform on the projective
line P*(R) or P*(C), maps oo to 0 and 7 to oo.

In a two-parameter problem, the (A, p)-plane is embedded in the projective plane
P?(R) (the equivalence classes (), i, v) where, for o # 0, (\, , v) ~ (@A, ap, av)) by the
identification

(A ) € (A, 1)

As our method works best for exterior eigenvalues (“the ones closest to the line on 00”),
for interior eigenvalues we can try to map the line on oo, i.e., the line v = 0, to any
other line in the (A, u)-plane. For instance, when we are interested in the eigenvalues
with minimal |p|, then to map the line on co onto the line y = 0. In our homogeneous
projective two-parameter problem

vAix = ABix+ uCiz,
vAyy = AByy+ pCoy,

this map is achieved by interchanging the roles of ;1 and v. The resulting non-projective
two-parameter problem is

Ciz = —XBlaH—ﬁAlx,

~ ~ (5.4.4)
Coy = —AByy+ nAsy,

where X corresponds to Au~! and Ji corresponds to p~!. A problem with this approach
is that (5.4.4) is in general not right-definite. We may try to tackle this problem with
the method for more general multiparameter problems, developed in Chapter 6.

5.4.4 Refined Ritz vectors

Another possible extraction process for interior eigenvalues generalizes refined Ritz vec-
tors. As usual, we perform the Rayleigh-Ritz process to get a Ritz pair ((o,7),u ® v).
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But then we discard the Ritz vector, and instead take the refined Ritz vector U®U, where
u = Uc and ¥ = Vd are such that

¢ = argmin|[(A; —oBy — 7Cy)Uc¢|,

. (5.4.5)
d = argmin||(Ay — 0By — 7Cy)Vd||.
d

Taking this vector ensures that the norms of the residuals (quantities related to the
backward error, see Chapter 7) are minimized over the search spaces. Therefore, the
refined Ritz vector may be better than the (ordinary) Ritz vector.

When interested in the target (Ao, ), one can also replace the Ritz value (o,7) in
(5.4.5) by the target. When the Ritz value is not very accurate (as will often be the
case in the beginning of the search process), then the target is probably a better point
to focus on.

5.5 Computing more eigenpairs

Suppose that we are interested in p > 1 eigenpairs of (5.1.1). In a one-parameter
problem, various deflation techniques can be applied in order to compute more than one
eigenpair. In this section, we first show difficulties that are met when we try to translate
standard deflation ideas from one-parameter problems to two-parameter problems. We
then propose a selection method for Ritz vectors that makes it possible to obtain more
than one eigenpair for two-parameter problems.

If (&, 2) is an eigenpair of a symmetric matrix A, then all other eigenpairs can be
computed from the projection of A onto the subspace z. Similarly, if (A, u) is an
eigenvalue of (5.1.1) and 2®y is the corresponding eigenvector, then all other eigenvectors
lie in the subspace

(z@y) 2o :={z€85:2"Ay(z®@y) =0}

of dimension niny — 1. By comparing the dimensions, it is clear that the subspace
(r ® y)' 2 cannot be written as U ® V, where Y C R™ and ¥V C R™. Therefore, this
kind of deflation cannot be applied to Algorithm 5.3.1.

Another way of deflation of a symmetric matrix A is to shift the eigenvalue to an
unwanted part of the spectrum using the matrix A’ = A — (¢ —N{f)zzT. Matrix A’ has the
same eigenvalues as A except for &, which is transformed into £&. A generalization of this
approach would be to transform the two-parameter problem (5.1.1) into a two-parameter
problem with the same eigenvalues as of (5.1.1) except for the eigenvalue (A, 1) which,
should be transformed into (X, i). Since in a two-parameter problem, there can exist
eigenvalues (A, ) and (N, ') with eigenvectors x ® y and z' ® y', respectively, such
that (A, pu) # (N, ') and z = z', this approach would again work only if we apply the
associated problem (5.1.4) in the tensor product space S. However, then we have to
work with large A; matrices, and this is too expensive.

We propose the following approach. Suppose that we have already found p eigenvalues
(A, i) and eigenvectors z; ® y;, @ = 1,...,p. Based on the fact that eigenvectors are
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Ag-orthogonal (see (5.1.5)), we adjust Algorithm 5.3.1 so that, in Step 4, we consider
only those Ritz vectors v ® v which satisfy

(u@v)TAg(2; @uyi)| <mfori=1,....p (5.5.1)

for an n > 0. Suppose that we are interested in eigenvalues with the maximum values
of A. Then, in Step 4, we first order Ritz pairs (0, 7;), u; ® v; by their o values so that
o; > oj for i < j, and then we select the Ritz pair that satisfies (5.5.1) and has the
minimal index. In the case of interior eigenvalues, a different ordering is used.

If none of the Ritz pairs meet (5.5.1), then we take the Ritz pair with index 1, but,
in this case, the algorithm is not allowed to stop. This is achieved by a change of the
stopping criterion in Step 6, where, in addition to a small residual norm

p = (Irall? + [lr= 1), (5.5.2)

we now also require that the Ritz vector u ® v satisfies (5.5.1). This guarantees that the
method does not converge to the already computed eigenpairs.

The bound 7 should not be taken too small to avoid the situation that none of the
Ritz vectors are sufficiently Ag-orthogonal to the set of already computed eigenvectors.
In numerical experiments in Section 5.8, we use

1 .
n=- nllln ‘(ﬂfz ® y,-)TAo(:Ui X yz)‘:

and that value successfully prevents the method from converging to the already computed
eigenpairs.

All other steps of Algorithm 5.3.1 remain unchanged. Numerical results in Section 5.8
show that this approach enables us to compute more than one eigenpair.

5.6 Time complexity

We examine the time complexity of one outer iteration step of Algorithm 5.3.1. Let
n = ny = ng, let k be the dimension of the search spaces, and let m be the number of
GMRES (MINRES) steps for a correction equation. The two steps that largely determine
the time complexity are Step 3 and Step 8. In Step 3 we first construct the smaller
projected problem (5.2.2). We need to compute only the last row (and column) of the
matrices in (5.2.2). In the second part of Step 3, we solve (5.2.2) by solving its associated
problem with matrices of size k%, and thus we need O(k®) [14].

First we assume that A;, B;, and C; are sparse. This is true in many applications,
for instance when two-parameter Sturm-Liouville problems [21] are discretized. Because
MINRES and GMRES are methods intended for sparse matrices, the Jacobi-Davidson
type method can in principle handle very large sparse problems. For such problems, the
time complexities of Step 3 and Step 8 can be expressed as 6 MV + O(k®) and 6m MV,
respectively, where MV stands for a matrix-vector multiplication with an n x n matrix.

The analysis for dense matrices A4;, B;, and C; is as follows. In Step 3, we need O(n?)
for the construction of the smaller problem (5.2.2) and additional O(k®) for the solution
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of (5.2.2). As, in practice, only very small values of k are used, we can assume that k =
O(n'/?) and thus the time complexity of Step 3 is O(n?). If we use correction equations
(5.3.13), (5.3.14) with orthogonal projections and perform m steps of MINRES, then the
time complexity of Step 8 is O(mn?) when we perform m matrix-vector multiplications.
We obtain the same time complexity for Step 8 when we use the correction equation
(5.3.18) with oblique projections and do m steps of GMRES. The only difference is that
we are working with one matrix of size 2n, while we are working with two matrices of
size n if we use orthogonal projections.

Based on the above assumptions, the time complexity of one outer step of Algo-
rithm 5.3.1 for dense matrices is O(mn?). Also important is the storage requirement. If
an algorithm works with matrices A;, B;, and C; as Algorithm 5.3.1 does, then it requires
O(n?) memory. The methods that work with the associated system (5.1.4) need O(n*)
memory, which may exceed memory rapidly, even for modest values of n.

5.7 Generalization to multiparameter problems

The methods in this chapter can be generalized to p-parameter problems, where p > 2.
We give a sketch of the method in this case. Consider the p-parameter eigenvalue problem

p
(V;O—ZAjwj) 7 =0,  i=1....p
j=1

(see Chapter 7 for more details on p-parameter problems). With u® = Uic;, the Ritz—

i
Galerkin conditions
D

V; —20§k)1/;]> UkCiJ_Uk, 7;:1,...,])

j=1
lead to a subspace extraction defined by the projected right definite p-parameter problem

p
U]? (V;O_Zegk)‘/m> UkCiZO, ’i=1,...,p.
j=1
For the subspace expansion, we first define the residuals
T
Ty = (V;O—ZQ‘E )V;J>’U,Z, 7,:1,,])
j=1
We would like to update the current approximation u; ® - - ® u, by s1,..., s, such that
p
(Vio - Z )‘jVij) (ui + i) =0, si L ;.
7j=1

We rewrite these equations as

p p p
k k
(Vi -0 %) si=—ri+ Y (A — O Wiy + 30y — 0)Vis;.  (5.7.1)
j=1

Jj=1 Jj=1
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Then, by the following generalization of Theorem 5.3.2, the middle p terms on the right-
hand side are of second order, and the last p terms on the right-hand side are of third
order. For convenience, we omit the index k.

Theorem 5.7.1 (cf. Theorem 5.3.2) Suppose that x; = u;+s;, fori=1,...,p. Then
foralli=1,...,p we have

p
[Ai — 0 =0 (Z ||Sz'||2) :
=1

Proof: From r; L u;, it follows from left multiplying (5.7.1) by u] that
U’{'Vnul s U’{le’u,l 01 — /\1 S?(Vvl() — Z?:l )\j‘/lj)sl

U;:npvplul T u;‘prpup Op — Ap 35(%0 - Z?:l AiVi)Sp

The result now follows by taking norms, and noting that the matrix in the previous
equation is invertible because of right definiteness. O

Along the same lines as in Section 5.3.1, neglecting the second and third order
terms in (5.7.1) gives p correction equations with one-dimensional orthogonal projec-
tions (cf. (5.3.13) and (5.3.14))

p
j=1

Inclusion of the second order terms in (5.7.1) leads to a generalization of Section 5.3.2;
we get one correction equation with a p-dimensional oblique projector

PDPs = —r.
Here s = [s{ ... sy [",r=[r] ... ry ], and Disa (3_%_, n;) x (37_; n;) block diago-
nal matrix with (Vio — 327_, 0{V;;) as its blocks. Furthermore, P = IV (WTV) W7,
where W' is the (}_7_; n;) x p matrix
ug 0 -+ 0
W = 0 U9 :
: o0
0 0 - u

and V is an orthonormal matrix with columns spanning the column space of

Viiur - -+ V1pU1

Vprur -+ Viptp

Thus, the method can be extended to right definite multiparameter problems with more
than two parameters.
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5.8 Numerical experiments

We present some numerical examples obtained with MATLAB 5.3. If the dimension of the
matrices is n = n; = ny = 100, then none of the existing methods that work in the tensor
product space are able to compute all eigenpairs in a reasonable time [64]. Therefore, we
construct right definite two-parameter examples where the exact eigenpairs are known,
which enables us to check the obtained results.

We construct our right definite two-parameter examples in the following way. We
take matrices

Ai=QiFQ, Bi=QGQ, C;=Q;HQ,

where F;, G;, and H; are diagonal matrices and (); is a random orthogonal matrix for
1 = 1,2. We select diagonal elements of matrices Fi, Fy,G9, and H; as uniformly dis-
tributed random numbers from the interval (0, 1) and diagonal elements of G; and H, as
uniformly distributed random numbers from the interval (1,2). The determinant (5.1.2)
is clearly strictly positive for nonzero x,y, and the obtained two-parameter problem is
right definite. All matrices are of dimension n x n.

Write F; = diag(fi1,- .-, fin), Gi = diag(gi1,...,9m), and H; = diag(h;, ..., hip).
It is easy to see that eigenvalues of the two-parameter problem (5.1.1) are solutions of
linear systems

Jii = Agu+ pha,
faj = Agaj + phy;

for 2,5 = 1,...,n. This enables us to compute all the eigenvalues from the diagonal
elements of F;, G;, H;, for i = 1,2. In order to construct a two-parameter problem that
has the point (0,0) in the interior of the convex hull of all the eigenvalues, we take the
shifted problem

(A1 = XoB1 — poCr)z = (A — Xo)Biz + (1 — o) Chz,
(A2 = Xo By — poCo)y = (A= Ao)Bay + (1 — 110)Cay,

where the shift (Ao, po) is the arithmetic mean of all the eigenvalues. Figure 5.1 shows
the distribution of eigenvalues obtained for n = 100.

For the following numerical examples, we use GMRES instead of MINRES in the cor-
rection equation with orthogonal projections because MINRES is not standardly avail-
able in MATLAB 5.3.

Example 5.8.1 In the first example we use the Jacobi-Davidson type method for the
exterior eigenvalues. Our goal is to compute the eigenvalue (Amax, fimax) With the maxi-
mum value of \. We are interested in the number of iterations that the Jacobi—-Davidson
method needs for sufficiently accurate approximations and also in the percentage of the
convergence to the eigenvalue (Amax, fimax) fOr a test set of 250 different initial vectors.
We test both alternatives for the correction equations using various numbers of GM-
RES steps. Each combination is tested on the same set of 250 random initial vectors.
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FIGURE 5.1: Distribution of eigenvalues for a right definite two-parameter problem of size n = 100.

The algorithm is restarted after every 10 iterations with the current eigenvector approxi-
mation, 0 lymax = 10 and i = 1. The value € = 1078 is used for the test of convergence,
and flops count in MATLAB are used for a measure of time complexity.

TABLE 5.1: Statistics of the Jacobi-Davidson type method for the eigenvalue (Amax, max) Using
different correction equations and number of GMRES steps for right definite two-parameter problems of
size n = 100 and n = 200: average number of outer iterations, percentage of convergence t0 (Amax, fmax)s
and average number of flops over 250 trials with different random initial vectors. Correction equations:
Orth(m) stands for orthogonal projections and m steps of GMRES, Obli(m) stands for oblique projec-
tions and m steps of GMRES.

method n = 100 n = 200
iter % flops iter % flops

Orth(1)=O0bli(1) | 105.4 100.0 % 4.6-10% | 68.9 100.0%  3.4-10%
Orth(2) 50.0 100.0 % 2.2-10% | 35.6 100.0%  2.0-108
Orth(4) 26.7 100.0% 1.1-10% | 25.7 100.0%  1.6-108
Orth(8) 233 992 % 1.1-10% | 27.7  99.2%  2.1-108
Orth(16) 254 300% 1.4-10% | 34.0 484%  3.6-108
Orth(32) 208 380% 2.2-10% | 428 104% 7.2-108
Orth(64) 33.1 280% 4.0-10% | 51.6 9.6 % 16.0-10°
Obli(2) 96.4 100.0% 4.6-10% | 944 100.0%  6.1-10%
Obli(4) 99.9 100.0% 5.0-10% | 92.9 100.0%  6.6-10%
ODbli(8) 63.9 100.0% 3.3-10% | 62.4 100.0% 5.2-10%
Obli(16) 452 940% 2.6-10% | 53.5 984 %  6.0-108
Obli(32) 419 824 % 3.2-10% | 554 708% 9.6-108
Obli(64) 39.7 660% 4.9-10% | 56.0 356% 17.6-10°

Table 5.1 contains results obtained for n = 100 and n = 200. Orth(m) and Obli(m)
denote that m steps of GMRES are used for the correction equation with orthogonal
projections or with oblique projections, respectively. For each combination, we list the
average number of outer iterations for convergence, the percentage of eigenvalues that
converged to the eigenvalue (Apax, hmax), and the average number of flops in MATLAB,
all obtained on the same set of 250 different initial vectors.
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The results in Table 5.1 indicate that the method is likely to converge to an unwanted
eigenvalue if we solve the correction equation too accurately, i.e., if too many GMRES
steps are used to solve the correction equation. A comparison of the flops suggests that
the best approach is to do a few steps of GMRES. We also see that, for larger n, the
number of GMRES steps has more impact on the time complexity than the number of
outer iterations. The reason is that for larger n the factor £ becomes relatively smaller
compared with mn?.

The correction equations with orthogonal projections behave similarly to the one
with oblique projections but require fewer operations. The experiments suggest to use
the correction equations with orthogonal projections in combination with a small number
of GMRES steps in each outer iteration for (Amax, fmax)- Q

Example 5.8.2 In the second example, the convergence to the exterior eigenvalue for
the two-parameter problem of dimension n = 100 and initial vectors u =v =[1 --- 1]*
is examined. We compare the convergence for 2, 10, and 25 GMRES steps per iteration
for the correction equation with orthogonal and the one with oblique projections, respec-
tively. Figure 5.2 shows the residual norm pj (5.5.2) versus the outer iteration number
k. In all six cases, the Ritz values converge to the eigenvalue (Amax, fmax)-
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FIGURE 5.2: Convergence plot for the exterior eigenvalue (Amax, ftmax) for n = 100 and u = v =
[1 --- 1]7. The plots show the residual norm pj, (5.5.2) versus the outer iteration number k for the
Jacobi—Davidson type method for the eigenvalue (Amax, max) using 2 (solid line), 10 (dotted line), and
25 (dashed line) GMRES steps to solve the correction equation with orthogonal projections (left plot)
and oblique projections (right plot), respectively.

It is clear from Figure 5.2 that convergence near the solution is faster if more GMRES
steps are used. Experiments indicate that, if only a few steps of GMRES are applied, then
the convergence near the solution is about linear; this is similar to the Jacobi-Davidson
method for the standard eigenvalue problem [75, p. 419]. @

Example 5.8.3 In this example, we examine the convergence of the Jacobi-Davidson
type method for the interior eigenvalues. We look for the eigenvalue closest to (0,0). We
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use the same n = 100 two-parameter problem as in Example 5.8.1 and again test both
correction equations with different number of GMRES steps on a set of 250 different
initial vectors. The algorithm is restarted after every 10 iterations with the current
eigenvector approximation. For the convergence test, we take ¢ = 107%. The reason for
a more relaxed criterion is an irregular convergence of the interior eigenvalues (see the
peaks in Figure 5.3).

TABLE 5.2: Statistics of the Jacobi—Davidson type method for the eigenvalue closest to (0, 0) using
different correction equations and different inner iteration processes for a right definite two-parameter
problem of size n = 100: average number of iterations, percentage of convergence to the eigenvalue
closest to (0,0), and average number of flops over 250 trials with different random initial vectors.
Correction equations: Orth(m) stands for orthogonal projections and m steps of GMRES, Obli(m)
stands for oblique projections and m steps of GMRES.

method iter % flops

Orth(90) 15.2 80.8%  2.4-108
Orth(80) 159 89.2%  2.2-108
Orth(70) 189 90.0%  2.4-10%
Orth(60) 233 91.2%  2.5-10%
Orth(50) 328 79.6%  3.2-108
Orth(40) 414 81.6% 3.5-108
Orth(30) 765 72.8%  5.8-108
Orth(20) 219.2 63.2% 14.4-108
Obli(90)  20.2 924 %  4.7-108
Obli(80) 21.1 96.4 %  4.3-108
Obli(70)  24.2 956 %  4.4-108
Obli(60)  29.0 944 %  4.7-108
Obli(50)  38.1 93.2%  54-108
Obli(40) 470 93.2%  5.7-108
Obli(30) 829 94.0% 85-108
Obli(20) 239.7 84.0% 20.5-10%

The results, presented in Table 5.2, show that the method may also be used effectively
for interior eigenvalues. In contrast to Example 5.8.1, more GMRES steps are required
for one outer iteration step. If too many steps are applied, then the process converges
to an unwanted eigenvalue, similar to Example 5.8.1. On the other hand, if we do not
take enough GMRES steps, then we need many outer iteration steps, and the results
may be worse. This is different from Example 5.8.1, where the process converges in
reasonable time even if only one GMRES step is applied per Jacobi—Davidson iteration
step. The correction equation with oblique projections is more effective than the one
with orthogonal projections. It is more expensive, but the probability of coming close
to the eigenvalue closest to (0, 0) is higher.

@

Example 5.8.4 We examine the convergence to the eigenvalue closest to (0,0) for the
two-parameter problem of size n = 100 and initial vectors u = v = [1 --- 1]7. Figure 5.3
shows the residual norm pj (5.5.2) versus the outer iteration number k. We compare 40,
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FIGURE 5.3: Convergence plot for the eigenvalue closest to (0,0) for n = 100 and u = v =
[1 --- 1]T. The plots show the residual norm pj (5.5.2) versus the outer iteration number k for the
Jacobi—Davidson type method for the eigenvalue closest to (0,0) using 40 (solid line), 60 (dotted line),
and 80 (dashed line) GMRES steps to solve the correction equation with orthogonal projections (left
plot) and oblique projections (right plot), respectively.

60, and 80 GMRES steps for the correction equation with orthogonal and with oblique
projections, respectively. In all six cases, the Ritz values converge to the eigenvalue
closest to (0,0). We observe that the more GMRES steps are taken, the fewer iteration
steps are needed. The convergence is not as smooth as in Figure 5.2 for Example 5.8.2,
but the algorithm is clearly useful for interior eigenvalues. @

Example 5.8.5 In the last example, we test the selection technique from Section 5.5
for computing more eigenpairs for the two-parameter problem of dimension n = 100.
With 5 GMRES steps for the correction equation with orthogonal projections, we try
to compute 30 successive eigenvalues with the maximum value of A. Figure 5.4 shows
how well the first 15 and all 30 computed eigenvalues agree with the desired eigenvalues,
respectively.

The eigenvalues are not necessarily computed in the same order as their A\ values.
This explains the situation in Figure 5.4, where some eigenvalues that are in the top 30
by their A values are not among the 30 computed eigenvalues. In order to obtain the
top k eigenvalues with high probability, it is therefore advisable to always compute more
than k eigenvalues. %)

5.9 Conclusions

We have presented a new Jacobi-Davidson type method for the right definite two-
parameter eigenvalue problem. It has several advantages over the existing methods.
It can compute selected eigenpairs, and it does not require good initial approximations.
Probably the most important advantage is that it can tackle very large two-parameter
problems, especially if the matrices A;, B;, and C; are sparse.
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FIGURE 5.4: First 15 (left plot) and first 30 (right plot) computed eigenvalues with maximum
value of A\ for a two-parameter problem of size n = 100 computed using selection for Ritz vectors.

The Jacobi-Davidson type method used 5 GMRES steps for the correction equation with orthogonal
projections.

We have proposed two correction equations. On the one hand, orthogonal projec-
tions are generally more stable than oblique projections, and, in addition, orthogonal
projections preserve symmetry. On the other hand, the correction equation with oblique
projections can be viewed as an inexact Newton scheme which guarantees asymptoti-
cally quadratic convergence. Numerical results indicate that the correction equation with
oblique projections is more reliable but more expensive. It is therefore more suitable for
the interior eigenvalues, while the one with orthogonal projections may be used for the
exterior eigenvalues.

Numerical results indicate that the probability of misconvergence is low when param-
eters are optimal. The number of GMRES steps is important. Experiments suggest to
take up to 5 GMRES steps for exterior eigenvalues and more GMRES steps for interior
eigenvalues. Restarts also impact the behavior of the method. In our experiments, we
restart the method after every 10 iterations with the current eigenvector approximations,
but a different setting may further improve the method.

Because standard deflation techniques for an one-parameter problem cannot be ap-
plied to two-parameter problems, we came up with a new selection technique for Ritz
vectors.



Chapter 6

A Jacobi—Davidson type method for
the two-parameter eigenvalue
problem

Abstract. We present a new numerical method for computing selected eigenval-
ues and eigenvectors of the two-parameter eigenvalue problem. The method does
not require good initial approximations and is able to tackle large problems that
are too expensive for methods that compute all eigenvalues. The new method uses
a two-sided approach and is a generalization of the Jacobi-Davidson type method
for the right definite two-parameter eigenvalue problems (Chapter 5). In this chap-
ter, we consider the much wider class of nonsingular problems. In each step we
first compute Petrov triples of a small projected two-parameter eigenvalue problem
and then expand the left and right search spaces using approximate solutions of
appropriate correction equations. The use of a selection enables us to compute
more than one eigenpair. Some numerical examples are presented.

Key words: two-parameter eigenvalue problem, subspace method, Jacobi-
Davidson method, correction equation, Petrov—Galerkin, two-sided approach.

AMS subject classification: 65F15, 15A18, 15A69.

6.1 Introduction

In this section, we partly repeat the setting of the previous chapter. We are interested
in computing one or more eigenpairs of the two-parameter eigenvalue problem

Aizy = ABizy + pCizy,

(6.1.1)
Ay = ABoxy + pCoxo,

where A;, B;, and C; are given n; X n; matrices over C, A\, u € C and x; € C" fori =1, 2.
A pair (A, ) is called an eigenvalue if it satisfies (6.1.1) for nonzero vectors x,zy. The

*Based on joint work with Tomaz Kosir and Bor Plestenjak, see Section 1.5.
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tensor product 1 ® xo is then the corresponding right eigenvector. Similarly, y; ® yo is
the corresponding left eigenvectorif 0 # y; € C* and y}(A; —AB; —uC;) = 0 fori =1,2.

Two-parameter problems can be expressed as two coupled generalized eigenvalue
problems as follows. On the tensor product space S := C" ® C™ of the dimension
N := niny we define (see (5.1.3))

AO = B1®02—01®B2,
A = AARC,—(C1® Ay,
Ay = BiRA— A ® By

We assume that the two-parameter problem (6.1.1) is nonsingular, that is, the cor-
responding operator determinant A, is invertible. In this case I'y = Ay A, and
[y := Aj'A, commute and problem (6.1.1) is equivalent to the associated problem

Alz = )\A()Z,

(6.1.2)
Aoz = ploz

for decomposable tensors z € S, z = x ® y. The left and right eigenvectors of (6.1.1)
are Ag-orthogonal; i.e., if 21 ® 25 and y; ® yo are right and left eigenvector of (6.1.1),
respectively, corresponding to distinct eigenvalues, then (cf. (5.1.5))

Z/TB1371 yikclxl

(Y1 ® Y2) " Ag(z1 ® 22) = = 0.

y§B2$2 ZIJSszz

If (A, ) is an eigenvalue of (6.1.1) then

dim ( M ke [(n — M) (T, — uI)”]) (6.1.3)
i1+ig=N
41,i9>0
is the algebraic multiplicity of (A, ). We say that (A, u) is algebraically simple when its
algebraic multiplicity is one. The following lemma is a consequence of in [47, Lemma 3].

Lemma 6.1.1 If A is an algebraically simple eigenvalue of the two-parameter eigenvalue
problem (6.1.1) and x1 ® x5 and y; ® yo are the corresponding right and left eigenvector,
respectively, then the matrix

yiBir1 yiCixy

Y53 Bazy  y53Coms

s nonsingular.

There exist some numerical methods for two-parameter eigenvalue problems. Most
of them require that the problem is real and right definite, i.e., that all matrices A;, B;,
and C; are real symmetric and that Ag is positive definite. One of the algorithms (also
useful for large sparse matrices) for the right definite two-parameter problem is a Jacobi-
Davidson type method (see Chapter 5) and ideas from this method are generalized in
this chapter to handle all nonsingular two-parameter problems.
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One possible approach to solve (6.1.1) is to solve the associated couple of generalized
problems (6.1.2). In the right definite case this can be achieved by numerical methods
for simultaneous diagonalization of commutative symmetric matrices [79, 42, 14], while
an algorithm for the general nonsingular case using the QZ algorithm is presented in this
chapter. Solving the problem via the associated problem is only feasible for problems of
low dimension as the size of the matrices of the associated problem is N x N.

Another method that can be used for non right definite two-parameter problems of
moderate size is Newton’s method [11], which has the deficiency that it requires initial
approximations close enough to the solution in order to avoid misconvergence. The
continuation method [65] can be used for weakly elliptic problems, i.e. such that A;, B;
and C; are real symmetric and one of B;, C; is positive definite. We mention that right
definite two-parameter problems are also weakly elliptic [64, Lemma 2.1].

In this chapter, we introduce a new Jacobi-Davidson type method that can be used
to compute selected eigenpairs. The method works does not need close initial approxi-
mations and is suitable for large sparse matrices. Our method computes the eigenvalue
(A, p) of (6.1.1), which is closest to a given target (Ar, pur), i.e., the one with minimum
(A= A1)+ (1 — pr)”

The outline of this chapter is as follows. In Section 6.2, we present a new algorithm for
the computation of eigenpairs using the associated problem. This method is only suitable
for matrices of moderate size, so we combine it with a subspace method. We generalize
the Petrov-Galerkin approach to two-parameter eigenvalue problems in Section 6.3. In
Section 6.4, we present a two-sided Jacobi-Davidson type method for two-parameter
eigenvalue problems. Several possible correction equations are discussed in Section 6.5.
In Section 6.6, we present a selection technique that allows the computation of more
than one eigenpair. The time complexity is given in Section 6.7, and some numerical
examples are presented in Section 6.8. We give some conclusions in Section 6.9.

6.2 Algorithm based on the associated problem

We propose the following method to solve the associated problem (6.1.2). First we
compute a QZ decomposition (generalized Schur form) of the matrix pencil (A, Ay).
We obtain unitary matrices ) and Z such that Q*A¢Z = R and Q*A,Z = S are upper
triangular. Since A, is nonsingular, the same is true for R. From

AJ'A; = ZR\SZ"

it follows that the eigenvalues of the first generalized eigenvalue problem in (6.1.2) are
the quotients s;;/r; of the diagonal elements of matrices S and R.

Next, we sort the generalized Schur form so that multiple eigenvalues of the first
generalized eigenvalue problem in (6.1.2) appear in blocks (see for instance [94]). Let
us assume that the generalized Schur form is sorted to meet this requirement and let
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matrix R1S be partitioned accordingly as

Lll L12 T Llp
rRis=| 77 o (6.2.1)
0 0 - Ly

In the above partition, multiple eigenvalues of Aj'A; are clustered in upper triangular
matrices Ly, ..., Ly, along the diagonal so that A(L;) # A(L,;) for ¢ # j, where A(Lg)
is the eigenvalue of a block Ly,. Let us denote the size of L; by m; fori =1,...,p.

Lemma 6.2.1 Let

Ly Ly -+ Ly
B 0 Ly - Ly
0 0 - Ly

be a partitioning of a block upper triangular matriz L such that A(L1y),...,A(Lypy) are
mutually disjoint, where A(Lyy) is the set of eigenvalues of L. If M commutes with L
then M 1is block upper triangular partitioned conformally with L.

Proof: First we study the case p = 2. Let M be partitioned conformally with L as

M:[Mll M12:|.

M21 M22

From LM — ML = 0 and the above assumption we obtain the equation LosMoy —
My L1 = 0. Because Li; and Loy have no eigenvalues in common, this is a nonsingular
homogeneous Sylvester equation for My (see for example [83, p. 223]). Therefore, the
unique solution is My = 0.

In case p > 2 one can see that M is block upper triangular by applying the above
argument on all appropriate 2 x 2 block partitions of L and M. O

Lemma 6.2.2 T = Q*AyZ partitioned conformally with (6.2.1) is block upper triangu-
lar.

Proof: As Aj'A; and Aj'A, commute, so do R™'S and R™!7T. It follows from
Lemma 6.2.1 that R™'T is block upper triangular partitioned conformally to (6.2.1).
As block upper triangular matrices keep their shape when multiplied by a triangular
matrix, it follows from T'= R(R™'T) that T is block upper triangular as well. O

Once R, S and T are partitioned conformally with (6.2.1) as

Rll R12 T Rlp Sll 812 Tt Slp T11 T12 .. Tlp
0 Rg -+ Ry s 0 Sy -+ Syp 0 Ty -+ Ty

O O tee Rpp 0 0 tee Spp O 0 e Tpp
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it is straightforward to compute eigenvalues of (6.1.1). To each diagonal block L;; of size

m; in R™1S correspond m; eigenvalues (N, fti1), - - -, (A, tim; ), Where )\; is the eigenvalue
of L; and p1,. .., ltim;, are eigenvalues of the generalized eigenvalue problem Tjw =
pRiw.

Now that we have all eigenvalues (A\;, 1), 7 = 1,..., N, of (6.1.1) we compute the
corresponding eigenvectors ;1 @ xj2. We do this by solving (4; — \;B; — p1;Ci)xj = 0,
where z;; is normalized, for 7 = 1, 2. In a similar way we can obtain left eigenvectors y;; ®
yjo when they are required. The complete procedure is summarized in Algorithm 6.2.1.

Input: A nonsingular two-parameter eigenvalue problem (6.1.1)
Output: Eigenpairs ((Aj,u;),2; ®y;) (j =1,...,N)

1.  Compute Ay, A; and A, of the associated problem (6.1.2)

2. Compute the sorted generalized Schur decomposition Q*A¢Z = R and Q*A,Z =S
(multiple values of \; := s;;/ri; clustered along the diagonal of R=19)

3.  Compute diagonal blocks Tiy,...,Tp, of T = Q*AsZ,
partitioned conformally with R and S

4.  Compute the eigenvalues g1, ..., thim,; of Tjw = pRyw fori =1,...,p

5. The eigenvalues of (6.1.1) are (A1, p11), -« - (AL famy )5 -« -5 (Aps Mp1)s - - -5 (Aps Mpm, )
reindex them as (A1, p1),-- -, (AN, un)-

6.  For each eigenvalue (A, u;), j =1,..., N, take for z;; and y;; the smallest
right and left singular vector of A; — A\; B; — u;C;, respectively, for i = 1,2

ALGORITHM 6.2.1: An algorithm for the nonsingular two-parameter eigenvalue problem

Remark 6.2.3 In numerical computation we may cluster not only multiple eigenvalues
but also clustered eigenvalues of R~1S. After clustering we take the mean of all eigen-
values in the cluster of size m; as a multiple eigenvalue of order m;. This means that we
take )\; as a mean of all eigenvalues of the generalized eigenvalue problem

fori=1,...,p. %)

Remark 6.2.4 In practice there will be an error in a detected eigenvalue (\;, it;). Be-
cause of that, we take, in Step 6 of Algorithm 6.2.1, the smallest left and right singular
vector to find an approximation to the eigenvectors x; and ;. @

Let as assume that A;, B;, C; are dense and that n; = ny = n. The time complexity of
Algorithm 6.2.1 is O(n®) for the computation of eigenvalues using the QZ decomposition
of matrices of size n?. The maximum additional work for eigenvectors is O(n®) as we
have to compute O(n?) singular value decompositions of matrices of size n. If we are
not interested in all eigenvectors (as is often the case for large sparse matrices) then the
additional work can be substantially smaller.

The large time complexity is the reason that Algorithm 6.2.1 is useful only for matri-
ces of a modest size. For larger problems we embed this method in a subspace method
and use Algorithm 6.2.1 for the small projected problems.
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6.3 Subspace methods and Petrov triples

Now we study a Jacobi-Davidson type subspace method for the two-parameter eigenvalue
problem. In this section we discuss the extraction, in the next section the algorithm and
the expansion.

Suppose that we have k-dimensional search spaces U;; C C* and k-dimensional test
spaces V;, C C" for ¢ = 1,2. Let the columns of the n; x k matrices Uy, and Vi
form orthogonal bases for U, and Vi, respectively, for ¢+ = 1,2. The Petrov-Galerkin
conditions on the residuals (cf. (5.2.1))

r = (Al — O'B1 — TCl)ul 1 Vlk,

(6.3.1)
T i= (A2 - O'BQ - TCQ)’LI,Q 1 ng,

where u; € Uy \{0} for i = 1,2, lead to the smaller projected two-parameter problem
(cf. (5.2.2))

VieAiUiker = oV BiUyker + 7V, CiUske,

/ ! (6.3.2)
VorAoUspca = 0V BoUsggco + TV, CoUsgco,

where u; = Ujrc; #0 fort =1,2 and 0,7 € C.

We say that an eigenvalue (o, 7) of (6.3.2) is a Petrov value for the two-parameter
eigenvalue problem (6.1.1) with respect to the search spaces Uy, and Usy, and test spaces
Vi and Vyi. If (0,7) is an eigenvalue of (6.3.2) and ¢; ® ¢, is the corresponding right
eigenvector, then uy ® us is a right Petrov vector, where u; = Uyc; for © = 1, 2. Similarly,
if di ® do is the corresponding left eigenvector of (6.3.2) then v; ® vq is a left Petrov
vector, where v; = Vjd; for i = 1,2. It is easy to check that o and 7 are equal to the
two-sided tensor Rayleigh quotients (cf. (5.2.3))

o = py(u,v) = (v1 ® v2)* Ay (u1 ® us) _ (vi Ayuy) (v3Cous) — (ViChuy)(viAsus)

’ (v1 @ v2)*Ag(u1 @ ua)  (viBiuy)(v3Cous) — (viCiuy)(viBaus) ’(6 3.3)
T = pol,v) = (v1 ® v2)*Ag(u; ® us) _ (v Biu1)(v3 Agug) — (v’{Alul)(v;Bguz)' o

’ (v1 @ v2)*Ag(u @ ua)  (viBiuy)(viCous) — (viCiuy) (vl Baus)

In order to obtain Petrov values, we have to solve small two-parameter eigenvalue
problems. For this purpose, we use Algorithm 6.2.1. Altogether, we obtain k? Petrov
triples ((0},7;), uj1 ®ujo, vj1 ®vj2) that are approximations to eigentriples (A, i), 21 ®
Tj2,Yj1 @ Yje) of (6.1.1) for j =1,... k%

6.4 A Jacobi—Davidson type method

The Jacobi-Davidson method [75] is one of the subspace methods that may be used for
the numerical solution of one-parameter eigenvalue problems. In the Jacobi-Davidson
method approximate solutions of certain correction equations are used to expand the
search space. The search for a new direction is restricted to the subspace that is orthog-
onal or oblique to the last chosen right (or left) Petrov vector.
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A Jacobi-Davidson type method has been successfully applied to the right definite
two-parameter eigenvalue problem (see Chapter 5). In this chapter we show that a
Jacobi—Davidson type method can be applied to a general two-parameter eigenvalue
problem as well. Numerical experiments (see Example 6.8.1) indicate that one-sided
Jacobi-Davidson (where, as in Chapter 5, the search spaces V; in (6.2.1) are the same as
the test spaces U;) is not accurate enough for non right definite two-parameter eigenvalue
problems. Therefore, we generalize the two-sided Jacobi-Davidson method (see Chap-
ter 2) to two-parameter eigenvalue problems. The idea is to take U; as search spaces for
the right eigenvectors and V; as search spaces for the left eigenvectors.

A brief sketch of the two-sided Jacobi—Davidson type method for the two-parameter
problem is presented in Algorithm 6.4.2. In Step 4 we have to choose a Petrov triple.
Some options are given later in this section. In Step 8, we have to find new search
directions in order to expand the search and test subspaces. We discuss several possible
correction equations in Section 6.5.

Input: initial vectors ui,us,v1, and ve with unit norm
Output: an approximate eigenpair satisfying (||rf|* + ||7F||>)'/? < e

1. sizui,tizvi, Ui70=[], V;,oz[],forizl,Q.
for k=1,...,knax do:
2. Expand the search subspaces for i = 1,2

Uik = MGS (Ui k-1, 8i),
Vige = MGS (Vi k-1,1:)
3. Solve the projected two-parameter eigenvalue problem
VieA1Uiger = oV, BiUiger + 7V, CiUskcn,
V;}CAQUQICCQ = U‘G*kBQUQkCQ + T‘/;;QCQUQkCQ
by Algorithm 6.2.1
4. Select an appropriate Petrov value (o,7) and the corresponding right and left
Petrov vectors u; ® us and vy ® v, where u; = Ujrc;, v; = Vigd;
for i = 1,2, respectively
5. Compute the right and left residuals for ¢ = 1,2
rf = (4; — 0B; — 7Ci)u;,
T‘iL = (Ai - O'Bi - TCZ')*'UZ'

6. Stop if pi < &, where py = ([[rfF|? + [|rf[12)"/?
7. Restart. If the dimension of the image of U;; and Vj;, exceeds Imax,
then replace Ujx, Vi with new orthonormal bases of dimension lmin.
8. Solve approximately one of the proposed correction equations (see Section 6.5)

and obtain new directions s; and ¢; for i = 1,2

ALGORITHM 6.4.2: Two-sided Jacobi-Davidson for the nonsingular two-parameter eigenvalue
problem

To apply this algorithm, we need to specify a target (A, ur), a tolerance ¢, a max-
imum number of steps knax, & maximum dimension of the search subspaces l,.x, and a
number [nin < lmax that specifies the dimension of the search subspaces after a restart.

We also have to specify a criterion for Step 4. Suppose that we are looking for the
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eigenvalue closest to the target (Ar, ur). We suggest to combine two approaches. In
the first part we select the Petrov value (o, 7) closest to the target until the residual py
drops below €change- Then, in the second part, we take the Petrov triple with the smallest
residual norm

(eI + 1lr2) . (6.4.1)
Both stages can be seen as an accelerated inexact Rayleigh quotient iteration.

As Algorithm 6.2.1 is able to solve only low-dimensional two-parameter problems
(6.3.2) in a reasonable time, we expand the search spaces up to the preselected dimen-
sion Iy, and then restart the algorithm. For a restart, we take the [,;, eigenvector
approximations with the smallest residuals (6.4.1) as a basis for the initial search space.

Remark 6.4.1 In Step 6 we could also stop the algorithm if the norms of the left
residuals 7¥ and 7 are small enough. If either left or right residuals are small then we
can expect (o,7) to be a good approximation to an eigenvalue and we can compute the
corresponding right or left eigenvectors by solving one (orthogonal) correction equation,
see also the discussion in Section 2.4.1. Q

In the following section we discuss the expansion in Step 8 and derive several correction
equations.

6.5 Correction equations

Let (o,7) be a Petrov value that approximates the eigenvalue (A, u) of (6.1.1) and let
u; ® uy and v; Q@ v9 be its corresponding left and right Petrov vector, respectively. Let
us assume that wuq, uo, v1, and vy are normalized.

We are searching for improvements of the left and right Petrov vectors of the form
(cf. (5.3.8) and (5.3.9))

where s; 1 a; and t; L b; for i = 1,2. We will discuss the choices for a; and b; later, at
this time we require just that a; f u; and b; £ v;.

Using (6.3.1), we can rewrite (6.5.1) and (6.5.2) as (cf. (5.3.10) and (5.3.12))
(A4 —oB; — 7C;) s;i = =1 4+ (A —0)Bju; + (u — 7)Ciu;
+ (A=0)B;s; + (u— 7)Cis;, (6.5.3)
(A; —oB; — 7Ci)*t; = —rf + (A= 0)*Bfv; + (u— 7)*Cl;
+ (A=0)'Bti+ (p—1)"C}t; (6.5.4)

Theorem 6.5.1 (cf. Theorem 5.3.2) If u; = z; — s; and v; = y; — t;, fori = 1,2,
are close enough approzimations to a left and a right eigenvector of (6.1.1) for the
same algebraically simple eigenvalue (A, ) then the two-sided Rayleigh quotient (o,7) =
(p1(u,v), p2(u,v)) is an O(||swlll[to]l + [[s2||l[t2l]) approzimation to (A, ), @

H[ ]H Ollsallfall + szl (6.5.5)
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Proof: We write the residual (6.3.1) as

r® = _(A; — AB; — uCi)s; + (A — o) Biu; + (u — 7)Cius. (6.5.6)

K3

R =0and

When we multiply (6.5.6) by v} and take into account that v;r
U:(AZ — )\BZ - ,U,CZ) = —t;-k (Az - )\BZ — ,U,CZ)
for 1 = 1,2, then we obtain

UikBlul v’{C’lul A—oO _ [ t’{(Al - )\Bl — ,U«Cl)sl :| (6 5 7)
U;BQ’U/Q U;CQ'U,Q u—T t;(AQ - )\BQ — /,LCQ)SQ ' e

If ||s;|| and ||¢;]| are small enough then (6.5.7) is a nonsingular system because of Lemma
6.1.1 and continuity. We can deduce from (6.5.7) that

{Blul vi‘Clul :|_1 [ t:((Al — ABl — MCl)Si :|
;BQU/Q /U;CQUQ t;(AQ — ABQ — [1102)81'

and so obtain (6.5.5). O

It follows from Theorem 6.5.1 that asymptotically (i.e., when we have good approx-
imate right and left eigenvectors), we can consider s; and t; as first order corrections,
(A —0)Bu; + (4 — 7)Ciu; and (A — 0)*Bfv; + (u — 7)*C}v; as second order corrections,
and finally, (A —0)B;s; + (1 — 7)C;s; and (A —0)*B}t; + (u — 7)*C}t; can be interpreted
as third order corrections.

6.5.1 First order based correction equations

If we ignore the second and higher order terms in (6.5.3) then we obtain the equation

(Az — O'BZ' — TCZ')SZ' = —TR. (658)

2

R

Because r;* is orthogonal to v;, we can multiply (6.5.8) with an oblique projection

(I — Z’”;), where ¢; [/ v;, that fixes rf. Secondly, since s; is orthogonal to a;, we

Uia;
a *

(1 - G ) (Ai — 0B; = 7C) (I - ) si =1y (6:5.9)

Vi~ Gy Q;~Uj

for i = 1,2. In a similar way we obtain from (6.5.4) the correction equation for the

vector v;
d;u;* v;b;
(I— “ >(Ai—0'Bi— rC;)* (I—b* >t-:—rf (6.5.10)

can write (I — ) s; instead of s;. Thus we obtain the correction equation for the

vector u;

for s = 1,2, where d; f u;.
We solve these correction equations only approximately, for instance using some
Krylov subspace method. Since the operator in (6.5.9) maps a;- onto v;", it is suitable to
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take a; = v; in order to apply Krylov solver without a preconditioner (see, for example,
the discussion in Section 2.4.2). If a; # v;, then we need a preconditioner that maps
the image space v;- bijectively onto a;-. Similarly, we need a preconditioner for (6.5.10)
when b; # u;.

Different choices of vectors a;,b;,c;, d; lead to different correction equations. We
discuss some options.

1. For the first correction equation we take a; = d; = v;, b; = ¢; = u;. We obtain a
pair of correction equations

(I—Uivi )(Ai—O'Bi—TCZ') (I—uzfl >Si = —TZR,

v U v;*u;
i i (6.5.11)
<I i ) (A; — 0B; — 7C;)" (I - o ) t; = —rk
U™ V; Uz Uy

for 1 = 1,2. The operator in the first equation is the conjugate transpose of the
operator in the second equation and we can solve these equations simultaneously
by bi-conjugate gradients (BiCG). It is also possible to solve equations in (6.5.11)
separately by GMRES.

2. For this correction equation we take a; = ¢; = u;, b; = d; = v;.

It is a natural approach for (6.5.9) and (6.5.10) to take a; = u; and b; = v; as
in this case we are looking for updates orthogonal to the current approximation.
As it turns out later in Section 6.5.2, when we use preconditioning, an interesting
choice for ¢; and d; is to take ¢; = u; and d; = v;, which leads to a pair of correction

equations
([ _ Ui ) (Ai —oB; — 7C;) (I —uju;™) 5y = _riR’
v U;
(6.5.12)
v; U * * L
(I— - >(Ai_aBi_TCi) (I —vavit)t = =
U; Uy
fori=1,2.

In order to solve (6.5.12) approximately by a Krylov solver we need a preconditioner
because a;- and v;- do not agree, see Section 6.5.2.

3. In this case we take a; = u;, b; = v;, ¢; = ¢;, d; = h;, where
9i = (Ar—o0)Biu; + (pr — 7)Ciuy,

hi = (At — o) Bjvi+ (ur — 7)"Civ;.

The idea behind the choice of ¢; and d; is that when the target (Ar, pr) is close
to the eigenvalue then the projections with g; and h; almost annihilate the second
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order terms in equations (6.5.3) and (6.5.4) and thus reduce the neglected quantity.
We derive the correction equations

(I N izfz ) (Ai = 0B = 7Cy) (I —uui™) s; = —rf,
hz ” (6.5.13)
(I - Ufjf;) (4 — oB; —1C)* (I —vwi*)t; = —rf

fori=1,2.

Again, if we want to solve (6.5.13) approximately by a Krylov solver then we need
a preconditioner as a; # v;, see the next section.

6.5.2 Preconditioned first order based correction equations

We mentioned that we need a preconditioner for a Krylov solver when the domain and
the range of the operator in the correction equation do not agree. But we can also use
a preconditioner when domain and range do agree to speed up the convergence.
Suppose that a left preconditioner M; is available for A; — oB; — ;C; such that
M;Y(A; — 0B; — 11;C;) ~ I. A calculation shows that if we assume that a}M;'c; # 0

2
* *
L VA L
V"¢ a;*U;

then the inverse of the map
(I _ Milcia;‘> e (I _ civ;‘)
a:rM; 'c; ! vie;
from v} to a;-. Therefore, using left preconditioning changes (6.5.9) into

M te;ar U ar
(I . ¢> M (I _ Gt ) (4; — 0B; — 7C}) <I bt ) 5 =

arM: ¢ v; ¢ a; u;

] ]
M-*lcia’-‘
— I — =) M;'rf

from ai to vi is the map

fori=1,2.

Correction equation (6.5.10) for the left eigenvector can be dealt with similarly. A
preconditioner for A; — o B; —TC; automatically suggests a preconditioner for (A; —oB; —
Tcz)*

We can combine different preconditioners with different correction equations. Here
are some possibilities.

1. Our suggestion for the preconditioner is
Mz’ = Az — )\TB'L — ,U'TC'ia (6514)

where (Ar, ) is the target. Instead of exact inversion we can also take an inexact
inverse, for example one obtained using an incomplete LU decomposition.
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2. The simplest option is to take the identity as a preconditioner in order to be able to
use a Krylov solver for the correction equation. For example, if we take correction
equation (6.5.12) and the identity as a preconditioner, then we have to multiply

(6.5.9) and (6.5.10) by orthogonal projectors I — u;uf and I — v;v}, respectively.

From (I — w;u}) <I — uiv?) =TI —wu! and (I —v;v}) (I — Z“”) = I — v} we get

(I —wul)(A; —oB; — 1C)) (I —wul)s; = —(I — uiu;‘)rf, ( )
6.5.15
(I —vv})(A; — 0By —7C)* (I — vty = —(I —vol)ry

for i = 1,2. One can recognize (6.5.15) as the correction equations of standard
Jacobi-Davidson applied to A; — oB; — 7C; and (A; — oB; — 7C;)*.

6.5.3 Second order based correction equation

For this case we generalize the correction equation with oblique projections for the right
definite two-parameter eigenvalue problem (see Section 5.3.2). If we define

D= Al—O'Bl—Tcl 0
o 0 AQ—O'BQ—TCQ ’

R L

R ™ L 1
T = R bl ,r‘ = L )

L) L)

then we can reformulate (6.5.3) and (6.5.4) (neglecting third order correction terms) as

D [ 2 ] =—rf+(\-0) [ gﬁ; ] +(u—7) [ g;z; } (6.5.16)

and

Civ, } . (6.5.17)

* tl _ _ L _ * Bikvl _ *
D |:t2:|_ 4+ (A —o0) [B;W +(p—1) Civ

Let Vg be a (n; + ng) x 2 matrix with orthonormal columns such that
_ Blul 1 Clul
span(Vg) = span ([ Bous |’ [ Coty

U1 0-
0 ’UQ_.

and let

Wi = [
With the oblique projection
Pp=1—Va(WiVe) ™' Wh

onto span(Wg)* along span(Vy), it follows that

Biu Chu
R_ R | N
Prr* =r" and PR[BQUQ}_PR[CQUQ}_O‘
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Therefore, from multiplying (6.5.16) by Pr we obtain

592

PrD [ 51 :| = —rf

Suppose that we are looking for corrections such that s; L v; and ¢; L u;. Then

S1 S1
P, =
and the result is the correction equation

PuDPg | °* | = —rR. 6.5.18
S

Remark 6.5.2 If u; ®us and v; v, are close approximations to eigenvectors ;1 ® xo and
Y1 ® ¥, corresponding to a single eigenvalue of (6.1.1), then it follows from Lemma 6.1.1
that W Vg is nonsingular. During the process, it is possible that Vz does not exist or
that W5;Vg is singular. In either of these two cases we can use one of the correction
equations from Section 6.5.1 to expand the search and test spaces. @

In a similar manner we obtain a correction equation for ¢; and ¢,. If Vi, Wy, and P,
are defined similarly for (6.5.17), then we have

P.D*P, [ b ] = —rk. (6.5.19)

We separately solve (6.5.18) and (6.5.19) approximately using a few steps of GMRES.

Better results can be obtained if we use preconditioners. Suppose that M is a left
preconditioner for D. One can show that if WM~V is nonsingular then the inverse
of a map Py M Py from span(Wg)* to span(Wx)* is

(I — M '"Va(Wg M 'VR)"W3) M~ Py.

Thus we obtain a preconditioned correction equation

(I = M~ "Va(WM ™' Vo)™ ' Wg) M~ PeDPr [ zl ]
2

= (I - M "Ve(WiM Vi) 'WE) MR (6.5.20)

In a similar manner we get a preconditioned equation for ¢; and ¢s.

6.6 Computing more eigenpairs

Suppose that we are interested in p > 1 eigenpairs of (6.1.1). In one-parameter eigenvalue
problems various deflation techniques can be applied in order to compute more than one
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eigenpair. The difficulties that are met when we try to translate standard deflation ideas
from one-parameter problems to two-parameter problems are discussed in Section 5.5.

For a general two-parameter eigenvalue problem we can apply a similar technique
as in Section 5.5 for the right definite problem using the Ag-orthogonality of left and
right eigenvectors. Suppose that we have already found p eigenvalues (\;, p;) with the
corresponding left and right eigenvectors x1; ® x9; and yy; @ y9; for e = 1,...,p. Now we
adjust Algorithm 6.4.2 so that in Step 4 we consider only those Petrov triples for which
U1 ® ug and v; ® vy satisfy

min (|(v; @ ve) Ag(x1; @ xo;i)|, |(Y1i @ Y2i) Ao(ur ® ug)|) <npfori=1,...,p (6.6.1)

for an n > 0. A suggestion for 7 (used in Example 6.8.6 in Section 6.8) is

1 ) .
n=g,mn (15 ® yoi) Ao (215 @ T27)) -
If no triple satisfies this condition then we take the one with the smallest left side of
(6.6.1). Let us mention that an efficient way to compute (6.6.1) is to apply the relation
(cf. (6.3.3))

(1 ® 2)* Ao (11 @ y2) = (27 B1y1) (25Coy2) — (27C1y1) (25Bays).

6.7 Time complexity

The analysis of time complexity of Algorithm 6.4.2 is similar to the analysis for the
Jacobi-Davidson algorithm for right definite two-parameter eigenvalue in Section 5.6.
Because of that the details are omitted and the main results are stated.

If we assume that n = n; = ny and that m steps of GMRES are used for the
approximate solutions of the correction equations, then the time complexity of one outer
step of Algorithm 6.4.2 for dense matrices is O(mn?). Also important is the storage
requirement. If an algorithm works with matrices A;, B;, and C; as Algorithm 6.4.2 does
then it requires O(n?) memory. On the other hand, Algorithm 6.2.1 that works with the
associated system (6.1.2) needs O(n*) memory, which may quickly exceed the available
memory, even for modest values of n. Therefore, restarts are no luxury.

If the matrices A;, B;, and C; are sparse, then the time complexity of the outer step of
Algorithm 6.4.2 is of order O(mMYV), where MV stands for a matrix-vector multiplication
by an n X n matrix.

6.8 Numerical examples

The following numerical results were obtained with Matlab 5.3. In order to be able
to compare the results of the direct method of Algorithm 6.2.1 to the results of the
subspace method of Algorithm 6.4.2, we use a small two-parameter eigenvalue problem
with random matrices of size n = 15.

In all numerical examples we use the same two-parameter eigenvalue problem which
we construct in Matlab by the following commands:
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rand(’seed’,0)
Al=rand(15)-0.5; Bl=rand(15)-0.5; Cl=rand(15)-0.5;
A2=rand(15)-0.5; B2=rand(15)-0.5; C2=rand(15)-0.5;

The five eigenvalues of the obtained two-parameter problem that are closest to the origin
are

(A1, p1) = (—0.12446,0.24740),
(A2, pi2) = (—0.09509 + 0.250023,0.11122 — 0.138573),
(s, pi3) = (—0.09509 — 0.25002i, 0.11122 + 0.138573),
(A, p1s) = (—0.19895,0.27873),

(As, p5) = (—0.00020 + 0.368284, 0.00029 + 0.121967).

Example 6.8.1 The results in this first example suggest that for non right definite
problems, the two-sided approach (different test and search spaces) is superior to the
one-sided approach (the same test and search spaces). We perturb the eigenvectors
11, 12, Y11, Y12 into uq, us, v1, Vg, respectively, by adding random vectors of small norm
and then compute the difference between the two-sided Rayleigh quotient (6.3.3) of
U1, Uz, v1,ve and (A, u1). If we take vy = uy and ve = uy and apply formula (6.3.3) then
we obtain the one-sided Rayleigh quotient. It is equal to the Ritz value in the one-sided
Jacobi—Davidson type method where the search subspaces are equal to test subspaces
(Chapter 5).

Table 6.1 shows the errors of one-sided and two-sided Rayleigh quotients (o, 7) as
approximations to the eigenvalue (A1, 7). The results indicate that the order of the
error of the two-sided Rayleigh quotient is equal to the square of the error of eigenvector
approximations u;, v;, which agrees with Theorem 6.5.1. On the other hand, the error of
the one-sided Rayleigh quotient depends on the error of eigenvector approximation in a
linear way.

TABLE 6.1: Comparison of errors (A —0)? + (11 —7)?)*/? for the one-sided and two-sided tensor
Rayleigh quotients, related to the norm of the eigenvector perturbations ||z; — u;|| and ||y; — vil|-

perturbation | one-sided RQ error | two-sided RQ error
1073 24-1073 3.1-10°¢
10~* 3.0-107* 1.2-1078
1075 2.2-107° 2.4-10710
10— 3.3.10°6 2.2.10712

@

Example 6.8.2 In the second example we compare different correction equations with-
out preconditioning. For the initial vectors we take u; = x1; + 107%e, v; = y1; + 10 3¢
fori=1,2, wheree=[1 --- 1]7. In each Step 4 of Algorithm 6.4.2 we take the Petrov
triple with the smallest residual (6.4.1).

Table 6.2 contains the number of steps required for the residual (6.4.1) to become
smaller than 108. The other parameters are lpax = 8, lmin = 2 and kmax = 500. We
compared three correction equations without preconditioning:
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TABLE 6.2: Comparison of three correction equations NP1, NP2, and NP3 without precondi-
tioning for the initial vectors u; = z1; + 107%e and v; = y1; + 10~%¢, where e = [1 --- 1]T. GMRES:
the number of steps used in GMRES for the approximate solution of the correction equation; iterations:
the number of outer iterations for convergence.

NP1 NP2 NP3
GMRES iterations | GMRES iterations | GMRES iterations
10 > 500 10 > 500 17 > 500
11 70 11 50 20 155
12 24 12 27 23 36
13 14 13 6 26 5
14 3 14 3 29 3

e NP1 - first order correction equation (6.5.11).

e NP2 - first order correction equation (6.5.15). Although it is preconditioned, we
treat this equation as an unpreconditioned one because the preconditioner is the
(projected) identity.

e NP3 - second order correction equation (6.5.18) and (6.5.19).

The results in the table indicate that the convergence is slow or we have no convergence
at all if the correction equations are not solved accurately. Let us remark that the
number of GMRES steps for the second order correction equation is larger because the
size of matrices is twice the size of the matrices in the first order correction equations.
@

Example 6.8.3 For the third example we take the same initial vectors and parameters
as in Example 6.8.2, but, this time we use preconditioned correction equations. For
a preconditioner we take (6.5.14). We compared the following three preconditioned
correction equations:

e P1 - preconditioned NP1 from Example 6.8.2.
e P2 - first order correction equation (6.5.13), left preconditioned by (6.5.14).
e P3 - (6.5.20) preconditioned NP3 from Example 6.8.2.

@

The results in Table 6.3 indicate that correction equations with preconditioners work
much better than the ones that are not preconditioned.

Example 6.8.4 In this example we take initial vectors u; = up = vy = vy =[1 --- 1]7.
Our goal is the eigenvalue closest to the origin. In Step 4 of Algorithm 6.4.2 we pick the
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TABLE 6.3: Comparison of three correction equations P1, P2, and P3 with preconditioning for
initial vectors u; = x1; + 1073e and v; = y1; + 10~ 3¢, where e = |1

-+ 1]7. GMRES: the number of
steps used in GMRES for the approximate solution of the correction equation; iterations: the number
of outer iterations for convergence.

P1 P2 P3
GMRES iterations | GMRES iterations | GMRES iterations
1 32 1 22 1 32
3 43 3 12 3 25
5 11 5 6 5 12
7 5 7 4 7 7
9 4 9 4 9 6
T S O st
E -2 Vo1 E 2
2 e -
© B ! © !
3 -4f [— P2(a) E Vo4 B -4 | PO \
2 - P2(8) V18 P3(12) 2
Jc:> -~ P2(12) B ' :c:> --- P3(18) '
S -6/ 1 g e ‘,
E B \
i = R L ___T
-10 : : : ! -10 : : : : : :
5 10 15 20 25 5 10 15 20 25 30
number of outer iterations number of outer iterations
(a)

(b)
FIGURE 6.1: Convergence plot for the eigenvalue closest to (0,0) for u; = v; = [1 --- 1]T.
The plots show the residual norm (6.4.1) versus the outer iteration number for the Jacobi-Davidson
type method using correction equation P2 (a) with 3 (solid line), 8 (dotted line), and 12 (dashed line)

GMRES steps, and correction equation P3 (b) with 6 (solid line), 12 (dotted line), and 18 (dashed line)
GMRES steps to solve the correction equation.
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Petrov triple with the Petrov value closest to the target (0,0) until the residual py, is less
than €cange = 0.5. After that we take Petrov triple with the smallest residual (6.4.1).

Figure 6.1 shows convergence plot for correction equations P2 and P3 using various
number of GMRES steps to solve the correction equation. One can see that once the
residual becomes smaller than eange (top horizontal dotted line in the figure) and we
are close to the eigentriple, then the number of GMRES steps determines how fast the
convergence is.

There is no guarantee that the process will converge to the eigenvalue closest to the
target. In fact, the eigenvalue obtained using P3 with 12 GMRES steps is (—0.33,0.24),
which is equal to (A7, 7). In all other 5 cases we get (A, p1)-

The statistics in the following example show that the probability of a successful
convergence is high if we carefully tune the parameters of the method. @

Example 6.8.5 In this example we are interested in the number of iterations that the
Jacobi-Davidson type method needs for convergence and in the percentage of conver-
gence to the eigenvalue (A1, y1) if random initial vectors are used.

TABLE 6.4: Statistics of the Jacobi-Davidson type method for the eigenvalue (A1, 1) using
correction equations P2, P3 and various settings of GMRES steps and €change. GMRES: the number of
steps used in GMRES for the approximate solution of the correction equation; echange: setting of €change
parameter; %: percentage of convergence to (Ar, p1); iter: the average number of outer iterations for
convergence.

Parameters Echange = 0.5 | Echange = 0.1 | Echange = 1072 | Echange = 1073
Equation GMRES | % iter % iter % iter % iter
P2 3 T 344 87 65.5 73 90.1 38 108.3
P2 5 73 25.0 95 42.5 88 49.5 79 57.6
P2 7 67 24.5 94 39.8 88 52.8 83 59.6
P3 6 70 37.0 97 56.3 83 83.7 65 110.1
P3 10 73 24.9 95 36.6 89 41.2 82 49.9
P3 14 64 21.1 100 36.3 97 44.8 94 47.8

We test the preconditioned correction equations P2 and P3 on the same set of 100
random initial vectors. We use the combined method for selecting the Petrov triple: in
the first part we select the closest Petrov value to the origin until the residual becomes
smaller than €change and in the remaining steps we select Petrov triple with the minimum
residual. We set the maximum number of outer steps to 250.

The numbers in Table 6.4 show that the probability of computing the correct eigen-
value is high when the parameters are carefully chosen. A small value of £ ange does not
necessarily improve the probability. If echange is too small then in the first phase, when
we select the closest Petrov value to the origin, the method requires too many iterations
until the residual is smaller than echange. On the other hand, if echange is too large then
the method is likely to converge fast, but to an unwanted eigenvalue. More GMRES
steps reduce the number of outer iterations and enlarge the probability, but we must
keep in mind that the total amount of work depends on the number of matrix-vector
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multiplications, and thus roughly equal to the product of the number of GMRES steps
and outer iterations. @

Example 6.8.6 In the last example we test the selection technique from Section 6.6 that
enables us to compute more than one eigenvalue. Figure 6.2 shows a convergence plot
for five eigenvalues computed in a row. The approach works and we obtain five different
eigentriples. Unfortunately, the obtained eigenvalues are not the five eigenvalues that
are closest to the origin. If we order the eigenvalues on their distance from the origin
then the obtained eigenvalues have indices 1,10,18,11, and 19 among 225 eigenvalues.
Additional numerical experiments with different initial vectors and correction equations
showed that this behavior is not an exception and we were not able to reliably compute
a small number of eigenvalues closest to the target with this method. It remains future
work to modify the method to enable this feature.

log10 of residual norm

-10

50 100 150 200
number of outer iterations

FIGURE 6.2: Convergence plot for the first five computed eigenvalues using the selection technique
from Section 6.6. Used is correction equation P3 with 8 steps of GMRES and €change = 5 - 10~ L.

Q@

6.9 Conclusions

We have presented a novel Jacobi-Davidson type method for the nonsingular two-
parameter eigenvalue problem. This problem is a very challenging one, where we have to
use many techniques to be successful: a two-sided subspace approach, preconditioning,
selection techniques instead of deflating, and the use of a target. The new method can
compute selected eigenpairs without good initial approximations and it can tackle very
large two-parameter problems, especially if the matrices A;, B;, and C; are sparse. In
such situations, preconditioning is of great importance.

Let us also mention that Algorithm 6.2.1 and Algorithm 6.4.2 both offer a general-
ization to multiparameter problems with more than two parameters, in a way similar to
Section 5.7.






Chapter 7

Backward error, condition numbers,
and pseudospectrum for the
multiparameter eigenvalue problem

Abstract. We define and evaluate the normwise backward error and condition
numbers for the multiparameter eigenvalue problem (MEP). The pseudospectrum
for the MEP is defined and characterized. We show that the distance from a
right definite MEP to the closest non right definite MEP is related to the smallest
unbounded pseudospectrum. Some numerical results are given.

Key words: multiparameter eigenvalue problem, right definiteness, backward
error, condition number, pseudospectrum, nearness problem.

AMS subject classification: 65F15, 15A18, 15A69.

7.1 Introduction

We study the backward error, condition numbers and pseudospectrum for the multipa-
rameter eigenvalue problem (MEP)

where
A=A, M) E(Ck,

k
Wi(A) = Vio — > \iVig,
Jj=1

and V;; are n; X n; matrices over C. We will denote the MEP (7.1.1) by W. For k =1, a
MEP is a generalized eigenvalue problem Vipx; = A Vi121. For k = 2, see also Chapters 5
and 6.

*Based on joint work with Bor Plestenjak, see Section 1.5.
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A k-tuple A that satisfies (7.1.1) is called an eigenvalue and the tensor product
T =12,Q®---®uxy is the corresponding right eigenvector. A left eigenvector corresponding
to the eigenvalue A is y = 1 ® -+ ® yx, where 0 # y; € C* and y;W;(A) = 0 for
1=1,...,k.

The backward error and condition numbers are important tools in numerical linear
algebra that reveal the quality and sensitivity of numerical solutions. The theory of
backward error and conditioning for eigenproblems is well developed for the generalized
eigenvalue problem (see, e.g., [32]) and the polynomial eigenvalue problem (see, e.g.,
[84]). See Chapter 5 for the origin of multiparameter eigenvalue problems.

To a MEP (7.1.1) which satisfies a certain regularity condition (nonsingularity, see
below), a k-tuple of commuting linear transformations on a tensor product space is
associated, as follows. The tensor product space C* ® --- ® C* is isomorphic to CV,
where N = nq---n;. Linear transformations VZ}L on CV are induced by the Vij, © =
1,2,...,k;j=0,1,...,k, and defined by

Vi@ ® 05,0 0n) =110 @ Viyz; ® -~ ® 74
and linearity. On CV we define operator determinants (cf. (5.1.3) for k = 2)

V1]]:1 Vl} o Vljik
Ao _ V21 V22 o V2k
'T 'T 'Jr
Vkl Vk2 Tt V/ck
and T T 1 T T
Vlfl e Vlfi—l V1T0 Vlt,i—kl e Vl’rk
A — V21 T V2,z'—1 V20 V2,z'+1 T V2k
i = . . . . .
t t ot t
Vm e V/c,i—l VkO Vlc,z‘+1 T V/ck
fore=1,... k.

A MEP is called nonsingular if the corresponding operator determinant A, is in-
vertible. A nonsingular MEP is equivalent to the associated problem (cf. (5.1.4) for
k=2)

Ai(B:)\ion, i:1,...,l€,
for decomposable tensors € = 71 @ --- ® 2 € CV, where the matrices I'; := AalAi

commute for i = 1,..., k (see [4]).
If A is an eigenvalue of W then (cf. (6.1.3) for k& = 2)

d, := dim ( ﬂ ker [(Fl — M) (T — Akf)jk})
jitet gk =N

is the algebraic multiplicity (cf. 6.1.3) and

d, = dim (ﬁ ker (T'; — M)) - f[ dim (ker W,(A))

=1 =1
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is the geometric multiplicity of the eigenvalue (see [4]). We say that an eigenvalue A is
geometrically or algebraically simple when d, = 1 or d, = 1, respectively. It can be seen
that d, > dg, so an eigenvalue that is algebraically simple is also geometrically simple.

Let A be an eigenvalue of W with the corresponding left and right eigenvectors
and y. We form a k£ X k matrix

yi‘anﬂl yikV12$1 Tt yi‘Vum

YsVorxo  ysVarxa -+ ysVorTo
By = . . ]

YeViiZe YpVioTk - YpVikTk

The following lemma is a consequence of [47, Lemma 3].

Lemma 7.1.1 (cf. Lemma 6.1.1) If X is an algebraically simple eigenvalue of the
multiparameter eigenvalue problem W' then By is nonsingular.

A MEP is called Hermitian when all matrices V;; are Hermitian. Furthermore, a
Hermitian MEP is called right definite if (cf. (5.1.2) for k£ = 2)

ffvlliﬂl $TW2$1 T -valk-fl
* * *
ToVorxe x3Vooxoe -+ xiVorw
2V21Ty  T9V22T2 o VokTo
. . . ) (7.1.2)
T Viwy xpViewy - T VikTe

for all vectors z; € C", ||zy|| = 1,47 = 1,...,k, and some § > 0. By noting that for
decomposable tensors

iViuzy - TiVigpa
Ay = : : , (7.1.3)
T Vixe - TpVikZp

we realize that right definiteness is equivalent to the positive definiteness of Aq [4, Theo-
rem 7.8.2] (we have £*Agz > 0 for decomposable tensors if and only if *Agz > 0 for all
tensors). This implies that if W is right definite then there exist N linearly independent
eigenvectors. If X is an eigenvalue of a right definite problem W then A € R¥. Further-
more, if all matrices Vj; of a right definite problem W are real, then the eigenvectors
can be chosen real. For a real, geometrically simple eigenvalue of a Hermitian MEP, the
corresponding left and right eigenvectors coincide.

After preliminaries in Section 7.2, we study the backward error in Section 7.3. The
condition numbers for eigenvalues and eigenvectors are discussed in Section 7.4. The
pseudospectrum, examined in Section 7.5, is another valuable tool for the study of the
sensitivity of eigenvalues to perturbations of the matrices. In Section 7.6, we give some
numerical experiments for right definite two-parameter eigenvalue problems, where pseu-
dospectra can be visualized in R2. Conclusions are summarized in Section 7.7.
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7.2 Preliminaries

Throughout this chapter we assume that the MEP W is nonsingular. The matrices
Eijjfori=1,...,k; j=0,...,k represent tolerances for the perturbations AV;; of Vj;,
defined by ||AV,|| < €||Esj|| for some € > 0. Usually we take either E;; = V;; considering
normuwise relative perturbations, or E;; = I considering normuwise absolute perturbations.
Elementwise perturbations |AV;;| < e|E;j| can also be considered, see Remark 7.3.4. We
define

k
AWi(A) == AVip — Y XAV,
7j=1
We will denote the perturbed MEP with matrices V;;+AV;; by W+ AW . For a complex
A the sign of A is defined as (cf. [32, p. 495])

: MAL A#£0

A) = ’ ’

s = {5/ 370
Suppose that we are looking for the maximum Euclidean norm of Az where A € Ck**
and z € C* is such that |z;] < B; for i = 1,...,k, where i,..., [ are given positive
constants. According to Bauer’s maximum principle (both the function || - || and its
domain are convex), the maximum is attained by z for which |z;| = §; for i = 1,... k.

For B =[B3; --- Bi|T we define the B-weighted norm of A as

”A”ﬁ = max{ ||Az|]y : 2€C, || =Bifori=1,...,k}. (7.2.1)

Clearly,
1Al g < [IAllz2 - 181l (7.2.2)
One may verify that | - || 3 is indeed a matrix norm. One may also see that -l g is

not a consistent norm as it does not necessarily satisfy “AB”,B < “A”ﬁ”B”,B (for a
counterexample, take A = B = I and 3 such that ||B]|s < 1).

From now on, ||-|| stands for ||-||o. We say that a decomposable tensor z = 2;®- - -® 2,
is normalized if ||z;]] = 1 for ¢ = 1,...,k. From ||z]| = ||z1]| - --||2k|| it follows that
||z]| = 1. In this chapter we will assume that the eigenvectors are normalized.

7.3 Backward error

Let (z, X) be an approximate eigenpair of W and let £ be normalized. We define the
normwise backward error of (x,A) by

n@,A) :=min{ e: (Wi(X) + AW;(X))ZF; = 0, 750
7.3.1
AVl < ellByll, i=1,...,k j=0,....k }.

The following theorem is a generalization of the backward errors for the case k£ = 1
(i.e., the generalized eigenproblem) given in [25, Lemma 2.1] and [32, Theorem 2.1].
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Theorem 7.3.1 For the normwise backward error n(z, X) we have

~ ) — 7]
n(z, )\)_igi)fk 7 (7.3.2)

where ; := W;(X)z; are the residuals and
o~ k: o~
Bi = 1Enll + Y I\ B
j=1

fori=1,... k.

Proof: From r; = —AVVi(X)ii it follows that ||r;]| §~EZ5 fori=1,..., k. Therefore, the
right-hand side of (7.3.2) is a lower bound for n(z, A). The lower bound is attained for
the perturbations

1 s sign(\; .
AVo = ~=lIBoll, AV, = gg( )5,

7
1 1

fori,7=1,...,k. O

If W is Hermitian then it is of interest to consider a backward error in which the
perturbations AV;; are Hermitian. The backward error for a Hermitian MEP can be
defined as

Mm@, A) i=min{ e: (W(X) + AW;(X)T; = 0, AV}, = A,

25

(7.3.3)
AV, <ellEill, i=1,...,k; §=0,...,k}.

It is clear that ny(#, A) > n(Z,A) and that the optimal perturbations in (7.3.1)
are not Hermitian in general. The next lemma, which is is a generalization of [32,
Lemma 2.6], shows that in the case when A is real requiring the perturbations to be
Hermitian has no effect on the backward error.

Theorem 7.3.2 If W is Hermitian and X is real then

Proof: It follows from X being real that x;r; is real. We are looking for a Hermitian
matrix S; such that S;z; = —r;. We take S; = ||r;||I if r; is a negative multiple of
z;; otherwise we take S; = ||r;||H; where H; is a Householder matrix that maps z; to
—r;/||rill. Such an H; exists because Z;r; is real and is equal to I — 2(w}w;) lww},
where w; = z; + r;/||r:]-

Let AV;; be Hermitian matrices defined by

1 1 . ~
AVy = §||EZ-0||H,~, AV = 7 sign(\;) || Ei; || H; (7.3.5)

2 2
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for i,5 = 1,...,k. It follows that AW;(A) = S; and the first constraint in (7.3.3) is
satisfied. Using (7.3.2), we get

I1S:ll = llrall < n(@, X)B;
fori =1,...,k. From (7.3.5) we deduce (@, X) < n(@, ). Since nu(Z, ) > n(F, \)

by definition, equality (7.3.4) must hold. a
We remark that one can see from zS;z; = —z;r; that a Hermitian matrix S; such
that S;z; = —;r; exists only when zr; is real. This is the reason why Lemma 7.3.2

cannot be generalized for nonreal approximations . As it is reasonable to assume that
A is real if A is real, Lemma 7.3.2 can also be applied for a right definite MEP.

If we are interested only in the approximate eigenvalue A, then a more appropriate
measure of the backward error may be

77(;\) := min{ n(z, 5\) : @ normalized }.
Proposition 7.3.3
~ 1 ~
n(A) = max = omin(Wi(A)).

i=1,...k 3

Proof: The result follows from Theorem 7.3.1 by using the equality
min ||Az|| = omin(A)-

llz[]=1
O

Remark 7.3.4 Although in this chapter we do not consider componentwise backward
errors, componentwise results from [32] can be generalized as well. %)

7.4 Condition numbers

In this section, we assume that A is a nonzero algebraically simple eigenvalue of a non-
singular MEP W with corresponding normalized right eigenvector @ and left eigenvector

Y.

7.4.1 Eigenvalue condition number

A normwise condition number of A can be defined by

JAA]

k(A W)  :=limsup { .

el0

k
(Wo + AV — Z()\j + AN (Vij + AVU)> (z; + Ax;) =0, (7.4.1)

=1

HA%nsﬂ&mwzlwwmj=owwk}
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The following results can be considered as generalizations of the theory in [32, Sec-
tion 2.2].

Theorem 7.4.1 The condition number (X, W) is given by
k(A W) =By, (7.4.2)
where

k
Bi = | Eaoll + D IN111 Byl
7j=1

fori=1,....k, and B=[B --- Bi]".
Proof: If we expand the equality constraints in (7.4.1) and keep only the first order
terms then we get
k
AVVZ(A).IZ + Z A/\JVLJ.@, + WZ(A)A.IZ = 0(82), 1=1,...,k. (743)
j=1

Premultiplying by v; yields

k
VAW (N)zs + 15 > AN Viyzi = O(?)

j=1
for s =1,..., k. By rearranging the equations we obtain the linear system
yiVurr - yiVim AN ZITAW1 (>\)$1
: : L = : +0(e?),
yZVkﬂk et yZkaSEk ADVA yZAWk ()\)ﬂﬁk
or in shorter form
ZITAW1 (A)Qfl
B()A)\ = + 0(52).
y;;AWk (A)ﬂ?k

Since A is an algebraically simple eigenvalue, it follows from Lemma 7.1.1 that By is
nonsingular. Thus,
Yt AW (A)xq
AX = B! : + O(e?)
Y AW () g
and we conclude

IAX < [|B5 ' ll.g + O(e*) = ellBy 'l g + O(e?).

Hence, the expression in (7.4.2) is an upper bound for the condition number. To show
that this bound can be attained we take the matrices

AVio = el Euollyiai,  AVig = —sign(Ay)el| Eijllyi;
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fori,j=1,... k. |

As for the backward error, if the MEP W is Hermitian then it is natural to restrict
the perturbations AVj; in (7.4.1) to be Hermitian. We denote

IAA]

ka(A, W) = limsup { .

el0

(V;O + AV;() — Z()\] —+ A/\])(V;J =+ A‘/;j)> (CL‘Z + AJ)Z) = 0,

Jj=1

AVE = AV, [|AVy ]| < ellByll, i = 1,..., j:o,...,k}.

Lemma 7.4.2 If X\ is a real algebraically simple eigenvalue of a Hermitian multiparam-
eter eigenvalue problem W then

k(A W) = k(A, W).

Proof: For a Hermitian MEP and algebraically simple eigenvalue A we can take y = «
and then the matrices H; in the proof of Theorem 7.4.1 are Hermitian. It follows that
the perturbations for which the bound is attained are also Hermitian. O

As in Section 7.3 let us remark that Lemma 7.4.2 can also be applied to a right definite
MEP.

7.4.2 Eigenvector condition number

In order to study the condition number of the eigenvector of an algebraically simple
eigenvalue we introduce the following approach. If an eigenvector € = 1 ® -+ - ® zy is
perturbed to © = (z1 + Az1) @ - - ® (2, + Axy), then we are interested in || vec(Ax)||,
where

vec(Azx) = [Az] -+ Ax]]"
is a vector in C™ 7% Therefore we define a normuwise condition number of & by

|| vec(Az)||
—
k
<Vio + AVip = Y (A + AN) (Vi + AV;’J')) (z; + Az;) =0,
7j=1
gz = gf (x; + Az;) =1,

k(x, W) = limﬁ)up {
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where the vectors g; that are used for the normalization of & are such that g x; # 0 for
1=1,...,k and that the matrix

gikVnﬂh g)lk‘/ikxl
: : (7.4.4)

G Viiwk - gy VikT

is nonsingular. We can for instance take g; = y;, since in this case the matrix (7.4.4) is
equal to By, which is nonsingular for algebraically simple eigenvalues by Lemma 7.1.1,
see also Remark 7.4.5.

Let m = ny + - - - + ng. We can combine all the equations (7.4.3) into one equation
in C™ as

Dvec(Azx) = —diag(AW;(A)) vec(z) — VAX + O(£?), (7.4.5)
where
Wi(A) AW (N)
D= : ,  diag(AW;(A)) = ;
Wi AWL(N)
Vuzr - Via
V= : : ;
Viirgy -+ Vg

AX=[AN --- AN]T, and vec(zx) =[] --- 2} )7,

If we define the m X k& matrix

g 0 --- 0
G— 0 g2 :
: .0
0 0 o

then G*V is equal to (7.4.4). As aresult G*V is nonsingular and we can define an oblique
projection
P=I-V(GV)'G*

onto span(G)* along span(V). Tt follows that PV = 0 and when we left multiply (7.4.5)
by P we obtain

PDvec(Ax) = —Pdiag(AW;(X)) vec(z) + O(e?). (7.4.6)

From gfAxz; =0 for i = 1,..., k it follows that G* vec(Az) = 0 and thus P vec(Ax) =
vec(Ax). Now we can rewrite (7.4.6) as

PDPvec(Ax) = —Pdiag(AW;(A)) vec(x) + O(?). (7.4.7)
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Lemma 7.4.3 The operator T defined by T := PDP is a bijection as an operator from
Gt onto G+, where G+ = Span(G)L

Proof: Since T clearly maps to G+, it is enough to show that 7 is injective. Suppose
that there exists a z € G such that Tz = 0. Since Pz = z, there exists an h € C* such
that

Dz =Vh. (7.4.8)

If we left-multiply (7.4.8) by Y*, where Y is the m x k matrix

Y: 0 Y2 ' ’
: 0

we obtain Y*Vh = 0 and since Y*V is nonsingular it follows that h = 0. As a result we
have W;(X)z; = 0 for i = 1,..., k where z is partitioned conformally with vec(z). Since
A is algebraically simple by assumption it follows that dim ker W;(X) = 1 and therefore
z; = 7;x; for certain v; € C. Now we know that G*z = 0 on the one hand, and on the
other hand G*z = [y; --- %" so s = 0 for ¢ = 1,...,k from which we conclude that
z=0. O

It follows from Lemma 7.4.3 and (7.4.7) that
-1
vec(Ax) = (PDP‘ gL) Pdiag(AW;(X)) vec(x),

where PDP‘ gl is a restriction of PDP to G*. This gives

|| vec(Ax)|| < e

(PDP| QL) - PH[_} L+ O(e?), (7.4.9)

where
“A”,B,n = max{ |Az|| : z = [le z,{]T, 2z €CY, ||zl < Bi, i =1,. ..,k}

and n = [n; --- ng]’. One can view this (3, n)-norm as a block version of (7.2.1). This
leads to the next theorem.

Theorem 7.4.4

Kz, W) = H(PDP|QL)_1PH (7.4.10)

B,n

Proof: In the discussion preceding the theorem we showed in (7.4.9) that

K(z, W) < H(PDP|QL)_1PHﬂ’n.
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What remains is to construct a perturbation for which equality is attained. Suppose

that for z = [2T --- 2I]7 such that ||z]| < B; fori =1,...,k we have
-1 -1
H(PDP\QL) PH — H(PDP|QL> Pz|.
B,n
Equality in (7.4.9) is then attained if we take
E;
AV, = _ElEwll 3
87}
fori,j=1,... k. O

Remark 7.4.5 If we take g; = y; for i« = 1,...,k then D is a bijection as an op-
-1
(ppP|,.) P

erator from Y+ to Y+, where )V := span(Y), and we have

‘,B,n
~1
HP <D\w> PHﬂ,n' %

From (7.4.9) we can produce an upper bound for the norm of & — x. If we consider
only first order terms then we have

12 — || < [|Az]| + - + [| Az + O(e?)

and it follows that
& — z|| < VE | vec(Az)|| + O(?).

If we apply (7.4.9) then we obtain the bound

& — x| <eVk H <PDP|QL)_1 PHﬂ’ . + O(e).

7.5 Pseudospectra

Another tool for the study of the sensitivity of the eigenvalues to perturbations are
pseudospectra. They have been studied for the standard (see, e.g., [87, 88], and [66])
and generalized eigenproblem [24] and for the polynomial eigenvalue problem (see, e.g.,
[85]). We extend the definition of pseudospectrum to the multiparameter eigenvalue
problem.

We define the e-pseudospectrum of W by

A(W) = {)\ eC : Wi(A)+ AW;(A) singular, (7.5.1)

IAV I < ellByll, i=1,.. .,k j=o,...,k}.
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If we define the e-pseudospectrum of W; by
AW = {A € 1 Wi(A) + AWA() singular, [[AV;] < el Byl 5 =0,...,k},
then it is easy to see that
A (W) =A(W1) N A (Wo) N - - N A (Wy).

Theorem 7.5.1

A(W) = {xeCt : pAN)<efori=1,...,k}

(xeC : omn(Wi(N) <efBifori=1,...,k}

{xeC : WA >1/@Ef) fori=1,....k}

{AeC : Fu, |lwl =1 with [[Wi(Aw| <eB; fori=1,....k}.

Proof: The first equality follows readily from Definition (7.5.1). For the second equal-
ity Proposition 7.3.3 can be applied. The last two equalities follow from the identity
min, o ||Az||/||z]| = |4 Y ! = omin(A), with the convention that ||A || = oo if A is
singular. O

Pseudospectra for the MEP have a property that is different from pseudospectra for
the standard eigenvalue problem Ax = Az: if € is large enough then A.(W) will be
unbounded. This is the subject of the rest of this section.

If W is a right definite MEP, then we may be interested in the smallest perturbation
that makes W + AW not right definite. Again, here we restrict the perturbations AVj;
to be Hermitian. We can define the distance to the closest non right definite MEP as

(W) :=min{e : W + AW is not right definite, AV;; = AV},
1AVl < ellBgll, i=1,..., ks j=0,....k}.

In the next theorem we show that £&(W) is bounded by the minimal & for which the
pseudospectrum is unbounded.

Theorem 7.5.2
E(W) <min{e: A, (W) is unbounded }. (7.5.2)

Proof: It is sufficient to prove that a right definite W cannot have “infinite” eigenvalues.
If A= (\q,...,\) is an eigenvalue of a right definite W with corresponding normalized
eigenvector € = 1 ® - -+ ® xy, then it follows that ); is equal to the tensor Rayleigh
quotient [64]

A = A\

r*Ayx
fori=1,...,k. From (7.1.3) and right definiteness, we get the bound (7.5.2). O
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7.6 Numerical experiments

We present some numerical examples obtained with MATLAB 5.3. For all examples
we take F;; = Vj; for all 4,j (corresponding to relative perturbations). We draw all
pseudospectra by computing oy, (W;(A)) in all grid points by MATLAB’s svd. For more
efficiency one could try to use similar ideas as mentioned in [87], but we will pay no
further attention to this. The size of the grid used in the examples is 400 x 400.

Experiment 7.6.1 For the first numerical example we take the right definite two-
parameter eigenvalue problem

11 22 1 0.1 -1
Wi = [1 2] M [12.3] m R [—1 0.1]’

2 1 1 —0.2 2 —0.1
W2(A) = [1 —1} - M [—0.2 —0.1] — [—0.1 4}'

2 2
)\2 0 )\2 0
-2 -2
-2 0 2 -2 0 2
A A

1 1

FIGURE 7.1: Pseudospectra for Example 7.6.1. Top left: The eigenvalues are intersections of the
eigencurves det W1(A) = 0 (solid line) and det W2(A) = 0 (dashed line). Top right: pseudospectra for
e=10"1% 10715 1072, 107°9 and 10-%¢. Bottom: pseudospectra for Wy (left) and W (right).

The eigenvalues A = (A1, Ag) are intersection points of the eigenvalue curves defined by
det(W1(A)) = 0 and det(W5(A)) = 0 as depicted in the top left picture in Figure 7.1.
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The pseudospectra for ¢ = 107%¢, 10793, 10°, and 10%? are shown in the top right
picture in Figure 7.1. One can see that the boundaries of the pseudospectra are not
differentiable. The reason is that pseudospectra are intersections of pseudospectra for
Wi and Wy, which are shown on the bottom left and bottom right picture in Figure 7.1,
respectively.

TABLE 7.1: Eigenvalues and their condition numbers for the right definite two-parameter problem
in Example 7.6.1.

/\1 )\2 K/(A, W)
—1.0142 1.5688 4.66
0.4556 | —0.3613 2.42
0.9360 | —0.4025 3.34
1.0069 0.7125 3.37

The eigenvalues together with the corresponding condition numbers are presented in
Table 7.1. To obtain the condition number of an eigenvalue we have to compute || B, || 8-

Since the problem is right definite and all matrices V;; are real we have to consider only
real vectors in definition (7.2.1) of ||BO’1||13. This fact makes it easy to compute the

B-norm as we only have to compute a finite number of norms. In particular, for a right
definite two-parameter case we have

||Bo_1||ﬁ = max{ ||Bo_lz|| : 2€R?, |zl =pBifori=1,2).

By comparing the results of Table 7.1 and Figure 7.1 one can see that the eigenvalue with
the largest condition number has the “largest pseudospectrum” as may be expected.

A, of

ol
N

-2

>

(a)
FIGURE 7.2: Left: eigenvalues of 500 randomly perturbed two-parameter eigenvalue problems

of Example 7.6.1, where each AVj; is a symmetric matrix such that ||AV;|| = 107*2||V;|, and the
pseudospectrum for ¢ = 10712, Right: pseudospectra for Example 7.6.1 for ¢ = 1079 and ¢ = 10~%6.

Figure 7.2(a) shows eigenvalues of 500 randomly perturbed problems, where each
AVj; is a random symmetric matrix such that [[AV;|| = 107"2||Vj;||. One can see that
all dots in Figure 7.2 lie in the interior of the pseudospectrum for ¢ = 10~12.
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Figure 7.2(b) presents pseudospectra for ¢ = 107% and ¢ = 107%% on a larger
area. One may suspect that here, in contrast to the eigenvalue problem Ax = Az, a
pseudospectrum may be unbounded.

Figures 7.1 and 7.2 suggest that the sensitivity of the eigenvalue is related to the
angle of the intersection between the curves det(WW;(A)) = 0 and det(Wa(A)) = 0. We
observe that the pseudospectrum is large when the angle of the intersection is small.
The following proposition (which can be easily generalized to MEPs with more than two
parameters) justifies this observation.

Proposition 7.6.2 Let u = (1, u2) € R? be an algebraically simple eigenvalue of a real
right definite two-parameter eigenvalue problem W and let € = 1 Q x5 and y = y1 Q@ ¥
be the corresponding normalized right and left eigenvector, respectively. Then

-1

ni—1
+ [ o 0 of of
[[ 700 Oy Oy
By = — Jj=1 8/\1 8)\2
" g %( ) of2 )|
0 + H Gj (l'l') 8/\1 K 8)\2 ®
j=1
where f;(X) = det W;(X) and where O'Y) (p) > aéi) () >---> ofl?_l(u) > 0 are nonzero

singular values of W;(u) for i =1,2.

Proof: We define Z(t) = Vip — tVi1 — uaVie and g(t) = det(Z(t)). Since Z(t) is a real
analytic function of ¢, there exists an analytic singular value decomposition (see [15])

Zt) =U)2)V ()T (7.6.1)
such that
1. U(t) and V(t) are orthogonal matrices,
2. X(t) = diag(o1(t),- - ., 0n,(t)) is a diagonal matrix,

3. the elements of U(t), X(t), and V(¢) are analytic functions of ¢ in a small neigh-
borhood of py, and

4. Z(p1) = U(p1)X(11)V (u1)" is a singular value decomposition of W;(p).

We may consider (7.6.1) as a singular value decomposition of Z(t) where the singular
values are not necessarily nonnegative and ordered for all ¢. Let wu,, () and vy, (t) de-
note the n;th column of U(t) and V (¢), respectively. Since p is an algebraically simple
eigenvalue, o, (1) =0, 0p,—1(11) # 0, vy, (1) = x5, and up, (p1) = yi-

If we differentiate o, (t) = un, (£)T Z(t)vy,, (t) then we obtain

doy,

() = —ZUTVHM = —(Bo)11- (7.6.2)
dt
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From g(t) = Fo1(t)o2(t) - - - 0,,(t) and (7.6.2) it follows that

8f1 dg 1 1
8—)\1(“) = ()= +0( () - o)1 (1) (Bo)ur.
In order to complete the proof one has to repeat the above procedure for all partial
derivatives g{; (n) for i, 5 =1,2. O

It follows from Theorem 7.4.1 and (7.2.2) that ||B,'|| has a great impact on the
sensitivity of the eigenvalue A. As follows from Proposition 7.6.2, ||B, || may be large
when the angle of the intersection between the curves det(1W;(A)) = 0 and det(Ws(A)) =
0 is small. @

Experiment 7.6.3 For the second example we take the two-parameter Sturm—Liouville
problem

Wi Az (t1) = —2f(t1) — (A + Agcos 2ty)zy (),

(7.6.3)
Wa(N)za(te) = —a5(tz) — Aawa(ta)

with boundary conditions z;(0) = z;(w) = 0 for ¢ = 1,2, studied in [6]. The second
equation of (7.6.3) yields that Ao = 12,22 3% ... and then it follows from the first equation
of (7.6.3) that A is an eigenvalue of Mathieu’s equation with parameter A,.

If we take h = m/n and apply the finite-difference method to the two-parameter
boundary-value problem (7.6.3) using symmetric differences y; ~ (y;41 — yi—1)/(2h) and
Yl & (yiz1 — 2y; + yi_1)/h? for the derivatives 3’ and y”, then we obtain an algebraic
two—parameter problem where

1
Vip=Va = trldlag(la —2, 1)5

h2
‘/11 == I, ‘/21 = 0, (764)
2m 47 2nm
Vip = di ( , ) Voo = I,.
19 iag COSn+1COSn—|—1 COSn+1 59

The eigenvalues of the above algebraic two-parameter problem are approximations to
the eigenvalues of (7.6.3) with order of approximation O(h?).

Figure 7.3 shows eigenvalues and pseudospectra for the algebraic two-parameter ap-
proximation (7.6.4) of (7.6.3) for n = 10. The left figure shows eigenvalues as the
points where eigencurves det(W;(A)) = 0 (solid line) and det(W5(A)) = 0 (dashed line)
intersect. Note that the lines det(W5(A)) = 0 do not agree with the known result
Mo = 12,22 32 ... since the eigenvalues in Figure 7.3 are the eigenvalues of the alge-
braic approximation (7.6.4) and not of the original problem (7.6.3). The eigenvalues
occur in groups of two for a fixed Ay. In some of these pairs the eigenvalues are so
clustered that they look like a single eigenvalue in Figure 7.3, an example of such a pair
is (—12.6225,34.7056) and (—12.6215,34.7056). The right figure with the pseudospectra
for e = 10718,107%,...,107%C indicates that the fact that some of the eigenvalues are
clustered does not have much influence on their pseudospectra; the eigenvalues are well
conditioned. @
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FIGURE 7.3: Spectrum and pseudospectra for the algebraic two-parameter approximation of
Example 7.6.3, where n = 10 and € = 10~*8, 10-1-5, 10712, 1079 and 10796,

7.7 Conclusions

We have studied the backward error, condition numbers, and pseudospectra for the MEP.
The results can be viewed as a generalization of the theory for the generalized eigenvalue
problem and have similarities with the results for the polynomial eigenvalue problem.
We also studied the nearness of a right definite MEP to a non right definite MEP and
established that it is connected with unbounded pseudospectra.






Chapter 8

Alternatives to the Rayleigh
quotient for the quadratic
eigenvalue problem

Abstract. We consider the quadratic eigenvalue problem A\?>Az + ABz + Cz = 0.
Suppose that u is an approximation to an eigenvector z (for instance obtained by
a subspace method), and that we want to determine an approximation to the cor-
responding eigenvalue A. The usual approach is to impose the Galerkin condition
r(0,u) = (0244 0B+ C)u L u from which it follows that # must be one of the two
solutions to the quadratic equation (u*Au)0? + (u* Bu)f + (u*Cu) = 0. An unnat-
ural aspect is that if u = z, the second solution has in general no meaning. When
u 18 not very accurate, it may not be clear which solution is the best. Moreover,
when the discriminant of the equation is small, the solutions may be very sensitive
to perturbations in u.

In this chapter we therefore examine alternative approximations to A. We com-
pare the approaches theoretically and by numerical experiments. The methods
are extended to approximations from subspaces and to the polynomial eigenvalue
problem.

Key words: quadratic eigenvalue problem, Rayleigh quotient, Galerkin, mini-
mum residual, subspace method, polynomial eigenvalue problem, backward error,
refining a Ritz pair.

AMS subject classification: 65F15 (65F50).

8.1 Introduction

First consider the eigenvalue problem Az = Az, with A a real symmetric n X n matrix,
where n > 2. Suppose that we have an approximate eigenvector u with unit norm. The
usual approximation to the corresponding eigenvalue is given by the Rayleigh quotient

*Based on joint work with Henk A. van der Vorst, see Section 1.5.
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of u ‘
u*Au
= = : 8.1.1
p=plu) = (8.1.1)
This Rayleigh quotient has the following attractive properties:
1. p satisfies the Ritz-Galerkin condition on the residual (0, u):
r(p,u) = Au — pu L u. (8.1.2)
2. p satisfies the minimum residual condition on the residual
p = argmin | Au — Bul|. (8.1.3)
0eRrR

3. The function p(u) has as its stationary points exactly the n eigenvectors z;, and
even

dp .
ﬁ(.fz) = 0. (8.1.4)

(Recall that stationary means that all directional derivatives are zero.) This im-
plies that a first order perturbation of the eigenvector only gives a second order
perturbation of the Rayleigh quotient: p(z; + h) = A; + O(||h|]?).

Remark 8.1.1 When A is normal, (8.1.2) and (8.1.3) hold, and the eigenvectors are still
stationary points, though the Rayleigh quotient is in general not differentiable. When
A is nonnormal, (8.1.2) and (8.1.3) also hold, but the eigenvectors are in general not
stationary points. One can show that instead of this, the two-sided Rayleigh quotient
plu,v) = % has as its stationary points exactly the right/left eigenvectors combi-
nations (z;,v;), provided that yz; # 0, see also (2.3.1). This suggests replacing the
Ritz—Galerkin condition (8.1.2) by the Petrov—Galerkin condition

r(,u) = Au—Qu L v,

which is used in two-sided methods such as two-sided Lanczos [51] and two-sided Jacobi-
Davidson (Chapter 2). However, we use no information about the left eigenvector in this
chapter. %)

Now consider the quadratic eigenvalue problem
QNz := (NA+AB+C)z =0, (8.1.5)

where A, B, and C are (complex) n x n matrices. In this chapter, we examine general-
izations of the properties (8.1.2)—(8.1.4) for the quadratic eigenvalue problem, to derive
different eigenvalue approximations. See [86] for an overview of the quadratic eigenvalue
problem. For an eigenvector x we have either one of the following properties:

e Ax and Bz are dependent, then C'x is also dependent, and there are two eigenvalues
(counting multiplicities) corresponding to z,
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e Axr and Bz are independent, C'z lies in the span of Ax and Bzx, and the corre-
sponding eigenvalue A is unique.

We will assume in the remainder of the chapter that = has the second property. For a
motivation see Remark 8.2.3 at the end of Section 8.2.4.

Now let u be an approximation to an eigenvector x, for instance one obtained by
a subspace method. We will also assume that Au and Bu are independent, which
is not unnatural in view of the assumptions that Az and Bz are independent, and
u ~ x; see also Remark 8.2.3. We study ways to determine an approximation 6 to
the eigenvalue A, from the information of u. In Section 8.2.1 we discuss the “classical”
one-dimensional Galerkin method, while in Sections 8.2.2, 8.2.3, and 8.2.4 we introduce
new approaches. The methods are extended to subspaces of dimension larger than one
and to the polynomial eigenvalue problem in Section 8.3. Numerical experiments and a
conclusion can be found in Section 8.4 and 8.5.

8.2 Approximations for the quadratic eigenproblem

8.2.1 One-dimensional Galerkin

For an approximate eigenpair (0, u) =~ (A, z) we define the residual r(6,u) by
r(0,u) == Q(0)u = (0°A + 6B + O)u.

The usual approach to derive an approximate eigenvalue 6 from the approximate eigen-
vector u is to impose the Galerkin condition r(#,u) L u. Then it follows that 6 = 0(u)
must be one of the two solutions to the quadratic equation

af® + B0+~ =0, (8.2.1)

where o = a(u) = v*Au, 8 = f(u) = v*Bu, and v = y(u) = v*Cu. An unnatural aspect
is that if u = x, the second solution of (8.2.1) has in general no meaning. If u is close to
x, we will be able to decide which one is best by looking at the norms of the residuals.
But if u is not very accurate, it may not be clear which solution is the best. For instance,
this may happen when we try to solve (8.1.5) by a subspace method; in the beginning of
the process, the search space may not contain good approximations to an eigenvector.
This problem is also mentioned in [5, p. 282].

A second, related problem is the subject of the rest of this subsection. A nice property
that an approximate eigenvalue can (or should) have is that it is close to the eigenvalue
if the corresponding approximate eigenvector is close to the eigenvector. In other words,
we like the situation where

0(x + h) — Al = |0(z + h) — 6(x)| is small

for small ||h||. When 6 is differentiable with respect to u in the point z this is equivalent
to the condition

H g—z(x) is small. (8.2.2)
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The one-dimensional Galerkin approach (8.2.1) defines # implicitly as a function of «,
B, and v, say f(0,a,B,7v) =0, with f(\, a(z), 5(z),y(z)) = 0. Define the discriminant
0 by

§ =6(u) := % — day. (8.2.3)

When §(z) # 0, the Implicit Function Theorem states that locally 6 is a function of «,
B, and v, say 6 = p(«a, 5,7), and that

Dy(a(z), f(x),7(z)) = —((Dof)™" Diapf)(As a(x), B(2),7(2))
= =+ ! S(AFN ).
6(x)

So when ¢ is small, which means that (8.2.1) has two roots that are close, then the
solutions of (8.2.1) may be very sensitive to perturbations in v (although in general,
the coefficients «, 3, and <y are not differentiable with respect to u). Therefore, we
may expect that | — A| is large for small perturbations of z, see also the numerical
experiments. Thus, the second solution of (8.2.1) is not only useless, but it may also
hinder the accuracy of the solution that is of interest!

We therefore examine alternative ways to approximate A. We generalize the Galerkin
property (8.1.2) and minimum residual property (8.1.3) for the quadratic eigenvalue
problem in the following three subsections.

Remark 8.2.1 As in the standard eigenvalue problem, 6 = 6(u,v) as solution of
(v* Au)0? + (v* Bu)f + (v*Cu) =0

is stationary in the right/left eigenvector combinations (z;,v;). However, we use no
information about the (approximate) left eigenvector in this chapter. @

8.2.2 Two-dimensional Galerkin

In the standard eigenvalue problem, we deal with two vectors u and Awu, which are
asymptotically (by which we mean when u — z) dependent. Therefore it is natural to
take the length of the projection of Au onto the span of v as an approximation to the
eigenvalue, which is exactly what the Rayleigh quotient p(u) (see (8.1.1)) does. For the
generalized eigenvalue problem we have a similar situation.

In the quadratic eigenvalue problem, however, we deal with three vectors Au, Bu, and
C'u, which asymptotically lie in a plane. Therefore it is natural to consider the projection
of these three vectors onto a certain plane, spanned by two independent vectors p and
g- To generalize the approach of (8.1.2), define the generalized residual r(p, v, u) by

r(u,v,u) := (A + vB + C)u. (8.2.4)

The idea behind this is that we want to impose conditions on r such that p forms an
approximation to A%, and v an approximation to A\. Then both y/v and v may be good
approximations to the eigenvalue A. A generalization of (8.1.2) is obtained by imposing
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two Galerkin conditions 7(u, v, u) L p and r(u, v, u) L ¢ for specific independent vectors
p,q. This leads to the system

When W*Z is nonsingular, (8.2.5) defines a unique p and v. A logical choice for p
and ¢ is any linear combination of Au, Bu, and C'u. Specifically, one could take the
“least-squares” plane such that

I( = I Aul|* + [|(1 — I Bul]* + || — I)Cul|*

is minimal, where II is the orthogonal projection onto the plane. An advantage of this
least-squares plane is that it takes the norm of the vectors Au, Bu, and C'u into account.

Let z be the normal in span(Au, Bu, Cu) of the sought plane, then one may verify
that ||(I —II)Aul|? = ||(2*Au)z||? = |2* Au|?. If D denotes the n x 3 matrix with Au, Bu,
and Cu as its columns, then z is the vector of unit length such that ||z*D||? is minimal.
So we conclude that z is the minimal left singular vector of D, and for p and ¢ we can
take the two “largest” left singular vectors. Another choice for p and ¢, as well as its
meaning, are discussed in Section 8.2.4.

This two-dimensional Galerkin method yields three approximations to the eigenvalue.
Besides the already mentioned possibilities u/v and v, we can determine a third approx-
imation by solving for # € C such that

v )-12]

is minimal. We will indicate this solution as the “argmin” solution. Differentiating
(8.2.6) with respect to Re(f) and Im(f) gives two mixed equations of degree three in
Re(#) and Im(#). We may try to solve these equations by modern algorithms for systems
of polynomials, see for instance [99, 102]. Another approach to solve the two coupled
cubic equations is to form an equation, the so-called resultant in only Re(6) or Im(#) (see
Section 8.4). It appears that in this case, the degree of the resultant is (only) five. Since
we use this equation to find Re(#) and Im(#), only the real solutions are of interest. The
approach via the resultant may be numerically somewhat less stable, but an advantage is
that one can use widely available mathematical packages such as MAPLE, as is done for
experiments in Section 8.4. We will summarize the two-dimensional Galerkin method,
and the two-dimensional minimal residual method (to be discussed in Section 8.2.4) in
Algorithm 8.2.1.

Let us consider the sensitivity of the approximations derived by the two-dimensional
Galerkin method (8.2.5). As seen, we have three possible approximation to the eigen-
value: p/v, v, and the “argmin” solution. Asymptotically, if we take u = z, then we
may assume W = Z = [ Az Bz |. When we “freeze” W = Z = [ Az Bz | and differ-
entiate (8.2.5), it can be seen that the sensitivity of p and v is related to x(Z), the
condition number of Z (cf. [31, Section 5.3.7]). For comparison, we will give £(Z) in the
experiments.

2

(8.2.6)
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When p and v are differentiable with respect to u (as is the case for the quasi-
hyperbolic quadratic eigenvalue problem, see below), then we have that
1 ou

O(u/v) ov
ou (z) = Y a—u(m) - B_u(x)'

(8.2.7)

This suggests that p/v might give inaccurate approximations for small A, which is con-
firmed by numerical experiments, see Experiment 8.4.1. In general, p and v are not
differentiable with respect to u, but still u/v will be sensitive for small A\. The sensi-
tivity of the “argmin” solution will depend on the coefficients of the two defining cubic
equations; we omit a (difficult) analysis.

8.2.3 One-dimensional minimum residual

Another approach generalizes the minimum residual approach (8.1.3). We try to mini-
mize the norm of the residual with respect to 6:

min 1(6*A+ 6B + C)ul>. (8.2.8)

For complex 6, differentiating (8.2.8) with respect to Re(f) and Im(f) gives two mixed
equations of degree three in Re(#) and Im(#). As in the previous subsection, we may use
available algorithms [99, 102], or form the resultant, which in this case has degree nine
(in only Re(f) or Im(#)), see also Section 8.4.

In the special case that we know that A is real, we would like to have a real approx-
imation #. Then differentiating (8.2.8) with respect to 6 gives the cubic equation with
real coeflicients

41| Au?0® + 6 Re((Au)*Bu)6* + 2 (||Bul|* + 2 Re((Cu)*Au)f + 2 Re((Cu)* Bu) = 0,
(8.2.9)
which may be solved analytically. For instance, this is the case for the important class
of quasi-hyperbolic quadratic eigenvalue problems:

Definition 8.2.2 (cf. [86, p. 257]) A quadratic eigenvalue problem Q(A)z = 0 is called
quasi-hyperbolic if A is Hermitian positive definite, B and C' are Hermitian, and for all
eigenvectors of () we have

(z*Bx)? > 4(z* Az)(z* Cx).
%)

It is easy to see that all eigenvalues of quasi-hyperbolic quadratic eigenvalue problems
are real.

We would like to stress that the one-dimensional minimum residual approach may
also suffer from the same difficulties as the one-dimensional Galerkin method. In some
cases, there may be more than one solution to choose from, and the irrelevant solutions
may affect the accuracy of the relevant solution (cf. the discussion in Section 8.2.1).
When there is more than one real solution, we take the one that minimizes the norm
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of the residual (just as for the one-dimensional Galerkin method). However, in most
numerical experiments of Section 8.4, the resultant has a unique real solution, making it
unnecessary to choose. Moreover, the one-dimensional minimum residual method often
gives (much) better results than the one-dimensional Galerkin method, see Section 8.4.

8.2.4 Two-dimensional minimum residual

Another idea is to minimize the norm of the generalized residual (8.2.4) with respect to
MVt

argmin || (uA +vB + C)u||. (8.2.10)
(p,v)eC?

To solve this, consider the corresponding overdetermined n X 2 linear system
Z [ H ] = —Clu,

with Z asin (8.2.5). By assumption Au and Bu are independent, so p and v are uniquely
determined by

[ ’V‘ } =—ZtCu=—(22)" Z*Cu,

where Z* denotes the pseudoinverse of Z. We see that (8.2.10) is a special case of (8.2.5),
namely the case where we choose p = Au and ¢ = Bu, so W = Z.

As in Section 8.2.2, we can form three possible approximations to the eigenvalue from
the computed p and v: p/v, v, and argmin ||(62,0) — (u, v)||>. From Section 8.2.2, it
follows that the approximations derived by the two-dimensional methods depend on the
plane of projection. The plane of the two-dimensional Galerkin method is contained
in span{Au, Bu, Cu} (see Section 8.2.2), while the plane for the two-dimensional mini-
mum residual method is span{Au, Bu}. Since span{Az, Bx,Cz} = span{Az, Bz}, we
conclude that when v = z, both two-dimensional methods yield the same approxima-
tions. As a consequence, the sensitivity of the approximations is also the same for both
two-dimensional methods.

The two-dimensional methods are summarized in Algorithm 8.2.1.

The following remark explains why we assumed in Section 8.1 that both of the pairs
Az and Bz, and Au and Bu are independent.

Remark 8.2.3 When Au and Bu are dependent, then the one-dimensional minimum
residual approach reduces to the one-dimensional Galerkin approach, while the two-
dimensional methods are not uniquely determined. When Az and Bz are dependent,
then, though the approaches may be uniquely determined, the results may be bad. (In
this case omin([ Az Bz ]) = 0, so p and v are “infinitely sensitive”, see Section 8.2.2.)
For example, the matrix Z in the two-dimensional methods is ill-conditioned if u is a
good approximation to x. Of course, for Au and Bu to be independent, we must have
n > 2. @
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Input: an approximate vector u
Output: three approximate eigenvalues

1. Choose a plane of projection spanned by p and g:

(a) the two “largest” left singular vectors of [ Au Bu Cu] (Galerkin),

(b) or p= Au and ¢ = Bu (minimum residual)
2. Compute (p,v) = —(W*Z)"'W*Cu, where W = [p ¢] and Z = [ Au Bu]
3. Approximate A by one of the following:

(a) p/v

(b) v

(c) argminy [|(6%,8) — (1, v)|I?

ALGORITHM 8.2.1: The two-dimensional Galerkin and two-dimensional minimum residual
method

8.3 Extensions

8.3.1 Approximations from subspaces

We can also use the techniques described in Section 8.2 for approximations to eigenpairs
from subspaces of dimension larger than one. Let U be a k-dimensional subspace, where
for subspace methods one typically has £ < n, and let the columns of U form a basis
for U. The Ritz—Galerkin condition

6?Au + 6Bu+ Cu L U, uelu,
leads, with the substitution u = Us, to the projected quadratic eigenvalue problem
(0*U*AU + 0U*BU + U*CU)s = 0, (8.3.1)

which in general yields 2k Ritz pairs (6,u). For a specific pair, one can, as a first step,
“refine” the value 6 by the methods of Section 8.2. Although it is not guaranteed that the
new @ is better, it seems to be often the case, see the numerical experiments. Moreover,
we can monitor the backward error.

Definition 8.3.1 (cf. [84]) The backward error of an approximate eigenpair (6, u) of
Q@ is defined as

n(0,u) :=min{e: (6*(A+ AA)+6(B+ AB)+ (C+ AC))u=0,
[AA]l < €6, [[AB] < €6y, [[AC < &G }-

The backward error of an approximate eigenvalue 6 of () is defined as
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In [84, Theorems 1 and 2], the following results are proved:

[l Tmin (Q(0))

Cw=correpra " TGP G- v G

In the numerical experiments we therefore examine the quality of the computed 6 by
examining ||7|| and omin(Q(#)), which, for convenience, are also called backward errors.
Note that the backward errors are related: oyin(Q(6)) < |||

Then, as a second step after refining the #, one can “refine” the vector u by taking
u = Us, where

(8.3.2)

s = the “smallest” right singular vector of 0 AU + 0BU + CU

(For the Arnoldi method for the standard eigenvalue problem, a similar refinement of a
Ritz vector has been proposed in [43].) This step is relatively cheap, because all matrices
are “skinny”. Given 6, the vector # minimizes the backward error n(f, u), see (8.3.2).
It is also possible to repeat these two steps to get better and better approximations,
leading to Algorithm 8.3.2.

Input: a search space U
Output: an approximate eigenpair (6,u) with u € U

1. Compute an approximate eigenpair (0, u) with the standard Ritz—Galerkin method

for k=1,2,...
2. Compute a new 6 choosing one of the methods of Section 8.2
3. Compute the “smallest” singular vector sy, of 02 AU + 6, BU + CU
4. U = USk

ALGORITHM 8.3.2: Refinement of an approximate eigenpair for the quadratic eigenproblem

During this algorithm, we do not know the (forward) error |6 — A|, but the backward
errors ||7|| and oy (02 AU 40, BU+CU) are cheaply available; they can be used to decide
whether or not to continue the algorithm. When we take the one-dimensional minimum
residual method in each step, we are certain that the backward error ||r|| decreases
monotonically. In Experiment 8.4.3 we use the two-dimensional Galerkin approach in
every step.

Remark 8.3.2 For the symmetric eigenvalue problem, the possibility of an iterative
procedure to minimize ||Au — p(u)u|| over the subspace U is mentioned in [74], in the
context of finding inclusion intervals for eigenvalues. Moreover, a relation between the
minimization of ||Au — p(u)u|| and the smallest possible Lehmann interval is given. @

8.3.2 The polynomial eigenvalue problem

Consider the polynomial eigenvalue problem

NA +A7TA -+ M+ Ay =0,
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where the size n of the matrices satisfies n > [. Define the generalized residual as
T(1y - o5 ) = (A + 1Ay 1+ -+ Ay + Ag)u.
Both the /-dimensional Galerkin method

r(py - s w) LA{pr, .. i}

and the [-dimensional minimum residual method

min ”T(:ul’ SRRRY I/ u)“
H15eo5 b
lead to a system of the form
H
w*zZ | | =-W"Apu, (8.3.3)
M1
where Z = [Aju --- Aju]. For the [-dimensional minimum residual method we have

W = Z; for the [-dimensional Galerkin approach with “least-squares” [-dimensional
plane, W consists of the [ largest left singular vectors of [ Z Agu]. Assuming that the
vectors Aju, ..., Aju are independent, (8.3.3) has a unique solution. In principle we can
try every quotient g /py—1, tu—1/thi—2, - - p2/ 1, p1, and also some other combinations
like 14/ (t1—2441), as an approximation to A. When A is small, p; will probably be the best.
In principle, an “argmin” solution is also possible, although the degree of the associated
polynomials will get larger quickly.

The one-dimensional minimum residual approach may be less attractive for the poly-
nomial eigenvalue problem, as the degree of the associated polynomials (cf. (8.2.9) and
(8.4.1)) increases fast. This results in more irrelevant solutions, while the relevant solu-
tion will likely to be more sensitive to perturbations in the (approximate) eigenvector.

8.4 Numerical experiments

The experiments are carried out in MATLAB and MAPLE. First a word on solving
(8.2.8) and (8.2.6) for the one-dimensional minimum residual approach, and the “argmin”
solution of the two-dimensional Galerkin and minimum residual approach, respectively.
Write 0 = 0; + iy, pn = p1 + ius, and v = vy + iv,. Differentiating (8.2.8) with respect
to 6; and 6, leads to two mixed equations (in #; and 6s) of degree three. With MAPLE
the equations are manipulated so that we have two equations of degree nine in 6, or 6,
only, which are called the resultants. When we know that A is real, then we get the cubic
equation (8.2.9).
Differentiation of (8.2.6) with respect to #; and 6y, leads to

9;1)) + ((9% — M1 + %)01 — /,1,2(92 — %1/1 = 0,

(8.4.1)
05 + (07 + 1 + 2)0s — poby — S0 =
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Because of the missing 67 and 63 terms, in the first and second equation respectively, the
corresponding resultants have degree only five. All equations were solved numerically by
a MAPLE command of the form
solve(resultant( equation; (x, y), equationy (x, y), y), X).

Of course, we only have to solve one resultant, say for Re(#), then Im(f) can be solved
from a cubic equation. In our experiments, many equations have a unique real solution,
making it unnecessary to choose. When there is more than one real solution, we take
the one that minimizes the norm of the residual.

Experiment 8.4.1 Our first example is taken from [86, p. 250]:

aloso] so|2Z0] con

[001J’ _[0 OOJ’

This problem has two eigenvectors for each of which there exist two eigenvalues: [1 1 0]7
corresponds to A = 1/2 and A = 1/3, while [0 0 1]” corresponds to A = +i. In line with
our assumptions, we do not consider these. Instead, we focus on the other eigenpairs
(Az) = (1,[0 1 0]") and (A\,z) = (00,[1 0 0]"). For the last pair we consider the
problem for A=! = 0. We simulate the situation of having a good approximation u ~ x
by adding a random (complex) perturbation to z:

ui=(rx+e-w)/||lz+e-w|, (8.4.2)

where w is a normalized vector of the form rand(3,1) + i - rand(3,1). (For all ex-
periments, we take “seed=0" so that our results are reproducible.) Table 8.2 gives the
results of the four approaches for ¢ = 0.01. The first row of the two-dimensional Galerkin
(Gal-2) and two-dimensional minimum residual (MR-2) approaches represents p/v, the
second row gives v, while the third row indicates the “argmin” solution as approximate
eigenvalue. For clarity, the meaning of the different rows is first summarized in Table 8.1.

TABLE 8.1: The rows of Tables 8.2 to 8.4, with their meaning.

row nr. label meaning

Gal-1 best approximation (of the two) of the one-dimensional Galerkin method
Gal-2 p/v approximation of the two-dimensional Galerkin method

v approximation of the two-dimensional Galerkin method

“argmin” approximation of the two-dimensional Galerkin method

MR-1 best approximation of the one-dimensional minimum residual method
MR-2 p/v approximation of the one-dimensional minimum residual method
v approximation of the one-dimensional minimum residual method
“argmin” approximation of the two-dimensional minimum residual method

0 ~J O Utk W N

For A\ = 1, all other approaches (Gal-2, MR-1, and MR-2) give a smaller (forward)

error than the classical one-dimensional Galerkin method (Gal-1). The “v” approxima-
tion of the two-dimensional approaches Gal-2 (row 3) and MR-2 (row 7) is particularly
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TABLE 8.2: The one-dimensional Galerkin (Gal-1), two-dimensional Galerkin (Gal-2: p/v, v, and
“argmin”), one-dimensional minimum residual (MR-1), and two-dimensional minimum residual (MR-2:
u/v, v, and “argmin”) approaches for A = 1 (columns 2 to 4) and A=! = 0 (columns 5 to 7). The
columns give the (forward) error |§ — A|, and ||r|| and omin(Q(8)) for the backward errors.

Method | error (7] Omin error [|7]| Omin

Gal-1 | 0.00202 0.0112 0.00143 | 0.03958 0.0399 0.0280
Gal-2 | 0.00168 0.0112 0.00119 | 1.00009 2.8285 0.0016
0.00004 0.0181 0.00003 | 0.01987 0.0206 0.0141
0.00067 0.0143 0.00047 | 0.01988 0.0206 0.0141

MR-1 | 0.00182 0.0111 0.00128 | 0.02384 0.0186 0.0168
MR-2 | 0.00169 0.0112 0.00119 | 1.00006 2.8284 0.0016
0.00013 0.0178 0.00009 | 0.01987 0.0206 0.0141
0.00070 0.0142 0.00050 | 0.01988 0.0206 0.0141

good. For the sensitivity of the v-solution for the two-dimensional approaches, the mod-
est value k([ Az Bz ]) ~ 26 already indicates this. Of all approximations, the MR-1
solution has the smallest backward error ||7||, as expected, but not the smallest forward
error. For the discriminant (8.2.3) we have § = 25.

For A=! = 0, the “u/v” approximations (rows 2 and 6) are bad, which was already
predicted by (8.2.7); k([ Az Bzx]) ~ 2.6 is again modest, and for the discriminant we
have 6 = 1. %

Experiment 8.4.2 For the second example we construct matrices such that the dis-
criminant § is small and hence the zeros of (8.2.1) are close. For small ¢ > 0 define

1 10 1 -1—yC 0
A=IL, B=|0 -22]|, <Cc=]0 1—¢ 2
0 0 1 0 0 1

One may check that z = [0 1 0]” is an eigenvector with corresponding eigenvalue 1++/C.
(The second solution 1 — /C to (8.2.1) is close to the eigenvalue, but has no meaning.)
The discriminant is equal to 4¢. We take ¢ = 107%, so A = 1.01. We test the approaches
for e = 1072 and € = 1073, see Table 8.3.

For the sensitivity of ;1 and v of the two-dimensional methods Gal-2 and MR-2 we
note that x([ Az Bz ]) ~ 5.8. Because the discriminant § = 4 - 107 is small, and the
sensitivity is modest, it is no surprise that all other approximations are much better
(measured in forward or backward error) than Gal-1. @

Experiment 8.4.3 For the following example we take A, B, and C' random symmetric
matrices of size 100 x 100. We try to approximate the eigenvalue \ ~ 7.2288 + 2.7803z,
for e = 1073 and e = 10 in (8.4.2), see Table 8.4.

For the sensitivity for Gal-2 and MR-2 we have ([ Az Bx]) ~ 63; |§] ~ 2.4-107°.
We see that the two “u/v” approximations (row 2 and 6) are the best, together with the
MR-1 solution (row 5). Note that for larger matrices, the computation of oy, (Q(6)) is
expensive. In practice, one does not compute it, but it is shown here to compare the
methods. %)
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TABLE 8.3: The one-dimensional Galerkin (Gal-1), two-dimensional Galerkin (Gal-2: u/v, v, and
“argmin”), one-dimensional minimum residual (MR-1), and two-dimensional minimum residual (MR-2:
p/v, v, and “argmin”) approaches for A = 1.01, for ¢ = 102 (columns 2 to 4) and € = 103 (columns
5 to 7), respectively. The columns give the (forward) error |6 — A|, and ||r|| and omin(Q(6)) for the
backward errors.

Method | error [|7]| Omin error 7]l Omin

Gal-1 | 0.1459 0.1344 0.01327 | 0.0445 0.0431 0.001326
Gal-2 | 0.0346 0.0349 0.00052 | 0.0035 0.0035 0.000037
0.0151 0.0274 0.00019 | 0.0015 0.0028 0.000018
0.0225 0.0286 0.00027 | 0.0022 0.0029 0.000026

MR-1 | 0.0159 0.0274 0.00020 | 0.0015 0.0027 0.000018
MR-2 | 0.0348 0.0351 0.00053 | 0.0035 0.0035 0.000037
0.0152 0.0274 0.00019 | 0.0015 0.0028 0.000018
0.0226 0.0287 0.00027 | 0.0023 0.0029 0.000026

TABLE 8.4: The approximations of the one-dimensional Galerkin (Gal-1), two-dimensional
Galerkin (Gal-2: p/v, v, and “argmin”), one-dimensional minimum residual (MR-1), and two-
dimensional minimum residual (MR-2: u/v, v, and “argmin”) approaches for A ~ 7.2288 + 2.78034,
and £ = 1073 and € = 104, respectively. The other columns give the (forward) error |§ — A|, and |||
and omin (Q()) for the backward errors.

Method | appr. (¢ =1073) error ||r|| Omin | appr. (¢ = 107%)  error (|7l Omin
Gal-1 6.86+2.714 0.37 2.89 0.186 7.218+4-2.739: 0.0428 0.308 0.0221
Gal-2 7.26+2.68i 0.10 290 0.054 7.231+2.769: 0.0110 0.290 0.0057

6.87+3.04i 044 3.16 0.234 7.189+2.801¢ 0.0446 0.330 0.0232
7.074+2.86¢ 0.18 293 0.096 7.210+2.785¢ 0.0195 0.300 0.0101

MR-1 7.04+2.61¢ 0.24 281 0.123 7.227+2.769i 0.0107 0.290 0.0055
MR-2 7.234+2.65¢ 0.13 2.88 0.064 7.231+2.769: 0.0112 0.290 0.0058
3.67+1.63i 3.74 6.34 0.709 7.123+2.775¢ 0.1057 0.437 0.0545
5.144+2.08¢ 220 5.23 0.822 7.17742.7724 0.0529 0.332 0.0247
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Experiment 8.4.4 Next, we test Algorithm 8.3.2. We start with a three-dimensional
subspace U, consisting of the same vector as in the previous experiment (¢ = 107%),
completed by two random (independent) vectors. We determine six Ritz pairs according
to (8.3.1), and refine the one with # approximating the eigenvalue \ ~ 7.2288 + 2.7803:
by Algorithm 8.3.2, where in every step we choose the u/v-approximation of the two-
dimensional Galerkin method. The results, shown in Table 8.5, reveal that both u and
f are improved four times, after which they keep fixed in the decimals shown. Note that
the smallest possible angle of a vector in ¢/ with z is

/U, z) = L(zy, ) ~ 6.2809 - 104,

where xyy = UU*z/||UU*z|| is the eigenvector projected onto U.

TABLE 8.5: Refinement of an approximate eigenvalue by Algorithm 8.3.2 for A ~ 7.2288+2.7803s.
The columns give the iteration number, angle between u and z, (forward) error |6 — A|, and ||r||,
Tmin = Omin(02AU + 0BU + CU) and omin(Q(8)) = omin(0?A + 0B + C) for the backward errors.

iteration Z(u, ) 0 error [|7]| Tmin Omin
0 7192 e—4 | 7.2224+42.778; | 6.112e—3 | 1.234e—1 | 1.166e—3 | 3.178 ¢ — 3
1 6.542 e —4 | 7.2314+2.783i1 | 4.113e—-3 | 1.196e—1 | 1.137e—3 | 2.142e -3
2 6.529 e — 4 | 7.2314+2.781% | 2.627e—3 | 1.137Te—1 | 1.137e—3 | 1.368 e —3
3 6.528 ¢ — 4 | 7.2314+2.781% | 2.597e—3 | 1.137Te—1 | 1.137e—3 | 1.352e—-3
>4 6.528 ¢ —4 | 7.2314+2.7817 | 2.596e—3 | 1.137Te—1 | 1.137e—3 | 1.351 e—3

We see that in particular the first step of the algorithm considerably improves the
approximate eigenpair. After four steps, the angle of the refined approximate eigenvector
with the optimal vector in U is less than 30% of the angle that the Ritz vector makes
with the optimal vector. The error in # is more than halved. Note again that amin(02A+
OB + C) is expensive, but Tmin 1= omin(0?AU + 0BU + CU) is readily available in the
algorithm. %)

Experiment 8.4.5 Finally, we test the ideas of Section 8.3.2. Consider the polynomial
eigenvalue problem of degree four

()\4144 + )\3143 + )\2142 + )\Al + A()).Z‘ = O,

where the A; are random 5 x 5 matrices. We try to approximate the eigenpair corre-
sponding to A & —2.2009—1.5366¢ and take ¢ = 10~* in (8.4.2). The y; in the generalized
residual

T (pr, p2, 3, pa, ) i= (padAy + psAs + poAs + Ay + Aog)u

are determined by the 4-dimensional Galerkin method with “least-squares” plane. The
results of the py/ps, ps/ 2, to/ 1, and pu; approximations are summarized in Table 8.6.

Note that both the p4/ps and ps/ps approximations give better results than the
standard approach. We mention that the results of the 4-dimensional minimum residual
method were roughly the same. @
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TABLE 8.6: Approximations of the one-dimensional Galerkin (Gal-1) and 4-dimensional Galerkin
(a/ps, p3/p2, p2/m, and p1) approaches for A &~ —2.2009 — 1.5366:. The other columns give the
(forward) error |6 — A|, and ||7|| and omin(Q(#)) for the backward errors.

Method approximation  error (17| Omin

Gal-1 -2.1891-1.5404¢ 0.0123 0.0894 0.0388
ta/ 3 -2.2010-1.5370¢ 0.0004 0.0171 0.0014
w3/ o -2.2057-1.5318 0.0067 0.0422 0.0215
w2/ -2.2054-1.5238; 0.0135 0.0863 0.0429
3 -2.1693-1.5346: 0.0317 0.2121 0.0972

8.5 Conclusions

The usual one-dimensional Galerkin approach for the determination of an approximate
eigenvalue corresponding to an approximate eigenvector may give inaccurate results,
especially when the discriminant of equation (8.2.1) is small. We have proposed several
alternative ways that often give better results with little extra effort (all methods require
three matrix-vector multiplications Au, Bu, and C'u, and additionally O(n) time). Based
on our analysis and the numerical experiments, we recommend in particular the p/v and
v approximations of the two-dimensional approaches Gal-2 and MR-2, because they are
cheap to compute and give good results. For small eigenvalues, one should take the “v”
approximations. The MR-1 method ensures a minimal residual (backward error).

The approaches are also useful for approximations from a subspace and for polynomial

eigenvalue problems of higher degree.






Chapter 9

Computing probabilistic bounds for
extreme eigenvalues of symmetric
matrices with the Lanczos method

Abstract. We study the Lanczos method for computing extreme eigenvalues of a
symmetric or Hermitian matrix. It is not guaranteed that the extreme Ritz values
are close to the extreme eigenvalues—even when the norms of the corresponding
residual vectors are small. Assuming that the starting vector has been chosen
randomly, we compute probabilistic bounds for the extreme eigenvalues from data
available during the execution of the Lanczos process. Four different types of
bounds are obtained using Lanczos, Ritz, and Chebyshev polynomials. These
bounds are compared theoretically and numerically. Furthermore we show how one
can determine, after each Lanczos step, a probabilistic upper bound for the number
of steps still needed (without performing these steps) to obtain an approximation
to the largest or smallest eigenvalue within a prescribed tolerance.

Key words: symmetric matrix, Hermitian matrix, Lanczos, Ritz values, miscon-
vergence, Lanczos polynomial, Ritz polynomial, Chebyshev polynomial.

AMS subject classification: 65F15, 65F50.

9.1 Introduction

Knowledge about the extreme eigenvalues of symmetric or Hermitian matrices is im-
portant in many applications. For example, the stability of processes involving such
matrices is often governed by the location of their eigenvalues. The extreme eigenvalues
can also be used to determine condition numbers, the field of values, and e-pseudospectra
of arbitrary matrices (see, e.g., [12, 87]). For small-sized matrices the eigenvalues can be
computed by the QR-method (see, e.g., [31]), but this is not feasible for large matrices.
A method which is often used in practice to compute a few extreme eigenvalues of large
sparse symmetric or Hermitian matrices is the Lanczos method (see, e.g., [31, 61, 101]).

*Based on joint work with Jos L. M. van Dorsselaer and Henk A. van der Vorst, see Section 1.5.



178 Chapter 9. Computing probabilistic eigenvalue bounds

The approximations of the eigenvalues obtained with the Lanczos method (the Ritz val-
ues) lie between the smallest and largest eigenvalue of the original matrix and one would
like to know whether the largest (or smallest) Ritz value is sufficiently close to the largest
(or smallest) eigenvalue of that matrix.

The classical a priori error estimates for the Lanczos method, established by Kaniel,
Paige, and Saad (see, e.g., [31, 44, 57, 61, 68]) are not applicable in practice to obtain
bounds on the spectrum of Hermitian matrices, because they involve knowledge about
the eigenvalues and angles between the eigenvectors and the starting vector. Furthermore
one should note that small residuals for the Ritz values only imply that these Ritz values
are close to an eigenvalue, but it is not guaranteed that this eigenvalue is indeed the one
we are looking for (cf., e.g., [62]). In fact, it is not possible to derive rigorous bounds on
the spectrum from any possible starting vector: if the starting vector is perpendicular
to the eigenvector (or eigenspace in case of multiple eigenvalues) corresponding to the
largest or smallest eigenvalue, it is impossible to obtain any information regarding this
eigenvalue from the Lanczos process.

In this chapter we derive various a posteriori bounds for the spectrum of real sym-
metric matrices using a probabilistic approach. Assuming that the starting vector of the
Lanczos process is chosen randomly from the uniform distribution over the unit sphere,
we derive, using data available while executing the Lanczos process, for every ¢ € (0, 1)
bounds for the spectrum with probability at least 1 — £. No intrinsic properties of the
matrix (apart from being symmetric) are required to compute our bounds. Polynomials
related to the Lanczos process, namely the Lanczos polynomials and Ritz polynomials,
are used to derive two types of such bounds. For symmetric positive definite matrices
Kuczynski and Wozniakowski [49, Theorem 3] give, for arbitrary ¢ > 1, an a priori upper
bound for the probability that the largest eigenvalue is greater than ¢ times the largest
Ritz value; Chebyshev polynomials of the second kind are used to obtain these bounds.
This result can be used to compute a posteriori probabilistic bounds for the spectrum
while executing the Lanczos process, and bounds based on [49, Theorem 3| can be used
for symmetric indefinite matrices as well. The fourth kind of bounds for the spectrum
is obtained with Chebyshev polynomials of the first kind. The sharpness of the different
bounds is analyzed theoretically and compared numerically. It turns out that the bounds
based on Lanczos polynomials are the sharpest ones in most cases; however, the Ritz
polynomials sometimes provide better bounds when the Lanczos method suffers from a
misconvergence (i.e., the largest (or smallest) Ritz values in consecutive Lanczos steps
seem to converge, but not to an extreme eigenvalue).

Apart from the bounds on the spectrum, we also study probabilistic bounds for the
number of Lanczos steps needed to get an error (or relative error) in the largest or smallest
eigenvalue that is smaller than a given tolerance. In [48, Theorem 4.2] the authors present
a probabilistic upper bound for the number of Lanczos steps needed to yield a relative
error in the largest eigenvalue of a symmetric positive definite matrix that is smaller
than a given tolerance. For this special case numerical experiments demonstrate that our
bound and the one from [48, Theorem 4.2] are almost the same. Furthermore, we provide
upper bounds for the number of Lanczos steps needed to guarantee with probability at
least 1 — ¢ that either the spectrum lies between certain prescribed bounds, or that a
misconvergence has occurred.
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The results in this chapter deal with the Lanczos process applied to real symmetric
matrices and real starting vectors. This includes the case of Hermitian matrices, because
the Lanczos method applied to a complex Hermitian matrix (with a complex starting
vector) can be written as the application of the Lanczos method to a related real sym-
metric matrix of double size with a real starting vector (see Remark 9.2.1 for details).
In Remark 9.2.2, we discuss an application to Lanczos bidiagonalization.

All bounds discussed in this chapter are easily implemented and can be computed
with little effort while executing the Lanczos process.

The chapter has been organized as follows. In Section 9.2 some notations and def-
initions are introduced. Bounds based on Lanczos polynomials are presented in Sec-
tion 9.3, and bounds obtained with Ritz polynomials can be found in Section 9.4. In
Section 9.5 we derive bounds from Chebyshev polynomials. The estimates for the num-
ber of Lanczos steps still to be done for sufficiently accurate approximations can be found
in Section 9.6.1, and the estimates for the number of Lanczos steps needed to obtain pre-
scribed bounds for the spectrum or to detect misconvergence are given in Section 9.6.2.
Numerical experiments are presented in Section 9.7, and the conclusions can be found
in Section 9.8.

9.2 Preliminaries

In this section we introduce some notations and present relevant properties of the Lanc-
zos method. For an introduction to the Lanczos method and more details, as well as
implementation issues, the reader may consult, e.g., [31, 61]. Throughout this chapter
we do not consider the effect of rounding errors.

The standard inner product on R" will be denoted by (-,-), and || - || stands for the
Euclidean norm, and [ is the n x n identity matrix.

Let A be a real symmetric n X n matrix with eigenvalues

A< A <A

The corresponding normalized eigenvectors z; form an orthonormal basis of R". We use
the Lanczos method to approximate one or a few extreme eigenvalues of A. The unit
starting vector is denoted by v; and can be written as

v = Zvjxj. (9.2.1)
j=1

If v is chosen randomly from the uniform distribution with respect to the unit sphere,
the dimension of the Krylov subspace

Ki(A,v1) = spanfuvy, Avy, ..., A 1oy}

is equal to k£ with probability one for £ less than the number of distinct eigenvalues of
A.
In the Lanczos process vectors vy are generated by the three-term recurrence

(5kvk+1 = A?}k — OV — ﬁkflkal for k= 1, 2, 3, Ceey (922)
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where vy = 0, fo = 1, o, = (Avg, vk), Br-1 = (Avg, vg_1), and d; > 0 is chosen such that
||lvgs1]| = 1. With this choice one has 6y = [ for £ > 1. The vectors vy, va, ..., v form
an orthonormal basis of the Krylov subspace Kj(A,v;). Let Vi be the n x k matrix of
which v; is the jth column. The Ritz values occurring in step k£ of the Lanczos process
are the eigenvalues of the tridiagonal £ X k matrix T = V," AV}, and are denoted by

0P <o) < ... <P,

the Ritz values satisfy 0§-k) > A; and 9;(:21_3- < Apr1—j (1 < j < k). We denote the

eigenvectors of T by S§~k): Tksg-k) = Gj(-k)s;k) and the Ritz vectors by yj(.k) = Vksgk), where
we assume that these Ritz vectors are normalized. We also introduce the residuals

Tg('k) _ Ay](k) B 0§k)y§k).

Related to the three-term recursion (9.2.2) are the polynomials py of degree k defined
by p_1(t) =0, po(t) = 1, and

6Icpk(t) = (t — ak)pk_l(t) - Bk—lpk—Q(t) for k= 1, 2, 3, e (923)
From (9.2.2) with §; = Sy and (9.2.3) it follows that
Vg1 = pe(A)vy for k=1,2,3,....

The polynomials p, are called the Lanczos polynomials with respect to A and v;. Other
polynomials related to the Lanczos method are the Ritz polynomzials qJ(-k) of degree k —1,
which are characterized by the fact that

y =P (A for j=1,2,.. k. (9.2.4)

In the following sections estimates for the eigenvalues of A, based on Lanczos and Ritz
polynomials, will be studied and compared. Therefore it is important to understand
the relation between these polynomials. The polynomial p; is a scalar multiple of the
characteristic polynomial of the matrix T (cf., e.g., [61, Section 7.3]), which implies

that 6% 6% Hl(ck) are the zeros of pg. From [61, Section 12.3] it follows that these

Ritz values without HJ(-k) are the zeros of qJ(-k). Hence pi(t) = k) (t — 9](-k))q(-k) (t) for

J J
(k) (k)

a certain constant c;’. (From this relation it follows that ¢;’ is a scalar multiple of

j j
[Tis;(t — ng)) and that polynomial is called a reduced Ritz polynomial in [90]. The

relation between these polynomials and (9.2.4) also follows from [90, Formula (5.14)].)
Because vg1 = pp(A)vy = cg-k) (A — Hj(k)f)qj(-k) (A)v, = cg-k)rj(-k), we have cg-k) = 1/||7'J(-k)||,
which yields the following relation between the Lanczos and Ritz polynomials:

() = (t =6 @) /Il for j=1,2,.. k. (9:25)

Remark 9.2.1 The Lanczos method described above can also be used to determine a
few extreme eigenvalues of a complex Hermitian matrix A. The results in this chapter are
only valid for real symmetric matrices, but the Lanczos method for Hermitian matrices
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can be formulated in terms of real matrices and vectors. Let Re(A) and Im(A) be the
real and imaginary part of A, respectively. The Lanczos method applied to the 2n x 2n
real symmetric matrix
B_ [ Re(A) —Im(A)
| Im(A)  Re(A)
Re(v1)

Im(v1)
method applied to A with starting vector v;; this can be seen from taking the real and

imaginary part of the three-term recurrence (9.2.2). The numbers Ay, Ay, ..., A, are the
eigenvalues of B, but with multiplicity twice as large as for the matrix A. Therefore
(probabilistic) bounds for the spectrum of B are (probabilistic) bounds for the spectrum
of A as well. %)

with starting vector [ } yields the same tridiagonal matrices 7} as the Lanczos

Remark 9.2.2 The methods in this chapter can also be applied to Lanczos bidiago-
nalization, by applying Lanczos to the augmented matrix (3.1.1) with starting vector
(0,v1). Partly because the treatment of this subject would lead to a clutch of notation
in this chapter, this matter is left for future work. %)

9.3 Spectral bounds using the Lanczos polynomial

In this section we will give probabilistic upper and lower bounds for the spectrum of A,
based on Lanczos polynomials. For each step of the Lanczos process we obtain these
bounds based on the information computed so far. No assumptions on the location or
separation of the eigenvalues are required.

The Lanczos polynomials p; are a byproduct of the process. They are usually small
between 05’“) and Hl(ck) and increase rapidly outside this interval. We can exploit this fact:
assuming that the starting vector has components in the direction of z; and z,,, we can
provide upper and lower bounds for the spectrum of A.

From

1= [logsall” = Ipe(A)orl” = 72 pr(A))?
j=1

and pg(A,) > 0 it follows that
1 > |7l pr(An)-

If 7, is known, this estimate provides an upper bound A" for \,: let A"? be the largest
real zero of

fr(@®) = pr(t) = 1/|vml- (9.3.1)

This number A\"P exists and satisfies A"P > H,Ek) because pj is strictly increasing on
(G,Ek),oo). The number A" can be determined by Newton’s method or bisection. As
a starting point for the Newton process one can take, for instance, ||A||, ||A|:, or a
previously computed upper bound for A,.

In practice we do not know 7,, but we can determine the probability that |v,| is
smaller than a given (small) constant. Let S"~! denote the (n — 1)-dimensional unit
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sphere in R”. We assume that v; is chosen randomly with respect to the uniform dis-
tribution over S"~!. Then, as a result, (v1,72,..-,7,) is also random with respect to
the uniform distribution over S"~! (cf., e.g., [48, p. 1116]). In the following lemma we
compute the probability that |v,| is smaller than ¢.

Lemma 9.3.1 Assume that the starting vector vy has been chosen randomly with respect
to the uniform distribution over the unit sphere S"~' and let § € [0,1]. Then

arcsin §
P(ly.| <6) = 2B(%+,5)" / cos" 2t dt,
0
where B denotes Euler’s Beta function: B(z,y) = fol t*=1(1 — t)¥~1dt and P stands for
probability.

Proof: Define S5 = {y € 5" ! : |y,| < §}; we want to determine the ratio of the
areas of the sets Ss and S"~!. The image of the map

p o (-mm) x (=5, 5" = S

272
defined by
- - [ cos avcos by cos iy -+ - COSYp_3 COSUp_o |
! i
” Sin o cos 11 COS ¥y + + + COS Yy, _3 COS Yy_o
! Sin Y1 coS Ys « - - COS Yp_3 COS Yy _o
| Y2 | — ,
. sin ¢n73 COs wan
1/1an .
- - sin 9o

equals the sphere up to a negligible set. One can check that the associated Euclidean
density is given by

W(Ck, ¢17 1/125 T wn—Z) = COs wl : COS2 1[]2 T Cosn_2 1/Jn—2-

Therefore we can compute the areas of S5 and S™~! by integrating this density over the
respective domains. Taking the ratio of the two results, we get

P(lv,| <6) = P(|tp_2| < arcsind)

arcsin § w/2
= 2/ cos™ 2 tdt/ cos™ 2 tdt
0 —m/2

arcsin §
-9 _
= 2/0 cos"*tdt / B(%2, 1),
which proves the lemma. O

Now suppose we would like to have an upper bound for the spectrum of A that is
correct with probability at least 1 — . Then we determine the value of § for which

arcsin § w/2
/ cos" *tdt = £B(%1, 1) (: 5/ cos”‘%dt) (9.3.2)
0 0
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holds, e.g., by using Newton’s method. The integrals in (9.3.2) can be computed using
an appropriate quadrature formula. We replace |,| in (9.3.1) by the value § computed
from (9.3.2) and determine the zero A"P > Hl(ck). This A" is an upper bound for the
spectrum of A with probability at least 1 — &, and we call A"P a probabilistic upper
bound.

A lower bound A°" for the spectrum of A with probability at least 1 — ¢ can be
obtained in a similar way. (Note that Lemma 9.3.1 remains valid if |v,| is replaced by
|71|.) The only difference is that we have to separate the cases where k, the degree of
Pk, is even (pg(t) — +oo for t — —o0) or odd (pg(t) — —oo for t - —o00). Hence we
have proved the following theorem.

Theorem 9.3.2 Assume that the starting vector vy has been chosen randomly with re-
spect to the uniform distribution over S~ ' and let € € (0,1). Then \"P, the largest zero
of the polynomaial

fu(t) =pu(t) = 1/6 (9.3.3)

with & given by (9.3.2), is an upper bound for the spectrum of A with probability at least
1 — ¢, and N1V, the smallest zero of

fr(@) = (=1)Fpy(t) — 1/6, (9.3.4)
1s a lower bound for the spectrum of A with probability at least 1 — €.

Note that if we are unlucky in choosing v, so that |v,| < d, then the computed
bounds may or may not be correct; see Section 9.7 for an illustration.

The determination of the lower and upper bounds from Theorem 9.3.2 is rather cheap
in general (compared with a matrix-vector multiplication with A); the computation of
f(t) (using (9.2.3)) costs approximately 5k floating point operations. Note that the
Ritz values and vectors are not needed to obtain these bounds of the spectrum. For very
small £ one cannot expect to obtain tight bounds, so it only makes sense to compute the
zeros of (9.3.3) and (9.3.4) for k£ of moderate size. In practice one could, e.g., compute
these zeros only every second or third Lanczos step until the bounds become sufficiently
sharp.

9.4 Spectral bounds using Ritz polynomials

We can also try to obtain probabilistic upper and lower bounds for the spectrum of A
using some Ritz polynomials q](-k). The degree of these polynomials is one less than the

degree of p;, but while pk(ﬁl(ck)) = 0, the polynomial q,(ck) has its last zero in H,gk_)l and

could be a competitor of p, to give a possibly tighter upper bound. Similarly, q%k) may
be used to obtain another lower bound.
We write Hj(.k) as a Rayleigh quotient:

0/ = (A", y") = > Nind ¢ (), (9.4.1)
=1
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First suppose that A is positive semidefinite. Then set j = k to derive the inequality
0% > A, 72 ¢ (A\n)2. Hence the zero A™ > 6% of

fr(t) = tg” ()2 — 0¥ /2 (9.4.2)

is an upper bound for \,. If v, is not known, one can obtain a probabilistic upper bound
A" of )\, with probability at least 1 —¢, as in the previous section. (Replace 7, in (9.4.2)
by § where ¢ satisfies (9.3.2).)

As in the previous section, if we happen to choose a v; so that |v,| < §, then we
are not certain that the computed upper bound is correct. It can even happen that the
largest zero A"P of fr with v, replaced by J satisfies \"P < 0,(:“)! See Section 9.7 for an
illustration.

When it is not known whether A is positive definite, we can obtain a probabilistic
upper bound in the following way. Let —o < 0 be a known lower bound for the spectrum
of A: then the matrix A + o[ is positive semidefinite. We get

n

0 + 0= (i +0)12 e (V)2

=1

with A\; + 0 > 0 for all . The rightmost zero of
fr(t) = (t+0)g” (1) — (0 + )/

is an upper bound for the spectrum of A. Again, we can replace v, by the § that satisfies
(9.3.2) to compute a probabilistic upper bound.

For a lower bound, we use the polynomial q§’“). If A is negative semidefinite, it follows

from 0 < M\ 72 g% (A1)? (cf. (9.4.1)) that the unique zero \o% < g4 of

fr(t) = ta® ()2 — 61 /42 (9.4.3)

is a lower bound for ;. Otherwise one has to use a shift 7 > 0 such that A —7I becomes
negative semidefinite and modify fz in (9.4.3) accordingly. Of course the shifts o and 7
should be chosen as small as possible to get the best results.

The bounds discussed in this section can be determined for example by Newton’s
method or bisection. In order to compute fgr(¢) one has to know the largest or smallest
Ritz value and the corresponding eigenvector of the tridiagonal matrix 7. Apart from
that, the computation of fg(t) is cheap. The determination of the bounds based on Ritz
polynomials will be more expensive in general than the determination of the bounds
based on the Lanczos polynomials. (The Ritz values and vectors are not needed in the
latter case.)

It is interesting to compare the sharpness of the bounds based on Ritz polynomials
and those based on Lanczos polynomials. For simplicity we assume that A is positive
semidefinite and compare the largest zero of (9.4.2) with the largest zero of (9.3.1). (The
other cases, including those where shifts are used, can be analyzed in a similar way.)

Consider the function
9t) = \t/0F ¢P &) — 1/|7l; (9.4.4)
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the largest zero of g is the largest zero of fg from (9.4.2). After some straightforward
calculations, using (9.2.5) with j = k, one obtains that (with f; as in (9.3.1) and g as
in (9.4.4))

o) < gt)  for 8% <t < (1+¢)6%

and
fut) > g(t)  for t> (14+¢+¢?)oW,
where ( = ||r,(ck)|| /H,gk). The quantity ¢ can be interpreted as an approximation of the

relative error for the largest eigenvalue, and ¢ will be small after sufficiently many Lanczos
steps. For small { the Ritz polynomial provides a smaller upper bound for A\, only when
this upper bound is very close to H,Ek)—but in that case the Lanczos polynomial yields
a very tight upper bound as well. Hence, it is not likely that the bounds based on
Ritz polynomials are sharper than the bounds obtained with the Lanczos polynomials—
unless ( is large. Numerical experiments illustrating these observations can be found in
Section 9.7.

9.5 Spectral bounds using Chebyshev polynomials

Chebyshev polynomials are often used to obtain error bounds for the Lanczos method; cf.,
e.g., [31, 49, 61]. In this section we explain how these polynomials can be used to obtain
probabilistic upper and lower bounds for the spectrum of A, based on computations with
the Lanczos method. One type of bounds follows easily from a result by Kuczynski and
Wozniakowski [49, Theorem 3].

Let ¢;(t) = cos(j arccost) be the Chebyshev polynomial (of the first kind) of degree
j, with the usual extension outside the interval [—1, 1]. The polynomial

wi(t) = L)

of degree j — 1 is a Chebyshev polynomial of the second kind (cf. [67, p. 7]).

In [49, Theorem 3], the following result has been derived for symmetric positive
definite matrices. Let ¢t > 1 and v; be chosen randomly from the uniform distribution
over S 1. Then

PO <t0) > 1 = 2(B(%2, 1) Vi— Tuspeny(VE)) (9.5.1)

(where B is the Euler Beta function.) The estimate (9.5.1) can be generalized for sym-
metric indefinite matrices by using a shift o such that A+ o[ is positive definite. Prob-
ability estimates for lower bounds of A\; can be obtained similarly. Along these lines we
can derive bounds for the spectrum of A with probability at least 1 —e, and these results
are presented in the following theorem.

Theorem 9.5.1 Let e € (0,1) and 0,7 € R be such that A+ ol is positive semidefinite,
and A — 71 1s negative semidefinite. Consider for t > 1 the function

F) = £B(SL D VE— Tuggory(VE) — 1 (9.5.2)
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(B is the Euler Beta function) and let ty > 1 be the (unique) zero of f. Furthermore,
let v, be chosen randomly from the uniform distribution over S™ . Then

A = 1 0% L (t, —1)o (9.5.3)
s an upper bound for the spectrum of A with probability at least 1 — ¢, and

Now = ¢ 0% — (4, — 1)r (9.5.4)
is a lower bound for the spectrum of A with probability at least 1 — €.

The quantity ¢ can be determined numerically. The numbers u,;(t) can be computed
from the three-term recurrence u;(t) = 2tu;_1(t) —u;_2(t) for j > 2, ug(t) =1, uy (t) =2t
(see, e.g., [67, p. 40]). From (9.5.3) and (9.5.4) it is clear that the shifts ¢ and 7 should
be chosen as small as possible (cf. Section 9.4).

Other bounds for the spectrum of A can be obtained as follows, using Chebyshev
polynomials of the first kind. Let a < b and ¢;(t; a,b) = ¢j(1 4+ 2(t — b)/(b — a)) be the
Chebyshev polynomial of degree j with respect to the interval [a,b]. With o such that
A+ ol is positive semidefinite, we define the polynomial h(t) = ¢x_1(t; —o, 0,(;9)) and the
vector x = h(A)v; € Ki(A,v;). From 0,(;“)(3:, x) > (Az, x) it follows that the largest zero
of

folt) = (t=0P)a a0, 07) — OF + o)/ (9.5.5)
is an upper bound for A,. (Invoke (9.2.1): use Y 77 < 1 where the summation is with
respect to those j satisfying \; < G,Ek) and h()\;)* < 1for \; < 0,(:“).)

With +, replaced by the 6 computed from (9.3.2), as in the previous sections, one
obtains an upper bound A"P for the spectrum of A with probability at least 1—¢. A lower
bound for the spectrum of A can be obtained in a similar way, using 0§k) (z,2) < (Az, )
with z = ¢;_1(4; ng), T)vy, where 7 is such that A — 77 is negative semidefinite.

In order to compare the bounds derived along these lines with those obtained from
Theorem 9.5.1, we first replace 7, in (9.5.5) by ¢ and scale the interval [—o, 0,(!“)] to [0, 1].

The largest zero A" of (9.5.5) satisfies the equality A\"P = ?0,(?) + (t—1)o, where £ > 1
is the unique zero of

g(t) = 0Vt —1c¢k1(¢;0,1) — 1.
One can show that ¢x1(£;0,1) = co—1)(Vt;-1,1) (= cae-1)(Vt)) for t > 0. This
means that we have to compare the zeros of (9.5.2) and those of

g(t) = 6Vt —Tespny(VE) — 1. (9.5.6)
The relation between § and %B(”T_l,%s) is given by (9.3.2). One has § > :B(";,3)

for all ¢ € (0,1) and n > 3, but 6 ~ $B(%*, 5) for € and n of practical interest. For
instance, (6 — £B(%5+,3))/6 &~ 2.6-107° for e = 1.0- 1072 and n = 10%,10%,10%,10°. On

the other hand one has the relation

Us(e—1)(VE) = 2¢o06-1)(Vt) + tg(e—2) (V1) for ¢>0
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(cf., e.g., [67, p. 9]) so that usp_1)(vt) > 2co3,-1)(v/T) for ¢ > 1 and this implies,
together with 6 ~ £B(";%, 1), that the zero of (9.5.6) is larger than the zero of (9.5.2) in
most applications. Hence, the upper bound A"P from (9.5.3) is in general smaller than
the upper bound obtained from (9.5.5), so Theorem 9.5.1 will produce sharper bounds
than the construction described above. These observations are supported by numerical

experiments in Section 9.7.

9.6 Upper bounds for the number of Lanczos steps

9.6.1 Bounds based on Theorem 9.5.1

Theorem 9.5.1 can also be used to compute a probabilistic upper bound for the number
of Lanczos steps necessary to obtain a Ritz value close enough to A, in a relative or
absolute sense. These estimates can be obtained while executing the Lanczos process.
First we investigate how many Lanczos steps are needed to obtain a relative error that
is smaller than a prescribed tolerance tol with probability at least 1 — ¢.

Suppose k steps of the Lanczos method have been performed and 0,(;6) > 0; if O,Ek) <0
the eigenvalue ), can be arbitrarily close to zero and the relative error (A, — 65) /A,

cannot be estimated properly. Let m > k and let t,, be the zero of the function f in
(9.5.2) with & replaced by m. It follows from (9.5.3) that

(m) (m)
An — Om < (tm — 1) (0" + 0) < (tm — 1) (A +0) < (tm — 1)(u+ 0) (9.6.1)
An An An 1%
holds with probability at least 1 — ¢; here y = O,Ek) if o >0,and p > A\, (e.g., p =
|A||; one should not take a probabilistic upper bound for A,) whenever ¢ < 0; o
is as in Theorem 9.5.1. The requirement (t,, — 1)(u + o)/p < tol is equivalent to
tm <14 tol-pu/(u+ o), and the smallest integer m, for which the quantity ¢,, from
(9.5.2) satisfies
tm < 1+tol-pu/(u+o0), (9.6.2)

is an upper bound for the number of Lanczos steps necessary to provide an approximation
0™ to A, that satisfies (A — o )) /An < tol with probability at least 1 — ¢. Note that
in case o > 0 the right-hand side of (9.6.2) increases with k, so that the smallest number
m satisfying (9.6.2) may decrease during the execution of the Lanczos process.

For symmetric positive definite matrices an upper bound m for the number of Lanczos
steps which yields an approximation to the largest eigenvalue, such that the relative error
is bounded by tol with probability at least 1 — ¢, has been given in [48, Theorem 4.2]:
the number m should satisfy

1.648 \/n e~ @m-DVEel < o (9.6.3)

Numerical experiments show that (9.6.3) yields almost the same upper bound as (9.6.2)
with o = 0 (in most cases the bounds were exactly the same, while the difference was at
most two steps); this is not surprising in view of the discussion in [49, p. 679]. However,
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(9.6.2) can be used for indefinite matrices as well, as long as 0,(;“) > 0. Furthermore, for
symmetric positive definite matrices smaller numbers m may be obtained when (9.6.2)
is applied with o < 0.

To estimate the number of steps, still necessary to have the absolute error A, _07(”m) <
tol with probability at least 1 — ¢, we proceed as follows. If m satisfies the requirement
(cf. (9.6.1))

(tm —1)(p+0) < tol, (9.6.4)

with > A, (u should not be a probabilistic upper bound), the equality A\, — 0&” ) < tol
holds with probability at least 1 — e. The smallest integer m satisfying (9.6.4) can be
computed. Note that (9.6.4) is also valid when G,Ek) < 0 and we do not have to distinguish
between the cases o > 0 and o < 0.

Estimates for the number of Lanczos steps, to be done so that the (relative) error in
the smallest eigenvalue is less than tol with probability at least 1 — ¢, can be derived in
a similar way.

9.6.2 Bounds for the number of Lanczos steps in case of mis-
convergence

Suppose that after sufﬁc1ent1?7 many Lanczos steps the largest Ritz value seems to have
converged to an eigenvalue: 0 Y for several consecutive k and ||7“,C || is small. It is

known that |0(1c =\l < ||7“,c || for a certam eigenvalue \; (see, e.g., [61, Section 4.5]), and
in most cases the largest thz value will have converged to the largest eigenvalue \,, but
it may also happen that 0 is not close to A, (misconvergence); this can happen, e.g., if
|Yn| is very small. Below we show how one can determine a probabilistic upper bound for
the number of Lanczos steps needed after which one can conclude that either )\, < A holds
for a given constant A, or a misconvergence has been detected, i.e., A, > 0,(616) + ||r,(ck)||

Let m > k and g be a polynomial of degree m — 1, and z = g(A)v; € K (A, v1). If
An > 0,(!“) + ||r,(ck)||, the inequality

(Ag(A)v, g(A)vr) > (0 + [I7"11) (9(A)vr, g(A)vn) (9.6.5)
is satisfied for a certain m and a suitable polynomial g: the Ritz polynomial qfﬁn ) maxi-
mizes the Rayleigh quotient (Ag(A)v1, g(A)v1)/(g(A)v1, g(A)vr) but ¢& is not available
after k£ steps of the Lanczos process, so we will consider another polynomial of degree
m — 1. Rewriting (9.6.5) using (9.2.1) gives

O = O0F + 1rPID) 12 9(\n)? > (e"”+||r,£’“>||—An_l)fyzflgun_oz

9.6.6
+Z DI = A) 22 a2 (60

In order to satisfy (9.6.6) with m as small as possible we search for a polynomial g

that resembles the Ritz polynomial q,(nm). We have q,(ck) at our disposal, and therefore we

take g(t) = q,(gk)( t) h(t) with h a suitable polynomial of degree m — k. We assume that
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|0,(Ck) —Ao1] < ||r,(ck)|| (with ||7“,(ck)|| small); this assumption is likely to be realistic in case
of a misconvergence. In order to amplify the effect of q,(ck) in (9.6.6) we choose h such
that h is large in A, and small in Ay,..., A\, 9. Hence h(t) = ¢y k(t; A1, Ap_2) would be
a proper choice, but A; and A, 5 are not known, so we replace both quantities. Again
let —o < A{, and assume that \,_, < 0,(612)1 + ||7“,(c]i)1||, we now define

k k k
9(t) = ¢ () cmi(t; =0, 6%, + IFP,])).

If we replace in the right-hand side of (9.6.6) the quantity 6 + ||ri"|| = A._; by 2 [|Ir®,
v2_; by 1, g(Au—1) by g(ﬁ,(gk) + ||r,(ck)||), and g(A;) by M, where

k k k
M = max{|¢P @) : —o <t <P +[Ir¥ ]}
then the inequality

2
O = 0P + 17PN gOn)2 > 20rE ) g(0F + 117&)? /42

2 (pn(k) (k) 2 (9.6.7)
+ M6, + lryl 4+ o) /2

implies (9.6.6) (cf. the derivation of (9.5.5), which is based on the same ideas). We now
replace )\, in (9.6.7) by the given constant A\ and ~, by 0, where |y,| > ¢ holds with
probability 1 — . We determine the smallest integer m > k such that

2
A= 0P +[IrP D) g2 > 2[rP) g0 + 7P / 6>

(9.6.8)
+ M2(0F + IrP) +0) / 8
is satisfied and perform m — k Lanczos steps to obtain 6", If 65 < Q,Ek) + ||7‘,(ck)||,
then (9.6.5) and (9.6.6) are violated. This implies that (9.6.7) does not hold if, e.g.,
A1 < 0,(616_)1 + ||7",(ck_)1|| (This will be satisfied in most cases.) From the fact that (9.6.7) is
violated and (9.6.8) holds we conclude that A, < A holds with probability at least 1 —e.
If 65 > 0,(!“) + ||r,(ck)||, we know that a misconvergence has occurred and we do not
know whether )\, < A is satisfied or not. In the latter case one may repeat the above
construction with & replaced by m.
These ideas can also be used to investigate whether or not the smallest Ritz value
has converged to A;.

9.7 Numerical experiments

In this section we compare the different bounds derived in the previous sections. All
experiments are carried out with MATLAB. Without loss of generality we can restrict
ourselves to diagonal matrices A (cf. [48, Section 6]): this will reduce the influence of
rounding errors on our computations. For analysis it is also convenient to know the
eigenvalues and eigenvectors of A. The vector v; is chosen randomly from the uniform
distribution over the unit sphere S"~!; in [48, p. 1116] it is explained how this can be
done.
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Experiment 9.7.1 In our first example we take
n = 1000, A = diag(1 :1000).

Let ¢ = 0.01, i.e., we are looking for bounds of the spectrum that are 99% reliable.
From (9.3.2) one obtains § ~ 3.97-10~%. We checked that our randomly chosen starting
vector vy satisfied |y;| > 6 and |v,| > d, so the computed probabilistic bounds are true
bounds for the spectrum of A. We have performed 100 Lanczos steps. The shifts (see
Sections 9.4 and 9.4) used in our computations are 0 = 0 and 7 = A, = 1000. The
results are displayed in Figure 9.1.

1060 f
1040}

1020

1000 ¢

20 40 60 80 100 20 40 60 80 100

FIGURE 9.1: Probabilistic bounds for the spectrum of A. Solid curves correspond to the bounds
based on Lanczos polynomials, the dashed curves correspond to bounds based on Ritz polynomials,
the dotted curves correspond to bounds obtained from Theorem 9.5.1, and the dash-dotted curves
correspond to (9.5.5). The left figure shows the upper bounds and the right figure the lower bounds.
The largest Ritz values (left picture) and smallest Ritz values (right picture) are indicated by small
circles.

We see that the Lanczos polynomials provide the sharpest bounds and (9.5.5) yields
the worst bounds. In Section 9.4 it has already been explained why the Lanczos polyno-
mials may provide better bounds than the Ritz polynomials. Furthermore, it may not
be a surprise that the Lanczos polynomials produce better bounds than the Chebyshev
polynomials, because more information regarding the actual Lanczos process is used
in the construction of the Lanczos polynomials. The relationship between the different
bounds based on Chebyshev polynomials is in agreement with the discussion on this topic
in Section 9.5. We repeated the same experiment with other random starting vectors vy,
and the bounds behaved similarly as those displayed in Figure 9.1.

We also investigated how many Lanczos steps are needed to obtain an approximation
to A\, with a relative error less than a prescribed tolerance tol. Again we set o = 0,
so that (9.6.2) reduces to t,, < 1+ tol; the upper bound m for the number of Lanczos
steps does not depend on the matrix A or the starting vector v; and can be computed in
advance. The results are displayed in Table 9.1. We see that the upper bound m from
(9.6.2) is much larger than k;, the actual number of steps needed to obtain a relative
error smaller than tol; this has already been observed in other examples for the upper
bound obtained with (9.6.3) [48, 49]. We also observe that m > ky, the number of
steps needed to obtain (A"P — 0,(!“)) /A" < tol with A"P the upper bound obtained from
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the Lanczos polynomial of degree k. This is not surprising in view of the results from
Figure 9.1, because m is related to the upper bound determined with Theorem 9.5.1,
and these bounds are not as sharp as those based on Lanczos polynomials. Instead of
performing m Lanczos steps, it may be useful in practice to compute (A" — 9,(!“) )/ v
while executing the Lanczos method and check whether this quantity is smaller than tol
or not.

TABLE 9.1: The second column displays the smallest integer m satisfying (9.6.2) with o = 0.
The smallest integer k; for which (A, — Gl(ck)) /An < tol is shown in the third column, and the smallest

integer ks with (AP — Hl(ck)) /AUP < tol, where A"P is the upper bound for A, obtained with the Lanczos
polynomial of degree k, is listed in the fourth column of the table.

tol m kq ko

5.0-1072 | 20| 5|18
1.0-1072 | 44 | 11 | 40
5.0-107% | 61 | 17 | 55
1.0-1073 | 136 | 48 | 97

We have repeated the experiments described above with ¢ = 0.001 (instead of € =
0.01). The behavior of the bounds is the same as for ¢ = 0.01, but of course the
bounds are further away from the spectrum of A. In order to compare the different
bounds, let A"P be an upper bound corresponding to £ = 0.01 (determined with one
of the four techniques discussed here), and let A" be the upper bound determined
with the same technique but with ¢ = 0.001. For all four techniques we observed that
1< (A" — A,) /(A" — \,) < 2.2 for 20 < k < 100 (k denotes the number of Lanczos
steps) and the same holds for (A; — A°¥)/(A\; — "), where the lower bounds A" and
Mo are defined analogously. Hence the behavior of the bounds for the spectrum of
A does not change much when ¢ is decreased from 0.01 to 0.001, which is reasonable
because the polynomials used to derive the bounds grow fast outside the spectrum of A.
@

Experiment 9.7.2 The second example comes from the discretization of the Laplace
operator on the unit square with homogeneous Dirichlet boundary conditions. When the
standard second order finite difference scheme with uniform meshwidth equal to 1/33 (in
both directions) is used, one obtains a symmetric matrix of order n = 32? = 1024 with
eigenvalues

33%(—4 + 2cos(Z) + 2 cos(LZ)), i,j=1,2,...,32.

Let A be the diagonal matrix of order 1024 with these eigenvalues on its diagonal in
increasing order. Note that A is negative definite.

We have computed bounds for the spectrum of A with ¢ = 0.01 (which yields ¢ ~
3.92-107* by (9.3.2)), 0 = —\; and 7 = 0, using different randomly chosen starting
vectors. For most starting vectors the bounds behave similarly as in the first example
and we will not consider this further. Instead we deal with two different starting vectors
that provide a different behavior for the upper bounds (similar results can be obtained
for lower bounds as well), and the results can be found in Figure 9.2.
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FIGURE 9.2: “Upper bounds” for the spectrum of A, obtained with two different starting vectors;
the starting vector for the left picture satisfies |y,| > d, while |y,| < § for the starting vector used to
produce the right picture. Solid curves correspond to the bounds based on Lanczos polynomials, the
dashed curves correspond to bounds based on Ritz polynomials, the dotted curves correspond to bounds
obtained from Theorem 9.5.1, and the dash-dotted curves correspond to (9.5.5). The largest Ritz values
are indicated by small circles.

In the left picture we see what can happen if |7,| is small (]y,| = 5.46 - 107 for this
example), but still greater than 6. The Ritz polynomials provide the sharpest bounds at
a certain stage of the Lanczos process. At that stage the misconvergence behavior of the
Lanczos process (cf., e.g., [62]) is discovered: for 37 < k < 49 one has |\, —9,(:“)| <0.15
(An_1 &~ —49.22), and the largest Ritz values seem to converge to a number close to the
(double) eigenvalue A, ;. For larger values k£ the Lanczos process notices the existence
of a larger eigenvalue (A, ~ —19.72) and starts to converge to this eigenvalue. At the
stage of the Lanczos process where the misconvergence behavior is discovered, the norm
of the residual usually increases strongly (for example, ||73(é2)|| = 5.65 and ||rég5)|| = 102)
and a large residual norm may explain why the Ritz polynomials provide sharper bounds
than the Lanczos polynomials (see the discussion at the end of Section 9.4). However,
for larger k£ the bounds based on Lanczos polynomials are again the sharpest ones. The
misconvergence of the Lanczos process also causes a hump in the upper bounds obtained
with the Chebyshev polynomials. Finally we note that the upper bounds obtained with
the Lanczos polynomials are much sharper than those obtained with the Chebyshev
polynomials.

In the right figure the behavior is shown for a starting vector for which, in contrary
to our assumption, |v,| < d (|7,| = 3.13-107°). This means that the probabilistic upper
bounds for A\, need not to be true bounds, and the right picture in Figure 9.2 shows
that at certain stages of the Lanczos process the Lanczos and Ritz polynomials provide
bounds that are actually smaller than ),. The Chebyshev bounds follow the jump of
the Ritz values at the discovering of the misconvergence, as in the left picture. At that
stage the Lanczos bound corrects its value to give a tight bound, but the Ritz bound
fails completely: the upper bound stays far below the largest Ritz value. @

Experiment 9.7.3 In the third example we illustrate the theory of Section 9.6.2. We
take

n = 1000, A = diag(1,2,...,999,1020).
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We set 0 = —\; and the starting vector v; is chosen as follows: v = v = Yo =
Vo1 = (75 = 1073¢ (3 < j < n—3), 1, = 1075, and the constant ¢ is such that
%% = 1. For k = 34 we have 6" = \,_; —3.20-10°%, [|r"|| = 7.3 - 102 so that
An > H,Ek) + ||r,(ck)||. We now determine the smallest integer m for which (9.6.8) holds.
We take k = 34, A\ = )\,, § =, = 5.0- 10" and M = 2.11. The smallest m satisfying
(9.6.8) is m = 69. The Lanczos process finds the largest eigenvalue A, earlier: one has,
e.g., 050 = X\, —24-1072, 08" = A, —5.5-107° and 62” = A, —2.4-10"7. This
behavior is not surprising: the Ritz polynomial q7(nm) maximizes the Rayleigh quotient
(Ag(A)v, g(A)vy)/(g(A)vy, g(A)vy) and several other estimates used in the derivation of
(9.6.8) may not be sharp as well. %

9.8 Conclusions

Using the fact that the Lanczos, Ritz, and Chebyshev polynomials increase rapidly out-
side the smallest interval containing the Ritz values, we have derived probabilistic bounds
for the spectrum of a symmetric matrix. These bounds can be computed while execut-
ing the Lanczos process. From theoretical arguments supported by experiments, we
conclude that the bounds obtained with the Lanczos polynomials are generally sharper
than those derived from Chebyshev polynomials (more information regarding the ac-
tual Lanczos process is used in the construction of the Lanczos polynomials). In most
cases the bounds based on Lanczos polynomials are also sharper than the bounds found
with Ritz polynomials—unless the norm of the corresponding residual is relatively large
(which occurs if the Lanczos method suffers from a misconvergence).

The bounds corresponding to the Lanczos polynomials are cheap to compute, because
the Ritz values are not required. When the Ritz values are available, it is useful to
compute the bounds based on these polynomials as well, because they might be sharper;
in that case it can indicate a misconvergence of the Lanczos method. The bounds based
on Theorem 9.5.1, using Chebyshev polynomials of the second kind, may be determined
as well because they can be computed cheaply when the Ritz values are known. The
bounds obtained from Theorem 9.5.1 are sharper than those derived from (9.5.5), which
are based on Chebyshev polynomials of the first kind, in all cases of practical interest;
hence it seems not useful to determine the latter ones.

Chebyshev polynomials may also be used to determine probabilistic bounds for the
number of Lanczos steps still to be done to get bounds for the (relative) error which
are smaller than the desired tolerance. However, our experiments suggest that these
bounds are much larger than the actual number of Lanczos steps still necessary to get
an approximation which is sufficiently accurate. From their derivation (9.6.1) it is clear
that one cannot expect a proper estimation of the number of steps required if the bounds
from Theorem 9.5.1 are far from sharp.

A combination of Ritz and Chebyshev polynomials can be used to obtain probabilistic
bounds for the number of Lanczos steps needed such that one can decide that either the
spectrum lies between certain prescribed bounds or a misconvergence has occurred.
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Samenvatting

Dit proefschrift behandelt een aantal aspecten van deelruimte methoden voor verschil-
lende eigenwaarde problemen. Trillingen en de bijbehorende eigenwaarden (of frequen-
ties) komen voor in de wetenschap, techniek en het dagelijks leven. Eigenwaarde prob-
lemen van matrices zijn afkomstig uit een groot aantal gebieden, zoals

e de chemie (chemische reacties, energienivo’s van een molecuul),
e de mechanica (ontwerp van aardbeving bestendige gebouwen)

e dynamische systemen (stabiliteit, bifurcatie analyse van systemen die athangen van
een parameter),

Markov ketens (stationaire verdeling van random processen),
magneto-hydrodynamica,

de oceanografie,

de economie,

de signaal- en beeldverwerking,

de control theorie,
e de patroonherkenning,
e en de statistiek.

Eigenwaarden en eigenvectoren geven waardevolle informatie over het gedrag en
de eigenschappen van een matrix; daarom is het niet verbazendwekkend dat eigen-
waarde problemen al meer dan anderhalve eeuw onderwerp van studie zijn, deels vo-
ordat de huidige matrix notatie standaard werd. Afhankelijk van de toepassing, is men
geinteresseerd in een of meerdere eigenwaarden aan het eind van het spectrum, of juist
in eigenwaarden in het midden van het spectrum of in het aantal eigenwaarden in een
interval.

Methoden voor eigenwaarde problemen worden vaak ingedeeld in twee categorieén.
De eerste categorie, de directe methoden zoals de QR-methode en de verdeel-en-heers
methode, hebben als doel alle eigenwaarden (nauwkeurig) te vinden van relatief kleine
(zeg orde 10%) matrices. Hoewel deze aanpakken op een iteratieve manier werken, worden
ze “direct” genoemd, omdat ze (bijna) gegarandeerd in een vast aantal stappen converg-
eren. Deze methodes zijn efficiént, en de onderliggende wiskunde is goed ontwikkeld.

Veel toepassingen, bijvoorbeeld die uit de chemie, geven echter aanleiding tot eigen-
waarde problemen waar de afmeting van de matrix gemakkelijk een miljoen overschrijdt.
Deze problemen komen dikwijls van gediscretiseerde partiéle differentiaalvergelijkingen;
meestal is slechts een kleine deel van de eigenwaarden interessant. Bovendien zijn de
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matrices vaak ijl, dit betekent dat de matrix relatief veel elementen bevat die nul zijn.
Daarom kan men goedkoop, dat wil zeggen snel, een matrix-vector product berekenen,
ook voor grote matrices. Voor deze matrices zijn de directe aanpakken vaak niet mo-
gelijk omdat ze teveel computer tijd en/of geheugen consumeren, zelfs op moderne (en
toekomstige) computers. Om al deze redenen verdienen iteratieve methoden, en in het bi-
jzonder de belangrijke deelklasse van deelruimte methoden, vaak de voorkeur voor grote
ijle matrices. In een deelruimte methode wordt de matrix geprojecteerd op een laag-
dimensionale deelruimte; de geprojecteerde matrix wordt dan opgelost met behulp van
directe methoden. Op deze manier krijgen we benaderingen voor eigenparen uit een
laag-dimensionale deelruimte.

Voor grote ijle problemen bestaat vaak niet “de beste methode”. De keuze voor een
methode kan athangen van bepaalde eigenschappen van de matrix (structuur, afmeting),
de data die gevraagd wordt (wat, met welke nauwkeurigheid) en de beschikbare oper-
aties (getransponeerde van de matrix, preconditioneerder). Dit proefschrift hoopt een
bijdrage te leveren aan het interessante en actieve gebied van deelruimte methoden voor
eigenwaarde problemen. We bestuderen verschillende eigenwaarde problemen, te weten

het (standaard) eigenwaarde probleem,

het gegeneraliseerde eigenwaarde probleem,

het singuliere waarde probleem,

het polynomiale eigenwaarde probleem
e en het multiparameter eigenwaarde probleem.

Van deze problemen zijn het standaard en het gegeneraliseerde eigenwaarde probleem,
afkomstig uit talrijke toepassingen, het meest bekend. Het singuliere waarde probleem
speelt een belangrijke rol in toepassingen als signaal- en beeldverwerking, control theorie,
patroonherkenning, statistiek en zoekmachines op het internet. Maar het heeft ook
een centrale positie in de numerieke lineaire algebra zelf, bijvoorbeeld voor het kleinste
kwadraten probleem, de numerieke rang van een matrix, de hoeken tussen deelruimtes,
de gevoeligheid (conditie) van de oplossing van lineaire systemen, het pseudospectrum
en de (Euclidische) norm van een matrix.

Het polynomiale eigenwaarde probleem komt onder andere voort uit de studie van
trillingen van een mechanisch systeem veroorzaakt door een externe kracht (het effect
van de wind op een brug), bij het simuleren van electronische circuits en in de vloeistof
mechanica.

Een voorbeeld van de oorsprong van het multiparameter eigenwaarde probleem is de
mathematische fysica, wanneer scheiding van variabelen wordt gebruikt om randwaarde
problemen op te lossen.

Een deel van dit proefschrift wordt gevormd door vier hoofdstukken die Jacobi-Davidson
achtige methoden introduceren voor verschillende eigenwaarde problemen:

e voor het (niet-normale) standaard, complex symmetrische, gegeneraliseerde en
polynomiale eigenwaarde probleem in hoofdstuk 2,

e voor het singuliere waarde probleem in hoofdstuk 3 (met hoofdstuk 4 als vervolg),
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e en voor het multiparameter eigenwaarde probleem (in het bijzonder het geval van
twee parameters) in hoofdstuk 5 en 6.

Om te beginnen bestudeert hoofdstuk 2 twee Jacobi-Davidson achtige methoden voor
niet-normale matrices, die we tweezijdig en alternerend Jacobi—Davidson noemen. Voor
deze matrices zijn de rechts en links eigenvectoren in het algemeen niet identiek, zoals
het geval is voor normale matrices. Dit vormt een motivatie om twee zoekruimtes bij
te houden, een voor de rechts en een voor de links eigenvector. De zoekruimte voor de
linker vector is de testruimte voor de rechtse vector en vice versa. De correctievergeli-
jking, die dient voor de expansie van de zoekruimtes, bevat scheve projecties, in plaats
van de orthogonale projecties die kenmerkend zijn voor de standaard Jacobi-Davidson
methode. Deze methoden worden toegepast op het standaard, complex symmetrische,
gegeneraliseerde en polynomiale eigenwaarde probleem.

Hoofdstuk 3 introduceert een Jacobi-Davidson achtige methode voor het singuliere
waarde probleem. Net als in hoofdstuk 2 hebben we twee zoekruimtes, nu een voor
de rechts en een voor de links singuliere vector. Dit geeft aanleiding tot een methode
met cubische convergentie wanneer de correctievergelijking exact wordt opgelost. In de
praktijk zal deze vergelijking vaak inexact worden opgelost, met lineaire convergentie
als resultaat. De methode kan gezien worden als een versneld inexact Newton proces
en als een versnelde inexacte Rayleigh quotient iteratie. Speciale aandacht wordt in
hoofdstuk 4 gegeven aan het benaderen van de kleinste en tnwendige singuliere waarden.
Hierbij is de standaard Galerkin deelruimte extractie niet meer bevredigend. Net als bij
het standaard eigenwaarde probleem zijn een harmonische en “verfijnde” aanpak meer
belovend. We bespreken ook toepassingen van de methode op het kleinste kwadraten
probleem en de benadering van een matrix door middel van een afgekapte singuliere
waarde ontbinding.

Hoofdstuk 5 en 6 behandelen een Jacobi-Davidson achtige methode voor het mul-
tiparameter eigenwaarde probleem, in het bijzonder het geval van twee parameters. In
hoofdstuk 5 bekijken we het zogenaamde rechts-definiete multiparameter eigenwaarde
probleem. Voor het geval van twee parameters hebben we wederom twee zoekruimtes, een
voor elke component van de ontbindbare tensor. De extractie van de zoekruimte gebeurt
met een generalisatie van de Rayleigh-Ritz methode, die monotone convergentie naar de
extreme eigenwaarden verzekert. Voor de uitbreiding van de zoekruimtes presenteren we
twee verschillende correctievergelijkingen: een met orthogonale een-dimensionale projec-
ties die tweedegraads termen verwaarloost, en een met twee-dimensionale scheve pro-
jecties die alleen derdegraads termen weggooit. Omdat standaard deflatietechnieken
niet opgaan in dit probleem, wordt een selectiecriterium op de Ritzwaarden toegepast
wanneer we geinteresseerd zijn in meerdere eigenparen.

In hoofdstuk 6 behandelen we de wijdere klasse van de niet-singuliere multiparameter
eigenwaarde problemen. Dit is een uitdagend probleem, waar we vele technieken nodig
hebben om het te kraken. Zo kiezen we hier voor een tweezijdige aanpak (verschillende
test- en zoekruimtes), vergelijkbaar met hoofdstuk 2.

Hoofdstuk 7 bekijkt numeriek belangrijke aspecten van het multiparameter probleem:
terugwaartse fouten en de conditie van eigenwaarden en eigenvectoren. Deze begrippen
geven een indicatie hoe goed een bepaalde verkregen benadering is, en hoe gevoelig de
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eigenwaarden en eigenvectoren voor perturbaties van het probleem zijn. Ook wordt
het pseudospectrum voor multiparameter problemen geintroduceerd. Dit kan een fraai
grafisch beeld geven van de gevoeligheid van een aantal of alle eigenwaarden.

Voor het standaard eigenwaarde probleem is de extractie van Ritzparen van een
zoekruimte al goed onderzocht. Voor het polynomiale eigenwaarde probleem is de situatie
minder duidelijk. Hoofdstuk 8 beschouwt benaderingen van een eigenwaarde die verkre-
gen kunnen worden uit een zoekruimte. De nadruk ligt op het quadratisch eigenwaarde
probleem en een-dimensionale zoekruimtes. Er worden drie nieuwe methoden gegeven,
gebaseerd op een Galerkin- of minimum residu-aanpak. De methoden worden met be-
hulp van perturbatie resultaten en terugwaartse fouten vergeleken, en vervolgens gegen-
eraliseerd naar algemene polynomiale problemen en extractie van meer-dimensionale
zoekruimtes.

In hoofdstuk 9 ontwikkelen we probabilistische grenzen voor de extreme eigenwaarden
van een Hermietse matrix met behulp van de Lanczos methode. Deze grenzen worden
verkregen met Lanczos-, Ritz- en Chebyshevpolynomen. Omdat we er vanuit gaan dat
de startvector een bepaalde component in de richting van de gezocht eigenrichting bevat,
verkrijgen we zo grenzen die met een bepaalde (grote) waarschijnlijkheid inderdaad juist
zijn. De grenzen kunnen gebruikt worden als stopcriterium. Een tweede toepassing van
de technieken is het maken van een schatting voor het aantal stappen van de Lanczos
methode die nog nodig zijn om een extreme eigenwaarde met een bepaalde tolerantie te
verkrijgen.
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