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Array processing is classically not considered as an antenna
topic but more as a signal processing topic. So why did
we publish a special issue on this topic for this journal?
Today, with modern array antennas, the separation between
the antenna and signal processing worlds becomes more
and more obsolete. Printed antennas are often designed as
arrays that are summed in an analog manner, which is
already (analog) array processing. The flexibility that digital
processing provides leads antenna engineers to design array
antennas with digital summation of the element antennas.
But with a digital array antenna all the possibilities of array
signal processing are realizable which creates a broad scope
for antenna design. This special issue is intended to provide
the antenna community with a flavor of the multiple options
that antenna array processing offers. This issue cannot cover
the complete bandwidth of topics in radar antenna array pro-
cessing as this would fill many textbooks and is a continuing
process. But we hope that we can give some inspiration of
what is possible.

Antenna arrays for radar systems, communication, and
sonar installations are now an established technology. How-
ever, there are close links between the array and the different
algorithms and techniqueswhich are often not recognized. To
fully exploit the advantages of array techniques it is necessary
to account for these interrelations in the system design.

Ideally digital processing of array data should be done
as close to the element as possible, if this is possible given
the size, weight, and cost of the hardware. As a cost effective
compromise hardwired analog summation of subarrays can
be used to reduce cost and weight. This has created a realm
of possibilities for building array hardware structures and

for multichannel processing schemes. Examples are not only
many algorithms of nonlinearwave parameter estimation and
adaptive interference suppression but also array configura-
tions with sparse arrays and various types of subarrays.These
configurations constitute special solutions of a hardware
compromise between analog and digital processing. Further-
more, we have sophisticated processing methods involving
higher order statistics and methods of compressed sensing,
which both lead to virtual arrays of larger size and potentially
better resolution properties. And finally, one can combine
spatial and temporal processing (in particular space-time
adaptive processing, STAP).

The purpose of this special issue is to bring together
these antenna and processing related aspects, linking the
theoretical possibilities with the operational aspects and
hardware constraints. From the manifold submissions we
have selected 18 interesting papers. Starting with a tutorial
on achievements and challenges of array processing (U.
Nickel) the papers then cover topics of array optimization
and adaptive processing for thinned arrays and subarrayed
arrays (P. Lombardo et al.), array configuration and adaptive
interference cancellation for passive radar (M. Villano et al.).

Array design and array processing for multichannel
input/multichannel output radar (MIMO radar) systems are
a fascinating extension of array technology exploiting spatial
diversity. We have two papers that consider this technique,
that is, detection in compound-Gaussian clutter with hybrid
MIMO (J. C. Ding et al.) and direction finding for bistatic
MIMO with circular array (Y. H. Cao et al.). Space-time
array processing (STAP) is another powerful extension of
classical spatial array processing. We have contributions on
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deterministic aided STAP detection (J. F. Degurse et al.),
clutter suppression using cross beam (Y. L. Wang et al.),
superresolution using adaptive incremental multiparameter
estimator (Z. B. Wang et al.), and applications of STAP in the
exciting field of surface wave radar (X. Zhang et al. and Y. J.
Li et al.). A special case of STAP with a topical application
is synthetic aperture radar (SAR). There are three papers
that consider exemplary problems of this kind, that is, phase
pattern calibration (M. Bachmann et al.), SAR in the presence
of dictionary mismatch (A. S. Khwaja et al.), and in-flight
antenna pattern characterization (G. C. Alfonzo et al.). And
finally we have a number of papers that present novel ideas
and extensions like parallel factor analysis (PARAFAC) for
passive localization (J. Chen et al.), spectrum sensing under
cognitive radar (M. S. Shbat et al.), transmit virtual aperture
array for through the wall imaging radar (B. Y. Lu et al.),
tracking compensation for phased array radar (J. Mar et al.)
and operating frequency selection for high-frequency (HF)
radar (S. Y. Yang et al.) that are made possible with array
antennas.

We would like to thank all authors for their highly
professional contributions and the reviewers for their time
and effort. We hope that this collection of papers will activate
the curiosity of the readers about these exciting new ideas. At
least we hope that you will enjoy the compilation of such a
broad and rich variety of ideas.

Hang Hu
Ulrich Nickel

Krzysztof Kulpa
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A new approach is presented for the optimized design of a planar thinned array; the proposed strategy works with single antenna
elements or with small sets of different subarray types, properly located on a planar surface. The optimization approach is
based on the maximization of an objective function accounting for side lobe level and considering a fixed number of active
elements/subarrays. The proposed technique is suitable for different shapes of the desired output array, allowing the achievement
of the desired directivity properties on the corresponding antenna pattern. The use of subarrays with a limited number of different
shapes is relevant for industrial production, which would benefit from reduced design and manufacturing costs. The resulting
modularity allows scalable antenna designs for different applications. Moreover, subarrays can be arranged in a set of subapertures,
each connected to an independent receiving channel. Therefore, adaptive processing techniques could be applied to cope with and
mitigate clutter echoes and external electromagnetic interferences.The performance of adaptive techniqueswith subapertures taken
from the optimized thinned array is evaluated against assigned clutter and jamming scenarios and compared to the performance
achievable considering a subarray based filled array with the same number of active elements.

1. Introduction

As well known, the use of large array antennas allows ob-
taining patterns with good values of angular resolution. Am-
plitude tapering is typically used to lower the level of the
side-lobes of the pattern. As a consequence usually a great
number of Transmit/Receive (T/R) elements are needed, thus
increasing the production cost.

Several techniques were studied in the past to reduce
the number of active elements in the array with limited
performance loss. Among them, thinning techniques allow
to achieve low values of side-lobe level (SLL) without using
amplitude tapering, thus with limited impact on the angular
resolution. This is achieved when, among all the possible
positions in the array, only a subset is actually occupied by
T/R elements, inducing a density tapering.

Finding the best thinned array configuration is there-
fore the problem to be solved. The optimal result can be
found only trying all the combinations of active elements

among all the possible positions, but this brute approach is
computationally consuming especially for large planar arrays.
Therefore, several thinning techniques have been developed
in the past, which can be divided in regular grid based
and random location based techniques. In the first case,
the possible positions form a regular grid; thinning can be
performed (i) switching off several active elements depending
on a statistic criterion or (ii) starting from an empty array and
filling some positions according to a deterministic criterion.
In the second case, T/R elements are displaced in random
positions with proper statistical characteristics.

In [1] Sherman and Skolnik used an array with isotropic
elements on concentric ringswith different radial and angular
spacing. This induces natural spatial tapering with effects on
SLL depending on the uniformity of the radial spacing and
on the number of allowed angular positions in each ring.
In [2], Skolnik et al. proposed a technique where the spatial
tapering is statistically determined, allowing a concentration
of elements in the center of the array. Starting from [2], in [3]
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Mailloux and Cohen studied a regular grid based thinning
approach with the joint use of stepped amplitude tapering to
further reduce the SLL. In [4, 5] Skolnik et al. proposed a trial-
and-error technique called “Dynamic Programming,” which
has been devised to reduce the number of total trials with
respect to the brute approach. As for the previous thinning
approaches, “Dynamic Programming” is not supposed to
reach the optimal array configuration. Moreover, its deter-
ministic approach makes this technique suitable only for
small arrays. More recently in [6], Keizer studied an iterative
random technique, called Iterative Fourier Technique, to thin
an array achieving a fixed number of active elements. The
technique is based on the inverse discrete Fourier transform
(IDFT) relation between the desired array pattern and the
element excitations; moreover the iterative nature of this
algorithm depends on the nonideal effects induced by the
binary quantization of the actual element excitations.

The previous are regular grid based thinning approaches.
Lo studied random location based thinning techniques in
[7, 8], reaching some general and useful conclusions: for
example, he stated that the number of active elements is
linked with the desired SLL and that the angular resolution
depends on the dimension of the resulting array and less
on the elements distribution. Following the random location
thinning approach, Steinberg succeeded in determining an
estimate of the SLL knowing the number of elements, the
dimension of the array, the wavelength, the steering direction
of the pattern, and the frequency bandwidth of the signal,
[9, 10]. Moreover, in [11] Steinberg and Attia used position
and frequency diversity to reduce the SLL without impact on
the main lobe of the pattern.

Also statistic global optimization algorithms have been
applied to the problem of regular grid based thinning, where
the objective function can be related to the SLL. Genetic
algorithms [12–15] are well suited since the binary represen-
tation of the genes directly refers to the presence (1) or the
absence (0) of an active element in the array. In [16], a genetic
algorithm is used not to determine which element is active
in the array but to determine the spacing of concentric rings
according to Cantor sets where active elements should be
placed, extending the original approach in [1]. In [17], a nested
optimization algorithm integrating genetic algorithm and
linear or quadratic programming is introduced to find the
thinned array with the minimum number of active elements,
whose excitations allow the achievement of a pattern with
desired characteristics (such as minimum SLL or prescribed
gain in a specific direction). Ant colony algorithm in [18]
emulates the behavior of ants to determine the best thinned
array configuration, based on the identification of the shortest
path from nest to food. Here, the food is the desired SLL,
the path is the set of active elements in the array, and the
length is a figure of merit concerning the probability for an
ant to pass from one node to another in the path that is the
probability of an element in the array to be active. A Boolean
version of the differential evolution algorithm is applied in
[19], to cope with discrete-variable optimization problem.
Also simulated annealing [20, 21] has been used to select
simultaneously the active elements positions and weighting
coefficient to reach the best SLL possible. Finally, particle

swarm optimization has been proposed in [22] to cope with
antenna design applications: in particular, the continuous
and binary versions can be used to synthesize aperiodic
or thinned arrays respectively, based on the minimum SLL
criterion in the single-objective case or on a number of
desired features of the antenna pattern in the multiobjective
case.

In this paper, we consider two main issues: (i) the opti-
mized design of planar thinned arrays at element or subarray
level and (ii) the identification of suitable strategies to split
the thinned array in multiple subapertures, adequate for the
application of adaptive processing techniques for jammer
cancellation.

The first issue addresses the practical problem of obtain-
ing planar thinned arrays by disposing a certain number of
active elements on a given planar surface. It is well known
that good results can be obtained by randomly thinning
the aperture and using irregular subarray configurations
[23], but the absence of symmetry in the array structure
strongly affect the design and production costs. Therefore,
we aim at identifying thinned array structures with good
performance in terms of SLL at the same time choosing the
used subarrays from a limited number of different types.
Subarray based thinning reduces the degrees of freedom in
the array thus degrading the performance: therefore, suitable
design approaches have to be identified to obtain good
performance despite the constraints.

To this purpose we present two new statistical design
techniques called sequential probabilistic element disposal
(SPED) and sequential probabilistic subarray disposal (SPSD
[24]), respectively. In our approach, the number of elements
actually present in the array is fixed. Starting from the
concepts in [1, 2], the proposed statistical approach does not
decide whether or not to introduce a single element/subarray,
but it selects the position inside the array that the new
element/subarray should occupy. This is done according
to a probability density function (PDF) derived from an
amplitude tapering function favoring central positions with
respect to the edges. This should correspond to a density
tapering of the array and therefore results in an increased
SLL. Moreover, starting from these two basic techniques, to
improve efficiency and practical feasibility, several modified
versions are also developed. The first modified version is
based on the observation that there is a high probability
of filling the central part of the array with active ele-
ments/subarrays. Therefore, a constrained version of SPED
and SPSD is derived, where all the positions belonging to
the center of the array (properly identified) are filled and the
statistical procedure follows to reach the desired number of
active elements.The secondmodified version is motivated by
the observation that the use of larger subarrays is useful in
terms of production costs but tends to degrade the thinned
array performance unless high number of subarray types is
considered. To avoid the use of SPSD with a large number
of subarray types, we devise the wide subarray forcing
(WFS) procedure; merging small adjacent subarrays allows
obtaining an exponentially higher number of available types
of larger subarrays, among which only a subset is considered
valid. The performance analysis of the devised optimization
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techniques shows that it is possible to design planar thinned
arrays with assigned desired performance in terms of SLL.
Moreover this analysis proves that the obtained thinned
arrays are effective in lowering the SLL with limited impacts
on the main lobe aperture of the corresponding pattern, in
contrast with what would be obtained by considering filled
arrays with the same number of active elements.

The second issue aims at verifying the feasibility of adapt-
ive processing on a subarray based thinned aperture to miti-
gate either clutter or interferences. We identify suitable sub-
aperture structures for the application of electronic counter-
counter measures (ECCM) techniques. The performance
analysis against simulated interference and clutter scenarios
shows the quality of the obtained results.

The paper is organized as follows. Section 2 introduces
the array structure model; Section 3 describes the opti-
mization techniques to obtain element and subarray based
thinned antennas with the desired characteristics. Section 4
shows some examples of thinned arrays obtained using the
proposed design techniques, while Section 5 compares the
performance of adaptive techniques applied to both thinned
and filled arrays against jammer and clutter. Finally, we draw
our conclusions in Section 6.

2. Array Structure Model

In order to develop the design techniques of a thinned planar
array, we start from a filled array, containing𝑀×𝑁 isotropic
elements disposed on the intersections of a regular 𝑀 × 𝑁
grid.

Thinning consists in considering only a number 𝑁
𝐴
of

active elements, over a total number of possible positions on
the array𝑁POS = 𝑀𝑁. Therefore, the thinning factor can be
defined as

𝜂 =
𝑁POS
𝑁
𝐴

. (1)

The procedure of thinning the array can be regarded as
a transformation applied to the received signal vector at the
element level, namely, to the𝑁POS × 1 vector xel

xel (𝜃, 𝜑) = 𝑎 ⋅ sel (𝜃, 𝜑) + del, (2)

where sel is target steering vector, 𝑎 and (𝜃, 𝜑) represent,
respectively, the complex amplitude of the useful signal
and its direction of arrival (DOA) angles in elevation and
azimuth.We also define del as the disturbance signal (jammer
plus noise)𝑁POS × 1 vector and its𝑁POS × 𝑁POS disturbance
covariance matrixMel.

The steering and thinning procedure introduces a trans-
formation applied on the received signal vector xel(𝜃, 𝜑) that
can be represented by the transformation matrix Tel. Define
the 𝑁POS × 𝑁POS matrix S = diag{sel(𝜃0, 𝜑0)} for steering
purpose and the 𝑁POS × 𝑁𝐴 matrix U, which selects the
active elements in the array, for thinning. Thus, the global
transformation is described by the 𝑁POS × 𝑁𝐴 matrix Tel =
S ⋅ U. At element level, the𝑁

𝐴
× 1 received signal vector and

the 𝑁
𝐴
× 𝑁
𝐴
disturbance covariance matrix will be given,

respectively, by x(𝜃, 𝜑) = T𝐻el xel(𝜃, 𝜑) andM = T𝐻elMelTel.

To generate subarray based thinned aperture, it is neces-
sary to define also the shape, the size, and the orientation of
the single subarray, aswell as the grid of subarray centers.This
grid has to be defined so that if we place a subarray on each
element of the grid a full filling of the array area is obtained
(i.e., absence of gaps).

In this case, the thinning procedure is described by a
transformation of the received signal vector xel(𝜃, 𝜑) in the
𝑁SUB × 1 thinned subarray vector x(𝜃, 𝜑). This is achieved
considering the transformationmatrixTSUB = S ⋅U ⋅T, where
T is a 𝑁

𝐴
× 𝑁SUB transformation matrix which arranges

𝑁
𝐴
active elements in 𝑁SUB subarrays. At subarray level,

the 𝑁SUB × 1 received signal vector and the 𝑁SUB × 𝑁SUB
disturbance covariance matrix will be given, respectively, by
x(𝜃, 𝜑) = T𝐻SUBxel(𝜃, 𝜑) andM = T𝐻SUBMelTSUB.

3. Thinned Array Design

The statistical technique for the thinned array generation
described in [1, 2] starts from the conventional density
tapering of the array elements. The single radiating element
is introduced with a probability proportional to its weight
depending on a given amplitude tapering function. This is
effective in obtaining a set of thinned arrayswith SLL close (in
the average) to the level achievable by applying the selected
amplitude tapering function to the corresponding filled array.
Unfortunately this optimization algorithm does not allow
setting a priori the number of active elements in the array and
it does not cope with subarray based arrays.

To cope with these undesired features we introduce here
two new techniques that we call Sequential Probabilistic
Element Disposal (SPED) and sequential probabilistic sub-
array disposal (SPSD) for the design of a thinned antenna
at element and subarray level, respectively. SPED and SPSD
are still statistical approaches but properly modified to allow
the design of the thinned array with a preassigned number of
elements.

3.1. Sequential Probabilistic Element Disposal (SPED) Tech-
nique. The SPED technique is described in Figure 1. It uses
the general scheme of Figure 1(a), with the single trial step
described in Figure 1(b). Firstly, the set of possible positions
is assigned and the counter and the minimum SLL are
initialized (i.e., IND = 0 and SLLMIN = 0 dB). Then, the
single trial of the technique follows. The first step of the
single trial of the technique initializes the probability 𝑝

1
(𝑗
𝑘
),

𝑘 = 1, 2, . . . , 𝑁POS, to introduce an active element in the
position 𝑗

𝑘
and the counter𝑚 = 1. Specifically, the probability

𝑝
1
(𝑗
𝑘
) depends on a reference amplitude tapering w =

[𝑤
1
, . . . , 𝑤

𝑁POS
]
𝑇 as follows:

𝑝
1
(𝑗
𝑘
) =
𝑤
𝑘

∑
𝑁POS
𝑛=1
𝑤
𝑛

, 𝑘 = 1, . . . , 𝑁POS. (3)

In each iteration of the SPED, a realization 𝑖
𝑚
is extracted

from the set of possible active element positions 𝑗
𝑘
, 𝑘 =

1, . . . , 𝑁POS, with probabilities 𝑝
𝑚
(𝑗
𝑘
). A new element is

inserted in position (𝑖
𝑚
) and the active elements position

vector i = [i, 𝑖
𝑚
] is updated.
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SLL∗ :
desired

SLL

Initialization:
∙ Assign set of possible active elements positions
∙ Initializations: IND = 0 and SLLMIN = 0

Single trial of the technique:

Evaluate array:

SLL < SLL∗

∙ Evaluate SLL

Yes

Yes

Yes

No
No

No

SLL < SLLMIN

Update results:
∙SLLMIN = SLL

End:

Update results:
∙SLLMIN = SLL
∙ Optimal position vector iOPT= i

∙ Optimal position vector iOPT= i

∙ Read SLLMIN and optimal position vector iOPT

w:
weight
vector

IND > NTRIALS

∙ Output: T/R position vector i = [i1, i2, . . ., iNA ]

NA: number
of active
elements

NPOS :
number of
positions

(a)

NA

Update position probabilities:
∙ Assign probability for step m + 1, pm+1(jk), to each position
∙pm+1(im) = 0 and pm+1(jk) = pm(jk)/[1 − pm(im)]

Single trial of the technique:

First step:

∙ IND = IND + 1

∙ Assign initial probability p1(jk) to each position
∙  m = 1
∙ Initialize empty active element position vector i = [·]

Extract new position:
Extract realization im from the set of possible active elements

Element disposal:
∙ Insert new element in position (im)

Increment T/R counter:
∙ m = m + 1

No

Yes

m <

∙ Update active elements position vector i = [i, im]

positions jk, k = 1, . . ., NPOS , with probabilities pm(jk)

(b)

Figure 1: (a) SPED technique outer scheme (b) SPED single trial (inner block).

Then, the probabilities to assign each position are updated
as follows:

𝑝
𝑚+1
(𝑖
𝑚
) = 0

𝑝
𝑚+1
(𝑗
𝑘
) =
𝑝
𝑚
(𝑗
𝑘
)

(1 − 𝑝
𝑚
(𝑖
𝑚
))
.

(4)

When the desired number of active elements is intro-
duced in the array (i.e.,𝑚 > 𝑁

𝐴
), the single trial is complete.

The output of the single trial of the SPED is a thinned
array; therefore, the SLL can be evaluated. If it is lower than
the desired value SLL∗ the algorithm stops; otherwise, the
SPED continues with the next trials. Anyway, a maximum
number of allowed trials 𝑁TRIALS is defined: in case the
desired SLL∗ is not achieved, the algorithm stops when
𝑁TRIALS have been executed. In such a case the output is
given by the best achieved result represented by the vector
of optimum positions iOPT providing the lowest SLLMIN.

The novelty introduced by the SPED is that the statistical
approach is not used to decide whether or not to introduce a
single element but to select the position inside the array that
the new element should occupy. In this manner, the number

of elements in the array is fixed and it is deterministically set
by the thinning factor. This is different from thinning using
dynamic programming [4, 5], where a deterministic approach
is used to test all the possible insertions of an active element,
including a pruning strategy to reduce the number of trials.

3.2. Sequential Probabilistic Subarray Disposal (SPSD) Tech-
nique. The “random” displacement of the active elements
in the array, while guaranteeing an improvement of SLL,
is a critical point in terms of ease and cost of design
and manufacturing. A regular structure would be more
convenient and would allow the scalability of the antenna
design in relation to specific applications. As a trade-off
between these two aspects, the thinned array can be designed
based on subarrays; indeed keeping small the number of
different subarray shapes and sizes is relevant for industrial
production, to reduce design andmanufacturing costs, aswell
as to allow scalable antenna designs.

A subarray is formed by several antenna elements and has
to be considered as the basic tile of the array. When thinning
is involved in the design step, the position of the entire subar-
ray has to be set in lieu of the single active element. Moreover,
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(a) (b) (c)

Figure 2: Example of (a) subarray, (b) grid of subarray centers, and (c) possible subarray displacement.

if subarrayswith different shape and size are available, also the
type of subarray to be filled in the array has to be decided.

To design a thinned array based on subarrays, a modified
version of the SPED is here introduced called SPSD. The
SPSD technique operates as follows. The first step involves
the selection of the subarray shape and size𝐷 (as an example
Figure 2(a) shows a triangular subarray with 𝐷 = 4), as well
as the subarray center and its original orientation. Moreover,
it is necessary to define a grid containing all the possible
positions𝑁POS-SUB for the subarray centers (e.g., Figure 2(b)).
Each subarray can be inserted with different orientations
(Figure 2(b), red: original orientation and blue: rotation of
180∘) starting from the center of the grid, to completely cover
the array without overlapping (Figure 2(c)).

Thereafter, the 𝑁SUB subarrays are sequentially intro-
duced in a position that is randomly selected, in accordance
with the weight corresponding to an assigned reference taper
function. Specifically, we generalize the SPED procedure to
cope with the subarray case. The technique is described in
Figure 3(a), with the single trial described in Figure 3(b).

The first step of the single trial initializes the probability
𝑝
1
(𝑗
𝑘
), 𝑘 = 1, 2, . . . , 𝑁POS-SUB, to introduce a subarray in the

position 𝑗
𝑘
and the counter𝑚 = 1.

Specifically, the probability 𝑝
1
(𝑗
𝑘
) depends on reference

amplitude tapering w = [𝑤
1
, . . . , 𝑤

𝑁POS-SUB
]
𝑇 as follows:

𝑝
1
(𝑗
𝑘
) =

𝑤
𝑘

∑
𝑁POS-SUB
𝑛=1
𝑤
𝑛

𝑘 = 1, . . . , 𝑁POS-SUB. (5)

At each iteration of the SPSD a realization 𝑖
𝑚
is extracted

from the set of possible subarray positions 𝑗
𝑘
, 𝑘 = 1, . . . ,

𝑁POS-SUB, with probabilities 𝑝
𝑚
(𝑗
𝑘
). A new subarray is

inserted in position (𝑖
𝑚
) and the subarray position vector

i = [i, 𝑖
𝑚
] is updated.

Then, the probabilities to assign each position are updated
as follows:

𝑝
𝑚+1
(𝑖
𝑚
) = 0,

𝑝
𝑚+1
(𝑗
𝑘
) =
𝑝
𝑚
(𝑗
𝑘
)

(1 − 𝑝
𝑚
(𝑖
𝑚
))
.

(6)

When the desired number of fully active subarrays𝑁SUB
(and thus active elements 𝑁

𝐴
) is introduced in the array,

the single trial is complete. Note that if both fully active

and thinned subarrays are available, when a realization 𝑖
𝑚
is

extracted the algorithmneeds to decidewhat kind of subarray
has to be inserted in the array. Again, this can be done using
a statistical approach that promotes the selection of a fully
active subarray near the center of the array or of a thinned
subarray near the edge.

The same stop condition of the SPED technique applies
also to SPSD.

3.3. Strategies for Elements/Subarrays Sorting. Equations (3)
and (5) associate a certain amplitude weight and therefore a
corresponding probability to a specific position in the array.
The basic rules of this association, based on the sorting of all
the possible positions in the array, are important in adapting
the SPED and SPSD algorithms to different kinds of planar
arrays and therefore to different directivity characteristics of
the corresponding antenna pattern.

First of all consider a circular array; in this case, according
to [1, 2], a sorting of all the possible positions based on the
radial distance from the center of the array is adequate, due
to the particular symmetry (Figure 4(a): dark red subarrays
are the farthest from the center). In this way, positions near
to the center should benefit of a higher probability than
the side positions, according to the characteristics of the
amplitude tapering functions. Tie situations can be solved
using the angular displacement of each position with respect
to a reference direction.

In a rectangular array, this ordering strategy greatly
penalizes the farthest elements outside a circular region
around the array center. To this purpose, instead of sorting
the positions according to concentric circles, it is more
appropriate to sort them in concentric frames, where each
frame is characterized by the same ratio between the greatest
and the smallest dimensions of the array (Figure 4(b): dark
red subarrays belong to the outer frame). Positions are
therefore ordered first of all according to the frame (from the
inner to the outer). Positions belonging to the same frame are
then sorted according to the distance from the center of the
array: positions in the same frame and at the same distance
are finally ordered using the angle between the position and
a reference direction.

Obviously SPED and SPSD techniques can also be used
jointly with other sorting strategies; moreover, array shapes
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Figure 4: Subarray sorting approach for (a) circular and (b) rectangular arrays.
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(a) (b)

Figure 5: Circular thinned array with (a) SPED and (b) Constrained SPSD.

different from circular and rectangular could also be con-
sidered. Such flexibility of the proposed techniques is well
suited for the achievement of a thinned array able to fulfill
the requirements not only relative to the SLL (that depends
on the displacement of the active elements) but also on the
directivity of the achievable pattern (which is more sensitive
to the maximum distance between active elements in the
array).

3.4. Improving SPED/SPSD Efficiency and Practical Feasibility.
Since SPED and SPSD are statistical approaches that use
a PDF achieved from an amplitude tapering function, it is
straightforward to expect best results in terms of SLL when
active elements fill the central area of the array. Following
this observation, we propose a modified version of the
SPED/SPSD techniques, named Constrained SPED/SPSD,
which starts by filling the central part of the array (with
proper dimension). In this way the statistical procedure is
applied only to the remaining elements to reach the desired
number of active elements. This approach guarantees that
only configurationswith “reasonably good” SLL are generated
and makes the algorithm faster than the initial SPED/SPSD.

As it will be clear in the following section, good SLL
results can be reasonably obtained by the SPSD and by
the Constrained SPSD, when using subarrays with a small
size. Large subarrays are preferable in terms of design and
production costs but tend to degrade the thinned array
performance, in terms of achievable SLL. This degradation
can be partially mitigated by usingmultiple types of subarray,
which also allows a reasonable convergence. However, a
considerable increase of the number of subarray types is not a
desirable condition. Therefore, a trade-off is needed between
the achievement of the desired performance and the cost
avoidance. To this aim, we propose a further approach that
allows us to obtain a thinned array based on a set of wider
subarrays, starting from the thinned array provided in output
by SPSD based on smaller subarrays.

Wider subarrays can be obtained by merging adjacent
smaller subarrays, thus considerably increasing the number

of available larger subarrays types. The wide subarray forcing
(WSF) technique allows reducing this number, by operating
as follows:

(i) adjacent small subarrays in the original thinned array
are merged;

(ii) among all the possible large subarrays, achievable
whenmerging all used small subarrays, a valid sub-set
is defined, that is, containing the more frequent large
subarrays in the merged thinned array;

(iii) for each larger subarray in the merged thinned array,
we measure the Hamming distance for all selected
subarray types. (The Hamming distance between two
subarrays is the number of positions where they
differ in terms of active elements). Now, we have
two possibilities: (a) to replace the merged subarray
with the one with closer measure, or (b) to randomly
replace it with one of the selected subarray types, with
a probability inversely proportional to their distance
measure. Next section provides an example of this
procedure.

4. Performance Analysis

In this section, we discuss the design of thinned arrays with
a SLL better than −23 dB. We consider both the cases of a
circular array (with𝑁

𝐴
= 1024) and a rectangular array (with

𝑁
𝐴
= 2500). Section 4.1 presents the results of the design

techniques while Section 4.2 compares the performance of
the achieved thinned arrays to those of the corresponding
filled arrays.

4.1. Design Examples. For the circular case, the output
thinned array resulting from SPED is shown in Figure 5(a); in
particular, this result has been obtained staring from an array
with𝑁POS = 2121 positions: the designed one has𝑁𝐴 = 1024
active elements and assures an SLL = −24.93 dB. As it is
apparent in Figure 5(a), the central disk of the array is quite
full, justifying the eventual use of the constrained version
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(a) (b) (c) (d)

Figure 6: Subarray type of size 4 (a) fully active, (b) thinned for SPSD, and (c) grid of centers scheme.
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Figure 7: SLL for different𝑁POS for (a) SPED and (b) Constrained SPSD varying with radius 𝑅.

of the algorithm. Figure 7(a) shows the best SLL provided
by SPED technique when varying the number of possible
positions 𝑁POS (namely varying the size of the array) and
keeping fixed the number of active elements. This figure
highlights the dependence of the achievable performance
on the thinning factor: the minimum value is reached in
correspondence of the thinned array shown in Figure 5(a),
therefore with 𝜂 = 2021/1024 = 2.07.

Figure 5(b) shows the output of the Constrained SPSD
using three kinds of subarrays of size 4 (Figures 6(a), 6(b),
and 6(c)): one fully active, the second one thinned with two
active elements, and the third one empty, the latter being
inserted when a position is not selected. Moreover, a suitable
grid of centers is defined (a zoom of the central part in
Figure 6(d)) and different values of the radius 𝑅 (normalized
to the inter-element distance) of the constrained inner circle
are considered. The SLLs reported in Figure 7 are obtained

again while varying𝑁POS and keeping fixed𝑁𝐴 = 1024. As it
is apparent also in this case the best results are achievedwith a
thinning factor near 2. Figure 5(b) reports the achieved array
configuration that yields a SLL of −24.35 dB, occurring for
𝑅 = 13. It appears that the combined use of twodifferent types
of subarrays and the constrained full center allows almost the
same SLL of the SPED.

To show the results achievable by the WSF technique,
introduced in the previous section, we start from subarrays of
small size. To optimize the result, we use appropriate suitable
grid of centers (Figure 8) and set a filled inner circle radius
𝑅 of 14 elements. Starting with the subarrays with size 𝐷 =
4 shown in Figure 6, we first obtain the thinned array of
Figure 9(a). All the possible subarrays of size 8 achievable by
merging adjacent smaller subarrays are shown in Figure 10.
By applying the WSF technique, only subarrays from 1 to 4
are considered acceptable and we obtain the thinned array
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Figure 8: Used grid of centers.

Table 1: Comparison between thinned and filled arrays.

Scheme Taper
Circular thinned array
(𝑁
𝐴
= 1024) No tapering SLL = −24 dB

Circular filled array
(𝑁
𝐴
= 1024) No tapering SLL = −17 dB

Circular filled array
(𝑁
𝐴
= 1024) Tapering SLL = −24 dB

Rectangular thinned array
(𝑁
𝐴
= 2500) No tapering SLL = −23 dB

Rectangular filled array
(𝑁
𝐴
= 2500) No tapering SLL = −13 dB

Rectangular filled array
(𝑁
𝐴
= 2500) Tapering SLL = −23 dB

of Figure 9(b). Both the thinned arrays have a SLL of nearly
−24.3 dB.

Similar results could be shown also for the rectangular
case. As an example, the output of the constrained SPSD
technique is shown in Figure 11. By using a thinning ratio
𝜂 = 2.7 and constraining a full center of 343 fully active
subarrays a SLL of −23.17 dB is achieved.

4.2. Comparison between Thinned and Filled Arrays. The
cir- cular and rectangular thinned arrays in Figure 5(b) and
Figure 11 are compared with the corresponding filled arrays,
with the samenumber of active elements. InTable 1, we report
the array characteristics.

Circular and rectangular filled arrays provide a pattern
with a SLL of about −17 dB and −13 dB, respectively. To
achieve the same SLL of the thinned array, a taper function
must be applied so that the main lobe widens. The use of the
thinned array is therefore effective in achieving the improved
SLL with reduced effects on the main lobe width. This is
apparent from Figures 12 and 13 where the main lobe width
is reported for both thinned and filled arrays, for the circular
and the rectangular arrays, respectively, being the 𝑢 and V axes
defined as follows:

𝑢 = cos (𝜃) cos (𝜑) V = cos (𝜃) sin (𝜑) . (7)

5. Adaptive Techniques for SPSD Based
Thinned Arrays

If multiple receiving channels are available, connected to dif-
ferent antenna apertures, multi-channel adaptive techniques
can be exploited to mitigate the effect of electromagnetic
interferences and clutter returns for the thinned array. Con-
sider the design of the subapertures to be connected to the
independent receiving channels. With Constrained SPSD,
we observe that the inner part of the array is always filled:
this part presumably yields a nice main beam, with a slight
increase of the beam width with respect to the one achieved
if using the entire antenna.This central part can be connected
to themain channel, while the external subarrays or groups of
them can be eventually connected to a few auxiliary channels
for a side-lobe canceller scheme, as shown in Figure 14.

Two different adaptive cancellation filters are applied.
They are forced to achieve the quiescent design pattern in the
absence of interference. The filters are mismatched optimum
detector (MOD) filter [25, 26] and a generalized side-lobe
canceller (GSLC) filter [27, 28].

TheMODfilter is based on the definition of amismatched
target vector s

𝑇
, selected as s

𝑇
= M(0)q, where M(0) is the

thermal noise covariancematrix and q is the desired subarray
weight vector when only the thermal noise is present. The
optimum filter to detect s

𝑇
is used:

wMOD = M
−1s
𝑇
, (8)

whereM is the covariance matrix of disturbance. In absence
of jammerM = M(0) and wMOD = q.

The GSLC filter is based on the generation of an orthogo-
nal space formed by thematrixB, which selects the subarrays
of the auxiliary channels. Besides, we define the vector t
which selects the main channel. The weight vector of the
GSLC filter can be expressed as follows:

w
𝐴
= − (t𝐻MB) ⋅ (B𝐻MB)

−1

. (9)

The performance is evaluated by considering the signal to
clutter ratio (SCR), defined as the ratio between the received
useful signal power and the clutter power, and the signal
to disturbance ratio (SDR), defined as the ratio between
the received useful signal power and the disturbance power
where disturbance is the sum of the thermal noise and the
jammer.

To show the performance of the proposed algorithms
the circular thinned array in Figure 9(b) is considered and
it is compared to several circular filled arrays, with the
same number of active elements. In Table 2, we show the
tested array configurations. “A” schemes refer to the thinned
array obtained with Constrained SPSD and WSF: therefore
amplitude tapering is not used to achieve the desired level of
SLL = −24 dB. The “C” schemes refer to the filled arrays: we
considered also the possibility of applying amplitude tapering
(𝑎
𝑖
coefficients in Figure 14) both in transmission (TX) and

in reception (RX). In Table 2, the SLLs of the TX and RX
patterns are highlighted.

The performance of the adaptive schemes against electro-
magnetic interference is analyzed by simulating two different
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(a) (b)

Figure 9: Achieved array configuration (a) with subarray of dimension 4 and (b) with subarray of dimension 8 after WSF.
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Figure 10: Possible Subarray type of size 8.

Figure 11: Rectangular thinned array using subarrays and grid of
centers of Figure 6.

scenarios, with characteristics reported in Table 3. In the first
a single jammer is considered with a variable DoA, while
in the second scenario a second jammer impinges on the
antenna from a fixed direction. For both jammers a Jammer
to Noise Ratio (JNR) of 40 dB is considered.

Figure 15 shows the SDR as a function of the variable
jammer azimuth angle obtained using the 16 outer subarrays
as subapertures connected to auxiliary receiving channels
and the remaining connected to the main receiving channel.
The performance of the thinned arrays are comparable with
the filled ones, except for the filled array with an amplitude

Table 2: TX/RX schemes.

Scheme TX RX

A1 No tapering
(SLL = −24 dB)

No tapering
(SLL = −24 dB)/MOD

A2 No tapering
(SLL = −24 dB)

No tapering
(SLL = −24 dB)/GSLC

C1 No tapering
(SLL = −17 dB)

Tapering
(SLL = −24 dB)/MOD

C2 Tapering
(SLL = −24 dB)

Tapering
(SLL = −24 dB)/MOD

C3 No tapering
(SLL = −17 dB)

Tapering
(SLL = −30 dB)/MOD

tapering applied in transmission that lowers the transmitted
power while reaching the thinned array SLL.

To evaluate the performance of the adaptive scheme
against clutter returns, we simulated a scenario with the
Constrained SPSD and WSF thinned antenna 20m above
earth surface, being the elevation steering angle 5∘. In this
case, clutter echoes are received by the first side-lobes of the
antenna and the acquisition configuration could suffer from
clutter since returns from the ground could share the same
resolution cell of a potential target with comparable powers.

Figure 16 shows the SCR versus the target range. It is
apparent that the thinned array yields better performance
than the filled ones. The superiority of the thinned array
against clutter is demonstrated when no attempt is made to
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Figure 12: Comparison between themain lobe aperture of a thinned circular array and a filled array with the same number of active elements
(a) without and (b) with amplitude tapering.
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Figure 13: Comparison between the main lobe aperture of a thinned rectangular array and a filled array with the same number of active
elements (a) without and (b) with amplitude tapering.
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Table 3: Scenarios for the performance study.

Scenario Target DOA (𝜃
𝑇
, 𝜑
𝑇
) jammer DOA (𝜃

𝑗
, 𝜑
𝑗
) JNR (dB)

1 jammer 𝜃
𝑇
= 5
∘

𝜑
𝑇
= 0
∘

𝜃
𝑗
= 5
∘

−60
∘
≤ 𝜑
𝑗
≥ 60
∘ 40

2 jammers 𝜃
𝑇
= 5∘ 𝜑

𝑇
= 0∘

𝜃
𝑗
= 5∘ 𝜑

𝑗
= 10∘ 40

𝜃
𝑗
= 5∘ −60∘ ≤ 𝜑

𝑗
≥ 60∘ 40

· · · · · · · · · · · · · · ·
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Figure 14: Adaptive cancellation scheme.
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impose amplitude taper for further side-lobe suppression.
Thismainly depends on the fact that thinned arrays reach low
SLL at clutter DoAwithout a significant increase of the main-
lobe aperture, differently from the filled array cases where the
reduction of the side-lobes using a tapering function is paid
in terms of pattern main-lobe widening and gain reduction.
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Figure 16: SCR versus target distance.

6. Conclusions

The SPED and SPSD optimization techniques and their Con-
strained versions have been proposed for the design of opti-
mized element and subarray based planar thinned arrays
using an assigned number of active elements and assuring
a desired level of SLL. Since the SPSD technique operates
effectively for a limited number of small-sized subarrays, a
WSF approach has been introduced to increase the subarray
size; this approach does not need a significant increase of the
number of different subarray types and achieves comparable
performance in terms of SLL. All the proposed techniques
have been shown to be effective for practical planar thinned
array design and adaptable to different planar array shapes.
Moreover, possible adaptive solutions have been discussed
suitable for SLC schemes based on the MOD and GSLC
filters using the circular thinned arrays produced by the
use of Constrained SPSD and WSF. An analysis has been
conducted to compare the performance in terms of jammer
and clutter cancellation of the thinned array with respect to
several configurations of filled arrays with the same number
of active elements using amplitude tapering to lower the
SLL. The proposed comparative analysis showed that for the
considered study cases the adaptive thinned array is able
to yield better performance than the adaptive filled arrays
when clutter cancelation is considered and has a comparable
behavior in terms of jammer reduction.
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We present compressed sensing (CS) synthetic aperture radar (SAR)moving target imaging in the presence of dictionarymismatch.
Unlike existing work on CS SAR moving target imaging, we analyze the sensitivity of the imaging process to the mismatch and
present an iterative scheme to cope with dictionary mismatch. We analyze and investigate the effects of mismatch in range and
azimuth positions, as well as range velocity. The analysis reveals that the reconstruction error increases with the mismatch and
range velocity mismatch is the major cause of error. Instead of using traditional Laplacian prior (LP), we use Gaussian-Bernoulli
prior (GBP) for CS SAR imaging mismatch.The results show that the performance of GBP is much better than LP. We also provide
the Cramer-Rao Bounds (CRB) that demonstrate theoretically the lowering of mean square error between actual and reconstructed
result by using the GBP. We show that a combination of an upsampled dictionary and the GBP for reconstruction can deal with
position mismatch effectively. We further present an iterative scheme to deal with the range velocity mismatch. Numerical and
simulation examples demonstrate the accuracy of the analysis as well as the effectiveness of the proposed upsampling and iterative
scheme.

1. Introduction

According to compressed sensing (CS) [1–3] theory, ran-
domly undersampled signals can be reconstructed using
linear programming [1], orthogonalmatching pursuit (OMP)
[4], and Bayesian methods [5–7]. The advantages gained
by using CS are hardware simplification [8], reduction in
equipment cost, data size, and acquisition time [9, 10],
and deblurring and enhancing resolution from incomplete
measurements [11].

Compressed sensing for synthetic aperture radar (SAR)
is an active area of research for remote sensing. The use of
CS based reconstruction can have an impact on the design
of high resolution SAR systems as these systems encounter
hardware design problems and require significant processing
[12]. CS has been applied for imaging of static objects in
through-the-wall SAR imaging [13–15], tomographic SAR
imaging [16–18], and SAR image formationwith reduced data
[19], where advantage is taken of the fact that the observed

scenes are sparse. The static scenes may not always be sparse.
The scenes containing a few strong intensity moving scatter-
ers in a weak stationary background present an opportunity
for CS application as they are inherently sparse.Thesemoving
targets suffer from position displacement and defocusing
due to motion [20]. The use of CS can help in reducing
acquired data size as well as simultaneous motion parameter
estimation imagingwith reduced data. Sparsity can be further
enhanced using clutter cancelationwhere the static parts of an
observed scene are suppressed [21].

Compressed sensing for SAR moving object imaging has
become an active area of research. References [22, 23] apply
CS for moving target parameter estimation by defining a
dictionary based on the response of moving objects for dif-
ferentmotion parameters. Both of these references use clutter
cancelation to enhance sparsity. Reference [24] makes use of
distributed CS applied to along-track interferometric SAR
data for moving target imaging and shows that distributed
CS can offer better performance with less samples compared
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Table 1: Comparison of existing references.

References SAR moving target Prior Dictionary mismatch Remarks

[6] No GBP Yes Superior performance of GBP over LP is shown by
simulations

[13, 14] No LP No Apply CS for through-the-wall imaging

[15] No LP Yes
Apply CS for through-the-wall imaging.
Performance degradation due to pixel mismatch and
wave propagation velocity shown by simulations

[16–18] No LP No Apply CS for tomographic SAR imaging
[19] No LP No Apply CS for focusing of static scenes

[7] No GBP Yes Fast implementation of GBP reconstruction shows
superior performance by simulations

[21] No LP No Suggest clutter cancelation to enhance sparsity of a
scene containing moving targets

[22] Yes LP No Apply CS for motion estimation

[23] Yes LP Yes
Apply CS for motion estimation, performance
degradation due to range velocity mismatch shown
by simulations

[24] Yes LP No Apply distributed CS for motion estimation

[25] Yes LP Yes
Apply CS for motion estimation; simulations show
no performance degradation due to velocity
mismatch

[26, 27] No LP Yes Performance degradation due to dictionary
mismatch shown by simulations and theory

to traditional CS. Reference [25] uses CS for moving target
parameter estimation for mono- and multistatic SAR con-
figurations and simulated data. These references show that
CS can achieve imaging of moving objects as well as moving
object parameter estimation when SAR data are sampled at a
rate less than the traditional Nyquist sampling rate.

Compressed sensing reconstruction algorithms use a
dictionary in which the reconstructed signal is assumed to be
sparse. However, the dictionary in which the signal is actually
sparsemay be different and the resulting dictionarymismatch
causes a performance degradation [26, 27]. In order to apply
CS for practical applications, it is necessary to study the
reconstruction performance degradation in the presence of
dictionary mismatch. Reference [26] shows that dictionary
mismatch can be seen equivalent to multiplicative noise. It
also shows that reconstruction error increases linearly with
mismatch. Reference [27] considers the effect of dictionary
mismatch in CS reconstruction. It shows that, in case of using
a Fourier dictionary, reconstruction performance degrades
considerably when a mismatch exists. Due to this reason,
it recommends examining the effects of mismatch on radar
imaging. Reference [15] has shown performance degradation
by means of imaging examples for static targets in the
presence of mismatch in position and wave propagation
velocity. The authors in [15] also state that they are extending
the initial results presented in [28] for dealing with position
mismatch in through-the-wall imaging.

According to the best of our knowledge, dictionary
mismatch analysis has not been done theoretically for CS
moving target SAR imaging in the presence of position and
range velocity mismatch. A summary of the main features of

the existing references is given in Table 1. It shows that, in
the existing literature, the theoretical analysis of the effects
of dictionary mismatch for moving target CS SAR imaging
have not been carried out. Therefore, it remains an open
problem. It further shows that a prior other than Laplacian
prior (LP), for example, Gaussian-Bernoulli prior (GBP), for
CS moving target imaging has not been used. Similarly, a
theoretical analysis to show the advantage of the prior in
dealing with dictionary mismatch is also missing. In [29], we
have partially studied this problem and its effects for SAR
and inverse SAR.We showed that dictionary generation using
upsampled parameters is required to deal with errors arising
due to mismatch in positions and range velocity.

The emphasis of this paper is to show the performance
degradation in case of a target moving in the range direction.
The dictionary mismatch arising due to discretization and
dictionary size considerations causes performance degrada-
tion in terms of mean square error (MSE) between actual and
reconstructed results, especially when there is a range velocity
mismatch. We examine reasons for this degradation and also
show theoretically and experimentally that using GBP for
CS reconstruction compared to the traditionally used LP can
compensate for some amount ofmismatch.Themotivation of
using a different prior is to make use of extra information in
improving reconstructed image quality as shown in [30]. We
propose to deal with CS SAR moving target imaging in the
presence of dictionary mismatch due to positions and range
velocity. The main contributions of this paper are as follows.

(1) We analyze dictionary mismatch and its effects the-
oretically, show MSE calculated from simulated SAR
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data for different types of mismatch in range and
azimuth pixels as well as range velocity, and give
parameter resolution limits for maintaining a reason-
able level of reconstruction accuracy.We show thatCS
SAR moving target imaging is very sensitive to range
velocity mismatch.

(2) We analyze the problem by means of Cramer-Rao
Bounds (CRB) and show theoretically that recon-
struction with Gaussian-Bernoulli prior (CSGBP)
instead of traditional Laplacian prior (CSLP) can deal
with some mismatch effectively.

(3) We present simulation results using CSGBP recon-
struction and show that its use can lead to lowerMSE,
especially when the dictionary mismatch is small.
This can be used to deal with position mismatch and
reduce upsampling in positions that is required to
counter mismatch effects.

(4) We also propose to reconstruct in the presence of
range-velocity mismatch using an iterative scheme,
where dictionaries with different range velocities are
created efficiently. The contrast of the reconstructed
result is maximized.

We would also like to point out that we deal specifically
with the case of pulsed SAR. Any extension of dictionary
mismatch effects and parameter resolution calculations to
other types of SAR will need to take into account the
difference in imaging mechanism; for example, in case of
continuous wave SAR, it is known that range velocity creates
a shift in the range direction, which is absent in pulsed
SAR.Therefore, results for mismatch analysis and resolutions
in range position and range velocity will need to take this
additional shift into account.

This paper is organized as follows. Section 2 presents
the data model and formulation of moving target velocity
estimation problem in case of CS SAR. Section 3 analyzes the
effects of different kinds of dictionarymismatch, that is, range
and azimuth positions and range velocity on CS SARmoving
target imaging. Section 4 presents numerical and imaging
examples to present the effects of dictionary mismatch in
terms of MSE as well as the accuracy of the analysis and the
effectiveness of the proposed method. Conclusions are given
in Section 5.

2. System Model and Problem Formulation

In this paper, 𝑥 denotes a scalar, x denotes a vector, and X
denotes a matrix. We use X𝐻 and X𝑇 to denote conjugate
transpose and transpose ofX, respectively.The same notation
is used for Greek characters; that is, 𝜎 denotes a scalar, 𝜎
denotes a vector, andΣ denotes amatrix.We useΣ𝐻 andΣ𝑇 to
denote conjugate transpose and transpose of Σ, respectively.
The function diag(x) represents a function that converts a
vector x of size 𝑁

𝑡
× 1 into a diagonal matrix of size 𝑁

𝑡
× 𝑁
𝑡

and det(X) represents the determinant of the matrix X.

Synthetic aperture radar consists of an antenna mounted
on a moving platform [31]. A pulsed SAR sends electromag-
netic pulse 𝑝(𝑡) at a carrier frequency 𝑓

𝑐
and a chirp rate 𝐾.

The pulse length is denoted by 𝑇
𝑝
. This pulse is given as

𝑝 (𝑡) = rect( 𝑡

𝑇
𝑝

) exp (𝑗2𝜋𝑓
𝑐
𝑡 − 𝑗𝜋𝐾𝑡

2
) , (1)

where

rect( 𝑡

𝑇
𝑝

) = 1, if 0 ≤ 𝑡 ≤ 𝑇
𝑝

= 0, otherwise,
(2)

and 𝑡 = 𝑡
1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑁
𝑟

. The signals are reflected from each
scatterer in the observed scene. Let 𝜎0 be a sparse vector of
size 𝑁

𝑡
× 1 that contains reflectivities for each point in the

scene having different motion parameters. Ψ0 is an 𝑁
𝑠
× 𝑁
𝑡

matrix in which the signal is actually sparse and contains
response of moving targets for every point in the scene with
each considered motion parameter. Let Φ be a sampling
matrix of size𝑀×𝑁

𝑠
, where𝑀 < 𝑁

𝑠
.This represents the case

where the number of measurements is less than the required
sampling rate due to data loss or intentionally reduced
data acquisition to simplify the acquisition hardware [10],
such as analog-to-digital converter. With different sampling
configurations, one can get reasonable image reconstruction
[13]. In this paper, we use undersampling in range direction
as measurement operator. The raw data signal model can be
written in one-dimensional form as [29]

s0 = ΦΨ0𝜎0 + 𝜀, (3)

where 𝜀 denotes measurement noise. Ψ0 contains the
response of each moving point in 1D form. This response for
𝑛th moving point having 𝑘th range velocity is given as [29]

s𝑘
𝑛
= [𝑠
𝑘

𝑛
(𝑡
1
, 𝜏
1
) , 𝑠
𝑘

𝑛
(𝑡
2
, 𝜏
1
) , . . . , 𝑠

𝑘

𝑛
(𝑡
𝑁
𝑟

, 𝜏
1
) ,

𝑠
𝑘

𝑛
(𝑡
1
, 𝜏
2
) , 𝑠
𝑘

𝑛
(𝑡
2
, 𝜏
2
) , . . . , 𝑠

𝑘

𝑛
(𝑡
𝑁
𝑟

, 𝜏
2
) , . . . ,

𝑠
𝑘

𝑛
(𝑡
1
, 𝜏
𝑁
𝑦

) , 𝑠
𝑘

𝑛
(𝑡
2
, 𝜏
𝑁
𝑦

) , . . . , 𝑠
𝑘

𝑛
(𝑡
𝑁
𝑟

, 𝜏
𝑁
𝑦

)]
𝑇

,

(4)

where

𝑠
𝑘

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) = 𝑝(𝑡

𝑙
−

2𝑑𝑘
𝑛
(𝜏
𝑚
)

𝑐
)

= rect(
𝑡
𝑙
− 2𝑑𝑘
𝑛
(𝜏
𝑚
) /𝑐

𝑇
𝑝

) exp {−𝑗𝑘
𝑐
𝑑
𝑘

𝑛
(𝜏
𝑚
)}

× exp
{

{

{

−𝑗𝜋𝐾(𝑡
𝑙
−

2𝑑𝑘
𝑛
(𝜏
𝑚
)

𝑐
)

2

}

}

}

,

(5)

𝑑
𝑘

𝑛
(𝜏
𝑚
) = √(𝑥

𝑛
− V𝑘
𝑥
𝜏
𝑚
)
2
+ ℎ2 + (𝑦

𝑛
− 𝑉𝜏
𝑚
)
2
. (6)
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The size of s𝑘
𝑛
is 𝑁
𝑠
× 1. Ψ0 is generated for initial velocity

V
𝑥𝑖

and final velocity V
𝑥𝑓

for a total number of 𝑁V
𝑥
range

velocities.The dictionary element corresponding to a velocity
V1
𝑥
is as follows:

Ψ0
1
= [s1
1
⋅ ⋅ ⋅ s1
𝑁
𝑠

] . (7)

The final dictionary Ψ0 is stored in an 𝑁
𝑠
× 𝑁
𝑡
matrix given

as

Ψ0 = [Ψ0
1
| ⋅ ⋅ ⋅ | Ψ0

𝑁V
𝑥] . (8)

Due to undersampling, the problem of recovering 𝜎0 from
s0 becomes an underdetermined problem. We can solve this
problem by including a-priori information for getting the
solution; for example, select a solution such that the number
of nonzero coefficients is the smallest. This can be expressed
as follows:

min 𝜎0
0 subject to s0 = ΦΨ0𝜎0. (9)

The number of nonzero coefficients is denoted by ‖𝜎0‖0,
known as 𝑙

0
norm. However, this minimization problem is

nonconvex, which means that finding a global solution is
difficult or not guaranteed. In addition, it is computationally
difficult to solve as it requires search over all possible
combinations of the columns of ΦΨ0. To deal with these
issues, we use 𝑙

1
norm minimization. This minimization is

a convex approximation of the 𝑙
0
norm minimization if a

property known as restricted isometric property (RIP) is
satisfied. This property essentially means that the columns
formed by the matrix ΦΨ0 are sufficiently decorrelated with
one another. The problem can be expressed as

min 𝜎0
1 subject to s0 = ΦΨ0𝜎0. (10)

In order to obtain a solution based on 𝑙
1
normminimization,

we use Laplacian prior (LP) [32] as follows:

𝜎0 ∼ exp (−
𝜎0

1) . (11)

If noise is Gaussian with variance 𝑠2
𝜀
, the solution is obtained

by

�̂�0 = argmax
𝜎0

𝑝 (𝜎0 | s0)

= argmax
𝜎0

𝑝 (s0 | 𝜎0) 𝑝 (𝜎0) ,
(12)

where

𝑝 (s0 | 𝜎0) =
1

2𝑠
𝜀
2

exp {−
s0 −ΦΨ0𝜎0


2

2
} . (13)

The solution can be written as

�̂�0 = argmin
𝜎0

{− log𝑝 (s0 | 𝜎0) − log𝑝 (𝜎0)} (14)

that leads to

�̂�0 = argmin
𝜎0

s0 −ΦΨ0𝜎0

2

2
+ 𝜆

𝜎0
1. (15)

Thus, by using LP, we include the 𝑙
1
norm minimization in

the solution. The parameter 𝜆 gives weight to a priori sparse
information. Equation (15) can be solved using different
recovery methods, for example, linear programming and
OMP. The reconstructed result �̂�0 is of size 𝑁

𝑡
× 1 and can

be written as

�̂�0 = [�̂�
1

0,1
⋅ ⋅ ⋅ �̂�
1

0,𝑁
⋅ ⋅ ⋅ �̂�
𝑁V
𝑥

0,1
⋅ ⋅ ⋅ �̂�
𝑁V
𝑥

0,𝑁
]
𝑇

, (16)

where each entry of �̂�0 shows the reconstructed reflectivity
for each point in the scene for one velocity value; for example,
�̂�1
0,1

represents the reflectivity for a point at position (𝑟
1
, 𝑦
1
)

and having a velocity V1
𝑥
. The result can be rearranged into

𝑁V
𝑥
2D matrices, each having a size 𝑛

𝑟
× 𝑛
𝑦
, to show the

estimated reflectivities at different velocities for SAR. The
matrices of size 𝑛

𝑟
× 𝑛
𝑦
may also be summed to give a final

focussed reconstructed result Σ̂0, shown as follows:

Σ̂0 =

𝑁V
𝑥
−𝑁

∑
𝑖=0

𝑓 (�̂�0 (𝑖 × 𝑁 + 1) , �̂�0 (𝑖 × 𝑁 + 2) , . . . ,

�̂�0 ((𝑖 + 1) × 𝑁) , 𝑛𝑟, 𝑛𝑦) .

(17)

𝑓(�̂�0, 𝑛1, 𝑛2) is a function that rearranges an input �̂�0 into a
matrix of size 𝑛

1
× 𝑛
2
.

Dictionary mismatch can occur in the reconstruction
process due to discretization of positions as well as range
velocity; for example, instead of actual position of the
scatterer (𝑟

𝑛
, 𝑦
𝑛
) and velocity V𝑘

𝑥
, the basis has elements

corresponding to (𝑟
𝑛
+Δ𝑟
𝑛
, 𝑦
𝑛
+Δ𝑦
𝑛
) and V𝑘

𝑥
+ΔV𝑘
𝑥
. Considering

Ψ as the mismatched dictionary, (3) can be rewritten as

s = ΦΨ𝜎 + 𝜀, (18)

and reconstruction using the mismatched dictionary Ψ
causes the results to be decorrelated from �̂�0 shown as
follows:

�̂� = Ψ
𝐻
Ψ0�̂�0. (19)

Therefore, the effects of dictionary mismatch are related to
the correlation between the mismatched and the original
dictionary. In the next section, we examine the effects of this
correlation on the reconstruction. Furthermore, we present
solutions for the recovery of 𝜎0 that can be written as

�̂�0 = argmin
𝜎0 ,Ψ0

s −ΦΨ0𝜎0

2

2
+ 𝜆

𝜎0
1, (20)

where Ψ0 is the actual dictionary. We present solutions
for calculation of �̂�0 using GBP that can reduce position
mismatch effects, and propose an iterative scheme to recover
�̂�0 in the presence of range velocity mismatch.

3. Analysis of CS Moving Target Imaging in
the Presence of Dictionary Mismatch

3.1. Effects of Position Mismatch. We consider a chirp signal
that is commonly used in imaging radars and show the effects
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of position mismatch on reconstruction. The reconstruction
in the presence of mismatch depends upon the correlation
between the original and the mismatched dictionaries, as
given by (19). Therefore, any form of mismatch will cause
erroneous results due to a correlation loss. This can be seen
by taking the inner product of two chirp signals 𝑠

1
(𝑡) =

exp(−𝑗𝜋𝐾(𝑡 − 𝑡
1
)
2
) and 𝑠

2
(𝑡) = exp(−𝑗𝜋𝐾(𝑡 − 𝑡

1
)
2
) having

frequencies ranging from −𝐵/2 to 𝐵/2. The signals are
displaced with respect to each other by a duration Δ𝑡

𝑑
=

𝑡
1
− 𝑡
2
. They consist of 𝑁 samples with sampling time Δ𝑡

𝑠
.

The correlation |⟨𝑠𝐻
2
(𝑡), 𝑠
1
(𝑡)⟩| is


⟨exp (𝑗𝜋𝐾(𝑡 − 𝑡

2
)
2
) , exp (−𝑗𝜋𝐾(𝑡 − 𝑡

1
)
2
)⟩



=



�̃�−1

∑
𝑛=0

exp (−𝑗2𝜋𝐾Δ𝑡
𝑑
𝑛Δ𝑡
𝑠
)



,

(21)

where 𝑡 ∈ {0, Δ𝑡
𝑠
, 2Δ𝑡
𝑠
, . . . , (�̃�−1)Δ𝑡

𝑠
}.Δ𝑡
𝑠
should be less than

1/𝐵. Observing that | ∑�̃�−1
𝑛=0

exp(−𝑗𝑥𝑛)| = |�̃�sinc((1/2)�̃�𝑥)|,
we can write (21) as


⟨exp (−𝑗𝜋𝐾(𝑡 − 𝑡

1
)
2
) , exp (𝑗𝜋𝐾(𝑡 − 𝑡

2
)
2
)⟩



= �̃�
sinc (𝜋𝐵Δ𝑡𝑑)

 ,

(22)

where 𝐵 = 𝐾�̃�Δ𝑡
𝑠
. As the position mismatch increases, Δ𝑡

𝑑

increases and, with the increase of Δ𝑡
𝑑
, correlation decreases.

Consequently, the amplitude of the reconstructed result will
be reduced by a factor of |sinc(𝜋𝐵Δ𝑡

𝑑
)|. The result of the

correlation would be 0 when

Δ̃𝑡
𝑑
= Δ𝑡
𝑠

(23)

or

Δ̃𝑡
𝑑
=

1

𝐵
. (24)

Consequently, if the two chirp signals are displaced by Δ̃𝑡
𝑑

with respect to each other, CS imaging will fail to reconstruct
the correct position. An arbitrary element will be selected
and cause a failure of the CS reconstructionmodel.Therefore,
the smaller the distance between the dictionary elements, the
smaller the mismatch and the better the reconstruction at the
expense of larger dictionary size and higher number of com-
putations. In effect, by making an oversampled dictionary,
we can improve the reconstruction and this oversampling
should bemore than twice the sampling frequencies to reduce
mismatch errors; that is,

Δ𝑡
max
𝑑

<
Δ̃𝑡
𝑑

2
. (25)

The implication of the above result will be studied in the next
section. Amoving target and the effects of mismatch in range
and azimuth positions as well as range velocity on themoving
target reconstruction are considered.

Table 2: Effect of mismatch on range and azimuth positions.

Mismatch type Effect in range Effect in azimuth
Range Δ𝑟

𝑛
−Δ𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛

Azimuth Δ𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
−Δ𝑦
𝑛

Velocity 𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
−𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛

3.2. Effects of Range Position, Azimuth Position, and Range
Velocity Mismatch on Reconstruction of a Moving Target.
First, we consider the equivalent static position of a moving
point. A moving point at an initial position of 𝑟

𝑛
, 𝑦
𝑛
and

having a velocity of V𝑘
𝑥
can be equivalently seen as a static

point with coordinates 𝑟
𝑚
and 𝑦

𝑚
and rotated with an angle

Θ𝑘
𝑛
[33]; that is:

𝑟
𝑚

= 𝑟
𝑛
+ 𝑦
𝑛
Θ,

𝑦
𝑚

= −𝑟
𝑛
Θ + 𝑦

𝑛
,

(26)

where

Θ
𝑘

𝑛
= tan−1

V𝑘
𝑥
sin 𝜃
𝑛

𝑉

≈
V𝑘
𝑥
sin 𝜃
𝑛

𝑉
.

(27)

Assuming that our dictionary is created with resolutions of
𝑠
𝑟
, 𝑠
𝑦
, and 1m/s in range position, azimuth position, and

range velocity, respectively, the mismatch effects on amoving
target can be divided into 3 categories as follows.

(i) A subpixel mismatch in range position represented as
Δ𝑟
𝑛
. This mismatch will lead to an equivalent shift of

Δ𝑟
𝑛
in the range position and an equivalent shift of

−Δ𝑟
𝑛
(V𝑘
𝑥
sin 𝜃
𝑛
/𝑉) in the azimuth position.

(ii) A subpixel mismatch in azimuth position represented
as Δ𝑦
𝑛
. This mismatch will lead to an equivalent shift

of Δ𝑦
𝑛
(V
𝑥𝑛
sin 𝜃
𝑛
/𝑉) in the range position and an

equivalent shift of −Δ𝑦
𝑛
in the azimuth position.

(iii) A fraction of m/s mismatch in range velocity rep-
resented as ΔV𝑘

𝑥
. This mismatch will lead to an

equivalent shift of 𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
in the range

position and an equivalent shift of −𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛

in the azimuth position. As an example, if a point
in acquired raw data is at position (𝑟

𝑛
, 𝑦
𝑛
) moving

with a velocity V𝑘
𝑥
+ ΔV𝑘
𝑥
, and the dictionary contains

elements with velocity V𝑘
𝑥
, the reconstructed estimate

will be a point at position (𝑟
𝑛
+𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
, 𝑦
𝑛
−

𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
) instead of the true position of

(𝑟
𝑛
, 𝑦
𝑛
). As 𝑟

𝑛
is large, the effect on azimuth position

will be more evident even when range velocity mis-
match is small. The mismatch effects due to Δ𝑟

𝑛
, Δ𝑦
𝑛
,

and ΔV𝑘
𝑥𝑛

are summarized in Table 2.

3.3. Effects on Reconstruction for a Single Point in the Presence
of Range Position, Azimuth Position, and Range Velocity
Mismatch. Based on the above discussion, the effects of
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mismatch on reflectivity reconstruction for a single element
𝜎0 = 𝜎

1

1
𝛿(𝑟−𝑟

1
, 𝑦−𝑦
1
), where 𝑟

1
and𝑦
1
are the pixel positions,

can be summarized as follows.

(i) A mismatch of Δ𝑟
1
will cause a shift of Δ𝑟

1
in

range position in the reconstructed result. The
shift in azimuth position −Δ𝑟

1
(ΔV1
𝑥
/𝑉) sin 𝜃

1
can be

neglected as it is small due to the presence of𝑉 in the
denominator. The result will be

�̂�0 = 𝜎
1

1
sinc(𝜋Δ𝑟

1

𝑠
𝑟

)𝛿 (𝑟 − 𝑟
1
, 𝑦 − 𝑦

1
) (28)

leading to a loss of amplitude.
(ii) Amismatch ofΔ𝑦

1
will cause a shift ofΔ𝑦

1
in azimuth

position in the reconstructed result. The shift in
azimuth position Δ𝑦

1
(ΔV1
𝑥
/𝑉) sin 𝜃

1
can be neglected

due to the presence of 𝑉 in the denominator. The
result will be

�̂�0 = 𝜎
1

1
sinc(𝜋

Δ𝑦
1

𝑠
𝑦

)𝛿 (𝑟 − 𝑟
1
, 𝑦 − 𝑦

1
) (29)

leading to a loss of amplitude.

(iii) A range velocity mismatch ΔV1
𝑥
causes a large shift

in azimuth from the true position, given as Δ𝑦1
1

=

−𝑟
1
ΔV1
𝑥
sin 𝜃
1
/𝑉. The shift in the range position

𝑦
1
(ΔV1
𝑥
/𝑉) sin 𝜃

1
can be neglected. However, the shift

in azimuth position cannot be neglected due to the
presence of 𝑟

1
in the numerator that is of the order of

103 or higher. It can be further divided into 2 parts as
follows.

(1) An interpixel displacement: ⌊Δ𝑦1
1
, 𝑠
𝑦
⌋, where ⌊⋅⌋

is the floor operation.
(2) An intrapixel displacement: Δ𝑦1

1
mod 𝑠

𝑦
, where

mod is the modulo operation.

The reconstructed result will be

�̂�
0
= 𝜎
1

1
sinc(𝜋

Δ𝑦1
𝑛
mod 𝑠

𝑦

𝑠
𝑦

)

× 𝛿 (𝑟 − 𝑟
1
, 𝑦 − 𝑦

1
+ ⌊Δ𝑦

1

1
, 𝑠
𝑦
⌋)

(30)

leading to a loss of amplitude and azimuth position
shift.

(iv) In order to avoid the loss in amplitude as well as
azimuth mispositioning of the reconstructed result,
the dictionary can be created with higher parameter
resolution. The dictionary resolutions in range and
azimuth positions and range velocity are such that any
mismatch does not lead to a misselection of elements.
This can be achieved if the dictionary resolutions
are less than half the pixel sizes. This ensures that
a correct pixel positions is selected. These criteria

can be expressed as follows for range and azimuth
positions:

Δ̃𝑟 <
𝑠
𝑟

2
, (31)

Δ̃𝑦 <
𝑠
𝑦

2
. (32)

In case of velocity, the shift in azimuth position caused
by range velocity mismatch should be less than half
the pixel size; that is,

Δ𝑦
𝑘

𝑛
<

𝑠
𝑦

2
(33)

or

−𝑟
𝑛

ΔV𝑘
𝑥

𝑉
sin (𝜃
𝑛
) <

𝑠
𝑦

2
. (34)

As this shift is large for a larger value of 𝑟
𝑛
, we choose

the farthest slant-range distance 𝑟max to get a conser-
vative estimate as follows:

𝑟maxΔ̃V𝑥 sin (𝜃max)

𝑉
<

𝑠
𝑦

2
, (35)

where the angle corresponding to 𝑟max is 𝜃max. This
leads to

Δ̃V
𝑥
<

𝑠
𝑦
𝑉

𝑟max sin (𝜃max)
. (36)

The limit given by (32) is also applicable for compensating
intrapixel displacements due to velocity mismatch. Please
note that due to the presence of 𝑟max in the denominator, Δ̃V

𝑥

is very small, which means that the dictionary needs to be
created with very closely spaced velocity values.

When there is a moving scene consisting of a number of
points given as

𝜎0 = ∑
𝑘

∑
𝑛

𝜎
𝑘

𝑛
𝛿 (𝑟 − 𝑟

𝑛
, 𝑦 − 𝑦

𝑛
) , (37)

the reconstructed result in the presence of mismatch is as
follows:

�̂�0 = ∑
𝑘

∑
𝑛

𝜎
𝑘

𝑛
sinc(𝜋

Δ𝑟
𝑛

𝑠
𝑟

) sinc(𝜋
Δ𝑦
𝑛

𝑠
𝑦

)

× sinc(𝜋
Δ𝑦𝑘
𝑛
mod 𝑠

𝑦

𝑠
𝑦

)𝛿 (𝑟 − 𝑟
𝑛
, 𝑦 − 𝑦

𝑛
+ ⌊Δ𝑦

𝑘

𝑛
, 𝑠
𝑦
⌋) .

(38)

The three sinc functions represent a loss in estimated ampli-
tude due to the mismatch, whereas the second term in the
delta function represents a pixel-level shift.
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3.4. Using CSGBP to Improve Performance in the Presence
of Mismatch. In order to avoid errors due to dictionary
mismatch, the dictionary needs to be created with upsam-
pled positions and range velocity parameters. This high
upsampling may not be feasible due to limited storage and
computational complexity. We propose to reduce this high
upsampling requirement by using a different prior as well as
an iterative scheme. The chosen prior is GBP given as [6]

𝜎
𝑘

0,𝑖
∼ (1 − 𝑝) 𝛿 (𝜎

𝑘

0,𝑖
) + 𝑝N (𝜇

𝜎
, 𝑠
2

𝜎
) , (39)

where 𝜎
𝑘

0,𝑖
is the 𝑖th element of 𝜎0 moving with 𝑘th velocity.

The main motivation of using this prior is to utilize a
priori information about sparsity and signal strength for
image reconstruction. 𝜎0 can be assumed as 𝑞-sparse that is
represented by the probability of active elements 𝑝 = 𝑞/𝑁

𝑡
in

𝜎0. The prior assumes that the probability of active elements,
that is, an entry of 𝜎0 being nonzero, is given by 𝑝 and these
active elements are represented by a Gaussian distribution
with mean 𝜇

𝜎
and variance 𝑠2

𝜎
. The probability of an inactive

element is given by 1 − 𝑝. The solution to recover 𝜎0 from s0
for the prior can be obtained by rewriting (3) as follows:

s0 = ΦΨ0 diag (z0)𝜎0 + 𝜀, (40)

where z0 = [𝑧1
0,1

⋅ ⋅ ⋅ 𝑧1
0,𝑁

⋅ ⋅ ⋅ 𝑧
𝑁V𝑥
0,1

⋅ ⋅ ⋅ 𝑧
𝑁V𝑥
0,1

]
𝑇. The 𝑛th entry of z0

is 1 if the corresponding entry in 𝜎0 is 1. In this case, 𝜎0 can
be recovered from s0 in two steps as follows.

(1) The 1st step is the solution to the following problem:

ẑ0 = argmax
z0

𝑝 (z0 | s0)

= argmax
z0

𝑝 (s0 | z0) 𝑝 (z0) ,
(41)

where

𝑝 (z0) = 𝑝
𝑞
(1 − 𝑝)

𝑁
𝑡
−𝑞 (42)

and𝑝(s0 | z0) is given on the next page. For the sake of
convenience, we define D = ΦΨ0 and the covariance
matrix is given as R = 𝑠2

𝜎
D diag(z0)D𝐻 + 𝑠2

𝜀
I. The

solution can be further written as

ẑ0 = argmin
z0

{− log𝑝 (s0 | z0) − 𝑝 (z0)} . (43)

(2) The solution ẑ0 obtained from the 1st step is used to
recover estimate of 𝜎0 by using least squares solution
given as

�̂�0 = argmin
𝜎0

s0 −ΦΨ0 diag(ẑ0)𝜎0

2

2
, (44)

𝑝 (s0 | z0)

=
1

det (R) 𝜋𝑀

× exp {−(s0 − 𝜇
𝜎
Dz0)
𝐻R−1 (s0 − 𝜇

𝜎
Dz0)} .

(45)

Furthermore, this model is suitable for man-made mov-
ing scatterers as they may be represented as consisting of
a coherent mean part and variation of reflectivities can be
represented by an incoherent part represented as variance;
that is, 𝜎0 ∼ N(𝜇

𝜎
, 𝑠2
𝜎
). In addition, noise 𝜀 can be assumed to

be zero-mean Gaussian with variance 𝑠2
𝜀
; that is, 𝜀 ∼ N(0, 𝑠2

𝜀
).

This CSGBP model can be solved using the algorithms in [6]
or [7]. In [6], the raw data is correlated with each column of
the matrix D, and the presence or the absence of an element
is decided by hypothesis testing. This testing is based on the
assumption that the signal is distributed according to theGBP
and the noise has Gaussian distribution. In [7], an efficient
method is proposed for finding a combination of active and
inactive elements.

3.5. Analysis of CSGBP and CSLP Performance in the Presence
of Dictionary Mismatch Using Cramer-Rao Bounds. To show
theoretically the advantage gained by using CSGBP recon-
struction model given in (17) over CSLP model in (7), CRB
of the vector �̂�0 estimated from data vector s0 is calculated as
the inverse of Fisher informationmatrix (FIM) J.We consider
Φ to be identity matrix in (3) for the sake of convenience.The
FIM bounds the estimation error in the following form:

𝐸 [(𝜎0 − �̂�0) (𝜎0 − �̂�0)
𝑇
] ≥ J−1. (46)

Φ is assumed to be an identity matrix for the sake of
convenience. J is decomposed into two parts [34];

JD = 𝐸s0 ,𝜎0 [−
𝜕2 {log𝑝 (s0 | 𝜎0)}

𝜕𝜎0
2

] (47)

and JP represents prior information matrix whose individual
elements are given as

JP = 𝐸s0 ,𝜎0 [−
𝜕2 {log𝑝 (𝜎0)}

𝜕𝜎0
2

] . (48)

Making use of the explanation given in [35] and smooth
approximation; that is, ‖𝜎0‖1 ≈ ∑

𝑁

𝑖=1
(|𝜎
0,𝑖
|
2
+ 𝜀)
1/2, the FIM

is given as

JLP = (
Ψ0
𝐻
Ψ0

𝑠2
𝜀

) (49)

for the case where CSLP is used. When CSGBP is used, the
FIM is

JGBP = (
Ψ0
𝐻
Ψ0

𝑠2
𝜀

+
1 − 𝑝

𝑠2
𝜎

) . (50)

As (50) contains more information compared to (49), JCSGBP
in (50) will be larger and hence the estimation error will be
lower that shows the improvement in performance. In case
of a dictionary mismatch, using (18) and (19), (47) and (48)
become

J̃D = Ψ
𝐻
Ψ0𝐸s0,𝜎0 [−

𝜕
2
{log𝑝 (s0 | 𝜎0)}

𝜕𝜎0
2

] (51)
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and JP represents prior information matrix whose individual
elements are given as

J̃P = Ψ
𝐻
Ψ0𝐸s0 ,𝜎0 [−

𝜕2 {log𝑝 (𝜎0)}

𝜕𝜎0
2

] . (52)

Equation (49) becomes

J̃LP = (
(Ψ𝐻Ψ0) (Ψ0

𝐻
Ψ0)

𝑠2
𝜀

) (53)

and (50) is rewritten as

J̃GBP = (
(Ψ𝐻Ψ0)

𝐻

(Ψ0
𝐻
Ψ0)

𝑠2
𝜀

+
(1 − 𝑝) (Ψ𝐻Ψ0)

𝑠2
𝜎

) .

(54)

When no dictionary mismatch is present,Ψ𝐻Ψ0 has a maxi-
mum value along the diagonal elements. In case of mismatch,
the diagonal elements of Ψ𝐻Ψ0 decrease. Subsequently, J
decreases leading to an increase in estimated error. It can
be inferred that, due to the prior information in (54), the
increase of estimated error in the presence of dictionary
mismatch is less when CSGBP is used. This can be seen in
Figure 1, where an identity matrix of size 512 × 512 pixels is
used asΨ0.Ψ is a mismatched basis that is decorrelated with
Ψ0 in varying proportions as follows:

Ψ = 𝜌Ψ0 + √1 − 𝜌2N (0, 1) , (55)

where 𝜌 is the degree of correlation and themeasure 1−𝜌 can
be seen equivalent to dictionary mismatch proportion. MSE
is calculated using the expression

MSELP/GBP =
1

512
trace (JLP/GBP

−1
) . (56)

It can be seen that using the model given in (39) lowers MSE
that can help in countering effects of decorrelation arising due
to dictionary mismatch.

3.6. Dealing with Range Velocity Mismatch Using Iterative
CSGBP. As outlined in the previous section, CSGBP can
compensate for some mismatch, which can help in reducing
upsampling requirements. However, it is still not possible
to deal with range velocity mismatch using only CSGBP. In
general, CS SAR moving target imaging is very sensitive to
range velocity mismatch. To avoid any error due to range
velocity mismatch, the dictionary should be created with
a very high resolution in range velocity; for example, for
typical SAR configurations, this resolution can be of the
order of 0.01m/s. Such a high upsampling requirement is not
feasible due to limited memory requirements and very high
computations.

In this section, we propose to compensate for velocity
mismatch by creating a dictionary iteratively, with range
velocities varying at each iteration. In order to reduce
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Figure 1: MSE using CSLP and CSGBP.

the computational time, wemake use of the following approx-
imation to (6):

𝑑
𝑘

𝑛
(𝜏
𝑚
) ≈ 𝑟
𝑛
− V𝑘
𝑟,𝑛

(𝜏
𝑚
−

𝑦
𝑛

𝑉
) +

(𝜏
𝑚
− 𝑦
𝑛
/𝑉)
2

2𝑟
𝑛

. (57)

We can make use of this approximation to create 𝑠𝑘+1
𝑛

(𝑡
𝑙
, 𝜏
𝑚
)

from 𝑠𝑘
𝑛
(𝑡
𝑙
, 𝜏
𝑚
) as follows:

𝑠
𝑘+1

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) ≈ 𝑠
𝑘

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) exp (𝑗𝑘

𝑐
ΔV𝑘
𝑟,𝑛

(𝜏
𝑚
− 𝑦
𝑛
/𝑉)) ,

(58)

where ΔV𝑘
𝑟,𝑛

= V𝑘
𝑟,𝑛

− V𝑘+1
𝑟,𝑛

. This allows us to create a
dictionary with varying mismatch iteratively using already
computed dictionaries. Using the approximation, we propose
the following scheme to reconstruct SAR image in the
presence of dictionary mismatch.

(1) Create a dictionary with range and azimuth positions
at a subpixel resolution. This resolution is chosen so
as to meet the upsampling requirements given by
(31) and (32). We chose an upsampling factor of 4 in
position, which means that the maximum mismatch
that can occur is 1/8 of the pixel size. This process is
carried out only once.

(2) Carry out CSGBP reconstruction using the dictionary
created in Step 1. Due to the upsampling chosen
in the range and azimuth directions, and, due to
the fact that the range velocity mismatch does not
affect the range position, the result contains correct
range position as well as range velocity. There will be
azimuth position displacements due to range velocity
that will be compensated in the next steps.

(3) For each set of reconstructed 𝑛
𝑘
points belonging to

the same range velocity V𝑘
𝑥
, regenerate new dictionary
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Table 3: Simulation parameters.

Carrier frequency 1.3 GHz Incidence at center 40∘

Chirp rate 1 GHz/s Sensor velocity 100m/s
Pulse duration 5𝜇s Sensor height 2000m
Pulse repetition
frequency 140Hz Azimuth aperture 7∘

Azimuth pixel size 0.7m Range pixel size 2.7m

elements at the selected range positions using (58) and
a velocity increment of ⌊Δ𝑦𝑘

𝑛
, 𝑠
𝑦
⌋.

(4) Step 3 is repeated by incrementing the velocity in
steps of ⌊Δ𝑦𝑘

𝑛
, 𝑠
𝑦
⌋, until the reconstructed image is

judged to be of the best quality for the 𝑛
𝑘
points. As a

quality measure, contrast of the reconstructed vector
is calculated as follows:

𝐶
�̂�0

=
⟨�̂�
2

0⟩

⟨�̂�0⟩
2
, (59)

where ⟨⋅⟩ is the averaging operator.
(5) Steps 3 and 4 are repeated for each velocity in the

dictionary where moving points were detected in
Step 2.

4. Numerical and Imaging Results

This section presents numerical and imaging results. We
give examples with MSE calculated for different amounts of
mismatch in range, azimuth, and range velocity for SAR data,
followed by imaging examples.

4.1. Numerical Results. The simulation parameters for SAR
data are given in Table 3. A scene of size 50m × 50m or 12
× 70 pixels in range and azimuth directions is considered.
Raw data corresponding to multiple points are simulated
and 5% of range data are retained. Positions and amplitudes
of these points are chosen randomly, whereas ground-range
velocities are chosen randomly from a set of 7 velocities:
{0, 3, 4, 5, −3, −4, −5}m/s. Performance in terms of dictionary
mismatch is compared. For this purpose, data are generated
using a dictionary Ψ0 and CS reconstruction is carried out
using a mismatched dictionaryΨ. The mismatch has a value
of 0.01, followed by values from 0.1 to 0.7 with a step-size
of 0.1. For range and azimuth pixels, the mismatch unit is
pixel size, whereas, for range velocity, it is m/s. A series of
simulation is carried out at a signal-to-clutter ratio (SCR) of
20 dB with randomly chosen positions and velocities of the
moving targets. Reconstruction is carried out usingCSLP and
CSGBP and the resulting MSE between the original points
and the reconstructed points are shown in Figure 2. MSE is
calculated as follows:

MSE =
1

𝑁
𝑡

𝑁
𝑡

∑
𝑛=1

𝜎0 (𝑛) − �̂�
0 (𝑛)


2
. (60)

Four main parameters are used in CSGBP reconstruction: 𝑞,
𝜇
𝜎
, 𝑠
𝜎
, and 𝑠

𝜀
, which are initially estimated by using a-priori

information. The value of 𝑞 is decided according to the ratio
of supposed active scatterers to total number of scatterers
present in the data, whereas the values of 𝜇

𝜎
, 𝑠
𝜎
, and 𝑠

𝜀
are

chosen based on SCR.They are then refined by trial and error
to get the best results. In general, higher than required values
of 𝑞, 𝜇

𝜎
, and 𝑠

𝜎
help in producing weak scatterers but lead to

more side lobes, whereas a higher value of 𝑠
𝜀
suppresses weak

scatterers. From Figure 2, the following observations can be
made.

(i) In general, reasonable reconstruction is obtained
when the effect of basis mismatch is less than 1/3 of
a pixel size.

(ii) MSE is less in case of no range and azimuth pixel mis-
match using CSGBP. Similarly, for a small mismatch
in range and azimuth directions, theMSE level in case
of CSGBP based reconstruction is less. Specifically,
it can be remarked that although for the velocity
mismatch, MSE increases when velocity mismatch
reaches 0.1m/s; however, in case of range and azimuth
pixels mismatch, MSE is very small as long as pixel
mismatch stays less than 0.3 of the pixel size. Thus,
CSGBP can be used for better reconstruction and
reduction of the dictionary size in practical scenarios,
compared to CSLP based reconstruction, where the
MSE is higher even in case of no dictionarymismatch.

(iii) MSE for range velocity is high using both methods.
After the mismatch of 0.1m/s, CSLP seems to give
slightly lower MSE. The reason may be that CSGBP
gives higher number of side lobes. Further simula-
tions for the values of mismatch ranging from 0.01
to 0.1 in a step size of 0.01m/s are shown in Figure 3.
It can be seen that MSE using CSGBP is still smaller
than that usingCSLP.The reason for not reporting any
ill effects of mismatch in velocity in [25] may be that
the amount of mismatch considered is small for the
configuration that was studied.There are two types of
moving targets that are considered in [25], a slow one
and a fast one. The former target has a range velocity
of 2.35m/s, whereas the latter target has a range
velocity of 28.15m/s.The range velocity mismatch for
the slow target is 0.85m/s, whereas, for the fast target,
it is 0.45m/s.The amount ofmismatch is small to have
any effect on the reconstruction for the particular
case. This can be seen from reconstruction results in
Figure 5 of [25] that shows focussing assuming no
motion. The slow object, despite having a mismatch
of 2.35m/s in the range direction, is still focussed at
the same position. Our results show theoretically as
well as experimentally that amismatch in velocity can
have a serious impact on reconstruction.

(iv) The error increases gradually for position mismatch
but increases very rapidly for range velocity mis-
match. The reason is that, in case of range velocity
mismatch, a large shift arises in azimuth direction.
This is due to the reason that 𝑟

𝑛
is of the order of 103m;
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Figure 3:MSE for range velocitymismatch using CSLP and CSGBP.

for example, for a velocity mismatch of 0.05m/s,
𝑟
𝑛

= 2595m, and 𝜃
𝑛

= 40∘, there is a single-pixel
shift between the original and reconstructed position.
Thus, the reconstruction result will contain azimuth
pixels shifted according to the mismatch, which leads
to a sudden increase in MSE. As there is a total mis-
alignment between actual and estimation positions,
MSE rises and stays at a roughly constant maximum
level. This is further demonstrated in Figure 4, where
a reconstructed scene contains a single pixel shiftwith
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Figure 4: Effects of range velocitymismatch using CSGBP. A single-
pixel shift and some side lobes can be seen.

respect to the actual position.The reason is that there
is a mismatch in range velocity of 0.05m/s. A loss of
amplitude and side lobes can be seen.

(v) The error in azimuth is more than that in range
position in general, especially using CSLP.The reason
is that there are more than one combination of 𝑟

𝑛
, 𝑦
𝑛
,

and 𝜃
𝑛
that lead to closely resembling values of 𝑟

𝑚
and

𝑦
𝑚
in (26); for example, for the parameters given in

Table 3, we can see that 𝑟
𝑛
and 𝑦

𝑛
of 2594.5m and
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Figure 5: Effects of azimuth pixel mismatch using CSLP and CSGBP.

−25.7143m with V
𝑥

= 3m/s lead to 𝑟
𝑚
and 𝑦

𝑚
of

2594m and −75.2693m. The same values of 𝑟
𝑚
and

𝑦
𝑚
are obtained with similar value of 𝑟

𝑛
and 𝑦

𝑛
=

−9.1154m with V
𝑥
= 4m/s as well as 𝑦

𝑛
= 7.2128m

and V
𝑥
= 5m/s. Thus, it is possible that a dictionary

mismatch will lead to selection of dictionary elements
and subsequently, side lobes that are not in the
immediate neighborhood. This is demonstrated in
Figure 5, where there are 4 points at different azimuth
positions having a velocity of 3m/s. The mismatch
is 0.1, 0.3, 0.5, and 0.7 of a pixel size. When CSLP is

used to carry out reconstruction, only a single point
is identified with a velocity of 3m/s. This is shown in
Figure 5(a). Two of the points are detected at shifted
azimuth positions with a velocity of 4m/s, as shown
in Figure 5(b). The fourth point is not identified at
all. In case of reconstruction using CSGBP, all of
the four points are identified correctly as shown in
Figure 5(c), albeit with higher side lobes. This also
demonstrates the advantage offered by CSGBP by
identifying correct positions and velocity even in the
presence of pixel mismatch.
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Figure 6: Reconstruction in the presence of range and azimuth pixels mismatch using CSLP and CSGBP.

4.2. Imaging Results. In this section, we compare the recon-
struction performance of CSLP and CSGBP through imaging
results and demonstrate the effectiveness of the proposed
iterative CSGBP. Eight points are simulated at positions (2,
55), (3, 15), (4, 9), (4, 25), (6, 40), (7, 50), (8, 60), and (9,
65). The scene is shown in Figure 6(a). The velocities of the
points are 3, 4, −5, 5, 4, −3, −4, and −5m/s, respectively.
Reconstruction is carried out in the presence of a mismatch
of 1/8 of a pixel size in range and azimuth. Results using
CSLP are shown in Figure 6(b), which shows that the point
at (7, 50) is not reconstructed correctly. CSGBP results
shown in Figure 6(c) indicate that all the points are correctly
reconstructed. This demonstrates the superior performance
of CSGBP. Furthermore, results usingCSGBP show side lobes
in the vicinity of actual positions, whereas, in case of CSGBP,
the side lobes appear at positions that are not in the vicinity of
actual positions. A further example is shownwith amismatch
of 0.4m/s in range velocity. The original scene is shown
in Figure 7(a), where there are closely spaced scatterers
roughly in the middle of the scene. They have a velocity of
4.4m/s, whereas the closest velocity in the dictionary is 4m/s.
Reconstruction using both CSLP and CSGBP shows shifted

results due to the mismatch. Furthermore, results obtained
using CSLP were obtained at a velocity of 5m/s. Result
obtained using iterative CSGBP is shown in Figure 7(d),
where the points are located at their correct positions. The
velocity in the dictionary is increased iteratively with a step
size of 0.05m/s, until the highest contrast is achieved. A
plot of contrast with velocity is shown in Figure 8, where
it can be seen that the contrast is the highest when the
velocity in the dictionary matches the actual velocity. This
shows that creating dictionary elements iteratively and using
contrast to measure quality are effective methods for dealing
with CS moving target imaging in the presence of range
velocity mismatch. Another example is shown with a scene
in Figure 9(a). The points are at positions of (2, 5), (5, 45),
(6, 34), (2, 70), (10, 15), and (7, 65). The point at (2, 5) has
a velocity of −4.9m/s, the point at (5, 45) has a velocity of
−4m/s, and the point at (6, 34) has a velocity of −3m/s.
The remaining points have a velocity of 3.3m/s. Thus, there
is a mismatch of 0.1m/s and 0.3m/s. The pixel at position
(2, 5) has a 1/2 pixel mismatch in azimuth and 1/4 pixel
mismatch in azimuth. The pixel at positions (6, 34) has a 1/4
pixel mismatch in azimuth and 1/2 pixel mismatch in range.
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Figure 7: Reconstruction using CSLP, CSGBP, and iterative CSGBP in the presence of range velocity mismatch.
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Figure 9: Reconstruction using CSLP, CSGBP, and iterative CSGBP.

CSLP reconstruction results with the dictionary containing
elements at 1/4 pixel spacing are shown in Figure 9(b). CSLP
is unable to detect two of the scatterers at positions (7, 65)
and (2, 70); other scatterers having velocity mismatch are
shifted in azimuth. CSGBP reconstruction results are shown
in Figure 9(c). All the range positions are correctly identified,
but the result is shifted in azimuth. Result using iterative
CSGBPwith velocity varying in a step size of 0.05m/s for each
velocity in the dictionary is shown in Figures 9(d)–9(f). The
result obtained by maximizing the contrast for the point at
(6, 34) is shown in Figure 9(d), where the points moving at
3.3m/s are focussed at their true position. Some side lobes
can be seen. Similarly, the point moving at −4.9m/s is shown
correctly focussed in Figure 9(e). Final result obtained using
the calculated velocities is shown in Figure 9(f), where all the
points are focussed at their true positions. Some side lobes
can be observed.

5. Conclusion

In this paper, we studied compressed sensing (CS) synthetic
aperture radar (SAR) moving target imaging in the presence
of dictionary mismatch. We analyzed the sensitivity of the
imaging process to range pixel, azimuth pixel, and range
velocity mismatches. The mismatch analysis shows that the
reconstruction error increases with mismatch and especially
increases very rapidly in the presence of range velocity
mismatch. Unlike existing references, we show that using

a Gaussian-Bernoulli prior compared to the traditionally
used Laplacian prior offers advantage in CS SAR imaging for
dealing with small mismatch. This advantage is apparent in
dealing with positions mismatch. We calculated Cramer-Rao
bounds that demonstrate theoretically the lowering of mean
square error between actual and reconstructed result by using
the GBP. We show that creating an upsampled dictionary
and using the GBP for reconstruction can deal with position
mismatch. We also presented an iterative scheme to deal
with the range velocity mismatch where dictionary elements
are created efficiently. CS reconstruction is carried out at
each iteration until the image contrast is maximized for
each velocity. Numerical and imaging examples confirm the
analysis and the effectiveness of the proposed upsampling and
iterative scheme.

Notations and Symbols

𝑡: Range time
𝑓
𝑐
: Central frequency

𝑟: Slant-range positions
𝑦: Azimuth positions
𝑘
𝑐
: 4𝜋𝑓

𝑐
/𝑐

𝐾: Chirp rate
𝑉: Sensor velocity
ℎ: Antenna height
𝑇
𝑝
: Pulse length

𝑥: Ground-range positions
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𝑐: Speed of light
𝜏: Azimuth time
𝜃
𝑛
: Incidence angle at range 𝑟

𝑛
, equal to

cos−1(ℎ/𝑟
𝑛
)

V𝑘
𝑥
: 𝑘th ground range velocity

V𝑘
𝑟,𝑛
: Translational velocity, equal to V𝑘

𝑟,𝑛
=

V𝑘
𝑥
sin 𝜃
𝑛

𝑠
𝑟
: Pixel size in range

𝑠
𝑦
: Pixel size in azimuth

𝑛
𝑟
: Number of range pixels in the scene

𝑛
𝑦
: Number of azimuth pixels in the scene

𝑁
𝑟
: Number of range pixels in raw data

𝑁
𝑦
: Number of azimuth pixels in raw data

𝑁V𝑥: Number of range velocities
𝑁
𝑡
: 𝑁 × 𝑁V𝑥

𝑁: 𝑛
𝑟
× 𝑛
𝑦

𝑁
𝑠
: 𝑁

𝑟
× 𝑁
𝑦

s0: Raw data from all the points in the scene
arranged in 1D form

s𝑘
𝑛
: Raw data for 𝑛th point moving with 𝑘th

velocity, arranged in 1D form
𝑠𝑘
𝑛
(𝑡
𝑚
, 𝜏
𝑛
): Raw data element for range time 𝑡

𝑚
and

azimuth time 𝜏
𝑛

𝑑𝑘
𝑛
(𝜏
𝑛
): Radar-target distance for 𝑛th point moving

with 𝑘th velocity
Ψ0: Original dictionary
Ψ: Mismatched dictionary
𝜎0: Original reflectivity vector
𝜎: Mismatched reflectivity vector
�̂�0: Reconstructed reflectivity vector
�̂�: Reconstructed reflectivity vector in the

presence of mismatch
Σ̂0: Reconstructed reflectivity in 2D
Φ: Sampling matrix
𝑀: Number of columns ofΦ
𝜀: Noise vector
|⟨ , ⟩|: Inner product
⟨⋅⟩: Averaging operation
Θ
𝑘

𝑛
: Rotation angle with which a moving scat-

terer can be seen equivalent to a static
scatterer

Δ𝑟
𝑛
: Subpixel mismatch in range position

Δ𝑦
𝑛
: Subpixel mismatch in azimuth position

ΔV𝑘
𝑥
: Fraction of m/s mismatch in range velocity

Δ𝑦𝑘
𝑛
: Shift in range position due to range velocity

mismatch
𝜎𝑘
0,𝑛
: Element of reflectivity vector at 𝑛th posi-

tion and moving with 𝑘th velocity
�̂�
𝑘

0,𝑛
: Reconstructed element of reflectivity vec-

tor at 𝑛th position and moving with 𝑘th
vecloity

Δ̃𝑟: Dictionary resolution for range
Δ̃𝑦: Dictionary resolution for azimuth
Δ̃V
𝑥
: Dictionary resolution for range velocity

𝑟
𝑚
: Range position for equivalent static point

𝑦
𝑚
: Azimuth position for equivalent static

point

𝑝: Probability of active coefficients in �̂�0
𝑞: Sparsity of �̂�0
𝜌: Correlation
𝑠2
𝜀
: Variance for noise

𝑠2
𝜎
: Variance of reflectivity vector

I: Identity matrix
𝐶
�̂�0
: Contrast of �̂�0

FIM: Fisher information matrix
CSLP: CS reconstruction with Laplacian prior
CSGBP: CS reconstruction with Gaussian-

Bernoulli prior
JLP: FIM for CSLP without mismatch
JGBP: FIM for CSGBP without mismatch
J̃LP: FIM for CSLP with mismatch
J̃GBP: FIM for CSGBP with mismatch.
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Classical space-time adaptive processing (STAP) detectors are strongly limited when facing highly heterogeneous environments.
Indeed, in this case, representative target free data are no longer available. Single dataset algorithms, such as the MLED algorithm,
have proved their efficiency in overcoming this problem by only working on primary data. These methods are based on the APES
algorithm which removes the useful signal from the covariance matrix. However, a small part of the clutter signal is also removed
from the covariancematrix in this operation. Consequently, a degradation of clutter rejection performance is observed.We propose
two algorithms that use deterministic aided STAP to overcome this issue of the single dataset APESmethod.The results on realistic
simulated data and real data show that these methods outperform traditional single dataset methods in detection and in clutter
rejection.

1. Introduction

In the context of radar signal processing, the purpose of
space-time adaptive processing (STAP) is to remove ground
clutter returns, in order to enhance slowmoving target detec-
tion. STAP performs two-dimensional space and time adap-
tive filtering where different space channels are combined at
different times [1]. Filter’s weights are adaptively computed
from training data in the neighborhood of the range cell of
interest, called cell under test (CUT).The estimation of these
weights is always deducted,more or less directly, from an esti-
mation of the covariance matrix of the received signal, which
is the key quantity in the process of adaptation [2]. Any imple-
mentation of STAP processing must remain absolutely con-
sistent with the strategy of radar processing whose purpose is
to obtain a high probability of detection while keeping a very
low probability of false alarm.

Classical space-time adaptive processing (STAP) detec-
tors are strongly limited when facing a severe nonstationary
environment such as heterogeneous clutter. Indeed, in these
cases, representative training data are no longer available.The
Maximum Likelihood Estimation Detector (MLED) [3] is a
single dataset detector among others [4]. It only operates with
the data from the cell under test, hence its performance is not

impacted by nonstationarity. Of course, no environment is
purely heterogeneous or homogeneous and the problem can
be addressed by combining primary and secondary data [5].
We will here consider the environment to be heterogeneous
enough to only use primary data. To make the primary data
target-free, theMLED detector removes a thin part of the sig-
nal of the Doppler cell under test from the covariance matrix.
A slight part of the clutter is removed along the target signal
which implies a degradation of clutter rejection, especially if
the number of Doppler cells is low.The less Doppler cells, the
more the clutter removed from the covariance matrix and
the worse the estimation of the covariance matrix. The bad
estimation of the matrix can be addressed by using subspace
methods [6] but the removal of some clutter is inherent to the
APES method.

In this paper, we will show how we can overcome this
problemby the use of deterministic aided STAP.Moreover, we
will extend thismethod to the Stop-BandAPESwhich greatly
reduces the computational workload of the MLED detector.

Section 2 is devoted to the datamodel, and Section 3 sum-
marizes the principle of the MLED APES-based detector and
the Stop-Band APES algorithm. A deterministic based non-
adaptive approach of space-time processing is presented in
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Section 4. In Section 5, we describe two different approaches
for deterministic aided STAP and finally, in Section 6, sim-
ulations are given to show that the proposed methods out-
perform the MLED and Stop-Band algorithms.

2. Data Model

Consider a radar antenna made of 𝑁 sensors that acquires
𝑀
𝑝
pulse snapshots for each range gate 𝑙. We will only use

the primary data so we will forget the range gate dimension,
also called fast-time dimension. Then, the processing algo-
rithm works independently in each range cell. We adopt the
following two hypothesis models where𝐻

0
and𝐻

1
mean that

no target or a target is present, respectively:

𝐻
0
: X = N,

𝐻
1
: X = 𝛼s

𝑠
s𝑇
𝑡
+ N,

(1)

where the received data have been arranged into an 𝑀𝑁 ×

𝐾
𝑡
matrix X with𝐾

𝑡
being the number of training data pulse

snapshots, 𝑀 being the number of pulses of the spatio-tem-
poral vector, and 𝛼 being the complex amplitude of the target.
s
𝑠
is the spatiotemporal steering vector (length𝑁𝑀), s

𝑡
is the

temporal steering vector (length𝐾
𝑡
= 𝑀
𝑝
−𝑀+ 1), andN is

the interference (clutter plus noise) matrix.
Wemake use of a temporal sliding window towork on the

temporal dimension; consequently, the estimated covariance
matrix R is obtained from X as follows:

R =
1

𝐾
𝑡

XX𝐻. (2)

One classical STAPdetector taken as reference uses theAdap-
tive Matched Filter (AMF) [1, 2]. The filter w is

w =
R−1s

s𝐻
𝑠
R−1s
𝑠

. (3)

Detection is achieved by comparing the output SNIR power
of the matched filter to a threshold as follows:

PAMF =


s𝐻
𝑠
R−1X

2

s𝐻
𝑠
R−1s
𝑠

𝐻
0

≶
𝐻
1

𝜂. (4)

In case where a strong target is present at this range gate,
R contains the target covariance matrix. Consequently, the
target is removed with the clutter and it can no longer be
detected by (4). This happens when many targets are moving
at the same speed but are at different distances (roads, high-
ways, convoys, etc.). Another problem with this detector is
that the ground clutter has to be homogeneous on the range
domain. Otherwise, the clutter used to estimate the covari-
ance matrix will not be representative of the clutter that has
to be canceled, leading to a bad clutter rejection.

3. APES-Based STAP Detectors

3.1. The Maximum Likelihood Estimation Detector. To over-
come the previous issues of signal suppression or the none
representativeness of secondary data, the MLED detector [7]

based on the APES [8] algorithm removes the signal of
interest from the covariance matrix. The problem is stated as
follows:

minw,𝛼 (w
𝐻X − 𝛼s𝑇

𝑡
) (w𝐻X − 𝛼s𝑇

𝑡
)
𝐻

, s.t w𝐻s
𝑠
= 1. (5)

The obtained solution is

w =
Q−1s
𝑠

s𝐻
𝑠
Q−1s
𝑠

, 𝛼 =
w𝐻Xs∗

𝑡

𝐾
𝑡

, (6)

where

Q = R − ggH, g =
Xs∗t
𝐾
𝑡

. (7)

Detection is achieved using the output power normalized by
the Adaptive Power Residue (APR = w𝐻𝑄𝑤 = s𝐻

𝑠
Q−1s
𝑠
) as

follows:

PMLED =


sHs Q
−1g
2

s𝐻
𝑠
Q−1s
𝑠

𝐻
0

≶
𝐻
1

𝜂. (8)

To avoid strong signal loss due to covariance matrix estima-
tion errors [9], one may use in addition diagonal loading [10]
or subspace methods [11].

3.2. Extension to Stop-Band APES. Because the MLED algo-
rithm is a high-resolution method, it requires an oversam-
pling in Doppler frequency, typically by a factor four, to cor-
rectly work. Indeed, combining (5) and (6), it follows

w𝐻(X − X
s∗t s

T
t

s𝑇
𝑡
s∗
𝑡

)(X − X
s∗t s

T
t

s𝑇
𝑡
s∗
𝑡

)

𝐻

w

= w𝐻X (I − P
//
) (I − P

//
)
𝐻Xw,

(9)

where P
//
is the projector into the target signal subspace:

P
//
=
s∗t s

T
t

s𝑇
𝑡
s∗
𝑡

=
s∗t s

T
t

𝐾
𝑡

. (10)

The problem (5) can then be recognized as a minimization
of the interference-plus-noise energy outside the subspace
spanned by the target as follows:

minw {wHX (I − P
//
) (I − P

//
)
𝐻Xw} , s.t w𝐻s

𝑠
= 1. (11)

The solution is still w = (Q(−1)s
𝑠
)/(s𝐻
𝑠
Q(−1)s

𝑠
) but with the

more general form forQ:

Q =
XX𝐻

s𝑇
𝑡
s∗
𝑡

−
1

𝐾
𝑡

XP
//
X𝐻. (12)

This latest formulation not only shows the hyperresolution
property along the frequency domain but also allows over-
coming one major drawback of the MLED method for our
application. The MLED has indeed a high-frequency reso-
lution due to the sharpness of the projection I − P

//
with



International Journal of Antennas and Propagation 3

−2 −1 0 1 2
−80

−70

−60

−50

−40

−30

−20

−10

0

(d
B)

Two adjacent half-cells

MLED

Frequency (cell number)

Frequency response

Stop-Band APES

Figure 1: Spectral response of regular MLED S = s
𝑡
(dash curve)

and Stop-Band APES with two adjacent half-cells (solid curve).

P
//
= (s∗t s

T
t )/(s
𝑇

𝑡
s∗
𝑡
) (dash curve, Figure 1). This is a problem

because it requires a strong oversampling to be sure to remove
the signal of interest from the covariance matrix and so it
leads to an important increase of the computing load. In order
to avoid this problem, we propose a new detector called Stop-
Band APES. The minimization is using a projector P

//
on an

extended subspace around the Doppler frequency 𝑓
0
under

test. For instance, two adjacent half-cells can be added into
the space spanned by P

//
= S∗
𝑡
(S𝑇
𝑡
S∗
𝑡
)
−1S𝑇
𝑡
with

S
𝑡
= [st (𝑓0 −

1

2𝐾
𝑡

) , st (𝑓0) , st (𝑓0 +
1

2𝐾
𝑡

)] . (13)

The sharpness and effectiveness of the cancellation around
the target signal are characterized by the frequency response
of the projector, which is, for a signal X at frequency 𝑓 (X =

sTt (𝑓)), as follows:

�̃�
⊥
(𝑓) = [sTt (𝑓) (Id − P

//
)]

s∗t (𝑓)
sTt (𝑓) s∗t (𝑓)

= 1 − sTt (𝑓1)
P
//

𝐾
𝑇

s∗t (𝑓) .

(14)

Figure 1 shows that building a projector with two adjacent
half-cells is enough to correctly remove the signal in the cell
under test. Nevertheless, compared to the MLED, the Stop-
Band APES does not require oversampling of the Doppler
resolution for the calculation and the application of the STAP
filter. A zero-padding by a factor of 2 will still be required to
access the signal that has to be evaluated every half-resolution
cells for the creation of the projector [12, 13].

3.3. Limitations of the MLED and Stop-Band APES. In order
to explore the use of subspace-based methods, we have to go
deeper in the formulation of the MLED detector. Indeed,
these methods will only work if the clutter subspace of

Angle Clutter

Target

Doppler

Notch at a target-free
Doppler bin R − ggH

Notch at the target
Doppler bin

Figure 2: Angle-Doppler map showing the effect of MLED projec-
tor for two different Doppler bins.

the covariance matrix R remains very close to the clutter
subspace of the target-free covariance matrix Q. For a given
distance cell, if there is no target at this range, the covariance
matrix R only contains interference, that is, clutter and pos-
sibly jamming signal and noise, according to (2) as follows:

R =
XX𝐻

𝐾
𝑡

=
NN𝐻

𝐾
𝑡

. (15)

We can demonstrate [11] that the matrix Q is, without
approximation:

Q =
NNH

𝐾
𝑡

−
Ns∗
𝑡
s𝑇
𝑡
N𝐻

𝐾2
𝑡

. (16)

The matrix (NNH)/𝐾
𝑡

is the interference-plus-noise
estimated covariance matrix, whereas (Ns∗

𝑡
s𝑇
𝑡
N𝐻)/(𝐾2

𝑡
) is the

scalar product of interference-plus-noise vectors with their
projection on s∗

𝑡
. It follows from (16) that the modified

covariance matrix Q used for MLED in (8) does no longer
contain the target contribution and that the target will not be
removed contrarily to the clutter by the MLED STAP filter
(6).

The residual clutter-plus-noise covariance matrix is
slightly different from the actual covariance matrix (N𝑁𝐻)/
𝐾
𝑡
(Figure 2). The term (Ns∗

𝑡
sTt N

H)/(𝐾2
𝑡
) represents the part

of the clutter that is removed from the covariancematrix.The
number of Doppler cells being usually high, the projector is
consequently very sharp; that, the term (Ns∗

𝑡
sTt N

H)/(𝐾2
𝑡
) is

small and both MLED and Stop-Band APES, which removes
a wider part of the clutter from the covariance matrix
(Ns∗
𝑡
sTt N

H)/(𝐾2
𝑡
), are all working. This effect can be seen on

Figure 2 in a situation with and without target in the Doppler
cell tested.

However, in a situationwhere the number ofDoppler cells
is low, we will observe a degradation of the clutter rejection
performance of theMLED detector, and this degradation will
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be even worse for the Stop-Band APES algorithm.This effect
is due to the partitioning which is done only in time domain.
If spatio-temporal partitioning is employed, only a single bin
of the angle-Doppler plane is removed but the computational
cost would hugely increase because of the angle-Doppler
scanning. We will present in the next section a deterministic
processing and, in Section 5, a newmethod that makes use of
deterministic processing to solve this problem.

4. Deterministic Space-Time Processing

We will here briefly describe a nonadaptive space-time pro-
cessing which is the basis of the deterministic aided STAP
processing we will introduce in the following section. For a
side-mounted antenna, the clutter occupies a one-dimension
position in the two-dimensional Doppler-angle domain. The
clutter Doppler frequency is a function of the receiving angle
as follows:

𝑓 =
2𝑉

𝜆
sin 𝜃 ⇒ 𝜃 = sin−1 (

𝜆𝑓

2𝑉
) (17)

with 𝑓 being the Doppler frequency of the clutter, 𝜃 being
the receiving angle, 𝑉 being the platform speed, and 𝜆 being
the wavelength of the radar frequency. Knowing this relation,
we can build a filter that will remove all the signal that is in
the 1D-domain driven by (17). The general form of the filter,
which will be referred in the following to non-adaptive or
deterministic processing, has the same form as AMF in (3) as
follows:

w𝐻 =
sHs K
−1

s𝐻
𝑠
K−1s
𝑠

(18)

but with

K =
1

𝑘

𝑘

∑
𝑖=1

sc (𝜃𝑖 (𝑓𝑖) , 𝑓𝑖) s
𝐻

𝑐
(𝜃
𝑖
(𝑓
𝑖
) , 𝑓
𝑖
) + ΓN, (19)

where ΓN is the true noise covariance matrix (identity matrix
in our case), 𝑘 is the number of mainlobe clutter patches, and
s
𝑐
(𝜃
𝑖
(𝑓
𝑖
), 𝑓
𝑖
) is the space-time steering vector of angle 𝜃

𝑖
and

frequency 𝑓
𝑖
obtained with (17). In the same formulation of

the filter asMLED and Stop-Band APES in (6), the matrix for
each Doppler cell can be written as follows:

K = 1

𝑘

𝑘


∑
𝑖=1

sc (𝜃𝑖 (𝑓𝑖) , 𝑓𝑖) s
𝐻

𝑐
(𝜃
𝑖
(𝑓
𝑖
) , 𝑓
𝑖
) + ΓN, (20)

where the vector s
𝑐
(𝜃
𝑖
(𝑓
𝑖
), 𝑓
𝑖
) is the predicted steering vector

of the clutter. In this case, to process one Doppler cell, the
steering vector sc(𝜃0(𝑓0), 𝑓0) of the Doppler cell under test
and the two steering vectors sc(𝜃±1(𝑓±1), 𝑓±1) from the adja-
cent Doppler cells are sufficient to correctly remove the clut-
ter. However, the performance of this nonadaptive approach
is very limited in practical situations because of the hetero-
geneity of the clutter (e.g urban or mountainous areas) and
because of antenna/receivers calibration errors which make
the real steering vector of the antenna slightly different from
the actual steering vector used to build the covariancematrix.

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

20

25

30

35

40
Simulated data

Speed (m/s)

(d
B)

Figure 3: Comparison between sum channel (bold curve, negative
speeds), deterministic (bold curve, positive speeds), and adaptive
space-time processing (dash curve) on error-free simulated data.

To illustrate this effect, we compare the non-adaptive
processing (18) to the classic adaptive processing on two sets
of data. The first data are the simulated data that we build
using the true spatial steering vector and the second set of
data is made of realistic data simulated by a STAP simulator
that emulates phases errors on the receiving channels and
randomly adds impulsive echoes in the clutter. In both cases,
clutter is Gaussian, homogeneous, and set to 40 dB. No target
is present in these data. A side-looking antenna with four
uniformly spaced subarrays is used. Aircraft speed is set to
100ms−1, radar frequency is 10GHz, and the pulse frequency
(PRF) is 2 kHz. The non-adaptive processing is only applied
in the positive speed domain, that is to say that the negative
speeds show the sum channel. The adaptive processing is
applied on all the Doppler (speed) domains.

Aswe can see fromFigures 3 and 4, non-adaptive process-
ing works well on the error-free simulated data. The clutter-
to-noise ratio (CNR) is close to 0 dB, like in the adaptive pro-
cessing as shown on Figure 5, which implies an attenuation
of 40 dB. On the realistic simulated data, the non-adaptive
processing is not performing well, as it fails to suppress the
clutter. Indeed, as we can see on Figure 6, the residual CNR is
near 15 dB in the main lobe; the clutter attenuation is limited
to 25 dB, implying many false alarms.The full range-Doppler
maps also point out this effect in Figures 7 and 8. From
these results, we deduce that we cannot use a non-adaptive
space-time processing in real situations but we may use the
deterministic of the clutter Doppler-angle relation together
with adaptive processing to achieve better performance.

5. Deterministic Aided STAP

5.1. Deterministic Aided GMTI STAP. In GMTI operation,
there are two main concerns about heterogeneous environ-
ments: clutter heterogeneity (land relief, urban environ-
ments) and high-density target area (roads, highways. . .).
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Figure 4: Range-Doppler map of the nonadaptive processing (pos-
itive speeds) and the sum channel (negative speeds) on error-free
data simulated data.
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Figure 5: Range-Doppler map showing the performance of the
adaptive processing on error-free data simulated data.

In many cases, few training data are available and the use
of single data set methods is a very helpful alternative (see
Section 3.1 and Section 3.2). To overcome the problem of
these methods pointed out in Section 3.3, we propose a
new method that includes some aspects of the non-adaptive
processing. We saw in (16) that the term ggH in (7) removes
the interest signal (if any) and also a small part of the clutter.
The idea here is to try to readd this clutter into the covariance
matrix. The covariance matrix is then as follows:

T = R − ggH + gcg
H
c , (21)

where gc is the projection of g on the clutter steering vector
sc(𝜃(𝑓), 𝑓) as follows:

gc = Pcg (22)
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Figure 6: Comparison between sum channel (bold curve, negative
speeds), deterministic (bold, positive speeds), and STAP (dash) on
realistic data.
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Figure 7: Range-Doppler map of the nonadaptive processing (pos-
itive speeds) and the sum channel (negative speeds) on realistic data.

with

P
𝑐
=
sc (𝜃 (𝑓) , 𝑓) s𝐻c (𝜃 (𝑓) , 𝑓)

s𝐻c (𝜃 (𝑓) , 𝑓) sc (𝜃 (𝑓) , 𝑓)
. (23)

We can demonstrate that the covariance matrixQ of (16) can
now be written as follows:

T =
NNH

𝐾
𝑡

−
Ns∗
𝑡
s𝑇
𝑡
N𝐻

𝐾2
𝑡

+
PcXs∗𝑡 s

𝑇

𝑡
X𝐻PH

c
𝐾2
𝑡

. (24)

If the clutter follows the theoretical Doppler-angle relation of
(17), then the projection of the signal on the angle-Doppler
steering vector will be close to the clutter signal that has been
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Figure 8: Range-Doppler map of the adaptive processing on
realistic data.

removed from the matrix (PcX ≈ 𝑁), and the covariance
matrix T will be close to

T ≈
NNH

𝐾
𝑡

. (25)

Note that we do not need to set an arbitrary clutter power
value because the energy of the clutter is included in gc
(cf. (22)).

In the case of Stop-Band APES, where the signal notch is
wider, we use an extended projector Pc as follows:

P
𝑐
=
ScSHc
SHc Sc

(26)

with

S
𝑐
= [sc (𝜃, 𝑓 −

Δ𝑓

2
) sc (𝜃, 𝑓) sc (𝜃, 𝑓 +

Δ𝑓

2
)] . (27)

5.2. Deterministic Aided STAP Processing for Air-to-Air Mode.
In air-to-air situations, the problem is different. The spectral
occupation of the mainlobe clutter is much smaller than that
of GMTI, whereas clutter sidelobes are much more powerful
and have to be cancelled. Moreover, target density is very low,
compared to GMTI. As we do not have access to a Doppler-
angle relation of the mainlobe clutter, we propose another
approach to readd this clutter which is partially removed in
the APES-based methods. In air-to-air mode, the mainlobe
clutter is pretty homogeneous in the range domain.

We will exploit this property to estimate the matrix gcgHc
on the range gates domain. For each Doppler cell, the covari-
ance matrix T is defined by

T = R − ggH + C. (28)

Table 1: Target position (GMTI data).

Target 1 Target 2 Target 3
Speed (m/s) 3.0 5.30 5.85
Range (number) 214 138 149

However, thematrixCwhich was equal to gcgHc in (21) is now
estimated as follows for each Doppler cells:

C =

𝑁

∑
𝑖=1

1

𝑁
g
𝑖
gH
𝑖
, (29)

with g
𝑖
being the vector g = Xs∗

𝑡
/𝐾
𝑡
of the range cell 𝑖 and𝑁

being the total number of range cells. If the clutter is homo-
geneous, then we can make the following approximation:

C =
1

𝑁

𝑁

∑
𝑖=1

g
𝑖
gH
𝑖
≈ gcg

H
c . (30)

This assumption implies that only the homogeneous compo-
nent of the clutter will be readded in the covariance matrix.
The density of the target has to remain low, otherwise useful
signal will be nonnegligible in the matrix and SNR of targets
will be attenuated. In the case of Stop-Band APES, (12)
becomes

T =
XX𝐻

s𝑇
𝑡
s∗
𝑡

−
1

𝐾
𝑡

XP
//
X𝐻 + 1

𝑁

𝑁

∑
𝑖=1

X
𝑖
P
//
X𝐻
𝑖
, (31)

with X the data of the range cell under test, X
𝑖
the data of the

range cell 𝑖, and𝑁 the total number of range cells.

6. Results

6.1. GMTI Simulations. We test the GMTI deterministic
aided STAP described in Section 5.1 on real airborne data.
These data were obtained using the ONERA RAMSES radar
system [14], which is a 4-channel ULA antenna. The aircraft
speed is 𝑉

𝑎
= 85m ⋅ s−1, pulse repetition frequency is PRF =

1.5625 kHz, the number of range gates is 300, the number of
time taps used to form the space-time data is𝑀 = 6, and the
total number of time snapshots (radar pulses) is 64. Three
targets are present in the scene (see Table 1).

The Doppler-range of the sum channel (Figure 9) clearly
emphasizes the heterogeneous clutter. The next figures
present the results for the classical STAP (estimation on 10
range gates with 2 guard cells), MLED STAP, Stop-Band
STAP, and deterministic aided Stop-Band STAP (estimation
on 3 range gates with no guard cells for all processing). No
oversampling is used for the STAP processors (although a 2x
zero-padding is needed to access the data of the half-resolu-
tion Doppler cells in the case of Stop-Band) except for the
MLED detector, which uses a 4x-oversampling.

The classical STAP processing fails to correctly remove
the heterogeneous clutter (Figure 10). The MLED STAP
whose signal notch is very sharp also fails to completely
remove the clutter. Due to its property of high resolution,
the target Doppler extent is very thin and it is difficult to
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Figure 9: Range-Doppler map showing the sum channel of the
RAMSES data.
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Figure 10: Range-Doppler map on RAMSES data showing the
performance of classical STAP processing.
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Figure 11: Range-Doppler map on RAMSES data showing the
performance of the MLED detector.
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Figure 12: Range-Doppler map on RAMSES data showing the
performance of the Stop-Band detector.
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Figure 13: Range-Doppler map on RAMSES data showing the
performance of the deterministic aidedc Stop Band detector.

distinguish the targets on the range-Doppler map (Figure 11).
As predicted, the Stop-Bland STAP processing allows even
more clutter to be present as shown in Figure 12, whereas the
deterministic aided Stop-Band (DA-Stop-Band) effectively
cancels the clutter (Figure 13).This is done without any atten-
uation on target 1 which lies in the clutter. Figure 14 points
out the increased clutter attenuation of DA-Stop-Band over
classical Stop-Band for range gate number 149, where target 3
is present. Figure 15 shows the superiority of DA-Stop-Band
over classical STAP in clutter rejection for range gate 279, an
area where the clutter is particularly powerful.

6.2. Air-to-Air Simulations. Theair-to-air deterministic aided
STAP (see Section 5.2) is tested on realistic synthetic data sim-
ulating an air-to-air MTI scenario. A front-looking AMSAR-
like antenna [15] is used for the simulations.The aircraft speed
is 𝑉
𝑎

= 300m ⋅ s−1, pulse repetition frequency is PRF =

20 kHz, and the number of range gates is 100, corresponding
to a physical range of 52.5 km to 59.5 km.The number of time
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Figure 14: Comparison of classical STAP (dash curve) Stop-Band
STAP (dot curve) and deterministic aided Stop-Band (solid curve)
on RAMSES data for range gate number 149.
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Figure 15: Comparison of classical STAP (dash curve) Stop-Band
STAP (dot curve) and deterministic aided Stop-Band (solid curve)
on RAMSES data for range gate number 279.

taps used to form of space-time data is𝐾taps
= 8 and the total

number of time snapshot (radar pulses) is 128. Five targets are
present in the scene (see Table 2).

The sum channel (Figure 16) clearly shows that the main-
lobe clutter (speeds from 230 to 280m/s) and the sidelobes
clutter occupy a wide part of the range-Doppler map. Only
two targets on the left-upper part of the map are detectable
without STAP processing. On Figure 17, we can see that the
classical STAP processing successfully removes the homo-
geneous main lobe clutter and does not removes the het-
erogeneous sidelobes clutter. Classical Stop-Band processing
cancels almost all the sidelobes clutter but does not suppress

Table 2: Target position (air-to-air).

Targets Speed (m/s) Range (km)
1 50.03 58.425
2 100.22 55.425
3 115.026 57.00
4 185.0265 57.30
5 216.0296 59.475
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Figure 16: Range-Doppler map of the air-air realistic data showing
the sum channel.
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Figure 17: Range-Doppler map of the air-air realistic data showing
the performance of MLED processing.

all the mainlobe clutter (see Figure 18), whereas DA-Stop-
Band (Figure 19) totally removes it.

On Figure 20, the effect on clutter attenuation of the DA-
Stop-Band is visible through a comparison with classical
Stop-Band.We can also observe that both types of Stop-Band
processings do not completely remove the sidelobes clutter;
this issue can be overcome by using subspace-based algo-
rithms instead of matrix inversion [11].



International Journal of Antennas and Propagation 9

40
20

0SN
R 

(d
B)

0

100

200

300

Speed (m/s)
Ran

ge
 (k

m)

58.5
57.5

56.5
55.5

54.5
53.5

52.5

Stop-Band APES

Figure 18: Range-Doppler map of the air-air simulated data show-
ing the performance of Stop-Band STAP processing.

40
20

0

SN
R 

(d
B)

0

100

200

300

Speed (m/s)

Ran
ge

 (k
m)

58.5
57.5

56.5
55.5

54.5
53.5

52.5

DA-Stop-Band APES

Figure 19: Range-Doppler map of the air-air simulated data show-
ing the performance of deterministic aided Stop-Band STAP pro-
cessing.

7. Conclusion

In this paper, we propose two deterministic aided algorithms
both based on the APES method. The first algorithm which
relies on the deterministic Doppler-angle relation of the
clutter is particularly adapted for GMTI detectors.The results
on real data show that it outperforms both classical STAP and
APES-based algorithms. The second algorithm, which aims
to remove the continuous component of the interference, is
on the other hand well adapted to air-to-air modes. In this
case, the continuous interference is the main lobe clutter.
On realistic simulated data, it totally cancels the mainlobe
clutter, whereas classical STAP and traditional APES-based
algorithms fail, causing many false alarms.
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Figure 20: Comparison of Stop-Band STAP (dot curve) and Deter-
ministic-Aided Stop-Band (solid curve) on air-air data at a distance
of 58.5 km.
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This paper focuses on the target detection in low-grazing angle using a hybrid multiple-input multiple-output (MIMO) radar
systems in compound-Gaussian clutter, where the multipath effects are very abundant. The performance of detection can be
improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then,
the general signal model for MIMO radar is introduced in low-grazing angle; also, the generalized likelihood test (GLRT) and
generalized likelihood ratio test-linear quadratic (GLRT-LQ) are derived with known covariance matrix. Via the numerical
examples, it is shown that the derived GLRT-LQ detector outperforms the GLRT detector in low-grazing angle, and both
performances can be enhanced markedly when the multipath effects are considered.

1. Introduction

MIMO radar has gotten considerable attention in a novel
class of radar system, where the term MIMO refers to
the use of multiple-transmit as well as multiple-receive
antennas. MIMO radar is categorized into two classes: the
statistical MIMO radar and the colocated MIMO radar,
depending on their antenna placement [1, 2]. The advantages
of MIMO radar with colocated antennas have been studied
extensively, which include improved detection performance,
higher resolution [3], higher sensitivity to or detection of
moving targets [4], and increased degrees of freedom for
transmission beamforming [5]. MIMO radar with widely
separated antennas can capture the spatial diversity of the
target’s radar cross section (RCS) [6]. This spatial diversity
provides the radar systems with the ability to support the
improvement of the target parameter estimation [7, 8], high
resolution target localization [9], and tracking performance
[10]. The hybrid MIMO radars can obtain superiority both
from colocated and separated MIMO radar. Thus, we focus
on the hybrid MIMO radar system in this paper.

Much published literature has concerned the issue of
MIMO radar detection. Guan and Huang [11] investigated
the detection problem of the MIMO radar system with
distributed apertures in Gaussian colored noise and partially

correlated observation channels. Tang et al. [12] introduced
relative entropy as a measure to radar detection theory and
analyzed the detection performance of MIMO radar and
phased array radar.The authors in [13] investigated detection
performance of MIMO radar for Rician target. In [14], the
optimal detector in the Neyman-Pearson sense was derived
for the statistical MIMO radar using orthogonal waveforms.
The authors in [15] applied the Swerling models to target
detection andderived the optimal test statistics for a statistical
MIMO radar using nonorthogonal signal. For low-grazing
angle detection of MIMO radar, the authors in [16] utilized
the time reversal technique in a multipath environment to
achieve high target detectability.

Low-grazing angle targets are difficult to detect, which
is one of the great threats propelling radar development.
Otherwise, detection of low-altitude targets is of great sig-
nificance to counter low-altitude air defense penetration.
However, up to now, this problem has not been effectively
resolved. Multipath effect plays an important role in the low-
altitude target detection, by which the target echo signal is
seriously polluted, even counteracted [17]. Two aspects can be
considered formultipath: suppressingmultipath and utilizing
it. However, in a statistical sense, detection may be enhanced
by the presence of multipath [18].
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In this paper, we consider low-grazing angle target
detection in compound-Gaussian clutter for MIMO radar.
The compound-Gaussian clutter represents the heavy-tailed
clutter statistics that are distinctive of several scenarios, for
example, high-resolution or low-grazing angle radars in the
presence of sea or foliage clutter [19, 20]. To the end, the
generalized likelihood ratio test (GLRT) and generalized
likelihood ratio test-linear quadratic (GLRT-LQ) are derived.

2. Multipath Geometry Model

A point source at a distance of 𝑅
𝑑
from the receiver is

considered. If the source is assumed to be a narrowband
signal, it can be represented by

𝑥 (𝑡) = 𝑎𝑒
𝑗(𝜔𝑡+𝜑)

, (1)

where 𝑎 is the amplitude, 𝜔 is the angular frequency, and 𝜑 is
the initial phase. In the presence of multipath, the received by
the receiver consists of two components, namely, the direct
and indirect signal. For a simple multipath model of a flat
earth, the direct signal is given by

𝑥
𝑑 (𝑡) = 𝑥 (𝑡) 𝑒

−𝑗𝜅𝑅
𝑑 , (2)

while indirect signal is

𝑥
𝑖 (𝑡) = 𝑥 (𝑡) 𝜌𝑒

𝑗𝜙
𝑒
−𝑗𝜅𝑅
𝑖 , (3)

where 𝜌𝑒𝑗𝜙 is the complex reflection coefficient, 𝜅 = 2𝜋/𝜆

is the wave number, 𝜆 is wavelength, target range 𝑅
𝑑
can be

obtained from the time delay, and 𝑅
𝑖
is the total length of the

indirect path. Thus, the total received signal is given by

𝑥
𝑟 (𝑡) = 𝑥𝑑 (𝑡) + 𝑥𝑖 (𝑡) . (4)

Tomodel the received signals more accurately, the curva-
ture of the signal path due to refraction in the troposphere,
in addition to the curvature of the earth itself, must be taken
into account. The multipath geometry for a curved earth is
given in Figure 1.

In (3), the term 𝜌𝑒
𝑗𝜙 is the complex reflection coefficient.

It generally consists of the Fresnel reflection coefficient
divided into the vertical polarization ΓV and horizontal polar-
ization Γ

ℎ
, the divergence factor 𝐷 due to a curved surface,

and the surface roughness factor; that is, 𝜌𝑒𝑗𝜙 = Γ
(V,ℎ)𝐷𝜌𝑠.

The vertical polarization and horizontal polarization Fresnel
reflection coefficients are, respectively, as presented in [17].
Consider the following:

ΓV ≃
𝜓√𝜀𝑐 − 1

𝜓√𝜀𝑐 + 1
, (5)

Γ
ℎ
≃
𝜓 − √𝜀𝑐

𝜓 + √𝜀𝑐
. (6)

For horizontal polarization, 𝜓 is the grazing angle and 𝜀
𝑐
is

the complex dielectric constant which is given by

𝜀
𝑐
=
𝜀

𝜀
0

− 𝑗60𝜆𝜎, (7)
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Figure 1: Multipath geometry for a curved earth.

where 𝜀/𝜀
0
is the relative dielectric constant of the reflecting

medium and 𝜎 is its conductivity.Thus, the Fresnel reflection
coefficient is determined by the grazing angle under a
deterministic condition.

When an electromagnetic wave is incident on a round
earth surface, the reflected wave diverges because of the
earth’s curvature. Due to divergence, the reflected energy
is defocused and radar power density is reduced. The
divergence factor can be derived solely from geometrical
considerations. A widely accepted approximation for the
divergence factor𝐷 is given by

𝐷 ≃ (1 +
2𝑟

1
𝑟
2

𝑅
𝑒
𝑟𝜓
)

−1/2

. (8)

The surface roughness factor 𝜌
𝑠
is given by

𝜌
𝑠
= 𝑒

−𝜇
,

𝜇 = {
2[2𝜋𝜂]

2
, 𝜂 ≤ 0.1 rad,

0.16𝜂2 + 7.42𝜂 + 0.0468, otherwise,

(9)

and 𝜂 is the surface roughness factor given by

𝜂 =
𝜎
𝐻
𝜓

𝜆
(10)

and 𝜎
𝐻
is the root-mean-square (RMS) surface height irreg-

ularity. For simplicity, the diffuse component is treated as the
incoherent white Gaussian noise.

3. MIMO Radar Multipath Signal

Consider a narrowband MIMO radar system with �̃� and
�̃� subarrays for transmitting and receiving, respectively. The
𝑚th transmit and 𝑛th receive subarrays have, respectively,
𝑀

𝑚
and 𝑁

𝑛
closely spaced antennas. 𝑚 = 1, . . . , �̃�, and

𝑛 = 1, . . . , �̃�, 𝑀 = 𝑀
1
+ 𝑀

2
+ ⋅ ⋅ ⋅ + 𝑀

�̃�
and 𝑁 = 𝑁

1
+

𝑁
2
+ ⋅ ⋅ ⋅ + 𝑁

�̃�
are the total numbers of transmit and receive

antennas, respectively. We assume that the subarrays are
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Figure 2: Multipath MIMO radar.

sufficiently separated, and, hence, for each target, its RCSs for
different transmit and receive subarray pairs are statistically
independent of each other.The receive signal of MIMO radar
can be expressed as [21]

Y = A (𝜙)B
𝜙
S (𝜙) + Z, (11)

where A(𝜙) = diag{a
1
(𝜙), a

2
(𝜙), . . . , a

�̃�
(𝜙)} is the steering

matrix of receive subarrays and component {a
𝑛
(𝜙)}

�̃�

𝑛=1
is the

steering vector of 𝑛th receive subarray at direction 𝜙. B
𝜙

denotes the RCSs for different transmit and receive subarray
pairs with component {𝛽

𝑚𝑛,𝜙
}
�̃�,�̃�

𝑚,𝑛=1,1
. S(𝜙) = V𝑇(𝜙)Φ denotes

the transmit signal matrix, where Φ = [Φ𝑇
1
,Φ𝑇

2
, . . . ,Φ𝑇

�̃�
]
𝑇 is

the transmit waveformmatrix, for each transmit subarray, the
component Φ�̃�×𝐿

𝑚
= [{𝑠

𝑚1
(𝑡)}

𝑇
, {𝑠

𝑚2
(𝑡)}

𝑇
, . . . , {𝑠

𝑚𝑀
𝑚

(𝑡)}
𝑇
]
𝑇

,
and {𝑠

𝑚𝑙
(𝑡)}

𝑀
𝑚

ℓ=1
, 𝑡 = 1, 2, . . . , 𝐿 is the probing waveform

of 𝑚 subarray; V(𝜙) = diag{k
1
(𝜙), k

2
(𝜙), . . . , k

�̃�
(𝜙)} is the

steering matrix of transmit subarray and the component
{k
𝑚
(𝜙)}

�̃�

𝑚=1
is the steering vector of𝑚th transmit subarray at

direction 𝜙. Y = [𝑌𝑇
1
, 𝑌𝑇

2
, . . . , 𝑌𝑇

�̃�
] is the received data matrix

and {𝑌
𝑛
}
�̃�

𝑛=1
denotes received signal of the 𝑛th subarray.

Z = [z
1
, z

2
, . . . , z

𝐿
] is the clutter matrix, each column

{z
ℓ
}
𝐿

ℓ=1
of which is modeled as spherically invariant random

vectors (SIRV), and 𝐿 is the number of data samples of the
transmitted waveforms. We assume clutter distributing as
the compound-Gaussian model, which represents the heavy-
tailed clutter statistics that are distinctive of several scenarios,
for example, high-resolution or low-grazing angle radars in
the presence of sea or foliage clutter [19, 20]. The compound-
Gaussian clutter 𝑧 = √𝑢𝜒, where 𝑢 and 𝜒 are the texture and
speckle components of the compound model, respectively.
The fast-changing 𝜒 is a realization of a stationary zero
mean complex Gaussian process, and the slow-changing 𝑢 is
modeled as a nonnegative real random process [22].

We rewrite the received signal (11) in vector form, given
by

ydd = T𝛽+n, (12)

where y𝑁𝐿×1 = Vec(Y), T𝑁𝐿×�̃��̃� = (S𝑇 ⊗ A), 𝛽 �̃��̃�×1 =

Vec(B
𝜙
), n𝑁𝐿×1 = Vec(Z), Vec(∙) is the vector operator,

symbol ⊗ denotes the Kronecker product. Then and n is the
compound Gaussian random vector with covariance matrix

C𝑁𝐿×𝑁𝐿

n = 𝐸 [nn†] = P ⊗ C,

P = diag {𝑠2
1
, 𝑠
2

2
, . . . , 𝑠

2

𝐿
} = diag {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝐿
} ,

(13)

where P is considered deterministic matrix with unknown
parameters {𝜆

ℓ
}
𝐿

ℓ=1
and † denotes conjugate transpose.

4. Multipath Signal Model of MIMO Radar

In the presence of multipath, consider atmosphere refraction
and the curved earth effect; the reflected signals from a
point target of MIMO radar include four parts: directly-
directly path, directly-reflected path, and reflected-directly
path, reflected-reflected path. Assume the point target is
located at 𝑋

0
= (𝑥

0
, 𝑦

0
) and reflected point in ground is

located at 𝑋
𝑖
= (𝑥

𝑖
, 𝑦

𝑖
), 𝑖 = 1, 2. Figure 2 illustrates a four-

way MIMO radar propagation model with multipath.
The directly-directly path echo signal is given by (12).The

directly-reflected path echo signal is

ydr = T (kdr ⊙ 𝛽) + n, (14)

where Kdr is �̃��̃� × 1 amplitude of reflect coefficient and
symbol ⊙ represents the Hadamard product.

The reflected-directly path echo signal is

yrd = T (krd ⊙ 𝛽) + n. (15)

The reflected-reflected path echo signal is

yrr = T (krr ⊙ 𝛽) + n. (16)

Thus, the received signal of MIMO radar with multipath
is

ymp = ydd + ydr + yrd + yrr

= T ((1 + kdr + krd + krr) ⊙ 𝛽) + n

= T (k ⊙ 𝛽) + n,

(17)

where k = 1+kdr+krd+krr and 1�̃��̃� is an �̃��̃�×1 one vector.
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5. MIMO Radar Detector in
Compound-Gaussian Clutter

5.1. GLRT Detector Design. The problem of detecting with
MIMO radar can be formulated in terms of the following
binary hypotheses test:

𝐻
0
: ymp = n,

𝐻
1
: ymp = T (k ⊙ 𝛽) + n. (18)

Standard GLRT is the following decision rule:

max
𝛽,𝜆
1
,...,𝜆
𝐿

𝑓 (Y | 𝐻
1
, 𝜆

1
, . . . , 𝜆

𝐿
,𝛽)

max
𝜆
1
,...,𝜆
𝐿

𝑓 (Y | 𝐻
0
, 𝜆

1
, . . . , 𝜆

𝐿
)

𝐻
1

>

<
𝐻
0

𝛾
𝐺
, (19)

where 𝑓(Y | 𝐻
1
, 𝜆

1
, . . . , 𝜆

𝐿
,𝛽) and 𝑓(Y | 𝐻

1
, 𝜆

1
, . . . , 𝜆

𝐿
)

denote the probability density functions (pdfs) of the data
under 𝐻

1
and 𝐻

0
, respectively. And the pdfs can be written,

respectively, as

𝑓 (Y | 𝐻
1
, 𝜆

1
, . . . , 𝜆

𝐿
,𝛽) =

1

𝜋𝑁𝐿 det (Cn)
exp {− tr (I)} ,

(20)

whereI = C−1

n (y − T(k ⊙ 𝛽)) × (y − T(K ⊙ 𝛽))†, and

𝑓 (Y | 𝐻
0
, 𝜆

1
, . . . , 𝜆

𝐿
) =

1

𝜋𝑁𝐿 det (Cn)
exp {− tr (C−1

n yy†)} ,

(21)

where det(∙) and tr denote the determinant and the trace of a
matrix, respectively.

The log-likelihood function of (21) is

ln𝑓 (Y | 𝐻
0
, 𝜆

1
, . . . , 𝜆

𝐿
) = − 𝑁𝐿 ln𝜋 − 𝐿 ln det (C)

− 𝑁

𝐿

∑
ℓ=1

ln 𝜆
ℓ

−

𝐿

∑
ℓ=1

y† (𝐸
ℓℓ
⊗ C−1) y
𝜆
ℓ

,

(22)

where 𝐸
ℓℓ

denotes the elementary matrix with component
𝑒(ℓ, ℓ) = 1 and zero for others. Then, it is easy to obtain the
Maximum Likelihood (ML) estimator of 𝜆 under𝐻

0
; that is

�̂�
ℓ
=
y† (𝐸

ℓℓ
⊗ C−1) y
𝑁

. (23)

According to [21], we rewrite the log-likelihood function
of (20) as

ln𝑓 (Y | 𝐻
1
, 𝜆

1
, . . . , 𝜆

𝐿
,𝛽)

= −𝑁𝐿 ln𝜋 − 𝐿 ln det (C) − 𝑁
𝐿

∑
ℓ=1

ln 𝜆
ℓ

−

𝐿

∑
ℓ=1

(y−T (k ⊙ 𝛽))† (𝐸
ℓℓ
⊗ C−1) (𝑦 − T (k ⊙ 𝛽))
𝜆
ℓ

.

(24)

Thus, the ML estimator of {𝜆
ℓ
}
𝐿

ℓ=1
is

�̂�
ℓ
=
(y−T (k ⊙ 𝛽))† (𝐸

ℓℓ
⊗ C−1) (y−T (k ⊙ 𝛽))
𝑁

. (25)

The estimator 𝛽 is [23]

�̂� = ((Tk)†C−1
n (Tk)) (Tk)†C−1

n y. (26)

Substituting the estimator {�̂�
ℓ
}
𝐿

ℓ=1
, �̂� under 𝐻

1
and 𝐻

0

into (19)–(21), the final GLRT becomes

𝐿

∏
ℓ=1

y† (𝐸
ℓℓ
⊗ C−1) y

(y−T (k ⊙ �̂�))
†

(𝐸
ℓℓ
⊗ C−1) (y−T (k ⊙ �̂�))

𝐻
1

>

<
𝐻
0

𝛾
𝐺
.

(27)

5.2. GLRT-LQ Detector Design. We rewrite the detection
problem as

𝐻
0
: 𝑦

𝑚,𝑛
= 𝑧

𝑚,𝑛
,

𝐻
1
: 𝑦

𝑚,𝑛
= 𝜌

𝑀
𝑚
𝑁
𝑛

𝛽 (𝑚, 𝑛) 𝑇𝑚,𝑛 + 𝑧𝑚,𝑛,
(28)

where 𝜌
𝑀
𝑚
𝑁
𝑛

= (1 + 𝜌
(dr)
𝑀
𝑚
𝑁
𝑛

+ 𝜌
(rd)
𝑀
𝑚
𝑁
𝑛

+ 𝜌
(rr)
𝑀
𝑚
𝑁
𝑛

); 𝜌(dr)
𝑀
𝑚
𝑁
𝑛

,
𝜌
(rd)
𝑀
𝑚
𝑁
𝑛

, 𝜌(rr)
𝑀
𝑚
𝑁
𝑛

are the amplitudes of reflect coefficient,
because the grazing angles are different; the reflect coefficient
𝜌
(dr)
𝑀
𝑚
𝑁
𝑛

̸=𝜌
(rd)
𝑀
𝑚
𝑁
𝑛

̸=𝜌
(rr)
𝑀
𝑚
𝑁
𝑛

.
As the transmit-receive subarrays are widely separated,

the clutter returns can be considered to be independent;
hence, the low-grazing angle likelihood ratio test (LRT)
detector for MIMO radar in the compound-Gaussian clutter
is given by

log
𝑝 (𝑦 | 𝐻

0
)

𝑝 (𝑦 | 𝐻
1
)

𝐻
1

>
𝐻
0

<

𝛾
𝐺−𝐿𝑄

. (29)

If we assume that covariance matrix C
𝑐
is known and

according to [24], 𝑝(𝑦 | 𝐻
0
) and 𝑝(𝑦 | 𝐻

1
) are replaced by

their Bayesian estimates, and, asymptotically, the generalized
likelihood ratio test-linear quadratic (GLRT-LQ), extended to
the MIMO case, is given by

Λ (𝑌)

=
𝑝 (𝑌 | 𝐻

1
)

𝑝 (𝑌 | 𝐻
0
)
=
∏

𝑚,𝑛
𝑝 (𝑦

𝑚,𝑛
| 𝐻

1
)

∏
𝑚,𝑛
𝑝 (𝑦

𝑚,𝑛
| 𝐻

0
)

= ∏
𝑚,𝑛

[
[

[

1 × (1 −


𝑇†
𝑚,𝑛

C−1

𝑚,𝑛
𝑦
𝑚,𝑛



2

(𝑇†
𝑚,𝑛

C−1

𝑚,𝑛
𝑇
𝑚,𝑛
) (𝑦†

𝑚,𝑛
𝑀−1

𝑚,𝑛
𝑦
𝑚,𝑛
)
)

−1

]
]

]

𝐻
1

>

<
𝐻
0

𝛾
𝐺−𝐿𝑄

,

(30)

where C
𝑚,𝑛

is the covariance matrix for the 𝑚 − 𝑛 transmit-
receive pair.
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According to [24], the probability of false alarm 𝑃fa is
given by

𝑃fa = 𝑃(
𝐼

∏
𝑖=1

Λ
𝑖
(𝑦

𝑖
) > 𝛾

𝐺−𝐿𝑄
| 𝐻

0
)

= 𝛾
−𝐿+1

𝐺−𝐿𝑄

𝐼−1

∑
𝑖=0

(𝑊 − 𝐼)
𝑖

𝑖!
(ln 𝛾

𝐺−𝐿𝑄
)
𝑖
,

(31)

where 𝐼 = �̃��̃� and𝑊 = 𝑀
𝑚
𝑁
𝑛
.

The probability of detection 𝑃
𝑑
is given by

𝑃
𝑑
= 𝑃(

𝐼

∏
𝑖=1

Λ
𝑖
(𝑦

𝑖
) > 𝛾

𝐺−𝐿𝑄
| 𝐻

0
) . (32)

For a given signal-to-clutter ratio (SCR), denoted by
SCR

𝑚,𝑛
, the amplitude of 𝛽(𝑚, 𝑛) is given by

𝛽 (𝑚, 𝑛)
 = √SCR𝑚,𝑛𝜎2, (33)

where 𝜎2 is the clutter power. In this paper, we consider that
|𝛽(𝑚, 𝑛)| is the same for all𝑚 and 𝑛.

6. Numerical Simulations

This section is devoted to the performance assessment of
the GLRT and GLRT-LQ detectors in low-grazing angle
for MIMO radar, when the texture component of clutter
distributed as gamma distribution, leading to the wellknown
𝐾 clutter model. Since the closed-form expressions of the
GLRT detector for the probability of the detection and of
alarm are not available, we resort to standard Monte Carlo.

In our first example, we, respectively, analyze the GlRT-
LQ detectors considering multipath effect and without con-
sidering multipath effect. Assume MIMO radar is with three
transmit antennas and two receive antennas, the heights of
transmit arrays are fixed at 100m, 200m, and 300m, the
height of receive arrays are fixed at 100m, and 200m, and the
target’s height is fixed at 200m.The (𝑝, 𝑞), the element of the
covariance matrix of the speckle component, is chosen as

C
𝑝,𝑞
= 𝜎

2
× 0.9

|𝑝−𝑞|
× exp [𝑗 (𝜋

2
) (𝑝 − 𝑞)] . (34)

Here, we select 𝜎2 = 10.17, 𝐿 = 16. We define the signal-to-
clutter pulse noise ratio (SCNR) by [25]

SCNR = 1

𝐿

∑
𝐿

ℓ=1
[T (k ⊙ 𝛽)]† [T (k ⊙ 𝛽)]
𝐸 {𝑢} tr {𝐶𝑛}

. (35)

Figure 3 depicts the detection performance using GLRT-
LQ detectors, as a function of the SCNR. The probability of
false alarm is fixed at 𝑃fa = 10−4. For the given SCNR, the
detection performance with multipath outperforms the one
without considering multipath effect.

Figure 4 depicts the detection performance using GLRT
detector, as a function of the SCNR. For the given SCNR, the
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Figure 3: GLRT-LQ detector performance in low-grazing angle.
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Figure 4: GLRT detector performance in low-grazing angle.

detection performance with multipath outperforms the one
without considering multipath effect.

Figure 5 depicts the performance comparison between
GLRT-LQ and GLRT detectors. From Figure 5, GLRT-LQ
detector outperforms theGLRTdetector in low-grazing angle
for MIMO radar, respectively, with and without considering
multipath effects.

Figures 6 and 7 depict the detection performance of
GLRT-LQ and GLRT detector with different antenna num-
bers, respectively, as a function of SCNR. The probability of
false alarm is set at 𝑃fa = 10−4; the transmit antenna and
receive antenna are set at 2, 4, and 6, respectively. Figures
6 and 7 show that GLRT-LQ or GLRT detector can obtain
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Figure 5: Comparison of GLRT-LQ detector and GLRT detector.
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Figure 6: Detection performance of GLRT-LQ detector with differ-
ent numbers.

better detection performance when there are more number
of transmit antennas and receive antennas.

Figures 8 and 9 depict the detection performance of
GLRT-LQ and GLRT detector with target height, respec-
tively; the heights of target are fixed at 200m, 400m, and
600m and the probabilities of false alarm are fixed at 𝑃fa =
10−4. Figures 8 and 9 show that the detection performance
varies with the height of target. We can see that the per-
formance increases with the height of target under the low-
grazing scene. However, the performance does not always
increase with the height of target, just as Figure 10. When the
height of target is 1600m, the condition of low-grazing angle
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Figure 7: Detection performance of GLRT detector with different
numbers.
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Figure 8: GLRT-LQ detector detection performance varies with the
height of target.

is not satisfied. If we still take it for low-grazing angle, the
detection performance will decrease.

7. Conclusion

In this paper, we have introduced the concept of reflection
coefficient under considering curved earth effect and intro-
duced general signal model for MIMO radar in low-grazing
angle, firstly.Then, we have derived the GLRT-LQ and GLRT
detectors, respectively. Furthermore, we have compared the
performance of GLRT-LQ and GLRT detector for MIMO
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Figure 10: GLRT-LQ detector detection performance varies with
the height of target.

radar between with multipath and without multipath effects.
The simulation results have shown the importance of mul-
tipath effects for target detection in low-grazing angle and
demonstrated that GLRT-LQdetector outperforms theGLRT
detector in low-grazing angle.
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SAR is a widely used technique to acquire images for geoscience and earth observation applications. Active phased array antennas
are commonly used in spaceborne SAR systems. For certain modes and applications, it is necessary to know the phase behavior of
these phased array antennas. For applications utilizing the different polarization channels for interferometry, the phase difference
between the polarizations needs to be calibrated very accurately as it is the main evaluation parameter. Also for single-pass
interferometric missions, the difference between the two antennas in terms of phase gradients is of major importance. This paper
demonstrates for the first time the usage of phase patterns in an operational interferometric SAR mission. It describes why these
phase patterns are required and how they are used to fulfill the different goals of the missions. Then, the mathematical model to
derive the phase of the antenna patterns is shown. Finally, the paper explains how the antenna patterns are calibrated in order to
minimize their residual errors and describes in detail the measurements performed for this calibration and verification.

1. Introduction

Spaceborne Synthetic Aperture Radar (SAR) missions essen-
tially contribute to geoscience for a better understanding of
our global environment. With its all day, all night, and all
weather imaging capabilities on the one hand and a high
resolution on the other, SAR is an ideal tool to monitor
these processes affecting our environment regularly and to
help understanding the effects behind. In addition, SAR
interferometry enables the generation of high resolution
digital elevation models (DEMs) adding to the information
content provided by nominal SAR images.

As SAR is an active system, it requires a transmit antenna
to send radar pulses. The echoes are received with the same
or a different antenna, stored and processed into SAR images.
The antenna of such a system is commonly realized as an
active phased array antenna. Like every antenna, it shows a
certain radiation characteristic, the so-called antenna pattern,
which is visible in the uncorrected SAR images. During
processing, the influence of the antenna pattern is removed.

For nominal single polarized SAR images, only the
influence of the amplitude of the pattern is relevant. This is

described in detail in [1, 2]. Since the SAR imaging principle
relies on coherently integrating the echoes from multiple
transmit pulses spread over time and space, precise phase
alignment between and within pulses is a critical component
of the system performance.

Interferometric imaging exploits the phase difference
between two slightly offset, highly colinear SAR images to
infer terrain height. INSAR applications require very precise
joint phase characterization of the transmit and reveice
antenna patterns as a function of look angle.

This paper is divided thematically as follows: Section 2
describes the applications utilizing the phase information.
Section 3 gives an overview about the challenges of phase
pattern determination and calibration and Section 4 derives
themathematical background of the phase patterns. Section 5
provides the calibration approach and the results for the
different phase pattern calibration aspects.

2. Phase Pattern Applications

Two main applications utilize the phase information of the
SAR phased array antenna.
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2.1. Polarimetric SAR Interferometry and the Dual Receive
Antenna Mode. Polarimetric SAR Interferometry (PolIn-
SAR) [3] is a widely used technique to determine soil and
moisture of areas on the Earth’s surface, tree heights, or
vegetation growth. Multiple images acquired with two or
even four polarizations during one acquisition are combined
to extract the required information content. For PolInSAR
the accurate and stable phase information between the
polarization channels is essential since it must be corrected
during processing to remove systematic perturbations that
degrade system performance.

For PolInSAR, the accuracy of the phase knowledge
needs to be better than 5 deg. This was the requirement for
the TerraSAR-X mission, which performs SAR imaging for
scientific and commercial customers and was launched in
2007. The same value was required for the L-band system
ALOS/PALSAR [4].TheALOS/PALSARmission showed that
it is possible to calibrate the phase balance down to an
imbalance of 0.61 deg with a standard deviation of 2.66 deg
[5].

One important parameter for PolInSAR is the cross-
coupling between different polarizations.This isolation of the
cross-talk for TerraSAR-Xwas alreadymeasured and is better
than 34 dB [6, 7].

A topic closely related to PolInSAR is the usage of the
Dual-Receive Antenna (DRA) capabilities of TerraSAR-X.
For the DRA mode, the receive antenna is split in two halves
in azimuth direction.The signal from both parts are received
by two separate receiver chians and stored separately. Hence,
two simultaneously acquired images with a small along-track
baseline in azimuth direction are obtained.These images can
be evaluated for applications like Along Track Interferometry
(ATI) for Ground Moving Target Indication (GMTI) [8].
In the same way as for PolInSAR, well calibrated phase
patterns are also important for the phase compensation in
DRA acquisitions [9].

2.2. Bistatic Imaging. Multisatellite bistatic formations are
currently becoming more and more popular in spaceborne
SAR imaging. TanDEM-X, the first bistatic SAR formation,
has been in orbit since 2010. For bistatic systems it is quite
important to know the phase gradient for each beam in
transmit and receive direction and especially individually for
both satellites. Therewith, the monostatic and bistatic phase
patterns of the satellites are derived in order to coherently
combine the images for interferometric applications [10]. For
bistatic missions using interferometry to determine heights
on the Earth, the influence of the phase from the two
receiving systems needs to be known and compensated for.

Themain goal of the TanDEM-Xmission is the derivation
of a global Digital ElevationModel (DEM) [11].The accuracy
requirement of thismission in terms of phase accuracy can be
derived from the overall mission requirement for the relative
height error. The 90% relative height error of the DEM in a
1∘× 1∘ cell shall not exceed 2m. The two satellites in space
build a spaceborne interferometer with a height of ambiguity
down to 30m, where the height of ambiguity corresponds to
one phase cycle of 2 pi or 360∘. Hence, to achieve a relative
height error of 2m [11], the phase error of the overall system

may not exceed 12 deg. Since receiver noise over areas with
low backscatter return eats up the greatest part of this error
budget, errors associated with the antenna pattern should be
lower than 3 deg.

3. Challenges

Theusefulness of an antennamodel for nominal SAR imaging
is given in detail in [1]. Here, only the main considerations
important to the antenna phase patterns are described.

3.1. Great Number of Beams. Actual SAR missions host
very flexible instruments. With different modes, hundreds of
antenna beams can be used to acquire images for dedicated
applications and purposes. Any of these beams can be used
for polarimetry and interferometry. New imaging modes and
antenna beams can even be added after the launch. These
new beams were not measured on ground prior to launch.
An accurate antenna model is essential to mathematically
determine the antenna gain and phase patterns for each beam
and thereby ensure in situ system performance.

3.2. Accuracy Requirement. The accuracy requirements of
actual missions and their tight schedules make the measure-
ment of all antenna patterns in orbit infeasible. Hence, the
antenna model for TerraSAR-X was validated by on-ground
measurements leaving only a few beams to be measured
on orbit. A great advantage of the antenna model is that
it can be adjusted over mission life time to reflect in-situ
performance. Establishing different correction factors during
commissioning phase and operational phase enables the
adjustment and extension of the model to further improve
system performance.

3.3. Need for Antenna Phase Patterns. A common way
to account for the phase behaviour of an antenna is the
definition and determination of a “phase center,” that is, a
geometrical point from which the antenna pattern appears to
emanate.However, this phase center is only easily determined
for a horn antenna. For a phased array antenna, individual
phase and amplitude taper values can be applied to each
subelement. For an untapered beam, the resulting phase
variation is still very smooth over the main lobe of a beam
shown by the red graph in Figure 1. It could still be possible,
with a certain inaccuracy, to describe the phase of the entire
array with a single phase center.

In the Shuttle Radar Topography Mission (SRTM) mis-
sion, for example, only beams steered in phase but not tapered
in amplitude were used to realize the ScanSAR acquisitions
[12] in C-band and the single swath acquisitions in X-band.
The influence of the phase was analysed [13]. It was found that
constant phase offsets were sufficient to describe the phase
behaviour and no range angle dependent pattern was applied.

The antenna beams of TerraSAR-X are optimized to
provide SAR images with high radiometric accuracy. For
this purpose, the antenna pattern is steered and formed
using individual phase and amplitude tapering coefficient.
Figure 2 shows these excitation coefficients of an exemplary
Stripmap beam. In the transmit direction no amplitude taper



International Journal of Antennas and Propagation 3

−8.5 −8 −7.5 −7 −6.5 −6

Elevation look angle (deg)

−180

−135

−90

−45

Ph
as

e p
at

te
rn

 (d
eg

)

Strip 006
StripUnoptimised 006

Phase patterns
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beam.

is applied due to performance considerations. In receive up
to −13 dB of the amplitude taper is used to attenuate the
signal and thereby to optimize the performance; this is clearly
visible in Figure 2. This amplitude taper for Stripmap beams
results in a large phase variation over the beam width. This
is again shown in Figure 1 where the phase gradient of the
tapered beam is shown in green. Depending on the beam and
the corresponding excitation coefficients, phase gradients of
more than 180 deg can occur.

3.4. Relative and Absolute Phase Derivation. In practice, only
a relative phase calibration Δ𝜑 = 𝜑

2
− 𝜑
1
is possible. For

an absolute measurement of the phase, the orbit would
have to be known within a fraction of the wave length.
For an X-band system with a wave length of 3.1 cm, using
GPS measurements, the orbital position of the satellite is
determined on the order of 5 to 10 cm, which is at least an
order of magnitude too coarse. Additionally, the influence of
the atmosphere makes it very difficult to determine absolute
phase.

For PolInSAR, however, the images for each polarization
are taken quasi at the same time.The polarization is switched
from pulse to pulse and the orbit trajectory is very stable over
the SAR integration time. Hence, the influence of the orbit
on the phase difference is very nearly zero and can be safely
ignored.

For interferometric imaging on the other hand, the
absolute baseline between the two antenna centers is critically
important. Because of the orbital stability, this relative vector
can be determined on the order of 1 mm (1 sigma) with space-
based systems using double differential GPS measurements
[14, 15]. Therefore, it is accurate enough for absolute height
determination, provided that at least one ground control
point is available, that is, a pixel or region in the image, with
a precise knowledge of its absolute height and geolocation is
available to calibrate the absolute height.
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Figure 2: Excitation coefficients of a tapered stripMap-Beam.

4. Antenna Pattern Modeling

4.1. Antenna Model Equation. The mathematics behind the
antennamodel was developed in the context of the TerraSAR-
X mission in cooperation between EADS Astrium GmbH,
Friedrichshafen, and the DLR. It was extended by DLR
to apply the phase pattern concept for the TanDEM-X
mission.

The antenna model itself mathematically calculates radi-
ation patterns by the superposition of four inputs:

(i) radiation patterns of the single-antenna elements
mounted in the final array configuration (to cover
mutual coupling effects) measured on ground (pre-
launch), the so-called embedded subarray patterns,

(ii) beam excitation coefficients (amplitude and phase) of
each individual transmit/receive module (TRM),

(iii) exact geometrical dimensions of the array antenna
including the vertical distances between the subar-
rays,

(iv) the current state of the SAR instrument including
drifting and/or failed TRMs.
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For active phased array antennas, the radiated pattern
𝐹beam is calculated by [16, 17]

⇀
𝐹beam (𝜀, 𝛼) =

𝑀−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

(
⇀
𝐶SA,𝑚𝑛 (𝜀, 𝛼) ⋅ 𝑎𝑚𝑛 ⋅ 𝐸SA,𝑚𝑛

⋅ 𝑒
𝑗𝑘 sin 𝜀 cos𝛼(−((𝑁−1)/2)+𝑛)Δ𝑦

⋅𝑒
𝑗𝑘 cos 𝜀 sin𝛼(−((𝑀−1)/2)+𝑚)Δ𝑥

) ,

(1)

where 𝜀 and 𝛼 are the desired elevation and azimuth angle,
𝑁 and 𝑀 are the amount of rows and panels of the subar-
rays, and Δ𝑥 (panels) and Δ𝑦 (rows) are the intersubarray
distances. The wave number 𝑘 includes the centre frequency
9.65GHz of the system by the relation of 𝑘 = 2𝜋/𝜆. The
embedded subarray patterns 𝐶SA, the excitation coefficients
𝑎
𝑚𝑛
, and the error matrix 𝐸SA are described in the next

section.

4.2. Antenna Model Inputs. The embedded subarray patterns
𝐶SA comprise the physically measured complex radiation
characteristics of the individual subarray elements. The
embedded pattern of one subarray mounted within the
array antenna describes the radiation characteristic of this
subarray. In this way, mutual coupling effects and phase
distortions are incorporated in the measurements. For the
nominal acquisition, mismatch and gain are smooth over the
bandwidth; therefore, only the embedded patterns at centre
frequency need to be incorporated in the antenna model.

As input for the antenna model, all embedded subarrays
of one panel, which is 32 subarrays in a column, were
measured by Astrium.The patterns of the embedded patterns
at different panels but situated at the same row are very similar
to each other, independent from the position of the panel.
The comparison of the measured patterns of whole panels
showed that it is possible to use only the embedded patterns
of one panel and substitute the others using their measured
amplitude and phase offsets. These embedded patterns must
be known with high accuracy, as they are one main input of
the model. The measurements must be more accurate than
the required setting accuracy of the TRMs, which is 0.5 dB
in amplitude and 5 deg of phase; this corresponds to about
0.4mm of baseline separation.

The commanded complex excitation coefficients are given
by 𝑎
𝑚𝑛
. These coefficients are provided in terms of amplitude

and phase values row- and column-wise. For each beam
commanded, one set of values is put in a common table. This
table is available on board of the satellite to be applied to form
the beam for each acquisition. It can be updated if necessary,
for example, in case of contingencies.

Finally, the error matrix 𝐸SA describes drifted or failed
antenna elements. These are determined via a TRM char-
acterization method [18]. With the method, the actual state
of the TRMs is determined evaluating dedicated orthogonal
code sequences routed through the TRMs sequentially.

To obtain the complete two-way antenna patterns, the
equation is evaluated for transmit and receive separately.
Both, the excitation laws and the errormatrix are different for
transmit and receive. In case of the excitation coefficients, the

discrimination between transmit and receive allows greater
flexibility for beam steering, as from signal-to-noise ratio
point of view, the use of an amplitude taper is only reasonable
in the receive path. Since the radar signals travel through the
TRMs on different paths, for transmit via the high power
amplifier and in receive through the low noise amplifier, the
error matrix coefficients for the two paths will be different.

The accuracy of the antenna model depends strongly
on the measurement accuracy of the embedded subarray
patterns and on the stability of the instrument.

4.3. Phase PatternDerivation, Calibration, andCompensation.
To derive and generate the phase pattern 𝜑beam in elevation
direction, (1) is evaluated:

𝜑beam (𝜀) = arctan (
⇀
𝐹beam (𝜀)) . (2)

For nominal acquisitions, the antenna is constantly
steered to azimuth boresight. Hence, the phase variation in
azimuth direction remains stationary. During phase calibra-
tion of the polarization, a slight polynomial dependency was
recognized from the measurements. This dependency can be
compensated by the relation

𝜑polcor (𝜖) = (𝜑
2

𝑐1
𝜀
2
+ 𝜑
𝑐3
𝜀 + 𝜑
𝑐3
) + 𝜑beam (𝜀) (3)

with 𝜑
𝑐1
, 𝜑
𝑐2
, and 𝜑

𝑐3
being determined by the polarimetric

calibration described in Section 5.1.
Especially for bistatic acquisitions an adaption of the

different phase origins of both satellites 𝜑sat has to be
established by a phase correction:

𝜑cor (𝜖) = 𝜑sat + 𝜑polcor (𝜀) (4)

which is determined by the interferometric calibration
described in Section 5.3.

The resulting phase pattern is now unwrapped at phase
wraps in the pattern. These phase wraps occur at nulls in the
amplitude pattern, for example, between the main lobe and
the first side lobe, where the phase jumps by 180 deg:

𝜑unwrap = unwrap (𝜑cor) . (5)

The corrected phase pattern is then stored and provided
to the SAR processor, where the phase dependency of the
image is compensated [19, 20]. The correction is applied
on the single look slant range complex SAR (SSC) data.
A reference DEM is used to determine the local incidence
angles.These are then calculated back into antenna geometry,
to correctly apply the phase pattern.

5. Calibration and Verification Results

5.1. Polarization Dependency

5.1.1. Purpose. For PolInSAR, the difference between the two
polarizations is utilized. As the complete antenna pattern is
formed by the superposition of embedded subarray patterns
of the individual elements, these embedded patterns are the
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main influence for the polarization dependency. As depicted
in Figure 3 the patterns show an elevation angle dependent
phase gradient, which differs between HH and VV. This
dependency makes it necessary to not only correct one
offset between the polarizations but also provide a correction
pattern covering each whole swath.

5.1.2. Approach. The impact of the phase deviations on the
whole antenna was measured by an in-flight measurement
campaign. Corner reflectors deployed in a calibration field
around Oberpfaffenhofen were used as targets for several
dual-pol acquisitions with different incidence angles from
near to far range. In dual-pol acquisitions the polarization
is switched from pulse to pulse either in transmit or receive
direction or a combination of both. Hence, they provide
the advantage that both polarizations are acquired from
almost the same time and from the same orbital position and
penetrating the same atmosphere under the same weather
conditions. By comparing both resulting images, the phase
difference can be determined very accurately.

5.1.3. Results. Initially, a variation of about 10 deg was
observed over the elevation angle range. From these initial
measurements, the polynomial correction described by (3)
was derived. This correction is applied in the antenna model
to adjust the embedded patterns.

The final results can be seen in Figure 4(a). The deviation
between HH and VV polarization can be calculated by the
antenna model very precisely. Figure 4(b) shows the devia-
tion between HH and VV compared between the antenna
model and the physical measurements. It reveals a standard
deviation of only 1.69 deg (1 sigma).

By design, the polarization switch of the radar system is
situated between the radiator and the TRM. Hence, all active
components are the same for both polarizations. Only the
passive radiators are different for both polarizations. How-
ever, they are recirocal. This reciprocity could be confirmed
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Figure 4: (a) Verification of the polarization dependent phase
deviation: Measurements versus Antenna Model, (b) Deviation
between HH-VV of the model and the measurements.

by evaluating dedicatedDual-Pol data takes with polarization
combinations like HH/HV and VV/HV. Hence, the variation
of all combinations including HV or VH polarized phase is
equal or lower than the one for HH/VV.

5.2. Phase Pattern Shape

5.2.1. Purpose. The calibration and verification of the phase
pattern shape is required to ensure that differently excited
beams do not introduce an additional error into the system.

In TanDEM-X acquisitions, beams with and without
amplitude taper are mixed for the acquisition of the DEM. In
TanDEM-X, the Earth will be covered twice. The beams used
for the second acquisition are shifted by half the beam width
compared to the first acquisition. By this, areas with lower
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antenna gain at the edges of themain lobe in one coverage are
combined with a high antenna gain in the center of the main
lobe from the other coverage. To keep the gain in the main
lobe as high as possible, the beams are not amplitude tapered
to flatten them. However, for difficult terrain like deserts,
also optimized beams can be used to acquire additional
data. These, in contrast, are the nominal Stripmap beams.
Amplitude tapering is used to flatten and broaden the near
beams to obtain sufficient performance over the whole swath.
The beam to compare with is tapered in amplitude and shows
a different taper in phase over the 32 subarrays in elevation
on the TerraSAR-X satellite (Figure 1). Especially due to the
taper in amplitude, the phase shows a steep gradient of about
50 deg per degree look angle, while the untapered beam is
almost flat (compare Figure 1). An error in the modeling of
this pattern would lead to phase trends in the interferograms
and the DEMs.

By design, the antennas of both satellite systems are very
similar. Hence, the phase behaviour is also very similar.
However, if several modules of one antenna fail or drift, the
phase behaviour would change severely. For this purpose,
the quantification of the joint phase patterns incorporating
both satellites is critically important for the system to meet
its mapping specifications.

5.2.2. Approach. To evaluate the accuracy of the phase
pattern shape, two DEMs acquired with different beams
formed with two difference excitation coefficient sets can
be compared. For this purpose, a beam covering the same
coverage area but with different excitation coefficients and
with no amplitude taper was designed and uploaded to the
instrument

Two acquisitions are taken from the same orbital location,
imaging the same test area on Earth, but with a lag of one
repeat cycle (11 days). To study the accuracy of the antenna
model, two beams illuminating the same swath but with dif-
ferent excitation coefficients are used.The different excitation
coefficients lead to completely different shapes of the antenna
pattern. The first beam is only steered by phase coefficients
which lead to an antenna pattern with typical shape. The
second beam is optimized to form a very flat pattern by
using both phase and amplitude taper. By the use of the
amplitude taper, also the embedded patterns of different rows
are weighted differently. Hence, the comparison would reveal
amistaken usage of these inputs for phase pattern generation.
The generated DEMs (see Figure 5 for an example of the
test site near Quandong Airport, Australia) are annotated
in lat/lon coordinates, which makes it easy to build the
difference image of them. The difference image can then be
integrated in flight direction to generate a DEM difference
graph which is shown in Figure 6.

5.2.3. Results. To derive the corresponding phase error asso-
ciated with the DEM difference in phase units, the height of
ambiguity of the two acquisitionsmust be taken into account.
For the first acquisitions this was ℎamb = 128m (untapered
beam), and ℎamb = 131m (tapered beam) for the second
acquisition. With a mean ℎamb of 129.5m the peak-to-peak
height error Δℎ transforms by
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Figure 5: DEM of the Quandong test site.
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𝜑err =
Δℎ

ℎamb
2𝜋 (6)

into a peak-to-peak phase error of 𝜑err = 0.85 deg and a
standard deviation of only 0.39 deg. Hence, the pattern shape
has been accurately calculated by the antenna model.

5.3. Beam to Beam Dependency

5.3.1. Purpose. Proper phase compensation of the beam to
beam dependency is important to remove systematic tilts in
the DEM in range direction. As nine beams are required
to cover the whole ground range of 240 km of one orbit at
the equator, no shift between the beams or an overall trend
should be present.

5.3.2. Approach. To verify the influence of the phase patterns
from beam to beam, all individual DEMs acquired so far can
be evaluated. For each DEM, the deviation from a reference
DEM is calculated. In our case this reference DEM is an
SRTM DEM globally improved using the height information
of ICES at elevation datasets [21]. It is obvious that the
accuracy of SRTM is lower than what would be expected
for this verification. However, the SRTM swaths with 240 km
ground range are much larger than TanDEM-X swaths with
30 km. The SRTM DEM is combined from ascending and
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descending acquisitions. Due to the different inclinations
of the Space Shuttle (SRTM) and TerraSAR-X/TanDEM-
X, the swaths of both overlap randomly. In this way, a
trend in the SRTM DEM is not systematically traced to
the difference between SRTM and TanDEM-X average DEM
heights. It has to be mentioned that the DEM scenes are
not DEM-calibrated at this point, where DEM calibration
means the compensation of range and azimuth trends for
each individual scene separately with respect to the others.

5.3.3. Results. More than 50000 independently processed
DEM scenes of the global DEM acquisition, each covering
an area of 30 km × 50 km and about 10 million pixel, were
evaluated using their mean height difference to the improved
SRTM. Only the nine nominal TanDEM-X beams were
evaluated covering an incidence angle range from 30 deg to
48.5 deg, which is the nominal incidence angle range for
TanDEM-X DEM acquisitions.

To relate both satellites against each other, an interfero-
metric calibration [22]was performedbefore determining the
phase offsets between both satellites to be considered in (5).
Here, one global phase offset per satellite that is valid for all
acquisitions was derived and applied to calibrate the system
which is explained in [20].The intension of the present paper
for this topic was to ensure that there is no residual trend over
the beams caused by the antenna model.

Figure 6 shows themean heights of all scenes plotted over
the nine beams. The mean height of ambiguity for the scenes
is about 60m. With this, the phase accuracy calculated from
the maximal deviation from Figure 7 of a height error of
±0.24m using (6) is ±1.5 deg. No further systematic trend
is evident in the residuals, and hence the interferometric
calibration has reached its limits.

6. Conclusion

The knowledge of the phase gradient over the antenna look
angle is of fundamental importance for certain applications
in SAR image acquisition. For high performance SAR instru-
ments with a multitude of beams and modes, modeling
the antenna phase gradient offers significant performance
advantages over purely instrumentally derived patterns.

The paper shows the generation and application of phase
patterns for PolInSAR, for the Dual-Receive Antenna Mode
and for a fully operational bistatic SAR system in space.
The phase patterns are generated by an antenna model and
calibrated in orbit with very high accuracy.

Considering the stringent requirement for phase pattern
accuracy in high performance SAR systems, different appli-
cations have to be distinguished. Comparing the different
polarizations over the whole look angle range, the phase
difference between the phase patterns of each polarization
channel is modeled with an accuracy better than 1.69 deg
(1 sigma). An accuracy of 0.85 deg could be achieved compar-
ing different amplitude taper and excitation coefficients of the
antenna look angle used for the phase patterns. The average
dependency from beam to beam is also better than ±1.5 deg
comparing the nominal nine TanDEM-X beams.
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A method of direction of arrival (DOA) and direction of departure (DOD) angle estimation based on polynomial rooting for
bistatic multiple-input multiple-output (MIMO) radar with uniform circular array (UCA) configuration is proposed in this paper.
The steering vector of the UCA is firstly transformed into a steering vector with a Vandermonde structure by using the Jacobi-
Anger expansion. Then the null-spectrum function of the MIMO radar can be written as an expression in which the transmit and
receive steering vectors are decoupled. Finally, a two-step polynomial rooting is used to estimate DOA and DOD of targets instead
of two-dimensional multiple signal classification (MUSIC) search method for bistatic UCA MIMO radar. The angle estimation
performance of the proposed method is similar to that of the MUSIC spectral search method, but the computation burden of the
proposed polynomial rooting algorithm is much lower than that of the conventional MUSIC method.The simulation results of the
proposed algorithm are presented and the performances are investigated and analyzed.

1. Introduction

Research on multiple-input multiple-output (MIMO) radar
has been growing as evidenced by an increasing body of
literature [1–10]. MIMO radar is characterized by using
multiple antennas to simultaneously transmit orthogonal
waveforms and multiple antennas to receive the reflected
signals. MIMO radar has been shown to provide a number of
potential benefits as compared with conventional radar, such
as enhancing angle resolution, improving parameter identi-
fiability, and increasing flexibility for transmit beam pattern
design. In particular, the problem of multitarget localization
in bistatic MIMO radar has received great research interests.
Many methods in bistatic MIMO radar are proposed to
identify and locate multiple targets [3–9] in which both
the transmit array and the receive array are uniform linear
arrays (ULAs). In order to avoid angle search, estimation
of signal parameters via rotational invariance techniques
(ESPRIT) algorithm is applied to bistatic MIMO radar [3–
7] by exploiting the invariance property of the transmit
and receive arrays. In [8, 9], several algorithms based on
polynomial root finding procedure are proposed to estimate
DOA and DOD of targets.

Unfortunately, both the ESPRIT and the polynomial
rooting method are designed for ULAs. The steering vector
of the ULA is dependent on 2𝜋𝑑 sin 𝜃/𝜆 (where 𝑑 is the
interelement spacing, 𝜃 is DOA of the source, and 𝜆 is the
signal wavelength), and, hence, DOA estimation with ULA
becomes ambiguous [10] beyond the range of 180∘ (from
−90∘ to +90∘). The following properties of uniform circular
arrays (UCAs) [11–14] make them attractive in the context of
DOAestimation.UCAs can provide 360∘ azimuthal coverage.
In addition, direction patterns synthesized with UCAs can
be electronically rotated in the plane of the array without
significant change of beam shape. ULAs, in contrast, provide
only 180∘ coverage, and beams formed with ULAs broaden
as the array is steered away from boresight. Especially, UCAs
configuration is very suitable for the MIMO radar, which
often transmits orthogonal waveforms in each of the transmit
antennas in order to detect the whole 360∘ in the azimuth
angle simultaneously.

In order to come up with computationally efficient
high-resolution DOA estimators for UCAs, the so-called
beamspace transform [11–13] may be applied. It rebuilds
desiredVandermonde structure for the steering vectors. Con-
sequently, methods like root-MUSIC [15–17] and ESPRIT
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may be applied to find DOAs. In [11], Tewfik and Hong
have shown that it is possible to extend the Root-MUSIC
to UCA using the phase mode excitation concept. In [12],
Mathews and Zoltowski proposed real beamspace MUSIC
to UCA that yields reduced computational complexity and
better resolution. The beamspace transform works properly
only under certain conditions on the array configuration that
may be difficult to satisfy in some applications [13]. These
algorithms require a sufficiently large number of antenna
elements to avoid spatial aliasing and mapping errors that
may cause error floor and excess variance [13]. It also shows
that there is a significant difference in the performance of
the UCA root-MUSIC technique depending on whether an
even or odd number of elements is used [14]. Manifold
separation technique [18, 19] shows an alternative method to
map the array steering vectors to a Vandermonde structured
virtual array with a significantly smaller fitting error than for
beamspace transform.

In this paper, direction finding for bistatic MIMO radar
with UCA configuration employing polynomial rooting is
presented. Transmit and receive steering vectors are firstly
decomposed using the Jacobi-Anger expansion [20]. Then
two-dimensional direction finding in bistatic MIMO radar is
transformed into double one-dimensional direction finding
procedure [9]. At last, an algorithm based on polynomial
root finding to estimate DOA and DOD of targets in bistatic
MIMO radar with UCA configure is proposed.The computa-
tional complexity of the proposed method is low without the
requirement of costly space searching procedure.

The remainder of this paper is organized as follows. In
Section 2, we describe our bistatic UCAMIMO radar scheme
and the associated data model. In Section 3, the proposed
bistatic UCA MIMO root finding algorithm is described.
Moreover, the simulation results of the proposed algorithm
are presented and the performances are investigated in
Section 4. Finally, Section 5 concludes the paper.

2. Signal Model

Consider a narrowband bistatic MIMO radar system with
𝑀
𝑡
-element transmit antennas and 𝑀

𝑟
-element receive

antennas, both of which are UCAs with radii 𝑅
𝑡
and 𝑅

𝑟
,

respectively. At the transmit site, 𝑀
𝑡
different narrow-band

pulse waveforms are emitted simultaneously, which have
identical bandwidth and center frequency, but are temporally
orthogonal. In each receiver, the echoes are processed for all
of the transmitted pulse waveforms. It is assumed that the
Doppler frequencies have almost no effect on the orthog-
onality of the signals. Therefore, the variety of the phase
within pulses caused by Doppler frequency can be ignored.
There are 𝑃 uncorrelated targets located at the same range
cell. The directions of the 𝑝th target with respect to the
normal direction of transmit array and receive array denoted
by transmit angle 𝜃

𝑝
and receive angle 𝜑

𝑝
, respectively. The

output of the entire matched filters at the receivers can be
expressed as [10]

X (𝑛) = AS (𝑛) + N (𝑛) , (1)

where A = [a(𝜃
1
, 𝜑
1
), . . . , a(𝜃

𝑝
, 𝜑
𝑝
), . . . , a(𝜃

𝑃
, 𝜑
𝑃
)] is a matrix

composed of the 𝑃 steering vectors.
Cosider that

a (𝜃
𝑝
, 𝜑
𝑝
) = a
𝑡
(𝜃
𝑝
) ⊗ a
𝑟
(𝜑
𝑝
) (2)

is the Kronecker product of the transmit and the receive
steering vectors for the𝑝th target. S(𝑛) = [𝑠

1
(𝑛), . . . , 𝑠

𝑝
(𝑛), . . .,

𝑠
𝑃
(𝑛)]
𝑇, 𝑠
𝑝
(𝑛) = 𝛾

𝑝
𝑒𝑗2𝜋𝑓𝑑𝑝𝑛/𝑓𝑠 with 𝛾

𝑝
and 𝑓

𝑑𝑝
being the re-

flection coefficient depending on the target radar cross-
section (RCS) and the Doppler frequency of the 𝑝th target,
respectively. 𝑓

𝑠
is the pulse repeat frequency, [⋅]

𝑇 denotes
the transpose, N(𝑛) denotes a noise vector assumed to be
independent and identically distributed, zero-mean complex
Gaussian distribution and spatially white with covariance
matrix 𝜎2I, where 𝜎2 is noise variance and I is the identity
matrix.

The array covariance matrix can be written as

R
𝑥
= 𝐸 {X (𝑛)X𝐻 (𝑛)} , (3)

where [⋅]𝐻 denotes Hermitian transpose and 𝐸{ } denotes the
statistical expectation.

The signals and the noises are assumed to be stationary,
uncorrelated random processes; substituting X(𝑛) from (1)
into (3), we have

R
𝑥
= A𝐸 {S (𝑛) S𝐻 (𝑛)}A𝐻 + 𝐸 {N (𝑛)N𝐻 (𝑛)}

= AR
𝑠
A𝐻 + 𝜎

2I,
(4)

whereR
𝑠
= 𝐸{S(𝑛)S𝐻(𝑛)} is the source covariancematrix and

𝜎2 is the noise power at array sensors.
In practical situations, the exact array covariance matrix

R
𝑥
is unavailable and its sample estimate

R̂
𝑥
=

1

𝐿

𝐿

∑
𝑙=1

X (𝑙)X𝐻 (𝑙) (5)

is used, where 𝐿 is the number of snapshots.
The eigenvalue decomposition of R̂

𝑥
yields [10]

R̂
𝑥
=

𝑀
𝑡
𝑀
𝑟

∑
𝑚=1

𝜆
𝑚
e
𝑚
e𝐻
𝑚
, (6)

where 𝜆
1

≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑃+1

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑀
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𝑀
𝑟

are
the eigenvalues of R̂

𝑥
and e

𝑚
(𝑚 = 1 ⋅ ⋅ ⋅𝑀

𝑡
𝑀
𝑟
) are the

corresponding eigenvectors. The matrices

E
𝑠
= [e
1
, . . . , e

𝑃
] ,

E
𝑛
= [e
𝑃+1

, . . . , e
𝑀
𝑡
𝑀
𝑟

]
(7)

are composed of the signal and the noise subspace eigenvec-
tors of the array covariance matrix, respectively.

The MUSIC null-spectrum function is defined as [18]

𝑓 (𝜃, 𝜑) =

E𝐻
𝑛
a (𝜃, 𝜑)

2

= a𝐻 (𝜃, 𝜑)E
𝑛
E𝐻
𝑛
a (𝜃, 𝜑) , (8)

where ‖ ⋅ ‖ denotes the vector 2-norm. The spectral MUSIC
technique estimates the signal DOAs from theminima of this
function by means of a two-dimensional search over 𝜃 and 𝜑.
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3. Direction Finding for Bistatic MIMO Radar
with UCA Configuration

The transmit and receive steering vectors of the UCAs can be
denoted as [11–14]

a
𝑡 (𝜃) = [𝑒

𝑗𝑘𝑅
𝑡
cos(𝜃−𝛽

1
)
⋅ ⋅ ⋅ 𝑒
𝑗𝑘𝑅
𝑡
cos(𝜃−𝛽

𝑚
)
⋅ ⋅ ⋅ 𝑒
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𝑡
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𝑀
𝑡
)
]
𝑇

,

(9a)

a
𝑟
(𝜑) = [𝑒

𝑗𝑘𝑅
𝑟
cos(𝜑−𝛼

1
)
⋅ ⋅ ⋅ 𝑒
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𝑟
cos(𝜑−𝛼

𝑚
)
⋅ ⋅ ⋅ 𝑒
𝑗𝑘𝑅
𝑟
cos(𝜑−𝛼

𝑀𝑟
)
]
𝑇

,

(9b)

where 𝑘 = 2𝜋/𝜆, 𝜆 is wavelength and 𝛽
𝑚

= 2𝑚𝜋/𝑀
𝑡
and

𝛼
𝑚

= 2𝑚𝜋/𝑀
𝑟
are the azimuth angles of the 𝑚th element of

transmit and receive arrays, respectively.
By using the Jacobi-Anger expansion, we can mathemat-

ically express the𝑚th element of the transmit steering vector
as [10, 20]

𝑒
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where

[F
𝑡
]
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𝑛
(𝑘𝑅
𝑡
) 𝑒
−𝑗𝑛𝛽
𝑚 (11)

is the (𝑚, 𝑛)th element of the sampling matrix F
𝑡
and 𝐽
𝑛
(⋅) is

the Bessel function of the first kind of order 𝑛. Consequently,
we can express the transmit steering vector by

a
𝑡 (𝜃) = F

𝑡
d
𝑡 (𝜃) . (12)

The 𝑛th component of d
𝑡
(𝜃) is

[d
𝑡 (𝜃)]𝑛 = 𝑒

𝑗𝑛𝜃
. (13)

Truncating F
𝑡
and d

𝑡
(𝜃) from −(𝑁

𝑡
− 1)/2 to (𝑁

𝑡
− 1)/2

(suppose 𝑁
𝑡
is odd), the transmit steering vector can be

approximated as

a
𝑡 (𝜃) ≈ F̂

𝑡
d̂
𝑡 (𝜃) , (14)

where F̂
𝑡
is an𝑀

𝑡
× 𝑁
𝑡
matrix and

d̂
𝑡 (𝜃) = [𝑒

𝑗(−(𝑁
𝑡
−1)/2)𝜃

⋅ ⋅ ⋅ 𝑒
𝑗((𝑁
𝑡
−1)/2)𝜃

]
𝑇

. (15)

We can see that d̂
𝑡
(𝜃) is a Vandermonde vector which

depends on the steering angle 𝜃 and the parameter 𝑁
𝑡
. The

accuracy of the approximation equation (14) increases with
increasing the value of𝑁

𝑡
.

The receive steering vector can be treated in the same way
as the transmit steering vector; therefore, we obtain

a
𝑟
(𝜑) ≈ F̂

𝑟
d̂
𝑟
(𝜑) , (16)
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Figure 1: The angle estimation result of two targets.

where F̂
𝑟
is an𝑀

𝑟
× 𝑁
𝑟
matrix and

d̂
𝑟
(𝜑) = [𝑒

𝑗(−(𝑁
𝑟
−1/2))𝜑

⋅ ⋅ ⋅ 𝑒
𝑗((𝑁
𝑟
−1)/2)𝜑

]
𝑇

. (17)

We can also see that d̂
𝑟
(𝜑) is a Vandermonde vector which

depends on the steering angle 𝜑 and the parameter𝑁
𝑟
.

Using the notations 𝑧
𝜃
= 𝑒𝑗𝜃 and 𝑧

𝜑
= 𝑒𝑗𝜑, (15) and (17)

can be written as

d̂
𝑡
(𝑧
𝜃
) = [𝑧

−(𝑁
𝑡
−1)/2

⋅ ⋅ ⋅ 𝑧
(𝑁
𝑡
−1)/2

]
𝑇

, (18a)

d̂
𝑟
(𝑧
𝜑
) = [𝑧

−(𝑁
𝑟
−1)/2

⋅ ⋅ ⋅ 𝑧
(𝑁
𝑟
−1)/2

]
𝑇

. (18b)

Using (2) and (16), the null-spectrum function equation (8)
can be written as

𝑓 (𝜃, 𝜑) = [a
𝑡 (𝜃) ⊗ a

𝑟
(𝜑)]
𝐻E
𝑛
E𝐻
𝑛
[a
𝑡 (𝜃) ⊗ a

𝑟
(𝜑)]

= a𝐻
𝑡
(𝜃)A𝐻
𝑟
E
𝑛
E𝐻
𝑛
A
𝑟
a
𝑡 (𝜃)

= a𝐻
𝑡
(𝜃) [ΩD𝑟 (𝑧𝜑)]

𝐻

E
𝑛
E𝐻
𝑛
[ΩD
𝑟
(𝑧
𝜑
)] a
𝑡 (𝜃)

= a𝐻
𝑡
(𝜃)D𝐻
𝑟
(𝑧
𝜑
)Ω
𝐻E
𝑛
E𝐻
𝑛
ΩD
𝑟
(𝑧
𝜑
) a
𝑡 (𝜃)

= a𝐻
𝑡
(𝜃)G (𝑧

𝜑
) a
𝑡 (𝜃) ,

(19)
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where

𝐴
𝑟
=

[
[
[
[

[

a
𝑟
(𝜑) 0

𝑀
𝑟
×1

⋅ ⋅ ⋅ 0
𝑀
𝑟
×1

0
𝑀
𝑟
×1

a
𝑟
(𝜑) ⋅ ⋅ ⋅ 0

𝑀
𝑟
×1

...
...

...
...

0
𝑀
𝑟
×1

0
𝑀
𝑟
×1

⋅ ⋅ ⋅ a
𝑟
(𝜑)

]
]
]
]

]𝑀
𝑟
𝑀
𝑡
×𝑀
𝑡

,

G (𝑧
𝜑
) = D𝐻

𝑟
(𝑧
𝜑
)Ω
𝐻E
𝑛
E𝐻
𝑛
ΩD
𝑟
(𝑧
𝜑
) ,

Ω =

[
[
[
[
[

[

F̂
𝑟

0
𝑀
𝑟
×𝑁
𝑟

⋅ ⋅ ⋅ 0
𝑀
𝑟
×𝑁
𝑟

0
𝑀
𝑟
×𝑁
𝑟

F̂
𝑟

⋅ ⋅ ⋅ 0
𝑀
𝑟
×𝑁
𝑟

...
...

...
...

0
𝑀
𝑟
×𝑁
𝑟

0
𝑀
𝑟
×𝑁
𝑟

⋅ ⋅ ⋅ F̂
𝑟

]
]
]
]
]

]𝑀
𝑟
𝑀
𝑡
×𝑁
𝑟
𝑀
𝑡

,

D
𝑟
(𝑧
𝜑
) =

[
[
[
[
[
[

[

d̂
𝑟
(𝑧
𝜑
) 0
𝑁
𝑟
×1

⋅ ⋅ ⋅ 0
𝑁
𝑟
×1

0
𝑁
𝑟
×1

d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ 0

𝑁
𝑟
×1

...
...

...
...

0
𝑁
𝑟
×1

0
𝑁
𝑟
×1

⋅ ⋅ ⋅ d̂
𝑟
(𝑧
𝜑
)

]
]
]
]
]
]

]𝑁
𝑟
𝑀
𝑡
×𝑀
𝑡

.

(20)

Therefore, to solve the set in expression (19), we can first find
𝑧
𝜑
satisfying [9]

det [G (𝑧
𝜑
)] = det [D𝐻

𝑟
(𝑧
𝜑
)Ω
𝐻E
𝑛
E𝐻
𝑛
ΩD
𝑟
(𝑧
𝜑
)] = 0.

(21)

Suppose B = Ω𝐻E
𝑛
E𝐻
𝑛
Ω. Obviously matrix B is an 𝑁

𝑟
𝑀
𝑡
×

𝑁
𝑟
𝑀
𝑡
matrix that can be written as

B =

[
[
[
[
[
[
[

[

𝐵
11

⋅ ⋅ ⋅ 𝐵
1𝑚

⋅ ⋅ ⋅ 𝐵
1𝑀
𝑡

...
...

...
...

...
𝐵
𝑚1

⋅ ⋅ ⋅ 𝐵
𝑚𝑚

⋅ ⋅ ⋅ 𝐵
𝑚𝑀
𝑡

...
...

...
...

...
𝐵
𝑀
𝑡
1

⋅ ⋅ ⋅ 𝐵
𝑀
𝑡
𝑚

⋅ ⋅ ⋅ 𝐵
𝑀
𝑡
𝑀
𝑡

]
]
]
]
]
]
]

]

, (22)

where 𝐵
𝑖𝑗
is𝑁
𝑟
× 𝑁
𝑟
matrix. Then we get

G (𝑧
𝜑
) =

[
[
[
[
[
[
[
[
[
[
[
[

[

d̂𝐻
𝑟
(𝑧
𝜑
) 𝐵
11
d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ d̂𝐻

𝑟
(𝑧
𝜑
) 𝐵
1𝑚
d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ d̂𝐻

𝑟
(𝑧
𝜑
) 𝐵
1𝑀
𝑡

d̂
𝑟
(𝑧
𝜑
)

...
...

...
...

...

d̂𝐻
𝑟
(𝑧
𝜑
) 𝐵
𝑚1
d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ d̂𝐻

𝑟
(𝑧
𝜑
) 𝐵
𝑚𝑚

d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ d̂𝐻

𝑟
(𝑧
𝜑
) 𝐵
𝑚𝑀
𝑡

d̂
𝑟
(𝑧
𝜑
)

...
...

...
...

...

d̂𝐻
𝑟
(𝑧
𝜑
) 𝐵
𝑀
𝑡
1
d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ d̂𝐻

𝑟
(𝑧
𝜑
) 𝐵
𝑀
𝑡
𝑚
d̂
𝑟
(𝑧
𝜑
) ⋅ ⋅ ⋅ d̂𝐻

𝑟
(𝑧
𝜑
) 𝐵
𝑀
𝑡
𝑀
𝑡

d̂
𝑟
(𝑧
𝜑
)

]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

∑
∀𝑝−𝑞=𝑖

[𝐵
11
]
𝑝𝑞
𝑧
−𝑖

𝜑
⋅ ⋅ ⋅ ∑
∀𝑝−𝑞=𝑖

[𝐵
1𝑚

]
𝑝𝑞
𝑧
−𝑖

𝜑
⋅ ⋅ ⋅ ∑
∀𝑝−𝑞=𝑖

[𝐵
1𝑀
𝑡

]
𝑝𝑞
𝑧
−𝑖

𝜑

...
...

...
...

...

∑
∀𝑝−𝑞=𝑖

[𝐵
𝑚1

]
𝑝𝑞
𝑧
−𝑖

𝜑
⋅ ⋅ ⋅ ∑
∀𝑝−𝑞=𝑖

[𝐵
𝑚𝑚

]
𝑝𝑞
𝑧
−𝑖

𝜑
⋅ ⋅ ⋅ ∑
∀𝑝−𝑞=𝑖

[𝐵
𝑚𝑀
𝑡

]
𝑝𝑞
𝑧
−𝑖

𝜑

...
...

...
...

...

∑
∀𝑝−𝑞=𝑖

[𝐵
𝑀
𝑡
1
]
𝑝𝑞
𝑧
−𝑖

𝜑
⋅ ⋅ ⋅ ∑
∀𝑝−𝑞=𝑖

[𝐵
𝑀
𝑡
𝑚
]
𝑝𝑞
𝑧
−𝑖

𝜑
⋅ ⋅ ⋅ ∑
∀𝑝−𝑞=𝑖

[𝐵
𝑀
𝑡
𝑀
𝑡

]
𝑝𝑞
𝑧
−𝑖

𝜑

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(23)

The 𝑃 roots 𝑧(𝑝)
𝜑

(𝑝 = 1 ⋅ ⋅ ⋅ 𝑃) inside and closest to the unitary
circle of the polynomial det[G(𝑧

𝜑
)] allow estimating theDOA

angles given by 𝜑
𝑝

= angle(𝑧(𝑝)
𝜑

) (𝑝 = 1 ⋅ ⋅ ⋅ 𝑃). We can see
that the computational complexity is burdensome because of
the high degree of the polynomial. Here we use a fast root-
MUSICmethod [17] to reduce the computational complexity.
The algorithm, no matter how large the degree of the
polynomial is, only needs to calculate 𝑃 roots (the number
of targets).

By substituting the obtained roots 𝑧(𝑝)
𝜑

(𝑝 = 1 ⋅ ⋅ ⋅ 𝑃) and
using (14) in the expression (19), we constitute the following
equation:

𝑓 (𝜃, 𝜑
𝑝
) = d̂𝐻
𝑡
(𝜃) F̂𝐻
𝑡
G (𝑧
(𝑝)

𝜑
) F̂
𝑡
d̂
𝑡 (𝜃)

= d̂𝐻
𝑡
(𝑧
𝜃
) F̂𝐻
𝑡
G (𝑧
(𝑝)

𝜑
) F̂
𝑡
d̂
𝑡
(𝑧
𝜃
)

= d̂𝐻
𝑡
(𝑧
𝜃
)𝐻 (𝑧

(𝑝)

𝜑
) d̂
𝑡
(𝑧
𝜃
) ,

(24)
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Figure 2: RMSE in DOA and DOD estimation versus SNR.
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Figure 3: Angle estimation RMSE versus SNR.

where H(𝑧(𝑝)
𝜑

) = F̂𝐻
𝑡
G(𝑧(𝑝)
𝜑

)F̂
𝑡
. We can again use the polyno-

mial root technique to get the roots 𝑧(𝑝)
𝜑

with the polynomial
(24) equal to zero. The correspondent DOD angle can be
given by 𝜑

𝑝
= angle(𝑧(𝑝)

𝜑
) (𝑝 = 1 ⋅ ⋅ ⋅ 𝑃). Note that the pairing

is automatically obtained between theDOA andDODangles,
which avoid the traditional bistatic radar problemof synchro-
nization.

4. Simulation Results

Here, we present simulation results showing the statistical
performance of the proposed algorithm when using UCA
configuration. Consider a narrowband bistatic MIMO radar
systemwith 4 transmit antennas and 3 receive antennas; both
are UCAs with radius equal to 𝜆/4. For the simulations, the
following settings have been used: two uncorrelated sources
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impinging the arrays with equal powers from the angles
(𝜃
1
, 𝜑
1
) = (10∘, 20∘) and (𝜃

2
, 𝜑
2
) = (50∘, 40∘), 256 snapshots,

and 100 independent Monte Carlo trials. Figure 1 shows the
angle estimation result of two targets for bistaticMIMO radar
under the conditions SNR = 10 dB and𝑁

𝑡
= 𝑁
𝑟
= 11. We can

observe that the target directions are well localized and DOA
and DOD are automatically paired.

With the same configuration of the simulation as before,
Figure 2 shows the DOA and the DOD estimation versus sig-
nal noise ratio (SNR) by using the proposed polynomial root
finding algorithm. We observe that the proposed algorithm
has almost the same performance, no matter if the direction
of the target is near or far away from the boresight. It is the
advantage of the UCA configuration.

Finally, we compare angle estimation performance of
MUSIC spectrum with the searching step 0.01∘ and polyno-
mial rooting method with 𝑁

𝑡
= 𝑁
𝑟

= 11. The root mean
squared error (RMSE) of the 𝑝th target direction estimation
is defined as RMSE = √𝐸(𝜃

𝑝
− 𝜃
𝑝
)
2
+ 𝐸(𝜑

𝑝
− 𝜑
𝑝
)
2. Figure 3

demonstrates that the proposed polynomial rooting algo-
rithm provides a similar angle estimation performance to
the MUSIC spectral search method with the search interval
0.01 degree, but the MUSIC spectral search method is
computationally expensive for such a fine grid search over the
whole angle range.

5. Conclusion

In this paper, we have proposed a new technique to transform
the steering vector of the UCA configuration into a steering
vector with a Vandermonde structure in bistatic MIMO
radar by using the Jacobi-Anger expansion. The two-step
polynomial root finding algorithm has then been used to
estimate DOA and DOD of the targets. The simulation
results show that the proposed algorithm provides good
performances in angle estimation. In addition, the proposed
polynomial rooting angle estimation method avoids spectral
search and reduces the computational complexity for bistatic
MIMO radar with UCA configure.
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We consider the selection of an antenna array configuration, composed of a small number of omnidirectional elements, to
be exploited for passive radar sensors. Based on properly identified pattern characteristics and design criteria for practical
applications, a suitable planar configuration is selected that allows both angular selectivity and direct signal attenuation. The
selected configuration is further optimized in terms of sidelobe level by resorting to appropriate amplitude tapering.Moreover, three
different approaches are investigated for antenna-based adaptive disturbance cancellation, and a comparative performance analysis
is carried out. Simulation results show that an effective clutter suppression is obtained if the direct signal from the transmitter is
attenuated by means of spatial adaptive cancellation, and the multipath echoes from stationary obstacles are removed by means of
temporal adaptive cancellation. In particular, the approach based on the Sidelobe Canceller is shown to yield good performance
while requiring a limited system complexity.

1. Introduction

Passive radar systems are specific variants of bistatic radar
that exploit existing transmitters as “illuminators of oppor-
tunity”. The main advantages of bistatic radar are that the
receiver is far less vulnerable to electronic counter measures
(ECM) and that bistatic operation has counter stealth proper-
ties. Moreover, passive radar systems have much lower cost,
as they do not need a dedicated transmitter [1–3].

In spite of all these advantages, which make passive
radar attractive for a broad range of applications, they must
cope with the use of nonoptimized waveforms and with
a strong direct signal from the transmitter of opportunity
that typically operates in continuous wave (CW) mode.
This strong disturbance must be appropriately cancelled,
together with its reflections from stationary obstacles in the
scene (clutter/multipath) to improve detection performance.
Directive antennas, characterized by a high Front-to-Back
Ratio (FBR), are usually employed to attenuate the direct
signal. Its residuals are then typically removed by means

of temporal adaptive clutter cancellation together with the
clutter contribution [4–6]. However, the use of a directive
antenna provides only a limited angular coverage for the
radar surveillance and does not allow to cover a very wide
air space region.

This drawback can be avoided by using an antenna array
composed of a set of omnidirectional elements in the plane,
in place of a dedicated directive surveillance antenna [7–
9]. As long as the elements are properly spaced, a directive
pattern may be synthesized by jointly processing the signals
received at each element. This also allows the beam to be
electronically steered in all directions or, better, a set of
directional beams to be generated that globally cover the
whole air space of interest. Obviously this would require the
availability ofmultiple coherent receiving channels. However,
in this case the same array might be used to collect the
transmitted signal by synthesizing a beam pointed toward the
transmitter of opportunity. This represents a viable solution
if several dislocated illuminators of opportunity should be
exploited.
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To keep the system cost and its complexity low, proper
array configurations should be designed and able to provide
good performance using a limited number of elements [10].
In this paper, we describe effective criteria to identify a suit-
able antenna array configuration for passive radar. According
to the proposed strategy, the array is designed so that it
yields reasonable characteristics for the resulting antenna
pattern (3 dB aperture, sidelobe level) while satisfying a few
constraints that allow the 360∘ operation.

Furthermore, the considered planar array may be pro-
vided with spatial adaptivity, so that the clutter/multipath
cancellation filter can benefit from space-time adaptivity.

The benefits of antenna-based spatial adaptivity have
been shown in the literature with reference to different pas-
sive radar applications. A clear demonstration of potentiality
of the spatial adaptivity is reported in [11] for a GSM-based
passive radar for medium range surveillance, in [12] for an
FMradio-based passive radar, and in [13] for a specific passive
radar application in the HF frequency bandwidth. In [14],
the space-time adaptive beamformer based on constrained
least mean squares algorithm has been exploited. Even for
the reference signal recovery, adaptive techniques can be used
to protect the system against multipath contributions. For
example, in [15] the joint exploitation of spatial and temporal
degrees of freedom is considered to obtain a multipath-free
version of the reference signal.

Therefore, in this paper, we investigate different tech-
niques for antenna-based adaptive disturbance cancellation
to be applied before the standard temporal cancellation filter.
The comparative analysis allows to identify the main benefits
of the different approaches and to select the most suitable
space-time processing scheme. Specifically, the simulation
results, obtained for an FM radio-based passive radar case,
show that the approach based on the Sidelobe Canceller
followed by the temporal extensive cancellation algorithm
(ECA) [4] yields good performance while requiring a limited
system complexity.

The paper is organized as follows. In Section 2, the
array design strategy is described, and a suitable antenna
array configuration is selected by trading off the achievable
performance for the expected system complexity and cost.
The selected array configuration is further optimized in
Section 3 where a proper amplitude tapering strategy is
adopted to control the sidelobe level of the resulting pattern.
Section 4 briefly summarizes the considered techniques for
antenna-based adaptive disturbance cancellation; moreover,
an effective approach is introduced for the synthesis of the
reference antenna beam that is exploited to collect the signal
from the transmitter. The comparative performance analysis
is presented in Section 5 where the results are reported
for an FM radio-based passive radar scenario. Finally, our
conclusions are drawn in Section 6.

2. Antenna Array Configuration Analysis

The first step of our work consists in identifying an appro-
priate configuration for the array of antennas that provides
good performance using a limited number of elements (to

keep the low cost characteristic). Specifically, we refer to
2-dimensional (planar) array configurations. A reasonable
criterion to select a planar array configuration may involve
the evaluation of some significant pattern parameters, such as
the 3 dB aperture and the peak-to-side lobe ratio (PSLR). It is
also reasonable to restrict the choice to those configurations,
for which the expected (angle estimation) performance does
not depend on the Direction of Arrival (DoA) of the signal.
In particular, it is possible to refer to the estimation accuracy
achievable by the Generalized Likelihood (GL) estimation.

2.1. GL DoA Estimation and Its Accuracy. Let us consider
a planar array of 𝑁 elements and let (𝑥

𝑖
, 𝑦
𝑖
) and 𝑔

𝑖
(𝜃) be

the coordinates and the azimuth pattern of the 𝑖th element,
respectively, being 𝜃 the angle formed with the positive 𝑦-
axis. Then, the target steering vector s

𝜃
(𝜃) can be written as

s
𝜃
(𝜃) =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑔
1 (𝜃) exp {𝑗

2𝜋

𝜆
(𝑥
1
sin 𝜃 + 𝑦

1
cos 𝜃)}

...
𝑔
𝑖 (𝜃) exp {𝑗

2𝜋

𝜆
(𝑥
𝑖
sin 𝜃 + 𝑦

𝑖
cos 𝜃)}

...
𝑔
𝑁 (𝜃) exp {𝑗

2𝜋

𝜆
(𝑥
𝑁
sin 𝜃 + 𝑦

𝑁
cos 𝜃)}

]
]
]
]
]
]
]
]
]
]
]
]

]

, (1)

where 𝜆 is the wavelength of the received signal.
The signals received at a given time by the elements of

the array may be collected in an𝑁-element column vector x,
called snapshot, and given by
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where 𝜃
𝑇
is the signal DoA, 𝑎 is the complex amplitude of the

received signal, which does not include the antenna gain, and
v is the disturbance.

We assume for x a Gaussian distribution, whose expected
value and covariance matrix are given by
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(3)

respectively, where𝜎2
𝑛
is the noise variance and k𝐻 denotes the

Hermitian transpose of vector k.TheDoA 𝜃
𝑇
of a monochro-

matic signal, whose complex amplitude 𝑎 is unknown,may be
estimated by maximizing the Generalized Likelihood, as in
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where the operators ‖k‖ denote the Euclidean norm of vector
v, while the notation arg min

𝜃
𝑓(𝜃) denotes the value of 𝜃 for

which 𝑓(𝜃) is minimum.
In particular, it can be shown that the resulting estimation

accuracy is given by (see, e.g., [16])
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where ̇s
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) is the first-order derivative of s
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2.2. Omnidirectional Antennas and Symmetry Conditions. In
case all the antennas are omnidirectional, for example,

𝑔
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Therefore, the estimation accuracy in the case of omnidirec-
tional antennas is given by
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hold, the expression of the estimation accuracy in (9) may be
further simplified. In particular, the estimation accuracy is no
longer dependent on the signal DoA.
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Then, 𝑓 (𝜃
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where𝑅
𝑖
is the Euclidean distance of the 𝑖th element from the

origin of the reference system.

2.3. Symmetric Configurations. Those configurations for
which the symmetry conditions (11)-(12) hold, are from now
on referred to as symmetric configurations. We are indeed
interested in these configurations because the considered
application does not require specific directions to be pre-
ferred.

The next step of our configuration analysis, therefore,
consists in identifying some symmetric configurations, char-
acterized by a relatively small number of elements. We first
observe that the two-element arrays cannot jointly satisfy (11)
and (12). On the other hand, the number 𝑁 of elements is
upper-limited to 10 in order tomake the systemboth compact
and low-cost.

Let us denote by 𝑅 the maximum distance of an element
of the array from the origin of the reference system or,
equivalently, the radius of the smallest circle containing all
the array elements.

It is possible to list different classes of symmetric configu-
rations (in brackets the number of elements required to form
such a configuration), namely,

(i) circular configurations without central element (𝑁 ≥

3), where 𝑁 elements are uniformly arranged on the
circumference of a circle of radius 𝑅, centered at the
origin of the reference system;

(ii) circular configurations with central element (𝑁 ≥ 4),
where (𝑁−1) elements are uniformly arranged on the
circumference of a circle of radius 𝑅, and one element
is located in the center of such a circle;

(iii) triangular configurationswithout central element (𝑁 =

3𝑘), where𝑁 elements are uniformly arranged on the
edges of an equilateral triangle, inscribed in a circle of
radius 𝑅. The trivial case 𝑘 = 1 is not considered, as it
belongs to the class of circular configurations without
central element;

(iv) triangular configurations with central element (𝑁 =

3𝑘+1), where (𝑁−1) elements are uniformly arranged

on the edges of an equilateral triangle, inscribed in
a circle of radius 𝑅, and one element is located in
the center of such a circle. The trivial case 𝑘 = 1 is
not considered, as it belongs to the class of circular
configurations with central element;

(v) squared configurations without central element (𝑁 =

4𝑘), where𝑁 elements are uniformly arranged on the
edges of a square, inscribed in a circle of radius 𝑅.The
trivial case 𝑘 = 1 is not considered, as it belongs
to the class of circular configurations without central
element;

(vi) squared configurations with central element (𝑁 = 4𝑘+

1), where (𝑁−1) elements are uniformly arranged on
the edges of a square, inscribed in a circle of radius
𝑅, and one element is located in the center of such
a circle. The trivial case 𝑘 = 1 is not considered, as
it belongs to the class of circular configurations with
central element;

(vii) Y configurations (𝑁 = 3𝑘, 𝑁 = 3𝑘 + 1), where the
elements are uniformly arranged on the radii joining
the vertices of an equilateral triangle, inscribed in a
circle of radius 𝑅, to the center of the circle itself. The
trivial case 𝑘 = 1 is not considered, as it belongs to the
first two classes of configurations;

(viii) X configurations (𝑁 = 4𝑘, 𝑁 = 4𝑘 + 1), where the
elements are uniformly arranged on the radii joining
the vertices of a square, inscribed in a circle of radius
𝑅, to the center of the circle itself.The trivial case 𝑘 = 1
is not considered, as it belongs to the first two classes
of configurations.

In Table 1, the symmetric configurations belonging to the
above mentioned classes are represented for different num-
bers 𝑁 of antenna elements. Moreover, for each class, a
marker plot is defined that will be used in the following
figures (see last row of Table 1).

While our study is focused on planar array configura-
tions, we should mention that alternative solutions could be
considered based on combinations of three (or more) linear
arrays covering adjacent 120∘ (or less) sectors to provide the
360∘ operation. However, such choice would yield a number
of drawbacks that should be taken into account for the
considered application. In particular,

(i) the resulting system would be a combination of three
(or more) separate systems that need to be synchro-
nized and disciplined to manage possible common
detections performed in adjacent/overlapped angular
sectors;

(ii) the resulting performance would be a function of
the target DoA because each linear array has char-
acteristics that change with the pointing angle (e.g.,
the 3 dB aperture). In this regard, we recall that the
symmetric array configurations selected in our study
guarantee the estimation accuracy to be independent
of the target DoA so that the same performance could
be in principle obtained over the 360∘ coverage;
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Table 1: Symmetric configurations belonging to the different classes for𝑁 < 10.

Circle without
central element

Circle with
central element

Triangle
without
central
element

Triangle
with
central
element

Square
without
central
element

Square
with
central
element

𝑌 𝑋

𝑁 = 3

𝑁 = 4

𝑁 = 5

𝑁 = 6

𝑁 = 7

𝑁 = 8

𝑁 = 9

(iii) the problemdiscussed at point (i) is exacerbatedwhen
each array suffers of severe angular ambiguities; to
reduce this effect directive antenna elements should
be employed to build up each array (e.g., Yagi or Log
Periodic antennas could be adopted in the FM radio
band). However, this would stress the effect described
in (ii). Moreover, using this approach, the overall
system would be bulkier and characterized by a much
higher cost.

For the above reasons, the symmetric planar array config-
urations sketched in Table 1 have been preferred and their
characteristics are compared in the following subsection
with the aim to identify the most suitable solution for the
considered application.

2.4. Pattern Characteristics and Array Configuration Selection.
The selection of the most appropriate configuration for
passive radar applications involves the choice of the number
𝑁 of antenna elements, the identification of its shape, and the
determination of the array radius 𝑅.

So far we have established the conditions for which the
DoA estimation accuracy is not dependent on the DoA itself
and identified some configurations that satisfy these condi-
tions. In the present subsection, we deal with the selection of
a suitable configuration among different symmetric ones.

First of all, it is of interest to highlight the relationship
between the GL DoA estimation, as defined in (4), and the
array pattern of the configuration. Expanding the expression
of the estimated DoA in (4) as
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(15)

it is possible to better understand what GL estimation means
in the specific case of symmetric configurations; for each
direction 𝜃, the signals received by the 𝑁 antennas are
properly phase-shifted and summed; then the estimatedDoA
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is that for which the square modulus of such a sum is
maximum. In other words, in this specific case, the GL DoA
estimation consists in synthesizing infinite beams, pointed
to all the directions, being the output of the estimate of the
direction, for which the intensity of the signal received by the
corresponding synthesized beam is maximum.

TheGL estimation accuracy is therefore directly related to
the array pattern characteristics, and a suitable configuration
may be selected among several ones by evaluating the pattern
characteristics themselves. It would not be appropriate to
select the configuration for which the estimation accuracy, as
defined in (5) or (9), is maximum, because such expression
is significant only in the absence of ambiguities, namely,
when grating lobes do not occur. A parameter related to
the presence/absence of grating lobes, such as the PSLR,
has therefore to be considered together with the estimation
accuracy. Moreover, since this latter parameter is directly
related to the pattern main lobe width, the 3 dB aperture may
be considered in place of the accuracy, which leads us to
consider two parameters characteristics of the antenna array
pattern.

The 3 dB aperture and the PSLR have been plotted in
Figure 1 as a function of the ratio 𝑅/𝜆 of the array radius 𝑅
to the wavelength of the received signal 𝜆, so that a visual
comparison can be performed. Specifically, Figures 1(a)–1(g)
are obtained by progressively increasing the number of array
elements from 𝑁 = 3 to 𝑁 = 9 and reporting, for each
case, only the applicable configuration classes. The adopted
markers are described in Table 1. As both the considered
pattern parameters vary with the pointing direction, the
worst case is reported, that is, the maximum 3 dB aperture
and the minimum PSLR.

A careful observation of the plots in Figure 1 shows that
it is not possible to synthesize array patterns characterized by
both a narrow beamwidth and a satisfactory PSLR by using
less than𝑁 = 8 elements. At the same time, the introduction
of a ninth element does not lead to a significant improvement
of the pattern characteristics.We also notice that the choice of
𝑁 = 8 antenna elements allows the exploitation of commer-
cial low-cost components to build up the multichannel radar
receiver. Among the 8-element configuration, the circular
configurationwith central element, represented in Figure 2, is
particularly attractive when the radius 𝑅 of the planar array
is selected to be equal to 0.44 𝜆, as the resulting pattern is
characterized by both a narrow beamwidth and a reasonable
PSLR, namely, 13 dB.

When the sources of radar transmission are FM radio sta-
tions, being the wavelength of the signal comprised between
𝜆min = 2.78m (108MHz) and 𝜆max = 3.41m (88MHz), the
radius of the array has to be chosen as a compromise value,
with special attention to 𝜆min.

As a final remark, we notice that the previous analysis of
the pattern characteristics has been conducted by assuming
that there is no coupling between the array elements. In
practice, such coupling effect exists and might significantly
modify the resulting antenna pattern.Moreover, it is expected
to become more severe as the array radius, and consequently
the elements spacing, decreases. Nevertheless, the criteria
adopted to identify a suitable antenna array configuration

still hold; therefore, the proposed design strategy can still
be applied against a more realistic model of the received
signal to include the coupling effect as well as its possible
compensation according to propermodels. Finally, we should
mention that, despite the symmetry of the considered array
configurations, the coupling effect between different pairs
of neighboring elements can be different [7]; however, this
is due to nonidealities of array elements, minor errors in
array geometry, and nearby obstacles that cannot be taken
into account at the design stage but should be measured and
compensated for after its assembling.

3. Side Lobe Control by Central
Element Tapering

It is well known that it is generally possible to synthesize an
array pattern with a higher PSLR by applying appropriate
tapering to the single array elements. In the general case,
the application of a taper function intrinsically destroys the
uniform angular performance. Special considerations apply
with reference to the selected configuration, which ismade up
by eight elements, seven of which are uniformly distributed
over a circumference and one of which is located in the center
of the same circumference. In fact, in this case, there is a
simple way to apply something similar to a taper function by
weighting differently the array central element and the circle
of seven elements. Specifically, it is of interest to determine
whether a higher PSLRmay be obtained, by properly tapering
only the central element.

By letting the taper of the central element 𝛼 vary over
a large enough interval, being unitary the tapers of all the
other elements, the PSLR has been evaluated and plotted
in Figure 3 as a function of 𝛼. The value of taper which
maximizes the PSLR is 𝛼 = 1.98. The PSLR of the synthesized
pattern is now greater than 20 dB (see Figure 4), while there
is only a slight broadening of the antenna pattern main lobe
(the 3 dB beamwidth is about 4∘ broader than that obtained
without tapering). This tapered configuration is especially
effective when used for passive radar, since it provides up
to 7 dB improvement in the direct signal rejection, when the
main beam is not steered 180∘ away from the transmitter of
opportunity.

4. Adaptive Disturbance
Cancellation Techniques

As the received power of the direct signal is usuallymany tens
of dBs greater than the power received from a target echo,
even using amplitude tapering, the direct signal attenuation
might not be sufficient, and an adaptive temporal cancellation
is typically used to remove the residual direct signal and the
clutter, in order to provide the desired detection performance.
The adaptive temporal cancellation is based on the principle
that in the passive coherent location (PCL) environment,
the disturbance includes the direct signal from the bistatic
transmitter and multipath replicas of the direct signal, gen-
erated by its reflection from stationary obstacles, which are
generally referred to as clutters. In contrast, the useful signal
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Figure 1: Continued.
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Figure 1: 3 dB aperture (left) and PSLR (right) for the configurations of Table 1: (a) 3-element configurations, (b) 4-element configurations,
(c) 5-element configuration, (d) 6-element configurations, (e) 7-element configurations, (f) 8-element configurations, and (g) 9-element
configurations. The legend is given in the lower row of Table 1.

is a delayed replica of the transmitted signal as well, but it
is Doppler-shifted. Therefore, allowing an adaptive temporal
filter to cancel only the zero Doppler echoes allows to remove
the direct signal and its multipaths, without removing the
target echo [4–6].

In the case where the direct signal is especially strong
(e.g., when the passive radar receiver is very close to the trans-
mitter of opportunity), the use of the temporal adaptivity
following the antenna sidelobe attenuation of the direct signal
might still be unsatisfactory. In this case spatially adaptive

techniques may be considered to reject the disturbance,
leading to an increased detection performance.

Antenna-based adaptive cancellation techniques provide
rejection of the disturbance by means of adaptive beam-
forming. An estimate of the disturbance covariance matrix
M is required to properly weight the received signals. Three
approaches to adaptive cancellation are considered and
discussed in the following three subsections, while in the
last subsection the synthesis of the reference beam for the
adaptive temporal filter is dealt with.
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4.1. Optimum Filter. In case the disturbance covariance
matrix M is known, the optimum weights vector, that leads
to the maximum detection probability for a given false alarm
rate, is given by [17]

w𝐻 (𝜃
0
) = s𝐻
𝜃
(𝜃
0
)M−1, (16)

where 𝜃
0
is the direction towards which the beam is pointed.

As an example, in Figure 5 (solid line), the array pattern
obtained by weighting the signals received by the antennas of
the selected configuration according to (16), for 𝜃

0
= 120∘, is

represented, assuming that the disturbance covariancematrix
M, but for a multiplicative constant, is given by

M = I + INR
1
s
𝜃
(𝜃
𝐼1
) s𝐻
𝜃
(𝜃
𝐼1
) + INR

2
s
𝜃
(𝜃
𝐼2
) s𝐻
𝜃
(𝜃
𝐼2
) ,

(17)

where I is the identity matrix, 𝜃
𝐼1
and 𝜃
𝐼2
are the DoAs of two

independent narrow-band interfering signals, and INR
1
and

INR
2
represent the signal-to-noise ratios of the interfering
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Figure 4: Array pattern with and without central element tapering
for the configuration of Figure 2.
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Figure 5: Examples of adaptive array patterns obtained by exploit-
ing the optimum filter, the principal eigenvalue approach, and the
Sidelobe Canceller for the case of two independent narrow-band
interfering signals.

signals (𝜃
𝐼1
= 0∘, 𝜃

𝐼2
= 70∘, INR

1
= 30 dB, and INR

2
= 10 dB).

The three components of themodeled disturbance covariance
matrix represent the thermal noise, the direct signal, and a
multipath replica of it. As it is apparent, the array pattern
strongly attenuates the signals coming from the DoAs of both
the direct signal and its multipath replica.

In practical applications, the covariance matrix M is
replaced with its estimated version obtained from the
received data, which include both the disturbance and the
useful signal. This is quite appropriate in the PCL case given
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for the case of a single narrow-band interfering signal.

that the level of both the direct signal and its multipath
reflections is well above that of the useful signal. After
combining the received signals according to (16), an adaptive
temporal cancellation might be performed only to cancel
disturbance residuals not adequately suppressed by the spatial
adaptive filter. Then, the standard 2D (range-Doppler) cross-
correlation function (2D-CCF) is evaluated, and a proper
constant false alarm rate (CFAR) threshold is applied to
obtain a detection map.

Notice that, when applying the optimumfilter in the pres-
ence of a strong multipath reflection from a given direction,
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Figure 8: Example of autocorrelation function of an FM signal.

a null is imposed in the synthesized adaptive pattern at this
direction.This also cancels all target echoes coming from the
same DoA.

4.2. Principal Eigenvalue Approach. A way to circumvent the
weakness of the optimum filter for targets at the same DoA
of strong multipaths is to reduce the number of degrees of
freedom (d.o.f.) available to the spatial adaptivity, so that only
a single null can be imposed by the adaptive spatial filter.
Since the direct signal is by far the strongest component of
the overall disturbance, it is obvious that its effect dominates
the spatial covariance matrix and specifically determines its
principal eigenvector qmax. Therefore, by estimating only the
principal eigenvector of the spatial disturbance covariance
matrix, it is possible to strongly attenuate the direct signal,
by projecting the target steering vector s

𝜃
(𝜃) on the subspace

orthogonal to such eigenvector. The resulting weights vector
is given by

w𝐻PE (𝜃0) = s𝐻
𝜃
(𝜃
0
) (I − qmaxq

𝐻

max) . (18)

Figure 5 (dashed line) shows the array pattern obtained by
weighting the signals received by the antennas of the selected
configuration according to (18), for 𝜃

0
= 120∘, assuming the

same disturbance covariance matrix of the previous example.
In this case, the array pattern strongly attenuates only the
signals coming from the DoA of the direct signal, so that
the clutter contributions have to be cancelled by the adaptive
temporal filter. Finally, the 2D-CCF is evaluated, and the
CFAR detection map is built.

4.3. Side Lobe Canceller (SLC). In case the disturbance is
characterized by a single narrow-band interference, the array
pattern obtained by using the optimum filter can be inter-
preted as the difference of a quiescent beam and a retrodi-
rective beam, pointed in the direction of the disturbance.
In particular, both beams are obtained by exploiting all the
elements of the array.

A system based on the retrodirective beam, but at the
same time characterized by a smaller number of d.o.f., can be
obtained by resorting to the sidelobe canceller (SLC) concept
[17], which, for the specific array configuration considered,
can be exploited by using seven out of the eight elements of
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Figure 9: Detection results in the absence of stationary obstacles for (a) side lobe control by central element tapering (nonadaptive),
(b) optimum filter, (c) principal eigenvalue approach, and (d) SLC.

the array to form the quiescent beam and the central element
as an omnidirectional retrodirective beam.

Having defined the transformation matrix T as

T = [𝑠
∗

𝜃1
(𝜃
0
) 𝑠∗
𝜃2
(𝜃
0
) ⋅ ⋅ ⋅ 𝑠∗

𝜃7
(𝜃
0
) 0

0 0 ⋅ ⋅ ⋅ 0 𝑠∗
𝜃8
(𝜃
0
)
] , (19)

where 𝑠
𝜃𝑖
(𝜃
0
) is the 𝑖th element of the target steering vector,

corresponding 𝑠
𝜃8
(𝜃
0
) to the central element, the resulting

weights vector for the SLC is given by

w𝐻SLC (𝜃0) = s𝐻
𝜃
(𝜃
0
)T𝐻(TMT𝐻)

−1

T. (20)

Notice that in this case a 2 × 2 matrix in place of an 8 × 8
matrix has to be inverted.

Figure 5 (dashed-dotted line) shows the array pattern
obtained by weighting the signals received by the antennas
of the selected configuration according to (20), for 𝜃

0
=

120∘, assuming the same disturbance covariancematrix of the
previous examples. The resulting antenna pattern is similar
to the one obtained by exploiting the principal eigenvalue
approach while the main lobe is only slightly broader.

Even in this case, the array pattern strongly attenuates
only the signals coming from the DoA of the direct signal;
therefore, themultipath reflections have to be cancelled by the

adaptive temporal filter; then the 2D-CCFhas to be evaluated,
and a proper CFAR threshold has to be applied to detect
potential targets over the range-Doppler plane.

4.4. Synthesis of the Reference Beam. In order to perform
the adaptive temporal clutter cancellation, the direct signal
is needed [4–6]. This can be obtained by synthesizing, in
addition to the surveillance beam wSURV, a reference beam
wREF pointed to the transmitter. In contrast to some passive
radar systems based on directive antennas, where different
physical antennas are used to collect the reference and the
surveillance signals, the considered system uses the same
antennas to collect both, by combining the received signals
in different ways.

Rather than simply pointing the array beam to the desired
direction, we synthesize a reference beam, orthogonal to the
surveillance, such that

w𝐻REFwSURV (𝜃0) = 0. (21)

Such an orthogonal reference beammay be obtained by using
seven out of the eight elements of the array to point in the
desired direction, while using the central element to satisfy
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Figure 10: Detection results in the presence of a single stationary obstacle (DoA away from targets’ DoAs) for (a) side lobe control by central
element tapering (nonadaptive), (b) optimum filter (c) principal eigenvalue approach, and (d) SLC.

the condition given in (20). Denoting the surveillance and the
reference beams as

wSURV (𝜃0) =
[
[
[
[

[

𝑤SURV1 (𝜃0)

𝑤SURV2 (𝜃0)
...

𝑤SURV8 (𝜃0)

]
]
]
]

]

= [
w𝑅SURV (𝜃0)
𝑤SURV8 (𝜃0)

] ,

wREF =

[
[
[
[
[
[
[

[

𝑠
𝜃1
(𝜃
0
)

𝑠
𝜃2
(𝜃
0
)

...
𝑠
𝜃7
(𝜃
0
)

𝛽

]
]
]
]
]
]
]

]

= [
s𝑅
𝜃
(𝜃
0
)

𝛽
] ,

(22)

respectively, the coefficient 𝛽, which leads to an orthogonal
reference beam, can be readily expressed as

𝛽 = −
w𝑅SURV

𝐻

(𝜃
0
) s𝑅
𝜃
(𝜃
0
)

𝑤SURV8
∗ (𝜃
0
)

. (23)

An example of reference beam orthogonal to the surveillance
one is given in Figure 6.

5. Simulation Results

5.1. Methodology. In this section, a performance compar-
ison is presented between the different approaches, with
reference to the antenna array configuration above selected
and sketched in Figure 2. To this purpose, a signal software
simulator has been developed which is able to generate
the signal received by a multichannel passive bistatic radar
(PBR) under different conditions and exploiting different
waveforms of opportunity. The developed simulator allows
to specify the main parameters of both the transmitter and
the receivers (the 8 receiving channels are supposed to be
identical). Moreover, different bistatic geometries and clutter
scenarios can be given as input data. Aiming at assessing
the detection performance of the considered techniques, PBR
scenarios with a relatively large number of targets have been
considered.

In the following, we refer to an FM radio-based PBR, and
the corresponding waveforms of opportunity are emulated
according to the International Telecommunication Union
(ITU) regulations [18].

The signals received by the eight elements of the array are
then generated as the sum of several contributions, namely,

(i) the direct signal, which is an attenuated and delayed
replica of the FM radio signal;
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Figure 11: Detection results in the presence of a single stationary obstacle (DoA close to targets’ DoAs) for (a) side lobe control by central
element tapering (nonadaptive), (b) optimum filter, (c) principal eigenvalue approach, and (d) SLC.

(ii) the contributions of the stationary obstacles (clut-
ter/multipath), which are still attenuated and delayed
replicas of the FM radio signal;

(iii) the echoes from targets, which are attenuated,
delayed, and Doppler-shifted replicas of the same FM
radio signal;

(iv) the thermal noise, which is modeled as Additive
White Gaussian Noise (AWGN).

The cascade of a spatial cancellation approach followed by
a temporal adaptive cancellation filter is applied against the
simulated data set. Specifically, the batch version of the ECA
is adopted in the temporal dimension [5], while the spatial
approach is selected among those discussed in the previous
sections:

(i) side lobe control by central element tapering (non-
adaptive);

(ii) optimum filter;
(iii) principal eigenvalue approach;
(iv) SLC.

Finally, the range-Doppler map is computed, and the detec-
tion performance is evaluated after the application of a
conventional CFAR detection scheme. Several simulations
have been run to provide averaged results.

5.2. Estimation of the Disturbance Covariance Matrix. As
alreadymentioned, in case adaptive approaches are exploited,
the disturbance covariance matrix has to be estimated from
data. As the level of the useful signal is negligible compared
to the level of the disturbance, the covariance matrix of
the overall signal represents a good approximation of the
disturbance covariance matrix.

Denoting r
𝑖
as the row vector containing 𝑁

𝑆
samples of

the signal received by the 𝑖th antenna, let us define the 8×𝑁
𝑆

matrix R as

R =

[
[
[
[
[
[
[
[
[

[

r
1

r
2

...
r
𝑖

...
r
8

]
]
]
]
]
]
]
]
]

]

. (24)

An estimate of the covariance matrix is given by

M̂ =
1

𝑁
𝑆

RR𝐻. (25)

As far as the estimation accuracy is concerned, the larger the
𝑁
𝑆
is, themore accurate the estimation ofM is. In this specific

application, M has to be estimated accurately enough that
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Figure 12: Detection results in the presence of several stationary obstacles for (a) side lobe control by central element tapering (nonadaptive),
(b) optimum filter, (c) principal eigenvalue approach, and (d) SLC.

the resulting pattern does not differ significantly from the
pattern obtained by using the true covariance matrix M.
In Figure 7, the pattern obtained for different values of 𝑁

𝑆

and for the true covariance matrix is shown, in case the
disturbance only includes the direct signal and the thermal
noise, with power ratio equal to 75 dB. In order to obtain a
pattern very similar to the one obtained by using the true
covariance matrix, at least 𝑁

𝑆
= 1000 samples have to be

used in the estimation. Notice that, for the considered FM
radio-based PBR, assuming a sampling frequency equal to
200 kHz, this number of samples would correspond to a sig-
nal fragment of 5ms whose availability is easily guaranteed.
Moreover, such duration assures the considered disturbance
contribution to be quite stable during the estimation time due
to the stationary characteristics in the spatial dimension.

Nevertheless, as consecutive samples are usually cor-
related (see an example of autocorrelation function of a
received FM radio signal in Figure 8), 𝑁

𝑆
can be reduced, if

nonconsecutive samples are used.

5.3. Detection Performance. In the case study reported in
this paragraph, sixteen targets have been injected in the
simulated data with target-receiver distance ranging from 10
to 100 km, DoAs comprised between 150∘ and 180∘, radial
velocities in the range [−150, 200] m/s, and signal-to-noise

ratios between −35 and −55 dB. Different clutter scenarios are
then considered.

Figures 9(a)–9(d) report the detection results obtained
for different processing schemes in the absence of station-
ary obstacles. As is apparent, the three spatial adaptive
approaches (Figures 9(b)–9(d)) yield comparable perfor-
mance allowing the detection of fourteen out of sixteen
targets (circles indicate the injected targets positions over
the range-Doppler plane). Only eleven out of sixteen targets
are, instead, detected by using the nonadaptive approach (see
Figure 9(a)). In the latter case, in fact, the poor detection
performance is due to the fact that the direct signal, received
with power level 70 dB above thermal noise, is not attenuated
enough by the array pattern of the surveillance beam; there-
fore, the temporal adaptive cancellation of the residual direct
signal implies the cancellation of part of the useful signal as
well.

Similar performances are observed in case a single sta-
tionary obstacle with power level 30 dB above thermal noise,
whose DoA is away from the targets’ DoAs, is introduced in
the scene (see Figure 10).

The detection performances of the three adaptive
schemes are no longer similar when the DoA of the
stationary scatterer is close to the DoAs of some of the
targets (Figure 11). In that case, as is expected, optimum
filter experiences some detection losses, specifically failing
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in detecting targets with DoAs close to the DOA of the
multipath return. In particular, Figure 11(b) shows that the
optimum filter does not detect a target characterized by a
quite short bistatic range/high bistatic RCS because its DoA
is close to that of the obstacle.

Figure 12 reports the detection results obtained for a
simulated scenario containing three stationary obstacles with
clutter-to-noise ratios ranging between 25 and 30 dB. As it is
apparent and as it has been mentioned, the optimum filter
yields an effective removal of all the undesired disturbance
contributions which, however, implies also many of the
injected targets to be lost. In contrast, the exploitation of a
reduced number of d.o.f., as required by the principal eigen-
value approach and the SLC, allows the effective cancellation
of the sole main disturbance contribution typically repre-
sented by the direct signal. However, the clutter/multipath
contributions can be effectively cancelled by the temporal
adaptive filter.This prevents the undesired target cancellation
at the DoA of the strong multipaths thus yielding remarkable
detection performance.

As a final remark, we would like to point out that
the cascading of an antenna-based adaptive technique and
a temporal adaptive cancellation filter makes the system
robust also to the presence of strong interferences in the
exploited signal frequency band. Notice that the ECA is
not effective against such disturbance contributions since, as
long as it is concerned, this filter looks for delayed replicas
of the exploited signal of opportunity. However, cochannel
interferences are typically observed in practical passive radar
applications based on broadcast transmissions due to the
frequency reuse over neighbouring areas.

6. Conclusions

A suitable array configuration for passive radar application
has been identified and optimized by designing a specific
tapering solution. The selected antenna array allows both
to steer the surveillance beam in order to cover a wide
surveillance area and to strongly attenuate the undesired
direct signal in the surveillance channel, thus preserving the
useful dynamic range of the receiver. Three spatial adap-
tive approaches have also been investigated and compared,
showing their effectiveness in removing the undesired con-
tributions from the surveillance PBR signals. A comparative
performance analysis has been carried out among different
processing schemes with reference to a simulated case-
study. It has been shown that the most effective solution is
obtained by resorting to the principal eigenvalue approach
or to the SLC for direct signal spatial suppression, and then
exploiting a temporal adaptive cancellation filter to remove
both direct signal residuals and itsmultipath reflections in the
surveillance channel. In particular, the SLC solution is likely
to be preferred due to its limited complexity.
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Array processing for radar is well established in the literature, but only few of these algorithms have been implemented in real
systems. The reason may be that the impact of these algorithms on the overall system must be well understood. For a successful
implementation of array processing methods exploiting the full potential, the desired radar task has to be considered and all
processing necessary for this task has to be eventually adapted. In this tutorial paper, we point out several viewpoints which
are relevant in this context: the restrictions and the potential provided by different array configurations, the predictability of the
transmission function of the array, the constraints for adaptive beamforming, the inclusion of monopulse, detection and tracking
into the adaptive beamforming concept, and the assessment of superresolution methods with respect to their application in a radar
system. The problems and achieved results are illustrated by examples from previous publications.

1. Introduction

Array processing is well established for radar. Publications of
this topic have appeared for decades, and one might question
what kind of advances we may still expect now. On the other
hand, if we look at existing radar systems we will find very
few methods implemented from the many ideas discussed in
the literature. The reason may be that all processing elements
of a radar system are linked, and it is not very useful to
simply implement an isolated algorithm. The performance
and the property of any algorithm will have an influence on
the subsequent processing steps and on the radar operational
modes. Predictability of the systemperformancewith the new
algorithms is a key issue for the radar designer. Advanced
array processing for radar will therefore require to take
these interrelationships into account and to adapt the related
processing in order to achieve the maximum possible
improvement.The standard handbooks on radar [1, 2] do not
mention this problem. The book of Wirth [3] is an exception
and mentions a number of the array processing techniques
described below.

In this tutorial paper, viewpoints are presented which are
relevant for the implementation of array processingmethods.
We do not present any new sophisticated algorithms, but for
the established algorithms we give examples of the relations

between array processing and preceding and subsequent
radar processing. We point out the problems that have to be
encountered and the solutions that need to be developed. We
start with spatial sampling, that is, the antenna array that has
to be designed to fulfill all requirements of the radar system.
A modern radar is typically a multitasking system. So, the
design of the array antenna has to fulfill multiple purposes in
a compromise. In Section 3, we briefly review the approaches
for deterministic pattern shaping which is the standard
approach of antenna-based interference mitigation. It has the
advantage of requiring little knowledge about the interference
scenario, but very precise knowledge about the array trans-
fer function (“the array manifold”). Adaptive beamforming
(ABF) is presented in Section 4. This approach requires little
knowledge about the array manifold but needs to estimate
the interference scenario from some training data. Superres-
olution for best resolution of multiple targets is sometimes
also subsumed under adaptive beamforming as it resolves
everything, interference and targets. These methods are con-
sidered in Section 5. We consider superresolution methods
here solely for the purpose of improved parameter estimation.
In Section 6, we briefly mention the canonical extension
of ABF and superresolution to space-time array processing.
Section 7 is the final and most important contribution. Here
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we point out how direction estimation must be modified if
adaptive beams are used, and how the radar detector, the
tracking algorithm, and the track management should be
adapted for ABF.

2. Design Factors for Arrays

Array processing starts with the array antenna. This is hard-
ware and is a selected construction that cannot be altered.
It must therefore be carefully designed to fulfill all require-
ments. Digital array processing requires digital array outputs.
The number and quality of these receivers (e.g., linearity and
number of ADC bits) determine the quality and the cost of
the whole system. It may be desirable to design a fully digital
array with AD-converters at each antenna element. However,
weight and cost will often lead to a system with reduced
number of digital receivers. On the other hand, because
of the 1/𝑅4-decay of the received power, radar needs antennas
with high gain and high directional discrimination, which
means arrays with many elements. There are different solu-
tions to solve this contradiction.

(i) Thinned arrays: the angular discrimination of an
array with a number of elements can be improved
by increasing the separation of the elements and thus
increasing the aperture of the antenna. Note that the
thinned array has the same gain as the corresponding
fully filled array.

(ii) Subarrays: element outputs are summed up in an
analog manner into subarrays which are then AD-
converted and processed digitally. The size and the
shape of the subarrays are an important design cri-
terion. The notion of an array with subarrays is very
general and includes the case of steerable directional
array elements.

2.1. Impact of the Dimensionality of the Array. Antenna ele-
ments may be arranged on a line (1-dimensional array), on a
plane (a ring or a 2-dimensional planar array), on a curved
surface (conformal array), or within a volume (3D-array,
also called Crow’s Nest antenna, [3, Section 4.6.1]). A 1-
dimensional array can only measure one independent angle;
2D and 3D arrays can measure the full polar coordinates in
R3.

Antenna element design and the need for fixing elements
mechanically lead to element patterns which are never omni-
directional. The elements have to be designed with patterns
that allow a unique identification of the direction. Typically,
a planar array can only observe a hemispherical half space.
To achieve full spherical coverage, several planar arrays can
be combined (multifacetted array), or a conformal or volume
array may be used.

2.1.1. Arrays with Equal Patterns. For linear, planar, and vol-
ume arrays, elements with nearly equal patterns can be
realized. These have the advantage that the knowledge of the
element pattern is for many array processing methods not
necessary. An equal complex value can be interpreted as a
modified target complex amplitude, which is often a nuisance

parameter. More important is that, if the element patterns
are really absolutely equal, any cross-polar components of the
signal are in all channels equal and fulfill the array model in
the sameway as the copolar components; that is, they produce
no error effect.

2.1.2. Arrays with Unequal Array Patterns. This occurs typi-
cally by tilting the antenna elements as is done for conformal
arrays. For a planar array, this tilt may be used to realize an
array with polarization diversity. Single polarized elements
are then mounted with orthogonal alignment at different
positions. Such an array can provide some degree of dual
polarization receptionwith single channel receivers (contrary
to more costly fully polarimetric arrays with receivers for
both polarizations for each channel).

Common to arrays with unequal patterns is that we have
to know the element patterns for applying array processing
methods. The full element pattern function is also called the
array manifold. In particular, the cross-polar (or short 𝑥-pol)
component has a different influence for each element. This
means that if this component is not known and if the 𝑥-pol
component is not sufficiently attenuated, it can be a signifi-
cant source of error.

2.2. Thinned Arrays. To save the cost of receiving modules,
sparse arrays are considered, that is, with fewer elements than
the full populated 𝜆/2 grid. Because such a “thinned array”
spans the same aperture, it has the same beamwidth. Hence,
the angular accuracy and resolution are the same as the fully
filled array. Due to the gaps, ambiguities or at least high side-
lobesmay arise. In early publications like [1], it was advocated
to simply take out elements of the fully filled array. It was
early recognized that this kind of thinning does not imply
“sufficiently random” positions. Random positions on a 𝜆/16
grid as used in [3, Chapter 17] can provide quite acceptable
patterns. Note that the array gain of a thinned array with 𝑁
elements is always 𝑁, and the average sidelobe level is 1/𝑁.
Today, we know from the theory of compressed sensing that
a selection of sufficiently random positions can produce a
unique reconstruction of a not too large number of impinging
wave fields with high probability [5].

2.3. Arrays with Subarrays. If a high antenna gain with low
sidelobes is desired one has to go back to the fully filled
array. For large arrays with thousands of elements, the large
number of digital channel constitutes a significant cost factor
and a challenge for the resulting data rate. Therefore, often
subarrays are formed, and all digital (adaptive) beamforming
and sophisticated array processing methods are applied to
the subarray outputs. Subarraying is a very general concept.
At the elements, we may have phase shifters such that all
subarrays are steered into a given direction and wemay apply
some attenuation (tapering) to influence the sidelobe level.
The sum of the subarrays then gives the sum beam output.
The subarrays can be viewed as a superarray with elements
having different patterns steered into the selected direction.
The subarrays should have unequal size and shape to avoid
grating effects for subsequent array processing, because the
subarray centers constitute a sparse array (for details, see [6]).
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Figure 1: Principle of forming subarrays.

The principle is indicated in Figure 1, and properties and
options are described in [6, 7]. In particular, one can also
combine new subarrays at the digital level or distribute the
desired tapering over the analog level (1) and various digital
levels (2) ⋅ ⋅ ⋅ (𝑛).

Beamforming using subarrays can be mathematically
described by a simple matrix operation. Let the complex
array element outputs be denoted by z. The subarray forming
operation is described by a subarray forming matrix T by
which the element outputs are summed up as z̃ = T𝐻z. For 𝐿
subarrays and𝑁 antenna elements, T is of size𝑁×𝐿. Vectors
and matrices at the subarray outputs are denoted by the tilde.
Suppose we steer the array into a look direction (𝑢

0
, V
0
) =:

u
0
by applying phase shifts 𝑎

𝑖
(u
0
) = 𝑒𝑗2𝜋𝑓0(𝑥𝑖𝑢0+𝑦𝑖V0)/𝑐 and

apply additional amplitude weighting 𝑔
𝑖
at the elements (real

vector of length 𝑁) for a sum beam with low sidelobes,
then we have a complex weighting 𝑔

𝑖
𝑎
𝑖
(u
0
) which can be

included in the elements of thematrixT. Here,𝑓
0
denotes the

centre frequency, 𝑥
𝑖
, 𝑦
𝑖
denote the coordinates of the 𝑖th array

element, 𝑐 denotes the velocity of light, and 𝑢, V denote the
components of the unit direction vector in the planar antenna
(𝑥, 𝑦)-coordinate system. The beams are formed digitally
with the subarray outputs by applying a final weighting
�̃�
𝑖
(𝑖 = 1, . . . , 𝐿) as

𝑦 = m̃𝐻z̃. (1)

In the simplest case, m̃ consists of only ones. The antenna
pattern of such a sum beam can then be written as

𝑓 (u) = m̃𝐻T𝐻a (u) = m̃𝐻ã (u) , (2)

where a(u) = (𝑎
𝑖
(u))

𝑖=1⋅⋅⋅𝑁
and ã(u) = T𝐻a(u) denotes

the plane wave response at the subarray outputs. All kinds
of beams (sum, azimuth and elevation difference, guard
channel, etc.) can be formed from these subarray outputs.We
can also scan the beam digitally at subarray level into another
direction, [7].

Figure 2: 2D generic array with 902 elements grouped into 32
subarrays.

Figure 2 shows a typical planar arraywith 902 elements on
a triangular gridwith 32 subarrays.The shape of the subarrays
was optimized by the technique of [6] such that the difference
beams have low sidelobes when a −40 dB Taylor weighting is
applied at the elements. We will use this array in the sequel
for presenting examples.

An important feature of digital beamforming with subar-
rays is that the weighting for beamforming can be distributed
between the element level (the weighting incorporated in the
matrix T) and the digital subarray level (the weighting m̃).
This yields some freedom in designing the dynamic range of
amplifiers at the elements and the level of the AD-converter
input.This freedom also allows to normalize the power of the
subarray outputs such that T𝐻T = I. As will be shown in
Section 4, this is also a reasonable requirement for adaptive
interference suppression to avoid pattern distortions.
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Figure 3: Low sidelobes by amplitude tapering.

2.4. Space-Time Arrays. Coherent processing of a time series
𝑧
1
, . . . , 𝑧

𝐾
can be written as a beamforming procedure as in

(1). For a time series of array snapshots z
1
, . . . , z

𝐾
, we have

therefore a double beamforming procedure of the space-time
data matrix Z = (z

1
, . . . , z

𝐾
) of the form

𝑆 = m𝐻

𝑠
Zm

𝑡
, (3)

where m
𝑠
, m

𝑡
denote the weight vectors for spatial and

temporal beamforming, respectively. Using the rule of Kro-
necker products, (3) can be written as a single beamforming
operation

𝑆 = (m
𝑡
⊗m

𝑠
)
𝐻 vec {Z} , (4)

where vec{Z} is a vector obtained by stacking all columns of
the matrix Z on top. This shows that mathematically it does
not matter whether the data come from spatial or tem-
poral sampling. Coherent processing is in both cases a
beamforming-type operation with the correspondinglymod-
ified beamforming vector. Relation (4) is often exploited
when spatial and temporal parameters are dependent (e.g.,
direction and Doppler frequency as in airborne radar; see
Section 6).

3. Antenna Pattern Shaping

Conventional beamforming is the same as coherent integra-
tion of the spatially sampled data; that is, the phase differences
of a plane wave signal at the array elements are compensated,
and all elements are coherently summed up. This results
in a pronounced main beam when the phase differences
match with the direction of the plane wave and result in
sidelobes otherwise.The beam shape and the sidelobes can be
influenced by additional amplitude weighting.

Let us consider the complex beamforming weights 𝑤
𝑖
=

𝑔
𝑖
𝑒𝑗2𝜋𝑓r

𝑇

𝑖
u/𝑐, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁. The simplest way of pattern shaping

is to impose some bell-shaped amplitude weighting over the
aperture like 𝑔

𝑖
= cos](𝜋𝑥

𝑖
/𝐴) + 𝛼 (for suitable constants ],

𝛼), or 𝑔
𝑖
= 𝑒−]𝑥

2

𝑖 . The foundation of these weightings is quite
heuristical. The Taylor weighting is optimized in the sense
that it leaves the conventional (uniformly weighted) pattern
undistorted except for a reduction of the first 𝑛 sidelobes
below a prescribed level. The Dolph-Chebyshev weighting
creates a pattern with all sidelobes equal to a prescribed level.
Figure 3 shows examples of such patterns for a uniform linear
array with 40 elements. The taper functions for low sidelobes
were selected such that the 3 dB beamwidth of all patterns
is equal. The conventional pattern is plotted for reference
showing how tapering increases the beamwidth. Which of
these taperings may be preferred depends on the emphasis
on close in and far off sidelobes. Another point of interest is
the dynamic range of the weights and the SNR loss, because at
the array elements only attenuations can be applied. One can
see that the Taylor tapering has the smallest dynamic range.
For planar arrays the efficiency of the taperings is slightly
different.

The rationale for low sidelobes is that we want to min-
imize some unknown interference power coming over the
sidelobes. This can be achieved by solving the following
optimization problem, [8]:

minw ∫
Ω


w𝐻a (u)

2

𝑝 (u) 𝑑u

subject to w𝐻a
0
= 1, or equivalently

minw wCw

s.t. w𝐻a
0
= 1,

with C = ∫
Ω

a (u) a(u)𝐻𝑝 (u) 𝑑u.

(5)
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Figure 4: Antenna patterns of planar array with reduced sidelobes at lower elevations for different beam pointing directions (by courtesy of
W. Bürger of Fraunhofer (FHR)).

Ω denotes the angular sector where we want to influence the
pattern, for example, the whole visible region 𝑢2+V2 < 1, and
𝑝 is aweighting functionwhich allows to put different empha-
sis on the criterion in different angular regions. The solu-
tion of this optimization is

w =
C−1a

0

a𝐻
0
C−1a

0

. (6)

For the choice of the function 𝑝, we remark that for a global
reduction of the sidelobes when Ω = {u ∈ R2 | 𝑢2 + V2 ≤ 1},
one should exclude the main beam from theminimization by
setting 𝑝 = 0 on this set of directions (in fact, a slightly larger
region is recommended, e.g., the null-to-null width) to allow
a certain mainbeam broadening. One may also form discrete
nulls in directions u

1
, . . . , u

𝑀
by setting 𝑝(u) = ∑

𝑀

𝑘=1
𝛿(u −

u
𝑘
). The solution of (5) then can be shown to be

w =
Pa

0

a𝐻
0
Pa

0

with P = I − A (A𝐻A)
−1

A𝐻,

A = (a (u
1
) , . . . , a (u

𝑀
)) .

(7)

This is just the weight for deterministic nulling. To avoid
insufficient suppression due to channel inaccuracies, onemay
also create small extended nulls using the matrixC. The form
of these weights shows the close relationship to the adaptive
beamforming weights in (11) and (17).

An example for reducing the sidelobes in selected areas
where interference is expected is shown in Figure 4.This is an
application from an airborne radar where the sidelobes in the
negative elevation space have been lowered to reduce ground
clutter.

4. Adaptive Interference Suppression

Deterministic pattern shaping is applied if we have rough
knowledge about the interference angular distribution. In the
sidelobe region, this method can be inefficient because the
antenna response to a plane wave (the vector a(u)) must be
exactly known which is in reality seldom the case. Typically,
much more suppression is applied than necessary with the
price paid by the related beam broadening and SNR loss.
Adaptive interference suppression needs no knowledge of the
directional behavior and suppresses the interference only as
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much as necessary. The proposition for this approach is that
we are able to measure or learn in some way the adaptive
beamforming (ABF) weights.

In the sequel, we formulate the ABF algorithms for
subarray outputs as described in (1). This includes element
space ABF for subarrays containing only one element.

4.1. Adaptive Beamforming Algorithms. Let us first suppose
that we know the interference situation; that is, we know the
interference covariance matrix Q. What is the optimum
beamforming vectorw? From the Likelihood Ratio test crite-
rion, we know that the probability of detection is maximized
if we choose the weight vector that maximizes the signal-to-
noise-plus-interference ratio (SNIR) for a given (expected)
signal a

0
,

max
w


w𝐻a

0



2

𝐸 {
w𝐻n


2
}
= max

w


w𝐻a

0



2

w𝐻Qw
. (8)

The solution of this optimization is

w = 𝜇Q−1a
0

with Q = 𝐸 {nn𝐻} . (9)

𝜇 is a free normalization constant and n denotes interference
and receiver noise. This weighting has a very intuitive inter-
pretation. If we decomposeQ−1 = LL𝐻 and apply this weight
to the data, we havew𝐻z = a𝐻

0
Q−1z = a𝐻

0
L𝐻Lz = (La

0
)
𝐻
(Lz).

This reveals that ABF does nothing else but a pre-whiten
and match operation: if z contains only interference, that is,
𝐸{zz𝐻} = Q, then 𝐸{(Lz)(Lz)𝐻} = I, the prewhitening oper-
ation; the operation of L on the (matched) signal vector a

0

restores just the matching necessary with the distortion from
the prewhitening operation.

This formulation for weight vectors applied at the array
elements can be easily extended to subarrays with digital
outputs. As mentioned in Section 2.3, a subarrayed array can
be viewed as a superarray with directive elements positioned
at the centers of the subarrays. This means that we have only
to replace the quantities a, n by ã = T𝐻a, ñ = T𝐻n. However,
there is a difference with respect to receiver noise. If the
noise at the elements is white with covariance matrix 𝜎

2I
it will be at subarray outputs with covariance matrix Q̃ =

𝜎2T𝐻T. Adaptive processing will turn this into white noise.
Furthermore, if we apply at the elements some weighting for
low sidelobes, which are contained in the matrix T, ABF will
reverse this operation by the pre-whiten and match principle
and will distort the low sidelobe pattern. This can be avoided
by normalizing the matrix T such that TT𝐻 = I. This can be
achieved by normalizing the element weight as mentioned in
Section 2.3 (for nonoverlapping subarrays).

Sometimes interference suppression is realized by min-
imizing only the jamming power subject to additional con-
straints, for example, w𝐻c

𝑖
= 𝑘

𝑖
, for suitable vectors c

𝑖

and numbers 𝑘
𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑟. Although this is an intuitively

reasonable criterion, it does not necessarily give the maxi-
mum SNIR. For certain constraints however both solutions

are equivalent. The constrained optimization problem can be
written in general terms as

minw w𝐻Q w

s.t. w𝐻C = k (or w𝐻c
𝑖
= 𝑘

𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑟) ,

(10)

and it has the solution

w =

𝑟

∑
𝑖=1

𝜆
𝑖
Q−1c

𝑖
= Q−1C (C𝐻Q−1C)

−1

k. (11)

Examples of special cases are as follows:

(i) Single unit gain directional constraint: w𝐻a
0
= 1 ⇒

w = (a𝐻
0
Q−1a

0
)
−1Q−1a

0
. This is obviously equivalent

to the SNIR-optimum solution (9) with a specific
normalization.

(ii) Gain and derivative constraint: w𝐻a
0
= 1, w𝐻a

0
=

0 ⇒ w = 𝜇Q−1a
0
+𝜅Q−1a

0
with suitable values of the

Lagrange parameters 𝜇, 𝜆. A derivative constraint is
added to make the weight less sensitive against mis-
match of the steering direction.

(iii) Gain and norm constraint: w𝐻a
0
= 1, w𝐻w = 𝑐 ⇒

w = 𝜇(Q + 𝛿I)−1a
0
. The norm constraint is added to

make the weight numerically stable.This is equivalent
to the famous diagonal loading technique which we
will consider later.

(iv) Norm constraint only:w𝐻w = 1 ⇒ w = min𝐸𝑉(Q).
Without a directional constraint the weight vector
produces a nearly omnidirectional pattern, but with
nulls in the interference directions. This is also called
the power inversion weight, because the pattern
displays the inverted interference power.

As we mentioned before, fulfilling the constraints may imply
a loss in SNIR. Therefore, several techniques have been
proposed to mitigate the loss. The first idea is to allow a
compromise between power minimization and constraints
by introducing coupling factors 𝑏

𝑖
and solve a soft constraint

optimization

minw w𝐻Qw +

𝑟

∑
𝑖=1

𝑏
𝑖


w𝐻c

𝑖
− 𝑘

𝑖



2

or

minw w𝐻Qw + (w𝐻C − k)
𝐻

B (w𝐻C − k)

(12)

with B = diag{𝑏
1
, . . . , 𝑏

𝑟
}. The solution of the soft-constraint

optimization is

w = (Q + CBC𝐻)
−1

CBk. (13)

One may extend the constrained optimization by adding
inequality constraints. This leads to additional and improved
robustness properties. A number of methods of this kind
have been proposed, for example, in [9–12]. As we are only
presenting the principles here we do not go into further
details.



International Journal of Antennas and Propagation 7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

u

20 20 20

(d
B)

(a) Adapted antenna pattern

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

20 20
20

SN
IR

 (d
B)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

u

(b) SNIR

Figure 5: Antenna and normalized SNIR patterns for a three jammer configuration and generic array.

The performance of ABF is often displayed by the adapted
antenna pattern. A typical adapted antenna pattern with 3
jammers of 20 dB SNR is shown in Figure 5(a) for generic
array of Figure 2. This pattern does not show how the actual
jamming power and the null depth play together.

Plots of the SNIR are better suited for displaying this
effect. The SNIR is typically plotted for varying target direc-
tion while the interference scenario is held fixed, as seen
in Figure 5(b). The SNIR is normalized to the SNR in the
clear absence of any jamming and without ABF. In other
words, this pattern shows the insertion loss arising from the
jamming scenario with applied ABF.

The effect of target and steering directionmismatch is not
accounted for in the SNIR plot. This effect is displayed by
the scan pattern, that is, the pattern that arises if the adapted
beam scans over a fixed target and interference scenario. Such
a plot is rarely shown because of the many parameters to
be varied. In this context, we note that for the case that the
training data contains the interference and noise alone the
main beam of the adapted pattern is fairly broad similar to
the unadapted sum beam and is therefore fairly insensitive
to pointing mismatch. How to obtain an interference-alone
covariance matrix is a matter of proper selection of the
training data as mentioned in the following section.

Figure 5 shows the case of an untapered planar antenna.
The first sidelobes of the unadapted antenna pattern are at
−17 dB and are nearly unaffected by the adaptation process.
If we have an antenna with low sidelobes, the peak sidelobe
level is much more affected; see Figure 6. Due to the tapering
we have a loss in SNIR of 1.7 dB compared to the reference
antenna (untapered without ABF and jamming).

4.2. Estimation of Adaptive Weights. In reality, the interfer-
ence covariance matrix is not known and must be estimated
from some training data Z = (z

1
, . . . , z

𝐾
). To avoid signal

cancellation, the training data should only contain the inter-
ference alone. If we have a continuously emitting interference
source (noise jammer) one may sample immediately after or

before the transmit pulse (leading or rear dead zone). On
the other hand, if we sample the training data before pulse
compression the desired signal is typically much below the
interference level, and signal cancellation is negligible. Other
techniques are described in [13]. The maximum likelihood
estimate of the covariance matrix is then

Q̂SMI =
1

𝐾

𝐾

∑
𝑘=1

z
𝑘
z𝐻
𝑘
. (14)

This is called the Sample Matrix Inversion algorithm (SMI).
The SMI method is only asymptotically a good estimate. For
small sample size, it is known to be not very stable. Formatrix
invertibility, we need at least 𝐾 = 𝑁 samples. According to
Brennan’s Rule, for example, [1], one needs 2𝐾 samples to
obtain an average loss in SNIR below 3 dB. For smaller sample
size, the performance can be considerably worse. However,
by simply adding a multiple of the identity matrix to the SMI
estimate, a close to optimum performance can be achieved.
This is called the loaded sample matrix estimate (LSMI)

Q̂LSMI =
1

𝐾

𝐾

∑
𝑘=1

z
𝑘
z𝐻
𝑘
+ 𝛿 ⋅ I. (15)

The drastic difference between SMI and LSMI is shown in
Figure 7 for the planar array of Figure 2 for three jammers
of 20 dB input JNR with 32 subarrays and only 32 data
snapshots. For a “reasonable” choice of the loading factor (a
rule of thumb is 𝛿 = 2𝜎2 ⋅ ⋅ ⋅ 4𝜎2 for an untapered antenna)
we need only 2𝑀 snapshots to obtain a 3 dB SNIR loss, if
𝑀 denotes the number of jammers (dominant eigenvalues)
present, [13]. So the sample size can be considerably lower
than the dimension of the matrix. The effect of the loading
factor is that the dynamic range of the small eigenvalues is
compressed. The small eigenvalues possess the largest statis-
tical fluctuation but have the greatest influence on the weight
fluctuation due to the matrix inversion.
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Figure 6: Antenna and normalized SNIR patterns for a three jammer configuration for antennawith low sidelobes (−40 dBTaylor weighting).
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One may go even further and ignore the small eigenvalue
estimates completely; that is, one tries to find an estimate
of the inverse covariance matrix based on the dominant
eigenvectors and eigenvalues. For high SNR, we can replace
the inverse covariancematrix by a projectionmatrix. Suppose
we have 𝑀 jammers with amplitudes 𝑏

1
(𝑡), . . . , 𝑏

𝑀
(𝑡) in

directionsu
1
, . . . , u

𝑀
. If the received data has the form z(𝑡

𝑘
) =

∑
𝑀

𝑚=1
a(u

𝑚
)𝑏
𝑚
(𝑡
𝑘
) + n(𝑡

𝑘
), or short z

𝑘
= Ab

𝑘
+ n

𝑘
, then

𝐸 {zz𝐻} = Q = ABA𝐻 + I. (16)

Here, we have normalized the noise power to 1 and B =

𝐸{bb𝐻}. Using the matrix inversion lemma, we have

Q−1
= I − A(B−1 + A𝐻A)

−1

A𝐻

→

B→∞

I − A(A𝐻A)
−1

A𝐻 = P⊥A.
(17)

P⊥A is a projection on the space orthogonal to the columns
of A. For strong jammers, the space spanned by the columns
of A will be the same as the space spanned by the dominant
eigenvectors. We may therefore replace the estimated inverse
covariance matrix by a projection on the complement of the
dominant eigenvectors. This is called the EVP method. As
the eigenvectors X are orthonormalized, the projection can
be written as P⊥

𝑋
= I − XX𝐻.

Figure 7 shows the performance of the EVP method
in comparison with SMI, LSMI. Note the little difference
between LSMI and EVP. The results with the three methods
are based on the same realization of the covariance estimate.

For EVP, we have to know the dimension of the jammer
subspace (dimJSS). In complicated scenarios and with chan-
nel errors present, this value can be difficult to determine.
If dimJSS is grossly overestimated, a loss in SNIR occurs.
If dimJSS is underestimated the jammers are not fully sup-
pressed. One is therefore interested in subspacemethodswith
low sensitivity against the choice of the subspace dimension.
This property is achieved by a “weighted projection,” that is,
by replacing the projection by

PLMI = I − XDX𝐻, (18)

where D is a diagonal weighting matrix and X is a set
orthonormal vectors spanning the interference subspace.
PLMI does not have the mathematical properties of a projec-
tion. Methods of this type of are called lean matrix inversion
(LMI). A number of methods have been proposed that can be
interpreted as an LMImethodwith different weightingmatri-
cesD.The LMImatrix can also be economically calculated by
an eigenvector-free QR-decomposition method, [14].

One of themost efficientmethods for pattern stabilization
while maintaining a low desired sidelobe level is the con-
strained adaptive pattern synthesis (CAPS) algorithm, [15],
which is also a subspace method. Let m be the vector for
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beamforming with low sidelobes in a certain direction. In full
generality, the CAPS weight can be written as

wCAPS =
1

m𝐻R̂−1m
Q̂−1

SMIm − X
⊥
(X𝐻

⊥
CX

⊥
)
−1

× X𝐻
⊥
C(

1

m𝐻R̂−1m
Q̂−1

SMIm −m) ,

(19)

where the columns of the matrix X
⊥
span the space orthog-

onal to [X,m] and X is again a unitary 𝐿 × 𝑀 matrix
with columns spanning the interference subspace which is
assumed to be of dimension𝑀. C is a directional weighting
matrix, C = ∫

Ω
a(u)a(u)𝐻𝑝(u)𝑑u, Ω denotes the set of direc-

tions of interest, and 𝑝(u) is a directional weighting function.
If we use no directional weighting, C ≈ I, the CAPS weight
vector simplifies to

wCAPS = m + P
[X,m] (

1

m𝐻R̂−1m
Q̂−1

SMIm −m) , (20)

where P
[X,m] denotes the projection onto the space spanned

by the columns of X andm.

4.3. Determination of the Dimension of Jammer Subspace
(dimJSS). Subspace methods require an estimate of the
dimension of the interference subspace. Usually this is
derived from the sample eigenvalues. For complicated scenar-
ios and small sample size, a clear decision ofwhat constitutes a
dominant eigenvaluemay be difficult.There are two principle
approaches to determine the number of dominant eigenval-
ues, information theoretic criteria and noise power tests.

The information theoretic criteria are often based on the
sphericity test criterion; see, for example, [16],

𝑇 (𝑚) =
(1/ (𝑁 − 𝑚))∑

𝑁

𝑖=𝑚+1
𝜆
𝑖

(∏
𝑁

𝑖=𝑚+1
𝜆
𝑖
)
1/(𝑁−𝑚)

, (21)

where 𝜆
𝑖
denote the eigenvalues of the estimated covariance

matrix ordered in decreasing magnitude. The ratio of the
arithmetic to geometric mean of the eigenvalues is a measure
of the equality of the eigenvalues. The information theoretic
criteriaminimize this ratio with a penalty function added; for
example, the Akaike Information Criterion (AIC) and Min-
imum Description Length (MDL) choose dimJSS �̂� as the
minimum of the following functions:

AIC (𝑚) = 𝐾 (𝑁 − 𝑚) log [𝑇 (𝑚)] + 𝑚 (2𝑁 − 𝑚)

MDL (𝑚) = 𝐾 (𝑁 − 𝑚) log [𝑇 (𝑚)] + (𝑚
2
) (2𝑁 − 𝑚) log𝐾.

(22)

The noise power threshold tests (WNT) assume that the noise
power 𝜎2 is known and just check the estimated noise power
against this value, [16]. This leads to the statistic

𝐿 (𝑚) =
2𝐾

𝜎2

𝑁

∑
𝑖=𝑚+1

𝜆
𝑖
, (23)
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and the decision is found if the test statistic is for the first time
below the threshold:

for 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁 do

if 𝐿 (𝑚) ≤ 𝜒
2

2𝐾(𝑁−𝑚);𝛼
: �̂� = 𝑚; STOP;

end.

(24)

The symbol 𝜒2
𝑟;𝛼

denotes the 𝛼-percentage point of the 𝜒2-
distribution with 𝑟 degrees of freedom. The probability to
overestimate dimJSS is then asymptotically bounded by 𝛼.
More modern versions of this test have been derived, for
example, [17].

For small sample size, AIC and MDL are known for
grossly overestimating the number of sources. In addition,
bandwidth and array channels errors lead to a leakage of
the dominant eigenvalues into the small eigenvalues, [18].
Improved eigenvalue estimates for small sample size can mit-
igate this effect. The simplest way could be to use the asymp-
totic approximation using the well-known linkage factors,
[19],

̂̂
𝜆
𝑖
= �̂�

𝑖
−
1

𝐾
�̂�
𝑖

𝑁

∑
𝑗=1

𝑗 ̸= 𝑖

�̂�
𝑖

�̂�
𝑖
− �̂�

𝑗

. (25)

More refined methods are also possible; see [16]. However,
as explained in [16], simple diagonal loading can improve
AIC and MDL for small sample size and make these criteria
robust against errors. For the WNT this loading is contained
in the setting of the assumed noise level 𝜎2. Figure 8 shows
an example of a comparison of MDL and AIC without any
corrections,MDL andWNTwith asymptotic correction (25),
and MDL and WNT with diagonal loading of 𝜇 = 1𝜎2. The
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threshold for WNT was set for a probability to overestimate
the target number of 𝛼 = 10%. The scenario consists of four
sources at 𝑢 = −0.7, −0.55, −0.31, −0.24 with SNR of 18, 6, 20,
20.4 dB and a uniform linear antenna with 14 elements and
10% relative bandwidth leading to some eigenvalue leakage.
Empirical probabilities were determined from 100 Monte
Carlo trials. Note that the asymptotic correction seems to
work better for WNT than for MDL. With diagonal loading,
all decisions with both MDL and WNT were correct (equal
to 4).

A more thorough study of the small sample size dimJSS
estimation problem considering the “effective number of
identifiable signals” has been performed in [20], and a new
modified information theoretic criterion has been derived.

5. Parameter Estimation and Superresolution

The objective of radar processing is not to maximize the SNR
but to detect targets and determine their parameters. For
detection, the SNR is a sufficient statistic (for the likelihood
ratio test); that is, if we maximize the SNR we maximize also
the probability of detection. Only for these detected targets
we have then a subsequent procedure to estimate the target
parameters: direction, range, and possibly Doppler. Standard
radar processing can be traced back to maximum likelihood
estimation of a single target which leads to the matched filter,
[21]. The properties of the matched filter can be judged by
the beam shape (for angle estimation) and by the ambiguity
function (for range andDoppler estimation). If the ambiguity
function has a narrow beam and sufficiently low sidelobes,
the model of a single target is a good approximation as other
targets are attenuated by the sidelobes. However, if we have
closely spaced targets or high sidelobes, multiple target mod-
els have to be used for parameter estimation. A variety of such
estimation methods have been introduced which we term
here “superresolution methods.” Historically, these methods
have often been introduced to improve the limited resolution
of the matched filter.

5.1. Superresolution. The resolution limit for classical beam-
forming is the 3 dB beamwidth. An antenna array provides
spatial samples of the impinging wavefronts, and one may
define a multitarget model for this case. This opens the
possibility for enhanced resolution.Thesemethods have been
discussed since decades, and textbooks on this topic are avail-
able, for example, [22]. We formulate here the angle param-
eter estimation problem (spatial domain), but corresponding
versions can be applied in the time domain as well. In the
spatial domain, we are faced with the typical problems of
irregular sampling and subarray processing.

From the many proposed methods, we mention here
only some classical methods to show the connections and
relationships. We have spectral methods which generate a
spiky estimate of the angular spectral density like.

Capon’s method:

𝑆
𝐶 (u) = (a(u)𝐻R̂−1MLa (u))

−1

with R̂ML =
1

𝐾

𝐾

∑
𝑘=1

z
𝑘
z𝐻
𝑘
,

(26)

and MUSIC method (Multiple Signal Classification):

𝑆MUSIC (u) = (a(u)𝐻P⊥a (u))
−1

, (27)

with P⊥ = I −XX𝐻, and X spanning the dominant subspace.
An LMI-version instead of MUSIC would also be possible.
The target directions are then found by the𝑀highestmaxima
of these spectra (𝑀 1- or 2-dimensional maximizations).

An alternative group ofmethods are parametricmethods,
which deliver only a set of “optimal” parameter estimates
which explain in a sense the data for the inserted model by
𝑀 or 2𝑀 dimensional optimization [21].

Deterministic ML method (complex amplitudes are
assumed deterministic):

𝐹det (𝜃) = tr (P⊥AR̂ML) , with P⊥A = I − A(A𝐻A)
−1

A𝐻,

A = (a (u
1
) , . . . , a (u

𝑀
)) .

(28)

Stochastic ML method (complex amplitudes are complex
Gaussian):

𝐹sto (𝜃) = logdet (R (𝜃)) + tr (R(𝜃)−1R̂ML) , (29)

whereR(𝜃) denotes the completely parameterized covariance
matrix. A formulation with the unknown directions as the
only parameters can be given as

𝐹sto (𝜃) = det {A (𝜃)B (𝜃)A𝐻 (𝜃) + 𝜎2 (𝜃) I} with

𝜎
2
(𝜃) =

1

𝑁 −𝑀
tr {P⊥AR̂ML} ,

B (𝜃) = (A𝐻A)
−1

A𝐻 (R̂ML − 𝜎
2
(𝜃) I)A(A𝐻A)

−1

for A = A (𝜃) .

(30)

The deterministic ML method has some intuitive interpreta-
tions:

(1) 𝐹det(𝜃)= (1/𝐾)∑
𝐾

𝑘=1 z
𝐻

𝑘
P⊥Az𝑘 = (1/𝐾)∑

𝐾

𝑘=1
‖P⊥Az𝑘‖

2
=

(1/𝐾)∑
𝐾

𝑘=1
‖z
𝑘
− A(A𝐻A)−1A𝐻z

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=b̂

‖
2

, which means

that the mean squared residual error after signal
extraction is minimized.

(2) 𝐹det(𝜃) = 𝐶 − ∑
𝐾

𝑘=1
z𝐻
𝑘
A(A𝐻A)−1A𝐻z

𝑘
, which can

be interpreted as maximizing a set of decoupled sum
beams (a𝐻(u

1
)zk, . . . , a𝐻(u𝑀)zk).

(3) 𝐹det(𝜃) = 𝐶−a𝐻nullR̂anull/a
𝐻

nullanull with anull = P⊥Ăa(u),
where we have partitioned the matrix of steering
vectors into A = (a, Ă). This property is valid due to
the projection decomposition lemma which says that
for any partitioning A = (F,G) we can write P⊥A =

P⊥G−P
⊥

GF(F
𝐻P⊥GF)

−1F𝐻P⊥G. If we keep the directions in
Ăfixed, this relation says thatwe have tomaximize the
scan pattern over uwhile the sources in the directions
of Ă are deterministically nulled (see (7)). One can
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Figure 9: MUSIC spectra with a planar array of 7 elements.

now perform the multidimensional maximization by
alternating 1-dimensionalmaximizations and keeping
the remaining directions fixed. This is the basis of the
alternating projection (AP) method or IMP (Incre-
mental MultiParameter) method, [22, page 105].

A typical feature of the MUSIC method is illustrated in
Figure 9. This figure shows the excellent resolution in sim-
ulation while for real data the pattern looks almost the same
as with Capon’s method.

A result with real data with the deterministic MLmethod
is shown in Figure 10.Minimizationwas performed here with
a stochastic approximation method. This example shows in
particular that the deterministicML-method is able to resolve
highly correlated targets which arise due to the reflection on
the sea surface for low angle tracking. The behavior of the
monopulse estimates reflect the variation of the phase differ-
ences of direct and reflected path between 0∘ and 180∘. For
0∘ phase difference the monopulse points into the centre, for
180∘ it points outside the 2-target configuration.

The problems of superresolution methods are described
in [21, 23]. A main problem is the numerical effort of finding
the 𝑀 maxima (one 𝑀-dimensional optimization or 𝑀 1-
dimensional optimizations for a linear antenna). To mitigate
this problem a stochastic approximation algorithm or the
IMP method has been proposed for the deterministic ML
method. The IMP method is an iteration of maximizations
of an adaptively formed beam pattern. Therefore, the gener-
alized monopulse method can be used for this purpose, see
Section 7.1 and [24].

Another problem is the exact knowledge of the signal
model for all possible directions (the vector function a(u)).
The codomain of this function is sometimes called the array
manifold. This is mainly a problem of antenna accuracy or
calibration. While the transmission of a plane wave in the
main beam direction can be quite accurately modeled (using
calibration) this can be difficult in the sidelobe region.

For an array with digital subarrays, superresolution has
to be performed only with these subarray outputs. The array

manifold has then to be taken at the subarray outputs as in
(2). This manifold (the subarray patterns) is well modeled in
the main beam region but often too imprecise in the sidelobe
region to obtain a resolution better than the conventional. In
that case it is advantageous to use a simplified array manifold
model based only on the subarray gains and centers, called
the Direct Uniform Manifold model (DUM). This simpli-
fied model has been successfully applied to MUSIC (called
SpotlightMUSIC, [25]) and to the deterministic MLmethod.
Using the DUM model requires little calibration effort and
gives improved performance, [25].

More refined parametricmethodswith higher asymptotic
resolution property have been suggested (e.g., COMET,
CovarianceMatching Estimation Technique, [26]). However,
application of such methods to real data often revealed no
improvement (as is the case with MUSIC in Figure 9). The
reason is that these methods are much more sensitive to the
signal model than the accuracy of the system provides. A
sensitivity with an very sharp ideal minimum of the objective
function may lead to a measured data objective function
where the minimum has completely disappeared.

5.2. Target NumberDetermination. Superresolution is a com-
bined target number and target parameter estimation prob-
lem. As a starting point all the methods of Section 4.3 can
be used. If we use the detML method we can exploit that
the objective function can be interpreted as the residual error
between model (interpretation 2) and data. The WNT test
statistic (23) is just an estimate of this quantity. The detML
residual can therefore be used for this test instead of the sum
of the eigenvalues.

These methods may lead to a possibly overestimated
target number. To determine the power allocated to each
target a refined ML power estimate using the estimated
directions A(𝜃) can be used B(𝜃) = (A𝐻A)−1A𝐻(R̂ML −

𝜎2(𝜃)I)A(A𝐻A)−1 with 𝜎2(𝜃) = (1/(𝑁 − 𝑀)) tr{P⊥AR̂ML} as
in (30). This estimate can even reveal correlations between
the targets. This has been successfully demonstrated with
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Figure 11: Combined target number and direction estimation for 2 targets with 7-element planar array.

the low angle tracking data of Figure 10. In case that some
target power is too low, the target number can be reduced
and the angle estimates can be updated. This is an iterative
procedure of target number estimation and confirmation or
reduction. This way, all target modeling can be accurately
matched to the data.

The deterministic ML method (28) together with the
white noise test (24) is particularly suited for this kind of
iterative model fitting. It has been implemented in an exper-
imental system with a 7-element planar array at Fraunhofer
FHR and was first reported in [21, page 81]. An example of
the resulting output plot is shown in Figure 11. The estimated
directions in the 𝑢, V-plane are shown by small dishes having
a color according to the estimated target SNR corresponding
to the color bar. The circle indicates the 3 dB contour of the
sum beam. One can see that the two targets are at about 0.5

beamwidth separation. The directions were estimated by the
stochastic approximation algorithm used in Figure 10. The
test statistic for increasing the target number is shown by
the right most bar. The thresholds for increasing the number
are indicated by lines. The dashed line is the actually valid
threshold (shown is the threshold for 2 targets). The target
number can be reduced if the power falls below a threshold
shown in two yellow bars in themiddle.Thewhole estimation
and testing procedure can also be performed adaptively with
changing target situations. We applied it to two blinking
targets alternating between the states “target 1 on”, “both
targets on”, “target 2 on”, “both targets on”, and so forth.
Clearly, these test works only if the estimation procedure has
converged. This is indicated by the traffic light in the right
up corner. We used a fixed empirically determined iteration
number to switch the test procedure on (=green traffic light).
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Figure 12: Symmetric auxiliary sensor/echo processor of Klemm [4], as an example for forming space-time subarrays.

All thresholds and iteration numbers have to be selected
carefully. Otherwise, situations may arise where this adaptive
procedure switches between two target models, for example,
between 2 and 3 targets.

The problem of resolution of two closely spaced targets
becomes a particular problem in the so called threshold
region, which denotes configurations where the SNR or the
separation of the targets lead to an angular variance departing
significantly from the Cramer-Rao bound (CRB). The design
of the tests and this threshold region must be compatible to
give consistent joint estimation-detection resolution result.
These problems have been studied in [27, 28]. One way to
achieve consistency and improving resolution proposed in
[27] is to detect and remove outliers in the data, which are
basically responsible for the threshold effect. A general dis-
cussion about the achievable resolution and the best realistic
representation of a target cluster can be found in [28].

6. Extension to Space-Time Arrays

As mentioned in Section 2.4, there is mathematically no dif-
ference between spatial and temporal samples as long as the
distributional assumptions are the same. The adaptive meth-
ods and superresolution methods presented in the previous
sections can therefore be applied analogously in the time or
space-time domain.

In particular, subarraying in time domain is an important
tool to reduce the numerical complexity for space-time
adaptive processing (STAP) which is the general approach for
adaptive clutter suppression for airborne radar, [4]. With the
formalism of transforming space-time 2D-beamforming of a
data matrix into a usual beamforming operation of vectors
introduced in (4), the presented adaptive beamforming and
superresolution methods can be easily transformed into
corresponding subarrayed space-time methods.

Figure 12 shows an example of an efficient space-time
subarraying scheme used for STAP clutter cancellation for
airborne radar.

7. Embedding of Array Processing into
Full Radar Data Processing

A key problem that has to be recognized is that the task of a
radar is not tomaximize the SNR, but to give the best relevant

information about the targets after all processing.This means
that for implementing refined methods of interference sup-
pression or superresolutionwe have also to consider the effect
on the subsequent processing. To get optimum performance
all subsequent processing should exploit the properties of the
refined array signal processing methods applied before. In
particular it has been shown that for the tasks of detection,
angle estimation and tracking significant improvements can
be achieved by considering special features.

7.1. Adaptive Monopulse. Monopulse is an established tech-
nique for rapid and precise angle estimation with array
antennas. It is based on two beams formed in parallel, a sum
beam and a difference beam. The difference beam is zero at
the position of the maximum of the sum beam. The ratio
of both beams gives an error value that indicates the offset
of a target from the sum beam pointing direction. In fact, it
can be shown that this monopulse estimator is an approxima-
tion of the Maximum-Likelihood angle estimator, [24]. The
monopulse estimator has been generalized in [24] to arrays
with arbitrary subarrays and arbitrary sum and difference
beams.

When adaptive beams are used the shape of the sum
beam will be distorted due to the interference that is to be
suppressed. The difference beam must adaptively suppress
the interference as well, which leads to another distortion.
Then the ratio of both beams will no more indicate the target
direction. The generalized monopulse procedure of [24]
provides correction values to compensate these distortions.

The generalizedmonopulse formula for estimating angles
(�̂�, V̂)𝑇 with a planar array and sum and difference beams
formed into direction (𝑢

0
, V
0
)
𝑇 is

(
�̂�

V̂
) = (

𝑢
0

V
0

) − (
𝑐
𝑥𝑥

𝑐
𝑥𝑦

𝑐
𝑦𝑥

𝑐
𝑦𝑦

)(
𝑅
𝑥
− 𝜇

𝑥

𝑅
𝑦
− 𝜇

𝑦

) , (31)

whereC = (
𝑐
𝑥𝑥
𝑐
𝑥𝑦

𝑐
𝑦𝑥
𝑐
𝑦𝑦

) is a slope correctionmatrix and 𝜇 = (
𝜇
𝑥

𝜇
𝑦
)

is a bias correction. 𝑅
𝑥
= Re{d𝐻

𝑥
z/w𝐻z} is the monopulse

ratio formed with the measured difference and sum beam
outputs𝐷

𝑥
= d𝐻

𝑥
z and 𝑆 = w𝐻z, respectively, with difference

and sum beam weight vectors d
𝑥
, w (analogous for elevation

estimation with d
𝑦
). The monopulse ratio is a function of the

unknown target directions (𝑢, V). Let the vector ofmonopulse
ratios be denoted by R(𝑢, V) = (𝑅

𝑥
(𝑢, V), 𝑅

𝑦
(𝑢, V))𝑇. The cor-

rection quantities are determined such that the expectation
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of the error is unbiased and a linear function with slope 1 is
approximated. More precisely, for the following function of
the unknown target direction:

M (𝑢, V) = C ⋅ (𝐸 {R (𝑢, V)} − 𝜇) , (32)

we require

M (𝑢
0
, V
0
) = 0,

𝜕M
𝜕𝑢

(𝑢
0
, V
0
) = (

1

0
) ,

𝜕M
𝜕V

(𝑢
0
, V
0
) = (

0

1
) or

C(
𝜕R
𝜕𝑢

𝜕R
𝜕V

) (𝑢
0
, V
0
) = I.

(33)

These conditions can only approximately be fulfilled for suf-
ficiently high SNR. Then, one obtains for the bias correction
for a pointing direction a

0
= a(𝑢

0
, V
0
), [24]

𝜇
𝛼
= Re{

d𝐻
𝛼
a
0

w𝐻a
0

} for 𝛼 = 𝑥, 𝑦. (34)

For the elements of the inverse slope correction matrix
(𝑐𝛼,ℎ) 𝑎=𝑥,𝑦

ℎ=𝑢,V
= C−1, one obtains

𝑐
𝛼,ℎ

=
Re {d𝐻

𝛼
a
ℎ,0
a𝐻
0
w + d𝐻

𝛼
a
0
a𝐻
ℎ,0
w}

w𝐻a0

2

− 𝜇
𝑎
2Re{

w𝐻a
ℎ,0

w𝐻a
0

}

(35)

with 𝛼 = 𝑥 or 𝑦 and ℎ = 𝑢 or V, and a
ℎ,0

denotes the
derivative (𝜕a/𝜕ℎ)|

(𝑢
0
,V
0
)
. In general, these are fixed antenna

determined quantities. For example, for omnidirectional
antenna elements, and phase steering at the elements we have
a
0
= 𝐺

𝑒
(1, . . . , 1)

𝑇, where𝐺
𝑒
is the antenna element gain, and

a𝑇
𝑢,0

= 𝐺
𝑒
(𝑗2𝜋𝑓/𝑐)(𝑥

1
, . . . , 𝑥

𝑁
).

It is important to note that this formula is independent
of any scaling of the difference and sum weights. Constant
factors in the difference and sum weight will be cancelled
by the corresponding slope correction. Figure 13 shows the-
oretically calculated bias and variances for this corrected
generalized monopulse using the formulas of [24] for the
array of Figure 2.The biases are shown by arrows for different
possible single target positions with the standard deviation
ellipses at the tip. A jammer is located in the asterisk symbol
direction with JNR = 27 dB. The hypothetical target has a
SNR of 6 dB. The 3 dB contour of the unadapted sum beam
is shown by a dashed circle. The 3 dB contour of the adapted
beamwill be of course different. One can see that in the beam
pointing direction (0, 0) the bias is zero and the variance is
small. The errors increase for target directions on the skirt of
the main beam and close to the jammer.

The large bias may not be satisfying. However, one may
repeat the monopulse procedure by repeating the monopulse
estimate with a look direction steered at subarray level into
the new estimated direction. This is an all-offline procedure
with the given subarray data. No new transmit pulse is
needed. We have called this the multistep monopulse proce-
dure [24].Multistepmonopulse reduces the bias considerably
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Figure 13: Bias and standard deviation ellipses for different target
positions.
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Figure 14: Bias for 2-step monopulse for different target positions
and jammer scenario of Figure 13.

with only one additional iteration as shown in Figure 14. The
variances appearing in Figure 13 are virtually not changed
with the multistep monopulse procedure and are omitted for
better visibility.

7.2. Adaptive Detection. For detection with adaptive beams,
the normal test procedure is not adequate because we have a
test statistic depending on twodifferent kinds of randomdata:
the training data for the adaptive weight and the data under
test. Various kinds of tests have been developed accounting
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for this fact. The first and basic test statistics were the GLRT,
[29], the AMF detector, [30], and the ACE detector, [31].
These have the form

𝑇GLRT (z̃) =

ã𝐻
0
Q̂−1

SMIz̃


2

ã𝐻
0
Q̂−1

SMIã0 (1 + (1/𝐾) z̃𝐻Q̂−1

SMIz̃)
, (36)

𝑇AMF (z̃) =

ã𝐻
0
Q̂−1

SMIz̃


2

ã𝐻
0
Q̂−1

SMIã0
, (37)

𝑇ACE (z̃) =

ã𝐻
0
Q̂−1

SMIz̃


2

ã𝐻
0
Q̂−1

SMIã0 ⋅ z̃𝐻Q̂−1

SMIz̃
. (38)

The quantities z̃, ã
0
, Q̂ are here all generated at the subarray

outputs, ã
0
denotes the plane wave model for a direction u

0
.

Basic properties of these tests are

(i) 𝑇GLRT =
𝑇AMF

1 + (1/𝐾) z̃𝐻Q̂−1

SMIz̃
, 𝑇ACE =

𝑇AMF

z̃𝐻Q̂−1

SMIz̃
.

(39)

(ii)TheAMF detector represents an estimate of the signal-to-
noise ratio because it can be written as

𝑇AMF =


w̃𝐻z̃

2

w̃𝐻Q̂SMIw̃
with w̃ = Q̂−1

SMIã0. (40)

This provides a meaningful physical interpretation. A com-
plete statistical description of these tests has been given
in very compact form in [32, 33]. These results are valid
as well for planar arrays with irregular subarrays and also
mismatched weighting vector.

Actually, all these detectors use the adaptive weight of
the SMI algorithm which has unsatisfactory performance as
mentioned in Section 4.2. The unsatisfactory finite sample
performance is just the motivation for introducing weight
estimators like LSMI, LMI, or CAPS. Clutter, insufficient
adaptive suppression and surprise interference are the moti-
vation for requiring low sidelobes. Recently several more
complicated adaptive detectors have been introduced with
the aim of achieving additional robustness properties, [34–
38]. However, another and quite simple way would be to
generalize the tests of (36), (37), (38) to arbitrary weight
vectors with the aim of inserting well known robust weights
as derived in Section 4.1. This has been done in [39]. First,
we observe that the formulation of (40) can be used for any
weight vector. Second, one can observe that the ACE and
GLRT have the form of a sidelobe blanking device. In
particular it has already been shown in [35] that diagonal
loading provides significant better detection performance.

A guard channel is implemented in radar systems to
eliminate impulsive interference (hostile or fromother neigh-
boring radars) using the sidelobe blanking (SLB) device. The
guard channel receives data from an omnidirectional antenna
element which is amplified such that its power level is above
the sidelobe level of the highly directional radar antenna, but
below the power of the radar main beam, [1, page 9.9]. If the

received signal power in the guard channel is above the power
of the main channel, this must be a signal coming via the
sidelobes. Such signals will be blanked. If the guard channel
power is below the main channel power it is considered as a
detection.

With phased arrays it is not necessary to provide an
external omnidirectional guard channel. Such a channel
can be generated from the antenna itself; all the required
information is in the antenna. We may use the noncoherent
sum of the subarrays as guard channel.This is the same as the
average omnidirectional power. Some shaping of the guard
pattern can be achieved by using a weighting for the nonco-
herent sum:

𝐺 =

𝐿

∑
𝑖=1

𝑔
𝑖

�̃�𝑖

2
. (41)

If all subarrays are equal, a uniform weighting g̃ = (1, . . . , 1)
𝑇

may be suitable; for unequal irregular subarrays as in Figure 2
the different contributions of the subarrays can be weighted.
The directivity pattern of such guard channel is given by
𝑆
𝐺
(u) = ∑

𝐿

𝑖=1
𝑔
𝑖
|𝑎
𝑖
(u)|2. More generally, we may use a com-

bination of noncoherent and coherent sums of the subarrays
with weights contained in the matricesD, K, respectively,

𝐺 = z̃𝐻KDK𝐻z̃, 𝑆
𝐺 (u) = ã𝐻 (u)KDK𝐻ã (u) . (42)

Examples of such kind of guard channels are shown in
Figure 15 for the generic array of Figure 2 with −35 dB Taylor
weighing for low sidelobes. The nice feature of these guard
channels is (i) that they automatically scan together with
the antenna look direction, and (ii) that they can easily be
made adaptive. This is required if we want to use the SLB
device in the presence of CW plus impulsive interference. A
CW jammer would make the SLB blank all range cells, that
is, would just switch off the radar. To generate an adaptive
guard channel we only have to replace in (42) the data
vector of the cell under test (CUT) by the pre-whitened data
z̃pre-𝑤 = R̂−1/2z̃. Then, the test statistic can be written as
𝑇 = 𝑇AMF(z̃)/𝐺adapt(z̃), where 𝐺adapt(z̃) = z̃𝐻R̂−1z̃ for
ACE and 𝐺adapt(z̃) = 1 + (1/𝐾)z̃𝐻R̂−1z̃ for GLRT. Hence
𝐺adapt is just the incoherent sumof the pre-whitened subarray
outputs; in other words, 𝑇ACE can be interpreted as an AMF
detector with an adaptive guard channel and 𝑇GLRT the same
with guard channel on a pedestal. Figure 16 shows examples
of some adapted guard channels generated with the generic
array of Figure 2 and−35 dBTaylorweighting.Theunadapted
patterns are shown by dashed lines.

This is the adaptive generalization of the usual sidelobe
blanking device (SLB) and the AMF, ACE andGLRT tests can
be used as extension of the SLB detector to the adaptive case,
[32], called the 2D adaptive sidelobe blanking (ASB) detector.
The AMF is then the test for the presence of a potential target
and the generalized ACE or GRLT are used confirming this
target or adaptive sidelobe blanking.

A problemwith these modified tests is to define a suitable
threshold for detection. For arbitraryweight vector it is nearly
impossible to determine this analytically. In [39] the detection
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Figure 15: Guard channel and sum beam patterns for generic array of Figure 2.

margin has been introduced as an empirical tool for judging a
good balance between the AMF and ASB threshold for given
jammer scenarios. The detection margin is defined as the
difference between the expectation of the AMF statistic and
the guard channel, where the expectation is taken only over
the interference complex amplitudes for a known interference
scenario. In addition one can also calculate the standard
deviation of these patterns.Theperformance against jammers
close to the main lobe is the critical feature. The detection
margin provides the mean levels together with standard
deviations of the patterns. An example of the detection
margin is shown in Figure 17 (same antenna and weighting
as in Figures 15 and 16).

Comparing the variances of the ACE and GLRT guard
channels in [39] revealed that the GLRT guard performs
significantly better in terms of fluctuations. The GLRT guard
channel may therefore be preferred for its better sidelobe
performance and higher statistical stability.

7.3. Adaptive Tracking. A key feature of ABF is that overall
performance is dramatically influenced by the proximity of
the main beam to an interference source. The task of target
tracking in the proximity of a jammer is of high operational
relevance. In fact, the information on the jammer direction
can be made available by a jammer mapping mode, which
determines the direction of the interferences by a background
procedure using already available data. Jammers are typically
strong emitters and thus easy to detect. In particular, the
SpotlightMUSICmethod [25]workingwith subarray outputs
is suited for jammer mapping with a multifunction radar.

Let us assume here for simplicity that the jammer direc-
tion is known. This is highly important information for the
tracking algorithmof amultifunction radar where the tracker
determines the pointing direction of the beam. We will use
for angle estimation the adaptive monopulse procedure of
Section 7.1. ABF will form beams with a notch in the jammer
direction. Therefore one cannot expect target echoes from
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Figure 16: Adapted guard patterns for jammer at 𝑢 = −0.27 (−15.7∘) with JNR of 34 dB for generic array.
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directions close to the jammer and therefore it does not make
sense to steer the beam into the jammer notch. Furthermore,
in the case of amissingmeasurement of a tracked target inside
the jammer notch, the lack of a successful detection supports
the conclusion that this negative contact is a direct result of
jammer nulling by ABF. This is so-called negative informa-
tion [40]. In this situation we can use the direction of the
jammer as a pseudomeasurement to update andmaintain the

track file. The width of the jammer notch defines the uncer-
tainty of this pseudo measurement. Moreover, if one knows
the jammer direction one can use the theoretically calculated
variances for the adaptivemonopulse estimate of [24] as a pri-
ori information in the tracking filter.The adaptivemonopulse
can have very eccentric uncertainty ellipses as shown in
Figure 13 which is highly relevant for the tracker. The large
bias appearing in Figure 13, which is not known by the
tracker, can be reduced by applying the multistep monopulse
procedure, [24].

All these techniques have been implemented in a tracking
algorithm and refined by a number of stabilization measures
in [41].The following special measures for ABF tracking have
been implemented and are graphically visualized in Figure 18.

(i) Look direction stabilization: the monopulse estimate
may deliver measurements outside of the 3 dB con-
tour of the sum beam. Such estimates are also heavily
biased, especially for look directions close to the jam-
mer, despite the use of the multistep monopulse pro-
cedure. Estimates of that kind are therefore corrected
by projecting them onto the boundary circle of sum
beam contour.

(ii) Detection threshold: only those measurements are
considered in the update step of the tracking algo-
rithm whose sum beam power is above a certain
detection threshold (typically 13 dB). This guarantees
useful and valuable monopulse estimates. It is well
known that the variance of the monopulse estimate
decreases monotonically with this threshold increas-
ing.

(iii) Adjustment of antenna look direction: look directions
in the jammer notch should generally be avoided due
to the expected lack of good measurements. In case
that the proposed look direction lies in the jammer
notch, we select an adjusted direction on the skirt of
the jammer notch.
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Figure 18: Illustration of different stabilization measures to improve track stability and track continuity.

(iv) Variable measurement covariance: a variable covari-
ance matrix of the adaptive monopulse estimation
according to [24] is considered only for a mainlobe
jammer situation. For jammers in the sidelobes, there
is little effect on the angle estimates, and we can use
the fixed covariance matrix of the nonjammed case.

(v) QuadSearch and Pseudomeasurements: if the pre-
dicted target direction lies inside the jammer notch
and if, despite all adjustments of the antenna look
direction, the target is not detected, a specific search
pattern is initiated (named QuadSearch) which uses
look directions on the skirt of the jammer notch to
obtain acceptable monopulse estimates. If this proce-
dure does not lead to a detection, we know that the
target is hidden in the jammer notch and we cannot
see it. We use then the direction of the jammer as
a pseudobearing measurement to maintain the track
file. The pseudomeasurement noise is determined by
the width of the jammer notch.

(vi) LocSearch: in case of a permanent lack of detections
(e.g., for three consecutive scans) while the track
position lies outside the jammer notch, a specific
search pattern is initiated (named LocSearch) that is
similar to the QuadSearch. The new look directions
lie on the circle of certain radius around the predicted
target direction.

(vii) Modeling of target dynamics: the selection of a
suitable dynamics model plays a major role for the
quality of tracking results. In this context, the so-
called interacting multiple model (IMM) is a well-
known method to reliably track even those objects
whose dynamic behavior remains constant only dur-
ing certain periods.

(viii) Gating: in the vicinity of the jammer, the predicted
target direction (as an approximation of the true
value) is used to compute the variable angle measure-
ment covariance. Strictly speaking, this is only valid
exactly in the particular look direction. Moreover, the
tracking algorithm regards all incoming sensor data
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Figure 19: Target tracking scenario with standoff jammer: geo-
graphic plot of platform trajectories.

as unbiased measurements. To avoid track instabil-
ities, an acceptance region is defined for each mea-
surement depending on the predicted target state and
the assumed measurement accuracy. Sensor reports
lying outside this gate are considered as invalid.

In order to evaluate our stabilizationmeasures we considered
a realistic air-to-air target tracking scenario [41]. Figure 19
provides an overview of the different platform trajectories.
In this scenario, the sensor (on a forward looking radar
platform flying with a constant speed of 265m/s) employs
the antenna array of Figure 2 (sum beamwidth BW = 3.4∘,
field of view 120∘, scan interval 1 s) and approaches the target
(at velocity 300m/s), which thereupon veers away after a
short time. During this time, the target is hidden twice in
the jammer notch of the standoff jammer (SOJ)—first for
3 s and then again for 4 s. The SOJ is on patrol (at 235m/s)
and follows a predefined race track at constant altitude.
Figure 20 shows exemplary the evaluation of the azimuth
measurements and estimates over time in a window where
the target first passes through the jammer notch.Thedifferent
error bars of a single measurement illustrate the approxi-
mation error of the variable measurement covariance: 𝜎SIM

𝑢
𝑘
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denotes the true azimuth standard deviation (std) which is
generated in the antenna simulation;𝜎FILT

𝑢
𝑘

corresponds to the
std which is used in the tracking algorithm. More precisely,
the tracking program computes the adaptive angle measure-
ment covariance only in the vicinity of the jammer with a
diameter of this zone of 8.5∘. Outside of this region, the
tracking algorithm uses a constant std of 0.004 for both
components of the angle measurement. The constant std for
the other parameters are 75m and 7.5m/s for range and
range-rate measurements. The signal-to-noise and jammer-
to-noise ratioswere set to 26 dB and 27 dB at a reference range
of 70 km. From Figure 20 the benefits of using pseudobearing
measurements become apparent.

From these investigations, it turned out that tracking only
with adaptive beamforming and adaptive monopulse nearly
always leads to track loss in the vicinity of the jammer. With
additional stabilization measures that did not require the
knowledge of the jammer direction (projection ofmonopulse
estimate, detection threshold, LocSearch, gating) still track
instabilities occurred culminating finally in track loss. An
advanced tracking version which used pseudomeasurements
mitigated this problem to some degree. Finally, the additional
consideration of the variable measurement covariance with
a better estimate of the highly variable shape of the angle
uncertainty ellipse resulted in significantly fewer measure-
ments that were excluded due to gating. In this case all the sta-
bilization measures could not only improve track continuity,
but also track accuracy and thus track stability, [41].This tells
us that it is absolutely necessary to use all information of
the adaptive process for the tracker to achieve the goal of
detection and tracking in the vicinity of the interference.

8. Conclusions and Final Remarks

In this paper, we have pointed out the links between array
signal processing and antenna design, hardware constraints
and target detection, and parameter estimation and tracking.
More specifically, we have discussed the following features.

(i) Interference suppression by deterministic and adap-
tive pattern shaping: both approaches can be rea-
sonably combined. Applying ABF after deterministic
sidelobe reduction allows reducing the requirements
on the low sidelobe level. Special techniques are
available tomake ABF preserve the low sidelobe level.

(ii) General principles and relationships between ABF
algorithms and superresolution methods have been
discussed, like dependency on the sample number,
robustness, the benefits of subspace methods, prob-
lems of determining the signal/interference subspace,
and interference suppression/resolution limit.

(iii) Array signal processing methods like adaptive beam-
forming and superresolution methods can be applied
to subarrays generated from a large fully filled array.
This means applying these methods to the sparse
superarray formed by the subarray centers. We have
pointed out problems and solutions for this special
array problem.

(iv) ABF can be combined with superresolution in a
canonical way by applying the pre-whiten and match
principle to the data and the signal model vector.

(v) All array signal processing methods can be extended
to space-time processing (arrays) by defining a corre-
sponding space-time plane wave model.

(vi) Superresolution is a joint detection-estimation prob-
lem. One has to determine a multitarget model which
contains the number, directions and powers of the tar-
gets.These parameters are strongly coupled. A practi-
cal joint estimation and detection procedure has been
presented.

(vii) The problems for implementation in real system have
been discussed, in particular the effects of limited
knowledge of the array manifold, effect of channel
errors, eigenvalue leakage, unequal noise power in
array channels, and dynamic range of AD-converters.

(viii) For achieving best performance an adaptation of the
processing subsequent to ABF is necessary. Direction
estimation can be accommodated by using ABF-
monopulse; the detector can be accommodated by
adaptive detection with ASLB, and the tracking algo-
rithms can be extended to adaptive tracking and track
management with jammer mapping.

With a single array signal processing method alone no
significant improvement will be obtained. The methods have
to be reasonably embedded in the whole system, and all
functionalities have to be mutually tuned and balanced.
This is a task for future research. The presented approaches
constitute only a first ad hoc step, and more thorough studies
are required. Note that in most cases tuning the functionali-
ties is mainly a software problem. So, there is the possibility
to upgrade existing systems softly and step-wise.
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High Frequency SurfaceWave Radar (HFSWR) can perform the functions of ocean environment monitoring, target detection, and
target tracking over the horizon. However, its system’s performance is always limited by the severe ionospheric clutter environment,
especially by the nonhomogeneous component. The nonhomogeneous ionospheric clutter generally can cover a few Doppler shift
units and a few angle units. Consequently, weak targets masked by the nonhomogeneous ionospheric clutter are difficult to be
detected. In this paper, a novel algorithm based on angle-Doppler joint eigenvector which considers the angle-Doppler map of
radar echoes is adopted to analyze the characteristics of the nonhomogeneous ionospheric clutter. Given the measured data set,
we first investigate the correlation between the signal of interest (SOI) and the nonhomogeneous ionospheric clutter and then the
correlation between the nonhomogeneous ionospheric clutters in different two ranges. Finally, a new strategy of training data
selection is proposed to improve the joint domain localised (JDL) algorithm. Simulation results show that the improved-JDL
algorithm is effective and the performance of weak target detection within nonhomogeneous ionospheric clutter is improved.

1. Introduction

HFSWR exploits the surface wave mode of vertical polariza-
tion electromagnetic wave propagating over the sea water to
detect ships and aircrafts at distances beyond the line of sight.
It has drawnmuch attention in recent years for its notable fea-
tures of large scale, long distance, and all-day adaptability. In
general, the factors which affect the performance of HFSWR
are the sea clutter, ionospheric clutter, radio interference,
and noise, among which, the key factor that determines
targets detection performance is the ionospheric clutter [1].
The situation herein is very complex, since the motion states
of the ionosphere are distinct at different temporal and
spatial locations. Until now, a widely accepted model for the
ionospheric clutter inHFSWR is still not found. It follows that
how to suppress the ionospheric clutter and how to improve
the weak target detection performance in HFSWR systems
are hot topics worth further investigation.

In HFSWR systems, long coherent integration time
is necessary for better detection performance and higher
Doppler resolution. During this process, the state of the
ionosphere is changing rapidly and irregularly, which leads

to an obvious problem that the ionospheric clutter can cover
a few Doppler shift units after the coherent integration.
Therefore, it is difficult for the frequency domain adaptive
matched filtering algorithm to detect the weak targets buried
in the ionospheric clutter. On the other hand, both the beam-
broadening effect resulting from the smaller array aperture
compared to the wavelength, and the regional characteristic
of ionosphere can lead to the fact that ionospheric clutter
always covers a broad angular region. Consequently, the
ionospheric clutter is difficult to be suppressed either in the
Doppler domain or in the angle domain.

Space-time adaptive processing (STAP) is proposed by
Brennan and Reed in the 1970s and has become one of the
major research directions around the world [2]. It has been
mainly exploited to suppress homogeneous and nonhomo-
geneous clutters in airborne radar systems in the Doppler-
angle domain [3–6]. It also has been applied in many other
specific applications, both in military and civil fields, such
as spaceborne radar, communication, sonar, navigation, and
microphone array [7, 8]. In HFSWR systems, STAP has been
adopted to counter the sea clutter in shipborne radar systems
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[9] and suppress the ionospheric clutter in shore-based radar
systems.

Groups led by Fabrizio and Adve have begun to inves-
tigate the problem of ionospheric clutter suppression based
on STAP and obtained a bulk of measured data [10–13]. In
[13], Ravan et al. developed a new model to predict the radio
wave propagation in ionosphere plasma density irregularities,
and it turns out that their model fits the data gathered in
Canada well. Ravan and Saleh et al. also analyzed a group
of STAP algorithms such as joint domain localized, direct
data domain, hybrid, PAMF, and further a new proposed
fast algorithm FFA [13, 14]. Joint domain localized (JDL) is a
classical statistical STAP algorithm broadly used in airborne
radar [15]. It features preferable low computational cost
and high performance in homogeneous clutter suppression.
Especially for the clutter with independent and identical
distribution, JDL is highly effective. But in HFSWR, the
ionospheric clutter is nonhomogeneous. It is always difficult
to obtain enough training data for JDL. Direct data domain
(D3), hybrid, and PAMF are classical STAP algorithms for
nonhomogeneous clutter in airborne radar systems. These
algorithms suffer from high computational cost and poor
real-time performance in HFSWR due to the long coherent
integration time (CIT) and large space-time dimension. FFA
is also a low computational cost algorithm, but how to divide
the space-time region is still under investigation.

In this paper, we first analyze the correlation between the
SOI and the nonhomogeneous ionospheric clutter; and then,
the correlation between the nonhomogeneous ionospheric
clutters at two different ranges has been analyzed. On this
basis, we propose a new strategy to select the training data
set. By means of the reasonable training data selection,
the nonhomogeneous ionospheric clutter can be suppressed
more effectively. Meanwhile, weak targets in the direction of
ionospheric can also be detected.

In Section 2, we first analyze the correlation including the
correlation between the SOI and the nonhomogeneous iono-
spheric clutter and the one between the nonhomogeneous
ionospheric clutters at two different ranges. In Section 3,
we proposed an improved-JDL algorithm according to the
analysis results given in Section 2. Finally, the superiority of
the improved-JDL algorithm is demonstrated via simulation
based on practically measured data.

2. Characteristic Analysis of Nonhomogeneous
Ionospheric Clutter

In HFSWR, the electromagnetic waves travel not only mainly
over the sea surface but also partly into the sky due to
nonidealities of the receiver antenna array. Under certain
conditions, the electromagnetic waves emitted into the sky
can be reflected by the ionosphere and then received by the
nonideal receiver antenna array. This is how the ionospheric
clutter emerges. The ionospheric clutter is very intricate
as a result of the nonhomogeneous layered structure and
the rapidly changing state of the ionosphere. For these
reasons, ionospheric clutter suppression is a critical difficulty
in HFSWR. The study of ionospheric clutter suppression
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Figure 1: Range-Doppler Map.

depends heavily on the understanding of the characteristics
of ionospheric clutter.

Firstly, we analyze the characteristics of the ionospheric
clutter. The measured data is obtained through the HFSWR
system inWeihai, China onMay 12, 2012, and then processed
by matched filters in range, Doppler, and digital beam-
forming in turn. A range-Doppler map in one beam is shown
in Figure 1, and an angle-Doppler map in one range bin is
shown in Figure 2.

In STAP, the data is processed on the basis of the angle-
Doppler map. In this case, characteristics of the nonhomo-
geneous ionospheric clutter should be analyzed based on the
angle-Doppler map.

In Figure 2, the nonhomogeneous ionospheric clutter
covers a large region of the angle-Doppler map. It does not
make any sense to analyze such a broad region. So we divide
the whole angle-Doppler region into small scales, and the
characteristic analysis of the nonhomogeneous ionospheric
clutter should also be in the light of the small local angle-
Doppler region. We call this small local region the Angle-
Doppler Local Region (ADLR). The analysis in Section 2 is
solely concentrated on the concept of ADLR.

In Section 2.1, we have to decide what the appropriate size
of ADLR is in order tomake sure that the clutter in the ADLR
is simple.

We suppose X
𝑙
is an ADLR sequence for 𝑙 = 0, 1, 2, . . . of

independent range samples as discussed in the literature [2].
But the sample in one range binmay relate with some samples
in other independent range bins.

In Section 2.2, we propose the correlation analyzing
method based on the angle-doppler joint eigenvector (ADJE)
of ADLR.

Based on the correlation analyzing method in Section 2.2
and the size of ADLR decided in Section 2.1, we analyze the
SOI correlation in the noise environment (in Section 2.3) and
in the ionospheric clutter environment (in Section 2.4).

In the last Section 2.5, we analyze the ionospheric clutter
correlation between ADLRs in different range bins.
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Figure 2: Angle-Doppler Map.

2.1. Size of the ADLR. In this part, we try to make an
appropriate decision of the size of ADLR in order to make
sure that the clutter in this ADLR is as simple as possible. If
the data in the ADLR are with high correlation both in beam-
domain and frequency-domain, we can consider the clutter in
the ADLR simple.

The correlation coefficient of the data with two different
beams can be calculated by (1); The correlation coefficient of
the data with two different Doppler shifts can be calculated
by (2):

𝜌
𝑘,𝑗
=

(1/𝑁
𝑟
)∑
𝑟
𝑋
𝑘
(𝑟, 𝑓
𝑑0
)𝑋∗
𝑗
(𝑟, 𝑓
𝑑0
)

√(1/𝑁
𝑟
)∑
𝑟

𝑋𝑘 (𝑟, 𝑓𝑑0)

2
(1/𝑁
𝑟
)∑
𝑟


𝑋∗
𝑗
(𝑟, 𝑓
𝑑0
)


2

,

(1)

𝜌
𝑓
𝑑1
,𝑓
𝑑2

=
(1/𝑁
𝑟
)∑
𝑟
𝑋
𝑓
𝑑1

(𝑟, 𝜑
0
)𝑋∗
𝑓
𝑑2

(𝑟, 𝜑
0
)

√(1/𝑁
𝑟
)∑
𝑟


𝑋
𝑓
𝑑1

(𝑟, 𝜑
0
)


2

(1/𝑁
𝑟
)∑
𝑟


𝑋∗
𝑓
𝑑2

(𝑟, 𝜑
0
)


2

,

(2)

where 𝑟 indicates the index of range bins, 𝑁
𝑟
is the number

of range bins which are used to calculate the correlation
coefficient, 𝑋

𝑘
and 𝑋

𝑗
are the training data with direction 𝑘

and 𝑗 with Doppler shift 𝑓
𝑑0
, (⋅)
∗ is the complex conjugate

operator, and𝑋
𝑓
𝑑1

and𝑋
𝑓
𝑑2

are the training datawithDoppler
shift 𝑓

𝑑1
and 𝑓

𝑑2
with direction 𝜑

0
.

We analyze the angle correlation with different angle
intervals as given by (1). The results are shown in Figure 3.

Figure 3(a). The ionospheric clutter exists within the
Doppler shifts between −2Hz and 0.12Hz. The correlation
coefficient at beam interval 5∘ is greater than the ones when
the beam intervals are 10∘ and 15∘.

Figure 3(b). The correlation coefficient decreases as the
beam interval increases. We can deduce from these two fig-
ures that the ionospheric clutters have similar characteristics
when the beam interval is narrower than 5∘.

We also analyze the Doppler frequency correlation with
different Doppler shift intervals as given by (2). The results
are shown in Figure 4.

Figure 4(a). The ionospheric clutter exists within all the
angles ranging from −30∘ to 30∘. The correlation coefficient
achieves its maximum when the Doppler shift interval is
34mHz. The ones when the Doppler shift intervals are
68mHz and 102mHz are almost the same and both less than
the one with 34mHz.

Figure 4(b). The correlation coefficient decreases as the
Doppler shift interval increases. From these two figures, we
can also deduce that the ionospheric clutters have similar
characteristics when the Doppler shift interval is less than
34mHz.

In order to maintain the characteristics of ADLR, cor-
relation coefficients within the ADLR data must be high
enough. It follows that the size of ADLR cannot be too large.
Synthetically, it is preferable to choose the ±5∘, ±34mHz
interval around the cell under test. This is in agreement with
the radar theory that correlation coefficient increases as the
beam interval and Doppler shift interval decrease.

2.2. Correlation Analysis Method Based on ADJE. In the case
of HFSWR, the data in an ADLR cannot be absolutely simple.
AnADLR often consists ofmultiple echo components such as
noise, clutter, interference, and targets. The characteristics of
ADLRs with different echo components are different. In this
part, we mainly analyze the correlation between ADLRs with
different echo components.

We first calculate the self-correlation matrix of the data
in one ADLR and then obtain the ADJEs through the
decomposition of the covariance matrix. In this case, the
characteristic of the ADLR is represented by the vector sum
of the ADJEs. The following correlation analysis is based on
the ADJEs representation.

Firstly, we choose the ADLR which covers ±5∘ (3 beams)
and ±34mHz (3 Doppler shifts) in one range bin and



4 International Journal of Antennas and Propagation

−6 −4 −2 0 2 4 6
Doppler frequency (Hz)

Angle correlation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

or
re

lat
io

n 
co

effi
ci

en
t

Δbeam = 5∘

Δbeam = 10∘

Δbeam = 15∘

(a) Range = 200 km

0 5 10 15 20 25 30

C
or

re
lat

io
n 

co
effi

ci
en

t

Angle correlation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝛿 beam (∘)

(b) Range = 200 km, 𝑓𝑑0 =−1.2Hz

Figure 3: Correlation coefficients with different beam intervals.

−30 −20 −10 0 10 20 30
0

Doppler frequency correlation

C
or

re
lat

io
n 

co
effi

ci
en

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfd = 34mHz
Δfd = 68mHz
Δfd = 102mHz

Angle (∘)

(a) Range = 200 km

0 100 200 300 400 500 600 700

Doppler frequency correlation

C
or

re
lat

io
n 

co
effi

ci
en

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfd (mHz)

(b) Range = 200 km, 𝜑0 =−10
∘

Figure 4: Correlation coefficients with different Doppler shift intervals.

a 9× 1 vector X
𝑟
can be written by Kronecker product. So

the self-correlation matrix is 9× 9, and we can get 9 ADJEs
by eigen decompostion. A certain number of ADJEs which
make greater contribution to represent the characteristics of
the ADLR are selected to calculate the correlation coefficient.

The correlation analysis method based on ADJE is as
follows.

(i) Calculate the self-correlationmatrixR
𝑥
of the dataX

𝑟

in the ADLR with rth range bin by R
𝑥
= X𝐻
𝑟
X
𝑟
.

(ii) Eigen-decompose R
𝑥
to obtain 9 eigenvalues 𝜆

1
,

𝜆
2
, . . . , 𝜆

9
and 9 ADJEs 𝜉

1
, 𝜉
2
, . . . , 𝜉

9
, then the nor-

malized ADJEs by 𝜉
𝑖
= 𝜉
𝑖
/|𝜉
𝑖
|, 𝑖 = 1, . . . , 9.

(iii) Determine the contribution of the normalized ADJEs
𝜆
𝑖
(𝜉
𝑖
,X
𝑟
), 𝑖 = 1, 2, . . . , 9;

(iv) Choose the normalized ADJE 𝜍 which makes the
greatest contribution for X

𝑟
. And 𝜍 can represent the

characteristic ofX
𝑟
. In the case of HFSWR, especially
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for the Es layer ionospheric clutter, theremay bemore
than one kind of clutter component that exists in an
ADLR. Hence, for uncorrelated clutters, there may be
two or more dominant normalized ADJEs, and the
vector sum of the ADJEs is introduced to represent
the characteristics of this ADLR.

(v) Repeat the above procedure; we can obtainK normal-
ized ADJEs 𝜍

𝑖
, 𝑖 = 1, 2, . . . , 𝐾 in K different range

bins.
(vi) Calculate the correlation coefficients utilizing the K

normalized ADJEs 𝜍
𝑖
, 𝑖 = 1, 2, . . . , 𝐾 from step (v) by

𝜌
𝑖𝑗
= 𝜍
𝐻

𝑖
𝜍
𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝐾. (3)

2.3. SOI Correlation in the Noise Environment. The following
analysis is based on the assumption that the noise in HFSWR
is Gaussian. We consider two ADLRs: one is with SOI only,
and in the other one there exist both SOI and noise, and the
signal-to-noise ratio (SNR) is changing.

Gracheva and Cerutti-Maori have analyzed the channel
correlation of sea data and have mentioned the relationship
between channel correlation and the clutter to noise ratio
(CNR) [16]. CNR is defined as

CNR =
(1/𝑁
𝑟
)∑
𝑟

𝑋𝑐 (𝑟𝑐)
2

𝜎2
𝑛

. (4)

We consider the ADLR in a single range bin (𝑁
𝑟
= 1).The

CNR in this ADLR can be defined as

CNRADLR =

𝑋𝑐 (𝑟𝑐)
2

𝜎2
𝑛

. (5)

The SNR is defined as

SNR =

𝑋𝑡 (𝑟𝑡)
2

𝜎2
𝑛

. (6)

We can replace the CNRADLR in the literature [16] with
the SNR as

𝜌 =
1

1 + 1/SNR
. (7)

We analyze the correlation between two ADLRs (ADLR
1

and ADLR
2
) by utilizing the algorithm introduced in

Section 2.2. The relationship between correlation coefficient
and the SNR is obtained via 10000 Monte-Carlo trials.

Under the condition that there are only SOI in ADLR
1

and only Gaussian noise in ADLR
2
, the correlation between

ADLR
1
and ADLR

2
is shown as the red dotted line in

Figure 5. The correlation coefficient is kept at a low level.
This result is consistent with the radar theory that the SOI
is uncorrelated with the noise.

In this case, there are both SOI and noise in ADLR
2
, and

the SNR is variant. The simulation result by (7) is shown
as the green dotted line with marker “∗” in Figure 5. The
correlation coefficient is very close to 1 when the SNR is
greater than 20 dB and very close to zero when the SNR is
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Figure 5: The relationship between correlation and SNR.

less than −20 dB. When SNR ∈ [−20, 20] dB, the correlation
coefficient increases as the SNR increases.

We make a similar analysis with the measured data in
ADLR

2
. The result is shown as a blue solid line in Figure 5.

Compared to the simulation results, the correlation coeffi-
cient decreases faster as the SNRdecreases and the correlation
coefficient is greater than zero when the SNR is less than 0 dB.
The reason for this error is that the characteristics of SOI
and noise could be both reflected in ADLR

2
when the SNR

is small.
In light of the error present in the above analysis, we

modify the equation as follows.
We mark the ADLR

1
which only contains SOI

1
as SD

1

and the Doppler-angle data as Z
𝑡
; we also mark the ADLR

2

which contains SOI
2
and Gaussian noise as SD

2
and the

Doppler-angle data as Z
𝑠𝑛
, and the power of the noise is 𝜎2.

We calculate the normalized ADJEs of ADLR
1
and ADLR

2

utilizing Z
𝑡
and Z

𝑠𝑛
for 𝜉
𝑡
and 𝜉
𝑠𝑛
, respectively. So 𝜉

𝑠𝑛
can be

written as

𝜉
𝑠𝑛
≈
𝜆
𝑡
𝜉


𝑡
+ 𝜎2𝜉

𝑛

√𝜆2
𝑡
+ 𝜎4

, (8)

where 𝜆
𝑡
is the eigenvalue of SOI

2
, 𝜉
𝑡
is the eigenvector of

SOI
2
, and 𝜉

𝑛
is the eigenvector of noise.

So the correlation coefficient can be written as

𝜌 = 𝜉
𝐻

𝑡
𝜉
𝑠𝑛

≈ 𝜉
𝐻

𝑡
⋅
𝜆
𝑡
𝜉


𝑡
+ 𝜎2𝜉

𝑛

√𝜆2
𝑡
+ 𝜎4

=
𝜆
𝑡

√𝜆2
𝑡
+ 𝜎4

⋅
1

1 + 1/SNR
+

𝜎
2

√𝜆2
𝑡
+ 𝜎4

⋅ 𝜌
𝑠𝑛
,

(9)
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where 𝜉𝐻
𝑡
𝜉


𝑡
= 1/(1 + 1/SNR), 𝜌

𝑠𝑛
is a statistical value related

to the SOI and distribution of the noise, 𝜌
𝑠𝑛
= 𝜉
𝐻

𝑡
𝜉
𝑛
.

When SOI
2
is dominant in SD

2
, 𝜉
𝑠𝑛
≈ 𝜉


𝑡
, the correlation

coefficient is 𝜌 = 𝜉𝐻
𝑡
𝜉


𝑡
= 1/(1 + 1/SNR).

When noise is dominant in SD
2
, 𝜉
𝑠𝑛

≈ 𝜉
𝑛
, correlation

coefficient is 𝜌 = 𝜉𝐻
𝑡
𝜉
𝑛
= 𝜌
𝑠𝑛
.

The simulation result based on (9) are shown as a black
dot-dash line in Figure 6 fits the measured data much better
than the simulation result given by (7) does.

2.4. SOI Correlation in the Ionospheric Clutter Environment.
We mark the ADLR

1
which only contains SOI

1
as SD

1
and

the Doppler-angle data as Z
𝑡
(𝑟
𝑡
); we also mark the ADLR

3

which contains SOI
2
and the ionospheric clutter as SD

3
and

the Doppler-angle data as Z
𝑐
(𝑟
𝑐
), and 𝑟

𝑡
and 𝑟
𝑐
are the range

bins of SD
1
and SD

3
. The SCR of SOI

2
and the ionospheric

clutter are written as

SCR =

Z𝑡 (𝑟𝑡)
2

(1/𝑁
𝑟
)∑
𝑟

Z𝑐 (𝑟𝑐)
2
. (10)

We analyze the SOI correlation in the ionospheric clutter
background as in Section 2.3. We can get the following:

𝜌 =

{{{{{{{{{{{

{{{{{{{{{{{

{

1

1 + 1/SCR
, for SCR > 𝐻SCR,

𝜌
𝑠𝑐
, for SCR < 𝐿SCR,
𝜆
𝑡

√𝜆2
𝑡
+ 𝜆2
𝑐

⋅
1

1 + 1/SCR

+
𝜆
𝑐

√𝜆2
𝑡
+ 𝜆2
𝑐

⋅ 𝜌
𝑠𝑐
, others,

(11)

where 𝜌
𝑠𝑐
is the correlation coefficient between SOI and the

ionospheric clutter, 𝜆
𝑡
and 𝜆

𝑐
are the eigenvalues of SOI

2
and

the ionospheric clutter in ADLR
3
, and 𝐿SCR and𝐻SCR are the

upper limit and lower limit of SCR, respectively, and they are
related to the characteristics of the ionospheric clutter.

The correlation of SOI in the ionospheric clutter environ-
ment utilizing the measured data at the range of 180 km and
185 km is shown in Figure 7.

If there is only ionospheric clutter in ADLR
3
, the cor-

relation coefficients between ADLR
1
and ADLR

2
are shown

as a red-dotted line. It is related to the characteristic of
ionospheric clutter and has different values at different
ranges. The result of correlation analysis utilizing measured
data is shown as a blue solid line. And the result calculated by
(11) fits the measured data well.

It can be seen from (11) and Figure 7 that the relationship
between correlation and SCR can be divided into three parts:

(a) the correlation coefficient keeps a low value when
the SCR is small, and it mainly depends on the
characteristics of the ionospheric clutter;

(b) when the SCR is large enough, the correlation coeffi-
cient is close to 1;

(c) when the SCR is an intermediate value, the correlation
coefficient is related not only to the SCRbut also to the
characteristics of SOI and ionospheric clutter.
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Figure 6: The relationship between correlation and SNR.

2.5. Range Correlation of Nonhomogeneous Ionospheric Clut-
ter. The motion of ionosphere is complex with the major
factor of nonuniform plasma. Due to this complex motion,
the ionospheric clutter in HFSWR is nonhomogeneous.

We calculate the correlation coefficients of ADLRs in
different rangeswithin 150 km to 430 km referred to 225 kmat
the Doppler shift −1.2Hz utilizing the algorithm mentioned
in Section 2.2.The result is shown in Figure 8.The correlation
of nonhomogeneous ionospheric clutter decreased as the
range interval increased. But there may be a few high corre-
lated range data due to the nonhomogeneous characteristics
of the ionospheric clutter.

3. Strategy of Choosing the Training Data
Based on Correlation

The full STAP algorithm is ideal and requires the training
data to meet two conditions. One is that the clutter must be
independent, and identically distributed.The other is that the
number of the training data must be twice greater than the
degrees of freedom of the clutter [17].

In HFSWR, the first condition is difficult to meet due to
the complex echoes.The long coherent integrated time (CIT)
leads to the large degrees of freedom. So it requires consid-
erable training data which are difficult to be attained in the
practical system. Compared with the fully STAP, the partial
STAP algorithmhas the advantage of less computation. So the
partial STAP has become the researchers priority.

The JDL algorithm is one of the partial STAP algorithms.
It can reduce the degrees of freedom by using a transfor-
mation matrix T. Therefore, it can solve the problem of the
limited training data and it also can reduce the computation.

The result of Section 2.5 showed that the range of corre-
lation of the nonhomogeneous ionospheric clutter rise, and
fall irregularly. In order to suppress the nonhomogeneous
ionospheric clutter effectively utilizing the JDL, we should
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(a) Range = 180.00 km
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Figure 7: The relationship between correlation and SCR.
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Figure 8: Range correlation of ionospheric clutter at −1.2Hz.

ensure that the training data are highly relatedwith the clutter
cell under test.

3.1. Strategy Based on the Correlation. In this part, we choose
the appropriate samples as the training data to obtain the
covariance matrix more accurately based on the correlation
analysis above.

The receiver antenna array of HFSWR is described as the
𝑁 elements uniform linear array (ULA). 𝑑 is the interelement
spacing, a coherent integrated time contains 𝑀 pulses, 𝑇 is
the pulse repetition time, and 𝑓

𝑠
is the system sampling rate.

For a given range bin, the data sampled by the 𝑁 elements
form an N-dimensional vector, and the data received by one

element in a CIT form an M-dimensional vector. So that an
𝑁𝑀 × 1 dimensional vector of the space-time snapshots in
lth range bin is formed as defined by

X
𝑙
= [x1 x

2
⋅ ⋅ ⋅ x
𝑀]
𝑇
, (12)

where x
𝑖
= [𝑥𝑖,1 𝑥

𝑖,2
⋅ ⋅ ⋅ 𝑥
𝑖,𝑁]
𝑇
, 𝑖 = 1, 2, . . . ,𝑀.

We define the space-time steering vector as

k (𝜙
𝑡
, 𝑓
𝑡
) = b (𝑓

𝑡
) ⊗ a (𝜙

𝑡
) , (13)

where a(𝜙
𝑡
) is a space steering vector as defined by (14) and

b(𝑓
𝑡
) is a time steering vector as defined by (15):

a (𝜙
𝑡
) = [1 𝑍

𝑠
𝑍2
𝑠
⋅ ⋅ ⋅ 𝑍𝑁−1

𝑠
]
𝑇

, (14)

b (𝑓
𝑡
) = [1 𝑍

𝑡
𝑍2
𝑡
⋅ ⋅ ⋅ 𝑍𝑀−1

𝑡
]
𝑇

, (15)

where 𝑍
𝑠
= 𝑒𝑗2𝜋(𝑑/𝜆) sin𝜙𝑡 and 𝑍

𝑡
= 𝑒𝑗2𝜋(𝑓𝑡/𝑓𝑅).

JDL algorithm can transform the independent range
samples to the LPR by using the transformation matrix T to
reduce the degrees of freedom. Thus, T is the key of the JDL
algorithm.Wang has discussed how to choose the LPR in the
literature [18]: the clutter can be suppressed more effectively
as the LPR larger, at the same time the heavily computational
cost is a big problem. With all things considered in the case
of HFSWR, the LPR we are concerned about contains three
angle units and three Doppler shift units (𝜂

𝑎
= 3, 𝜂

𝑑
=

3), which is the same size as the ADLR we mentioned in
Section 2. So that the transformationmatrix T can be written
as

T = [b (𝑓−1) b (𝑓
0
) b (𝑓

1
)] ⊗ [a (𝜙−1) a (𝜙

0
) a (𝜙

1
)] .

(16)
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Figure 9: Implementation of improved-JDL.

Thus the new range samples and the new space-time
steering vector in JDL can be written as

X̃
𝑙
= T𝐻 ⋅ X

𝑙
, k̃ = T𝐻 ⋅ k. (17)

Then, we analyze the correlation of the range samples
utilizing algorithm in Section 2. We choose the 𝐾 training
data which is highly correlated with the cell under test (CUT)
by setting a threshold. Finally, we calculate the covariance
matrix R̂ utilizing the 𝐾 chosen training data as defined by

R̂ =
1

𝐾

𝐾−1

∑
0

Z
𝑘
Z𝐻
𝑘
. (18)

We assume that CUT is the tth range bin. X
𝑡
is the

sample in CUT. Therefore, training data Z
𝑘
should be highly

correlated with the sample X
𝑡
. And Z

𝑘
are chosen from

X
𝑙
, 𝑙 = 1, 2, . . . , 𝑡 − 𝑝, 𝑡 + 𝑝, . . . where 𝑝 is the number of

protected range bins which are used to keep the training data
to be independent ofX

𝑡
.That is because the target in HFSWR

often spreads a few range bins, and the range samples in these
range bins are nonindependent.

When we get the covariance matrix R̂, the optimal
weights can be expressed as

Wopt = R̂−1k̃. (19)

The implementation of the improved-JDL can be shown
as in the following steps and Figure 9.

(i) Determine the size of LPR and the transformation
matrix T as shown in (16).

(ii) Calculate the ADJEs of CUT and the range samples
near the CUT as mentioned in steps (i)∼(v) in
Section 2.2.

(iii) Calculate the correlation coefficients between the
CUT and the nearby range samples as (3).

(iv) Compare the correlation coefficients with the thresh-
old 𝑐
0
. If it is greater than 𝑐

0
, these range samples

can be treated as training data; otherwise it will be
discarded.

(v) Calculate the covariance matrix of the ionospheric
clutter utilizing the chosen training data as (18).

3.2. Threshold Chosen. The key point of the improved-JDL
is the threshold 𝑐

0
. Due to different 𝑐

0
, the chosen training

data can be absolutely different. This can result in different
covariance matrix and space-time weights. Curve of the
improvement factor (IF) and the threshold is shown in
Figure 10.The IF is no longer improved as the threshold raised
when the threshold is greater than 0.4. Thus, we can choose
the threshold that is greater than 0.4 for single target situation.

In the case of HFSWR, the targets often travel with batch.
In this condition, the interference between targets must be
concerned. Figure 11 shows the correlation between the range
sample 1 with only strong target and the range sample 2 with
weak target and the ionospheric clutter. The SCR in Figure 11
is the weak target to ionospheric clutter ratio in range sample
2.

When the SCR < 0 dB, the correlation coefficients
between the strong target and the weak target are mostly less
than 0.8. When the SCR < −10 dB, the correlation coeffi-
cients are mostly less than 0.7. As the threshold increased,
the number of chosen training data may decrease and the
covariance matrix may be calculated inexactly because there
are not enough training data.

With both of the correlation and the number of training
data considered, the threshold should be little greater than
0.7. Thus it cannot only keep the training meeting highly
correlated but also avoid the interferences of the strong
targets.

4. Results of Measured Data

We inject one target in the measured data represented in
Figure 1 for the single target situation and two targets for
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Table 1: Single target situation.

Range (km) Doppler shift (Hz) Angle (∘) SCR (dB)
200.25 −1.2 0 5

the multitargets situation. The parameters of the targets are
shown in Tables 1 and 2.

For the single target situation, the injected target can be
detected when the threshold is over 0.6 as shown in Figure 12.
Compared with the results of the three thresholds, the IF is

Table 2: Mutitargets situation.

Range (km) Doppler shift (Hz) Angle (∘) SCR (dB)
200.25 −1.2 0 0
211.25 −1.2 0 10

Table 3: Range-spread targets situation.

Range (km) Doppler shift (Hz) Angle (∘) SCR (dB)
186.75–191.25 −1.2 0 0
227.25–231.75 −1.2 0 10

almost the same. That is in agreement with the conclusion in
Section 3.2. However, there are four fake targets at 159.75 km,
231.75 km, 265.5 km, and 319.5 km when the threshold is 0.8.
And two fake targets exist when the threshold is 0.7.When the
threshold decreases to 0.6, there is no fake target any more.
That is because when we process the data in these ranges with
threshold 0.7 or 0.8, the training data we have obtained is too
few to suppress the ionospheric clutter when the threshold is
higher. In this case, the energy of the ionospheric clutter stays
at a high level and it is easy to be treated as a “fake target.” But
the number of the training data increased as the threshold
decreased. Thus, there is no fake target when the threshold is
lower.

So for the single target situation, the threshold is set
mainly considering the fake targets.

For the multitargets’ situation, the results are shown in
Figure 13. Focusing on the two-injected targets at range of
200.25 km and 211.25 km, they can both be detected when the
threshold is 0.7 or 0.8. And the IF of target 1 is almost the
same. But when the threshold is 0.6, the energy of target 1
is weakened. That is because is when the threshold down to
0.6, target 2 is treated as training data. Thus, the covariance
matrix of the ionospheric clutter contains the characteristics
of target, and so target 1 is weakened.

Similar to the single target situation, there may be fake
targets when the thresholds are high and the number of
fake targets decreased as the threshold increased. In the
actual situation, the multitargets situation is common. So the
analysis of this part can make great sense.

Considering both the IF and fake targets problem,
the threshold should be set within 0.6 and 0.7 when the
improved-JDL algorithm is utilized in HFSWR.

We also consider the range-spread targets in HFSWR as
shown in Table 3; we can suppress the ionospheric clutter
and detect the two targets as shown in Figure 14 utilizing the
improved-JDL method with correlation threshold 𝑐

0
= 0.6

and the number of protected range bins 𝑝 = 2.

5. Conclusion

To counter the nonhomogeneous ionospheric clutter back-
ground of HFSWR, this paper proposes a feature analytical
algorithm based on the Angle-Doppler Joint Eigenvector
to analyze the range correlation of the nonhomogeneous
ionospheric clutter. It turns out that the range correlation
coefficient is irregular in its variation. In light of this prior
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Figure 12: The results by using the improved-JDL for single target
situation.
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Figure 13: The results by using the improved-JDL for multitarget
situation.

knowledge, a further step is taken to deal with the weak target
detection problem in HFSWR by analyzing the correlation
between targets’ signals and the ionospheric clutter and the
negative effect imposed by strong targets on weak targets
detection. To sum up, this paper proposes a correlation based
training data chosen strategy for the JDL algorithm, and
discusses the corresponding decision threshold selection in
detail. Consequently, decision thresholds should be set up
according to the practical situation of the nonhomogeneous
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Figure 14: The results by using the improved-JDL for multitarget
situation (range-spread targets).

ionospheric clutter and values between 0.6 and 0.7 are
preferable. This improved-JDL algorithm is validated by
measured data which shows that the weak target detection
performance can be notably improved in the background of
nonhomogeneous ionospheric clutter.
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A novel space-time adaptive processing (STAP) method for nonstationary clutter suppression is proposed. The developed method
forms a multibeam along the cross line to participate in adaptive processing, which sufficiently utilizes the spatial information
both in azimuth and elevation and guarantees the least system degrees of freedom (DOFs). The characteristics of this structure
help to suppress the short-range clutter which is the primary component of nonstationary clutter. Therefore, this method provides
favorable clutter suppression performancewhen clutter range dependence exists. Approach analysis and simulation results are given
to demonstrate the effectiveness of the method.

1. Introduction

Space-time adaptive processing (STAP) can achieve perfect
clutter suppression performance in stationary clutter circum-
stance [1]. However, for non-side looking airborne radar
(non-SLAR) (i.e., the radar with inclined side looking array
and forward looking array), the clutter is range dependent or
nonstationary, especially at short range [2]. In other words,
the clutter is mostly nonstationary in practice because of
detecting in all directions. Nonstationary clutter can result
in the degraded performance of the adaptive processor
compared to theoretical predictions.

So far, much effort has been put into this problem. The
multiple-PRFs STAP scheme can relieve the blind regions
induced by non-side looking and range ambiguity [3]. The
main contribution of this attempt is just for solving the
range ambiguity problem and not resolving the short-range
clutter problem in essence. Compensation methods [4–6]
work well when range ambiguity does not exist. Once the
radar works at the medium or high pulse repletion frequency
(PRF), it cannot identically compensate the ambiguity clutter.
In fact, the short-range clutter, induced from the array
elevation sidelobe, is the dominant reason for the clutter
nonstationarity. The 3D STAP [7] with elevation elements

or subarrays can cancel the short-range clutter effectively in
theory. Unfortunately, it is hard to get enough independent
identically distributed (IID) sample data and requires more
computation load because of its large systemDOFs. Subarray
synthesis algorithm with prefiltering in elevation [8] can
effectively suppress the short-range clutter when the element
errors do not exist. However, the array antenna errors are
inevitable in practice, thereby significantly degrading the
performance. In this paper, a STAP method based on cross
beam forming is presented in which the auxiliary beams are
reasonably chosen in elevation and azimuth to cancel the
clutter induced by elevation and azimuth sidelobes.

This paper is organized as follows. In Section 2, the
principle of the cross beam STAP method is introduced.
Section 3 shows the approach analysis. Simulation results are
shown in Section 4, and Section 5 gives the conclusions.

2. Clutter Characteristics for Non-SLAR

In this section, the clutter math model is described and the
clutter characteristics for non-SLAR are analyzed. Note that
range ambiguity is considered in this model. As shown in
Figure 1, the airplane flies along 𝑋-axis with velocity 𝑉, the
𝜃
𝑝
is the angle between the array axes and flying direction, 𝜃

𝑎
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Figure 1: Geometry of non-SLAR.

and 𝜑 are the azimuth angle and elevation angle of the clutter
patch, respectively, and Ψ denotes the cone angle.

The normalized Doppler frequency of the clutter patch
can be described as follows:

𝑓
𝑑
=

2𝑓
𝑑

𝑓
𝑟

=
4𝑉

𝜆𝑓
𝑟

cos (𝜃
𝑎
+ 𝜃
𝑝
) cos (𝜑)

=
4𝑉

𝜆𝑓
𝑟

(cos𝜓 cos 𝜃
𝑝
− sin 𝜃

𝑝
√cos2𝜑 − cos2𝜓) ,

(1)

where 𝜆 is the wavelength, 𝑓
𝑑
and 𝑓

𝑟
denote the Doppler

frequency and the PRF, respectively. From (1) we see that the
Doppler frequency of the clutter patch varies with the cone
cosinewhen 𝜃

𝑝
is nonzero (i.e., the situation of non-SLAR). In

other words, the distribution of clutter spectrum varies with
range.

The clutter spectrum characteristic of a forward-looking
planar array in azimuth-Doppler plane and range-Doppler
plane is shown in Figures 2 and 3, respectively. The scenario
parameters are given in Section 5. In Figure 2, we see that
the clutter is comprised of three parts which are named
𝑋
1
, 𝑋
2
, and 𝑋

3
. According to the conventional planar array

pattern, we can conclude that𝑋
1
,𝑋
2
, and𝑋

3
are, respectively,

induced from elevation sidelobe, azimuth main lobe, and
azimuth sidelobe. From Figure 3, we can see that the Doppler
frequency of short-range clutter 𝑋

1
severely varies with

range.

3. Principle of the Cross Beam STAP

A schematic of the proposed STAP architecture is shown in
Figure 4. An 𝑀 row by 𝑁 column vertical rectangular array
is considered. The first stage is beam forming involving MN
digitized spatial elements or subarray channels. This results
in a total of 𝑃+𝑄−1 beams which include main beam,𝑄−1

auxiliary beams along elevation with the azimuth main lobe,
and 𝑃 − 1 auxiliary beams along azimuth with the elevation
main lobe. One thing to be noted is that 𝑃 or 𝑄 is always an
odd number. After Digital Fourier Transform (DFT) for the
data received from each beam, adaptive processing is applied
for clutter suppression.
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−1 −0.5 0 0.5 1

−20

−10

0

10

20

−1

−0.5

0

0.5

1

X1

X2X3 c
o
s
𝜓

Figure 2: Clutter spectrum distribution of forward-looking planar
array in azimuth-Doppler plane.
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Figure 3: Clutter spectrum distribution of forward-looking planar
array in range-Doppler plane.

The received data can be reshaped into an 𝑀𝑁 × 𝐾 data
cube X. Let X

𝑀𝑁
∈ 𝐶1×𝐾 denote the echo signals received

by the 𝑚th element or subarray channel in elevation and the
nth element or subarray channel in azimuth, and let𝐾 be the
pulse number in one coherent pulse interval. The multiple
beams can be obtained by

A = T𝐻
𝑎
X, E = T𝐻

𝑒
X, (2)

where (⋅)
𝐻 denotes the conjugate transpose, T

𝑎
∈ 𝐶𝑀𝑁×𝑃

and T
𝑒
∈ 𝐶
𝑀𝑁×𝑄 are the azimuth and elevation beam trans-

formationmatrix, respectively.The 𝑝th column of T
𝑎
and the

𝑞th column of T
𝑒
have the following forms:

T
𝑎𝑝

= [S
𝑠𝑒0
, S
𝑠𝑒0
𝑒
𝑗𝜋 cos 𝜃

𝑝
cos𝜑
0 , . . . ,

S
𝑠𝑒0
𝑒
𝑗𝜋(𝑁−1) cos 𝜃

𝑝
cos𝜑
0]
𝑇

, 𝑝 = 1, 2, . . . , 𝑃,

T
𝑒𝑞
= [S
𝑠𝑒𝑞
, S
𝑠𝑒𝑞
𝑒
𝑗𝜋 cos 𝜃

0
cos𝜑
𝑞 , . . . ,

S
𝑠𝑒𝑞
𝑒
𝑗𝜋(𝑁−1) cos 𝜃

0
cos𝜑
𝑞]
𝑇

, 𝑞 = 1, 2, . . . , 𝑄,

(3)

where (⋅)𝑇 denotes the transpose, 𝜃
𝑝
(𝑝 = 1, 2, . . . , 𝑃) and 𝜑

𝑞

(𝑞 = 1, 2, . . . , 𝑄) are the angle of beams in azimuth and the
angle of beams in elevation, respectively, and 𝜃

0
= 𝜃
(𝑝+1)/2
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Figure 4: Schematic of the cross beam STAP method.

and 𝜑
0
= 𝜑
(𝑞+1)/2

are the azimuth angle and elevation angle of
the main lobe. S

𝑠𝑒0
and S
𝑠𝑒𝑞

are defined as follows:

S
𝑠𝑒0

= [1, 𝑒𝑗𝜋 sin𝜑0 , . . . , 𝑒𝑗𝜋(𝑀−1) sin𝜑0] ,

S
𝑠𝑒𝑞

= [1, 𝑒𝑗𝜋 sin𝜑𝑞 , . . . , 𝑒𝑗𝜋(𝑀−1) sin𝜑𝑞] .
(4)

Then the transformation matrix for cross beams can be
written as

T
𝑠
= [T
𝑎
,T
𝑒
(1, 2, . . . ,

𝑄 − 1

2
,
𝑄 + 3

2
, . . . , 𝑄)] . (5)

Let T ∈ 𝐶𝑀𝑁𝐾×(𝑃+𝑄−1)𝐿 be the transformation matrix in
space and time domain. Then it has the following form:

T = T
𝑡
⊗ T
𝑠
, (6)

where 𝐿 is the dimension after dimension reducing in time
domain, ⊗ denotes the Kronecker product, and T

𝑡
∈ 𝐶𝐾×𝐿

is the dimension-reduced matrix in time domain and often
transforms the pulse data to several adjacent Doppler bins in
most conventional STAP algorithms.

After transforming the received data X to beam-Doppler
domain, we can get the optimum weight by solve the
following optimization problem:

min W𝐻 (T𝐻RT)W,

s.t. W𝐻 [T𝐻 (S
𝑡
⊗ S
𝑠
)] = 1,

(7)

where R = 𝐸[Vec(X)Vec (X)𝐻], Vec(⋅) denotes the matrices
operation that stacks the matrix under each other to form a
column vector, and S

𝑡
and S

𝑠
are the time domain and space

domain steering vectors which can be represented by

S
𝑡
= [1, 𝑒𝑗2𝜋𝑓𝑑/𝑓𝑟 , . . . , 𝑒𝑗2𝜋(𝐾−1)𝑓𝑑/𝑓𝑟 ]

𝑇

,

S
𝑠
= [S
𝑠𝑒0
, S
𝑠𝑒0
𝑒𝑗𝜋 cos 𝜃0 cos𝜑0 , . . . , S

𝑠𝑒0
𝑒𝑗𝜋(𝑁−1) cos 𝜃0 cos𝜑0]

𝑇

.

(8)
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Figure 5: Adaptive weight normalized amplitude of themultibeams
at the 28th Doppler bin.

4. Approach Analysis

For STAP in non-SLAR, the more system degrees of freedom
(DOFs) in elevation, the better the nonstationary clutter
suppression performance can be achieved [7, 8]. However,
the added elements or subarrays in elevation lead to the
huge requirements for IID samples and computation load.
The 3D STAP [7] is a typical example for that. Fortunately,
it can be more flexible and effective to utilize the information
in elevation if the data are transformed into beam domain.
Figure 5 shows the normalized amplitude of the adaptive
weight in space domain at the 28th Doppler bin when all the
received data are transformed to multibeams. The clutter at
the 28th Doppler bin is comprised of short-range clutter and
azimuth sidelobe clutter. It can be seen from Figure 5 that the
adaptive weight amplitude is large in the cross lines aiming
at the elevation and azimuth main beam region, and small in
the other position. It further demonstrates that the selection
strategy of the cross beams is reasonable for nonstationary
clutter suppression.

Figure 6 shows the eigenspectrum of the clutter at the
28th Doppler bin. The scenario parameters are described in
the next part. From Figure 6 we can see that the eigenvalue
number of cross beams is the least and the eigenvalue number
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Figure 6: Eigenspectrum of clutter at the 28th Doppler bin.

of synthesized channels is the most. This result indicates that
there aremore redundant systemDOFs to suppress clutter [9]
for the new method compared with conventional 2D and 3D
STAP method.

5. Simulation Results

A 220-element forward-looking planar array steered to 0∘ in
azimuth and 3∘ in elevation is used, in which 22 elements
are in azimuth and 10 elements are in elevation. Three
correlative STAP methods are considered in this simulation
for comparison. The typical 2D STAP with synthesized 22
spatial channels in azimuth is firstly considered. The second
is the 3D STAP method with synthesized 11 × 2 spatial
channels in azimuth and elevation. The recent STAP method
based on elevation spatial prefiltering is also investigated in
ideal and error conditions, respectively. The platform height
is 8000m. The platform velocity is chosen so that there are
no Doppler ambiguities.The pulse number and Doppler bins
are both 32 and the short-range clutter distributed at the 24th
to 30th Doppler bins. The number of Doppler bins for STAP
is selected as 3. The range cell under test is chosen as 50.
The numbers of formed beams are 21 and 9 in azimuth and
elevation, and 𝑃 and 𝑄 are, respectively, chosen as 15 and 7.

Figure 7 shows the signal-to-clutter-plus-noise ratio
(SCNR) loss (i.e., loss relative to the clutter-free case) against
Doppler frequency for a target located at the look direction
when there are no errors in array. From Figure 7 we can see
that the short-range clutter suppression performance of 3D
STAP is better than that of the 2D STAP and worse than
elevation prefiltering and cross beam STAP method when
array errors are ignored. In this condition, the performance
of cross beam STAP is close to the elevation prefiltering STAP
method.

−1 −0.5 0 0.5 1
Normalized doppler frequency

SC
N

R 
lo

ss
 (d

B)

Elevation prefiltering

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

2D, 22 × 1
3D, 11 × 2 Cross beam, 15 + 6 

Figure 7: SCNR loss comparison of 2D STAP, 3D STAP, elevation
prefiltering STAP, and cross beam STAP (no errors).
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Figure 8: SCNR loss comparison of elevation prefiltering STAP and
cross beam STAP with different errors.

Figure 8 shows the SCNR loss of the elevation prefiltering
STAP method and cross beam STAP method when element
errors exist. From Figure 8 we can see that the clutter
suppression performance in short-range region of elevation
prefiltering STAP method evidently degrades than the no
error situation. However, the proposed cross beam STAP
method’s performance only slightly degrades and is signif-
icantly superior to the elevation prefiltering STAP method.
Therefore, the cross beamSTAPmethodhas better robustness
than the elevation prefiltering STAP method.

6. Conclusions

A new postbeam STAP method for nonstationary clutter
suppression in airborne radar has been presented. Simulation
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results show that the short-range clutter suppression perfor-
mance of cross beam STAP is superior to the existing 2D
STAP, 3D STAP, and elevation prefiltering STAP methods.
The computation load of the new method is close to the 2D
and 3D STAPwhen the systemDOF is chosen to be the same,
and is larger than the elevation prefiltering STAP.
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Due to the heavy jamming band of high frequency, frequency selecting strategies are serious issues for the system designed
to achieve its best performance. Pole is independent of the direction and polarization of the incident wave, but the residue
corresponding to the pole is related to the direction and polarization of the incident wave. And the value of residue is proportional
to the value of the pole. This paper chooses the frequency which can maximize the residue in the high-frequency band as the
optimal frequency for accurate extraction.The simulation result of a large number of ship targets shows remarkable rise in average
recognition rate by using this method, compared with the average recognition rate of randomly selected frequency.

1. Introduction

With the extensive application of high-frequency radar, radar
frequency selection has become an important research topic
[1–5]. The propagation characteristics of the high-frequency
electromagnetic waves are not only a function of the distance
but also a function of frequency [4]. In the case of the same
distance, the higher the frequency, the faster the attenuation
of electromagnetic waves. The frequency selection will seri-
ously affect the performance of the high-frequency surface
wave radar on target detection. It is necessary to optimize
the selection of operating frequency of the high-frequency
radar in order to get excellent detection performance of
high-frequency radar. This paper uses pole characteristic
to select frequency, explore criteria for frequency selection
optimization, and get the selected frequency optimization
method. Finally, the result of simulation for a variety of ship
target detection verified the correctness and validity of the
method.

2. Frequency Optimization Criterion

To get an optimal operating frequency, the first thing
to consider is the frequency optimization criterion.

A high-frequency radar operating frequency can be obtained
through scientific quantitative calculation in accordance
with this criterion so that the high-frequency radar can
achieve optimal detection performance. Radar is able to find
the goal, that is to say, the average correct recognition rate to
meet certain requirements. Paper [6] puts forward that radar
working frequency optimization selection is investigated for
an optimization selection method based on the minimum
classification error rule in order to improve airplane target
identification performance and that MER can change to
the principle of average correct recognition rate maximum.
Optimal operating frequency is the one which makes the
average correct identification rate maximum. This also can
be called as the principle of average correct recognition rate
maximum. The average correct recognition rate can be got
from dividing the number of correctly identified test by the
total number of randomized trials.

Pole is independent of the direction and polarization of
the incident wave, but the residue corresponding to the pole
is related to the direction of polarization of the incident wave.
And the value of residue is proportional to the value of the
pole. Considering the above two factors, select the frequency
which corresponds to the maximum value of residue as the
optimal frequency.
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3. Calculation of Residue

Matrix Pencil Method [7] is proposed on the basis of Pencil
of Function [8] and has a higher computational efficiency. It
only needs twoHankel matrices constructed by time-domain
data sequence of the target. Then seeking the generalized
eigenvalue of these two Hankel matrix we can calculate the
poles of target. Because Matrix Pencil Method needs not
to calculate the root of the characteristic equation as Prony
method, Matrix Pencil Method has high antinoise perfor-
mance. To improve the anti-noise performance of Matrix
Pencil Method, Sarkar first applied Matrix Pencil Method in
matrix singular value decomposition [9] and gave a method
to decide the number of poles, through the matrix low rank
approximation which could well inhibit the effects of noise,
and the efficiency of the algorithm is improved greatly. But
Matrix Pencil Method depends on the selection of relevant
parameters; Sarkar studies the beamparameters selection [10]
and the method for determining the number of target poles
[9]. Matrix Pencil Method has high computational efficiency
in certain SNR and good operation steadiness, which is very
suitable for the extraction of the target pole.

From previous research we can see that the properties of
Matrix Pencil Method are superior than others among a large
number of pole extraction methods [6]. But there are some
disadvantages, such as the unknownnumber of poles that will
to a large extent affect the matrix method of pole extraction
results. We use the improved the overall minimum square
Matrix Pencil Method to extract the pole of complex targets
[5, 9].

3.1. Principles of Matrix Beam Method. In 1971, after a lot of
electromagnetic pulses tests, Baum found that, when objects
are excited by electromagnetic pulse, their late response is a
series of superposition of attenuation sinusoidal oscillation,
and that attenuation factor and oscillation frequency com-
posed the complex natural resonant frequency, which is the
pole of target. Baum puts forward the theory of singularity
expansion method on the basis of the above phenomena
[11, 12].

The late transient response in time domain of target can
be represented by a finite sum of damped sinusoids:

𝑦 (𝑡) =

𝑀

∑
𝑖=1

𝑅
𝑖
𝑒
𝑠
𝑖
𝑡
, (1)

where 𝑅
𝑖
= 𝛼
𝑖
+𝑗𝛽
𝑖
, 𝑆
𝑖
= 𝜎
𝑖
+𝑗𝜔
𝑖
; 𝑅
𝑖
are complex residue; 𝑆

𝑖
is

pole; 𝜎
𝑖
, 𝜔
𝑖
is, respectively, attenuation factor and resonance

pulsation. The discrete form after sampling is

𝑦 (𝑛) =

𝑀

∑
𝑖=1

𝑅
𝑖
𝑧
𝑛

𝑖
, (2)

where 𝑛 = 1, 2, . . . , 𝑁; 𝑁 are sampling points. To define the
matrix disaggregatedly

Y = [y
𝐿
, . . . , y

1
, y
0
] , (3)

Y
1
= [y
𝐿
, . . . , y

2
, y
1
] , (4)

Y
2
= [y
𝐿−1
, . . . , y

1
, y
0
] , (5)

where y
𝑙
= [𝑦(𝑙), 𝑦(𝑙+1), . . . , 𝑦(𝑙+𝑁−𝐿−1)]

𝑇
𝑙 = 1, 2, . . . , 𝐿;

𝐿 is called beam parameters.
Equations (4) and (5), can be written as

Y
1
= Z
𝐿
RZ
0
Z
𝑅
, (6)

Y
2
= Z
𝐿
RZ
𝑅
, (7)

where,

Z
𝐿
=

[
[
[
[

[

1 1 ⋅ ⋅ ⋅ 1

𝑧
1

𝑧
2

𝑧
𝑀

... d
...

𝑧𝑁−𝐿−1
1

𝑧𝑁−𝐿−1
2

⋅ ⋅ ⋅ 𝑧𝑁−𝐿−1
𝑀

]
]
]
]

]

,

Z
𝑅
=

[
[
[
[
[
[

[

𝑧
𝐿−1

1
𝑧𝐿−2
1
⋅ ⋅ ⋅ 1

𝑧𝐿−1
2
𝑧𝐿−2
2

1
... d

...
𝑧𝐿−1
𝑀
𝑧𝐿−2
𝑀
⋅ ⋅ ⋅ 1

]
]
]
]
]
]

]

,

R = diag {𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑀
} ,

Z
0
= diag {𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑀
} .

(8)

Define the matrix pencil

Y
1
− 𝜆Y
2
= Z
𝐿
R (Z
0
− 𝜆I)Z

𝑅
, (9)

If beam parameters 𝐿 satisfie 𝑀 ≤ 𝐿 ≤ 𝑁 − 𝑀, then the
rank of matrix pencil is𝑀. If 𝜆 = 𝑧

𝑖
, then the rank of matrix

pencil decreased to𝑀− 1. In other words, {𝑧
𝑖
} is generalized

eigenvalue of matrix {𝑌
1
, 𝑌
2
}.

Y
1
𝑟
𝑖
= 𝑧
𝑖
Y
2
𝑟
𝑖
, (10)

𝑟
𝑖
are eigenvectors corresponding to eigenvalue 𝑧

𝑖
. Equation

(10) can also be written as

(Y†
2
Y
1
− 𝑧
𝑖
I) 𝑟
𝑖
= 0, (11)

where superscript “†” represents the generalized inverse of
the matrix. It can be seen from (11) that it is possible to obtain
the required target pole when eigenvalue of Y†

1
Y
2
is a known

value.
And then, target complex residue can be obtained

through the least squares method:

x = (A𝑇A)
−1

A𝑇b, (12)

where

A =
[
[
[
[

[

1 1 ⋅ ⋅ ⋅ 1

𝑧
1

𝑧
2

𝑧
𝑀

... d
...

𝑧𝑁−1
1

𝑧𝑁−1
2

⋅ ⋅ ⋅ 𝑧𝑁−1
𝑀

]
]
]
]

]

,

x = [𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑀
]
𝑇
,

b = [𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑁−1
]
𝑇
.

(13)
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3.2. TheChoice of Pole Number. Advanced transient response
of fully conducting targets can expand into an infinite num-
ber of decaying sinusoidal vibrations and forms. And formula
(1) constrained the complex attenuation frequency on the𝑀.
It is One of the important questions about extracting pole of
complex targets is how to select the appropriate 𝑀 [13]. If
the𝑀 value is selected too small, it will miss the target’s true
pole, and the pole will have a large deviation; if the𝑀 value is
selected too large, it will not only produce false pole but also
will lead to true pole position moved.

Pole number of simple targets within a certain frequency
band can be easy to get; but for the aircraft and ship target,
the pole number 𝑀 contains in the signal is unknown. For
this issue, this paper uses the selectionmethod based on time-
domain signal reconstruction error minimized to decide the
number of poles [5, 14].

In order to get better results of pole extraction, we
can apply the singular value decomposition technique to
pole extraction problem with matrix beam methods. Let us
suppose formula (1) is accurate; if we ignore deviation and
noise which come from modeling and calculations, matrix Y
will become a full rank matrix.

By singular value of formula (3), we can get this:

Y = [U U] [Σ 0
0 Σ

] [
V𝐻

V𝐻
] ,

Σ = diag {𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑀
} ,

Σ

=

[
[
[
[

[

𝜎
𝑀+1

0 ⋅ ⋅ ⋅ 0

0 𝜎
𝑀+2

0
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

](𝑁−𝐿−𝑀)×(𝐿+1−𝑀)

.

(14)

𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑀
is the biggest𝑀 singular values of Y. If there is

no noise, 𝜎
𝑀+1
, 𝜎
𝑀+2
, . . . will be zero. Take low rank of Y to

approximation of matrix Ŷ:

Ŷ = UΣVH
. (15)

And we can remove the last column of Ŷ, then we will get
matrix Ŷ

1
, and if we remove the first column, we will get

matrix Ŷ
2
like this

Ŷ = [Ŷ
1
y0] = [yL Ŷ

2
] . (16)

Ŷ
1
, Ŷ
2
singular values can be decomposed as

Ŷ
1
= UΣVH

1 ,

Ŷ
2
= UΣVH

2 .
(17)

removes the last column of matrix VH will get VH
1 , and if

remove the first column, we’ll get VH
2 .

Theorem [15] If matrix Y’s rank greater than or equal𝑀,
then there exists the only matrix of the same dimensions
Ŷ, and the rank is equal to 𝑀, which makes the norm of
‖Y − Ŷ‖

𝐹
Frobenius minimum. The extent of best approxi-

mation is described by ‖Y − Ŷ‖
𝐹
= ∑
𝑁−𝐿

𝑖=𝑀+1
𝜎
𝑖
, where ‖ ⋅ ‖

𝐹

indicates Frobenius norm.

Theorem explains that the use of Ŷ is the optimal
approximation to Y under F-norm in theory. We will get Ŷ

1

and Ŷ
2
through Ŷ; then the eigenvalue of Ŷ†

1
Ŷ
2
will be got.

This method can effectively inhibit the effects of noise on
pole extraction.This singular value decomposition technique
applied to a method of matrix beam method is called total
least square matrix beam method [5].

Theorem in the assumption of formula (1) is accurate and
on the condition of𝑀 is known. In the actual pole extraction,
𝑀 is unknown, and it cannot be determined only through the
distribution of singular values 𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑀
, 𝜎
𝑀+1
, 𝜎
𝑀+2
, . . ..

Because of the distribution of singular value, neither 𝑀 is
rendered when you select a value, then the singular value is
far smaller than the preceding singular value, nor𝑀 appears
when you select a value, followed by singular value of size
are essentially the same. Therefore you need to focus on pole
number𝑀 of selection method.

It can judged by pole extraction results to decide the
parameters selection is good or not.Wewill use the deviations
between theoretical and extraction as criteria to constrain
parameters selection and to get the best parameters𝑀. But
the most target theoretical pole is unknown, so it needs to
give a reasonable and actionable criterion.

If the target number of pole𝑀 is known, pole 𝑧
𝑖
can be

achieved bymatrix beammethod, and the complex residue of
target 𝑅

𝑖
can be got by arithmetic expression (4). It also can

reconstruct the time domain signal 𝑦rec(𝑘) of target, then we
will use the error between the reconstructed domain signal
𝑦rec(𝑘) and domain signal 𝑦cal(𝑘)

𝑆 (𝑀) =

𝑁

∑
𝑘=1

(𝑦rec (𝑘) − 𝑦cal (𝑘))
2
. (18)

As a criterion

min
𝑀

𝑁

∑
𝑘=1

(𝑦rec(𝑘) − 𝑦cal(𝑘))
2 (19)

Choosing the appropriate parameter𝑀opt.
Cause𝑀 can meet

𝑀 ∈ N, 1 ≤ 𝑀 ≤ min {𝐿,𝑁 − 𝐿} (20)

And usually target scattering data length 𝑁 is not too
long; the value of 𝐿 is generally around 𝑁/3. So the value
of 𝑀 is an integer from 1 to 𝑁/3. We can directly choose
all parameters𝑀 within the interval range to calculate 𝑆(𝑀)
select minimal parameter 𝑆(𝑀) which is corresponding to
𝑀 as the most appropriate parameters𝑀opt. Figure 1 shows
that the ship target error 𝑆(𝑀) and pole number determine
the results of process variation of 𝑆(𝑀) with parameter 𝑀.
It can be seen that as 𝑀 is increasing, errors it first shows
shock reducing, then minimum is reached, and at last it will
be larger again.

We can see from Figure 1 that in this paper, the best
number of pole is 𝑀 = 46. This approach can reduce
the impact because models are inaccurate, and there are
deviations in the data and the noise, extracting the precise
targets pole.
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4. Simulation

4.1. The Rationality of the Residue Selected Frequency. To
prove the rationality of the residue selected frequency, we
need to verify that the residue is a main contribution to
RCS. Because the residue is obtained from the late response,
we need to compare the contribution of the early and late
response to the RCS for the first step.

4.1.1. How to Recover RCS by Using Late Response Only. Tar-
get time-domain transient response and frequency response
are the Fourier transform for each other. If we can recover
the time-domain transient response, the frequency domain
response of the target can be obtained naturally. Target time-
domain transient response is composed of early and late
responses, which can be written as

𝑦all (𝑡) = 𝑦ear (𝑡) + 𝑦lat (𝑡) , (21)

where 𝑦ear(𝑡), 𝑦lat(𝑡) represent the early and late responses.
And 𝑦lat(𝑡) is the 𝑦(𝑡) in formula 𝑦(𝑡) = ∑𝑀

𝑖=1
𝑅
𝑖
𝑒𝑠𝑖𝑡; we can

rewrite formula 𝑦(𝑡) = ∑𝑀
𝑖=1
𝑅
𝑖
𝑒𝑠𝑖𝑡 as

𝑦lat (𝑡) =
𝑀

∑
𝑖=1

𝑅
𝑖
𝑒
𝑠
𝑖
𝑡
. (22)

In theory, no matter what form of target transient
response 𝑦all(𝑡) is in formula 𝑦all(𝑡) = 𝑦ear(𝑡) + 𝑦lat(𝑡), it can
be expanded into an infinite sum number of complex expo-
nential

𝑦all (𝑡) =
∞

∑
𝑖=1

�̃�
𝑖
𝑒
𝑠
𝑖
𝑡
, (23)

where �̃�
𝑖
is the coefficient of expansion corresponding to

exponential term 𝑒𝑠𝑖𝑡. Basis function set {𝑠
1
, 𝑠
2
, . . .} definitely

contains the target pole set {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑀
}. Although using

only the pole set {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑀
} to expand the transient

Figure 2: Airplane model using FEMAP (𝐿 × 𝑊 × 𝐻 (m): 49.05 ×
56.39 × 12.40).

response 𝑦all(𝑡) may exist certain error, but that error is
admissible.

𝑦all (𝑡) ≈
𝑀

∑
𝑖=1

�̂�
𝑖
𝑒
𝑠
𝑖
𝑡
, (24)

where �̂�
𝑖
can be called the new residue corresponding 𝑆

𝑖
to

different from 𝑅
𝑖
.

4.1.2. The Comparison Simulation. Here we get the original
RCS by using software FEMAP to model the ship target
and FEKO to calculate the RCS. The target we choose 49.05
meters long, 12.40 meters high, and 56.39 meters wingspan
airplane, the model of airplane, is shown in Figure 2. The
comparison result is shown in Figures 3 and 4, red line
represents recovered RCS only by late time response and
blue line shows the original RCS, which proves that the
late response is a very important contribution to RCS. The
above conclusion implies that the residue calculated from late
response is also very important to RCS. Next, we will test and
verify the above conclusion by estimating the contribution of
residue to RCS.

To make the simulation contain common complex goal,
this time I use software FEMAP and FEKO tomodel one ship
and calculate its RCS, the model is shown in Figure 5. Then
calculating the residue according to the method I described
in the paper, incident angle ranges from 0∘ to 180∘ at a 10∘
interval. The frequency selection is from 0.2MHz to 20MHz
at a 0.2MHz interval.The number of the pole is 46.The result
is shown in Figure 6,We can see that the residue changes with
frequency and angle. It shows peak appeared when angle is
90∘ and frequency is 9.6MHz.

We can set that maximum residue as zero and then
recover the RCS. Comparing the variation of RCS before
and after. Figure 7 shows that when maximum residue was
replaced by 0, RCS declined to 8 dB–10 dB; the above simula-
tion proves the influence of residue on the value of RCS. The
simulation results provide a theoretical basis for using residue
to select frequency.

4.2. Compare the Average Correct Recognition Rate

4.2.1. Nearest Neighbor Rule Classification. Modeling 𝐸
types different target by software FEMAP, discrete the
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high-frequency band into 𝐾 frequency points with a fixed
interval, obtain the RCS by FEKO calculating in all angle, we
can get a target database in high-frequency band:

D = [D1 D
2
⋅ ⋅ ⋅ D

𝐸] =

[
[
[
[

[

𝐷
11
𝐷
12
⋅ ⋅ ⋅ 𝐷

1𝐾

𝐷
21
𝐷
22
⋅ ⋅ ⋅ 𝐷

2𝐾

...
... d

...
𝐷
𝐸1
𝐷
𝐸2
⋅ ⋅ ⋅ 𝐷

𝐸𝐾

]
]
]
]

]

. (25)

Extracted 𝑘 frequency points from 𝐾 frequency points,
are equivalent to extracted 𝑘 column vectors from𝐾 column
vectors in above matrix, to constitute a submatrix:

D = [D
1
D
2
⋅ ⋅ ⋅ D

𝐸
]
𝑇

=

[
[
[
[

[

𝐷
11
𝐷
12
⋅ ⋅ ⋅ 𝐷

1𝑘

𝐷
21
𝐷
22
⋅ ⋅ ⋅ 𝐷

2𝑘

...
... d

...
𝐷
𝐸1
𝐷
𝐸2
⋅ ⋅ ⋅ 𝐷

𝐸𝑘

]
]
]
]

]

. (26)
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Figure 5: Ship model using FEMAP Destroyer (𝐿 × 𝑊 × 𝐻 (m):
154.0 × 17.0 × 6.0).
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D
𝑖
is a radar target feature vector; name D as radar target

feature space composite of 𝐸 types target feature vector.
Obtain the RCS on 𝑘 frequency points by actual measure-

ment, write it as
D̂ = [𝐷

1
, 𝐷
2
, . . . 𝐷

𝑘
] , (27)

name it radar target measurements eigenvectors.
According to the existing research Ksienski and Lin show

that the nearest neighbor classification method for the class
of complex radar target aircraft has better recognition results
[11]. The Euclidean distance between measuring characteris-
tic feature and the 𝐸 types target in target feature space is

𝑑
𝑚
=

D̂ −D

𝑚


= [

[

𝑘

∑
𝑗=1

(𝐷
𝑗
− 𝐷
𝑚𝑗
)
2]

]

1/2

. (28)

According to nearest neighbor classification, if

𝑑
𝑚
< 𝑑
𝑛
, 𝑚, 𝑛 = 1, 2, . . . 𝐸; 𝑛 ̸=𝑚 (29)

target is 𝐸 type.
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Figure 8: Average correct recognition rate changes with the signal-
to-noise ratio by different frequency selection methods for 6 classes
of target.

4.2.2. Simulation. In order to study the effect of the max-
imum number residue frequency-selective method of ship
target also verifies that the maximum residue frequency
selection method can effectively improve the recognition
effect. I do a large number of random tests to verify the
correctness of the theory and the effectiveness of the method.

The simulation selected 6 typical classes of ship target as a
target to be classified from the library of high-band ship target
characteristics; the type of ship targets and basic dimensions
are shown in Table 1, Including aircraft carriers, cruisers,
destroyers, frigates, hunting submarines, missile boats, and
different types of ships. Here added noise to calculated target
RCS to simulate the measured data, cause many of them are
secret we cannot get the measured data. Here we can name
this RCS calculated RCS with noise to different from below.
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(a) The measuring deviation is ±1 dB
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Figure 9: The average correct identification rate changes trend of 6 targets with different SNR when deviations exist. (a) The measuring
deviation is ±1 dB. (b) The measuring deviation is ±2 dB.

Table 1: Ship targets size.

Serial Target type 𝐿 ×𝑊 × draft (m)
1 Aircraft carrier 323.6 × 39.6 × 11.4

2 Cruisers 172.8 × 16.8 × 9.5

3 Destroyers 154.0 × 17.0 × 6.0

4 Frigate 138.7 × 13.5 × 4.7

5 Submarine chasers 58.8 × 7.2 × 2.2

6 Missile boat 60.0 × 8.8 × 2.3

Assume that select the 𝑚 target, add Gaussian white noise
with zero mean; mean square deviation is 𝜎, and signal-to-
noise ratio is calculated using

SNR = 1
𝑘

𝑘

∑
𝑗=1

𝐷
𝑚𝑗

𝜎2
. (30)

Here does not consider the situation that the target is not
included in the target class to be classified.

1000 randomized tests are conducted to study the changes
of the correct identification rate in different signal-to-noise
ratios with the different frequency selectionmethod. Figure 8
shows average correct recognition rate comparison between
maximum residue frequency selection method and random
frequency selection method of 6 goals. Apparently, the aver-
age correct recognition rate of maximum residue selection
frequency method is better than random frequency selection
method.The former method is about six percent higher than
the latter. The average correct recognition rate of maximum
residue selection frequency method can be as high as 0.8.

To make the simulation much more closer to real con-
ditions, we need to consider that there may be deviations
between the measurement RCS and calculated RCS from

simulation. That deviations may come from the bug of
software or the noise that affects the measurement of RCS.
In this simulation, a larger amount of uniformly distributed
random value is added to calculated RCS as that deviation.
Taking into account that the RCS deviation may occur in the
reality as 𝑥 dB, to 𝑚 target’s 𝑗 frequency, we add uniformly
distributed random value in the range of [−Δ𝐷

𝑚𝑗
, Δ𝐷
𝑚𝑗
],

satisfying 𝑥 = 10 ⋅ log (Δ𝐷
𝑚𝑗
/𝐷
𝑚𝑗
). At the same time,

Gaussian white noise we discuss in Figure 6 is still added
(calculated RCS with noise). Figure 9 shows the recognition
results of 6 ship targets at two operating frequencies 13.4MHz
and 15MHz when taking consideration of the deviations
between the measure RCS and calculated RCS.

From Figure 8, Compare the average correct recognition
rate of the abovemethod and the random frequency selection
method when angle is 90∘; average correct identification
rate of my method is 82.76% when SNR is 13 dB, while the
average correct identification rate of the random frequency
selection mode is 61.33% when SNR is 13 dB, which verifies
the effectiveness of the method.

In Figure 9, we can see that the average correct recog-
nition rate declined quickly when measuring deviation
becomes larger.Whenmeasuring deviation is±1 dB, the aver-
age correct recognition rate can reach 0.87. When measuring
deviation is ±2 dB, the average correct recognition rate can
reach 0.68. Comparing Figure 9 with Figure 8 we can that the
measuring deviation does have an influence on the average
correct recognition rate. But it can be overcome by adding
more frequency. The simulation of 4 frequencies 13.4MHz,
15MHz, 16.6MHz, and 20MHz is shown in Figure 10, from
whichwe can see that the average correct recognition rate can
reach 0.85.

From above comparison we can get the conclusion that
the measuring deviation has a great influence on recognition
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Figure 10: The measuring deviation is ±2 dB, and the frequencies
are 4: 13.4MHz, 15MHz, 16.6MHz, and 20MHz.

rate. But this problem can be overcome by adding more
frequency even when the measuring deviation exists, and
the average recognition rate of the method adopted in this
paper is significantly larger than random selected frequency
method, which indicated that the robustness of the method
is absolutely better than random selected frequency method.
And the method is feasible.

5. Conclusion

This paper studies the frequency selection method in high-
frequency band radar target recognition. Based on the aver-
age correct recognition rate maximization principle, consid-
ering the residues corresponding to pole is related to the
incident wave direction and polarization; the value of residue
is proportional to the value of the pole, a maximum residue
frequency selection method was proposed, and satisfactory
recognition result is obtained with the simulation experi-
ment on multiclass ship targets. Considering the difference
between real measured RCS, and software calculated RCS,
we add measurement deviation in software calculated RCS,
and the ship target recognition effect under the conditions
of different measurement deviations is analyzed.This verifies
the correctness and validity of the frequency optimization
method.
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The antenna model used for correcting the influence of the antenna pattern on synthetic aperture radar (SAR) images requires
on-ground validation and in-flight verification. A methodology for the in-flight verification that is based upon the measurement
of azimuth antenna patterns using ground receivers has been successfully demonstrated for the operational SAR modes of the
TerraSAR-X (TSX) and TanDEM-X (TDX) missions. Recently, the novel (terrain observation by progressive scans) TOPS mode
was for the first time implemented as an experimental mode on TerraSAR-X to demonstrate its feasibility in support of its
implementation on ESA’s Sentinel-1 mission. In this mode, besides scanning in elevation, the antenna beam is steered in flight
direction from aft to the front at a constant rate to achieve an enhanced radiometric image performance. This paper discusses the
methodology and presents results of the first in-flight antenna characterization of a SAR instrument operating in TOPS mode, in
this case TerraSAR-X, using ground receivers. The results demonstrate that the TOPS one-way azimuth antenna pattern can be
accurately modeled by the TSX antenna model indicating the general suitability of this approach for the in-flight antenna model
verification during TOPS mode operations.

1. Introduction

The correct modeling of the phased-array antenna in a
synthetic aperture radar (SAR) system is of main importance
for precise SAR image processing. Accurate knowledge of
the antenna characteristics is required in order to remove
the influence of the antenna pattern from the image during
SAR processing. The large number of SAR beams used by
modern SAR satellite missions along with the requirement
for having a short duration of the commissioning campaigns
requires a SAR calibration concept that is mainly based on
the use of a precise antenna model [1]. Other elements of
such a calibration concept include the internal calibration
and in-orbit health check of the SAR antenna system based
on the pseudonoise gating method [2]. Thus, only a limited
number of SAR imaging beams would need to be actually
measured during the commissioning phase. Following a
previous on-ground validation, the antenna model needs

to be verified in orbit: in elevation by analyzing the two-
way elevation pattern using acquisitions across homogeneous
distributed scatterers, that is, Amazon rainforest, and in
azimuth by measuring the one-way azimuth pattern using
ground receivers (GRs).

In the case of TerraSAR-X (TSX) as well as TanDEM-X
(TDX), the accuracy of the antenna model was verified to
be ±0.2 dB for the two-way elevation pattern and ±0.1 dB for
the one-way azimuth pattern [3]. Furthermore, the peak to
peak gain offset between different beams in elevation was
verified by evaluating ScanSAR data and proved to be less
than ±0.2 dB (peak to peak) [4]. These results demonstrated
that the patterns of thousands of possible beam combinations
could be accurately calculated from the available antenna
model. Even as the TSX mission reaches its nominal end of
life, the long-term monitoring of the SAR system has shown
that the antenna gain and consequently the antenna model
still achieve these accuracies [5].
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Novel SAR modes such as the (terrain observation by
progressive scans) TOPSmode impose new challenges on the
SAR system calibration. In this mode, just like in ScanSAR,
several subswaths are acquired by subswath switching in
elevation from burst to burst. In addition to the elevation
beam steering, the antenna azimuth beam is steered from
aft to the fore within each burst at a constant rate [6]. As
a result and in contrary to ScanSAR, all targets on ground
are observed by the complete azimuth antenna pattern elim-
inating almost entirely the scalloping effect and achieving
constant azimuth ambiguities and signal-to-noise ratio (SNR)
along azimuth. However, the fast azimuth beam steering
reduces the target dwell time and as such causes the virtual
shrinking of the antenna footprint and thus a reduction of
the spatial resolution in azimuth. Besides, TOPS acquisitions
may still be affected by a residual scalloping caused by the
shape of the subarray antenna element pattern [7, 8], albeit
inferior to the scalloping observed in normal ScanSAR.

The novel TOPS mode was first implemented as an
experimental mode on TSX to demonstrate its feasibility in
support of its implementation on ESA’s Sentinel-1 mission
where it will be used as an operational imaging mode, that is,
the interferometric-wide swath (IW) and the extrawide swath
(EW) modes [9].

The motivation of this paper is to demonstrate that
ground receiver measurements can be used for the in-flight
characterization of TOPS one-way azimuth antenna pattern
and as such for the verification of the antenna model. In
particular, the methodology for preprocessing and analyzing
TSX TOPS one-way azimuth antenna pattern acquired by
GRs is discussed.This considers the beam switching not only
between subswaths in elevation but especially in azimuth and
consequently the beam-to-beam gain variation in elevation
and in azimuth.

First, the characteristics of the implementation of the
TOPS mode on TerraSAR-X and the impact on the TOPS
antenna footprint are discussed. Second, the approach based
on GR measurements and the reconstruction of the azimuth
antenna pattern using the antenna model is explained along
with the experimental setup. Finally, the TSX GR measure-
ment results are presented and discussed.

2. TOPS Mode Characteristics

2.1. TSX TOPS Mode Implementation. The operation flex-
ibility of the TSX mission [10] enabled the experimental
implementation of the TOPS mode and the acquisition of
TOPS data, which was demonstrated for the first time in
2007 [11]. However, the commanding of a TSX TOPS data
take is challenging because the TSX SAR instrument was not
designed for operating the TOPS imagingmode.Thus, acqui-
sition parameters must be optimized taking into account the
instrument constraints. Such constraints were explained by
Meta et al. in [12]: first, only a limited number of azimuth
beams can be stored on board; therefore the instrument
cannot be continuously steered from pulse to pulse, causing
a coarse steering angle step size; second, there is a limited
number of azimuth beams that can be commanded on a single

acquisition; third, because of the limited number of azimuth
beams that can be steered, the azimuth steering step size
has a direct impact on the steering rate which determines
the achievable azimuth resolution. As a consequence of the
coarse azimuth steering step size (the minimum step for
TSX is 0.013 deg), an amplitude modulation in the azimuth
antenna pattern is introduced [7, 12].

2.2. TOPS Antenna Pattern. The TOPS antenna pattern, as
seen by a point target and defined in a flat-earth coordinate
frame, was approximated by [6] using

𝐺
𝑇 (𝜗 (𝜏)) ≃ 𝐺0sinc

2
(
𝐿

𝜆

𝜐
𝑠
𝜏

𝑅
0

(1 +
𝑅
0


𝑘
𝜓



𝜐
𝑠

)) , (1)

where𝐺
0
is the antenna power gain, 𝜗(𝜏) is the azimuth angle

as a function of time 𝜏, 𝜐
𝑠
is the velocity of the satellite, 𝜆

is the radar wavelength, 𝑅
0
is the slant range to the closest

approach point, 𝐿 is the azimuth antenna length, and 𝑘
𝜓
is

the antenna steering rate. The expression in (1) is equal to the
ground footprint of a fixed antenna, that is, strip map, but
shrunken by a factor [6]

𝛼 = 1 +
𝑅
0


𝑘
𝜓



𝜐
𝑠

. (2)

The antenna pattern, as seen by a point target on the
ground, can be simulated for the TSX case using the parame-
ters shown in Table 1 and inserting them in (1). The resulting
one-way azimuth pattern is shown as a full line in Figure 1.
The plot shows that the TOPS azimuth pattern is compressed
as compared to the pattern of a fixed antenna. It should
be noted that the steering in elevation, that is, different
subswaths, is not simulated.

The effects of the steering angle quantization described in
the previous subsection are observed in the staircase shape of
the pattern in Figure 1. However it should be noted that (1)
is only an approximation, since it assumes a sinc2-like shape
(bell) of the pattern. A more accurate representation of the
TOPS antenna pattern is achieved by using a precise antenna
model, which provides the exact steered azimuth beam
patterns by means of changing the excitation coefficients of
the active antenna array at a given rate.

3. Methods and Measurement Setup

3.1. Methodology. For measuring the TOPS antenna pattern
during a satellite overpass, the deployed ground receivers
(GRs) need to be aligned in direction to the line of sight of
the SARantenna in zero-Doppler position [13].TheusedDLR
ground receivers detect the received powerwith a logarithmic
detector. The detector amplitude is digitized with an analog-
to-digital converter. The digital values are stored within the
GR and are read out in the laboratory after each overpass.
The first step for data analysis is to transform the recorded
digital samples to power expressed in dBm over a time axis.
The time axis is derived from a GPS pulse-per-second signal,
which was recorded by the ground receiver in parallel to the
received power.
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Figure 1: One-way azimuth antenna pattern gain in TSX TOPS
mode as seen by a point target.

Due to themovement of the platform, the signal recorded
by the GR represents a cut through the spherical antenna
pattern. Naturally, the GRs can only measure the transmit
pattern of the SAR antenna. This one-way azimuth antenna
pattern is then obtained by considering the position of the
target and the platform and transforming time units into
equivalent azimuth angles. A correct time synchronization
between the SAR instrument in orbit and the GR is required,
because each received radar pulse must be mapped to the
nominal excitation coefficients in elevation and azimuth.

Once this measurement is correctly time-labeled, the
main focus is to obtain a reference pattern to which the
measured azimuth antenna pattern can be compared. There-
fore, a novel method was developed which enables the
reconstruction of the actual TOPS azimuth antenna pattern
using the following information:

(i) the timed sequence of antenna excitation coefficients
(in azimuth and in elevation) that are used to steer the
antenna during the acquisition,

(ii) the antenna model providing the reference patterns
for each switched beam (pair of azimuth/elevation
pattern),

(iii) the exact knowledge of the imaging geometry, that is,
the line of sight vector between the platform and the
GR.

3.2. Measurement Setup and Configuration. For this exper-
iment, four TSX descending passes in TOPS mode were
commanded and acquired during the spring of 2012. The
equipment used for measuring the azimuth pattern is a set of
GRs inX-band. In particular, threeGRswere deployed at each
of the two test sites (D28 andD30)within theDLR calibration
field located in Southern Germany, as shown in Figure 2.

Table 1: Parameters of TSX TOPS data take over DLR calibration
field.

Parameter Value, [subswath 1/2/3/4]
Ground swath width ≈[30/27/27/27] Km
Pulse repetition frequency [3233/3728/3465/3752] Hz
Azimuth resolution ≈19m
Incidence angle/midslant range ≈52∘/790 km
Burst width ≈10.4 km
Number of bursts per subswath [13/13/13/13]
Maximum azimuth steering angle [0.47/0.47/0.46/0.46]∘

Minimum azimuth steering angle [−0.47/−0.47/−0.46/−0.46]∘

Number of azimuth beams per
burst [25/25/36/36]

Angle steering quantization step [0.039/0.039/0.026/0.026] deg
Pulses per azimuth beam [45/52/34/37]

The test sites were located in an overlap region between two
subswaths (here strip 018 and strip 019) and two bursts. The
different bursts of interest (regions filled by green color) are
labeled with a number (from 0 to 5) which will be used from
now on in the following analysis. Due to the relatively small
size of the burst overlap area on ground, not only the GRs
had to be accurately deployed and configured but also at
instrument level the TOPS acquisition had to be precisely and
reliably commanded.

The acquisition parameters used for these fourTSXpasses
are presented on Table 1. These parameters have been opti-
mized taking into account the instrument-related constraints
explained in Section 2.1.

4. Measurement Results

The conformity of azimuth antenna pattern derived from the
antenna model with the actual GR measurements is shown
in Figure 3. As previously outlined, the azimuth angles of
the horizontal axis correspond to time, which was converted
to azimuth angle using the exact knowledge of the imaging
geometry between the satellite and the GR. It can be seen
that the measurements match the reconstructed theoretical
pattern match very closely including in the lower sidelobes.
This demonstrates that theTSX antennamodel can accurately
predict the beam-to-beam gain offsets not only between
elevation beams but also for the steered azimuth beams.

In Figure 3, four peaks can be observed, which corre-
spond to the four neighboring bursts in the vicinity of the
test site D28, when the SAR antenna was steered while
imaging the GR. The peaks correspond from right to left to
bursts 0-1-2-3. In each burst, the antenna is steered in the
azimuth direction following a sequence of beams. As this
sequence is not continuous, the antenna beam configuration
remains in a determinate beam (as expected from the values
in Table 1) during 45 PRIs for the first subswath and 52 PRIs
for the second subswath, originating the staircase shape of the
pattern (see Figure 1). Sharp changes in the staircase sequence
correspond to not only burst but also subswath changes
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Figure 2: TSX TOPS acquisition coverage with subswaths and bursts indicated. The target position and burst labeling are also shown. The
arrow indicates the flight direction (Google Earth).
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Figure 3: Comparison of the normalized TOPS azimuth pattern
measured byGRs during one overpass and the reconstructed pattern
derived from the antenna model. Only the relevant azimuth angles
corresponding to bursts 0-1-2-3 are shown.

(e.g., transition from burst 0 to 1 at approximately +0.45∘).
Other peaks with lower amplitude correspond to other
subswaths (strip 020 and strip 021). Furthermore, it should
be mentioned that, just as expected, the 3 dB beamwidth is
narrower than in the fixed-antenna case, because the TOPS
azimuth antenna pattern is compressed due to the steering,
as predicted by (1).

Looking closer at a single burst, the staircase shape of the
pattern becomes obvious, as shown in Figure 4. Here only
burst 2 is shown, since it is one of the bursts covering the
overlap region for test sites D28 andD30. Due to the different
imaging geometries, a different segment of the pattern is seen
by the GRs at each test site. At a given time, the backward
looking beams are observable by the GRs at D28, while the
forward looking beams are observable by the GRs at D30;
that is, while D28 is illuminated directly with the main lobe
of these backward beams (main lobe in Figure 4(a)), D30 is
irradiatedwith the sidelobe of the backward beams (sidelobes

in Figure 4(b)), and when D30 is illuminated with the main
lobe of the forward beams (main lobe in Figure 4(a)), then
D28 is irradiated by the sidelobe of these forward beams
(sidelobes in Figure 4(b)).

The interesting area for the analysis is the 3 dB region
of the pattern, which represents the main lobe of the SAR
antenna that illuminates the target. As previously discussed,
the main lobe is composed of many azimuth beams. For
this region, the difference between the measurement and
the theoretical pattern derived from the antenna model has
been calculated and is likewise shown in Figures 4(a) and
4(b). Since each GR has slightly different characteristics, the
measurements of 3 GRs deployed at a single test site are
combined to obtain an averaged measurement pattern. The
graphs show that the deviation is kept between ±0.1 dB along
the 3 dB region of the azimuth patterns for different beams
as well as for different azimuth look angles (corresponding to
the different bursts and sites).

These results are remarkable since they demonstrate
that the antenna model can accurately predict the antenna
pattern gain with extreme precision also in the case of TOPS.
Hence, the accuracy of the TSX antenna model of ±0.1 dB
for one-way azimuth antenna patterns is also achieved for
measurements in the experimental TOPS mode, after 5 years
of mission time.

In Figure 5(a) the difference between the measurement
and the theoretical antenna pattern is shown for the 3 dB
region of the pattern (for each of the analyzed six bursts).
Themeasurements are again averaged over the three deployed
GRs per test site and pass. The statistics are presented by
the vertical bars on the left of the graphs. The upper and
lower ends of each bar represent the minimum and the
maximum, the star is the mean deviation, and the triangles
are the standard deviation. For this specific pass, the deviation
exceeds ±0.1 dB. However, the deviation decreases when the
pattern derived from the antenna model is shifted slightly
by about 0.005 degrees, as shown in Figure 5(b). As this
shift can be observed for both test sites (each test site has
a different color: D28 is blue, D30 is yellow), which means
that for different lines of sight between the satellite and the
test site, the same residual “mispointing” has been measured.
This residual mispointing is in the order of a fewmillidegrees
which represents the order of accuracy of the TSX attitude
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Figure 6: Difference between measurement on May 18, 2012, and
model for the 3 db region of the TOPS azimuth patterns, statistical
values: grey/black. No pointing correction was needed for this data
set.

knowledge. This was verified at the beginning of the TSX
mission [3, 14] (i.e., having a pointing accuracy of 0.002
degrees).The antenna mispointing changes from pass to pass
due to the total zero-Doppler attitude steering of the satellite,
but it stays rather constant during one pass. For example,
the measurement on 2012/05/18 presents a very low deviation
value even for the uncorrected case, as it is shown in Figure 6.

Finally, when applying the pointing correction, the dif-
ference between measurement and model, including the
minima and the maxima, is less than ±0.2 dB. Thus, the
characterization of the TOPS mode azimuth antenna pattern
using GRs is also well suited for deriving the actual SAR
antenna pointing in the azimuth direction.

5. Conclusions

The method for azimuth antenna pattern verification based
on ground receiver measurements was applied to the
TerraSAR-X instrument operating in TOPS mode during
four passes/four acquisitions at two different test sites with
3 GRs per test site. The results show that for reconstructing
the azimuth pattern by means of the antenna model, taking
into account the accurate knowledge of the imaging geometry
(i.e., between the satellite and the GR position on the Earth’s
surface) as well as the antenna excitation coefficients, the
deviation between the measured azimuth patterns and the
theoretical patterns is in the order of two tenths of a dB.

Compensating for a slight antenna mispointing caused
by a finite knowledge of the attitude of the satellite, an
accuracy of the antenna model of better than ±0.15 dB has
been achieved for the experimental TSX TOPS mode. The
accuracy includes both the shape within the main lobe and
the gain offset between subswaths in elevation, as well as
between backward and forward steered azimuth beams. This
accuracy is similar to that demonstrated for all operational

TSX modes, considering that the satellite is now reaching its
nominal end-of-life phase.

The current analysis was performed for each transmitted
radar pulse. In other words, for the method described in
Section 3.1, the number of azimuth beams that were steered
during the acquisition is of no relevance. Instead, precise
knowledge of the right sequence of steered azimuth beams
and scanned elevation beams, together with the correct
synchronization of the data, is required. Therefore this
calibration method is suitable for other satellite missions
such as Sentinel-1 that will use TOPS as an operational
mode. However, the complexity of analyzing ground receiver
measurements may increase with a higher amount of steered
azimuth beams.

Finally, the method based on GRs and proposed for
measuring the azimuth pattern of a SAR system in the
complex TOPS mode is well suitable for the verification of
the antenna model using TOPS acquisitions and deriving a
residual mispointing.
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Schrank, and J. H. Gonzalez, “Final TerraSAR-X calibration
results based on novel efficient methods,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 48, no. 2, pp. 677–689, 2010.

[4] M. Bachmann, M. Schwerdt, and B. Bräutigam, “Accurate
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The shipborne phased array radar must be able to compensate the ship’s motion and track the maneuvering targets automatically.
In this paper, the real-time beam pointing error compensation mechanism of a planar array antenna for ship’s motion is designed
to combine with the Kalman filtering. The effect of beam pointing error on the tracking performance of shipborne phased array
radar is examined. A compensation mechanism, which can automatically correct the beam pointing error of the planar antenna
array, is proposed for shipborne phased array radar in order to achieve the required tracking accuracy over the long dwell time.The
automatic beam pointing error compensation mechanism employs the parallel fuzzy basis function network (FBFN) architecture
to estimate the beam pointing error caused by roll and pitch of the ship. In the simulation, the models of roll and pitch are used
to evaluate the performance of beam pointing error estimation mechanism based on the proposed parallel FBFN architecture. In
addition, the effect of automatic beam pointing error compensation mechanism on the tracking performance of adaptive extended
Kalman filter (AEKF) implemented in ship borne phased array radar is also investigated. Simulations find out that the proposed
algorithms are stable and accurate.

1. Introduction

Beam pointing error caused by ship motion over the ocean
affects the tracking performance of the shipborne phased
array radar. The antenna stabilization to achieve the beam
pointing accuracy over the long dwell time is an important
issue for shipborne phased array radar [1].There are two ship
motion compensations: compensation for rotational motion
(i.e., pitch, roll, and heading angle) and compensation for
translational motion (i.e., radial speed relative to the earth).
Figure 1 shows the shipborne phased array radar system [2, 3],
which consists of the gyro sensor, beam steering controller
(BSC), array antenna, radar control computer (RCC), digital
signal processor (DSP), transmitter and receiver (XMTR/
RCVR), and display. Gyro sensor provides pitch, roll, heading
angles of the ship, speed, course, vertical velocity of antenna
installed on the ship at a data rate of 100Hz. To compensate
the translational motion, the speed, course, and vertical
velocity acquired from the Gyro sensor are averaged for
the duration of radar-dwell time. Then the Doppler shift

introduced by the translational motion is calculated to com-
pensate the radial velocity estimated in the digital signal pro-
cessor (DSP).The radar control computer (RCC) provides the
target locations relative to earth, scheduled beam directions,
and predicted beam pointing error to the beam steering
controller (BSC), which compensate the beam pointing error
and controls the phased array antenna to point the beam at
the target direction relative to the ship coordinates.

The idea of the extended Kalman filter (EKF) was origi-
nally proposed by Stanley Schmidt so that the Kalman filter
could be applied to nonlinear spacecraft navigation problems
[4]. The well-known conventional EKFs give the optimal
solution but require synchronous measurements, an accurate
system model, and exact stochastic noise characteristics.
Thus, the performance of EKF with incomplete information
and asynchronous sensors measurements may be degraded
or even diverged. In order to reduce the effect of noise vari-
ance uncertainty, adaptive extended Kalman filter (AEKF) is
proposed to overcome this drawback.
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Figure 1: High level structure of shipborne phased array radar.

In this paper, we focus on the design of an automatic beam
pointing error correction mechanism based on the proposed
parallel fuzzy basis function network (FBFN) architecture,
which predicts the beam pointing error caused by roll and
pitch in real time.TheAEKF algorithm is used to track the air
target in three-dimensional space, and the covariance matrix
values of process noise andmeasurement noise are adaptively
estimated to ensure the AEKF convergence.

The rest of this paper is organized as follows: the model
of ship rotational motion, coordinates transform and planar
array antenna of shipborne phased array radar are described
in detail in Section 2. The architecture of parallel FBFN
beam pointing error estimator is presented in Section 3. The
AEKF algorithm is described in Section 4. In Section 5, the
tracking performance of shipborne phased array radar using
the proposed beam pointing error compensation method is
simulated for six different cases. Finally, we conclude the
paper in Section 6.

2. Ship Rotational Motion Compensation

Theshipborne phased array radarmust be able to compensate
the ship’s motion and track the maneuvering targets auto-
matically. The algorithm of real-time compensating for ship’s
motion is designed to combine with the Kalman filtering.
Theblock diagramof rotationalmotion compensation system
for shipborne phased array radar is shown in Figure 2 [3],
which consists of beam pointing error prediction, ship coor-
dinates/earth coordinates conversion, earth coordinates/ship
coordinates conversion, and adaptive extended Kalman filter
(AEKF). Assume that the beam steering angle is (𝜃

0
, 𝜙

0
), the

antenna point angle offset caused by the ship motion (roll,
pitch) is (𝜃

𝑒
, 𝜙

𝑒
), and then the current antenna pointing angle

is (𝜃
𝐸
, 𝜙

𝐸
) as

𝜃
𝐸
= 𝜃

0
+ 𝜃

𝑒
,

𝜙
𝐸
= 𝜙

0
+ 𝜙

𝑒
.

(1)

If the beampointing error is predicted as (Δ𝜃
𝐸
, Δ𝜙

𝐸
), then

the beam pointing angle is corrected as
𝜃
𝐸𝐶

= 𝜃
0
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𝑒
− Δ𝜃

𝐸
,

𝜙
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) is approximated to (𝜃

0
, 𝜙

0
).

Table 1: Sea state parameters.

Sea state Roll Pitch
𝐴

𝑅
(∘) 𝑇

𝑅
(sec) 𝐴

𝑃
(∘) 𝑇

𝑃
(sec)

4 2 8 0.4 5
5 10 10 2 7
6 18 13 4 8

2.1. Ship Rotational Motion Model. Ship is affected by the
waves in the ocean, resulting in six degrees of freedom of
movement. In this paper, assuming zero yaw angle, the sim-
plified roll and pitch model [1, 5] are adopted to describe the
ship rotational motion in the earth coordinates. Ship’s rota-
tional motion is modeled with sinusoidal signal. The roll
angle is

𝜙
𝑅 (𝑡) = 𝐴

𝑅
sin (𝜔

𝑅
𝑡) + 𝑛

𝑅
. (3)

The pitch angle is

𝜃
𝑃 (𝑡) = 𝐴

𝑃
sin (𝜔

𝑃
𝑡) + 𝑛

𝑃
, (4)

where 𝐴
𝑅
and 𝐴

𝑃
are the amplitude of ship’s roll and pitch

angles, 𝑛
𝑟
and 𝑛

𝑃
are assumed to be zeromeanGaussian noise,

𝑇
𝑅
and 𝑇

𝑃
are the roll and pitch periods, and 𝜔

𝑅
= 2𝜋/𝑇

𝑅

and 𝜔
𝑃
= 2𝜋/𝑇

𝑃
are the roll and pitch angular frequencies.

The beam pointing errors caused by other unknown factors,
including ship’s traveling direction changing and whether
changing, in the actual ship navigation environment will be
considered in the standard deviation of the noise terms. The
amplitude and period parameters of sea states 4, 5, and 6 are
listed in Table 1 [1].

2.2. Coordinates Transform. Since the phased array antenna
is installed on the ship, the beam steering control employs
the ship body coordinates. But the target tracking of Kalman
filter employs the Earth coordinates. The Euler coordinates
transform formula is used to convert antenna beam pointing
angle relative to the earth (𝜃

𝐸
, 𝜙

𝐸
) into antenna beampointing

angle relative to the ship body (𝜃
𝐴
, 𝜙

𝐴
) [5] as

[

[

sin 𝜃
𝐴
cos𝜙

𝐴

sin 𝜃
𝐴
sin𝜙

𝐴

cos 𝜃
𝐴

]

]

= 𝑇 (𝜙) 𝑇 (𝜃) 𝑇 (𝜓)[

[

sin 𝜃
𝐸
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𝐸

− sin 𝜃
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sin𝜙
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cos 𝜃
𝐸

]

]

,

(5)

where the coordinates transform matrices are defined as

𝑇 (𝜙) = [

[

1 0 0

0 cos𝜙 sin𝜙
0 − sin𝜙 cos𝜙

]

]

𝑇 (𝜃) = [

[

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
]

]

𝑇 (𝜓) = [

[

cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

]

]

,

(6)

where 𝜙 is the ship roll angle, 𝜃 is the ship pitch angle, and 𝜓
is the ship yaw angle.
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Figure 2: System diagram of rotational motion compensation for AEKF of shipborne phased array radar.

2.3. Planar Array Antenna. An𝑀 × 𝑁 element planar array,
as shown in Figure 3, is designed for the shipborne phased
array radar system, which includes the beamforming (BF)
mode and direction of arrival (DOA) mode.The planar array
can produce multibeams in the azimuth and elevation by
using the beamformer network (BFN), which consists of a set
of power dividers and phase shifters. The planar array using
amplitude comparison method [6] generates the difference
signal patterns for theDOAestimation.Thedifference signals
obtained from two neighboring beams canmeasure the DOA
of the subscriber signal of the shipborne phased array radar
system. The beam pattern is expressed as [6, 7]

𝐴𝐹 (𝜃, 𝜙) =

𝑁

∑
𝑛=1

𝐼
1𝑛
[

𝑀

∑
𝑚=1

𝐼
𝑚1
𝑒
𝑗(𝑚−1)(𝑘𝑑

𝑥
sin 𝜃 cos𝜙+𝛽

𝑥
)
]

× 𝑒
𝑗(𝑛−1)(𝑘𝑑

𝑦
sin 𝜃 sin𝜙+𝛽

𝑦
)

= 𝑆
𝑥𝑚
𝑆
𝑦𝑛
,

(7)

where

𝑆
𝑥𝑚

=

𝑀

∑
𝑚=1

𝐼
𝑚1
𝑒
𝑗(𝑚−1)(𝑘𝑑

𝑥
sin 𝜃 cos𝜙+𝛽

𝑥
)
,

𝑆
𝑦𝑚

=

𝑁

∑
𝑛=1

𝐼
1𝑛
𝑒
𝑗(𝑛−1)(𝑘𝑑

𝑦
sin 𝜃 sin𝜙+𝛽

𝑦
)
,

𝛽
𝑥
= −𝑘𝑑

𝑥
sin 𝜃

𝑡
cos𝜙

𝑡
,

𝛽
𝑦
= −𝑘𝑑

𝑦
sin 𝜃

𝑡
sin𝜙

𝑡
,

(8)

where 𝐼
𝑚1

= 𝐼
1𝑛
= Chebyshev weighting [5], 𝑀 = the number

of array elements in the 𝑥-axis, 𝑁 = the number of array
elements in the 𝑦-axis, 𝜙

𝑡
= the azimuth steering angle of the

main beam, 𝜃
𝑡
= the elevation steering angle of the main

beam, 𝑑
𝑥
= the interelement spacing in the 𝑥-axis, and 𝑑

𝑦
=

the interelement spacing in the 𝑦-axis.
The phase of the RF signal at each array element is adjust-

ed to steer the beam to the coordinates (𝜃
𝑡
, 𝜙

𝑡
). For𝑀 = 𝑁 =

6 and 𝑑𝑥 = 𝑑𝑦 = 𝜆/2, the computed antenna radiation
pattern of a beam steered to (𝜃, 𝜙) = (0

∘, 0∘) is shown in
Figure 4. The side-lobe suppression is −30 dB by using the

1

2

3

4

2 3 4 5

𝜃t

dx

dx

dx

dy dy dy dy

N

M

x

y

z

r

𝜙t

Figure 3:𝑀×𝑁 planar array antenna.

Chebyshev weighting = [0.54 0.78 1 1 0.78 0.54]. The 6 ×
6 planar array antenna is chosen to simulate the beam
pointing error compensation and the tracking accuracy of
maneuvering target position (𝜃

𝑡
, 𝜙

𝑡
).

3. Parallel FBFN Architecture

The beam pointing error of the shipborne phased array radar
over the ocean is always changing from time to time, so
it is necessary to intelligently predict and compensate the
beam pointing error through the collected ship’s roll and
pitch angles data. For reducing the computation load and
meeting the real-time requirement of the automatic beam
pointing error correction system, a simplified parallel FBFN
architecture, whichmakes use of the roll angle and pitch angle
measurements mapped onto the beam pointing error model
to nonlinearly estimate the angle error of the planar antenna
array, is proposed.The parallel FBFN architecture is shown in
Figure 5, which is implemented with four-layer feed forward
network. The input vectors A

𝑛
including 𝐾 beam-pointing
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Figure 4: Three-dimensional antenna radiation pattern for 6 × 6
planar array antenna.

angles at the time 𝑛, 𝑛 − 1, . . ., 𝑛 −𝐾 are input to membership
functions to determine its membership grade.

The RLS algorithm and the FBFN algorithm with the
properly normalized Gaussian membership function are
employed to automatically correct the beam pointing error
caused by the ship’s roll angle and pitch angle. The beam
pointing error correction mechanism using the RLS algo-
rithm is realized with a 𝐾th order adaptive prediction filter.
The RLS algorithm is summarized as follows [8].

Initialize P(0) = 𝛿
𝑅

−1
Ι, ŵ(0) = 0.

At each instant of time, 𝑛 = 1, 2, . . ., compute 𝑀 × 𝑀

inverse correlation matrix as

P (𝑛) = 𝜉
−1P (𝑛 − 1) − 𝜉−1k (𝑛) 𝜃𝐻 (𝑛)P (𝑛 − 1) . (9)

The𝑀× 1 gain vector is

k (𝑛) = 𝜉−1P (𝑛 − 1) 𝜃 (𝑛)
1 + 𝜉−1𝜃𝐻 (𝑛)P (𝑛 − 1) 𝜃 (𝑛)

. (10)

The predicted correction angle is obtained by

𝑌 (𝑛) = 𝜃
𝐻
(𝑛) ŵ (𝑛 − 1) . (11)

The estimation error is

𝑓
𝑀 (𝑛) = 𝜃 (𝑛 + 1) − 𝑌 (𝑛) , (12)

where 𝜃
𝑃
(𝑛 + 1) is the beam point error at 𝑛 + 1 time instant.

The update weightings of the prediction filter are

ŵ (𝑛) = ŵ (𝑛 − 1) + k (𝑛) 𝑓𝑀 (𝑛) . (13)

The RLS algorithm is convergent if the following condition is
satisfied:

𝛿
𝑟
< 0.01𝜎

2

𝜃
, (14)

where 𝜎2
𝜃
is the variance of the Gaussian distribution of beam

pointing error for pitch angle. The forgetting factor 𝜉 is a
constant in (0, 1). Here we assume that 𝛿

𝑟
= 0.0008, 𝜉 = 1,

and𝑀 = 𝐾.
The FBFN-based beam pointing error correction mecha-

nism of the LMDS system is shown in Figure 7. The FBFN is

a 4-layer feed forward network. The input vectors ⃗𝐴 include
𝐾 beam-pointing angles at 𝑛, 𝑛 − 1, . . ., 𝑛 − 𝐾. In the first
layer, the rule base 𝜇

𝑖
( ⃗𝑥) contains Takagi and Sugeno’s type

fuzzy if-then rules [9, 10]. The normalized Gaussian-shaped
membership functions are

𝜇
𝑖 ( ⃗𝑥) = exp

{

{

{

−


⇀
𝑥 −

⇀
𝑐
𝑖



2

𝜎
𝑖
2

}

}

}

, 𝑖 = 1, 2, . . . , 𝑚, (15)

where the input vector ⃗𝑥 could be pitch ⃗𝜃
𝑝
or roll ⃗𝜃

𝑟
; “|| ||”

represents Euclidean form. ⃗𝑐
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are the mean

vectors of the Gaussian membership functions for ship’s roll
or pitch, which are generated by different sea states as

⃗𝑐
𝑖
= 𝐴 sin (𝜔𝑛

𝑖
) , 𝑖 = 1, 2, 3, . . . , 𝑚, (16)

where the discrete sampling time is 𝑛
𝑖

= 𝑖Δ𝑇 = 𝑖/𝑓
𝑠

and 𝑓
𝑠
is the sampling frequency. Each mean vector consists

of 𝐾 samples of the normalized Gaussian function with
corresponding mean to the sampled sinusoidal signal value.
The standard deviation 𝜎

𝑖
determines the range of Gaussian

membership functions for ship’s roll or pitch.
The input pitch vector is given by

⃗𝑥 = ⃗𝜃
𝑝,𝑛

= [𝜃
𝑝 (𝑛) , 𝜃𝑝 (𝑛 − 1) , . . . , 𝜃𝑝 (𝑛 − 𝐾)]

𝑇

, (17)

where “𝑇” means transpose. The ratio of the 𝑖th rule’s firing
strength to the sum of all rule’s firing strengths is calculated
in the 𝑖th node as

𝜇
𝑖
=

𝜇
𝑖

∑
𝑖
𝜇
𝑖

, 𝑖 = 1, . . . , 𝑚. (18)

For convenience, the outputs of this layer are called “normal-
ized firing strength.” The output of the third layer is

𝑂
3

𝑖,𝑛
= ⃗𝜇

𝑖,𝑛
× 𝑓

𝑖,𝑛
. (19)

The consequent parameters are

𝑓
𝑖
=

𝐾

∑
𝑘=0

𝛼
𝑖,𝑘
𝜃
𝑝 (𝑛 − 𝑘) + 𝛼𝑖,𝐾+1

, 𝑖 = 1, 2, . . . , 𝑚, (20)

where 𝛼
𝑖,𝑘

is the coefficients of the consequent parameters.
The consequent parameter vector is

⃗𝛼 = [𝛼
𝑖,𝑘


𝑖 = 1, 2, . . . , 𝑚; 𝑘 = 0, 1, . . . , 𝐾]

𝑇

(𝑚(𝐾+2))×1
. (21)

The output of the fourth layer is obtained as

𝑌 (𝑛) =
∑

𝑚

𝑖=1
⃗𝜇
𝑖,𝑛
𝑓
𝑖,𝑛

∑
𝑚

𝑖=1
⃗𝜇
𝑖,𝑛

. (22)

The matrix form of FBFN beam pointing error estimator can
be expressed as

W ⃗𝛼 = ⃗𝑌, (23)

where
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Figure 5: Parallel FBFN beam pointing error estimator.

W =
[
[

[

⃗𝜇1,𝑛𝐴(𝑛) ⃗𝜇1,𝑛𝐴 (𝑛 − 1) ⋅ ⋅ ⋅ ⃗𝜇1,𝑛𝐴 (𝑛 − 𝐾) ⃗𝜇2,𝑛 ⃗𝜇2,𝑛𝐴(𝑛) ⋅ ⋅ ⋅ ⃗𝜇𝑚,𝑛

⃗𝜇1,𝑛+1𝐴 (𝑛 + 1) ⃗𝜇1,𝑛+1𝐴 (𝑛) ⋅ ⋅ ⋅ ⃗𝜇1,𝑛+1𝐴 (𝑛 − 𝐾 + 1) ⃗𝜇2,𝑛+1 ⃗𝜇2,𝑛+1𝐴(𝑛 + 1) ⋅ ⋅ ⋅ ⃗𝜇𝑚,𝑛+1

...
...

...
...

...
...

...
...

⃗𝜇1,𝑛+𝑞−1𝐴(𝑛 + 𝑞 − 1) ⃗𝜇1,𝑛+𝑞−1𝐴(𝑛 + 𝑞 − 2) ⋅ ⋅ ⋅ ⃗𝜇1,𝑛+𝑞−1𝐴(𝑛 + 𝑞 − 𝐾 − 1) ⃗𝜇2,𝑛+𝑞−1 ⃗𝜇2,𝑛+𝑞−1𝐴(𝑛 + 𝑞 − 1) ⋅ ⋅ ⋅ ⃗𝜇𝑚,𝑛+𝑞−1

]
]

]𝑞×(𝑚(𝐾+2))

(24)

Each input training vector correspond to one row in the
matrix, which contains𝑚∗ (𝐾+ 2) data elements. Therefore,
𝑞must be greater than or equal to𝑚∗(𝐾+2) in order to solve
the consequent parameters. The vector of the desired output
in fuzzy inference rules is defined as

⃗𝑌 = [𝑦 (𝑛) , 𝑦 (𝑛 + 1) , 𝑦 (𝑛 + 2) , . . . , 𝑦 (𝑛 + 𝑞 − 1)]
𝑇
. (25)

A reinforcement learning scheme termed the least-square
estimator (LSE) is used to optimally adjust 𝑓

𝑖
in layer three

for approximating the desired output of FBFN beam pointing
error estimator. The consequent parameter vector is trained
as

̂⃗𝛼 = (W𝑇W)
−1

W ⃗𝑌. (26)

4. Adaptive Extended Kalman Filter [4]

The AEKF-based target tracking algorithm [11, 12] is used by
shipborne phased array radar to recursively update the linear
and nonlinear target trajectories and it further improves its
tracking accuracy.The distance between the flying target and
radar at a time point 𝑡

𝑗
is represented as

𝑟 (𝑥
𝑗
, 𝑦

𝑗
, 𝑧

𝑗
) = √(𝑥

𝑗
− 𝑥

𝑟
)
2

+ (𝑦
𝑗
− 𝑦

𝑟
)
2

+ (𝑧
𝑗
− 𝑧

𝑟
)
2

,

(27)

where (𝑥
𝑟
, 𝑦

𝑟
, 𝑧

𝑟
) and (𝑥

𝑗
, 𝑦

𝑗
, 𝑧

𝑗
) are the coordinates of radar

and air target, respectively. As shown in Figure 3, in polar
coordinates, the horizontal angle is expressed as

𝜙 = tan−1 (
𝑦
𝑗
− 𝑦

𝑟

𝑥
𝑗
− 𝑥

𝑟

) . (28)
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Figure 6: The flow chart of AEKF algorithm.

The vertical angle is expressed as

𝜃 = 90
∘
− tan−1(

𝑧
𝑗
− 𝑧

𝑟

√(𝑥
𝑗
− 𝑥

𝑟
)
2

+ (𝑦
𝑗
− 𝑦

𝑟
)
2

). (29)

The system state equation in matrix form is

X
𝑗+1

= Φ
𝑗
X
𝑗
+ w

𝑗
, (30)

where X
𝑗
= [𝑥 𝑉

𝑥
𝑦 𝑉

𝑦
𝑧 𝑉

𝑧]
𝑇

𝑗
is the target state vector,

where 𝑥
𝑗
, 𝑦

𝑗
, 𝑉

𝑥,𝑗
, 𝑉

𝑦,𝑗
are the relative position of the target

in the 𝑥- and 𝑦-axes and relative velocity in the 𝑥- and 𝑦-
axes, respectively. The relative acceleration in the 𝑥- and 𝑦-
axes is defined as modeling error w

𝑗
, which is assumed to be

random with white Gaussian noise (WGN). Δ𝑡 = 𝑡
𝑗
− 𝑡

𝑗−1
is

the detection cycle time. The transition matrix is

Φ
𝑗
=

[
[
[
[
[
[
[

[

1 Δ𝑡 0 0 0 0

0 1 0 0 0 0

0 0 1 Δ𝑡 0 0

0 0 0 1 0 0

0 0 0 0 1 Δ𝑡

0 0 0 0 0 1

]
]
]
]
]
]
]

]

. (31)

Themeasurement equation inmatrix form only considers the
position measurements in 𝑟, 𝜃, and 𝜙, which are not linear
equation as

z
𝑗
= h

𝑗
X
𝑗
+ k

𝑗
, (32)

h
𝑗
X
𝑗
= [𝑟 𝜙 𝜃]

𝑇

𝑗
, (33)

where k
𝑗
is assumed to be zero mean WGN. The nonlinear

equation (32) is linearized by using the first-order Taylor
approximation as

z
𝑗
≈ z

𝑗−1
+H

𝑗
X
𝑗
−H

𝑗
X
𝑗−1

+ k
𝑗
, (34)

where the measurement matrix is

H
𝑗
=

[
[
[
[
[
[
[
[
[
[

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑉𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕𝑉𝑦

𝜕𝑟

𝜕𝑧

𝜕𝑟

𝜕𝑉𝑧

𝜕𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑉𝑥

𝜕𝜙

𝜕𝑦

𝜕𝜙

𝜕𝑉𝑦

𝜕𝜙

𝜕𝑧

𝜕𝜙

𝜕𝑉𝑧

𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑉𝑥

𝜕𝜃

𝜕𝑦

𝜕𝜃

𝜕𝑉𝑦

𝜕𝜃

𝜕𝑧

𝜕𝜃

𝜕𝑉𝑧

]
]
]
]
]
]
]
]
]
]

]

. (35)

From (34), the linear measurement equation is redefined
as

Ψ
𝑗
≈ H

𝑗
X
𝑗
+ k

𝑗
, (36)
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Figure 7: Beam pointing error correction for roll angle.

where

𝜕𝑟

𝜕𝑥
= (𝑥

𝑗−1
− 𝑥

𝑟
)

×(√(𝑥
𝑗−1

− 𝑥
𝑟
)
2

+ (𝑦
𝑗−1

− 𝑦
𝑟
)
2

+ (𝑧
𝑗−1

− 𝑧
𝑟
)
2

)

−1

,

𝜕𝜙

𝜕𝑥
=

− (𝑦
𝑗−1

− 𝑦
𝑟
)

(𝑥
𝑗−1

− 𝑥
𝑟
)
2

+ (𝑦
𝑗−1

− 𝑦
𝑟
)
2
,

𝜕𝜃

𝜕𝑥
= − (𝑥

𝑗−1
− 𝑥

𝑟
) (𝑧

𝑗−1
− 𝑧

𝑟
)

× ( [(𝑥
𝑗−1

− 𝑥
𝑟
)
2

+ (𝑦
𝑗−1

− 𝑦
𝑟
)
2

+ (𝑧
𝑗−1

− 𝑧
𝑟
)
2

]

×√(𝑥
𝑗−1

− 𝑥
𝑟
)
2

+ (𝑦
𝑗−1

− 𝑦
𝑟
)
2

)

−1

,

𝜕𝑟

𝜕𝑦
=

(𝑦
𝑗−1

− 𝑦
𝑟
)

√(𝑥
𝑗−1

− 𝑥
𝑟
)
2
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(37)

The covariance matrix of process noise is defined as

Q
𝑗
= 𝐸 {w

𝑗
w𝑇

𝑗
} . (38)

The covariance matrix of measurement noise is defined as

R
𝑗
= 𝐸 {k

𝑗
k𝑇
𝑗
} . (39)

Due to the impact of ship movement and environmental
noise, process noise andmeasurement noise will dynamically
change, so that the covariance matrix values of process noise
andmeasurement noise are adaptively estimated to ensure the
extended Kalman filter convergence. The covariance matrix
of measurement noise is obtained with

R
𝑗+1

= ĈV +H
𝑗
P
𝑗
H𝑇

𝑗
, (40)

where

ĈV =
1

𝑤

𝑤

∑
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𝑗−𝑖
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𝑤

𝑤
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𝑖=1

D
𝑗−𝑖
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𝑗−𝑖

𝑇
,

(41)

where the residual value D
𝑗
is the difference between mea-

surement and estimation, and 𝑤 is the moving window size.
The covariance matrix of process noise is obtained with

Q
𝑗
= K

𝑗
ĈVK

𝑇

𝑗
. (42)

The flow chart of AEKF algorithm is shown in Figure 6.

5. Computer Simulations

Six scenarios are used to simulate the tracking performance
of shipborne phased array radar using the proposed beam
pointing error compensation mechanism.

Case 1 (beam pointing error compensation for stationary ship
and target). The ship’s roll and pitch signals are simulated
according to (3) and (4) with roll and pitch angle parameters
of sea state 5 listed in Table 1 and standard deviation of 0.05.
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The beam of 6 × 6 planar array antenna is steered to
(𝜃, 𝜙) = (45∘, 60∘). The sampling frequency is set as 100Hz.
Therefore, the ship’s roll and pitch signals are sampled 1000
points within 10 seconds, which is used as the center value
of 1000 membership functions for parallel beam pointing
error estimator. The simulated ship’s roll and pitch signals
are applied for the FBFN architecture and the RLS adaptive
prediction filter to simulate the performance of pointing
error estimation. Each of the ship’s roll and pitch signals is
sampled 13 points for each of simulations. The simulation
replicates 1000 times. The input samples are updated by one
new sample for the next iteration. Figures 7 and 8 compare the
ensemble-averaged square error performance of the FBFN
architecture and RLS adaptive prediction filter for roll and
pitch angles, respectively, per 0.01 sec iteration time. Table 2
compares the convergent values of ensemble-averaged square
beam pointing error for FBFN architecture and RLS adaptive
prediction filter under different sea states and standard
deviation of 0.05. The ensemble-averaged square error is
defined as

MSE (𝑛) = 1

1000

1000

∑
𝑚=1

[𝜃
𝑚 (𝑛 + 1) − 𝑌𝑚 (𝑛)]

2
, (43)

where 𝑚 represents the 𝑚th Monte-Carlo simulation; 𝑛 =

1, . . . , 100 represents the number of the iterations.
Based on the simulation results, we may make the fol-

lowing observations.The FBFN architecture converges much
faster than the RLS adaptive prediction filter and it has lower
ensemble-averaged square error than RLS adaptive predic-
tion filter. The steady state values of the ensemble-averaged
square error for both the FBFN architecture andRLS adaptive
prediction filter approximate to the standard deviation of
the Gaussian noise. In summary, the convergent time and
accuracy of the automatic beam error correction system
using the FBFN architecture is superior to the RLS adaptive
prediction filter. The shortest convergent time is 0.1 sec when
FBFN beam pointing error estimator is used (see Table 3).

Case 2 (beampointing error estimation and compensation for
linear moving ship and target). Figures 9(a) and 9(b) shows
the simulation scenario of beampointing error compensation
for linear moving air target and ship with linear motion.
Assuming the ship is along the 𝑌-axis of 𝑋𝑌 plane in the
earth coordinates, the ship speed is 10m/sec and the flying
target speed is 300m/sec. The flying target is parallel to
the 𝑋𝑌 plane, 9.84 km above the ground, and the angle
between the flight direction and the 𝑌-axis is 30∘. The largest
reconnaissance distance of shipborne radar is 150 km. while
the air target is flying within the radar detection range,
the beam pointing error estimation and compensation of
shipborne phased array radar are simulated.

The linear ship path equation is

𝑤𝑠
𝑡
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
) = 𝑤𝑠

0
+ V

𝑤𝑠
𝑡, (44)

where 𝑡 = 1, 2, 3, . . . , 1010, 1011 sec, V
𝑤𝑠

is ship velocity,
and 𝑤𝑠

0
is initial ship position. The linear target trajectory

equation is

𝑚𝑠
𝑡
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
) = 𝑚𝑠

0
+ V

𝑚𝑠
𝑡, (45)

Table 2: Comparison of the convergent values for different sea
states.

Algorithm

Sea state
Sea 4 Sea 5 Sea 6

Angle
Roll Pitch Roll Pitch Roll Pitch

No correction 2.53 0.21 43.90 3.01 90.49 9.96
RLS 0.062 0.059 0.067 0.061 0.071 0.064
FBFN 0.055 0.081 0.056 0.056 0.057 0.059
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Figure 8: Beam pointing error correction for pitch angle.

where V
𝑚𝑠

is the target velocity, and 𝑚𝑠
0
is the initial target

position.
Figures 10(a) and 10(b) compare the beam pointing error

compensation performance of the FBFN architecture, RLS
adaptive prediction filter for roll and pitch angles, respec-
tively, under the sea state 5 condition. The green curve rep-
resents the real beam steering angle of the shipborne phased
array radar. The initial beam angle is steered to (𝜃, 𝜙) =

(70
∘
, 150

∘
), and the following beam angles are calculated by

(20) and (21). The FBFN architecture converges faster than
the RLS adaptive prediction filter. The peak response of the
RLS adaptive prediction filter will result in the performance
degradation of the shipborne phased array radar.

Case 3 (beam pointing error estimation and compensation
for linearmoving ship and circular trajectory target). Figures
11(a) and 11(b) show the simulation scenario of beam pointing
error compensation for circular maneuvering air target and
linear moving ship. The ship has the same linear moving
speed and path equation. The flying target is parallel to the
𝑋𝑌 plane, 9.84 km above the ground, and the angle between
the initial position and the 𝑌-axis is 30∘. The trajectory of the
equal speed flight vehicle is a circle with a radius of 10 km, and
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Figure 9: Simulation scenarios of Case 2 for (a) 3D and (b) top view diagrams.
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Figure 10: (a) Elevation and (b) horizontal beam pointing error compensation for linear moving target.
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Table 3: Comparison of the convergent values for different standard deviations.

Algorithm

Standard deviation
0.01 0.05 0.1 0.5 1

Angle
Roll Pitch Roll Pitch Roll Pitch Roll Pitch Roll Pitch

No correction 43.831 2.9585 43.903 3.0071 43.956 3.0428 44.404 3.4406 44.971 3.9836
RLS 0.0145 0.0127 0.0674 0.0608 0.1292 0.1291 0.6479 0.6357 1.3071 1.2154
FBFN 0.0113 0.0105 0.0556 0.0555 0.1122 0.1072 0.5607 0.5239 1.1057 1.4081
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Figure 12: (a) Elevation and (b) horizontal beam pointing error compensation for circular maneuvering target.

the 𝑌-axis is the center. The rotational cycle time of the flight
target is 209 seconds.

The circular trajectory equation is

𝑚𝑠
𝑡
(𝑥

𝑡
, 𝑦

𝑡
, 𝑧

𝑡
) = (𝑟 cos (𝜃

0
− 𝜔𝑡) , 𝑟 sin (𝜃

0
− 𝜔𝑡) , 9.84) ,

(46)

where 𝑡 = 1, 2, 3, . . . , 418, 419 sec, 𝑟 is the circular flight
radius, 𝜃

0
is the initial angle between the flight vehicle and

the𝑋-axis, and 𝜔 is the angular speed of flight vehicle.
When the vehicle flies in circles with constant speed,

the simulation results for roll and pitch angles are shown in
Figures 12(a) and 12(b), respectively. The FBFN architecture
converges faster than the RLS adaptive prediction filter and
compensates the beam pointing error effectively.

Case 4 (AEKF with no beam pointing error for linear tra-
jectory target). Assuming the ship is not affected by the sea
waves (antenna beam pointing error is zero), the tracking
performance of AEKF for a straight flight target trajectory is
simulated. As shown in Figure 13, the initial position of radar
is (0, 0, 0). The ship moves with a speed of 10m/sec in the 𝑌
axial direction. The radar position is updated every second.
The initial position of flying targets is −74840, −129620, and
9100 meters, about 150 km from the radar. The flight speed of

target is 300m/sec (𝑋 axial velocity of 150m/sec and 𝑌 axial
velocity of 260m/sec). The target location is updated every
second. The tracking accuracy of AEKF for a straight flight
target is shown in Figure 14, where the trajectory estimation
error is calculated by

𝐸
𝑗
= √(𝑥

𝑗
− 𝑥

𝑗
)
2

+ (𝑦
𝑗
− 𝑦

𝑗
)
2

+ (𝑧
𝑗
− �̂�

𝑗
)
2

. (47)

It shows that theAEKF converges to less than about 20mafter
550 iterations.

Case 5 (AEKF with no beam pointing error for circular tra-
jectory target). Assuming the ship is not affected by the sea
waves (antenna beam pointing error is zero), the tracking
performance of AEKF for a circular trajectory target is simu-
lated. As shown in Figure 15, the initial position of radar is
(0, 0, 0). The ship moves with a speed of 10m/sec in the 𝑌
axial direction. The radar position is updated every second.
The initial position of flying targets is −5000, −8660, and
9100meters about 13.5 km from the radar. The flying target
is parallel to the 𝑋𝑌 plane, 9.84 km above the ground, and
the angle between the initial position and the 𝑌-axis is 30∘.
The flying object has uniform velocity and circular trajectory
of radius of 10 km, and the 𝑌-axis is the center.The rotational
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Figure 16: Tracking accuracy of AEKF for straight flight target.
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Figure 17: Flow chart of simulation used to verify the effect of beam pointing error compensation on AEKF tracking accuracy.

cycle time of the flying target is 209 seconds. The target flies
two cycles in the simulation. The tracking accuracy of AEKF
for a circular trajectory flight target is shown in Figure 16.The
AEKF converges to less than 1m after 100 iterations, because
the distance between radar and flight target in Case 3 is less
than Case 5.

Case 6 (combining AEKF with beam pointing error compen-
sation for linear trajectory target). Figure 17 is a simulation
flow chart used to verify the effect of beam pointing error
compensation on AEKF tracking accuracy. The shipbone

radar and flight target have the same experimental scenario
as Case 4, but beam pointing error generated by roll and
pitch angle parameters of sea state 5 is considered. The linear
trajectory target is shown in Figure 13.

When the beam pointing of shipborne phased array
antenna is affected by the roll and pitch angles, the target
tracking error of AEKF is shown in Figure 18. It shows that
the AEKF converges to less than about 20m at 550 iterations
but the estimation error increases to 100m at 1000 iterations.
We conclude that the tracking accuracy is affected by the
beam pointing error and the increasing distance between
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Figure 18: Estimation error of AEKF without beam pointing error
compensation.
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Figure 19: Estimation error of AEKF with FBFN based beam point-
ing error compensation.
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Figure 20: Error compensation value of FBFN controller.

the radar and flight target obviously when the simulation
result of Figure 18 is compared with Figure 14. When the
beam pointing error of shipborne phased array antenna is
compensated with FBFN controller, the target tracking error
ofAEKF is shown in Figure 19. It shows that the tracking error
of AEKF converges to less than about 20m at 550 iterations
and the estimation error will remain within the range of
about 20m when beam pointing error is compensated by
FBFN controller. The error compensation values of FBFN
controller are shown in Figure 20, which is calculated by
subtracting the trajectory estimation error of Figure 18 from
Figure 19. The error compensation values of FBFN controller
present aV-shaped curve.The tracking performance ofAEKF
is proportional to the distance between moving target and
the ship. In the simulation of the starting point and end
point, moving targets far from the shipborne radar, the FBFN
controller generates the largest estimation error. When the
moving target closes the radar just above the ship, the FBFN
controller generates the smallest estimation error.

6. Conclusions

This paper proposed an intelligent beam pointing error
compensation mechanism for shipborne two-dimensional
phase array antenna radar.The FBFN controller estimates the
roll and pitch angle of the ship driving in the sea and thus
compensates for the antenna beam pointing error in order to
enhance the accuracy of phased array radar system tracking a
moving target. Six cases of simulations are used to verify the
performance of shipborne phased array radar using the pro-
posed beam pointing error compensation mechanism for six
different scenarios. Cases 1, 2, and 3 simulate the accuracy of
beam pointing error compensation mechanism and Cases 4,
5, and 6 simulate the effect of beam pointing error compensa-
tion mechanism on the tracking accuracy of AEKF.

The simulation results show that the convergent time and
accuracy of the automatic beam pointing error compensation
mechanism using the FBFN architecture are superior to
the RLS adaptive prediction filter. The tracking accuracy is
affected by the beam pointing error and the distance between
the radar and moving target. In summary, the use of the pro-
posed FBFN beam pointing error compensation mechanism
with the AEKF can reduce the amount of estimation error
significantly.
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This paper based on a fast implemented multiphase screen method using DFT puts forward an ionospheric Es layer clutter model
and uses the newly developed dimensionality reduction space-time adaptive processing- (STAP-) JDL algorithm to suppress Es layer
clutter, which proves the validity of the proposed model. Firstly, the multiphase screen method was analyzed, and a fast algorithm
using DFT was proposed. Then, based on the multiphase screen method and thorough simulation, we reached a conclusion of
the high-frequency radio wave propagation’s fluctuation characteristics in the ionosphere. According to the results of the analysis,
a new Es layer ionospheric clutter model was established and was compared with the measured data and verification was made.
Finally, based on the built clutter model, JDL algorithm was applied to the high-frequency surface wave radar ionospheric clutter
suppression, using the measured data to verify the validity of the model and algorithm.The simulation results showed that the built
model can show the characteristics of the ionospheric Es layer clutter and that the JDL algorithm can suppress ionospheric Es layer
clutter quite effectively.

1. Introduction

HF surface wave radar has been gradually applied as an
efficient tool to detect the ocean dynamics elements and
to maneuver targets with low speed, especially to monitor
exclusive economic zone (EEZ) globally. When HF surface
wave radar emits electromagnetic waves to the surface of
the sea horizontally, some energy is emitted to the sky and
reflected by the ionosphere owing to the nonideality of the
antenna in the zenith direction, which forms the ionospheric
clutter finally. Ionospheric clutter mainly locates at the height
of 100 km∼120 km in the sporadic-E layer (Es layer) and above
210 km in the F layer, and due to the nonstationary property
of the ionosphere, the sea echo is often completely submerged
in the ionospheric clutter, which causes the radar’s detection
performance to decrease dramatically. Ionospheric clutter has
become the bottleneck that limits the development of remote
HF ground wave radar currently, and especially the Es layer
clutter in it that has the ionosphere irregularities structure,
which makes the suppression of the clutter more difficult [1].

At present, according to the relevant literature and the
tests results, most adaptive methods that suppress iono-
spheric clutter are often more suitable for processing the

steady or slowly varying disturbances. Because of the complex
features of the ionospheric medium itself, the methods in the
literature always fail. The main reason is that the problem is
difficult to break through in the perspective of signal pro-
cessing. Therefore, it is necessary to study the characteristics
of radio wave propagation in the ionosphere and establish a
reasonable ionospheric clutter model to suppress the clutter
essentially.

Es layer of the ionosphere can be seen as a random
medium. Some primary methods to deal with the problems
of the wave propagation in the random medium include
geometrical optics approximation, the Born approximation
method, the Rytov approximation method, and multiphase
screen method [2–6]. Geometrical optics approximation
can be only applied to the situation that the wavelength
of the radio waves is small enough to be neglected com-
paring with the characteristic dimension of the medium.
The Born approximation is the single scattering solution of
the scattering problem and it approximates the ionosphere
propagation in the condition of weak fluctuation. However,
multiphase screen method equals the ionosphere into several
phase screens, taking the hierarchical characteristic of the
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ionosphere into consideration; so, we could simulate the
propagation of the radio waves with high qualities simply
selecting a sufficient number of phase screen in the iono-
sphere. Furthermore, it is suitable for the case of the weak and
strong fluctuation, but its calculation speed is very slow.

Based on what is presented previously, the paper pro-
posed an ionospheric Es layer clutter model usingmultiphase
screen method with DFT fast implementation, and then, we
applied STAP method to suppress the Es layer clutter under
this model. At the beginning, we analyzed the basic principle
of the multiphase screen method in the disturbed layered
ionosphere and proposed a fast algorithm implemented by
DFT. Then, we obtained the fluctuating characteristics of the
high-frequency radio wave propagation in the ionosphere
according to the experiment simulation at both weak and
strong scintillation. Using the statistical analysis results of the
multiphase screen method together with the height variation
of the reflection points in the ionospheric Es layer, we
established a new reflecting model in the ionospheric Es
layer. We also compared and analyzed the model with the
measured data to verify the reasonableness and correctness.
Finally, based on the proposed ionospheric clutter model,
we used the newly developed descending dimensional STAP-
JDL algorithm to suppress the Es layer clutter, and the
simulation with measured data verified the ability of this
algorithm to suppress the ionospheric clutter.The simulation
results showed that the established model can present the
characteristics of the ionospheric Es layer clutter basically,
and the JDL algorithm can suppress ionospheric Es layer
clutter quite effectively. The method proposed in this paper
provided a theoretical basis for the ionospheric clutter sup-
pression techniques and the use of STAP in anti-ionospheric
clutter.

2. The Analysis of Radio Wave’s Propagation
Characteristics in the Ionospheric Es Layer
Based on the Multiphase Screen Method

2.1. The Basic Theory of the Multiscreen Method. Multiphase
screen technology equals the irregularities’ path of the high-
frequency radio wave signals in the ionosphere to a plurality
of thin screens that only change the phase of the signal, and
each thin screen corresponds to the impact of the ionospheric
on radio wave signal over path, while we assumed that it was
vacuum between each of the thin screens, that is, using the
principle of equivalent. The propagation of high-frequency
waves on the screen causes the signal phase to fluctuate, and
the diffraction effect between the thin screens leads to the
fluctuation of the amplitude and phase.

Assume that the electric field of the incident wave is field
𝐸

0
(𝑧) with no irregularities, and after passing through the

ionosphere its form 𝐸( ⃗𝑟) is as follows:

𝐸 ( ⃗𝑟) = 𝑢 ( ⃗𝑟) 𝐸0 (𝑧) , (1)

where

𝑢 ( ⃗𝑟) = exp [−𝑗Φ ( ⃗𝑟)] . (2)

To illustrate fluctuation of the amplitude and phase,
respectively, set 𝑢( ⃗𝑟) as the following form [2, 3]:

𝑢 ( ⃗𝑟) = exp [𝜒 ( ⃗𝑟) − 𝑗𝑆1 ( ⃗𝑟)] = exp [−𝜙 ( ⃗𝑟)] , (3)

where 𝜒( ⃗𝑟) is the amplitude part of 𝑢( ⃗𝑟) and 𝑆
1
( ⃗𝑟) is the phase

part of 𝑢( ⃗r).We can use Kirchhoff diffraction formula to solve
the problem that radio waves propagate from one screen to
another. Besides in the forward scattering assumption, the
Kirchhoff diffraction can produce the results as follows:

𝑢 ( ⃗𝑝, 𝑧) =
𝑗𝑘𝐴

0

2𝜋𝑧
∬𝑒

−𝑗[𝜙( ⃗𝑝


)+(𝑘/2𝜋)| ⃗𝑝− ⃗𝑝


|
2

]
𝑑

2 ⃗𝑝

. (4)

In the condition of shallow screen, we can get the
relationship from the previous formulas:

𝜒 ( ⃗𝑝, 𝑧) =
𝑘

2𝜋𝑧
∬𝜙( ⃗𝑝


) cos[

[

𝑘

⃗𝑝 − ⃗𝑝

2

2𝑧
]

]

𝑑
2 ⃗𝑝


,

𝑆
1
( ⃗𝑝, 𝑧) =

𝑘

2𝜋𝑧
∬𝜙( ⃗𝑝


) sin[

[

𝑘

⃗𝑝 − ⃗𝑝

2

2𝑧
]

]

𝑑
2 ⃗𝑝


.

(5)

The statistical characteristics of the waves through each
phase screen can be obtained by calculating the moments
of formula (5). Among the moments, the mean value of the
amplitude and phase fluctuation is 0, and the correlation
function of the amplitude and phase fluctuations are

𝐵
𝜒
( ⃗𝑝) = ∬Φ

𝜙
( ⃗𝑘

⊥
) sin2

(
𝑘2
⊥
𝑧

2𝑘
) cos ⃗𝑘

⊥
⋅ ⃗𝑝𝑑

2
𝑘
⊥
,

𝐵
𝑆
1

( ⃗𝑝) = ∬Φ
𝜙
( ⃗𝑘

⊥
) co s2 (

𝑘2
⊥
𝑧

2𝑘
) cos ⃗𝑘

⊥
⋅ ⃗𝑝𝑑

2
𝑘
⊥
,

(6)

where Φ
𝜙
𝑛−1,𝑛

is power spectrum of the phase screen at 𝑧 =
(𝑧

𝑛−1
+ 𝑧

𝑛
)/2. Taking the previous formulas (6) for Fourier

transform, we can have the power spectrum of the amplitude
and phase fluctuations. Consider the following:

Φ
𝜒
𝑛−1,𝑛

( ⃗𝑘
⊥
) = sin2

(
𝑘2
⊥
𝑧

2𝑘
)Φ

𝜙
𝑛−1,𝑛

( ⃗𝑘
⊥
) ,

Φ
𝑆
𝑛−1,𝑛

( ⃗𝑘
⊥
) = co s2 (

𝑘2
⊥
𝑧

2𝑘
)Φ

𝜙
𝑛−1,𝑛

( ⃗𝑘
⊥
) .

(7)

In order to simplify the discussion and calculation of the
problem, we only consider the two-dimensional case which
assumes that the irregularities are independent of𝑦 direction;
thus, the relationships in the previous formulas become

Φ
𝜒
𝑛−1,𝑛

(𝑘
𝑥
) = sin2

(
𝑘
𝑥
𝑧

2𝑘
)Φ

𝜙
𝑛−1,𝑛

(𝑘
𝑥
) , (8a)

Φ
𝑆
𝑛−1,𝑛

(𝑘
𝑥
) = cos2 (

𝑘
𝑥
𝑧

2𝑘
)Φ

𝜙
𝑛−1,𝑛

(𝑘
𝑥
) . (8b)

Ionosphere can be characterized by the relative dielec-
tric constant 𝜀( ⃗𝑟), which is composed of regular portion
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⟨𝜀(𝑧)⟩ (𝑧 > 0) and the random part 𝜀
1
( ⃗𝑟). In the disturbed

stratified ionosphere, the relative dielectric constant can be
expressed as

𝜀 (𝑥, 𝑧) = ⟨𝜀 (𝑧)⟩ + 𝜀1 (𝑥, 𝑧) ,

⟨𝜀 (𝑧)⟩ = 1 −
𝑒2

𝑚𝜀
0
𝜔2
⟨𝑁 (𝑧)⟩ = 1 −

𝑧

𝑧
Γ

,
(9)

𝜀
1 (𝑥, 𝑧) =

−𝑒
2

𝑚𝜀
0
𝜔2
Δ𝑁 (𝑥, 𝑧) = −(

𝑧

𝑧
Γ

)𝑁
𝑓 (𝑥, 𝑧) , (10)

where 𝑒 and 𝑚 are the charge and mass of the electron;
⟨𝑁(𝑧)⟩ is the electron concentration of the background, and
it is a linear function of 𝑧; Δ⟨𝑁(𝑥, 𝑧)⟩ is its fluctuations
portion. 𝑁

𝑓
(𝑥, 𝑧) is the relative fluctuation of the electron

concentration:

𝑁
𝑓 (𝑥, 𝑧) =

Δ𝑁 (𝑥, 𝑧)

⟨𝑁 (𝑧)⟩
. (11)

The power spectrum of the ionospheric electron concen-
tration fluctuation of the two-dimensional irregularities can
be characterized using the available Shkarofsky spectrum:

Φ
𝑁
𝑓

(𝑘
𝑥
, 𝑘

𝑧
) =

𝜎2

𝑁
𝑓

(𝑘
0
𝑟
0
)
(𝑝−3)/2

𝑟3
0
𝐾

𝑝/2
(𝑟

0
√𝑘2

𝑥
+ 𝑘2

𝑧
+ 𝑘2

0
)

(2𝜋)
3/2
𝐾

(𝑝−3)/2
(𝑘

0
𝑟
0
)

⋅ (𝑟
0
√𝑘2

𝑥
+ 𝑘2

𝑧
+ 𝑘2

0
)

−𝑝/2

,

(12)

where 𝑟
0
and 𝐿

0
= 2𝜋/𝑘

0
are the internal and external

dimensions of the irregularities, 𝐾V is the modified Bessel
function of the second kind with the order V. By solving the
Helmholtz equation of radio wave propagation, we can yield

𝑢 (𝑥, 𝑧
𝑛
) = 𝑢 (𝑥, 𝑧

𝑛−1
) 𝑒

𝑗𝜙
𝑛−1,𝑛

(𝑥)
, (13)

where

𝜙
𝑛−1,𝑛 (𝑥) = −

𝑘

2
∫

𝑧
𝑛

𝑧
𝑛−1

𝜀
1 (𝑥, 𝑧)

√1 − 𝑧/𝑧
Γ

𝑑𝑧. (14)

Substitute formula (10) into (14) and calculate the corre-
lation function of the phase deviation. The result is shown as
follows:

𝐵
𝜙
𝑛−1,𝑛

(𝑥) =
𝑘2

4
[𝑧

Γ
ln(

𝑧
Γ
− 𝑧

𝑛−1

𝑧
Γ
− 𝑧

𝑛

) −
𝑧2
𝑛
− 𝑧2

𝑛−1

2𝑧
Γ

− Δ𝑧]

⋅ ∫
+∞

−∞

𝐵
𝑁
𝑓

(𝑥, 𝜉) 𝑑𝜉.

(15)

Taking formula (15) for FFT, we can get the power
spectrum of the phase deviation:

Φ
𝜙
𝑛−1,𝑛

(𝑘
𝑥
) =

𝜋𝑘2
𝑥

2
[𝑧

Γ
ln(

𝑧
Γ
− 𝑧

𝑛−1

𝑧
Γ
− 𝑧

𝑛

) −
𝑧2
𝑛
− 𝑧2

𝑛−1

2𝑧
Γ

− Δ𝑧]

⋅ Φ
𝑁
𝑓

(𝑘
𝑥
, 𝑘

𝑧
)
𝑘
𝑧
=0

=
𝜋𝑘2

𝑥

2
[𝑧

Γ
ln(

𝑧
Γ
− 𝑧

𝑛−1

𝑧
Γ
− 𝑧

𝑛

) −
𝑧2
𝑛
− 𝑧2

𝑛−1

2𝑧
Γ

− Δ𝑧]

⋅ Φ
𝑁
𝑓

(𝑘
𝑥
, 0) .

(16)

Formula (16) links up the power spectrum of the phase
deviation and the power spectrum of the undulating electron
concentration.

According to the previously obtained power spectra of
the phase deviation in the phase screen, we substitute it into
formula (8a) and (8b) to obtain the corresponding power
spectrum of the amplitude and the phase fluctuations. As
long as the power spectrum of the amplitude and phase
fluctuations are obtained, the amplitude and phase deviation
of the simulation phase screen in the 𝑧 = (𝑧

𝑛−1
+ 𝑧

𝑛
)/2 can

be obtained via the numerical procedure using FFT. Assume
that the horizontal size of each phase screen is 𝐿

ℎ
and that it

is divided into𝑁 equal parts, the fluctuations of the random
amplitude and phase at the point 𝑥 = 𝑚⋅Δ𝑥 can be described
as

𝜒
𝑛−1,𝑛 (𝑚 ⋅ Δ𝑥)=

𝑁−1

∑
𝑠=0

√Φ𝜒
𝑛−1,𝑛

(𝑠 ⋅ Δ𝑘) ⋅ Δ𝑘 ⋅ cos(2𝜋𝑠𝑚
𝑁

+𝜑
𝑠
) ,

𝑆
𝑛−1,𝑛 (𝑚 ⋅ Δ𝑥)=

𝑁−1

∑
𝑠=0

√Φ𝑆
𝑛−1,𝑛

(𝑠 ⋅ Δ𝑘) ⋅ Δ𝑘 ⋅ cos(2𝜋𝑠𝑚
𝑁

+𝜑
𝑠
) ,

(17)

where𝑚 = 0, 1, 2, . . . , 𝑁 − 1; Δ𝑥 = 𝐿
ℎ
/𝑁; Δ𝑘 = 2𝜋/𝐿

ℎ
; here,

we also introduce a randomphase angle𝜑
𝑠
, which is subjected

to the uniformdistribution in the interval 0∼2𝜋 andmeets the
following qualifications: 𝜑

𝑠
= −𝜑

−𝑠
.

2.2. A New DFT-Based Fast Algorithms. Through the multi-
phase screen method previously mentioned, we obtained the
expression of the signal amplitude and phase fluctuation that
occur in the ionosphere. The formula is shown by summing,
which will be very slow and inefficient when calculating
directly. We make appropriate transform after which the
calculation can be implemented by FFT algorithm. By the
transformation formula of the trigonometric function,we can
obtain

cos(2𝜋𝑠𝑚
𝑁

+ 𝜑
𝑠
) = cos(2𝜋𝑠𝑚

𝑁
) cos (𝜑

𝑠
)

− sin(2𝜋𝑠𝑚
𝑁

) sin (𝜑
𝑠
) .

(18)
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To be convenient, we can set

𝑥
𝑛−1,𝑛 (𝑠) = √Φ𝜒

𝑛−1,𝑛

(𝑠 ⋅ Δ𝑘) ⋅ Δ𝑘,

𝑥1
𝑛−1,𝑛 (𝑠) = 𝑥𝑛−1,𝑛 (𝑠) cos (𝜑𝑠

) ,

𝑥2
𝑛−1,𝑛 (𝑠) = 𝑥𝑛−1,𝑛 (𝑠) sin (𝜑𝑠

) ,

𝑦
𝑛−1,𝑛 (𝑠) = √Φ𝑆

𝑛−1,𝑛

(𝑠 ⋅ Δ𝑘) ⋅ Δ𝑘,

𝑦1
𝑛−1,𝑛 (𝑠) = 𝑦𝑛−1,𝑛 (𝑠) cos (𝜑𝑠

) ,

𝑦2
𝑛−1,𝑛 (𝑠) = 𝑦𝑛−1,𝑛 (𝑠) sin (𝜑𝑠

) .

(19)

Then, the first item of formula (17) can be rewritten as
follows:

𝜒
𝑛−1,𝑛 (𝑚 ⋅ Δ𝑥)

=

𝑁−1

∑
𝑠=0

√Φ𝜒
𝑛−1,𝑛

(𝑠 ⋅ Δ𝑘) ⋅ Δ𝑘 ⋅ cos(2𝜋𝑠𝑚
𝑁

+ 𝜑
𝑠
)

=

𝑁−1

∑
𝑠=0

𝑥
𝑛−1,𝑛 (𝑠) ⋅ (cos(

2𝜋𝑠𝑚

𝑁
) cos (𝜑

𝑠
)

− sin(2𝜋𝑠𝑚
𝑁

) sin (𝜑
𝑠
))

=

𝑁−1

∑
𝑠=0

𝑥1
𝑛−1,𝑛 (𝑠) cos(

2𝜋𝑠𝑚

𝑁
)

− 𝑥2
𝑛−1,𝑛 (𝑠) sin(

2𝜋𝑠𝑚

𝑁
)

=
1

2

𝑁−1

∑
𝑠=0

{𝑥1
𝑛−1,𝑛 (𝑠) (exp(

𝑗2𝜋𝑠𝑚

𝑁
) + exp(−

𝑗2𝜋𝑠𝑚

𝑁
))

+ 𝑗𝑥2
𝑛−1,𝑛 (𝑠) (exp(

𝑗2𝜋𝑠𝑚

𝑁
)

− exp(−
𝑗2𝜋𝑠𝑚

𝑁
))} .

(20)

If we set𝑊
𝑁
= exp(−𝑗2𝜋/𝑁), then the previous formula

can sequentially be simplified to the following form:

𝜒
𝑛−1,𝑛 (𝑚 ⋅ Δ𝑥) =

1

2

𝑁−1

∑
𝑠=0

{𝑥1
𝑛−1,𝑛 (𝑠) (𝑊

−𝑠𝑚

𝑁
+𝑊

𝑠𝑚

𝑁
)

+𝑗𝑥2
𝑛−1,𝑛 (𝑠) (𝑊

−𝑠𝑚

𝑁
−𝑊

𝑠𝑚

𝑁
)}

=
1

2
{DFT (𝑥1

𝑛−1,𝑛
) + 𝑁 ⋅ IDFT (𝑥1

𝑛−1,𝑛
)}

+
𝑗

2
{𝑁 ⋅ IDFT (𝑥2

𝑛−1,𝑛
) − DFT (𝑥2

𝑛−1,𝑛
)} .

(21)
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Figure 1: The realization of the phase screen method using DFT.

The fast algorithm for phase fluctuation can be obtained
through the same method:

𝑆
𝑛−1,𝑛 (𝑚 ⋅ Δ𝑥) =

1

2
{DFT (𝑦1

𝑛−1,𝑛
) + 𝑁 ⋅ IDFT (𝑦1

𝑛−1,𝑛
)}

+
𝑗

2
{𝑁 ⋅ IDFT (𝑦2

𝑛−1,𝑛
) − DFT (𝑦2

𝑛−1,𝑛
)} .

(22)

We simplify the randomamplitude andphase fluctuations
formulas, expressing them using DFT and IDFT algorithm,
respectively, which significantly improve the computational
efficiency.

The multiphase screen simulation algorithm is shown as
following steps.

Step 1. Substitute the corresponding parameters in the upper
section into formula (12) to obtain the power spectrum of the
electron concentration fluctuations.

Step 2. The obtained value of the electron concentration
fluctuations would be substituted into formula (16) to get the
power spectrum of the complex phase deviation.

Step 3. According to the formula (8a) and (8b), we can obtain
the power spectrum of amplitude and phase fluctuations.

Step 4. Use the relation of (17) to obtain the amplitude and
phase fluctuation which we can regard as a complex phase
𝜑

𝑛−1,𝑛
.

Step 5. Use formula (13) to associate the phase deviations
between different phase screens with each other.

The diagram of the fast algorithm in the fourth step using
DFT to implement its function is shown in Figure 1.

In Figure 1, when the input is the power spectrum of the
amplitude fluctuation in the phase screen, the corresponding
output is the fluctuation of the amplitude; when the input
is the power spectrum of the phase fluctuation in the phase
screen, the corresponding output is the fluctuation of the
phase.

2.3. Simulations and Experimental Results of Multiphase
Screen Method. When we use the multiphase screen method
to simulate the ionospheric wave propagation problem, some
values of certain parameters in the simulation process are
set to be known, and the simulation results of the phase
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Figure 2: The power spectrum of amplitude scintillation.
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Figure 3: The power spectrum of phase scintillation.
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Figure 4: Amplitude and phase changes in phase screens in weak scintillation.



6 International Journal of Antennas and Propagation

0.4

0.2

0

−0.2

−0.4

0

50

100

Number of phase screen

Points in the horizontal size 0
5

10
15

20

A
m

pl
itu

de

0.2

0.1

0

−0.1

−0.2

−0.3

0

50

100

Number of phase screen

Points in the horizontal size 0
5

10
15

20

A
m

pl
itu

de

Amplitude scintillations: strong scintillation Phase scintillations: strong scintillation

Figure 5: Amplitude and phase changes in phase screens in strong scintillation.
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Figure 6: The overall amplitude and phase scintillation.
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Figure 7:The histogramof amplitude scintillation and fitting results
of normal distribution.

screen method can be derived by using such values as initial
condition. These parameters include the radar operating
frequency 𝑓 = 4MHz; analog of the background medium:
𝑍

Γ
= 20 km (corresponding to the ionization layer region

thickness when𝑓 = 4MHz),𝑍
𝐿
= 90 km is the distance from

the ground to the bottom of the ionosphere. To ensure the
sampling rate and numerical calculations convenient under
the simulated conditions of phase screen [2, 3], take a typical
case. We place 20 phase screens in the ionsphere, that is,
𝑀 = 20, and thus, the relative thickness of the screen Δ𝑧 =
𝑍

Γ
/𝑀; in the ionospheric 2D random field, electron con-

centration’s relative fluctuation 𝑁
𝑓
(𝑟) was characterized by

the Shkarofsky spectrum, in which the internal dimensions
of the irregularities take typical value 𝑟

0
= 15m, and the

external dimensions take 𝐿
0
= 2.5 km. The spectral index

of the ionospheric irregularities (i.e., the exponent) 𝑝 takes
the value 4 or 5 and 4 herein; the horizontal dimension of
each phase screen is 𝐿

ℎ
= 122880m and is divided into𝑁 =

4096 copies; the fluctuation of the electron concentration take
𝜎
𝑁𝑓
= 10−3 in the strong situation and𝜎

𝑁𝑓
= 10−4 in theweak

one. 𝜎
𝑁𝑓

is standard deviation, indicating the strength of the
turbulence of ionosphere.

2.3.1. The Power Spectrum of the Amplitude and Phase Scin-
tillation. The power spectrum of the amplitude and phase
fluctuations by complex phase screen’s power spectrum using
(8a) and (8b) are shown in Figures 2 and 3 in the conditions
of weak and strong fluctuation.

2.3.2. The Scintillations of Amplitude and Phase. According
to the derivation of the foregoing formula (21) and (22), we
can obtain the amplitude and phase fluctuation value in each
phase screen using the FFT algorithm, and the values are
shown in Figures 4 and 5.

From Figures 4 and 5, we can see that the fluctuation
of amplitude and phase is gradually increasing from the 1st

to 20th phase screens because the electron concentration
increases with the rising of height and the corresponding
fluctuation also increases. The fluctuation of amplitude and
phase at some point reaches the maximum within the
same phase screen, which embodies the randomness of the
ionospheric undulation in the same height.Meanwhile, in the
condition of intensity fluctuation, the fluctuation of the signal
amplitude and phase increases more significantly than that in
the case of weak scintillation.

2.3.3. The Total Scintillation of the Amplitude and Phase. The
scintillation of the amplitude and phase within each phase
screen at a corresponding point is superimposed to get the
overall scintillation caused by the signal going through the
ionospheric region, as shown in Figure 6.

Figures 6(a) and 6(b) show the total amplitude and phase
scintillation value generated by the signal going through
the ionosphere in the conditions of weak scintillation, in
which the fluctuation of the signal amplitude ranges from
about 0.4 to 1.1 and basically concentrates on the 0.7 or 0.8,
and the fluctuation of the phase basically centre on 0 and
maximizes to 0.4 radians. Figures 6(c) and 6(d) show the
total amplitude and phase fluctuation values produced by
the signal going through the ionosphere in the conditions of
intensity fluctuation, in which the fluctuation is significant.
The amplitude’s fluctuation sets 0.4 as the center basically,
while themaximumfluctuation value can reach about 1.8.The
fluctuations of phase increased more than that in the case of
weak fluctuation and the maximal fluctuation, can reach up
to more than 1 rad.

2.4. The Statistical Properties of the Magnitude and
Phase Scintillation

2.4.1. The Probability Distribution of the Amplitude Scin-
tillation. Figure 7 shows the histogram of the amplitude
value frequency after the signal going through ionosphere
in the weak scintillation conditions using multiphase screen
method, and the probability density function curve of Gaus-
sian distribution with the parameters (0.7, 0.17). As we can
see from Figure 7, the amplitude of the signal in the case
of weak scintillation approximates the Gaussian distribution.
Figure 8(a) with the q-q figure is to test whether experimental
data and the given parameters’ normal distribution come
from the same kind of distribution. If the data in the q-q
figure approximately has a linear relationship, we can hold
the opinion that the data is subjected to theGaussian distribu-
tion. Conversely, if the data point bends seriously, they are not
the same kind of distribution. From Figure 8(a), we can know
that in the weak scintillation case, the fluctuation of the signal
amplitude approximately obeys 𝜇 = 0.7, 𝜎

2
= 0.17 Gaussian

distribution. Figure 8(b) is the normal probability picture
(NPP) to test normal distribution. Each value in the data
corresponds to a “+” sign, whose location is decided jointly
by the point value and the empirical probability, and solid
lines connect the 25% and 75% percentile and represent the
robustness of the linear fit. The ratio of 𝑦 axis in the normal
probability plot is uneven, and it indicates the probability
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Figure 8: The inspection of amplitude distribution.
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Figure 9: The histogram of amplitude scintillation and the fitting
results of the Weibull distribution.

value between 0∼1. If all the data points fall near the line,
we can regard that the data follows a normal distribution.
The curve of Figure 8(b) is approximately linear because it
can be considered that the fluctuation of the signal amplitude
in the weak undulation conditions approximately obeys
Gaussian distribution. At a significance level of 0.05, with
theKolmogorov-Smirnov testmethod [7], we validate further
that in the case ofweak ionospheric scintillation, phase screen
method simulation shows that amplitude fluctuations obey
Gaussian distribution.

Figure 9 shows that in a strong scintillation condition
frequency histogram of the amplitude. The curve obeys the
Weibull distributionwith parameters 𝑎 = 𝑏 = 1.5. As it can be
seen in Figure 9, the signal amplitude can be fitted quite well

in theWeibull distribution. In Figure 10, we test fitting degree
of signal amplitude fluctuation distribution with Weibull
distribution of given parameters in the q-q figure as well with
normal probability distribution in the intense fluctuation
conditions. As is shown in Figure 10(a), the signal amplitude
fluctuation approximately obeys the Weibull distribution.
While in Figure 10(b), each amplitude point seriously deviates
from the straight line. Therefore, the signal amplitude fluctu-
ation is no longer a Gaussian distribution when it is under
an intense condition. At a significance level of 0.05, with the
Kolmogorov-Smirnov test method, we validate further that
in the case of strong ionospheric scintillation, phase screen
method simulation shows that amplitude fluctuations obey
the Weibull distribution.

To sum up, the distribution of the signal amplitude’s
fading is closely linked to the intensity of the fluctuation
of the ionosphere. With the intensifying of the ionospheric
fluctuation, the fading of the signal amplitude has undergone
a transition from a Gaussian distribution to the Weibull
distribution.

2.4.2. Phase Scintillation’s Probability Distribution. In the
case of weak scintillation, the frequency histogram of the
signal phase distribution and normal distribution curve with
parameters 𝜇 = 0, 𝜎2 = 0.2 is shown in Figure 11. From
the figure, we can see that under the conditions of weak
scintillation, the signal’s maximum of the phase deviation is
about 0.6 radians, and the signal is also in good agreement
with normal distribution. We get the conclusion that in weak
scintillation case, the random phase deviation of the signal
obeys normal distribution with parameters 𝜇 = 0, 𝜎2 = 0.2.
At a significance level of 0.05, with the Kolmogorov-Smirnov
test method, we validate further that in the case of weak
ionospheric scintillation, phase screen method simulation
shows that phase fluctuations obey Gaussian distribution.
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Figure 10: The inspection of amplitude distribution.
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Figure 11:The histogram of phase scintillation and the fitting results
of normal distribution.

Figure 12(a) is to verify the fitting degree of Gaussian
distribution of corresponding parameters with the phase
distribution of the signal using the q-q figure. In q-q figure,
the phase approximately shows linearly, and therefore, we
consider that the phase scintillation belongs to the Gaussian
distribution.

Figure 13 is the frequency histogram of the signal phase
distribution, in the case of the strong scintillation, and the
normal distribution curve with parameters 𝜇 = 0, 𝜎2 = 0.7.
The inspection of phase scintillation is shown in Figure 14.We
can see from Figure 13 that the maximum phase deviation of
the signal reaches about 2 radians, but the histogram of signal
phase deviation gets good fit of the normal distribution curve
with the corresponding parameters (0, 0.7). Figure 14(a) is to

examine fitness of the phase distribution of the signal and the
corresponding parameters of the Gaussian distribution with
the q-q figure. It can be seen that the curve in the q-q figure is
approximately linear, and therefore, we can consider that the
phase undulation obeys Gaussian distribution. Figure 14(b) is
to examine fitness of the phase distribution of the signal and
the Gaussian distribution with corresponding parameters
with normal probability plot. Seen from the figure, the curve
in the normal probability pot is approximately linear, and
therefore we can consider signal phase undulation obeys
Gaussian distribution in case of strong scintillation. At a
significance level of 0.05, with the Kolmogorov-Smirnov test
method, we validate further that in the case of strong iono-
spheric scintillation, phase screen method simulation shows
that phase fluctuations also obey Gaussian distribution.

The conclusion can be drawn by the phase screenmethod
that in weak scintillation case, the signal amplitude and
phase scintillation are relatively small, while its amplitude
and phase fit the Gaussian distribution. In the case of strong
scintillation, the Weibull distribution is a much better choice
to characterize the scintillation of the signal amplitude. Phase
scintillation still approximates the Gaussian distribution,
while the deviation has increased than that of the weak case.

2.4.3. The Comparison with Measured Data. The amplitude
and phase distribution characteristics can be calculated by
statistics analysis based on the measured data of ionospheric
Es layer clutter echo, which can be used as the basis to test
whether the simulation results of the phase screen method
can reflect real ionospheric characteristics.

The frequency distribution histogram of an amplitude of
6 batches of real ionospheric echo is shown in Figure 15.
The abscissa is the normalized amplitude of the ionospheric
echo, and the ordinate is the occurrence frequency of the
corresponding amplitude. Red curve is a Weibull distri-
butions with certain parameters, from which we can see
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Figure 12: The inspection of phase distribution.
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Figure 13:The histogramof phase scintillation and the fitting results
of normal distribution.

that the amplitude scintillation approximately obeys the
Weibull distribution and that amplitude distribution of the
signal derived from our simulation in the strong scintillation
basically coincides with the previous one. At a significance
level of 0.05, we further verify the validity of the conclusion
that the amplitude fluctuations of measured data obey the
Weibull distribution by using the Kolmogorov-Smirnov test
method.

We simulate ionospheric echo by phase screen method,
obtain the phase of the simulated echo signal, and then
process statistical analysis to finally get the phase distribution
of the ionosphere echo signal.Then, we do the same statistical
analysis to the corresponding measured ionospheric echo
signal to obtain its phase fluctuation frequency distribution

histogram.The phase distribution histogram of the simulated
echo signal is shown in Figure 16. We can get the phase
distribution of the actual ionospheric echo after we analyze
the measured data, which is shown in Figure 17.

As can be seen from Figure 16, due to the ionosphere, the
phase of the echo signal approximately subjects to uniform
distribution. Figure 17 shows the histogram statistical analysis
of a phase of 6 batches of measured data. As can be seen from
Figure 17, ionospheric echo signal’s phase also approximately
obeys uniform distribution, which is consistent with the
conclusions of theoretical simulation. In order to confirm that
the phase screen simulation results and the actual data come
from the same distribution, we test six sets of data available
with the q-q figure. Figure 18 shows the results of a set of data
with the q-q figure.

As can be seen from Figure 18, ionospheric echoes’ phase
distribution derived from phase screen method is able to
fit the actual ionospheric echo data, that is, the models
created by the phase screen method can preferably simulate
the echoes’ phase. At a significance level of 0.05, we further
verify the validity of the conclusion that the echo’s phases
of measured data obey uniform distribution by using the
Kolmogorov-Smirnov test method. To sum up, in strong
scintillation condition, the scintillation of amplitude and
phase by simulation is close to the statistical results of
actual data and basically characterize the impact ionospheric
irregularities on high-frequency radio waves.

3. Ionospheric Es Layer Clutter Model
Based on Multiphase Screen Method

3.1. The Proposition of Ionospheric Es Layer Clutter Model. Es
layer is an ionization cloud with a variety of different shapes
that appear in the height of the E layer, and its electronic
peak concentrations are often many times higher than the
concentration of the E layer around. Es layer appears in



International Journal of Antennas and Propagation 11

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

2.5

X quantiles

Y
qu

an
til

es

(a) Inspection of the q-q figure

−1.5 −1 −0.5 0 0.5 1 1.5

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99
0.997
0.999

Pr
ob

ab
ili

ty

Data

(b) Inspection in the NNP

Figure 14: The inspection of phase distribution.
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Figure 15: Actual measured ionospheric echo amplitude histogram.
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Figure 16: The phase distribution of ionospheric echo by phase
screen method simulation.

the corresponding state of strong scintillation of ionosphere.
According to the previous study of the propagation charac-
teristics in the ionospheric Es layer, under strong scintillation
conditions, we can conclude the signal amplitude scintillation
probability distribution of radio signals that through the
ionosphere can use the Weibull distribution to overfit, and
phase scintillation probability distribution approximates to a
Gaussian distribution. Using the results obtained by the mul-
tiphase screenmethod, taking into account of the variation in
the height of the ionospheric reflectionwave reflection points,
we give a new reflectedwavemodel of the ionosphere Es layer.

ForHF surfacewave radar, the difference frequency signal
of uniform motion target’s echo after passing mixer is

𝑠 (𝑡) = 𝐴 ⋅

𝑁−1

∑
𝑛=0

𝑒
𝑗⋅2𝜏⋅(𝑓

0
𝜏−(𝑎𝜏

2

/2)+𝑎𝜏(𝑡−𝑛𝑇
𝑠
))
, (23)

where 𝐴 represents echo amplitude, 𝜏 = 2(𝑅
0
+ ]𝑡)/𝑐

represents the echo delay,𝑅
0
is the initial distance of the target

distance to radar, ] shows radial velocity of the target relative
to the radar, 𝑎 is the chirp rate, and 𝑇

𝑠
is the sweep cycle.

In contrast, the ionospheric Es layer clutter echo is more
complex. Three main aspects need to be considered: there is
a random amplitude fluctuation in clutter echoes’ difference
frequency signal of ionospheric Es layer; there is a random
phase fluctuation in clutter echoes’ difference frequency
signal of ionospheric Es layer; the echoes’ height of reflection
point in ionospheric Es layer clutter may randomly change.
When waves vertically incident to the ionosphere, refractive
index in each height under the reflecting surface will generate
aDoppler frequency shift as time changes, and themovement
of the reflecting surface will also produce Doppler shift.

According to previous theoretical analysis, simulation
data analysis, and the conclusion of the actual data analysis,
we establish a new echo model as follows.

Step 1. In the difference frequency signal of the standard uni-
formmotion target, we superimpose on a randomfluctuation
amplitude.The distribution of the random fluctuations obeys
the Weibull distribution.

Step 2. In the difference frequency signal of the standard
uniformmotion target, we superimpose on a randomfluctua-
tion phase.The distribution of the random fluctuations obeys
Gaussian distribution.

Step 3. The height of ionospheric echo reflection point is
a random variable. We can handle this change by dividing
the whole coherent cycle sweep cycle 𝑀 into 𝑁 portions.
In each section, the target velocity corresponding to a single
sweep cycle of ionospheric echoes (i.e., the height of the
ionospheric reflection point) is fixed, and the target moving
speed is different in the different sweep cycle of ionospheric
echoes. All of the 𝑀/𝑁 targets’ speed corresponding to
theionospheric echoes within the 𝑀/𝑁 sweep cycles obey
Gaussian random distribution which takes a fixed speed as
the mean value. The corresponding𝑁 fixed speed uniformly
distributes in (−V, V), typically V = 10m/s.

According to the ionospheric echo model established
previously, the difference frequency signal of the Es layer
ionospheric clutter echoes after mixing is given by the
following formula:

𝑠 (𝑡) = Amplitude (𝑡) ⋅ 𝐴

⋅

𝑁−1

∑
𝑛=0

𝑒
𝑗⋅(2𝜋⋅(𝑓

0
𝜏−(𝑎𝜏

2

/2)+𝑎𝜏(𝑡−𝑛𝑇
𝑠
))+Phase(𝑡))

,
(24)

where Amplitude(𝑡) represents the amplitude of the Weibull
random fluctuations, Phase(𝑡) represents the Gaussian ran-
dom fluctuations in the phase, V presents ionospheric echoes
variation in the height of the reflection point, and 𝑅

0

corresponds to Es layer height in delay characterization 𝜏 =
2(𝑅

0
+ ]𝑡)/𝑐.

3.2. The Comparison of Simulating Ionospheric Es Layer
Clutter and the Actual Ionospheric Es Layer Clutter. Therange
of ionospheric Es layer clutter of high-frequency groundwave
radar is generally from 100 km to 200 km, and to reduce sea
clutter’s impact on the accuracy of statistical characteristics
analysis of the ionosphere clutter, we use a method based
on eigenvalue decomposition to suppress the sea clutter
composition in the time domain signal [8] and then do the
statistical analysis of remaining ionospheric Es layer clutter.
According to themodel of ionosphere Es layer built in the last
section, the simulation can produce the ionospheres’ Es layer
clutter after selecting the height value corresponds to the Es
layer. At this time, the stochastic amplitudes obey theWeibull
distribution with the parameters of (7, 2.8), and the phase
of stochastic volatility obey Gaussian distribution with the
parameters of (0, 0.4), wherein the unit of phase distribution’s
parameter 0.4 is radians. Figure 19(a) shows the spectrum
of simulating ionospheric Es layer clutter corresponding
to the range gate at the reflection height of Es layer. For
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Figure 17: The phase distribution of the actual ionospheric echo.
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Figure 18: The examination of the echo phase distribution.

the comparison, Figure 19(b) shows the spectrum of actual
ionospheric Es layer clutter corresponding to the range gate
at the height of Es layer.

From the comparison of Figures 19(a) and 19(b), we can
intuitively see that the spectrums of simulating and actual Es
layer ionospheric clutter are very similar.The centered section
of the spectrum of the simulating Es layer ionospheric clutter
is obviously raised, which is in accordance with the actual
one. From Figure 19(a), the centered raised section covers

the range of −0.25Hz∼0.25Hz, which is exactly the range
corresponding to the ship targets detected byHF surfacewave
radar.The amplitudes of the centered raised section are nearly
30 dB higher than the amplitudes of neighbouring sections
which do not include Es layer clutter. From Figure 19(b), we
can see the same phenomenon; the target and Bragg crest are
both submerged by the ionospheric Es layer clutter.

From the comparison and analysis of simulating and
actual clutter echoes, we can see that the proposed model can
represent the actual Es layer ionospheric clutter well.

4. The Ionospheric Es Layer Clutter
Suppression Based the JDL Algorithm

Space-time adaptive processing (STAP) is a kind of low
complexity and effective way for using training samples to
suppress clutter, having become an important direction of
research scholars from various countries and has been used
in airborne radar [9–15]. Similar to ground clutter, there
are certain orientation-Doppler frequency characteristics in
high-frequency surface wave radar ionospheric clutter; so,
using STAP to suppress ionospheric clutter becomes possible.
The traditional fully space-time adaptive algorithm has a
large number of degrees of freedom. It is impossible for
high-frequency surface wave radar to have enough sec-
ondary data samples to estimate the covariance matrix, and
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the computation load is too large. Therefore, in this section
we inject an ideal point target to the simulated ionospheric
clutter data and measured ionospheric clutter data, majoring
in a kind of dimension reduced STAP algorithm and JDL’s
ability to suppress the ionospheric clutter and find the target.

4.1. Joint Domain Localized (JDL) AlgorithmPrinciple. Space-
time adaptive processing is using the training samples close
to the range bin to be detected to estimate clutter and noise
covariance matrix 𝑅, and according to linearly constrained
minimum variance criteria (LCMV) to estimate adaptive
weights 𝑤, and then to weigh the received data to maximize
SNR. Covariance matrix is given by

𝑅 =
1

𝐾

𝐾

∑
𝑖=1

𝑋
𝑖
⋅ 𝑋

𝐻

𝑖
, (25)

where𝑋
𝑖
is a training sample data.

Weight vector can be given by

𝑤 = 𝜇𝑅
−1V = 𝜇 (𝑅−1/2

) (𝑅
−1/2V) , (26)

where 𝜇 is a complex normalized constant.
The JDL algorithm’s mainly take advantage of the trans-

formation vector 𝑇 to transform the space-time data to
the angle-Doppler domain and select a small local area
for adaptive processing. It is a kind of dimension reduced
algorithm of the STAP processing, solving the lack of training
samples and excessive computation load.

𝑆
𝑠
and 𝑆

𝑡
, respectively, are space steering vector and time

steering vector. Elements of theirs are the discrete Fourier
transform coefficients. Therefore, the inner product of the
spatial and temporal steering vector is equivalent to 2-DDFT,
and then, the process of transforming the received data from
space-time domain to the ith angle bin 𝑤

𝑠𝑖
, the jth Doppler

bin, we concern can be expressed as

𝑋 = (𝑆
𝑠
(𝑤

𝑠𝑖
)) ⊗ (𝑆

𝑡
(𝑤

𝑡𝑗
))

𝐻

𝑋. (27)

The JDL algorithm transforming matrix can be repre-
sented as

𝑇 =

(
(
(
(
(
(

(

[𝑆
𝑠
(𝑤

𝑠𝑖
) ⊗ 𝑆

𝑡
(𝑤

𝑡𝑗
)]

𝑇

[𝑆
𝑠
(𝑤

𝑠𝑖
) ⊗ 𝑆

𝑡
(𝑤

𝑡𝑗
+𝑤

𝑘
)]

𝑇

...
[𝑆

𝑠
(𝑤

𝑠𝑖
) ⊗ 𝑆

𝑡
(𝑤

𝑡𝑗
+(𝑞−1)𝑤

𝑘
)]

𝑇

...
[𝑆

𝑠
(𝑤

𝑠𝑖
+(𝑝−1)𝑤

𝑛
) ⊗ 𝑆

𝑡
(𝑤

𝑡𝑗
+(𝑞−1)𝑤

𝑘
)]

𝑇

)
)
)
)
)
)

)

𝑇

,

(28)

where 𝑤
𝑛
and 𝑤

𝑘
, respectively, represent angle and Doppler

interval, 𝑝 represents the number of adjacent angle bins, and
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Figure 21: Angle-Doppler profile before and after the JDL algorithm.
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Figure 22: Angle-Doppler profile before and after the JDL algorithm.

𝑞 represents the number of adjacent Doppler bins. Schematic
diagram 20 is as follows.

In Figure 20, the red channel is the search channel, the
blue channel is the auxiliary channel, and the yellow channel
is the protection channel. The selection of a protection chan-
nel in angle-Doppler domain may be effective in preventing
the spread of the target signal to clutter covariance matrix,
affecting the actual detection performance.

When selecting the 3 × 3 local shown in Figure 20, space
-time transformation matrix can be expressed as

𝑇 = [𝑆
𝑡
(𝑤

𝑡,𝑗−2
) ; 𝑆

𝑡
(𝑤

𝑡,𝑗
) ; 𝑆

𝑡
(𝑤

𝑡,𝑗+2
)]

⊗ [𝑆
𝑠
(𝑤

𝑠,𝑖−2
) ; 𝑆

𝑠
(𝑤

𝑠,𝑖
) ; 𝑆

𝑠
(𝑤

𝑠,𝑖+2
)] .

(29)

The transformed space-time steering vector is

Ṽ = 𝑇𝐻
⋅ V. (30)

The receiving data vector is

𝑋 = 𝑇
𝐻
⋅ 𝑋. (31)

The corresponding adaptive weight vector is

𝑤 = 𝜇�̃�
−1Ṽ. (32)

4.2. The JDL Algorithm Performance Analysis Based on Es
Layer Cutter Simulation Model. Parameter setting of the
simulation data: the carrier frequency 𝑓

𝑐
= 4.05MHz, the

sampling frequency 𝑓
𝑠
= 10 kHz, the bandwidth 𝐵 = 20 kHz,
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Figure 23: Target range profile and Doppler profile before and after the JDL algorithm after injecting a target.
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Figure 24: Range-Doppler profile before and after JDL.

the pulse period is 20ms, the number of array elements𝑁 =

32, the accumulated pulse numbers 𝑀 = 4096, the angle
between the target incident direction and the array normal
is 30∘, the target normalized Doppler frequency 𝑓Doppler =
0.004Hz, target range bin is 29, Es layer height ℎ = 200 km,
and signal to clutter ratio (SCR) is −10 dB. Based on the
established ionospheric Es layer clutter model, when the
target is not injected, comparing the range-Doppler profile
before and after the JDL algorithm processing, as Figures
21(a) and 21(b) show.

Figures 22(a) and 22(b) compared the angle-Doppler
output before and after the JDL algorithm processing when
the target is not injected.

From Figures 21 and 22, we can see that the simulated
ionospheric clutter exists obvious broadening in range, angle
andDoppler profile after conventional processing, while after
JDL processing, the clutter is significantly reduced. So, JDL
algorithm can achieve good suppression performance for
simulated ionospheric clutter. Figures 23(a) and 23(b) show
the target range profile and the target Doppler profile before
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Figure 25: Angle-Doppler profile before and after JDL algorithm.
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Figure 26: Target range profile and doppler profile before and after the JDL algorithm after injecting a target.

and after the JDL algorithmprocessing after injecting an ideal
target for simulated ionospheric clutter.

We can see from the simulation results in Figure 23
that SCR is −10dB before JDL processing, and SCR in the
range and Doppler dimension is greatly improved after JDL
processing.This further illustrates that the JDL algorithm can
effectively suppress the ionosphere clutter and detect target
submerged by ionospheric clutter.

4.3. Analysis of the JDL Algorithm Performance Based on
Measured Data. Parameter settings for the measured data:
carrier frequency 𝑓

𝑐
= 4.05MHz, coherent integration

time 𝑇 = 184.32 s, the angle between the target incident
direction and the array normal is −30∘, target normalized
Doppler frequency 𝑓Doppler = −0.26Hz, target range bin
is 69, and SCR = −10 dB. Figure 24(a) shows the range-
Doppler profile of a batch of HF ground wave radar data in
actual measurement after regular processing. Figure 24(b) is
the range-Doppler profile after JDL processing, and the range
bin of the injected target is 69.

Figure 25(a) shows the angle-Doppler profile ofmeasured
data after regular processing; Figure 25(b) is the angle-
Doppler profile after JDL processing. Figures 26(a) and 26(b)
show the target range profile and the target Doppler profile
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before and after the JDL algorithm processing after injecting
an ideal target for measured ionospheric clutter.

We can see, from the JDL processing results of the
previously measured data, that the SCR in range and Doppler
dimension are greatly improved, further illustrating the effec-
tiveness of the JDL algorithm in suppressing the ionosphere
clutter and verifying the reasonableness of the built clutter
model.

5. Conclusions

An ionospheric Es layer clutter model based on multiphase
screen method with DFT fast implementation was proposed,
and then, the Es layer clutter was suppressed by STAPmethod
in this paper. First, the basic principle of the multiphase
screen method in the disturbed layered ionosphere was
analyzed, and the DFT-based fast algorithm was proposed.
Then, we utilized the multiphase screen method to obtain
statistical analysis results as well as took into account the
height of the reflection points’ variation in the ionospheric
Es layer to create a new reflecting model in the ionospheric
Es layer. We also compared it with the measured data and
analysis to verify the reasonableness and correctness of the
established clutter model. Finally, based on the ionospheric
clutter model, the newly developed descending dimensional
JDL algorithm was used to suppress the Es layer clutter
and simulated with measured data to provide the validity
of this algorithm to suppress the ionospheric clutter. The
simulation results showed that the established model can
show the characteristics of the ionospheric Es layer clutter
basically, and the JDL algorithm can suppress ionospheric Es
layer clutter well.Thismethod provided a theoretical basis for
the ionospheric clutter suppression technology and the use of
STAP in anti-ionospheric clutter.
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We derive the probability of false alarm and detection threshold under employment of the generalized detector (GD) in cognitive
radio (CR) systems for two scenarios: firstly, the independent antenna array elements; the secondly, the correlated antenna array
elements. The energy detector (ED) and GD spectrum sensing performances are compared under the same initial conditions. The
simulation results show that implementation of the GD improves the spectrum sensing performance in CR systems both for inde-
pendent and correlated antenna array elements.

1. Introduction

Simple random access protocols such as the carrier sense
multiple access (CSMA) are widely used in many network
applications. Using these protocols, the users and nodes have
to define an availability of the radio channel or possibility to
use a definite spectrum in order to start the transmission pro-
cess after an arbitrary delay.The cognitive radio (CR) concept
depends on the spectrum sharing and opportunistic spec-
trum access when there is a secondary network additionally
to the primary network that has priority in access to spectral
resources. The CR is an effective approach to improve spec-
trum utilization or radio resources by introducing an oppor-
tunistic use of frequency bands unused by the primary or
licensed users.TheCR systems have ability tomeasure, sense,
learn, and define the radio channel parameters, the spectrum
availability, and the radio operating conditions.

Two types of users are considered in the CR systems,
namely, the primary user and the secondary user. The pri-
mary users (the licensed users) have a priority to use the avail-
able designated spectrum.The secondary users are allowed to
temporally use idle spectrum unused by the primary users.
The secondary user should take down the radio resources if
the primary user needs to use the same radio resources.Thus,
the secondary user should try to find another idle radio
resources or frequency bands.

In general, most of the existed spectrum sensing ap-
proaches are based on the energy detector [1, 2], matched
filter, [3, 4], and cyclostationary detector [5, 6]. The matched
filter requires a complete knowledge about the signal received
from the primary user and signaling features. The cyclosta-
tionary detector exploits features of signal received from the
primary user caused by periodicity. Advantage of the energy
detector (ED) is an absence of any required information about
the signal sent by the primary user. The ED is considered to
be optimal in the case of independent antenna array elements
[1], but it is not true in the opposite case, that is, the correlated
antenna array elements. In general, the ED is sensitive to noise
when variations in the noise power can cause a serious decline
in the detection performance.

The employment of ED with dynamic threshold in CR
systems is investigated in [7] when the detection performance
is defined under the fast fluctuated average noise power. The
ED dynamic threshold is proposed to solve the problem of
degradation in detection performance and sensitivity under
the fast fluctuated average noise power, especially, at low
values of the signal-to-noise ratio (SNR).The spectrum sens-
ing performance under implementation of ED in CR systems
is investigated in [8] using the dynamic threshold.

Several spectrum sensing approaches based on the gener-
alized likelihood ratio test (GLRT) are investigated in [8] with
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the purpose to be implemented by CR systems. The tech-
niques proposed in [9] use the eigenvalues of the sample cova-
riance matrix of the received signal vector by treating un-
known parameters of the probability density function (pdf)
of observed data independently of the presence of the signal
from the primary user. Another signal detection scheme
based on the eigenvalues of the covariancematrix of the signal
vector received from the primary user is proposed in [10].
This scheme generates a decision statistics for the detection of
signal sent by the primary user based on the ratio between the
largest and the smallest eigenvalues of the covariance matrix
of the received signal vector. In this case, the probability of
miss is defined as a function of the number of cooperative
receivers, number of samples, and SNR [11].

Detection performance improving can be achieved by
cooperative spectrum sensing using the two-step threshold
ED [12]. The two-step thresholds are used for local detection
allowing us to make a reliable local decision at each sensing
node.The final decision is defined by combining the results of
local decisions using the data fusion center. Under the spec-
trum sensing based on known signal pattern (waveform) of
the primary user [13], the preamble (a known data sequence
transmitted before each data burst) and the midamble (a
known data sequence transmitted in the middle of the data
burst) are used.Thus, if the signal pattern is known, the sens-
ing process is performed by correlating the received signal
with a known copy of itself (the coherent sensing). Some
parameters extracted from the received signal, for example,
the signal energy, and power spectral density are employed
by radio identification sensing approach [14, 15]. More infor-
mation about other spectrum sensing techniques such as the
multitaper spectral estimation, wavelet transform estimation,
and time-frequency analysis can be found in [13].

There are many problems under spectrum sensing in CR
systems, namely, the detection of the signal received from the
primary user under correlation of the antenna array elements,
interference cancellation, hidden primary user, and sensing
efficiency when the data transmission is not allowed for the
CR users during the observation period. The last problem
decreases the transmission opportunities [16].

Because of the low computation costs and implementa-
tion complexity, the ED is widely used in the spectrum sens-
ing. Additionally, it does not need any knowledge about the
signal sent by the primary user. The ED detects the signal by
comparing the decision statistics with the detection threshold
depended on the noise power (variance) [17]. The ED has
some problems related to spectrum sensing including the
threshold selection, interference cancellation, noise differen-
tiation, noise power estimation, and detection performance
degradation under the correlated antenna array elements and
at the low SNR. The noise variance estimation problem is
solved by distinguishing the noise and signal subspaces using
the multiple signal classification (MUSIC) algorithm [18].

The idea to employ the generalized detector (GD) for
spectrum sensing in CR is proposed with the purpose
to improve the sensing performance under the correlated
antenna array elements because the GD has the same advan-
tage as the ED; that is, no knowledge about parameters of
the signal sent by the primary user is required. The GD is

a combination of the Neyman-Pearson (NP) detector and ED
based on the generalized approach to signal processing in
noise [19]. As well known, the NP detector is optimal for the
detection of signals with known parameters and the ED is
optimal for the detection of signals with unknown parame-
ters. The GD allows us to formulate a decision-making rule
about the presence or absence of the signal based on defini-
tion of the jointly sufficient statistics of themean and variance
of likelihood function [20]. The GD implementation in wire-
less communication systems and GD detection performance
are discussed in [21]. How we can improve the detection
performance employing GD in radar sensor systems is inves-
tigated in [22, 23].

In this paper, the spectrum sensing in CR systems based
on employment of the GD is evaluated. We define the detec-
tion threshold and the probability of false alarm under GD
employment in CR systems. The sensing performance of the
ED and GD is compared under the same conditions for two
scenarios: firstly, the independent antenna array elements;
secondly, the correlated antenna array elements. The simu-
lation results demonstrate the better sensing performance of
the GD in comparison with the ED one both for independent
and correlated antenna array elements.

The remainder of this paper is organized as follows. The
system model is presented in Section 2. The GD main struc-
ture and the decision statistics are introduced in Section 3.
Section 4 describes a definition of the GD threshold and a
derivation of the probability of false alarm.The threshold and
the probability of false alarm for ED are discussed in Sec-
tion 5. The simulation results are presented in Section 6. The
conclusion remarks are made in Section 7.

2. Spectrum Sensing in Correlated
Antenna Array Elements

Assume that the spectrum sensing is carried out by the sec-
ondary user and/or secondary sensing node with the number
of antennas equal to𝑀 (𝑀 antenna array elements). At the
specific kth time instant and for the ith antenna array element,
the binary hypothesis test for the spectrum sensing can be
presented in the following form:

𝑥
𝑖 [𝑘] =

{{{

{{{

{

𝑤
𝑖 [𝑘] ,

𝑖 = 1, . . . ,𝑀; 𝑘 = 0, . . . , 𝑁 − 1 ⇒H
0
;

ℎ
𝑖 [𝑘] 𝑎 [𝑘] + 𝑤𝑖 [𝑘] ,

𝑖 = 1, . . . ,𝑀; 𝑘 = 0, . . . , 𝑁 − 1 ⇒H
1
,

(1)

where 𝑥
𝑖
[𝑘] is the discrete-time received signal at the input

of secondary user or secondary sensing node; 𝑎[𝑘] is the
discrete-time shift phase keying (PSK) modulated transmit-
ted signal with the equal likely probability of transmission
for all symbols; ℎ

𝑖
[𝑘] is the discrete-time channel coefficient;

and 𝑤
𝑖
[𝑘] is the discrete-time additive white Gaussian noise

(AWGN) with zero mean and variance equal to 𝜎2
𝑛
, that

is, 𝑤
𝑖
[𝑘] ∼ CN(0, 𝜎2

𝑛
), where C denotes that 𝑤

𝑖
[𝑘] is the

complex random variable. The PSK modulated signal 𝑎[𝑘] is
transmitted over a Rayleigh fading channel with coefficients
obeying the complex Gaussian distribution with zero mean
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and variance equal to 𝜎2
ℎ
, that is, ℎ

𝑖
[𝑘] ∼ CN(0, 𝜎2

ℎ
). The

channel coefficients ℎ
𝑖
[𝑘] corresponding to the ith antenna

array element, 𝑖 = 1, . . . ,𝑀, are correlated between each
other and independent of the time.ThePSKmodulated signal
𝑎[𝑘], the channel coefficients ℎ

𝑖
[𝑘], and the AWGN 𝑤

𝑖
[𝑘] are

independent between each other.
The exponential correlation model of antenna array

elements is widely used owing to its simplicity and complete
description of the spatial correlation [24].The components of
the𝑀 × 𝑀 correlation matrix Cor are presented in the fol-
lowing form:

𝐶𝑜𝑟
𝑖𝑗
= {

𝜌𝑖−𝑗, 𝑖 ≤ 𝑗,

𝐶𝑜𝑟∗
𝑗𝑖
, 𝑖 > 𝑗,

𝑖, 𝑗 = 1, . . . ,𝑀, (2)

where 𝜌 is the coefficient of correlation between two adjacent
antenna array elements, 0 ≤ 𝜌 ≤ 1 (real values), and∗denotes
the complex conjugate. Using the approximated cross-corre-
lation function defined in [25], the correlation coefficient 𝜌
can be given as

𝜌 = exp(−23Λ2( 𝑑
𝜆
𝑐

)

2

) , (3)

where Λ is the angular spread, 𝜆
𝑐
is the wavelength, and

𝑑 is the distance between adjacent antenna array elements
(antenna spacing). Thus, under these conditions, the corre-
lation matrix Cor is the symmetric Toeplitz matrix [26].

The signals are received by𝑀 antenna array elements. If
the sample size of received signals is𝑁, the𝑀𝑁× 1 received
signal vector can be defined in the following form

X = [𝑥
1 (0) , . . . , 𝑥𝑀 (0) , . . . , 𝑥1 (𝑁 − 1) , . . . , 𝑥𝑀 (𝑁 − 1)]

𝑇
,

(4)

where 𝑇 denotes a transpose. The covariance matrices of the
received signal vector X under the hypotheses H

0
and H

1

can be written in the following form:

H
0
⇒ Cok

0
= 𝐸 [XX𝐻 |H

0
] = 𝜎
2

𝑛
I,

H
1
⇒ Cok

1
= 𝐸 [XX𝐻 |H

1
] = 𝐸
𝑎
𝜎
2

ℎ
A + 𝜎2

𝑛
I,

(5)

where 𝐻 denotes the Hermitian conjugate (conjugate trans-
pose), I is the𝑀𝑁 ×𝑀𝑁 identity matrix, 𝐸

𝑎
is the received

signal energy at the input of the secondary user or sensing
node, and A is the𝑀𝑁 × 𝑀𝑁 matrix defined based on the
correlation matrix Cor [26]

A =

[
[
[
[
[

[

Cor 0
𝑀

⋅ ⋅ ⋅ 0
𝑀

0
𝑀

d d
...

... d d 0
𝑀

0
𝑀

⋅ ⋅ ⋅ 0
𝑀

Cor

]
]
]
]
]

]𝑀𝑁×𝑀𝑁

, (6)

where 0
𝑀
is an𝑀×𝑀 zero matrix.

3. GD Structure and Decision Statistics

The GD structure is presented in Figure 1. Here MSG is the
model signal generator (local oscillator), AF is the additional
filter, and PF is the preliminary filter.The threshold apparatus
(THRA) device defines the GD threshold and the signal
model generator switching apparatus (SGSA) is used to
switch on the MSG with the purpose to define the unknown
parameters of the detected signal. The noise power estimator
evaluates 𝜎2

𝑛
that is the variance of the noise at the GD input.

PF and AF are two linear systems at the GD front end that
can be presented, for example, as the band-pass filters with
the impulse responses ℎPF(𝜏) and ℎAF(𝜏). For simplicity of
analysis, we think that these filters have the same amplitude-
frequency responses and bandwidths. Moreover, a resonant
or centered frequency of the AF is detuned relative to a reso-
nant frequency of the PF on such a value that the information
signal cannot pass through the AF. Thus, the information
signal and noise can appear at the PF output and only the
noise appear at the AF output. If a value of detuning between
the AF and PF resonant frequencies is more than 4 ÷ 5Δ𝑓

𝑎
,

whereΔ𝑓
𝑎
is the information signal bandwidth, the processes

forming at the AF and PF outputs can be considered as inde-
pendent and uncorrelated processes. In practice, under this
condition the coefficient of correlation is not more than 0.05
[20, Chapter 3]. When the Gaussian noise 𝑤(𝑡) comes in at
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the AF and PF inputs (the GD linear system front end), the
noise forming at the AF and PF outputs is Gaussian, too,
because the AF and PF are the linear systems. We may think
that the AF and PF do not change the statistical parameters of
input process since they are the linear GD front end systems.
For this reason, the AF can be considered as a generator of
reference sample with a priori information a “no” signal. A
detailed discussion of the AF and PF can be found in [27,
Chapter 5].

The signal at the PF output can be defined as 𝑦
𝑖
[𝑘] =

𝑎
𝑖
[𝑘]+𝜁

𝑖
[𝑘], where 𝜁

𝑖
[𝑘] is the observed noise at the PF output

and 𝑎
𝑖
[𝑘] = ℎ

𝑖
[𝑘]𝑎[𝑘]. Under the hypothesisH

0
and for all ith

and kth, 𝑦
𝑖
[𝑘] is subjected to the complex Gaussian distribu-

tion with zero mean and variance 𝜎2
𝑛
and is considered as the

independent and identically distributed (i.i.d) process. The
AF output signal is the reference noise 𝜂

𝑖
[𝑘].Themodel signal

is defined as

𝑎
𝑚

𝑖
[𝑘] = 𝛽𝑎𝑖 [𝑘] , (7)

where 𝑎𝑚
𝑖
[𝑘] is the generated model signal and 𝛽 is the coeffi-

cient of the proportionality. The main functioning condition
of GD is an equality over the whole range of parameters
between themodel signal forming at theGDMSGoutput and
the detected signal forming at theGD input linear system (the
PF) output [19]. How we can do it in practice is discussed in
[20, Chapter 7].

The decision statistics at the GD output can be presented
in the following form [20, Chapter 3]:

𝑇GD (X) =
𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

2𝑦
𝑖 [𝑘] 𝑎

𝑚

𝑖
[𝑘]

−

𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

𝑦
2

𝑖
[𝑘] +

𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

𝜂
2

𝑖
[𝑘]

H
1

≷
H
0

THRGD,

(8)

where THRGD is the GD threshold. The first term in (8)
corresponds to the NP detector with twice the gain and
is considered as the sufficient statistics of the likelihood
functionmean.The second term in (8) corresponds to the ED
and is considered as the sufficient statistics of the likelihood
function variance.The third term in (8) presents the reference
noise power generated according to the main functioning
principles of theGD [19, Chapter 3].Under the hypothesisH

1

corresponding to 𝑦
𝑖
[𝑘] = 𝑎

𝑖
[𝑘] + 𝜁

𝑖
[𝑘] and the condition

𝑎𝑚
𝑖
[𝑘] = 𝑎

𝑖
[𝑘], the GD decision statistics takes the form

𝑇GD (X) =
𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

𝑎
2

𝑖
[𝑘] −

𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

𝜂
2

𝑖
[𝑘] −

𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

𝜁
2

𝑖
[𝑘] ,

(9)

where the second and third terms in (9) present the back-
ground noise at the GD output. The background noise is a
difference between the noise power forming at the PF and AF
outputs. In the opposite case (the hypothesis H

0
) corre-

sponding to 𝑦
𝑖
[𝑘] = 𝜁

𝑖
[𝑘], the right side of (9), is the back-

ground noise only.

4. Spectrum Sensing Performance of GD

4.1. CorrelatedAntennaArray Elements. According to theGD
decision statistics at the hypothesis H

1
given by (9) if the

energy of signal received by each of 𝑀 antenna elements is
combined with equal gain and the condition 𝑎

𝑖
[𝑘] = 𝑎𝑚

𝑖
[𝑘]

is satisfied, the GD defines the total received signal energy
within the limits of the observation interval and compares
this energy with the GD threshold THRGD tomake a decision
of a “yes” or a “no” signal sent by the primary user. The prob-
ability of false alarm 𝑃GD

FA and the probability of miss 𝑃GD
miss

are defined using the following forms [20, Chapter 6]:

𝑃
GD
FA = 𝑃 (𝑇GD (X) ≥ THRGD |H0)

= 1 − Φ(
THRGD − 𝑚

GD
H
0

√VarGD
H
0

),

𝑃
GD
miss = 𝑃 (𝑇GD (X) < THRGD |H1)

= Φ(
THRGD − 𝑚

GD
H
1

√VarGD
H
1

),

(10)

where

Φ (𝑥) =
1

2
+
1

2
erf ( 𝑥

√2
) (11)

is the integral of probability,

erf (𝑥) = ∫
𝑥

0

exp (−𝑡2) 𝑑𝑡 (12)

is the error function which is identical to Φ(𝑥), 𝑚GD
H
0

is the
mean of the decision statistics 𝑇GD(X) under the hypothesis
H
0
, VarGD

H
0

is the variance of the decision statistics 𝑇GD(X)
under the hypothesisH

0
, and 𝑚GD

H
1

and VarGD
H
1

are the mean
and variance of the decision statistics under the hypothesis
H
1
, respectively. The decision statistics 𝑇GD(X) is a sum of

𝑀 ×𝑁 i.i.d. random variables. Using a relationship between
the probability of detection 𝑃GD

𝐷
and the probability of miss

𝑃GD
miss

𝑃
GD
𝐷

= 1 − 𝑃
GD
miss (13)

and taking into consideration a definition of the Gaussian𝑄-
function

𝑄 (𝑥) =
1

2
−
1

2
erf ( 𝑥

√2
) , (14)

based on (10) the probability of false alarm𝑃GD
FA and the prob-

ability of detection𝑃GD
𝐷

can be defined in the following forms:

𝑃
GD
FA = 𝑃 (𝑇GD (X) ≥ THRGD |H0)

= 𝑄(
THRGD − 𝑚

GD
H
0

√VarGD
H
0

),
(15)
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𝑃
GD
𝐷

= 𝑃 (𝑇GD (X) > THRGD |H1)

= 𝑄(
THRGD − 𝑚

GD
H
1

√VarGD
H
1

),
(16)

where the Gaussian 𝑄-function can be presented in another
form:

𝑄 (𝑥) =
1

√2𝜋
∫
∞

𝑥

exp(−𝑡
2

2
)𝑑𝑡. (17)

The moment generating function (MGF) of the partial deci-
sion statistics given by

𝑇GD (X𝑘) =
𝑀

∑
𝑖=1

𝑎
2

𝑖
[𝑘] +

𝑀

∑
𝑖=1

𝜂
2

𝑖
[𝑘] −

𝑀

∑
𝑖=1

𝜁
2

𝑖
[𝑘] , (18)

where ∑𝑀
𝑖=1
𝑎2
𝑖
[𝑘] is the sum of correlated random variables,

can be delivered using the procedure discussed in [28]. As
follows from (18), the MGF is defined as

M
𝑇GD(X𝑘) (𝑠) =

𝑀

∏
𝑖=1

(1 − 𝑠 (𝐸
𝑎
𝜎
2

ℎ
𝜆
𝑖
))
−1

×

𝑀

∏
𝑖=1

(1 − 𝑠 (√2𝜎
2

𝑛
))
−1
𝑀

∏
𝑖=1

(1 + 𝑠 (√2𝜎
2

𝑛
))
−1

,

(19)

where 𝜆
𝑖
is the eigenvalue of the ith spatial channel of the

correlation matrix Cor. The mean and the variance of the
partial decision statistics under the hypothesis H

1
can be

presented in the following form:

𝑚
GD
H
1

= 𝐸 [𝑇GD (X𝑘) |H1] = 𝑀(𝐸
𝑎
𝜎
2

ℎ
) ,

VarGD
H
1

= Var [𝑇GD (X𝑘) |H1] =
𝑀

∑
𝑖=1

(𝐸
𝑎
𝜎
2

ℎ
𝜆
𝑖
)
2

+ 4𝑀𝜎
4

𝑛
.

(20)

Similarly, the variance of the partial decision statistics
𝑇GD(X𝑘) under the hypothesisH0 takes the form

VarGD
H
0

= Var [𝑇GD (X𝑘) |H0] = 4𝑀𝜎
4

𝑛
. (21)

Under the hypothesis H
0
, the mean of the partial decision

statistics 𝑇GD(X𝑘) is equal to zero, 𝑚GD
H
0

= 0 [20, Chapter 3].
For large values of𝑁, the central limit theorem can be applied
to obtain the pdf of the GD decision statistics.

With the purpose of avoiding the interference for the pri-
mary user in the CR systems, we define a lower bound of the
probability of detection 𝑃

𝐷
. Thus, the sensing performance is

evaluated by the probability of false alarm𝑃FA while the prob-
ability of detection 𝑃

𝐷
is maintained in accordance with the

determined lower bound. In this case, there is a need to define
the GD threshold THRGD as a function of the probability of
detection 𝑃

𝐷
applying the required lower bound. In practice,

in the case of GD, a knowledge of theGD input noise variance

is sufficient to define the detection threshold. In other words,
the noise variance at the GD input can be estimated.

We assume that the probability of detection is lower
bounded, that is,𝑃GD

𝐷
≥ 𝛼, where𝛼 is the constraint. Based on

(16), theGD threshold THRGD can be presented in the follow-
ing form:

THRGD = 𝑚
GD
H
1

+ √VarGD
H
1

𝑄
−1
(𝛼) . (22)

As follows from (20), theGD threshold THRGD can be rewrit-
ten in the following form:

THRGD =𝑁𝑀𝐸𝑎𝜎
2

ℎ
+ 𝑄
−1
(𝛼)√𝑁{

𝑀

∑
𝑖=1

(𝐸
𝑎
𝜎2
ℎ
𝜆
𝑖
)
2
+4𝑀𝜎4

𝑛
}.

(23)

The SNR at the secondary sensing node input is defined as

𝛾 =
𝐸
𝑎
𝜎2
ℎ

𝜎2
𝑛

. (24)

Taking into account (24), the THRGD can be presented in the
following form:

THRGD = 𝑁𝑀𝛾𝜎
2

𝑛
+ 𝑄
−1
(𝛼)√𝑁{

𝑀

∑
𝑖=1

(𝛾𝜎2
𝑛
𝜆
𝑖
)
2
+ 4𝑀𝜎4

𝑛
}.

(25)

Based on (15), (21), and (23), the probability of false alarm
𝑃GD
FA under correlated antenna array elements is defined in the

following form:

𝑃
GDcor
FA

=𝑄(
𝑁𝑀𝐸

𝑎
𝜎2
ℎ
+𝑄−1 (𝛼)√𝑁{∑

𝑀

𝑖=1
(𝐸
𝑎
𝜎2
ℎ
𝜆
𝑖
)
2
+4𝑀𝜎4

𝑛
}

√4𝑁𝑀𝜎4
𝑛

).

(26)

After some elementary mathematical transformations and
using (24), we can rewrite the 𝑃GDcor

FA as follows:

𝑃
GDcor
FA =𝑄(

𝛾√𝑁𝑀+𝑄−1 (𝛼)√(1/𝑀) (∑
𝑀

𝑖=1
(𝛾𝜆
𝑖
)
2
+4𝑀)

2
) .

(27)

4.2. Independent Antenna Array Elements. Under conditions
that the value of 𝑑/𝜆

𝑐
is high and the angular spread Λ value

is close to 𝜋, there is no correlation between the adjacent
antenna array elements in the GD; that is, the correlation
coefficient is equal to zero (𝜌 = 0). Then, taking into consid-
eration that the correlation matrix becomes𝑀 ×𝑀 identity
matrix, the probability of false alarm 𝑃FA can be presented as
a limiting case [26]:

𝑃
uncor
FA = lim

𝜌→0

𝑃
cor
FA . (28)
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Figure 2: ED structure.

Thus, based on (27), the probability of false alarm 𝑃GD
FA under

uncorrelated antenna array elements can be presented in the
following form:

𝑃
GDuncor
FA = lim

𝜌→0

𝑃
GDcor
FA =𝑄(

𝑄
−1
(𝛼)√(𝛾2+4)+𝛾√𝑁𝑀

2
) .

(29)
Equation (29) presents the lower bound of the probability of
false alarm 𝑃GD

FA .

5. ED Spectrum Sensing Performance

The ED flowchart is presented in Figure 2 where we use the
following notations: 𝐴/𝐷 is the analog-to-digital converter,
FFT is the fast Fourier transform, and (⋅ ⋅ ⋅ )2 denotes the
square law function. The spectrum sensing performance of
ED was discussed in [26] for two cases: there is correlation
between the antenna array elements and there is no corre-
lation between the antenna array elements. Under the initial
conditions discussed in Section 2, the decision statistics at the
ED output can be defined as

𝑇ED (X) =
𝑁−1

∑
𝑘=0

𝑀

∑
𝑖=1

𝑥
2

𝑖
[𝑘] . (30)

The ED decision statistics under the hypothesesH
0
andH

1

obeys the following distributions [26]:

H
0
⇒ 𝑇ED (X) ∼N (𝑁𝑀𝜎

2

𝑛
, 𝑁𝑀𝜎

4

𝑛
) ,

H
1
⇒ 𝑇ED (X)

∼N(𝑁𝑀(𝐸
𝑎
𝜎
2

ℎ
+ 𝜎
2

𝑛
) ,𝑁

𝑀

∑
𝑖=1

(𝐸
𝑎
𝜎
2

ℎ
𝜆
𝑖
+ 𝜎
2

𝑛
)
2

) .

(31)
In the case of correlated antenna array elements, the prob-
ability of false alarm 𝑃ED

FA can be derived also based on the
detection threshold and the lower bounded probability of
detection 𝑃ED

𝐷
, that is, 𝑃ED

𝐷
≥ 𝛼. According to [26], the

probability of false alarm 𝑃ED
FA can be written as

𝑃
EDcor
FA = 𝑄[

[

𝑄
−1
(𝛼)√

1

𝑀

𝑀

∑
𝑖=1

(𝛾𝜆
𝑖
+ 1)
2
+ 𝛾√𝑁𝑀]

]

. (32)

In the case when the antenna array elements are uncorrelated,
the probability of false alarm 𝑃

ED
FA takes the following form

[26]:

𝑃
EDuncor
FA = lim

𝜌→0

𝑃
EDcor
FA = 𝑄 [𝑄

−1
(𝛼) (𝛾 + 1) + 𝛾√𝑁𝑀] .

(33)

6. Simulation Results

The ED and GD sensing performances in CR systems are
compared under the same initial conditions for two cases,
namely, the independent antenna array elements and the
correlated antenna array elements. We verify the spectrum
sensing performance analysis for both detectors using MAT-
LAB where the simulation conditions and parameters are
established according to IEEE 802.22 [29]. The main simu-
lation parameters are presented in Table 1.

In Figure 3, the probability of false alarm 𝑃FA of ED and
GD is presented as a function of SNRwhen the antenna array
elements are independent, and when the antenna array ele-
ments are correlated with the coefficient of correlation 𝜌 = 1,
the number of antenna array elements is 𝑀 = 6. The GD
demonstrates better performance in comparison with the ED
for all cases. For example, in the case of independent antenna
array elements, at the probability of false alarm 𝑃FA equal to
0.5 the SNR gain in favor of GD is approximately 4 dB in com-
parison with the ED. Under the correlated antenna array ele-
ments and at the same probability of false alarm𝑃FA = 0.5, the
SNRgain is about 2 dB in favor ofGD comparingwith the ED.
In general, as shown in Figure 3, the probability of false alarm
𝑃FA for the correlated antenna array elements both for the ED
andGD is higher in comparisonwith the casewhen the corre-
lation between antenna array elements is absent.

Figure 4 presents the receiver operation characteristic
(ROC) curves for the GD and ED when the antenna array
elements are independent; the number of antenna array ele-
ments is𝑀 = 6 and SNR=−5 dB and−10 dB.TheGDdemon-
strates superiority in sensing performance. For example, at
the probability of false alarm𝑃FA being equal to 0.1 and SNR=
−10 dB, the probability of detection 𝑃

𝐷
in the case of ED is

equal approximately to 0.45, while the GD achieves the prob-
ability of detection𝑃

𝐷
equal to 0.8 under the same conditions.

At the SNR = −5 dB and if the probability of false alarm 𝑃FA is
equal to 0.1, both ED and GD achieve a probability of
detection 𝑃

𝐷
of more than 0.9.
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Figure 3: Comparison between the ED and GD sensing perfor-
mance.

Table 1: Simulation parameters.

Parameter Value
The angular spread (Λ), the correlated
antenna array elements 0.5∘

The angular spread (Λ), the uncorrelated
antenna array elements 180

∘

Distance between antenna elements (𝑑),
the correlated antenna array elements 𝑑 = 𝜆

𝑐
/8

Distance between antenna elements (𝑑),
the uncorrelated antenna array elements 𝑑 = 𝜆

𝑐
/2

Number of antenna array elements (𝑀) 2 ÷ 10

SNR −20 ÷ 0 (dB)
𝑃
𝐷
constraint (𝛼) 0.99

Coefficient of correlation (𝜌) 0; 0.1; 0.25; 0.5; 0.75; 1
Channel parameter (𝜎2

ℎ
) 1

𝑁 20

In Figure 5, we illustrate the GD performance in terms
of the probability of false alarm 𝑃GD

FA ; when the number of
antenna array elements is variable 2 ≤ 𝑀 ≤ 10, the coefficient
of correlation 𝜌 is changed as a parameter within the limits
of 0.1 ≤ 𝜌 ≤ 1, and the SNR = −5 dB. As we can see from
Figure 5, the probability of false alarm 𝑃

GD
FA increases mono-

tonically with the increasing in the coefficient of correlation
𝜌 between antenna array elements. The use of large number
of antenna array elements𝑀 allows us to reduce the negative
action of the coefficient of correlation 𝜌 on the probability of
false alarm 𝑃

GD
FA .

7. Conclusions

Comparison of the spectrum sensing performance between
the ED and GD is performed under the independent and
correlated antenna array elements in CR systems at the low
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Figure 4: ROC of ED and GD.
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Figure 5:The probability of false alarm forGD versus the number of
antenna array elements at various values of the coefficient of corre-
lation.

SNR. The GD overcomes the ED in the sensing performance
when the antenna array elements are either independent or
correlated. The simulation results show a validity to use the
GD for spectrum sensing inCR systems and confirma superi-
ority of GD implementation in comparison with ED. GD and
ED performance analysis allows us to conclude that the prob-
ability of false alarm is lower boundedwhen the antenna array
elements are independent. The GD sensing performance is a
function of the coefficient of correlation between the antenna
array elements. It follows from the fact that the probability of
false alarm increases with the increasing in the coefficient of
correlation between the antenna array elements. The use of
large number of antenna array elements allows us to reduce
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a negative influence of correlation between the antenna array
elements and, consequently, a degradation of the GD sensing
performance.
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By exploiting favorable characteristics of a uniform cross-array, a passive localization algorithm of narrowband cyclostationary
sources in the spherical coordinates (azimuth, elevation, and range) is proposed. Firstly, we construct a parallel factor (PARAFAC)
analysis model by computing the third-order cyclic moment matrices of the properly chosen sensor outputs. Then, we analyze
the uniqueness of the constructed model and obtain three-dimensional (3D) near-field parameters via trilinear alternating least
squares regression (TALS). The investigated algorithm is well suitable for the localization of the near-field cyclostationary sources.
In addition, it avoids the multidimensional search and pairing parameters. Results of computer simulations are carried out to
confirm the satisfactory performance of the proposed method.

1. Introduction

There has been considerable interest in bearing estimation for
radar, sonar, communication, and electronic surveillance [1].
Various high-resolution algorithms, such as MUSIC [2] and
ESPRIT [3], have been proposed to obtain the direction-
of-arrival estimation of the far-field sources. In addition,
when the sources are localized at the Fresnel region [4] of
the array aperture, both the azimuth and range should be
estimated. Recently, a significant amount attention has been
paid to this issue and several near-field sources localization
algorithms [5–7] are also available. However, all these meth-
ods as mentioned above only address the 2D problem of
estimating azimuth and range and rely on the assumption of
the stationary sources.

In recent years, several 3D near-field sources localization
methods have been developed to obtain azimuth, elevation,
and range. Meraim and Hua [8] proposed a second-order
based method to cope with this issue. By translating the 1D
uniform linear array of near field into a virtual rectangu-
lar array of virtual far field, Challa and Shamsunder [9]
developed a fourth-order cumulants based Unitary-ESPRIT
method. Moreover, [10, 11] also introduced efficient local-
ization methods for 3-D near-field non-Gaussian stationary

sources. It is obviously seen that all these methods still
require that the incoming signals should be stationary ones;
in addition, a multidimensional search or pairing parameters
is also failed to avoid.

Cyclostationarity, which is a statistical property processed
by most man-made communication signals, is related to the
underlying periodicity arising from cyclic frequency of based
rates. Besson et al. [12] introduced an original far-field
approximation [13] based method to deal with the bearings
estimation of near-field cyclostationary sources. Due to the
fact that the effect caused by the mismatch between the
actual spherical wavefront phase vector and assumed planar
wavefront vector was alleviated, the proposed technique
showed a satisfactory performance for the near-field sources
far away from the sensor array. The estimations for elevation
and range, however, have not been well considered.

In this paper, we consider the problem of jointly estimat-
ing elevation, azimuth, and range of the near-field cyclosta-
tionary sources; what ismore, a two-stage passive localization
method has been proposed. In the first stage, several third-
order cyclic moment matrices of a cross-array observations
data are computed, and a parallel factor analysis model in
the cyclic statistic domain is constructed. In the second
stage, the uniqueness of the constructed model is proved;
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in addition, the 3-D localizing parameters for the near-
field sources have also been obtained through TALS. The
algorithm developed in this paper would be well suitable for
near-field cyclostationary sources, and it does not require
multidimensional search or pairing parameters; in addition,
it also can effectively alleviates the array aperture loss.

The rest of this paper is organized as follows. Section 2
introduces the signal model of near-field localization based
on cross-array. Section 3 develops a joint estimation algo-
rithm of three parameters in near-field. Section 4 shows sim-
ulation results. Section 5 presents the conclusion of the whole
paper.

2. Near-Field Signal Model Based Cross-Array

2.1. Near-Field Signal Model. We consider a near-field sce-
nario of 𝑀 uncorrelated narrowband signals impinging on
a cross-array signed with the 𝑥 and 𝑦 axes (Figure 1), which
consists of 𝐿 = 2𝑁 + 3 sensors with element spacing 𝑑.

Let the array center be the phase reference point, and the
signals received by the (𝑙, 0)th and the (𝑙, 0)th can be, respec-
tively, expressed as

𝑥
𝑙,0 (𝑡) =

𝑀

∑
𝑚=1

𝑠
𝑚 (𝑡) exp (𝑗 (𝛾

𝑥𝑚
𝑙 + 𝜑
𝑥𝑚

𝑙
2
)) + 𝑛

𝑙,0 (𝑡) ,

𝑥
0,𝑙 (𝑡) =

𝑀

∑
𝑚=1

𝑠
𝑚 (𝑡) exp (𝑗 (𝛾

𝑗𝑚
𝑙 + 𝜑
𝑗𝑚
𝑙
2
)) + 𝑛

0,𝑙 (𝑡) ,

(1)

where 𝑛(𝑡) donates the sensor additive noise, and

𝛾
𝑥𝑚

= −2𝜋
𝑑

𝜆
sin𝛼
𝑚
cos 𝜃
𝑚
,

𝜑
𝑥𝑚

= 𝜋
𝑑2

𝜆𝑟
𝑚

(1 − sin2𝛼
𝑚
cos2𝜃
𝑚
) ,

𝛾
𝑦𝑚

= −2𝜋
𝑑

𝜆
sin𝛼
𝑚
sin 𝜃
𝑚
,

𝜑
𝑦𝑚

= 𝜋
𝑑2

𝜆𝑟
𝑚

(1 − sin2𝛼
𝑚
sin2𝜃
𝑚
) ,

(2)

where 𝛼
𝑚
, 𝜃
𝑚
, and 𝑟

𝑚
indicate elevation, azimuth, and range

of 𝑚th signal, respectively, and 𝜆 is wavelength of source
signal.

The𝑚th source signal with amplitude 𝑧
𝑚
(𝑡) can be mod-

eled as

𝑠
𝑚 (𝑡) = 𝑧

𝑚 (𝑡) exp (𝑗𝜔𝑡) 𝑚 = 1, 2, . . . ,𝑀, (3)

where �̃� is the center frequency.

2.2. Assumption of Signal Model. The main problem
addressed in this paper is to jointly estimate the sets
of parameters (𝛼

𝑚
, 𝜃
𝑚
, and 𝑟

𝑚
), and then the following

assumptions are assumed to hold:

(1) the envelope 𝑧
𝑚
(𝑡) is non-Gaussian stationary ran-

dom process with zero mean and nonzero skewness;
(2) the sensor noise is the additive stationary one and

independent from the source signals;

z

x

1 2 N−1−2−N 0

y

(0, 1)

(0, −1)

mth near-field source

𝛼m

rm

𝜃m

Figure 1: Sensor-source configuration for the near-field problem.

(3) the sensor array is a uniform linear arraywith element
spacing 𝑑 ≤ 𝜆/4; in addition, the source number𝑀 is
not more than sensor number𝑁.

2.3. Parallel FactorAnalysis. Weneed to introduce the follow-
ing notation that will be used in the sequel.

Definition 1 (see [14]). Let𝑥
𝑘,𝑛,𝑝

stand for the (𝑘, 𝑛, 𝑝) element
of a three-dimensional tensor X, if

𝑥
𝑘,𝑛,𝑝

=

𝑀

∑
𝑚=1

𝑎
𝑘,𝑚

𝑏
𝑛,𝑚

𝑐
𝑝,𝑚

, (4)

where 𝑎
𝑘,𝑚

denotes the (𝑘,𝑚) element of matrix A and
similarly for the others. Equation (4) indicates 𝑥

𝑘,𝑛.𝑝
as a sum

of triple products, which is variably known as the trilinear
model, trilinear decomposition, triple product decomposi-
tion, canonical decomposition, or parallel factor (PARAFAC)
analysis.

Definition 2 (see [14]). For a matrix B ∈ 𝐶
𝐼×𝐽, if all 𝐼 < 𝐽

columns of B are linearly independent, but there exists a
collection of 𝐼 + 1 linearly dependent columns of B, then it
has Kruskal-rank (𝑘-rank) 𝑘B = 𝐼.

Theorem 3 (see [15]). Consider a three dimensional tensor X
as defined in (4), and𝑀 represents the common dimension, if

𝑘A + 𝑘B + 𝑘C𝑇 ≥ 2𝑀 + 2, (5)

then A, B, and C are unique up to permutation and (complex)
scaling of columns.

3. PARAFAC Based 3D Near-Field
Sources Localization

3.1. Compute the Third-Order Cyclic Moments Matrices. Let
𝑀𝑎
3,𝑥
(0, −𝑙 − 1, −𝑙) denote the third-order cyclic moment with

cyclic frequency 𝛼 defined as

𝑀
𝑎

3,𝑥
(0, −𝑙 − 1, −𝑙)

= lim
𝑇→∞

1

𝑇

𝑇

∑
𝑡=1

𝐸 {𝑥
0,0 (𝑡) 𝑥−𝑙−1,0 (𝑡) 𝑥

∗

−𝑙,0
(𝑡)} exp (−𝑗𝛼𝑡) ,

(6)
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where the superscript “∗” denotes the complex conjugate
operation; in addition,𝐸{𝑥

0,0
(𝑡)𝑥
−𝑙−1,0

(𝑡)𝑥∗
−𝑙,0

(𝑡)} can be given
by
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=
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2
])
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𝑥𝑚
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)) exp (𝑗2𝜙
𝑥𝑚

𝑙)

+ 𝑚
2,𝑛

𝑀

∑
𝑚=1

𝑚
1,𝑧
𝑚

exp (𝑗 [𝛾
𝑥𝑚

(−𝑙 − 1) + 𝜙
𝑥𝑚

(−𝑙 − 1)
2
])

× exp (𝑗𝜔𝑡)

+ 𝑚
2,𝑛

𝑀

∑
𝑚=1

𝑚
1,𝑧
𝑚

exp (−𝑗 [𝛾
𝑥𝑚

(−𝑙) + 𝜙
𝑥𝑚

(−𝑙)
2
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× exp (𝑗𝜔𝑡) + 𝑚
3,𝑛
,

(7)

where𝑚
1,𝑧
𝑚

,𝑚
2,𝑧
𝑚

, and𝑚
3,𝑧
𝑚

denote mean, variance, and the
third-ordermoment of 𝑧

𝑚
(𝑡); in addition,𝑚

1,𝑛
,𝑚
2,𝑛
, and𝑚

3,𝑛

represent mean, variance, and the third-order cyclic moment
of 𝑛(𝑡), respectively.

With assumption being considered, we further obtain

𝑀
𝑎

3,𝑥
(0, −𝑙 − 1, −𝑙)

=

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜙
𝑥𝑚

)) exp (𝑗2𝜙
𝑥𝑚

𝑙) 𝛿 (𝜔 − 𝛼)

+ 𝑚
1,𝑛

𝑀

∑
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𝑚
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2
])

× 𝛿 (2𝜔 − 𝛼)

+ 𝑚
1,𝑛

𝑀

∑
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𝑚
2,𝑧
𝑚

exp (−𝑗 [𝛾
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(−𝑙)
2
]) 𝛿 (𝛼)

+ 𝑚
1,𝑛

𝑀

∑
𝑚=1

𝑚
2,𝑧
𝑚

exp (𝑗 (−𝛾
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)) exp (𝑗2𝜙
𝑥𝑚

𝑙) 𝛿 (𝛼)

+ 𝑚
3,𝑛
𝛿 (𝛼) ,

(8)

where 𝛿 is impulse function. Letting 𝑎 = �̃� and substituting
(8) into (6) yield

𝑀
𝑎

3,𝑥
(0, −𝑙 − 1, −𝑙)

=

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

)) exp (𝑗2𝑙𝜑
𝑥𝑚

) .
(9)

Based on (9), we reconstruct the spatial third-order cyclic
moment matrix M𝑎

1
, in which the (𝑘, 𝑞)th element can be

expressed as follows:

M𝑎
1
(𝑘, 𝑞) = 𝑀

𝑎

3,𝑥
(0, 𝑞 − 𝑘 − 1, 𝑞 − 𝑘)

=

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

))

× exp (𝑗2 (𝑘 − 𝑞) 𝜑
𝑥𝑚

) .

(10)

In a matrix form, (10) can be written as

M𝑎
1
= AM𝑎

𝑧
Ω
∗

1
Φ
1
A𝐻, (11)

where the superscript “𝐻” represents conjugate transpose
operation, M𝑎

𝑧
denotes the third-order moment matrix of

source signals, and

A = [a
1
, a
2
, . . . , a

𝑀
] ,

a
𝑚
= [1, exp (𝑗2𝜑

𝑥𝑚
) , . . . , exp (𝑗2 (𝑁 − 1) 𝜑

𝑥𝑚
)] ,

Ω
1
= diag (exp (𝑗𝛾

𝑥1
) , exp (𝑗𝛾

𝑥2
) , . . . , exp (𝑗𝛾

𝑥𝑀
)) ,

Φ
1
= diag (exp (𝑗𝜑

𝑥1
) , exp (𝑗𝜑

𝑥2
) , . . . , exp (𝑗𝜑

𝑥𝑀
)) .

(12)

On the other hand, following the same process described
above, we can easily obtain

𝑀
𝑎

3,𝑥
(0, 𝑙 + 1, 𝑙)

= 𝑚
3,𝑢

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

)) exp (𝑗2𝑙𝜑
𝑥𝑚

) ,

𝑀
𝑎

3,𝑥
(1, −𝑙 − 1, −𝑙)

= 𝑚
3,𝑢

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

))

× exp (𝑗 (𝛾
𝑦𝑚

+ 𝜑
𝑦𝑚

)) exp (𝑗2𝑙𝜑
𝑥𝑚

) ,

𝑀
𝑎

3,𝑥
(−1, −𝑙 − 1, −𝑙)

= 𝑚
3,𝑢

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

))

× exp (𝑗 (−𝛾
𝑦𝑚

+ 𝜑
𝑦𝑚

)) exp (𝑗2𝑙𝜑
𝑥𝑚

) .

(13)
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And the elements of the other three matrices can be
expressed as

M𝑎
2
(𝑘, 𝑞) = 𝑀

𝑎

3,𝑥
(0, 𝑘 − 𝑞 + 1, 𝑘 − 𝑞)

=

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (𝛾
𝑥𝑚

+𝜑
𝑥𝑚

))exp (𝑗2 (𝑘−𝑞) 𝜑
𝑥𝑚

) ,

M𝑎
3
(𝑘, 𝑞) = 𝑀

𝑎

3,𝑥
(1, 𝑞 − 𝑘 − 1, 𝑞 − 𝑘)

=

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

))

× exp (𝑗 (𝛾
𝑦𝑚

+𝜑
𝑦𝑚

))exp (𝑗2 (𝑘−𝑞) 𝜑
𝑥𝑚

) ,

M𝑎
4
(𝑘, 𝑞) = 𝑀

𝑎

3,𝑥
(−1, 𝑞 − 𝑘 − 1, 𝑞 − 𝑘)

=

𝑀

∑
𝑚=1

𝑚
3,𝑧
𝑚

exp (𝑗 (−𝛾
𝑥𝑚

+ 𝜑
𝑥𝑚

))

× exp (𝑗 (−𝛾
𝑦𝑚

+𝜑
𝑦𝑚

))exp (𝑗2 (𝑘−𝑞) 𝜑
𝑥𝑚

) .

(14)

Finally, we have

M𝑎
2
= AM𝑎

𝑧
Ω
1
Φ
1
A𝐻,

M𝑎
3
= AM𝑎

𝑧
Ω
∗

1
Φ
1
Ω
2
Φ
2
A𝐻,

M𝑎
4
= AM𝑎

𝑧
Ω
∗

1
Φ
1
Ω
2
Φ
2
A𝐻

(15)

with

Ω
2
= diag (exp (𝑗𝛾

𝑦1
) , exp (𝑗𝛾

𝑦2
) , . . . , exp (𝑗𝛾

𝑦𝑀
)) ,

Φ
2
= diag (exp (𝑗𝜑

𝑦1
) , exp (𝑗𝜑

𝑦2
) , . . . , exp (𝑗𝜑

𝑦𝑀
)) .

(16)

3.2. Build the Parallel Factor Analysis Model. Considering the
situation of limited samples, we build a parallel factor analysis
model that uses the third-order cyclic moments as

M̃𝑎 =
[
[
[

[

M̃𝑎 (:, :, 1)
M̃𝑎 (:, :, 2)
M̃𝑎 (:, :, 3)
M̃𝑎 (:, :, 4)

]
]
]

]

=
[
[
[

[

M̃𝑎
1

M̃𝑎
2

M̃𝑎
3

M̃𝑎
4

]
]
]

]

=
[
[
[

[

AM𝑎
𝑧
Ω
∗

1
Φ
1
A𝐻

AMa
zΩ1Φ1A

𝐻

AM𝑎
𝑧
Ω
∗

1
Φ
1
Ω
2
Φ
2
A𝐻

AM𝑎
𝑧
Ω
∗

1
Φ
1
Ω
∗

2
Φ
2
A𝐻

]
]
]

]

+]
1

(17)

with C = A∗, and the Khatri-Rao product [15] for (17) shows

M̃𝑎 = (D ⊗ A)C𝑇 + ]
1
, (18)

where

D =

[
[
[
[

[

𝑔−1 (M𝑎
𝑧
Ω
∗

1
Φ
1
)

𝑔−1 (M𝑎
𝑧
Ω
1
Φ
1
)

𝑔−1 (M𝑎
𝑧
Ω
∗

1
Φ
1
Ω
2
Φ
2
)

𝑔−1 (M𝑎
𝑧
Ω
∗

1
Φ
1
Ω
∗

2
Φ
2
)

]
]
]
]

]

, (19)

with 𝑔
−1(M𝑎
𝑧
Ω
∗

1
Φ
1
) denoting a row vector consisting of

diagonal matrixM𝑎
𝑧
Ω
∗

1
Φ
1
.

Similarly, (18) also yields

X̃ = (A ⊗ C)D𝑇 + ]
2
,

Ỹ = (C ⊗D)A𝑇 + ]
3
.

(20)

3.3. Solve the Parallel Factor Analysis Model, and Estimate 3-
D Parameters. As it stands, A and C are both Vandermonde
matrices, and then they have Kruskal-rank (𝑘-rank) 𝑘A =

𝑘C𝑇 = 𝑀. On the other hand, the 𝑘-rank of D will be
𝑘D = min (4,𝑀). When the condition that the number of
signals being 𝑀 ≥ 2 holds, then A, C, and D are unique
up to permutation and scaling of columns. With trilinear
alternating least squares regression, we obtain that

C̃𝑇 = argmin
C𝑇


�̃�
𝛼
− (D ⊗ A)C𝑇

2

𝐹
,

D̃𝑇 = argmin
D𝑇


X̃ − (A ⊗ C)D𝑇

2

𝐹
,

Ã𝑇 = argmin
A𝑇


Ỹ − (C ⊗D)A𝑇

2

𝐹
.

(21)

Then using these estimates, we can associate with each
pair (𝛾

𝑥𝑚
, 𝛾
𝑦𝑚

, and 𝜑
𝑦𝑚

) as follows:

�̃�
𝑥𝑚

=
1

2
arg (

D̃ (2, 𝑚)

D̃ (1, 𝑚)
) ,

�̃�
𝑦𝑚

=
1

2
{arg (

D̃ (3, 𝑚)

D̃ (1, 𝑚)
) − arg (

D̃ (4, 𝑚)

D̃ (1, 𝑚)
)} ,

�̃�
𝑦𝑚

=
1

2
{arg (

D̃ (3, 𝑚)

D̃ (1, 𝑚)
) + arg (

D̃ (4, 𝑚)

D̃ (1, 𝑚)
)} .

(22)

Finally, the sources parameters can be estimated as

�̃�
𝑚
= asin( 𝜆

2𝜋𝑑
(�̃�
2

𝑥𝑚
+ �̃�
2

𝑦𝑚
)
1/2

) , (23)

�̃�
𝑚
= atan(

�̃�
𝑦𝑚

�̃�
𝑥𝑚

) , (24)

𝑟
𝑚
=
𝜋𝑑2 (1 − sin2�̃�

𝑚
sin2�̃�
𝑚
)

𝜆�̃�
𝑦𝑚

. (25)

4. Computer Simulation Results

In this section, we explicit some simulation results to evaluate
the performance of proposed method. For all examples, a
uniform linear array with number of 15 sensors and element
spacing 0.25𝜆 is displayed, where 𝜆 is the wavelength of the
narrowband source signals. Two near-field or far-field equal
power cyclostationary signals are impinging on the arraywith
center frequency 0.25𝜋, and their envelopes can be modeled
as exponentially distributed. To be compared, we simultane-
ously execute the method of [12], which is suitable for the
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Figure 2: The RMSE of elevation estimations for two near-field
sources using the proposedmethod and the cumulant basedmethod
versus SNR.
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Figure 3: RMSE of azimuth estimations for two near-field sources
using the proposed method and the cumulant based method versus
SNR.

3-D near-field non-Gaussian stationary sources localization.
The presented results are evaluated by the estimated root
mean square error (RMSE) from the averaged results of 200
independent Monte-Carlo simulations.

In the first example, Two near-field sources are located at
(35∘, 46∘, and 1/6𝜆) and (20∘, 60∘, and 2/5𝜆), respectively. The
additive noise is time and spatially white Gaussian with zero
mean and unit variance. In addition, the snapshot number
is set equal to 1024. When SNR varies from 0 dB to 25 dB,
the RMSE of the elevation, azimuth, and range estimations
for two near-field cyclostationary sources can be shown in
Figures 2, 3, and 4. For the comparison, the performance
in the same situation for the fourth-order cumulants based
method has also been displayed. From these three figures,
it is obvious that the proposed method performs better in
elevation, azimuth, and range estimation than the FFA based
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Figure 4:The RMSE of range estimations for two near-field sources
using the proposed method and the cumulant based method versus
SNR.
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Figure 5: The RMSE of elevation estimations for two near-field
sources using the proposedmethod and the cumulant basedmethod
versus snapshot number.

algorithm for all SNRs. What is more, the RMSE of range
estimations for the first source that is closer to the array is
less than the second one.This phenomenon is well agreement
with the theoretical analysis that the sources closer to sensor
array would hold a smaller standard deviation than the one
far from the array [7].

In the second example, the simulation condition is similar
to the first example, except that the SNR is set at 10 dB, and
the snapshot number is varied from 400 to 2000. The RMSE
of elevation, azimuth, and range estimations of two near-field
cyclostationary sources obtained from the proposed method
as well as the cumulant based method can be displayed in
Figures 5, 6, and 7. From these three figures, we can see that
the proposedmethod still shows amore satisfactory accuracy
than the cumulant based method in all available snapshots.
In addition, the range estimations for the first sources are
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Table 1: RMSE of 3D parameters for near-field localization in the third example.

Example Source True Mean Variance Source True Mean Variance

White noise
𝛼
1

35∘ 34.95∘ 0.1923 𝛼
2

20∘ 20.03∘ 0.1647
𝜃
1

40∘ 39.99∘ 0.0419 𝜃
2

60∘ 59.99∘ 0.1000
𝑟
1

𝜆/6 0.1669𝜆 3.5744 × 10−5 𝑟
2

2𝜆/5 0.3984𝜆 8.2107 × 10−4

Colored noise
𝛼
1

35∘ 35.02∘ 0.2146 𝛼
2

20∘ 19.98∘ 0.0618
𝜃
1

40∘ 40.03∘ 0.0795 𝜃
2

60∘ 60.02∘ 0.1165
𝑟
1

𝜆/6 0.1662𝜆 2.8455 × 10−5 𝑟
2

2𝜆/5 0.4036𝜆 8.4173 × 10−4
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Figure 6: The RMSE of azimuth estimations for two near-field
sources using the proposedmethod and the cumulant basedmethod
versus snapshot number.

much better than the second one, while the elevation and
azimuth estimations for both near-field sources are similar for
the proposed method.

In the third example, the additive noise is time and spa-
tially white Gaussian random process and the colored noise
from a second-order AR model with parameter (−1.8,0.9),
respectively. In addition, the other simulation condition is
similar to the first example, except that the SNR is set at
10 dB, and snapshot number is equal to 1024. The mean and
variance of the elevation, azimuth, and range estimations
for two near-field cyclostationary sources can be shown in
Table 1. From this table, we can easily see that the effectiveness
of the proposed method is not little affected by the difference
of the sensor noise.

5. Conclusion

This paper considers the problem of the passive localization
of 3-D near-field cyclostationary sources and proposes an
efficient third-order cyclic moment based algorithm. The
construction of the parallel factor analysis model in the cyclic
domain avoids the multidimensional search and pairing
parameters. Moreover, the utilization of trilinear alternating
least squares regression deals with the joint estimation of
elevation, azimuth, and range. From the simulation results
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Figure 7:The RMSE of range estimations for two near-field sources
using the proposed method and the cumulant based method versus
snapshot number.

mentioned above, the proposed method outperforms the
cumulant basedmethod in locating near-field cyclostationary
sources; in addition, the stationary noise has a little influence
on the estimated accuracy of the proposed method.
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The concept of virtual aperture and the point spread function for designing and characterizing ultra-wideband near-field multiple-
input multiple-output active imaging array are investigated. Combining the approach of virtual aperture desynthesis with the
monostatic-to-bistatic equivalence theorem, a kind of linear UWB MIMO array, the split transmit virtual aperture (STVA) array,
was designed for through-the-wall imaging. Given the virtual aperture, the STVA array is the shortest in physical aperture length.
The imaging performance of the designed STVA array in the near field is fully analyzed through both numerical and measured
data. The designed STVA array has been successfully applied to imaging moving targets inside buildings.

1. Introduction

Through-the-wall imaging (TWI) is an emerging technol-
ogy that has a variety of potential applications including
earthquake rescue, covert target detection, surveillance, and
reconnaissance. Ultra-wideband (UWB) microwave imaging
has been identified as a viable approach for TWI. Typically,
a synthetic aperture approach is employed for imaging
purposes while fixed aperture (i.e., antenna array) rather than
synthetic aperture imaging systems preferred in such hostile
or time-sensitive applications [1–9].

To simplify the array imaging system, two kinds of
arrays, the switched antenna array [1–5] and the multiple
input multiple output (MIMO) array [6–9], have mostly
been used. The switched array concept is based on one
transmit array and one receive array. The transmit array
switches between antenna elements one at a time. The
receive array also switches between antenna elements one
at a time. In this way, the number of required transmit and
receive antennas is significantly saved. Moreover, using the
high speed electronic switch, the time to acquire a data set
across the aperture is greatly reduced compared to that of a
synthetic aperture imaging system [1]. MIMO array imaging
is characterized by using multiple transmit antennas to

transmit orthogonal waveforms simultaneously and by using
multiple receive antennas to receive the scattered waveforms
from the target simultaneously. Two types of MIMO array,
array with widely separated antenna elements and array
with collocated transmit and receive antennas, have been
proposed [10, 11]. For array imaging, the latter is preferred,
and the use of orthogonal waveform is to increase the update
rate rather than using diversity to improve the detection
performance.

For activemicrowave imaging, both the switched antenna
array and the MIMO array exhibit similar advantages of fast
data acquisition and require less antenna elements. Further,
the properties of both arrays are usually analyzed using the
equivalent one-way co-array [6–9, 12–14] or two-way virtual
aperture array [1–5, 15]. Considering we are concentrating on
two-way active microwave imaging, the more versatile term
of MIMO array and the concept of virtual aperture are used
in the following section.

The configuration of MIMO array has great effects on
radar imaging, such as resolution and peak side lobe level.
The theory of virtual aperture (co-array) together with its
beam pattern provides a unified and convenient method for
analyzing and designing MIMO arrays under narrow band
far-field condition [1–7, 12, 16].
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The concept of virtual aperture (co-array) was extended
to ultra wide band (UWB) imaging MIMO array in [8, 9, 12–
14], with a modified definition of the beam pattern, which is
a function of both the azimuth direction and the additional
dimension of time or range [17–20]. UWB MIMO array
designmethods based on the concept of virtual aperture have
been presented in [8, 9, 14].

Unfortunately, the same virtual aperture may be syn-
thesized from MIMO arrays with different configurations.
Further, high cross-range resolution of the UWB MIMO
array imaging system requires large accumulation angle of
the array to the imaging location, which conflicts with the far-
field condition assumption of the virtual array approach. And
the radar cross section (RCS) of a point scatterer is dependent
on the imaging geometry of theMIMO array. Taking all these
factors into account, a UWB MIMO array with the minimal
physical aperture among those synthesizing the same virtual
aperture, the split transmit virtual aperture array (STVA),
for through the wall imaging application is presented. The
performance of the designed array is fully analyzed using the
point spread function (PSF), and the MIMO array has been
successfully applied to image targets inside buildings.

This paper is organized as follows. In Section 2, the
concept of co-array and virtual aperture together with the
radiation pattern for wideband MIMO array is explained.
The PSF of UWB array applicable for both far-and near-
field conditions is presented in Section 3. The equivalence
of PSF and beam pattern under far-field narrow band con-
dition is also demonstrated. In Section 4, the linear UWB
MIMO array design method is described, and a specific
array configuration, the STVA, for TWI is proposed. The
performance of the designed array is analyzed using the
PSF. The experimental imaging results of the UWB MIMO
imaging system are presented in Section 5. Conclusions are
summarized in the final section.

2. Co-Array and Virtual Aperture

2.1. Co-Array. For each two-way array, an equivalent array
can be synthesized whose one-way beam pattern is identical
to a two-way pattern of the initial array.The aperture function
of the synthesized array is referred to as effective aperture.The
most famous effective array for MIMO array is the co-array.

Consider a linear two-way MIMO array composed of
𝑀 transmit and 𝑁 receive omnidirectional elements located
along the 𝑥-axis as shown in Figure 1.The location of the𝑚th
transmit element is r

𝑡,𝑚
= (𝑥
𝑡,𝑚
, 0), 𝑚 = 0, 1, 2, . . . ,𝑀 − 1,

and the location of the 𝑛th receive element is r
𝑟,𝑛
= (𝑥
𝑟,𝑛
, 0),

𝑛 = 0, 1, 2, . . . , 𝑁 − 1. For active imaging, the equivalent co-
array consists of 𝑀𝑁 one-way element and the location of
the 𝑖th synthesized element (virtual element) of the co-array
is defined as [16]

r
𝑐,𝑖
= (𝑥
𝑐,𝑖
, 0) = r

𝑡,𝑚
+ r
𝑟,𝑛
= (𝑥
𝑡,𝑚
+ 𝑥
𝑟,𝑛
, 0) , (1)

where 𝑖 = (𝑚 + 1)(𝑛 + 1) − 1 for 𝑚 = 0, 1, 2, . . . ,𝑀 − 1 and
𝑛 = 0, 1, 2, . . . , 𝑁 − 1.

x

y

Transmit element Receive element

Target

· · ·· · ·

0

rt,m rr,n

ro

Figure 1: Linear transmit and receive arrays.

The weighting coefficient of the 𝑖th virtual element of the
co-array is

𝑤
𝑐,𝑖
= 𝑤
𝑡,𝑚
𝑤
𝑟,𝑛
, (2)

where 𝑤
𝑡,𝑚

and 𝑤
𝑟,𝑛

are the weighting coefficients of the
𝑚th transmit and 𝑛th receive elements of the MIMO array,
respectively.

It should be noted that (1) and (2) are defined under
the condition that no redundancy exists within the co-array.
If different transmit/receive pairs within the MIMO array
result in the same virtual element position, the corresponding
weights at the same virtual element shall be summed.

Under narrow band far-field condition, assuming that the
steering is fixed and pointed broadside, the performance of a
one-way array may be fully described with the well-known
beam pattern or radiation pattern, given by the Fourier
transform of the array aperture weighting function (or in its
discrete form). The radiation pattern of the two-way MIMO
array is the beam pattern of the equivalent co-array, given as

𝑃MIMO (𝜃) = 𝑃𝑐 (𝜃) =
𝑀𝑁−1

∑
𝑖=0

𝑤
𝑐,𝑖
𝑒
−𝑗𝑘𝑥
𝑐,𝑖
sin 𝜃

, (3)

where 𝜃 is the incidence angle from the normal of the aperture
and 𝑘 = 2𝜋/𝜆 is the wave number with 𝜆 as the wavelength
of the signal. Substitute (1) and (2) into (3), 𝑃MIMO(𝜃) can be
expressed as

𝑃MIMO (𝜃) =
𝑀−1

∑
𝑚=0

𝑤
𝑡,𝑚
𝑒
−𝑗𝑘𝑥
𝑡,𝑚

sin 𝜃
𝑁−1

∑
𝑛=0

𝑤
𝑟,𝑛
𝑒
−𝑗𝑘𝑥
𝑟,𝑛

sin 𝜃
. (4)

The first sum of (4) is the beam pattern of the transmit
array 𝑃

𝑡
(𝜃), and the second sum is the beam pattern of the

receive array𝑃
𝑟
(𝜃).Thus, the radiation pattern of the two-way

MIMO array is the multiplication of the transmit and receive
patterns.

The concept of co-array was extended to wideband
imaging MIMO array in [8, 9, 12–14, 17]. It should be noted
that the equivalent concept of effective array other than co-
arraywas used in [8, 9, 17]. For narrowband far-field imaging,
the co-array together with its radiation pattern can fully
describe the overall performance over the azimuth direction 𝜃
of theMIMO array. However, for wideband far-field imaging,
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the radiated waveforms vary throughout time and angle, even
in the far fields of the array.Therefore, the radiation pattern is
a function of both the azimuth direction 𝜃 and the additional
dimension of time or range. The wideband radiation pattern
of the co-array is expressed as [14, 15]

𝑃
𝑐 (𝜃, 𝑡) =

𝑀𝑁−1

∑
𝑖=0

𝑤
𝑐,𝑖
𝐴(𝑡 −

𝑥
𝑐,𝑖
sin 𝜃
𝑐

) 𝑒
−𝑗𝑘𝑥
𝑐,𝑖
sin 𝜃

, (5)

where 𝑘 is the wavenumber of the central carrier frequency, 𝑐
is the speed of light, and 𝐴(𝑡) is the envelope of the transmit-
ted wideband pulse, possibly after pulse compression. In the
ideal monochromatic case, 𝐴(𝑡) is a constant equal to unity.

To compare with narrowband beam pattern, the time
dimension of the wideband beam pattern must be reduced.
There are many ways to reduce the time dimension of the
wideband beam pattern. The commonly used method is to
take the maximum time response at each angular location
[17, 18]

𝑃
𝑐 (𝜃) = max

𝑡

𝑃𝑐 (𝜃, 𝑡)
 . (6)

It should be noted that the method loses the information
concerning the temporal shape of the radiation pattern.

2.2. Virtual Aperture. In the field of radar imaging, the
concept of two-way virtual aperture rather than the co-
array is usually adopted to analyze the MIMO array. The
equivalent monostatic illumination angle is approximated
by the bisector of the bistatic angle of the measurement
using the physical-optic model for bistatic scattering of point
scatterers at small bistatic angles [19]. Based on this theorem,
an equivalent monostatic transmit/receive element (virtual
element) located midway between the transmit and the
receive elements was introduced under the far-field condition
in [4]. Therefore, the location of the 𝑖th virtual element of
the virtual aperture for the MIMO array mentioned above is
given as

rV,𝑖 = (𝑥V,𝑖, 0) = (
𝑥
𝑡,𝑚
+ 𝑥
𝑟,𝑛

2
, 0) , (7)

where 𝑖 = (𝑚 + 1)(𝑛 + 1) − 1 for 𝑚 = 0, 1, 2, . . .𝑀 − 1 and
𝑛 = 0, 1, 2, . . . , 𝑁−1. The weighting coefficients of the virtual
elements are the same as those of co-array elements, that is,
𝑤V,𝑖 = 𝑤𝑐,𝑖 for 𝑖 = 0, 1, 2, . . . ,𝑀𝑁 − 1.

Within the assumption that the wave field propagates
with half of the actual speed, the monostatic transmit/receive
element can be treated as one-way element at the same
location. Thus, the radiation pattern of the virtual array for
wideband far-field imaging is

𝑃V (𝜃) =

𝑀𝑁−1

∑
𝑖=0

𝑤V,𝑖𝐴(𝑡 −
2𝑥V,𝑖 sin 𝜃

𝑐
) 𝑒
−𝑗2𝑘𝑥V,𝑖 sin 𝜃. (8)

Note that𝑤V,𝑖 = 𝑤𝑐,𝑖 and 𝑥V,𝑖 = 𝑥𝑐,𝑖/2 for 𝑖 = 0, 1, 2, . . . ,𝑀𝑁−

1, we get

𝑃V (𝜃) = 𝑃𝑐 (𝜃) . (9)

Equation (9) indicates the equivalence of the concept
of the one-way co-array and the concept of the two-way
virtual aperture. In this paper, we aremainly concerned about
active imaging. The concept of the two-way virtual aperture
is adopted.

3. Point Spread Function

Beam pattern mentioned above can fully describe the overall
performance of the array in the far field.Unfortunately, it does
not work in the near field. Actually, an imaging system can be
fully characterized by the point spread function (PSF) defined
as the response of the imaging system to an ideal point
source, despite the variations of the transmitted waveform,
angle, and distance of focus. The main lobe width of the
PSF is a measurement of achievable resolution the grating
lobes location and levels of the PSF determine the ambiguity
region and their intensities, and the side lobe level of the PSF
indicates the capabilities of distinguishing weaker scatterers
in the proximity of the strong ones.

For narrow band far-field imaging, the equivalence
between the virtual aperture and the original MIMO array
has been demonstrated. Unfortunately, there are increasing
approximate errors with shorter focus distance and wider
band of transmitted signal. The approximation error for
the wide band imaging MIMO array can be estimated and
analyzed based on the analysis of the PSF of the virtual
aperture and the PSF of the original MIMO array.

The imaging geometry of the MIMO array with an ideal
point scatterer located at r

𝑜
= (𝑥
𝑜,
𝑦
𝑜
) is shown in Figure 1.

Suppose 𝑆(𝜔) is the spectrum of the transmitted wideband
signal 𝑠(𝑡), then 𝑠(𝑡) is the inverse Fourier transform of 𝑆(𝜔),
given by

𝑠 (𝑡) =
1

2𝜋
∫
∞

−∞

𝑆 (𝜔) 𝑒
𝑗𝜔𝑡
𝑑𝜔. (10)

Ideally, if the signal 𝑠(𝑡) is time limited, the spectrum
𝑆(𝜔) spreads all over the frequency and vice versa. Practically,
the transmitted waveform is specially designed such that it
is approximately both time limited and bandwidth limited.
Further, the spectrum 𝑆(𝜔) is approximated by its uniformly
sampled discrete values, resulting in the well-known stepped
frequency (SF) waveform. Suppose the frequency bandwidth
of the spectrum is [𝑓

0
, 𝑓
𝑃−1
], a stepped frequency approxima-

tion to (10) is given as

𝑠 (𝑡) =

𝑃−1

∑
𝑝=0

𝑆 (𝑓
𝑝
) 𝑒
𝑗2𝜋𝑓
𝑝
𝑡
, (11a)

𝑓
𝑝
= (𝑓
0
+ 𝑝Δ𝑓) , 𝑝 = 0, 1, . . . , 𝑃 − 1, (11b)

where 𝑆(𝑓
𝑝
) can be considered as the frequency weighting

function of the SF waveform. For simplicity, we use unity
weighting function with 𝑆(𝑓

𝑝
) = 1 in the following text. It

should be noted that the 𝑃 frequency samples are usually
transmitted in the form of gated narrowband pulse, step by
step. Further description of the SF waveform can be found in
[5, 13].
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Under the assumption of free space propagation and for
the𝑝th frequency, the two-way Green’s function of the 𝑚th
transmit and 𝑛th receive pair to the point scatterer is given by

𝐺(r
𝑡,𝑚
, r
𝑟,𝑛
, r
𝑜
, 𝑓
𝑝
)

=
1

4𝜋
r𝑡,𝑚 − r

𝑜


𝑒
−𝑗𝑘
𝑝
|r
𝑡,𝑚
−r
𝑜
|
⋅ (

1

4𝜋
r𝑟,𝑛 − r

𝑜


𝑒
−𝑗𝑘
𝑝
|r
𝑟,𝑛
−r
𝑜
|
)

=
1

16𝜋2
r𝑡,𝑚 − r

𝑜


r𝑟,𝑛 − r

𝑜


𝑒
−𝑗𝑘
𝑝
(|r
𝑡,𝑚
−r
𝑜
|+|r
𝑟,𝑛
−r
𝑜
|)
,

(12)

where 𝑘
𝑝
= 2𝜋/𝜆

𝑝
is the wavenumber and 𝜆

𝑝
= 𝑐/𝑓

𝑝
is the

wavelength of the pth frequency step.
PSF of the MIMO array imaging system is the output

image of the ideal point source for scanning position r =

(𝑥, 𝑦), formulated by

PSF
𝑀
(r, r
𝑜
)

=

𝑀−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

𝑃−1

∑
𝑝=0

(𝐺 (r
𝑡,𝑚
, r
𝑟,𝑛
, r
𝑜
, 𝑓
𝑝
)𝐺
−1
(r
𝑡,𝑚
, r
𝑟,𝑛
, r, 𝑓
𝑝
))

=

𝑀−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

𝑃−1

∑
𝑝=0

r𝑡,𝑚 − r
r𝑟,𝑛 − r

r𝑡,𝑚 − r
𝑜


r𝑟,𝑛 − r

𝑜



× 𝑒
−𝑗𝑘
𝑝
(|r
𝑡,𝑚
−r
𝑜
|+|r
𝑟,𝑛
−r
𝑜
|−|r
𝑡,𝑚
−r|−|r

𝑟,𝑛
−r|)
.

(13)

Equation (13) indicates that the PSF of the active imaging
MIMOarray is a spatial variant function of the target location
r
𝑜
, scanning position r, and the frequency of the transmitted

signal.
Similarly, we can get the approximate PSF from the

equivalent virtual array, expressed as

PSF
𝑉
(r, r
𝑜
)

=

𝑀𝑁−1

∑
𝑖=0

𝑃−1

∑
𝑝=0

rV,𝑖 − r
2

rV,𝑖 − r
𝑜


2
𝑒
−𝑗2𝑘
𝑝
(|rV,𝑖−r𝑜|−|rV,𝑖−r|).

(14)

Actually, the concepts of PSF and beam pattern are iden-
tical under far-field narrow band condition. Let the carrier
frequency of the narrow band signal is 𝑓

0
, then 𝑠(𝑡) = 𝑒𝑗2𝜋𝑓0𝑡.

Under far-field condition, the following approximations hold
for𝑚 = 0, 1, 2, . . . ,𝑀 − 1 and 𝑛 = 0, 1, 2, . . . , 𝑁 − 1 :

r − r
𝑡,𝑚

 = |r| − 𝑥𝑡,𝑚 sin 𝜃, (15a)
r𝑜 − r

𝑡,𝑚

 =
r𝑜
 − 𝑥𝑡,𝑚 sin 𝜃0, (15b)

r − r
𝑟,𝑛

 = |r| − 𝑥𝑟,𝑛 sin 𝜃, (15c)
r𝑜 − r

𝑟,𝑛

 =
r𝑜
 − 𝑥𝑟,𝑛 sin 𝜃0, (15d)

r𝑡,𝑚 − r ≈
r𝑡,𝑚 − r

𝑜

 , (15e)
r𝑟,𝑛 − r ≈

r𝑟,𝑛 − r
𝑜

 , (15f)

where 𝜃 and 𝜃
0
are the incidence angles of plane wave from r

and r
𝑜
, respectively.

Substitute (15a), (15b), (15c), (15d), (15e), and (15f) and𝑝 =
0 into (13), the PSF

𝑀
(r, r
𝑜
) can be further expressed as the

function of 𝜃, 𝜃
0
, and 𝑘

0

PSF
𝑀
(𝜃, 𝜃
0
)

=

𝑀−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

𝑒
𝑗𝑘
0
2(|r|−|r

𝑜
|)
𝑒
𝑗𝑘
0
(𝑥
𝑡,𝑚
+𝑥
𝑟,𝑛
) sin 𝜃

0𝑒
−𝑗𝑘
0
(𝑥
𝑡,𝑚
+𝑥
𝑟,𝑛
) sin 𝜃

.

(16)

If we are only interested in the performance of the PSF
over the azimuth direction 𝜃, the fixed coefficient 𝑒𝑗2𝑘0(|r|−|r𝑜|)
can be ignored. Using a change of variables

𝑤
𝑡,𝑚

= 𝑒
𝑗𝑘
𝑝
𝑥
𝑡,𝑚

sin 𝜃
0 , (17a)

𝑤
𝑟,𝑚

= 𝑒
𝑗𝑘
𝑝
𝑥
𝑟,𝑛

sin 𝜃
0 . (17b)

Expression (16) would take the form

PSF
𝑀
(𝜃, 𝜃
0
) =

𝑀−1

∑
𝑚=0

𝑤
𝑡,𝑚
𝑒
−𝑗𝑘
𝑝
𝑥
𝑡,𝑚

sin 𝜃
𝑁−1

∑
𝑛=0

𝑤
𝑟,𝑛
𝑒
−𝑗𝑘
𝑝
𝑥
𝑟,𝑛

sin 𝜃 (18)

which is the same expression as the radiation pattern of the
MIMO array as shown in (4).

4. UWB STVA Array

4.1. UWB MIMO Array Design. Proper array design is
helpful for simplifying the system structure and improving
the imaging quality. The virtual aperture concept offers a
basic framework for selecting transmit and receive aperture
functions [8, 14]. A virtual aperture desynthesis approach
is applied to design the UWB MIMO array with uniform
weighting according to the desired main lobe width and
side lobe level in [8, 14]. The essential step of the approach
is the deconvolution process of (7). Unfortunately, given
the two-way virtual aperture and the number of transmit
and receive elements, the result of the de-convolution is not
unique. Consider a linear virtual aperture with 32 virtual
elements located uniformly within an aperture of 3.1m; five
MIMO arrays with different topology are desynthesized each
is composed of 2 transmit elements and 16 receive elements,
as shown in Figure 2. Additional metric must be involved
to evaluate the performance of the five different MIMO
arrays. Further, in UWB MIMO array imaging application,
the performance of a UWB MIMO array is related not only
to the topology of the array and the number of the array
elements, but also to the spectrum of the transmitted signal.

The spectrum of the transmitted signal may be approxi-
mated by its uniformly sampled discrete values, which is the
form of stepped frequency waveform. In TWI application,
stepped frequency continuous wave (SFCW) is one of the
mostly used UWB waveforms [5, 20].

For UWB SFCW signal, the design process of an imaging
MIMO array starts from the required resolution and the peak
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Figure 2: LinearMIMO arrays with the same virtual aperture array.

side lobe of the image, which determines the minimal aper-
ture length and the number of virtual elements of the two-
way virtual aperture from (14). In the far-field narrowband
condition, the 3 dBwidth of the PSFmain lobe in the azimuth
direction steering toΘ from the boresight is approximately as
[21]

Δ𝜃 ≈
0.886𝜆

2𝐿 cos (Θ)
, (19)

where 𝐿 is the two-way aperture length and 𝜆 is the wave-
length of the transmitted waveform.

Then the number of transmit and receive elements can be
chosen under the relation

𝑁V = 𝑁𝑡 ⋅ 𝑁𝑟, (20)

where 𝑁
𝑡
, 𝑁
𝑟
, and 𝑁V are the numbers of transmit, receive,

and the virtual elements, respectively.
In the next step, the transmit and receive array topology

can be derived through deconvolution of (7), which is similar
to the process in [5, 20].The de-convolution procedure is not
unique and allows for multiple solutions. To select the opti-
mal one among them, the monostatic-to-bistatic equivalence
condition in radar signal processing should be considered.
Remarking that the radar cross section (RCS) of a point
scatterer (the object is modeled as a set of discrete scattering
centers) is dependent on the incidence and reflection angle,
the equivalence is valid only at a small range of angle. Thus,
we hope to decrease the overall length of the physical aperture
including all the transmit and receive elements, and we also
hope that the transmit aperture and the receive aperture have
similar illumination geometry to all the point scatterers. For
the case listed in Figure 2, option 2 with the two transmit
elements located at either end of the linear uniform receive
array is the optimal selection. We called the linear MIMO
with similar topology as the split transmitter virtual aperture
(STVA) array.

After that, the configuration of the STVA array is adjusted
considering the mutual coupling and the UWB antenna
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Figure 3: Designed split transmitter virtual aperture array. (a)
Topology; (b) equivalent two-way virtual aperture; (c) front view of
the of the STVA array.

element size. For array transmitting continuous waveform,
the direct coupling from the transmit to the receive elements
decreases the receiver sensitivity, saturates the receiver, and
even damages the receiver.The transmit and receive elements
should be placed at a proper distance to improve the T/R iso-
lation, assuring that the receiver is not jammed.The transmit
elements may move a little distance away at both azimuth
and elevation levels. It should be noted that theoretically the
displacement in elevation of the transmit elements does not
influence the array performance in the azimuth direction.

Finally, during the array design, the center carrier fre-
quency is used to calculate the main lobe width and side
lobe level. In TWI application, the transmitted UWB signal
extends acrossmultiple octaves in the frequency domain.The
spacing of the designed array elements may cause grating
lobes at the higher operational frequency. If this does occur,
the number of transmit elements should be increased.

4.2. UWB STVA Array Analysis. Using the array design
approach described above, an example of STVA array has
been designed for TWI application. The topology of the
STVA array is shown in Figure 3(a). The STVA array consists
of 4 transmit and 15 receive elements. The receive array
consists of 15 elements with interelement spacing of 0.2m.
The four transmit elements are located at (−1.75m, 0.1268m),
(−1.65m, 0.3m), (1.65m, 0.3m), and (1.75m, 0.1268m),
respectively, two at either end of the receive array. The
physical aperture length of the array is 3.5m (the largest
distance between two elements of the array measured from
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Figure 4: Comparison of the PSFs between the STVA array and its virtual array with focal point at 8m. (a) STVA array. (b) Virtual array. (c)
Peak amplitude pattern in azimuth angle.

phase center to phase center). The transmit elements are
located at least 0.37m away from the nearest receive element
(from phase center to phase center) to reduce the direct
coupling from the transmit elements to the receive elements
to an acceptable level. Using the concept of virtual phase
center, a virtual aperture with 60 virtual transmit/receive
(T/R) elements is synthesized, as shown in Figure 3(b). The
interelement spacing of the synthesized virtual aperture is
0.05m except a gap of 0.25m at the midpoint, synthesizing a
total aperture length of 3.15m.The gap at the midpoint is due
to the separation of the transmit elements. And it will result
in a slight acceptable increase of the side lobe level, which
will be shown in the following. Both the transmit and receive
antennas are UWB Archimedean spirals with a diameter of

0.2m, working at the frequency band of 0.5GHz∼ 2.0GHz.
The array is mounted on the top of a van with the front view
of the STVA array shown in Figure 3(c).

It has been demonstrated that under the narrowband
far-field condition, the equivalence of the PSF between the
MIMO array and its virtual aperture is exact, and the
virtual aperture fully describes the overall performance of the
original MIMO array, while under wideband conditions, the
equivalence becomes approximate. Therefore, it is necessary
to compare the PSF between the original MIMO array and
its virtual aperture to verify the feasibility of the design
approach.

For narrow band array, the boundary of the far-field
region is 𝑅

𝑓
> 𝐿2/𝜆, where 𝐿 is the largest distance
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Figure 5: Imaging results of the STVA array with Hamming function in frequency. (a) Imaging result. (b) Peak amplitude pattern in azimuth
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Figure 8: Image of a person inside the building. (a) Geometry of imaging. (b) Imaging result.

between two elements of the array. Using this equation, for
the designed UWB STVA array, we get the far-field boundary
of 16.5m at the lowest operational frequency and 66m at
the highest operational frequency. For a vehicle-borne TWI
system, the detection range is usually between 5m and 50m,
which spans the near-and far-field boundary region.Thus, the
influence of target distance on the performance of theMIMO
array should also be investigated.

The PSF of the original STVA array and the PSF of its
virtual aperture with focal point at the location (0, 8m) are
illustrated in Figures 4(a) and 4(b), respectively. The peak
amplitude patterns in the azimuth angle of both the PSFs
are shown in Figure 4(c) for more direct comparison, which
demonstrated that both patterns are almost equivalent. The
farther the focal distance, the smaller the approximation
error.

The cross-range resolution of the point target at 8m
is about 0.246m. For the large relative bandwidth of the
transmitting UWB waveform (120%), the first side lobe is
about 22 dB lower than the peak of the main lobe. In theory,
the wider the bandwidth, the lower the side lobe. In the ideal
narrow band case, the first side lobe level is about −13 dB.

During the calculation of PSFs, frequency weight coef-
ficients are set to unity, which will result in the high
level range side lobe of about −13 dB. In practical imaging
processing, different types of frequency weighting function
are used to reduce the range side lobe level. Unfortunately,
frequency weighting function also affects the performance
of the azimuth of the UWB array. The image results of the
same ideal point target with hamming weighting function in
frequency are shown in Figure 5. The range side lobe level is
reduced to about −40 dB, while the azimuth side lobe level is
increased to −15 dB.

The simulation results are verified with measured data.
A 0.1m metal trihedral corner reflector was placed 8m in
front of the STVA array on a plane ground. The resulting
image is shown in Figure 6. The cross-range resolution and
the location distribution of the side lobe are much the same
as the simulation, but the level of the first right side lobe is

a little higher than the simulation, which is likely due to the
nonideality of the measurement setup.

5. Experimental Results

The designed STVA array has been successfully applied in
TWI application. One of the active imaging scenes is shown
in Figure 7. The imaging array is placed at the left side of the
cinderblock garage, and the array is parallel to the side wall, at
a distance of 23.7m. The thickness of the cinderblock wall is
about 30 cm. The garage is 10m wide and 16m deep. During
the acquisition of data, a man with the height of 172 cm walks
between the front wall and the back wall along the range
direction in the room.

A standard differential back projection (BP) imaging
algorithm [5] is adopted to process the acquired data. The
time interval of differential processing is 300ms. The static
background clutter is eliminated and the moving person
is imaged. A series of differential images is acquired, and
walking history of the person is clearly shown combining
all the frames of images. One of the images with the person
located at (−2m, 27m) is shown in Figure 8.

6. Conclusion

The virtual aperture concept offers a basic framework for
selecting transmit and receive aperture functions of MIMO
array under narrowband far-field condition. In this paper, the
MIMO array design approach is extended for the near-field
wide band case. Combining the approach of virtual aperture
decomposition with the monostatic-to-bistatic equivalence
theorem, a kind of linearUWBMIMOarraywith the shortest
physical aperture length among these synthesizing the same
virtual aperture, the STVA array, was designed for through
the wall imaging.The PSF of the original STVA array and the
PSF of its virtual aperture are compared, demonstrating that
the approximation error is negligible even at the nearest focal
range.
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The imaging performance of the designed STVA array in
the near field is fully analyzed through both numerical and
measured data. The designed STVA array has been success-
fully applied to imaging moving targets inside buildings.
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A modified space-time adaptive processing (STAP) estimator is described in this paper. The estimator combines the incremental
multiparameter (IMP) algorithmand the existing beam-space preprocessing techniques yielding a computationally cheap algorithm
for the superresolution of multiple signals. It is a potential technique for the remote sensing of the ocean currents from the
broadened first-order Bragg sea echo spectrum of shipborne high-frequency surface wave radar (HFSWR). Some simulation results
and real-data analysis are shown to validate the proposed algorithm.

1. Introduction

The measurement of the near-surface currents is a very
difficult task by using conventional methods, especially
under some harsh sea conditions. Many advanced marine
measurement instruments, such as drifting buoys [1] and
acoustic current meters [2], have been used to collect sea
state information. However, it would be very expensive to
collect and interpret data from these devices for the sparse
spatial sampling provided.Therefore, it is virtually impossible
to form the current maps over a widespread ocean surface
timely and accurately with these conventional meters.

In recent years, HFSWR has already become a powerful
remote-sensing tool which receives increasing attention from
oceanographers and research groups for its good ability
to determine the large-scale sea state under all weather
conditions [3, 4]. The measurement principle of HFSWR
mainly depends on the Bragg resonant scattering theory and
Doppler frequency effect theory in the sea echo spectrum
of HFSWR. In the absence of ocean currents, the first-order
Bragg lines would appear symmetrically above and below
the zero Doppler frequency, which are caused by the ocean
waves with precisely one-half wavelength of the radarmoving
towards and away from the radar. In practical application,
some displacements will happen in the first-order Bragg lines
since the near-surface currents always exist on the ocean [5].

As an extension of shore-based HFSWR, shipborne
HFSWR not only inherits all the advantages of shore-based
HFSWR but also shows some outstanding features, such
as flexibility and mobility. However, some new problems
emerge as the radar on board is a moving ship. One of the
worst problems is that the first-order Bragg lines have been
broadened into two pass bands (when the speed of ship
is slow) or one low pass band (when the ship is sailing at
a high speed) in the first-order Bragg sea echo spectrum
of shipborne HFSWR [6]. For these cases, it will be hard
to determine the ocean currents from the broadened sea
echo spectrum. Furthermore, themoving ship yields different
Doppler shifts to the different azimuth sea echoes.Thus, there
exists a certain space-time coupling relation in the received
sea echo spectrum of shipborne HFSWR.

The novel space-time IMP algorithm was proposed by
Clarke and Spence [7] which was based on one-dimensional
IMP algorithm and modified to detect and estimate multiple
signals from the conventional beamwidth and (or) Doppler
resolution bin. Although space-time IMP estimator effec-
tively improves the robustness of the detection and esti-
mation of multiple signals, the computational load of two-
dimensional search process is too heavy for real-time appli-
cation. Lately, Chadwick [8] used the eigendecomposition
method instead of the full-search process to reduce the heavy
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computational burden in his proposed polarisation-sensitive
IMP algorithm.However, for surface wave radar, this method
becomes invalid since the returns of HFSWR are mostly
vertical polarization sensitive components.

Many researchers, such as Shaw and Wilkins [9], used
beam-space preprocessing technique to reduce the com-
putational load and improve robust performance of high-
resolutionDOA (direction-of-arrival) estimation algorithms.
Recently, Hassanien et al. [10, 11], proposed a new concept
about beam-space preprocessing algorithm which was able
to suppress the out-of-sector interferences accompanied with
the updated array data.This technique was proven to bemore
robust than the aforementioned beam-space methods.

In this paper, we combine the space-time IMP algorithm
and the adaptive beam-space preprocessing technique yield-
ing a computationally cheap space-time adaptive estimator
for detection, estimation and super-resolution of multiple
signals. The proposed algorithm is validated by simulation
results as well as experimental examples.

This paper is organized as follows. First we introduce
the signal model. In the following section, the proposed
algorithm and some simulation results are presented. The
measurement of the near-surface currents of the ocean by
shipborne HFSWR and some real-data analysis are presented
in Section 4. The final part is the study conclusion.

2. Signal Model

Consider a uniform linear array (ULA) with 𝑀 omnidirec-
tional antennas and the antenna spacing 𝑑. If there are 𝑁

sources that have been received from a far field with different
relative delays and attenuations. The received data X is then
given by [7] as follows:

X = AΛB𝐻 + N, (1)

where

X = [𝑥1 𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑀]
𝑇
,

𝑥
𝑖
= [𝑥𝑖 (1) 𝑥

𝑖 (2) ⋅ ⋅ ⋅ 𝑥
𝑖 (𝐿)] ,

(2)

𝑥
𝑖
(𝑙), 𝑖 = 1, 2, . . . ,𝑀, 𝑙 = 1, 2, . . . , 𝐿 denotes the data

received from the 𝑖th sensor at 𝑙th sampling time, [⋅]𝑇 denotes
the transpose operation, A = [a(𝜑

1
) a(𝜑

2
) ⋅ ⋅ ⋅ a(𝜑

𝑁
)]
𝑇 is

the array manifold matrix,

a (𝜑
𝑖
) = [1 ⋅ ⋅ ⋅ 𝑒−𝑗2𝜋𝑑(𝑀−1) sin𝜑𝑖/𝜆]

𝑇 (3)

is the steering vector points to the direction 𝜑
𝑖
, 𝑖 =

1, 2, . . . , 𝑁, 𝜆 denotes wavelength of the radar, Λ is a
(𝑁 × 𝑁) diagonal matrix containing the signal magnitudes,
B = [b(𝑓

1
) b(𝑓

2
) ⋅ ⋅ ⋅ b(𝑓

𝑁
)] is a (𝐿 × 𝑁) matrix

comprising the normalized source waveforms, b(𝑓
𝑖
) =

[1 𝑒−𝑗2𝜋𝑓𝑖 ⋅ ⋅ ⋅ 𝑒−𝑗2𝜋𝑓𝑖(𝐿−1)]
𝑇

is the normalized source wave-
form, 𝑓

𝑖
, 𝑖 = 1, 2, . . . , 𝑁 is the frequency of 𝑗th source,

[⋅]
𝐻 denotes the Hermitian transpose operation, andN is the

(𝑀 × 𝐿) matrix comprising the zero mean and 𝜎2 variance
Gaussian noise.

The (𝑀 × 𝑀) covariance matrix of the received data is
given by

R = 𝐸 {XX𝐻} = ASA𝐻 + 𝜎
2I, (4)

where 𝐸{⋅} is the statistical expectation operator, S =

𝐸{ΛB𝐻BΛ𝐻} is the (𝐿 × 𝐿) source covariance matrix, and I
is the identity matrix.

3. Modified STAP Estimator

3.1. Space-Time IMP. Space-time IMP is a two-dimensional
maximum likelihood method which uses a set of space-
time calibration response vectors to match with the received
data. Thus, the primary objective of space-time IMP is to
maximize the “signal plus noise” to “expected noise” power
ratio (SNR). If the maximum output power is over the
threshold, then a target is detected and the corresponding
space-time calibration response vector is recorded. In order
to reduce the sidelobe leakage of the detected targets and
improve the detection and estimation of the potential signals
in the residual data, the detected targets are removed from
the original data through an orthogonal subspace projection
matrix before each iterative stage.

According to the definition of SNR in space-time IMP, we
have the following [7]:

𝐹 (𝜃, 𝑓) =
W𝐻 (𝜃, 𝑓)Q vec (X) vec (X)

𝐻QW (𝜃, 𝑓)

W𝐻 (𝜃, 𝑓)QW (𝜃, 𝑓)
, (5)

where

W (𝜃, 𝑓) = vec{( a (𝜃)
a𝐻 (𝜃) a (𝜃)

)(
b(𝑓)

b𝐻(𝑓)b(𝑓)
)

𝐻

} (6)

is the (𝑀𝐿×1) space-time calibration response matrix, vec{⋅}
is the vectorization operation, and Q is an (𝑀𝐿 × 𝑀𝐿)
orthogonal projection matrix, which is given by

Q = I −M[M𝐻M]
−1

M𝐻, (7)

where M denotes a sum of space-time calibration response
vectors corresponding to the detected signals; that is, Q
projects the received data into a subspace orthogonal to the
detected signals.

3.2. Adaptive Beam-Space Preprocessing. The adaptive beam-
space preprocessing technique was first mentioned in [10]
which used the updated data for adaptive suppression of out-
of-sector interferences. This technique had been shown to be
more robust than the aforementioned beam-space methods.

The primary objective of the data-adaptive beam-space
preprocessing is to solve the optimal beam-space matrix
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design problem through minimizing the output power of the
transformed data, which can be expressed as follows [12]:

min
C

tr (C𝐻RC)

subject to C𝐻C = I

C𝐻a (𝜃
𝑏
) = 1 𝑏 = 1, 2, . . . , 𝐵


C𝐻a (𝜃

𝑘
)

≤ 𝛾 𝜃

𝑘
∈ Θ, 𝑘 = 1, . . . , 𝐾,

(8)

where tr{⋅} is the trace of a matrix, C is the (𝑀 × 𝐵) beam-
space matrix, 𝐵 (𝐵 ≤ 𝑀) is the beam-space dimension, ‖ ⋅ ‖

is the vector 2-norm, Θ denotes all out-of-sector directions
which are divided into 𝐾 angular grids, {𝜃

𝑏
}
𝐵

𝑏=1
and {𝜃

𝑘
}
𝐾

𝑘=1

are the angles corresponding to the in-of-sector and out-of-
sector directions, and 𝛾 is the stopband attenuation parameter
which should meet the requirement [12]

min
C

𝛾

subject to C𝐻C = I

C𝐻a (𝜃
𝑏
) = 1 𝑏 = 1, 2, . . . , 𝐵


C𝐻a (𝜃

𝑘
)

≤ 𝛾 𝜃

𝑘
∈ Θ, 𝑘 = 1, . . . , 𝐾.

(9)

After the beam-space transformation, the array steering
vector matrix a and manifold matrix A have already trans-
formed into

ã = C𝐻a,

Ã = C𝐻A.

(10)

Then, the (𝐵 × 𝐵) covariance matrix R̃ in beam-space
should be rewritten as

R̃ = ÃSÃ𝐻 + 𝜎
2I. (11)

Obviously, the dimension of the matrix R̃ is lower than
that of R. This fact is exploited in all beam-space-based
methods to reduce computational load compared with the
element-space algorithms [10].

3.3. Space-Time Adaptive Beam-Space IMP. In this section,
we show how the conventional space-time estimator com-
bines with the adaptive beam-space preprocessing technique
to present a computationally cheap space-time adaptive
beam-space IMP estimator.

Following the discussion above, the two-dimensional
discriminants shown in (5) should be modified as

𝐹 (𝜃, 𝑓) =
W̃𝐻 (𝜃, 𝑓) Q̃ vec (C𝐻X) vec (C𝐻X)

𝐻

Q̃W̃ (𝜃, 𝑓)

W̃𝐻 (𝜃, 𝑓) Q̃W̃ (𝜃, 𝑓)
,

(12)

where

W (𝜃, 𝑓) = vec{(
C𝐻a (𝜃)

a𝐻 (𝜃)CC𝐻a (𝜃)
)(

b (𝑓)

b𝐻 (𝑓) b (𝑓)
)

𝐻

} ,

(13)

and Q̃ has been reduced to a 𝐵𝐿 × 𝐵𝐿 matrix in beam-space
domain, which is given by

Q̃ = I − M̃[M̃𝐻M̃]
−1

M̃𝐻, (14)

where M̃ denotes a sum of space-time calibration response
vectors corresponding to the detected signals in beam-space
domain.

3.4.Threshold Setting. How to select an appropriate threshold
to terminate the iterative process in IMP algorithm is very
important. Theoretically, when all “significant peaks” have
been detected and cleared out from the received data, there is
only a completely flat plane in the residual scan [13]. However,
it is impossible to accurately estimate the noise statistics
from the limited received data. Furthermore, the definition
of “significant peak” in IMP algorithm has not been clearly
reported.

In the paper, we use a double-threshold setting method
to ensure that the iterative process is halted timely. First,
we check two successive scans before the next iteration. If
the difference between the two scans is comparable to that
of the “expected noise” level, that is, no “significant peak”
appears during the last scan, then the iterative process should
be halted. Besides, if the difference between two successive
estimations has reached the preset threshold, which suggests
that the iterations are estimating the same target, then the
iterative process should be halted as well.

3.5. Simulation Results. Several simulation results are shown
in this section to test the performance of the modified
algorithm through comparing it with several conventional
algorithms.

During the simulations, we assume that the radar works
at 𝑓 = 6MHz, which contains an ULA with 𝑀 = 8

omnidirectional sensors and the elements are spaced one-
half wavelength apart. The half power beamwidth is approx-
imately 13

∘. The number of snapshots 𝐿 = 32 and the beam-
space dimension 𝐵 = 2 are chosen for our simulations. The
adaptive beam-space matrix has been solved using the cvx
optimization MATLAB toolbox. Since the minimum value
in (9) is 𝛾min = 0.0676, we take the parameter 𝛾 = 0.07

for (8). Furthermore, the two simulation targets (0.2Hz, 86∘)

and (0.3Hz, 90∘) are also selected in the simulations.
To define a successful experiment, we use the criterion

mentioned in [14] if

2

∑
𝑖=1


𝜃
𝑖
− 𝜃
𝑖


<
𝜃1 − 𝜃

2

 , (15)

where 𝜃
𝑖
and 𝜃
𝑖
(𝑖 = 1, 2) are, respectively, the estimated and

truth values, then the two signals are successfully resolved.
Figures 1 and 2 illustrate the probability of source resolu-

tion and their root mean square error (RMSE) versus SNR in
Doppler domain, respectively. The conventional space-time
IMP, space-time beam-space IMP which combines space-
time IMP with discrete fourier transform (DFT) matrix
beam-space processing technique [15], and 64 points and 256
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Figure 1: Probability of source resolution versus SNR in Doppler
domain.

points FFT results are used for the comparison in the figures.
We find that the beam-space-based algorithms show better
resolution and smaller RMSE than the other algorithms in
resolving the two simulation targets. Thus, it is reasonable
to conclude that the beam-space-based methods require
less observation time but maintain high Doppler accuracy
compared with the conventional algorithms. By the way, all
the simulation results shown in this section have averaged
over 1000 independent Monte Carlo experiments.

Figures 3 and 4 are the probability of source resolution
and their RMSE versus SNR in azimuth domain, respectively.
According to these figures, the beam-space-based algorithms
show better performance than the other algorithms. Com-
paring these methods, the space-time adaptive beam-space
IMP algorithm shows the highest robust and lowest RMSE
in resolving the two simulation targets. Thus, it is reasonable
to conclude that the proposed algorithm requires smaller
antenna array and lower SNR threshold for detection and
estimation of multiple signals when compared with the
conventional DOA algorithms.

4. Shipborne HFSWR

4.1. Space-Time Coupling Relation. In [6], Xie et al. had
proven that the first-order Bragg spectrums were broadened
along the azimuthal directions from the real-data analysis.
The authors concluded that there was a space-time coupling
relation existed in the first-order Bragg sea echo spectrum of
shipborne HFSWR.

Assuming that both the transmitting and the receiving
antennas of HFSWR are mounted on a ship which is moving
in the positive direction of the x-axis at a constant speed
V
𝑠
(m/s), as shown in Figure 5.
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Figure 2: Doppler estimated RMSE versus SNR.
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Figure 3: Probability of source resolution versus SNR in azimuth
domain.

In the absence of ocean current, the space-time coupling
relation in the first-order Bragg sea echo spectrum of ship-
borne HFSWR can be expressed as follows [16]:

𝑓
𝑑
=

2V
𝑠

𝜆
cos𝜙 + 𝑓

𝐵
, (16)

where 𝜙 ∈ [0, 𝜋] is the azimuth direction, 𝑓
𝐵
= ±√𝑔/𝜋𝜆 are

the first-order Bragg frequencies, the positive and negative
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Figure 4: Azimuth estimated RMSE versus SNR.
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Figure 5: Schematic of shipborne HFSWR and current vector.

signs are, respectively, the Bragg waves moving towards and
away from the radar.

4.2. CurrentMeasurement. In the presence of ocean currents,
the first-order Bragg lines in (16) are shifted from the
theoretical positions. The displacements are proportional to
the radial current velocities.Thus, (16) should be rewritten as
[17]

𝑓
𝑑
=

2V
𝑠

𝜆
cos𝜙 + 𝑓

𝐵
+

2V
𝑐
(𝜙)

𝜆
. (17)

As shown in (17), the first-order Bragg lines are related
to the azimuth directions as well as the speed of ship and
currents. Therefore, the first-order Bragg peaks are not only
displaced, but also broadened into two pass bands (for slow
ship speed case) in the first-order Bragg sea echo spectrum of
shipborne HFSWR.

0
Doppler (Hz)

−0.5 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
ire

ct
io

n 
co

sin
e

Figure 6: Space-time spectrum of real data processed by DFT and
DBF cascaded processing. – – denotes the theoretical value (𝑓

0
=

5.283MHz, 𝑇
𝑝
= 0.262 s, 𝑑 = 14m).

0
Doppler (Hz)

−0.5 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
D

ire
ct

io
n 

co
sin

e

Figure 7: Space-time spectrum of real data processed by IMP.

4.3. Real-Data Analysis. The real data used in this paper was
received from the shipborneHFSWR experiments conducted
on the Yellow Sea of China on September 8, 1998 [6]. Figures
6 and 7 show the space-time coupling relation in the sixth
range bin of the real-data file 1128 (containing 7 channels ×
256 samples × 32 range bins and the ship speed was about
4.8m/s), which is processed through the DFT plus DBF
(Digital Beamforming) cascade processing and the proposed
algorithm. As shown in the figures, the first-order Bragg lines
are broadened along the azimuth directions, which tally well
with the theoretical lines in (16). The displacements may be
caused by ocean currents or interferences.

Table 1 is an example of the DOA and Doppler esti-
mations. The modified STAP estimator is used to process
the above-mentioned real data within the section between
the azimuth 40

∘ and 90∘. Since there was no information
about the sea state recorded during the experiment, we
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Figure 8: Space-time spectrum of real data adds simulation target.

Table 1: DOA and Doppler estimations.

Target 1 2 3 4 5
DOA (Deg) 62.72 50.12 64.06 52.56 63.35
Doppler (Hz) −0.1582 −0.1154 −0.1596 −0.1292 −0.1589

Theoretical (Hz) −0.1541 −0.1220 −0.1577 −0.1278 −0.1558

Velocity (m/s) 0.1166 −0.1869 0.0519 0.0398 0.0885

Table 2: DOA and Doppler estimations.

Target 1 2 3 4 5
DOA (Deg) 82.97 67.33 64.19 81.97 52.56
Doppler (Hz) −0.1833 −0.1627 −0.1567 −0.1825 −0.1176

Theoretical (Hz) −0.2130 −0.1668 −0.1581 −0.2100 −0.1238

here assume that the detected targets near the theoretical
first-order Bragg lines are considered as ocean currents and
their displacements are proportional to their radial velocities.
Based on this assumption, five currents have been detected
and estimated. All of them are very close to the theoretical
first-order Bragg frequencies and their corresponding radial
velocities are calculated in the table.

Table 2 is another example for better understanding
the robustness of the proposed algorithm, where we add
a simulation target (−0.18Hz, 80

∘) to the real data used
previously, as shown in Figure 8.The added simulation target
is detected correctly and the estimations ofDOAandDoppler
frequency are within 2

∘ and 0.0025Hz of the true signal
position.

5. Conclusion

In this paper, we have introduced a modified space-time
adaptive processing estimator that can be used for the detec-
tion, estimation, and superresolution of multiple signals.
The method combines the conventional IMP method and
the existing adaptive beam-space preprocessing techniques
yielding a computationally cheap algorithm for estimating the

near-surface currents of the ocean from the broadening of the
first-order Bragg sea echo spectrum of shipborne HFSWR.
The proposed algorithm is validated by simulation results as
well as experimental examples.
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