Describing $\beta \beta$ Decay Processes in the In-Medium SRG Framework

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

- interactions and transition operators from Chiral EFT, including currents
(cf. talks by S. Pastore and A. Schwenk)
- tune resolution scale of the Hamiltonian / Hilbert space (cf. talk by P. Navrátil, also M. Horoi)
- (MR-)IM-SRG: calculate ground (and excited) states or derive Shell Model interaction (also see talk by R. Stroberg)
- evaluate 1B, 2B (, 3B,...) transition operator

The Similarity Renormalization Group

Review:
S. Bogner, R. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65 (2010), 94
E. Anderson, S. Bogner, R. Furnstahl, and R. Perry, Phys. Rev. C82 (2011), 054001
E. Jurgenson, P. Navratil, and R. Furnstahl, Phys. Rev. C83 (2011), 034301
R. Roth, S. Reinhardt, and H. H., Phys. Rev. C77 (2008), 064003
H. H. and R. Roth, Phys. Rev. C75 (2007), 051001

Similarity Renormalization Group

Basic Idea
continuous unitary transformation of the Hamiltonian to banddiagonal form w.r.t. a given "uncorrelated" many-body basis

- flow equation for Hamiltonian $H(s)=U(s) H U^{\dagger}(s)$:

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)], \quad \eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s)=-\eta^{\dagger}(s)
$$

- choose $\eta(s)$ to achieve desired behavior, e.g.,

$$
\eta(s)=\left[H_{d}(s), H_{o d}(s)\right]
$$

to suppress (suitably defined) off-diagonal Hamiltonian

- consistent evolution for all observables of interest

SRG in Two-Body Space

chiral NN

Entem \& Machleidt, N3LO

$$
\begin{gathered}
\eta(\lambda)=2 \mu\left[T_{\text {rel }}, H(\lambda)\right] \\
\lambda=s^{-1 / 4}
\end{gathered}
$$

deuteron wave function

SRG in Two-Body Space

$$
\lambda=1.8 \mathrm{fm}^{-1}
$$

$$
\begin{gathered}
\eta(\lambda)=2 \mu\left[T_{\mathrm{rel}}, H(\lambda)\right] \\
\lambda=s^{-1 / 4}
\end{gathered}
$$

deuteron wave function

SRG in Three-Body Space

[figures by R. Roth, A. Calci, J. Langhammer]

3B Jacobi-HO Matrix Elements

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

chiral NN + 3N $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{2} \mathrm{LO}\left({ }^{3} \mathrm{H}\right.$ fit)

${ }^{3} \mathrm{H}$ ground-state (NCSM)

SRG in Three-Body Space

3B Jacobi-HO Matrix Elements

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

$$
\lambda=1.33 \mathrm{fm}^{-1}
$$

${ }^{3} \mathrm{H}$ ground-state (NCSM)

(Multi-Reference) In-Medium SRG

H. H., in preparation
H. H., S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)
H. H., S. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014)
H. H., S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett 110, 242501 (2013)

Ground-State Decoupling

$\langle i| H|j\rangle$

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

$$
H=E_{0}+\sum_{k l} f_{l}^{k}: A_{l}^{k}:+\frac{1}{4} \sum_{k l m n} \Gamma_{m n}^{k l}: A_{m n}^{k l}:+\frac{1}{36} \sum_{i j k l m n} W_{l m n}^{i j k}: A_{l m n}^{i j k}:
$$

$$
f=\uparrow+\infty+\infty
$$

two-body formalism with in-medium contributions from three-body interactions

Single-Reference Case

$$
\begin{gathered}
A_{j_{1} \ldots j_{N}}^{i_{N}, i_{N}} \equiv a_{i_{1}}^{\dagger} \ldots a_{i_{N}}^{\dagger} a_{j_{N}} \ldots a_{j_{1}} \\
\left\langle{ }_{h}^{p}\right| H|\Psi\rangle= \\
\left\langle\sum_{k l} f_{l}^{k}\langle\Psi|: A_{p}^{h}:: A_{l}^{k}: \mid \Psi\right\rangle=-n_{h} \bar{n}_{p} f_{h}^{p} \\
\left\langle{ }_{h h^{\prime}}^{p p^{\prime}}\right| H|\Psi\rangle=
\end{gathered}
$$

- reference state: Slater determinant
- normal-ordered operators depend on occupation numbers (one-body density)

Multi-Reference Case

- reference state: arbitrary
- normal-ordered operators depend on up to irreducible nbody density matrices of the reference state

$$
\begin{aligned}
\rho_{m n}^{k l} & =\lambda_{m n}^{k l}+\lambda_{m}^{k} \lambda_{n}^{\prime}-\lambda_{n}^{k} \lambda_{m}^{\prime} \\
\rho_{l m n}^{i j k} & =\lambda_{l m n}^{j j k}+\lambda_{l}^{i} \lambda_{m n}^{j k}+\lambda_{l}^{j} \lambda_{m}^{j} \lambda_{n}^{k}+\text { permutations }
\end{aligned}
$$

MR-IM-SRG References States

FRIB
number-projected Hartree-Fock Bogoliubov vacua:

$$
\left|\Phi_{Z N}\right\rangle=\frac{1}{(2 \pi)^{2}} \int d \phi_{p} \int d \phi_{n} e^{i \phi_{p}(\hat{Z}-Z)} e^{i \phi_{n}(\hat{N}-N)}|\Phi\rangle
$$

- small-scale (e.g., $0 \hbar \Omega, 2 \hbar \Omega$) No-Core Shell Model:

$$
|\Phi\rangle=\sum_{N=0}^{N_{\max }} \sum_{i=1}^{\operatorname{dim}(N)} C_{i}^{(N)}\left|\Phi_{i}^{(N)}\right\rangle
$$

- Generator Coordinate Method (w/projections):

$$
|\Phi\rangle=\int d q f(q) P_{J=0 M=0} P_{Z} P_{N}|q\rangle
$$

- Density Matrix Renormalization Group, Tensor Natıınrk States, ...

Decoupling in A-Body Space

aim: decouple reference state $|\Phi\rangle$ from excitations

Flow Equation

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)], \quad \text { e.g., } \quad \eta(s) \equiv\left[H_{d}(s), H_{o d}(s)\right]
$$

more efficient: solve flow using Magnus methods, T. D. Morris et al., PRC 92, 034331 (2015)

Decoupling

Decoupling

Oxygen Isotopes

FRIB

HH et al., PRL 110, 242501 (2013), ADC(3): A. Cipollone et al., PRL 111, 242501 (2013)

- Multi-Reference IMSRG with numberprojected Hartree-Fock-Bogoliubov as reference state
- consistent results from different many-body methods

Oxygen Radii

V. Lapoux, V. Somà, C. Barbieri, H. H., J. D. Holt, and S. R. Stroberg, under peer review

Calcium Isotopes

FRIB

$\mathbf{N N}+3 \mathbf{N}(400)$

- differential observables (S2n, spectra,...) filter out interaction components that cause overbinding
- predict flat trends for g.s. energies/ $\mathrm{S}_{2 n}$ beyond ${ }^{54} \mathrm{Ca}$ - await experimental data
- ${ }^{52} \mathrm{Ca},{ }^{54} \mathrm{Ca}$ magic for these NN+3N interactions
- no continuum coupling yet, other $\mathrm{S}_{2 n}$ uncertainties $<1 \mathrm{MeV}$

The Mass Frontier: Tin

$E_{3 \max }$	memory (float) [GB]
14	5
16	~ 20
18	$100+$

- systematics of overbinding similar to $\mathrm{Ca} / \mathrm{Ni}$
- not converged with respect to 3 N matrix element truncation:

$$
e_{1}+e_{2}+e_{3} \leq E_{3 \max }
$$

($e_{1,2,3}$: SHO energy quantum numbers)

- need technical improvements to go further

Neutrinoless Double Beta Decay:
Ground-State to Ground-State Decay

with J. Yao, C. Jiao, J. Engel

Nuclear Matrix Elements

J. Yao et al., PRC 91, 024316 (2015)

- inputs tailored to specific methods: phenom-

EDFs, Shell Model interactions, ...
comparing apples
and oranges

- quenched g_{A}, "renormalization" of operatur,

Many-Body Approaches

MR-IM-SRG References States

number-projected Hartree-Fock Bogoliubov vacua:

$$
\left|\Phi_{Z N}\right\rangle=\frac{1}{(2 \pi)^{2}} \int d \phi_{p} \int d \phi_{n} e^{i \phi_{p}(\hat{Z}-Z)} e^{i \phi_{n}(\hat{N}-N)}|\Phi\rangle
$$

- small-scale (e.g., $0 \hbar \Omega, 2 \hbar \Omega$) No-Core Shell Model:

$$
|\Phi\rangle=\sum_{N=0}^{N_{\max }} \sum_{i=1}^{\operatorname{dim}(N)} C_{i}^{(N)}\left|\Phi_{i}^{(N)}\right\rangle
$$

- Generator Coordinate Method (w/projections):

$$
|\Phi\rangle=\int d q f(q) P_{J=0 M=0} P_{Z} P_{N}|q\rangle
$$

- Density Matrix Renormalization Group, Tensor Network States, ...

${ }^{76} \mathrm{Ge} \longrightarrow{ }^{76} \mathrm{Se}$

proof of principle: MR-IM-SRG based on (intrinsically deformed) GCM state converges ${ }^{76} \mathrm{Ge},{ }^{76} \mathrm{Se}$ ground-state energies

${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$

Direct DBD Calculation

- direct MR-IM-SRG (Magnus) calculation of initial and final states:

$$
\left|\Psi_{I, F}\right\rangle=e^{\bar{\Omega}_{I, F}}\left|\Phi_{I, F}\right\rangle
$$

- evaluate NME for transition operator in closure approximation:

$$
M_{0 \nu \beta \beta}=\left\langle\Phi_{F}\right| e^{-\bar{\Omega}_{F}} O_{0 \nu \beta \beta} e^{\bar{\Omega}_{l}}\left|\Phi_{l}\right\rangle
$$

- explore possible expansions and check consistency, e.g.,

$$
e^{-\bar{\Omega}_{F}}=e^{-\left(\bar{\Omega}_{l}+\delta \bar{\Omega}\right)}=e^{-\delta \bar{\Omega}^{2}} e^{-\bar{\Omega}_{l}}+\ldots
$$

Neutrinoless Double Beta Decay:

Explicit Treatment of Excited States

N. M. Parzuchowski, S. K. Bogner, in preparation S. R. Stroberg, H. H., J. D. Holt, S. K. Bogner, A. Schwenk, PRC93, 051301(R) (2016)
S. K. Bogner, H. H., J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014)
K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. C 85, 061304(R) (2012)

Equation-of-Motion Method

FRIB

- describe "excited states" based on reference state:

$$
\left|\Phi_{k}\right\rangle=Q_{k}^{\dagger}\left|\Phi_{0}\right\rangle
$$

- (MR-)IM-SRG effective Hamiltonian in EOM approach:

$$
\left[H(s), Q_{k}^{\dagger}(s)\right]=\omega_{k}(s) Q_{k}^{\dagger}(s), \quad \omega_{k}(s)=E_{k}(s)-E_{0}(s)
$$

- ansatz for excitation operator (g.s. correlations built into Hamiltonian):

$$
Q_{k}^{\dagger}(s)=\sum_{p h} q_{h}^{p}(s): A_{h}^{p}:+\frac{1}{4} \sum_{p p^{\prime} h h^{\prime}} q_{h h^{\prime}}^{p p^{\prime}}(s): A_{h h^{\prime}}^{p p^{\prime}}:
$$

- polynomial effort vs. factorial scaling of Shell Model
- can exploit multi-reference capabilities (commutator formulation identical to flow equations)

Valence Space Decoupling

$$
\langle i| H|j\rangle
$$

Valence Space Decoupling

$$
\langle i| H|j\rangle
$$

consistent
interaction and DBD operator for Shell Model

$$
\left\{H^{o d}\right\}=\left\{f_{h^{\prime}}^{h}, f_{p^{\prime}}^{p}, f_{h}^{p}, f_{v}^{q}, \Gamma_{h h^{\prime}}^{p p^{\prime}}, \Gamma_{h v}^{p p^{\prime}}, I_{v v^{\prime} J}\right.
$$

Epilogue

Progress in Ab Initio Calculations

H. Hergert - TRIUMF Workshop on Double Beta Decay, Vancouver, May 13, 2016

Progress in Ab Initio Calculations

H. Hergert - TRIUMF Workshop on Double Beta Decay, Vancouver, May 13, 2016

Summary

- towards ab initio NMEs: interaction, operators, many-body method with systematic uncertainties \& convergence to exact result
- rapidly growing capabilities: g.s. energies, spectra, radii, transitions, ...
\Rightarrow ingredients for NME calculation, plus validation through other observables
- test new generation of chiral Hamiltonians, greatly improved optimization - also more accurate (?)
- $\mathrm{NNLO}_{\text {sat }}$, NNLO $_{\text {sim }}$, EKM / LENPIC interactions, local NNLO, etc.

Acknowledgments

S. K. Bogner, M. Hjorth-Jensen, T. D. Morris, N. M. Parzuchowski, F. Yuan NSCL, Michigan State University
E. Gebrerufael, K. Hebeler,
R. Roth, A. Schwenk, J. Simonis,
C. Stumpf, K. Vobig, K. Wendt TU Darmstadt, Germany
A. Calci, J. D. Holt, S. R. Stroberg TRIUMF, Canada
R. J. Furnstahl, S. König, S. More The Ohio State University
P. Papakonstantinou

IBS / Rare Isotope Science Project, South Korea
T. Duguet, V. Somà

CEA Saclay, France
J. Engel, C. Jiao, J. Yao

University of North Carolina - Chapel Hill
S. Binder

UT Knoxville \& Oak Ridge National Laboratory
G. Papadimitriou

Lawrence Livermore National Laboratory

Supplements

Magnus Formulation of the In-Medium SRG

T. D. Morris, N. M. Parzuchowski, S. K. Bogner, in preparation
T. D. Morris, N. M. Parzuchowski, S. K. Bogner, PRC 92, 034331 (2015)
H. H., S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)
W. Magnus, Comm. Pure and Appl. Math VII, 649-673 (1954)

Magnus Series Formulation

- explicit exponential ansatz for unitary transformation:

$$
U(s)=\mathcal{S} \exp \int_{0}^{s} d s^{\prime} \eta\left(s^{\prime}\right) \equiv \exp \Omega(s)
$$

- flow equation for Magnus operator:

$$
\frac{d}{d s} \Omega=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} \operatorname{ad}_{\Omega}^{k}(\eta), \quad \operatorname{ad}_{\Omega}(O)=[\Omega, O]
$$

(B_{k} : Bernoulli numbers)

- construct $O(s)=U(s) O_{0} U^{\dagger}(s)$ using Baker-CampbellHausdorff expansion (Hamiltonian + effective operators)
- MAG(2): two-body truncation (as in NO2B, IM-SRG(2))

Magnus vs. Direct Integration

IM-SRG(2) \approx MAG(2)

Euler integrator sufficient,

 unitarity built in!
Approximating IM-SRG(3)

- final Hamiltonian (IM-SRG(2), MAG(2)):

$$
\bar{H}_{\mathrm{MAG}(2)}=\left(e^{\Omega_{1,2}} \mathrm{He}^{-\Omega_{1,2}}\right)=\bar{H}_{0,1,2}+\bar{H}_{3}+\ldots
$$

- energy contribution of \bar{H}_{3} (cf. OB flow):

$$
\Delta E_{3}=\frac{1}{36} \sum_{p p^{\prime} p^{\prime \prime} h h^{\prime} h^{\prime \prime}} \frac{\left|\left(\bar{H}_{3}\right)_{p p^{\prime} p^{\prime \prime} p^{\prime \prime} h h^{\prime} h^{\prime \prime}}\right|^{2}}{\bar{\Delta}_{p p^{\prime} p^{\prime \prime} h h^{\prime} h^{\prime \prime}}}
$$

- family of non-iterative methods: level of approximation for \bar{H}_{3} and energy denominator $\bar{\Delta}$
- generalizes to arbitrary observables, excited states
- multi-reference variant in development

Example: Bond Breaking in Water

Convergence

${ }^{2}$
NSCL FRIB

$$
\frac{d}{d s} \Omega=\sum_{k} \frac{B_{k}}{k!} \operatorname{ad}_{\Omega}^{k}(\eta)
$$

$$
H(s)=\sum_{k} \frac{1}{k!} \operatorname{ad}_{\Omega}^{k}\left(H_{0}\right)
$$

\Rightarrow ODE and BCH expansions converge rapidly and monotonically

Neon Isotopes

excited 0^{+}state with spherical intrinsic structure

Deformation: ${ }^{20} \mathrm{Ne}$

NN + 3N(400)

Neon Radii

$\mathrm{NNLO}_{\text {sat }}$

A. Ekström et al., PRC 91, 051301(R) (2015)

- accurate description of ${ }^{8} \mathrm{He},{ }^{40,48} \mathrm{Ca}$ g.s. energies \& radii, ${ }^{40,48} \mathrm{Ca}$ charge distributions
- predictions for electric dipole polarizability, neutron skin, weak form factor of ${ }^{48} \mathrm{Ca}$

Optimization of Correlated LECs

B. Carlsson, A. Ekström et al., arXiv:1506.02466 [nucl-th]

FRIB

Induced Interactions

- SRG is a unitary transformation in A-body space
- up to A-body interactions are induced during the flow:

$$
\frac{d H}{d \lambda}=[[\sum a^{\dagger} a, \sum \underbrace{a^{\dagger} a^{\dagger} a a}_{2 \text {-body }}], \sum \underbrace{a^{\dagger} a^{\dagger} a a}_{2 \text {-body }}]=\ldots+\sum \underbrace{a^{\dagger} a^{\dagger} a^{\dagger} a a a}_{3 \text {-body }}+\ldots
$$

- state-of-the-art: evolve in three-body space, truncate induced four- and higher many-body forces (Jurgenson, Furnstahl, Navratil, PRL 103, 082501; Hebeler, PRC 85, 021002; Wendt, PRC 87, 061001)
- λ-dependence of eigenvalues is a diagnostic for size of omitted induced interactions

IM-SRG(2) Flow Equations

O-body Flow

1-body Flow

IM-SRG(2): truncate ops. at two-body level

IM-SRG(2) Flow Equations

O-body Flow

~ 2nd order MBPT for H(s)
$+4 x y$
1-body Flow

IM-SRG(2): truncate ops. at two-body level

IM-SRG(2) Flow Equations

NSCL FRIB

2-body Flow

In-Medium SRG Flow: Diagrams

$\Gamma(\delta s) \sim$

$\Gamma(2 \delta s) \sim$

In-Medium SRG Flow: Diagrams

$\Gamma(\delta s) \sim$

\& many more...

Results: Closed-Shell Nuclei

e
NSCL FRIB

Phys. Rev. C 87, 034307 (2013), arXiv: 1212.1190 [nucl-th]

Choice of Generator

- Wegner:

$$
\eta^{\prime}=\left[H_{d}, H_{o d}\right]
$$

- White: (J. Chem. Phys. 117, 7472)

$$
\eta^{\prime \prime}=\sum_{p h} \frac{f_{h}^{p}}{\Delta_{h}^{p}}: A_{h}^{p}:+\frac{1}{4} \sum_{p p^{\prime} h h^{\prime}} \frac{\Gamma_{h h^{\prime}}^{p p^{\prime}}}{\Delta_{h h^{\prime}}^{p p^{\prime}}}: A_{h h^{\prime}}^{p p^{\prime}}:- \text { H.c. }
$$

$\Delta_{h}^{p}, \Delta_{h h^{\prime}}^{p p^{\prime}}$: approx. 1p1h, 2p2h excitation energies

- "imaginary time": (Morris, Bogner)

$$
\eta^{\prime \prime \prime}=\sum_{p h} \operatorname{sgn}\left(\Delta_{h}^{p}\right) f_{h}^{p}: A_{h}^{p}:+\frac{1}{4} \sum_{p p^{\prime} h h^{\prime}} \operatorname{sgn}\left(\Delta_{h h^{\prime}}^{p p^{\prime}}\right) \Gamma_{h h^{\prime}}^{p p^{\prime}}: A_{h h^{\prime}}^{p p^{\prime}}:- \text { H.c. }
$$

- off-diagonal matrix elements are suppressed like $e^{-\Delta^{2} s}$ (Wegner), e^{-s} (White), and $e^{-|\Delta| s}$ (imaginary time)
- g.s. energies $(s \rightarrow \infty)$ differ by $\ll 1 \%$

MR-IM-SRG Flow Equations

0-body flow:

$$
\begin{gathered}
\frac{d E}{d s}=\sum_{a b}\left(n_{a}-n_{b}\right) \eta_{b}^{a} f_{a}^{b}+\frac{1}{2} \sum_{a b c d} \eta_{c d}^{a b} c_{a b}^{c d} n_{a} n_{b} \bar{n}_{c} \bar{n}_{d} \\
+\frac{1}{4} \sum_{a b c d}\left(\frac{d}{d s} \Gamma_{c d}^{a b}\right) \lambda_{c d}^{a b}+\frac{1}{4} \sum_{a b c c k l m}\left(\eta_{c d}^{a b} \Gamma_{a m}^{k l}-\Gamma_{c d}^{a b} \eta_{a m}^{k l}\right) \lambda_{c d m}^{b k l} \\
\\
\mathrm{O}\left(\mathbf{N}^{4}\right) \quad \mathbf{O}\left(\mathbf{N}^{7}\right)
\end{gathered}
$$

- storage of full 3B density matrix too expensive in general
\Rightarrow exploit structure of specific reference states:
- Projected HFB: $\mathrm{O}\left(\mathrm{N}^{3}\right)$ storage, scaling reduced to $\mathrm{O}\left(\mathrm{N}^{4}\right)$

$$
\lambda_{d e f}^{a b c}=\bar{\lambda}_{a b c} \delta_{d}^{a} \delta_{e}^{b} \delta_{f}^{c}+\widetilde{\lambda}_{a \mid b e} \delta_{d}^{a} \delta^{b \bar{c}} \delta_{e \bar{f}}+\text { perm }
$$

- NCSM / active-space CI: small non-zero block only

Particle-Number Projected HFB

- HFB ground state is a superposition of states with different particle number:

$$
|\Psi\rangle=\sum_{A=N, N \pm 2, \ldots} c_{A}\left|\Psi_{A}\right\rangle, \quad\left|\Psi_{N}\right\rangle \equiv P_{N}|\Psi\rangle \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{i \phi(\hat{N}-N)}|\Psi\rangle
$$

- calculate irreducible densities (project only once), e.g.,

$$
\lambda_{l}^{k}=\frac{\langle\Psi| A_{l}^{k} P_{N}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}, \quad \lambda_{m n}^{k l}=\frac{\langle\Psi| A_{m}^{k l} P_{N}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}-\lambda_{m}^{k} \lambda_{m}^{\prime}+\lambda_{n}^{k} \lambda_{m}^{\prime}
$$

- work in natural orbitals (= HFB canonical basis):

$$
\lambda_{l}^{k}=n_{k} \delta_{l}^{k}\left(=v_{k}^{2} \delta_{l}^{k}\right), \quad 0 \leq n_{k} \leq 1
$$

- in NO basis, $\lambda_{m n}^{k l}, \lambda_{n o p}^{k / m}$ require only $N^{2} / 2, N^{3} / 4$ storage

