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ABSTRACT

The thermodynamics of quantum systems driven out of equilibrium has attracted increasing attention in the last decade, in connection with
quantum information and statistical physics, and with a focus on non-classical signatures. While a first approach can deal with average ther-
modynamics quantities over ensembles, in order to establish the impact of quantum and environmental fluctuations during the evolution, a
continuous quantum measurement of the open system is required. Here, we provide an introduction to the general theoretical framework to
establish and interpret the thermodynamics for quantum systems whose nonequilibrium evolution is continuously monitored. We review the
formalism of quantum trajectories and its consistent application to the thermodynamic scenario, where primary quantities such as work,
heat, and entropy production can be defined at the stochastic level. The connection to irreversibility and fluctuation theorems is also dis-
cussed together with some recent developments, and we provide some simple examples to illustrate the general theoretical framework.
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I. INTRODUCTION

Quantum thermodynamics is a growing and rapidly evolving
field at the intersection of quantum information, many-body physics,
and nonequilibrium thermodynamics that has attracted a great deal of
attention in the last decade.1,2 It aims to describe work, heat, and
entropy production along quantum nonequilibrium processes with a
special attention to genuine quantum phenomena. Paradigmatic
examples include studying the thermodynamic role of quantum coher-
ence3–7 also in view of applications,8–11 quantum correlations like
entanglement12–14 or discord,15–17 addressing the effects of quantum
measurements,18–22 and exploring the link between energy and (quan-
tum) information.23–27 While most literature in the field until now has
focused on first-principle definitions and the behavior of average ther-
modynamic quantities, fluctuations are gaining increasing attention in
recent years. Classical and quantum fluctuations are indeed known to
be at the core of thermodynamic behavior at small scales, where genu-
ine trade-offs and universal nonequilibrium relations constraining
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energetic and entropic quantities emerge.28–30 In this context, the
framework of quantum trajectories and related methods describing
the indirect and continuous monitoring of quantum systems provides
an ideal platform to explore stochastic thermodynamics in the quan-
tum regime.

Quantum trajectories were first considered in quantum optics31,32

to describe processes such as photodetection and to simulate the dynam-
ics of open quantum systems when the master equation approach
becomes intractable.33,34 Nowadays, quantum trajectories are generated
and recorded in the laboratory in a number of different platforms rang-
ing from superconducting few-level systems35–39 to optomechanical set-
ups,40,41 including pioneering experiments with trapped ions42 and
cavity quantum electrodynamics (QED) platforms.43,44 Its use have been
proposed for different scopes including quantum state estimation45,46

and control,47–49 detection of dynamical phase transitions,50 and the
characterization of quantum synchronization51,52 among others. The
framework for the characterization of stochastic and quantum thermo-
dynamics along quantum trajectories that we introduce here has been
roughly developed during the last decade and is capturing increasing
attention. Its starting point can be situated in the pioneering efforts of
Horowitz53 and Hekking and Pekola54 to study and interpret the quan-
tum jump approach in thermodynamic terms for particular representa-
tive cases (a driven dissipative harmonic oscillator and a driven two-level
system). These two works were based, at the same time, in previous stud-
ies that obtained partial but useful results, see, e.g., Refs. 55–58.
Contributions from several groups within the community working in
quantum thermodynamics59–73 generalized and tested the framework in
the last 8 years, including extensions to scenarios with feedback con-
trol,74–79 diffusive noise,66,80–83 and arbitrary environments.68,70

Applications to quantum heat engines,84–86 probing correlations,87,88 and
the erasure of information89,90 have been proposed, as well as the devel-
opment of experimental proposals for measuring heat and work along
individual trajectories.91–95 Recently, the framework has been also used
to obtain generalized versions of the Thermodynamic Uncertainty
Relations (TUR)96–100—which establish trade-off relations between the
fluctuations of observable currents and dissipation—and to develop a
Quantum Martingale Theory (QMT) describing the thermodynamics of
processes at stopping times (such as first-passage times or escape times)
in connection to quantum features.101,102

Within the quantum trajectory approach, there exist different
ways to handle the continuous measurement schemes: the so-called
unravellings, the possibility of efficient or inefficient detection, etc.
This leads to a variable difficulty to identify the relevant thermody-
namic quantities at different levels of generality. Moreover, there has
been often different proposals for the interpretation of the thermody-
namic quantities arising in the framework and their interplay. In par-
ticular, the identification of energetic fluctuations due to measurement
backaction as either work or heat have raised an ongoing debate in the
community, as we will address in more detail later. Nevertheless, this
collaborative effort has provided a powerful and promising extension
of stochastic thermodynamics to the quantum realm. This extension
not only allows to apply the general understanding and inference pos-
sibilities of stochastic thermodynamics to small systems where quan-
tum features cannot be neglected, but it may also help to unveil
genuine thermodynamic features of quantum coherence and correla-
tions, and provides new insight to our fundamental understanding of
quantummeasurements.

In this Review, we focus on the theoretical framework providing
an accessible overview of the main ingredients needed to establish and
interpret thermodynamics of quantum systems whose nonequilibrium
evolution is continuously monitored. We propose a route starting
from central concepts extended from classical stochastic thermody-
namics and quantum thermodynamics of isolated systems, which are
extended to the quantum trajectory scenario. Here, the concept of
microreversibility in the evolution will play a central role, over which
the whole framework is constructed. In order to provide a balanced
presentation in some sections, we extend the formalism to situations
not systematically treated in the literature, as for diffusive trajectories
where microreversibility issues may arise (Sec. IIIC). We then discuss
the energetics of quantum trajectories in Sec. IV, reviewing different
proposals made in the literature and clarify some points needed to
reach a solid understanding and coherent interpretation of the main
thermodynamic quantities. The review is again complemented with an
extension of the framework in order to accommodate situations with
multiple conserved quantities and discuss in detail some important
points such as the assessment of irreversibility through entropy pro-
duction and their fluctuations, as well as different possible splits into
contributions that provide extra insight on the thermodynamic behav-
ior of the system and their genuine quantum properties (Secs. V and
VI). Some aspects of the general framework are illustrated in two sim-
ple examples, Sec. VII, while some first experiments that started to
explore thermodynamics of quantum trajectories are mentioned,
together with other promising platforms. Finally, we provide an out-
look on further possible developments and their applications in the
field.

II. QUANTUM TRAJECTORIES IN A NUTSHELL

Quantum trajectories describe the evolution of systemsmonitored
through selective measurement and provide a powerful approach to
the description of open quantum systems. Both methodological conve-
nience and the need of a theoretical description accounting for continu-
ous monitoring have been driving motivations for developing this
framework. Indeed, with quantum trajectories, numerical simulation of
master equations requires less memory and time, relying on (stochastic
evolution of) pure states instead of densitymatrices and being naturally
adapted to parallel computation. More crucially, quantum trajectories
fill the theoretical gap between the unitary evolution of isolated systems
and the master equation evolution in the presence of large and oblivi-
ous environments, accounting instead for the distinctive effects of selec-
tive measurement. This topic is presented in detail in Refs. 47 and
103–107, to name a few. In the following, we briefly introduce the
framework for both quantum-jump and diffusive trajectories, which
correspond to the most common sets of experimental records, namely,
discontinuous (point) events or continuous signals.

We consider a system monitored though a continuous general-
ized measurement, changing the state of the system at each small time
step dt. Positive operator value measurements are defined considering
a set of ðK þ 1Þ operators Xk such that

P
k X†

kXk ¼ 1.108 Depending
on the experimental setting, the operators Xk can be sharp projections
or other measurements like positive operator-valued measure
(POVM) operators, including smooth projectors superpositions.47 For
a given outcome k of the (selective) measurement at time t, the corre-
sponding updated state of the system becomes qt ! XkqtX

†
k=Pk with

Pk ¼ Tr½XkqtX
†
k� the probability to obtain outcome k in the
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measurement. The state after unselective measurement, which consid-
ers the ensemble mixture of measurement outputs, is therefore
qtþdt ¼

P
k XkqtX

†
k .

In the quantum trajectories framework, the main focus is on
describing the continuous monitoring of open quantum systems follow-
ing Markovian evolution. Therefore, if the measurement outcome is not
selectively monitored, the change rate of the state ½qtþdt � qt �=dt
induced by this unselective measurement in the limit dt ! 0 is assumed
to correspond to a Lindblad [or Gorini–Kossakowski–Sudarshan–
Lindblad (GKLS)] master equation109

_q ¼ L ðqÞ ¼ �i H; q½ � þ
XK
k¼1

LkqL
†
k �

1
2

L†kLk;q
� �

; (1)

where H is an Hermitian operator corresponding to the monitored
system Hamiltonian, and Lk are the so-called Lindblad operators. The
nonunitary part of the dynamics is modeled by the sum term in
Eq. (1), with dissipators DkðqÞ � LkqL

†
k � 1=2fL†kLk;qg. Although

not explicitly written in the above equation, we will also generically
allow for temporal dependencies in the operators appearing in the
master equation (1). In particular, we consider that HðkÞ and LkðkÞ
might depend on a control parameter kðtÞ that can vary in time, which
allow us to model driving processes following externally operated pro-
tocols. Such protocols will be important in the following sections,
and in that case, we will write the Lindbladian in Eq. (1) asL kðqÞ. In
Sec. IIA, we will instead define the evolution corresponding to a given
measurement record, known as quantum trajectory.

A. Quantum-jump trajectories

A first important class of quantum trajectories in which we focus
is known as “quantum-jump” trajectories, which are obtained for a set
of measurement operators (complete up to first order in dt)

X0 ¼ 1� idtH � dt
2

X
k6¼0

L†kLk;

Xk ¼
ffiffiffiffiffi
dt
p

Lk for 1 � k � K;

(2)

with dt � 1. Here, the state of the system will be only weakly modified
for measurement record k¼ 0, an event occurring with probability
P0 � 1. On the other hand, for the other outcomes k 6¼ 0, a substantial
change will occur in the system state, but the probability will be negli-
gible (Pk � dt). This is the largely explored quantum optics scenario
in which a jump is detected, corresponding to a photon emission from
a decaying atom modeled by Lk ¼ r�. It corresponds to a measure-
ment record taking either values 0 (more frequently) or 1 (when a
detector clicks).

The sequence of records of such a measurement in time is
denoted by cð0;sÞ ¼ fdNðtÞ; 0 � t � sg and constitutes a realization
of a stochastic process, where dNðtÞ ¼ f0; 1g is a stochastic increment
corresponding to either no-click or one click in the detector during the
interval ½t; t þ dt�. The number of clicks in the detector up to time s is
hence NðsÞ ¼

Ð s
0 dNðtÞ. In the more general case considered here,

with K distinguishable channels (like, e.g., energy lowering and raising
processes or emission of photons in different modes), the measure-
ment record cð0;sÞ includes K stochastic increments dNkðtÞ ¼ f0; 1g,
each of which “signaling” when a jump of type Lk is detected.

Being the probability of a joint event negligible, we assume
dNnðtÞdNkðtÞ ¼ dnkdNkðtÞ. The (classical) averages of the record of
measurements h�ic can be associated with the quantum expectation
values h�i ¼ Tr½q�� of the corresponding measurement operators, so
that the probability of a jump in the interval ½t; t þ dt� reads

hdNkðtÞic ¼ hX†
kXki ¼ dthL†kLki k 6¼ 0; (3)

which tells us the rate at which jumps of type k occur during the evolu-
tion. Since this probability only depends on quantities evaluated at
time t, the statistics of the jumps are Poissonian with (time-dependent)
intensity hL†kLki.

If we now consider the evolution of the pure state of a system
jwðtÞi continuously monitored through the measurement (2), depend-
ing of the detection dNkðtÞ, the updated state will correspond to
X0jwi or Xkjwi with k 6¼ 0, respectively. The state increment djwðtÞi
¼ jwðt þ dtÞi � jwðtÞi can then be constructed by combining these
possibilities, each of which is multiplied by the factor ½1�

P
k6¼0 Nk�

(which becomes 0 when a jump is detected and is 1 otherwise) and the
increments dNk, respectively. Taking the limit dt ! 0, one obtains the
nonlinear stochastic Schr€odinger equation (SSE) for the conditional
dynamics of the monitored state47

djwcðtÞi ¼ �iHdtjwcðtÞi �
dt
2

X
k

L†kLk � hL
†
kLki

� �
jwcðtÞi

þ
X
k

dNkðtÞ
Lkffiffiffiffiffiffiffiffiffiffiffiffiffi
hL†kLki

q � 1

0
@

1
AjwcðtÞi; (4)

where terms dNkdt ¼ oðdtÞ have been neglected and k ¼ 1;…;K in
the sums. As can be appreciated in the above equation, the evolution
of the system is smooth and given by the first line when dNkðtÞ
¼ 08k, while abrupt jumps in the system state occur whenever dNk

¼ 1 for some k, as given by the second line.
The corresponding stochastic master equation (SME) for a mixed

conditioned state qcðtÞ acquires a more compact form (omitting time
dependence)

dqc ¼ �i H; qc
� �

dt �
X
k

MkðqcÞdt � JkðqcÞdNk
� �

; (5)

with drift (no-jump detection) terms

MkðqcÞ ¼
1
2

L†kLk; qc

n o
� TrðL†kLkqcÞqc (6)

and jumps super-operators

JkðqcÞ ¼
LkqcL

†
k

TrðL†kLkqcÞ
� qc: (7)

We notice the SME above can be directly obtained from Eq. (4) by
identifying qcðtÞ ¼ jwðtÞihwðtÞj; however, Eq. (5) remains also valid
for arbitrary mixed initial states of the system.47

Since the conditional system evolution consists of a sequence of
smooth drift steps intersected by a set of K rare jump events occurring
with small probabilities dthL†kLki, the measurement record cð0; sÞ can
be alternatively given by specifying the times tj at which jumps of each
time kj were detected:
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cð0;sÞ ¼ fðk1; t1Þ; ðk2; t2Þ;…; ðkJ ; tJÞg; (8)

where we assumed a total number of J jumps detected up to time s
accounting for all K channels, while drift dynamics occurs the rest of
the time. The associated evolution trajectory operator for the moni-
tored state is

Tðcð0;sÞÞ ¼ U ðs; tJÞLkJ…U ðt2; t1ÞLk1U ðt1; 0Þ; (9)

withU ðt2; t1Þ ¼ Tþ exp ½�i
Ð t2
t1
dtðH þ i

P
L†kLkÞ� drift (or no-jump)

operators modeling a smooth dynamics between times t1 and t2 and
Tþ exp time-ordered exponential (allowing for time dependent
Hamiltonians or jumps Lk). Notice that we are not enforcing state nor-
malization here so that the probability of a given measurement record
over an initial state q0 is given by pc ¼ Tr½T†ðcÞTðcÞq0�. The physical
state at final time s given a certain measurements record is then
qcðsÞ ¼ TðcÞq0T

†ðcÞ=pc. Finally, when averaging over measurement
records cð0;sÞ, we recover the unconditional evolution of the system as
determined by Eq. (1), that is qs ¼

P
c TðcÞq0T

†ðcÞ ¼ E ðq0Þ, with
E � Tþ exp ½�

Ð s
0 dtL �.

B. Diffusive trajectories

Let us consider now the case in which, monitored quantities pro-
duce one or more (K) continuously fluctuating signals, instead of dis-
continuous jumps, as it would occur with photocurrents or electrical
currents, voltages, etc. In this case, the measurement records are con-
tinuous but not differentiable processes in time cð0;sÞ ¼ fIkðtÞ;
0 � t � sgKk¼1, with K current records at each time. A diffusive sto-
chastic evolution equation can be obtained in this case reading47,103,104

djwcðtÞi ¼ �iHdt � dt
2

X
k

L†kLk � 2hL†kiLk � jhLkij
2

	 
"

þ
X
k

dwkðtÞ Lk � hLkið Þ
#
jwcðtÞi; (10)

with dwkðtÞ a set of real valued Wiener increments with zero
mean hdwkðtÞi ¼ 0 and nonvanishing correlations dwkðtÞdwlðtÞ
¼ dkldt. Other similar versions of the diffusive SSE have been derived
by many authors,32,106,107 which may also include complex-valued
Wiener increments.47

This equation can be derived from the previous quantum jump
description by using the symmetries of the Lindblad master equation.
In particular, Eq. (1) remains unchanged by a transformation in the
Lindblad operators Lk ! L0k ¼ Lk þ ak, accompanied by a change in
the Hermitian operator H ! H0 ¼ H � i

P
kðLka	k þ L†kaÞ=2. By

considering a scheme where the jumps L0k are detected and the param-
eters ak are taken real and big enough, the dynamics of the system can
be coarse-grained over a time interval in which several individual
jumps occur, but the evolution remains still smooth.47,51,110 This
occurs for a coarse grained time Dt � a�3=2k that leads to a number of
detected jumps DNk �

ffiffiffiffiffi
ak
p

and to large number of counts ð� a2kÞ,
consistent with a Gaussian statistics. This is a prototypical case in the
quantum optics framework when moving to the limit in which the sys-
tem optical mode is homodyne detected (superposed to a large coher-
ent field a, taken real). Similar situations arise as well in heterodyne
detection,47 while different classes of shifted operators like the L0k
above can be also obtained using chiral wavewides.111 The measured

record cð0;sÞ ¼ fIkðtÞ; 0 � t � sg in this homodyne-like detection
scheme becomes for a variation during a small time interval dt,

IkðtÞ ¼ hLk þ L†ki þ dwkðtÞ=dt; (11)

where dwkðtÞ=dt corresponds to Gaussian white noise.
Alternative approaches to diffusive processes start from a weak

measurement framework modeled by a broad (unsharp) superposition
of projectors [instead of Eq. (2)]. This allows for a more direct defini-
tion of a diffusion process and some instances can be found in Refs.
106 and 107.

From the diffusive SSE (10) a diffusive SME can be obtained as
well, reading

dqc ¼ �i H; qc
� �

dt þ
X
k

DkðqcÞ

þ
X
k

ðLk � hLkiÞqc þ qcðL†k � hL
†
kiÞ

h i
dwkðtÞ; (12)

with dissipators DkðqÞ as defined below Eq. (1), which is of the gen-
eral form obtained in Refs. 47 and 109. Interesting, both this and Eq.
(5) are unraveling of the same GKLS master equation (1), when disre-
garding the measurement output, as they correspond to the same
ensemble description.

Finally, the trajectory operators in this case can be written as a
concatenation of measurement operators occurring at each infinitesi-
mal time-step

Tðcð0;sÞÞ ¼ XIðsÞXIðs�dtÞ…XIðtÞ…XIðdtÞXIð0Þ; (13)

where the measurement operators generically read:47

XIðtÞ ¼ 1� idtH � dt
2

X
k

L†kLk þ
X
k

LkIkðtÞdt
" #



Y
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
post IkðtÞ½ �

p
; (14)

and here postðIkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dt=2p

p
exp ð�I2k=2Þ is the so-called ostensible

probability distribution,47 ensuring
Ð
postðIkÞIkdt ¼ 0 andÐ

postðIkÞIkdt Ildt ¼ dk;ldt. The above measurement operators obeyÐ
X†

I XIdt ¼ 1, and hence, the trajectory operators Tðcð0;sÞÞ lead, as in
the quantum-jumps case, to the unconditioned evolution qs ¼ E ðq0Þ
when averaging over measurement records.

III. THERMODYNAMIC FRAMEWORK

In this section, we elaborate on the definition of a general ther-
modynamic framework within the quantum trajectory formalism. In
order to provide a consistent identification of all thermodynamic
quantities at the trajectory level, we introduce a two-point measure-
ment scheme (TPM), consisting in the inclusion of projective mea-
surements of arbitrary observables at the beginning and at the end of
the indirectly monitored process, respectively. This allows us to
describe trajectories with fixed end-points. While their actual imple-
mentation in the laboratory as projective measurements is not essen-
tial, its inclusion in the definitions is needed to recover a consistent
framework. The TPM scheme has been extensively used in quantum
thermodynamics for the derivation of fluctuation theorems112–115 and
for the identification of quantum work in the context of energy mea-
surements.116,117 In the following, we setup a general thermodynamic
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formalism combining the TPM scheme and continuous monitoring,
as provided by the quantum trajectory formalism introduced above.
We will first formally define trajectories in the scheme and associate to
them probabilities, which will be compared to their time-reversed
twins. Proceeding in this way will allow us to introduce some central
concepts such as microreversibility, local detailed balance, and the
entropy flow to the environment, which are key to the later identifica-
tion of heat, work, and entropy production in Secs. IV and V.

A. Forward and backward processes
in the TPM scheme

As mentioned above, we assume an initial projective measure-
ment is performed on the density operator of the system q0 using a
complete set of projectors fP0

ngn, each associated with different
eigenspaces (in the most simple case, these correspond to rank-1 pro-
jectors, associated with pure states jni). This first measurement can be
alternatively viewed as a preparation procedure of the system in the
eigenspace of a given (arbitrary) observable O, which verifies by con-
struction ½O;q0� ¼ 0. Let us assume that outcome n0 is obtained (or
prepared) in the initial step. After that, the external driving protocol
K ¼ fkðtÞ ; 0 � t � sg is executed. The system continuously moni-
tored until the final time s and then follows the dynamical evolution
dictated by the SSE (or the SME) with Hamiltonian and Lindblad
operators generically depending on the control parameter kðtÞ at any
time. Along the evolution, the monitoring procedure produces a mea-
surement record cð0;sÞ. Once the final time s is reached, a second pro-
jective measurement is performed using another arbitrary complete
set of projectors fPs

ngn and outcome ns is obtained. We can therefore
define a trajectory c½0;s� in this TPM scheme labeled by a closed inter-
val ½0; s� as the sequence

c 0;s½ � ¼ fn0; cð0;sÞ; nsg; (15)

which contains both the particular outcomes of the initial and final
projective measurements n0 and ns, together with the continuous
monitoring measurement record cð0;sÞ. The latter may take different
forms depending on the particular measurement scheme chosen for
the monitoring (direct detection of jumps, homodyne-like measure-
ment, heterodyne-like measurement, etc.) as discussed in Sec. II.

The probability to observe a given trajectory c½0;s� can be decom-
posed in the probability to sample the initial state jn0i from q0 and to
observe a given record cð0;sÞ followed by the final outcome ns in the
final projective measurement, that is,

PKðc 0;s½ �Þ ¼ p0n0Tr Ps
ns
TKðcð0;sÞÞP0

n0T
†
Kðcð0;sÞÞ

h i
; (16)

where q0 ¼ p0n P0
n is the spectral decomposition of the initial density

operator. The operator TKðcð0;sÞÞ generates of the trajectory on the
system state associated with the measurement record cð0;sÞ and driving
protocol K. Notice also that we keep the subscript K in the trajectory
probability in Eq. (16) to emphasize that it is conditioned on the exter-
nal driving protocol.

By averaging over trajectories c½0;s�, the final state of the system
becomes again qs ¼

P
ns

Ps
ns
E ðq0ÞPs

ns
, where we recall that

E � Tþ exp ð�
Ð s
0 dtL kðtÞÞ is the open-system evolution generated by

the master equation (1). Notice that in the special case where the final
projective measurement is performed in the density operator

eigenbasis (prior to measurement), we have ½Ps
ns
;E ðq0Þ� ¼ 0, and

hence, it does not have any effect at the ensemble level, similarly to
what happens with the initial projective measurement. As mentioned
before, the later situation can be interpreted as if there were not projec-
tive measurements in the setup at all, but one is still interested in ask-
ing what is the probability of (monitored) two-point trajectories c½0;s�.
Keeping this in mind, we will proceed considering the more general
setup where the final projectors are arbitrary, unless otherwise stated.

In order to assess the reversibility of a dynamical evolution, we
now compare the process introduced above, which we may be referred
as the “forward process,” with its time-reversed twin, or “backward
process,” as defined in the following operational way. Here, it is conve-
nient to introduce the time-reversal operator in quantum mechanics,
H, which is anti-unitary HH† ¼ H†H ¼ 1 with Hi1 ¼ �i1H and is
responsible for changing the sign of odd-variables under time-reversal,
such a momenta or magnetic fields.118 For the backward process, it is
often convenient to define measurements and dynamics operators; we
will distinguish them from the forward ones with a tilde. In the back-
ward process, the system is initially prepared in one of the eigenspaces
associated with the corresponding “reversed” version of the projectors
used at the end of the forward process, f ~P

s
m � HPs

mH†gn (although
other choices for the initial state of the backward process are possible,
in general,112–114 in analogy to the classical case119,120). Subsequently,
the time-reversed driving protocol ~K ¼ fkðs� tÞ ; 0 � t � sg is
implemented over the transformed system Hamiltonian ~HðkÞ
� HHðkÞH†. For example, if the system Hamiltonian contains as
the only odd variable under time reversal the magnetic field B,
then the transformed Hamiltonian would be ~HðtÞ ¼ HHðt;BÞH†

¼ Hðt;�BÞ, see, e.g., Ref. 121. The system hence evolves under the
associated SSE (or SME) associated with such time-inverted driving
protocol under continuous monitoring until time s, where the final
projective measurements in performed using the set of projectors
f ~P

0
n � HP0

nH
†gn. When the observables measured in the projective

measurements are time-reversal invariant, we simply have ~P
s
n ¼ Ps

n
and ~P

0
n ¼ P0

n for every outcome n. In Fig. 1, we schematically illus-
trate both the forward and the backward processes as introduced
above.

We are interested in the case where each of the projective mea-
surements produces the same outcome than in the forward process,
and the monitoring procedure registers exactly the time-reversed mea-
surement record ~cð0;sÞ as compared to the forward record cð0;sÞ. For
the case of quantum jumps this means that ~cð0;sÞ ¼ fð~kJ ; s� tJÞ;
…; ð~k2; s� t2Þ; ð~k1; s� t1Þg reproduces the inverse sequence of
jumps, where ~kj corresponds to the opposite jump (~Lkj / L†kj ) with
respect to kj in the forward trajectory.68 Indeed, a jump up in the
energy ladder of the system in the forward trajectory corresponds to a
jump down when time is reversed, as much as a photon emission in a
forward trajectory corresponds to a photon absorption in the time-
reversed one. A similar rule applies to the diffusive trajectories scenario
for the time-reversed measurement traces of the monitored currents
~cð0;sÞ ¼ f~I kðs� tÞ ; 0 � t � sgKk¼1. Here, ~I k is the current associated
with the adjoint-twin of the Lindblad operator Lk in the set fLkgKk¼1.
This means that the current generated from monitoring Lk in the for-
ward process, should equal the current generated from the operator ~Lk

in the backward process when the recorded sequence is inverted
(although these are obtained with different probabilities), in analogy to
the case of the jump trajectories.
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Finally, combining the time-reversed measurement record with
the outcomes of the projective measurements leads to the definition of
the time-reversed trajectory ~c½0;s� ¼ fns;~cð0;sÞ; n0g, which corre-
sponds exactly with the inverse sequence of events than c½0;s�. The
probability of such a time-reversed trajectory hence reads

P~Kð~c 0;s½ �Þ ¼ ps
ns
Tr ~P

0
n0T ~Kð~cð0;sÞÞ ~P

s
ns
T†

~K
ð~cð0;sÞÞ

h i
; (17)

where ps
ns
¼ Tr½Ps

ns
E sðq0Þ� is the probability to sample ns from qs at

the beginning of the backward process and T ~Kð~cð0;sÞÞ is the operator
generating the time-reversed record ~cð0;sÞ under the time-reversed
driving protocol ~K. When averaging over time-reversed trajectories,
the final state of the system reads ~qs ¼

P
n0

~P
0
n0

~E sðHqsH
†Þ ~P0

n0 ,
where ~E s is the quantum Markovian semigroup of the time-reversed
dynamics, ~E s � exp ð�

Ð s
0 dt

~L kÞ, with generator in Lindblad
(GKLS) form

~LkðqÞ ¼ �i ~H ;q
� �

þ
X
k

~Lkq~L
†
k �

1
2

~L
†
k; ~Lk; q

n o
; (18)

where we omitted the dependence on k in ~HðkÞ and ~LkðkÞ. We recall
that here ~H 0ðkÞ ¼ HHðkÞH† and the relation between the Lindblad
operators in forward and time-reversed dynamics will be deduced
below, following Refs. 59 and 68.

B. Microreversibility and local detailed balance

The concept of microreversibility, or microscopic reversibility,
was originally introduced by Boltzmann in the kinetic theory of gases.
It refers to the decomposition of the microscopic dynamical evolution
of a system in elementary processes, each of which possess a time-
reversal twin.122 The microreversibility principle in quantum mechan-
ics is well-known for closed nonautonomous systems

H†U†
~K
ðs� t; sÞH ¼ UKð0; tÞ; (19)

where UKð0; tÞ is the unitary evolution of a system under the generic
control protocol K, from the initial time up to t, and U†

~K
ðs� t; sÞ the

evolution subjected to the time-reversed protocol ~K, see, e.g., Refs. 113
and 115. Here, we consider its applicability in the case of open quan-
tum systems following quantum trajectories. In particular, it has been

proven68 (see also Refs. 53 and 59) that, starting from the global (sys-
temþ environment) unitary evolution and applying microreversibility
in Eq. (19), one can generically relate the trajectory operators in for-
ward and time-reversal dynamics as

H†T†
~K
ð~cð0;sÞÞH ¼ TKðcð0;sÞÞe�rKðcð0;sÞÞ=2; (20)

where the scalar quantity rKðcð0;sÞÞ is the stochastic entropy flow from
the system to the environment (or entropy exchange) accumulated
during the trajectory up to time s in kB units (we will assume kB ¼ 1
thorough). This quantity is often referred to as either (integrated)
“entropy flow”123 or “entropy of the medium”29 in stochastic thermo-
dynamics and is associated with the reversible part of the changes in
the entropy of the system due to its interaction with the environ-
ment.124 Notice that since rK is not an operator, Eq. (20) is far from
trivial. This relation quantifies in entropic terms the probability associ-
ated with the generation of measurement records cð0;sÞ under the driv-
ing protocol K with respect to the time-inverted trajectories ~cð0;sÞ
when the driving protocol is also inverted. The higher the entropy
flows to the environment, the less probable is to reproduce the
(inverted) forward trajectory in the backward process. Equation (20) is
a quantum generalization of the micro-reversibility relation put for-
ward by Crooks in classical systems subjected to external driving and
thermal fluctuations.119 We also note that Eq. (20) reduces to Eq. (19)
for unitary processes, where rK ¼ 0.

Remarkably, the result in Eq. (20) has been derived for generic
quantum jump trajectories and without further assumptions in the
form of the environment, which does not need to be thermal.68 The
only condition is that the set of Lindblad (jump) operators fLkgKk¼1 is
self-adjoint, namely, that the adjoint of every operator Lk is propor-
tional to another operator contained in the set. This condition,
together with the further assumption that the only operator which
commutes with all elements in the set is the identity operator, guaran-
tees that the Lindblad dynamics is equipped with a unique (relaxing)
steady-state when the driving is frozen.125,126 The latter is an impor-
tant condition in the presence of a thermal environment since it enfor-
ces that, in the absence of driving, the system relaxes back to an
equilibrium state. However, one may also consider cases where the sta-
tionary state of the system is out of equilibrium, or even when there is
more than one invariant state like, e.g., in pure decoherence dynamics,
for which the second condition above is not necessarily satisfied.

FIG. 1. Schematic circuit-like representation of the forward (a) and backward (b) processes when the trajectory c½0;s� ¼ fn0; cð0;sÞ; nsg and its time-reversal twin ~c ½0;s� ¼
fns;~cð0;sÞ; n0g are, respectively, recorded (blue traces at the top). In both cases, the left and right boxes represent the preparation/measurement of the system in the corre-
sponding initial and final states, while the central rectangle represents the open-system evolution under monitoring as given by operator T Kðcð0;sÞÞ ( T ~K ð~cð0;sÞÞ in the back-
ward process). External driving is represented by the inclusion of the joystick associated with the execution of the control protocol K (~K in the backward process) while the
monitoring scheme correspond to a diffusive unraveling. Following Eq. (20), the entropy flow to the environment associated with the record rKðcð0;sÞÞ in the forward process is
inverted in the backward process, as illustrated by the red arrows in the bottom of the central rectangles.

AVS Quantum Science REVIEW scitation.org/journal/aqs

AVS Quantum Sci. 4, 025302 (2022); doi: 10.1116/5.0079886 4, 025302-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/aqs


For an adjoint set fLkgKk¼1, the Lindblad (jump) operators are
either self-adjoint operators, or come in pairs fLkþ; Lk�g such that
Lkþ ¼

ffiffiffiffiffiffiffi
Cþ
p

L† and Lk� ¼
ffiffiffiffiffiffiffi
C�
p

L for some operator L, and verify a
generalized local detailed balance relation:59,68

LkþðkÞ ¼ L†k�ðkÞe
DskþðkÞ=2; (21)

where Dsk6ðkÞ ¼ 6log ðCþðkÞ=C�ðkÞÞ is a real function and
C6ðkÞ � 0 represent the corresponding (time-dependent) rates evalu-
ated at the instantaneous value of the control parameter k. For the
case of self-adjoint operators, we instead have DskðkÞ ¼ 0, indepen-
dently of their rate. These considerations apply to generic environ-
ments68 composed by several thermal and/or particle reservoirs, or
that can be prepared in quantum states, like, e.g., the squeezed thermal
reservoir90 hence generalizing previous results derived for a single
thermal reservoir,53,58 and by assuming a specific form of the system–
environment interaction.59 The relation (21) hence points to a very
fundamental property of Markovian open quantum systems in the
weak-coupling limit as described by GKLS master equations. In Sec.
VII, some simple examples are examined where the operators fLkg
correspond either to the spontaneous and stimulated emission and
absorption of photons in a thermal electromagnetic environment, or
the case in which we have a single self-adjoint operator inducing pure
decoherence on the system.

As commented in Sec. IIIA, in the case of quantum jumps, the
trajectory operator (9) consists of a sequence of no-jump evolution
operators U Kðti; tjÞ intersected by the instantaneous jumps LkðktjÞ.
The trajectory operator of the time-reversed measurement record
T ~Kð~cð0;sÞÞ then contains the inverse sequence of operators, but with

jumps ~Lkjðks�tj Þ associated with the paired index ~kj (i.e., making the
change kþ$ k�) and the no-jump evolution operators containing
the time-reversal driving U ~Kðs� ti; s� tjÞ. Note, however, that
~Lkþ 6¼ Lk�. To see how Eq. (20) follows from the local detailed bal-
ance relation (21), one inserts pairs H†H ¼ 1 between each the opera-
tors inside T ~Kð~cð0;sÞÞ. Then, assuming HLk ¼ LkH, we obtain from
the microreversibility relation for non-autonomous (closed) systems
that H†U †

~K
ðs� ti; s� tjÞH ¼ U Kðti; tjÞ, meaning that the smooth

no-jump evolution does not contribute to the entropy flow.53,59

Finally, we use the local detailed balance relation in Eq. (21) to convert
the backward jumps as

H†~L
†
kj ðks�tjÞH ¼ Lkj ðktj Þe

�Dskj =2: (22)

This leads to recover (20) with the accumulated entropy flow during
the interval ½0; s� consisting of a sum of the entropy exchanged with
the environment in each jump

rKðcð0;sÞÞ ¼
XJ
j¼1

DskjðktjÞ ¼
XK
k¼1

ðs

0
dNkDskðktÞ; (23)

where, in the second equality, we have rewritten the expression in
terms of the stochastic increments fdNkg appearing in the SSE (or
SME). Here, the interpretation of the entropy flow in terms of the
exchange of physical quantities with the system is associated with the
basis in which the jump operators Lkþ and Lk� promote the jumps,
and that may change during the evolution.

It is also interesting in many applications to extend the above sit-
uation to the case in which the environment is composed by several

independent reservoirs, such as thermal reservoirs at different temper-
atures, or particle reservoirs with different chemical potentials. In
such case, the entropy exchanged with the environment can be decom-
posed as the sum over each reservoir contribution rKðcð0;sÞÞ
¼
PR

r¼1 rðrÞK ðcð0;sÞÞ, by identifying the jumps associated with transi-
tions triggered by the different reservoirs r ¼ 1;…;R, that is,

rðrÞK ðcð0;sÞÞ ¼
XJr
j¼1

DsðrÞkj ðktjÞ ¼
X
k2Rr

ðs

0
dNkDs

ðrÞ
k ðktÞ; (24)

where DsðrÞk is associated with Lindblad jump operators Lk6 from res-
ervoir r following local detailed balance Eq. (21), and we denoted Jr the
total number of jumps triggered by reservoir r during the trajectory
cð0;sÞ. In the second equality, we also introduced Rr in the sum to
denote the set of channels corresponding to reservoir r.

Performing the average in Eq. (23) over trajectories c½0;s� we
obtain

hrKðcð0;sÞÞic ¼
X
fc 0;s½ �g

PKðc 0;s½ �ÞrKðcð0;sÞÞ

¼
ðs

0
dt
XK
k¼1
hL†kLkiDskðktÞ; (25)

where in the second line we used the decomposition of the evolution
over infinitesimal time-steps introduced in Sec. II, and the fact that
only the jumps contribute to the entropy flow. We identify the average
entropy flow rate as the expression inside the integral above

h _rKic ¼
XR
r¼1
h _rðrÞK ic ¼

XR
r¼1

X
k2Rr

hL†kLkiDs
ðrÞ
k ðktÞ; (26)

where in the second equality we split again in the contributions from
the different reservoirs. We notice that whenever DsðrÞk ¼ 0 for all
k 2 Rr , the entropy flow to the environment r vanishes. This is the
case, e.g., for purely decoherence processes associated with self-adjoint
Lindblad operators, or to the case of infinite temperature reservoirs,
where while leading to both jumps up and down on the energy ladder,
L6, these occur at equal rates Cþ ¼ C� and hence L†� ¼ Lþ.

C. Microreversibility in diffusive trajectories

The microreversibility relation in Eq. (20) can be extended to dif-
fusive trajectories in some particular cases. Although a derivation for
generic situations as in the case of quantum jumps is not available to
the best of our knowledge, we provide here some references and hints
in this case for the sake of completeness. One case for which Eq. (20)
has been derived (although without including the final projective mea-
surement or end-point of the trajectory) is for a single self-adjoint
Lindblad operator describing the monitoring of a system observable.66

Microreversibility has been also considered for the case of a two-level
(qubit) system monitored under Gaussian measurements127–130 and
the quantity rK was identified with a measure of the arrow of time. In
these studies, the choice of backward operators to time-reverse the tra-
jectory (our operators T†

~K
ð~cð0;sÞÞ) lacked a proper normalization and

hence do not lead in general to a probability distribution, see also
Ref. 131. This problem disappears in the case in which the Lindblad
operators of the monitored system are all self-adjoint operators Lk ¼ L†k
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as pointed out in Ref. 81. The same issue arose previously also for quan-
tum jumps with the similar definitions provided in Ref. 60, while the
proposal in Ref. 66 run into similar problems when applied to general
situations beyond the self-adjoint case. Examples of diffusive trajectories
based on self-adjoint operators in the thermodynamic context have been
considered for a two-level system in the context of state-stabilization,66

a driven monitored double quantum dot,80 and the circuit QED setup.81

The later approach has been further used to implement a circuit QED
Maxwell demon as reported in Ref. 77 (this setup will be examined later
in Sec. VII).

In the following, we reproduce Eq. (20) for the case in which all
operators used in the unraveling fLkgKk¼1 verify Dsk ¼ 0 in Eq. (21).
This includes (but is not restricted to) monitoring system observables,
which corresponds to the case in which all Lindblad operators are self-
adjoint, i.e., Lk ¼ L†k for all k ¼ 1;…;K . Since each monitored current
in the forward process fIkðtÞ ; 0 � t � sg is associated with the
unraveling of a Lindblad operator Lk, we associate the time-reversed
current f~I kðtÞ ; 0 � t � sg to the unraveling of the corresponding
adjoint-twin of the operator, ~Lk. Assuming the same form for the mea-
surement operators than in the forward process at infinitesimal time-
steps, Eq. (14) in Sec. II, but replacing the jump operators by their
adjoint-twins, we have

~Xrðks�tÞ ¼ 1� idtHHðks�tÞH† � dt
2

X
k

~L
†
kðks�tÞ~Lkðks�tÞ

"

þ
X
k

~Lkðks�tÞ~I kðs� tÞdt
#Y

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
postð~I kÞ

q
;

(27)

with time-reversed currents ~I kðs� tÞ ¼ IkðtÞ and ostensible probabil-
ity ensuring white noise,

Ð
postð~I kÞ~I kdt ¼ 0 and

Ð
postð~I kÞð~I kdtÞ2 ¼ dt

as for the forward process. From the above definition, and by using
Eq. (22) for Dsk ¼ 0, we obtain

H† ~X
†
I ðks�tÞH ¼ XIðktÞ; (28)

where we also used that since the twin operators are also in the set of
Lindblad operators,

P
k

~L
†
k
~Lk ¼

P
k L

†
kLk. We notice that in the gen-

eral case (i.e., Dsk 6¼ 0), Eq. (28) is not verified anymore and microre-
versibility is lost. This is due to the structure of the measurement
operators in Eq. (14). Whether one can derive more general forms for
the measurement operators in the time-reversed process that verify
Eq. (20) is an open question that requires further investigation.
Nonetheless, it is worth pointing out that any reduced dynamics of the
system admits a representation in terms of Kraus operators that veri-
fies Eq. (20), as explicitly constructed in Ref. 68.

Introducing Eq. (28) for each of the measurement operators
in the trajectory generator of the backward process T ~Kð~cð0;sÞÞ
¼
Ð s
t¼0 dt

~XJðks�tÞ we recover Eq. (20) with the accumulated entropy
flow given by

rKðcð0;sÞÞ ¼ 0; (29)

which is in agreement with known results for observables monitor-
ing.81 This leads to a zero average entropy flow hrKðcð0;sÞÞi ¼ 0, as in
the quantum jump trajectory case, cf. Eq. (25). We remark that here,
as in the case of quantum jumps, a zero entropy flow is not

incompatible with extra entropy production in the environment due
to manipulations leading to the monitoring scheme itself.

IV. ENERGETICS AND THE FIRST LAW

Having introduced the complete setup combining the TPM
scheme and continuous monitoring of the system and established the
microreversibility relation (20), we are now in a position to discuss the
energetics of the system and formulate the first law of thermodynam-
ics in a monitored system. In order to do that, we will first characterize
the energy changes during the thermodynamic process at the level of
single trajectories and then decompose this quantity into heat and
work contributions. Work and heat, contrary to energy changes, are
not state functions, i.e., they depend on the precise path the system fol-
lows during the evolution, and have been often associated with
ordered (controllable) and disordered (uncontrollable) forms of
energy. We anticipate that this distinction should not be done in an
arbitrary way, only based on the subjective view of which part of the
energy is useful or not for one’s a priori purposes. On the contrary, in
a consistent thermodynamic approach the disordered character of the
energy currents needs to be founded in the reversibility/irreversibility
properties of the evolution in connection with the environment, or
said in another way, in the fundamental link between energy and
entropy.

We start by introducing the expected energy of the system condi-
tioned on the measurement outcomes at any time as EcðtÞ
¼ Tr½HðktÞqcðtÞ�, where qcðtÞ denotes the state of the system condi-
tioned on c½0;s� and HðktÞ is the inclusive Hamiltonian of the system
including driving contributions. Following this definition, the energy
change in the system along the whole trajectory c½0; s� is

DEKðc 0;s½ �Þ ¼ EcðsÞ � Ecð0Þ

¼ Tr HðksÞPs
ns

� �
� Tr Hðk0ÞP0

n0

h i
; (30)

which only depends on the initial and final states of the trajectory as
given by the projectors P0

n0 and Ps
ns
, respectively, that is, the energy

changes is a state function. Notice that Eq. (30) is still in general a dif-
ference between expected values for the system energy, and not a dif-
ference between energy eigenstates like in the energetic TPM.113 That
limit is recovered in the specific case for which the system starts in a
diagonal state in the initial Hamiltonian basis and the final
Hamiltonian is measured at the end. From the energy change values
(30) one can formally construct a probability distribution for the
energy changes along the process as

PKðDEÞ ¼
X
fc 0;s½ �g

PKðc 0;s½ �ÞdðDE � DEKðc 0;s½ �ÞÞ; (31)

where DEKðc½0;s�Þ is given by Eq. (30), PKðc½0;s�Þ in Eq. (16), and d
denotes the Dirac delta.

A. Stochastic heat

In order to characterize heat in a generic process, we will need to
further specify the environment that produces the open system evolu-
tion and its effect on the system dynamics. Let us assume that the envi-
ronment is composed by a set of reservoirs labeled by the index
r ¼ 1;…;R that are able to exchange energy or other globally con-
served quantities (also called charges) with the system. We notice that
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treating the case of several conserved quantities we expand the scope
of the Review. The reservoirs can then be characterized by a set of tem-
peratures fTrg and eventually a set of extra potentials fli

rg associated
with conserved quantities. We define the stochastic heat transferred
from each reservoir to the system during the trajectory c½0;s� as

QðrÞK ðcð0;sÞÞ ¼ �Tr rðrÞK ðcð0;sÞÞ

¼ �Tr

X
k2Rr

ðs

0
dNkDs

ðrÞ
k ðktÞ; (32)

where rr
Kðcð0;sÞÞ is the entropy flux to the reservoir r as discussed in

Sec. III from the microreversibility relation (20). We can hence define
the probability distribution of the heat to reservoir r during the trajec-
tory as

PKðQrÞ ¼
X
fcg

PKðc 0;s½ �ÞdðQr þ Trr
ðrÞ
K ðcð0;sÞÞÞ: (33)

Although Eq. (32) may seem an abstract identification at first sight, its
meaning is clarified as soon as we make some extra assumptions that
allow us to identify the heat above with the exchange of physical quan-
tities between the system and reservoirs. Note also that from Eq. (29),
the heat transferred to the environment in the (microreversible) diffu-
sive trajectories introduced above is zero.

Let us first consider the case in which the reservoir r is a thermal
reservoir at temperature Tr, with state qr ¼ exp ð�Hr=TrÞ=Zr , Hr

being the reservoir Hamiltonian, and Zr ¼ Tr½exp ð�Hr=TrÞ� the par-
tition function. It exchanges energy with the system through the jump
operators fLkgk2Rr

in the system energy basis, with associated energy
quanta DEk representing the line-width of the transitions. Here and in
the following, for the ease of notation, we not always indicate explicitly
the dependence of the Hamiltonian or of the operators Lk with the
control parameter k. However, it should be intended that such depen-
dence may always exists. We define a “bare” or “effective” system
Hamiltonian HSðktÞ, as the piece of the inclusive Hamiltonian,
H ¼ HS þ V , verifying

HS; Lk½ � ¼ �DEkLk; L k
e�

HS
Tr

Z

 !
¼ 0; (34)

where L ðrÞ
k is the piece of the Lindbladian associated with the reser-

voir r and Z ¼ Tr½e�HS=Tr �. That is, HS is the piece of the system
Hamiltonian that determine the basis in which energy is exchanged
with the reservoirs. We note that it may or may not coincide with H
generating the unitary part of the dynamical evolution in the
Lindblad master equation, Eq. (1). For example, when the driving is
weak, HS represents the bare Hamiltonian of the system not includ-
ing the driving contribution V, which is treated as a small perturba-
tion of HS. This is the case, e.g., for a two-level system coherently
driven by a resonant field,77,80,81 as considered in the examples of
Sec. VII, or for the periodic driving of a cavity mode reported in Ref.
68. Another example is compound systems dissipating into local
baths coupled by a weak interaction among them, in which case HS

represents the Hamiltonian of the uncoupled systems and V their
(weak) interaction Hamiltonian. On the other hand for strong driv-
ing or strongly interacting compound systems, we generically have
HS ¼ H (and hence V¼ 0). The entropy changes in Eq. (21) are
hence in all these cases

DsðrÞk ðktÞ ¼ �
DEkðktÞ

Tr
; (35)

which can be seen as a consequence of the local detailed balance con-
dition for the rates, ensured by the Kubo–Martin–Schwinger (KMS)
condition for the reservoir state.132

Let us now extend the situation to energy and particles reservoirs,
qr ¼ exp ð�ðHr � lrNrÞ=TrÞ=Zr with Nr the number of particles
operator, lr the corresponding chemical potential, and as
before Zr ¼ Tr½exp ð�ðHr � lrNrÞ=TrÞ�. Assuming that the system
exchanges simultaneously both energy and particles with the corre-
sponding reservoir r through the jump operators fLkg with k inRr ,
and denoting NSðktÞ the number of particles operator in the system
(with ½HS;NS� ¼ 0) we have both

HS; Lk½ � ¼ �DEkL
ðrÞ
k ; NS; Lk½ � ¼ �DNkLk; (36)

leading to a “local” (e.g., for a single reservoir) steady state
L
ðrÞ
k ðexp ½�ðHS � lrNSÞ=Tr�=ZÞ ¼ 0. The entropy changes can then

be identified following similar lines as

DsðrÞk ðktÞ ¼ �
DEkðktÞ

Tr
� lr

DNkðktÞ
Tr

� �
: (37)

In many applications such as in setups considering quantum dots cou-
pled to electronic reservoirs, these relations can be further simplified
from the so-called tight-coupling condition. The tight-coupling condi-
tion establish the proportionality of energy and particle currents as
DEk ¼ ekDNk for some parameters ek, see, e.g., the reviews in Refs.
112 and 133 for relevant examples.

The above relations can be extended to generic situations where the
reservoir r is in a generalized Gibbs ensemble and exchanges a set of
globally conserved charges with the system fXig for i ¼ 1;…;N , where
XiðktÞ are Hermitian system operators that may also depend on the
external control variable kt. Apart from energy and particles, other extra
charges may even not commute with the Hamiltonian, like the different
components of angular momenta,134–136 or the squeezing asymmetry
operator in bosonic fields.10,137 In such generic cases, it is not possible in
general to associate the Lindblad jumps operators to the exchange of a
single conserved quantity. Nevertheless, we can always associate the
entropy changes in Eq. (21) to the collective exchange of charges as

XN
i¼1

�
ðrÞ
i

Tr
Xi; Lk½ � ¼ DsðrÞk Lk; L

ðrÞ
k

e�
P

i

�
�
ðrÞ
i



Tr

�
Xi

Z

 !
¼ 0: (38)

Here, the set f�ðrÞi g
N
i¼1 are generalized chemical potentials associated

with the N conserved quantities in the setup (and reservoir r). Only in
the case in which all conserved quantities commute, we will have
½Xi; Lk� ¼ DXk;iLk allowing the split of the entropy changes

DsðrÞk ðktÞ ¼
XN
i¼1

�
ðrÞ
i

DXk;iðktÞ
Tr

(39)

in the contributions from the stochastic changes DXk;i associated with
the transmission of a quantum of the corresponding charge i to the
reservoir r with generalized potential �ðrÞi . Notice that above we would
have �ðrÞi ¼ �1 for energy jumps and �ðrÞi ¼ lr for particle jumps. In
the commuting case, the heat current to reservoir r is decomposed in
the empirical currents to that reservoir as
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_Q
ðrÞ
K ðktÞ ¼

XN
i¼1

�
ðrÞ
i

_XkðktÞ; (40)

with _XkðktÞ � ðdNk=dtÞDXk;iðktÞ and we recall that fdNkg are the
stochastic increments of the SSE (or SME) associated with detections on
reservoir r. The average heat current from reservoir r reads, in general,

D
_Q
ðrÞ
K ðtÞ

E
c
¼
X
k2Rr

XN
i¼1

�
ðrÞ
i Tr XiDkðqtÞ½ �; (41)

which follows from Eq. (25) upon using the commutation relations in
Eq. (38). Notice that we have contributions to the heat current from
every conserved quantity, weighed by their corresponding generalized
potentials. For energy exchange the above equation reduces to the pro-
totypical expression h _Q

ðrÞ
K ðtÞic ¼

P
k2Rr

Tr½HSD
ðrÞ
k ðqtÞ� known in

standard scenarios138,139 (for a discussion of local dissipation scenar-
ios, see Ref. 140).

In summary, the above definition of heat from the entropy flow
in Eq. (32) is a fundamental identification of the “uncontrollable” part
of the system energy changes (as well as the changes in other globally
conserved quantities) as those that are able to increase or decrease
the entropy of the reservoir involved in such exchanges. This is in
agreement with the classical notion of heat also used in stochastic
thermodynamics29,123 or in full counting statistics (FCS)112 to
describe fluctuations in energy and particle currents. The above char-
acterization of heat along trajectories follows and extends the one in
Refs. 53, 54, 63, 64, and 84 for thermal reservoirs. We also notice that
our notion of heat has been referred to as “classical heat” in Refs. 66
and 67. However, it is worth remarking that it will capture quantum
effects as soon as there are different charges that do not commute with
each other, ½Xi;Xj� 6¼ 0 for some i, j, for which the heat exchange can-
not be decomposed in separate contributions.

B. Stochastic work

Due to the presence of quantum effects, work becomes a subtle
concept in quantum thermodynamics when it comes to fluctuations
and its characterization has led to a number of debates about different
approaches that one may follow, see, e.g., Refs. 116, 117, and 141–145.
Within a closed energy TPM scheme, however, work can be satisfacto-
rily determined from the outcomes of initial and final measurements
whenever the initial measurement do not disturb, on average, the sys-
tem state. This setup has been indeed used to obtain work fluctuation
theorems in general closed and open systems alike113 (but with the
inconvenience that one would need to perform projective measure-
ments in the whole environment). In the present situation, it is worth
recalling that our TPM does not determine necessarily energy eigen-
states of the system and the environment at the initial nor the final
points of the trajectory, and hence, the situation becomes more tricky.

A simple way to avoid difficulties in the characterization of work
consists in assuming the verification of the first law, so that work is
defined as the deficit between the changes in energy during the trajec-
tory and the heat as identified above

WKðc 0;s½ �Þ ¼ DEðc 0;s½ �Þ � QKðc 0;s½ �Þ: (42)

This is the approach generically adopted following the identification of
heat above.53,54,63,64,72,84 However, it was also noticed as early as in the

inception of this approach in Ref. 53 that this definition of work can-
not be entirely ascribed to the mechanical work associated with the
execution of the driving protocol, the latter being

Wdrive
K ðc 0;s½ �Þ ¼

ðs

0
dtTr _HðktÞqcðtÞ

h i
: (43)

This issue emerges even in the case of a single thermal bath, in stark
contrast with classical stochastic thermodynamics. In the following, we
will keep the definition in Eq. (42) and decomposeWKðc½0;s�Þ in order
to illustrate how all contributions look like in a general setup. In the
derivation, we will also discuss some other interpretations given in the
literature to different contributions arising insideWKðc½0;s�Þ.

In order to proceed we assume the work in Eq. (42) and consider
the instantaneous energy changes in the expected energy of the system,
that is,

_EKðtÞ ¼ _W
drive
K ðtÞ þ Tr HðktÞ _qcðtÞ

� �
; (44)

where we already identified the driving work in Eq. (43). Some previ-
ous works proposed to identify the second term in the above equation
as a heat current,66,80 in analogy to standard master equation situa-
tions for systems exchanging energy with thermal reservoirs in the
weak coupling limit, as elaborated, e.g., in Ref. 138. Here, we refrain to
identify the whole second term in the above equation as a heat current,
since such reasoning is not correct in more general cases, e.g., when
extra conserved quantities arise (for example, particle exchange).
Henceforth, we will not assume such an a priori identification, but
elaborate the distinction between heat and work from the relation of
energy currents with the entropy flow between system and environ-
ment (we will turn back to this point later).

Let us now focus in the case of quantum jump trajectories, Eq.
(5). We can decompose the second term in Eq. (44) in drift and jumps
contributions as

Tr Hdqc
� �

¼ �dt
X
k

Tr HMkðqcÞ
� �

þ
X
k

dNkTr HJkðqcÞ
� �

; (45)

where Tr½HMkðqcÞ� ¼ Tr½HfL†kLk;qcg�=2� EcTr½L†kLkqc� is non-
zero when qc shows coherence in the energy basis, and the second term

Tr½HJkðqcÞ�¼Tr½HLkqcL
†
k�=Tr½L

†
kLkqc��Ec accounts for the change

in the energy of the system during a jump. In order to obtain work con-
tributions from Eq. (45), we can subtract from it the infinitesimal heat

increments from each reservoir dQðrÞK ðtÞ¼�Tr
P

k dNkðtÞDskðktÞ as
follows from Eq. (32). This will give us two new contributions to work
apart from the driving work identified above. Assuming a set of con-
served quantities fXigNi¼1 including energy exchange (X1¼H), we
obtain the three following components for the power performed over
the monitored system

_WKðtÞ ¼ _W
drive
K ðtÞ þ _W

chem
K ðtÞ þ _W

meas
K ðtÞ; (46)

which correspond to driving, chemical power induced by the extra
conserved quantities, and a measurement contribution from the moni-
toring scheme with zero average. In the following, we give details and
provide pertinent comments on the three contributions (see Appendix
A for details on the derivation and the more general case where
X1 ¼ HS 6¼ H).

The driving power _W
drive
K ðtÞ ¼ Tr½ _HðktÞqc� was already intro-

duced in Eq. (43) and accounts for both the modulation of the energy
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levels of the system and the coherent evolution of the energy eigen-
states. Its average over trajectories reads h _W

drive
K ðtÞi ¼ Tr½ _HðktÞqðtÞ�,

which reproduces the standard identification of driving power in
weak-coupling thermodynamics with thermal reservoirs.138,139

In the second contribution in Eq. (46), we identified the chemical
work performed by the reservoirs associated with the extra charges
i>1 as

_W
chem
K ðtÞ ¼

XN
i¼2

XR
r¼1

X
k2Rr

dNk

dt
�
ðrÞ
i

Tr XiDkðqcÞ
� �
hL†kLki

: (47)

We notice that _W
chem
K ðtÞ cannot be associated with a particular reser-

voir, but it is a collective contribution, as corresponds to work.146 Its
average over trajectories simply reads

h _W
chem
K ðtÞic ¼

XN
i¼2

XR
r¼1

X
k2Rr

�
ðrÞ
i Tr XiDkðqÞ½ �: (48)

For the case of commuting charges, ½Xi;Xj� ¼ 0 for all i, j the above
expression (47) simplifies, according to Eq. (40), to

_W
chem
K ðtÞ ¼

XN
i¼2

XR
r¼1

X
k2Rr

dNk

dt
�
ðrÞ
i DXk;iðktÞ (49)

with DXk;i the changes in each extra conserved quantity i>1 as intro-
duced in Eq. (39). For example, for particle exchange, DXk;i ¼ DNk

represent the number of particles entering the reservoirs and �ðrÞi ¼ lr
their chemical potentials. Henceforth, Eq. (49) reduces to the standard
chemical work.123 Notice that, in any case, this contribution to the
work is proportional to the stochastic increments dNkðtÞ ¼ f0; 1g
and is hence of purely stochastic nature (and associated with the quan-
tum jumps). It accounts for work contributions such as electric cur-
rents triggered by the exchange of electrons with metallic leads acting
as the reservoirs.

C. Measurement work versus quantum heat

Following the above derivation, the third contribution in Eq. (46)
corresponds to the work performed by the continuous measurement
process

_W
meas
K ðtÞ ¼ �

X
k

Tr HMkðqcÞ
� �

þ
X
k

dNk

dt
1
2

Tr fH; L†kLkgqc

h i
hL†kLki

� Ec

0
@

1
A
; (50)

which shows terms associated with both the drift periods of the evolu-
tion and the jumps. This contribution to the work introduces extra
fluctuations during the trajectories but its average vanishes since these
two terms compensate each other

h _W
meas
K ðtÞic ¼ 0 8t: (51)

The fluctuations in Eq. (50) are, however, non-zero in general. They
vanish only if the monitored system qc is maintained in either an
eigenstate of HðkÞ, or in an eigenstate of the operators L†kðkÞLkðkÞ for
all k during the whole trajectory, as it happens in the classical case.

In order to derive Eq. (50), we assumed for simplicity that the
entire system Hamitlonian is a conserved quantity between system
and environment, i.e., within the set of conserved charges fXig we
took X1 ¼ H. In Appendix A, we show that in the case of local energy
conservation only in part of the system Hamiltonian, that is X1 ¼ HS

with H ¼ HS þ V (and V a weak perturbation) the expression in Eq.
(50) is also recovered by simply replacing H by HS, and adding the
extra term in Eq. (A11) that accounts for (zero-average) extra fluctua-
tions induced by the perturbation V.

The appearance of the quantity (50) in the energy balance has
been first noticed in Ref. 53 for a dragged dissipative harmonic oscilla-
tor and further explored in Ref. 64 for more general situations.
Moreover, it was shown to be a crucial term for recovering work fluc-
tuation theorems along trajectories,53,64 in line with previous works on
the role of projective measurements on the work distribution.147,148

This quantity was also studied in Ref. 66, where it was named
“quantum heat,” and further considered in several examples in follow-
ing works.67,69,71 While there is not a definitive consensus on the status
of the energy contribution in Eq. (50) different arguments in favor of
considering it as either work or heat have been given. In favor of call-
ing it quantum heat, it has been argued that it is of stochastic nature,
and hence similar to heat exchanges, in contrast to the work exerted
by an external coherent field.66,149 In favor of the identification as mea-
surement work that we follow here, we have seen that these fluctua-
tions are not related to the exchange of entropy with the environment,
which is a fundamental characteristic of work in contrast to heat. In
this sense, this stochastic work contribution would be analogous to the
work produced by electric currents,133 noisy non-conservative
forces,150 or thermal reservoirs at infinite temperature,150–152 all of
which are also of stochastic nature.

We also stress that the quantity in Eq. (50) is still an expectation
value over the conditional state qcðtÞ which is not directly associated
with the result of any energy measurements. In other words, while this
energy change is related to the update of our knowledge about the sys-
tem’s energy during the evolution due to the monitoring process, it
does not necessary correspond to any “real” (measurable) energy
exchange with the measurement apparatus, contrary to the quantities
DEk and DXk;i above. In this sense, another possible interpretation
would be to not identify _W

meas
K ðtÞ with any energy exchange, i.e.,

refraining from making the assumption in Eq. (42) in the first place. A
closely related interpretation in the context of a quantum heat engines
was recently put forward which describes probabilistic violations of
the first law.153

For diffusive trajectories, a similar derivation of the work compo-
nents applies for the cases considered in Sec. IIIC, that is, monitoring
of system observables or more generally, when the set of Lindblad
operators is such that Dsk ¼ 0 for all k. In the present case, the sto-
chastic heat is zero according to Eq. (32). We obtain again the three
components to the stochastic power in Eq. (46), where now

_W
chem
K ðtÞ ¼

XR
r¼1

X
k2Rr

�
ðrÞ
i Tr XiDkðqcÞ

� �
;

_W
meas
K ðtÞ ¼

X
k

nk hHLki � EchLki
� �

þ h:c:;
(52)

where nk ¼ dwk=dt are white noise contributions from the Wiener
increments with zero mean and hn	knlic ¼ dk;l . Since taking the
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average over trajectories we have hnkic ¼ 0 we again obtain zero aver-
age measurement work, h _W

meas
K ðtÞic ¼ 0. The same arguments as for

the case of quantum jump trajectories apply also here, while we recall
that in this case either the Lindblad operators are assumed to be self-
adjoint or that we have equal rates for complementary jumps.

Finally, we notice that an extra contribution to the total work
Wðc½0;s�Þ in Eq. (42), comes from the final measurement implemented
in the TPM scheme. We include it into the measurement work as

Wmeas
K ðc 0;s½ �Þ ¼

ðs

0

_W
meas
K ðtÞ þWTPMðc 0;s½ �Þ; (53)

where the second term due to the projective measurement simply
reads

WTPMðc 0;s½ �Þ ¼ Tr HðksÞPs
m

� �
� Tr HðksÞqcðsÞ

� �
: (54)

This contribution has an average hWTPMðc½0;s�Þic ¼ Tr½HðksÞ½qsðsÞ
�E ðq0Þ�� which becomes zero whenever the final measurement of the
TPM scheme is either an energy measurement (½HðksÞ;Ps

m� ¼ 0) or
when it is performed in the eigenbasis of the (average) system state
½E ðq0Þ;Ps

m� ¼ 0, in which case qsðsÞ ¼ E ðq0Þ.

V. ENTROPY PRODUCTION AND IRREVERSIBILITY

The second law of thermodynamics establishes that the changes
in the entropy of the universe due to an irreversible process are posi-
tive. Such statement of the second law is valid in macroscopic thermo-
dynamics, but becomes blurred in the microscopic world, where it is
only verified on average.28 Nevertheless, it is possible to introduce
microscopic quantifiers of irreversibility such as the stochastic entropy
production used in stochastic thermodynamics.29,123 In the following,
we show how the notion of stochastic entropy production can be
extended to quantum trajectories in the present framework and then
show how general fluctuation theorems can be obtained using this
notion and discuss its split into adiabatic and non-adiabatic compo-
nents, accounting for different sources of irreversibility.

A. Stochastic entropy production

Quantum versions of the stochastic entropy production have been
indeed introduced in TPM schemes114 and extended to quantum jump
trajectories59 and to general completely positive and trace preserving
(CPTP) maps64,68 (for a recent review on the subject, see Ref. 154). The
twomain ingredients for the construction of stochastic entropy produc-
tion along quantum trajectories are the identification of a stochastic
entropy associated with the system state along a trajectory, and the
entropy flux transferred to the environment. We identify the changes in
the entropy of the system along a quantum trajectory c½0;s� as

DSðc 0;s½ �Þ ¼ �log ps
ns
þ log p0n0 ; (55)

which correspond to the changes in Shannon self-information or sur-
prisal of the system between the initial and final end-points, as in the
classical case.119,120 We notice that for being the quantity DSðc½0;s�Þ
well-defined, the initial and end-points of the trajectories as specified
in the TPM are needed. This is also a requisite in order to recover the
changes in the von Neumann entropy of the system when the average
over trajectories is performed

hDSðc 0;s½ �Þic ¼ SvNðqsÞ � SvNðq0Þ; (56)

with SvNðqÞ ¼ �Tr½q logq�, and qs being the system state after the
final measurement. We notice that related proposals not using a
TPM60,66,67 unfortunately do not verify, in general, Eq. (56), hence
leading to nonstandard entropy production definitions.

The microreversibility relation for the trajectory operators in Eq.
(20) implies that the entropy flow to the environment is related to the
conditional probabilities of observing the forward and time-reversed
trajectories

rKðcð0;sÞÞ ¼ log
pK nðsÞ; cð0;sÞ j nð0Þ
� �

p~K nð0Þ;~cð0;sÞ j nðsÞ
� �

 !
; (57)

which have been shown [according to Eq. (20)] to be independent of
the initial and final outcomes of the TPM, n(0) and nðsÞ, unlike the
forward and backward conditional probabilities itself, cf., Eqs. (16)
and (17), respectively. The entropy flow has been related to the
changes in the entropy of the reservoir(s) by analyzing the underlying
generalized measurement scheme at each infinitesimal time-step of the
quantum trajectory dynamics68 (see also Ref. 149). Such analysis leads
to the identification of the entropy flow with the von Neumann
entropy change of the reservoir due to the interaction with the system
plus an extra non-negative term accounting for the internal relaxation
of the reservoir back to its equilibrium state

hrðrÞK ic ¼ Sðq0rÞ � SðqrÞ þ Sðq0r jjqrÞ; (58)

where we denoted qr and q0r the density operator of the reservoir r
before and after the evolution step from t to t þ dt, respectively,
and SðqAjjqBÞ ¼ Tr½qAðlogqA � logqBÞ� � 0 is the quantum relative
entropy.155 We notice that this expression is in agreement with previ-
ous results derived at the ensemble level for a single thermal reser-
voir156,157 and for more general collisional dynamics152,158,159 (for a
recent review, see Ref. 160). Moreover, we notice that the total entropy
changes in the environment may have extra terms as well due to other
mechanisms implicit in the monitoring scheme and apart from the
interaction with the system, as indeed happens in some decoherence
models.161

The entropy production during the trajectory c½0;s� can then be
defined as the sum of the changes in the entropy of the system plus the
changes in entropy of the environment due to the entropy flow

Stotðc 0;s½ �Þ ¼ DSðc 0;s½ �Þ þ rKðcð0;sÞÞ; (59)

¼ DSðc 0;s½ �Þ �
XR
r¼1

QðrÞK ðc 0;s½ �Þ
Tr

; (60)

where in the second line we split the entropy flow in contributions
from each reservoir and used the identification of the stochastic heat
in Eq. (32). Equations (59) and (60) are the extension to quantum tra-
jectories of the stochastic entropy production employed in stochastic
thermodynamics29,123 and can be particularized for a number of cases
of interest. For example, in the isothermal situation (R¼ 1), 1=Tr � b,
using the first law in Eq. (42) we have

Stotðc 0;s½ �Þ ¼ bðWðc 0;s½ �Þ � DFðc 0;s½ �ÞÞ; (61)

where we introduced the stochastic non-equilibrium free energy
changes along the trajectory, DFðc½0;s�ÞÞ ¼ DEðc½0;s�Þ � TDSðc½0;s�Þ.
We recall that in the above equation the work done during the
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trajectory includes, in general, the three contributions highlighted in
Eq. (46).

It is worth mentioning at this point that one may be tempted to
use Eq. (57) as a definition of the entropy flow to the environment
rKðcð0;sÞÞ, without relying into Eq. (20). That would allow to, e.g., con-
sider more general diffusive trajectories beyond the rKðcð0;sÞÞ ¼ 0
cases. This is an interesting route which merits further exploration.
However, the weakness of such an approach is that it misses to con-
strain the measurement operators in the backward process to be both
normalized and able to reverse the trajectories, so extra care would be
needed. This in turn may introduce extra irreversibility129 and an extra
dependence of rK on the initial and final outcomes of the trajectories
n0 and ns.

128

Another interesting approach that bypass some of the problems
regarding the definition of entropy production under diffusive mea-
surements involves an alternative definition of entropy production
based on the Wigner function and Wigner entropy,162 the so-called
Wigner entropy production rate,163 which can be applied to general
Gaussian setups. The Wigner entropy production coincides with the
standard entropy production in the high temperature limit and is well-
suited for studying zero-temperature environments. In Ref. 82, this
approach was used to single out the entropy flux to the environment
and the information rate gathered by the continuous monitoring pro-
cess, hence extending the Sagawa–Ueda second-law inequality with
information beyond discrete measurements for Gaussian systems,
which was experimentally tested in an optomechanical setup.83

B. Fluctuation theorems

The definition of the trajectory entropy change in Eq. (55) and
the microreversibility relation leading to Eq. (57) implies that the
entropy production becomes a measurement of irreversibility along
trajectories,53,59,64,68 verifying the detailed fluctuation theorem:

Stotðc 0;s½ �Þ ¼ log
PKðc 0;s½ �Þ
P~Kð~c 0;s½ �Þ

 !
: (62)

Its average can be identified with the distinguishability between for-
ward and time-reversed trajectories as in the classical case:164

hStotðc 0;s½ �Þic ¼ DKL PKðc 0;s½ �ÞjjP~Kð~c 0;s½ �Þ
� �

; (63)

where DKL½fpngjjfqng� ¼
P

n pn log ðpn=qnÞ denotes the Kullback–
Leibler divergence, which is non-negative DKL½fpngjjfqng� � 0 and
becomes zero only for equal probability distributions. It is a classical
version of the quantum relative entropy and measures the information
lost when approximating fpng with fqng.165

From Eq. (62), it is immediate to obtain the integral fluctuation
theorem:

he�Stotðc 0;s½ �Þic ¼
X
fcg

P~Kð~c 0;s½ �Þ ¼ 1; (64)

which constrains several properties of the entropy production fluctua-
tions, PðStotÞ ¼

P
fcg Pðc½0;s�ÞdðStot � Stotðc½0;s�ÞÞ. For example, Eq.

(64) implies an exponential tail for the probability of negative entropy
events:

PðStot � �xÞ � e�x; (65)

where x � 0. In the isothermal situation, Eq. (61), this relation
becomes a statement about the probability to extract work out of the
system on the top of the free energy change, PðW � DF � xÞ � e�x ,
where again x>0, while Eq. (64) becomes a generalized version of the
Jarzynski equality.28 Moreover, the fluctuation theorem in Eq. (64)
directly implies, by means of Jensen’s inequality heXi � ehXi, the
second-law inequality

hStotðc 0;s½ �Þic � log hStotðc 0;s½ �Þic ¼ 0: (66)

The detailed fluctuation theorem in Eq. (62) becomes a particu-
larly stronger statement in the case of time-symmetric driving K ¼ ~K,
such as for constant Hamiltonian or some instances of periodic driv-
ing, leading to a non-equilibrium steady state of the system. In that
cases, whenever the system starts in the long-time (asymptotic) steady
state of the dynamics pn0 ¼ pn0 , Eq. (62) reproduces the so-called
Evans–Searles166 or Gallavoti–Cohen167,168 fluctuation theorem

PðStotÞ ¼ Pð�StotÞeStot ; (67)

which links the two tails of the probability density PðStotÞ in the for-
ward process. In the quantum scenario, it has been typically used to
describe the statistics of energy and other currents in nonequilibrium
steady states.112,113 In Ref. 72, the fluctuation relation (67) has been
extended to transitions between thermal steady states for driving
dynamics much slower than the system relaxation time-scales,169 and
a similar identity for the joint probability of work and entropy produc-
tion fluctuations, has been used to obtain finite-time corrections to the
Carnot efficiency.89

It is worth remarking that the correct identification of the opera-
tors in the backward process through the micro-reversibility relation
in Eq. (20) is crucial to recover the correct expression of the stochastic
entropy production and the integral fluctuation theorem in Eq. (64).
Some attempts to define the stochastic entropy production omitting
the TPM lead to the break of the integral fluctuation theorem by a
efficacy-like parameter a, such that he�Stoti ¼ a � 1, which depends
on the unraveling details.60 A similar situation arises for related defini-
tions of an arrow of time indicator127,130 where the efficacy term have
been shown to be a form of so-called absolute irreversibility.129 Such
extra source of irreversibility can be avoided in the TPM framework
presented here, while absolute irreversibility in general will not appear
whenever the density operators for the initial states of forward and
time-reversal processes share the same support.170 Recently, other gen-
eral fluctuation relations for quantum jump trajectories based on
generic symmetries other than time-reversal have been derived in the
long-time limit using large deviation theory.171

VI. DECOMPOSITION OF ENTROPY PRODUCTION

We have seen that the stochastic entropy production in Eq. (59)
contains two terms, one related to the change in entropy of the system
and another related to the entropy that is transferred to the environ-
ment. In the following, we will see that the entropy production can be
instead split in other meaningful ways, whose parts separately verify
fluctuations theorems. Such splits refine our understanding of the sec-
ond law at the level of fluctuations, since the contributions retain
many of the nice properties and constraints mentioned before and
provide further insight on the energetics. We will focus in two particu-
lar splits of the entropy production: the first split is based on the adia-
baticity of the evolution and comes from the context of stochastic
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thermodynamics for nonequilibrium transitions between steady states.
The second split is instead a genuine partition of the entropy produc-
tion along quantum trajectories based on the effects of the measure-
ment and allows the characterization of quantum effects on the
entropy production statistics.

A. Adiabatic and nonadiabatic entropy production

The total entropy production can be decomposed in two compo-
nents related to different sources of irreversibility arising in nonequi-
librium transitions among steady states.172 In the context of stochastic
thermodynamics, these contributions have been called the adiabatic
and nonadiabatic entropy production173,174

Stotðc 0;s½ �Þ ¼ Sadðc 0;s½ �Þ þ Snaðc 0;s½ �Þ (68)

and correspond, respectively, to the irreversibility arising from the
breaking of detailed balance due to either nonequilibrium environ-
mental conditions and external driving. They have been shown to ver-
ify separate fluctuation theorems,173 generalizing a series of previous
results175,176 regarding the heat needed to maintain a nonequilibrium
steady state (house-keeping heat) and dissipated when driven far from
it (excess heat), see, e.g., the review.29

The split of the entropy production into adiabatic and non-
adiabatic contributions along quantum jump trajectories [Eq. (68)]
has been first considered in Ref. 59 and then extended to more general
setups and generic quantum operations in Refs. 64 and 68. Here, we
will follow the general derivation reported there. We assume pk to be
an instantaneous invariant state of the Lindbladian, verifying
L kðpkÞ ¼ 0. Notice that although pk would be unique in many cases
of interest, we do not impose that condition generically. Moreover, it
follows from the expressions for the Lindblad operators in the back-
ward process in Eq. (22) that ~pks�t ¼ HpktH

† is the instantaneous
invariant state of the time-reversed dynamics, ~L kð~pkÞ ¼ 0, where the
generator ~L k is given in Eq. (18).

Following Refs. 64 and 68, the split can be performed by intro-
ducing the nonequilibrium potential operator, namely, Uk � �logpk,
which is a quantum version of the nonequilibrium potential used by
Hatano and Sasa.175 The split can be performed if the jump operators
verify the condition

Uk; LkðkÞ½ � ¼ D/kðkÞLkðkÞ; (69)

for a set of real numbers fD/kg, which also implies ½Uk; L
†
kLk� ¼ 0.

The above equation implies that the Lindblad operators produce
jumps (or coherent combinations thereof) in the pk basis with a defi-
nite change in the nonequilibrium potential given by D/kðkÞ. In addi-
tion, the Hamiltonian contribution in the Lindblad equation would
need to verify ½HðkÞ;/k� ¼ 0, which imply that the jumps are in the
energy HðkÞ basis. However, we remark that, in some cases, the later
condition can be avoided by transforming the Lindblad equation to a
rotating frame.

When Eq. (69) is verified, one can introduce the dual and dual-
reversed processes, which are similar to the forward and backward
processes, respectively, but they are characterized by modified jump
operators that verify relations similar to Eq. (22) but involving changes
in the nonequilibrium potential (see Appendix B for details). This allow
us to obtain the probability of trajectories in the dual process, PþK , and
the probability of time-reversed trajectories in the dual-reverse process

Pþ~Kð~c ½0;s�Þ. Then, using similar methods than the ones used for obtain-
ing the detailed fluctuation theorem in Eq. (62) one can verify the fol-
lowing relations that constitute the definition of the adiabatic and
nonadiabatic entropy production along quantum trajectories

Sadðc 0;s½ �Þ ¼ log
PKðc 0;s½ �Þ
PþKðc 0;s½ �Þ

 !
¼ rKðc 0;s½ �Þ þ DUKðR 0;s½ �Þ; (70)

Snaðc 0;s½ �Þ ¼ log
PKðc 0;s½ �Þ
Pþ~Kð~c 0;s½ �Þ

 !
¼ DSðc 0;s½ �Þ � DUKðR 0;s½ �Þ: (71)

Notice that while the non-adiabatic entropy production depends on
the system entropy changes and hence on the initial and final trajec-
tory outcomes n0 and ns, the adiabatic entropy production only
depends on the environmental monitoring record cð0;sÞ. This is in
accordance with the notion that the adiabatic entropy production is
entirely due to environmental nonequilibrium constraints.

The stochastic adiabatic entropy production Sadðc½0;s�Þ vanish if the
sole effect of the entropy flow is to produce a modification in the state of
the system, e.g., pushing it toward the instantaneous steady state pk.
Then, rKðcð0;sÞÞ ¼ �DUðcð0;sÞÞ, or alternatively Dsk ¼ �D/k, case in
which all the entropy production is nonadiabatic.68 The most paradig-
matic case in which this situation is verified is in the presence of a single
thermal reservoir. However, as soon as various reservoirs with different
temperatures or chemical potentials are considered, the adiabatic contri-
bution becomes in general non-zero, since some part of the entropy flow
from one reservoir is damped into the others. In such general situations,
some care must be taken to not confuse the total entropy production
with the nonadiabatic part. On the other hand, the stochastic nonadia-
batic entropy production Snaðc½0;s�Þ vanishes when the system is always
maintained in the instantaneous steady-state of the dynamics and the lat-
ter is still far from equilibrium. In such case all the entropy production is
adiabatic, as situation that is verified, e.g., in heat engines and refrigera-
tors working continuously in non-equilibrium steady states.139

The above equations (70) and (71) lead to relations analogous to
Eq. (63) for the average of the adiabatic and nonadiabatic entropy pro-
ductions in terms of the Kullback–Leibler divergence

hSadðc 0;s½ �Þic ¼ DKL PKðc 0;s½ �ÞjjPþKðc 0;s½ �Þ
h i

� 0; (72)

hSnaðc 0;s½ �Þic ¼ DKL PKðc 0;s½ �ÞjjPþ~Kð~c 0;s½ �Þ
h i

� 0; (73)

and integral fluctuation theorems

heSadðc 0;s½ �Þic ¼ 1 ; heSnaðc 0;s½ �Þic ¼ 1; (74)

which generalize the Speck–Seifert176 fluctuation theorem and the
Hatano–Sasa relation,175 respectively. Equations (70) and (71), together
with (74) constitute the quantum version of the fluctuation theorems for
the adiabatic and nonadiabatic entropy productions obtained in Ref. 173.

Some extra insight can be obtained by explicitly calculating the
average nonequilibrium potential changes rate68

hD _UKðc 0;s½ �Þic ¼
X
k

hL†kLkiD/k ¼ Tr Uk

X
k

DkðqtÞ
� �

; (75)

where we used the commutation relation in Eq. (69). Using this
expression, we can now provide a closed expression for the average
nonadiabatic entropy production rate as62,68
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h _SnaðtÞic ¼ Tr _qtðlogpkt � logqtÞ
� �

; (76)

where we used the explicit form of the nonequilibrium potential oper-
ator Ukt ¼ �log pkt and the fact that ½Uk;HðkÞ� ¼ 0. From Eq. (76),
it immediately follows that for quasi-static processes for which
qt ’ pkt then h _Snaic ’ 0. Moreover, we observe that in the absence of
driving, e.g., in relaxation processes, the above expression becomes the
entropy production derived by Sponh, h _SnaðtÞic ¼ � d

dt Sðqt jjpÞ.
Using Eq. (41) and the expression obtained before for the average

entropy flow rate in Eq. (25), the average adiabatic entropy production
rate turns out to be

h _SadðtÞic ¼
X
r

X
k2Rr

Tr DkðqtÞ
X
i

�
ðiÞ
i

Tr
XiðktÞ � Ukt

 !" #
: (77)

It therefore follows that the adiabatic entropy production
becomes zero if the nonequilibrium potential has the form Ukt

¼
P

i �
i
rX
ðrÞ
i ðktÞ, which is the case if the instantaneous steady-state is

in equilibrium, pk / e�
P

i
�
ðrÞ
i Xi=Tr . This is the case for a single reser-

voir, but cannot be verified whenever there are several reservoirs at dif-
ferent temperatures Tr and e.g., chemical potentials lr.

We remark that the conditions given in Eq. (69) are stronger that
the ones needed to ensure a well-defined time-reversed dynamics veri-
fying the detailed fluctuation theorem in Eq. (62) for the total entropy
production. Indeed, there are relevant cases where Eq. (62) is verified
while condition (69) is not. An explicit example was analyzed in Ref.
68 for a periodically driven harmonic oscillator, where the coherent
driving is weak enough to not modify the structure of the thermal dis-
sipator, while inducing coherence in the steady state (see also the first
example in Sec. VII for a similar situation). Another relevant situation
comprises cases with extended interacting systems and local dissipa-
tion. In that case the Lindblad operators associated with the local dissi-
pators do not necessarily promote jumps in the basis of the global
steady state of the system, due to the presence of a coherent coupling.
Examples of this kind of dynamics are some models of quantum
autonomous refrigerators177,178 and other thermal machines used for
entanglement generation.179

The cumulants of the nonadiabatic entropy production along
quantum jump trajectories has been explicitly obtained in Ref. 72 for
slowly driven processes in contact with a single reservoir [where Eq.
(69) is typically satisfied] by constructing a two-variables moment gen-
erating function involving also the nonadiabatic work.180 These results
were subsequently applied to quantum heat engines working within
the slow-modulation regime to obtain bounds on the efficiency at
finite time.100

B. Uncertainty and Martingale entropy production

Very recently, a new decomposition of the entropy production
has been proposed based on an extension of the so-called Martingale
theory for entropy production181–185 to quantum trajectories.101,102

Although we will not discuss here Martingale theory for entropy
production, we can fully introduce this decomposition of entropy pro-
duction with the elements at hand. This decomposition results particu-
larly useful in order to split the entropy production into classical and
quantum contributions at the level of single trajectories, and highlights
the entropic effects due to the end-point projections in the TPM
scheme.

The decomposition of the entropy production is based on a dif-
ferent notion of the entropy of the system as given by the logarithm of
the quantum fidelity between the density operator qs of the average
dynamics and the stochastic wave function given by the SSE jwcðsÞi
just prior to the final application of the projectors fPs

ng. That is,
101,102

SwðsÞ � �log hwcðsÞjqsjwcðsÞi: (78)

Here, we assumed for simplicity that the stochastic evolution has no
extra classical sources of uncertainty and is hence described by the
SSE. However, the definition can be extended to the case of the SME
as SqðsÞ � �log Tr½qsqcðsÞ�, which is no longer the logarithm of a
precise fidelity in general (like Uhlmann’s fidelity for mixed states). In
any case, we notice that this notion of entropy differs from the system
entropy used in Eq. (55). In particular, Eq. (78) reduces to the standard
surprisal only when the stochastic wave function at time s remains in
an eigenstate of the density operator at the final time qs, i.e., when
hwcðsÞjPs

kjwcðsÞi ¼ dl;k for some l, which is not the case in general.
As a consequence, by averaging Eq. (78) along trajectories we do not
recover von Neumann entropy hSwðsÞi 6¼ SvNðqsÞ.

Using the notion of entropy above we can then decompose the
entropy production as

Stotðc 0;s½ �Þ ¼ Suncðc 0;s½ �Þ þ Smarðc 0;s½ �Þ: (79)

The first term is called the uncertainty entropy production and reads

Suncðc 0;s½ �Þ ¼ �log ðps
ns
Þ � SwðsÞ; (80)

where Sw is the fidelity-based entropy introduced in Eq. (78). Hence,
Suncðc½0;s�Þ corresponds to the part of the entropy production due to
the final projection of the monitored system. The uncertainty entropy
production is of quantum origin and becomes zero in the classical
case, since in that case the system state is always an eigenstate of its
density operator (and of any other observable). It can be interpreted as
a disturbance due to the final projective measurement when the state
jwcðsÞi shows an intrinsic (quantum) uncertainty. It is worth remark-
ing in this context that Suncðc½0;s�Þ is nonzero even when the projectors
fPs

kg are chosen to be in the basis of qs.
In addition, Sunc can be shown to be bounded by the log-ratio of

the minimum and maximum eigenvalues of the density operator qs
101

log
ps
min

ps
max

� �
� Suncðc 0;s½ �Þ � log

ps
max

ps
min

� �
; (81)

where we denoted ps
max ¼ maxkps

k and p
s
min ¼ minkps

k.
The second term in Eq. (79) has been called the martingale

entropy production, because it is an exponential martingale, a particu-
larly strong property which, in particular, also implies the integral fluc-
tuation theorem. The explicit form of the martingale entropy
production reads

Smarðc 0;s½ �Þ ¼ SwðsÞ þ log pn0 þ rKðcð0;sÞÞ; (82)

which remarkably does not depend on the end-point of the trajectory,
i.e., the outcome of the final projective measurement ns. The entropy
production in Eq. (82) represents somehow a “classicalized” or
“smoothed” version of the entropy production DStotðc½0;s�Þ on which
(at least part of) the quantumness is not present anymore, in the sense
that the part due to the intrinsic uncertainty in the system state has
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been removed. As can be appreciated the martingale entropy produc-
tion Smarðc½0;s�Þ is an extensive quantity, in contrast to Suncðc½0;s�Þ, since
it contains the entropy flow rKðcð0;sÞÞ. In Refs. 10 and 102, both the
uncertainty and the martingale entropy productions have been shown
to verify an integral fluctuation theorem in both steady-state and
generic evolutions

he�Suncðc 0;s½ �Þic ¼ 1; he�Smarðc 0;s½ �Þic ¼ 1; (83)

which in particular imply the second-law-like inequalities

hSuncðc 0;s½ �Þic � 0; hSmarðc 0;s½ �Þic � 0; (84)

together with the other properties of the integral fluctuation theorems
regarding the negative tails of the distributions of both Suncðc½0;s� and
Smarðc½0;s�Þ. The non-trivial fact that hSuncðc½0;s�Þi � 0 also implies that
the total entropy production can be lower bounded by the martingale one

hStotðc 0;s½ �Þic � hSmarðc 0;s½ �Þic: (85)

The above inequality represents an useful bound since Smarðc½0;s�Þ does
not depend on the final projection Ps

ns
and might hence be obtained

in real time only from the monitored record cð0;sÞ and the initial prep-
aration of the system state. Indeed, Smarðc½0;s�Þ becomes particularly
crucial when considering stopping times (e.g., first-passage times,
escape times, etc.) or gambling strategies, since in those cases one
would like to decide to stop (or not) the process before introducing
any disturbance into the system.102 We remark that the bound in (85)
becomes tight in the long time limit, since Suncðc½0;s�Þ is bounded,
while Smarðc½0;s�Þ is extensive in time and hence hStotðc½0;s�Þic
’ hSmarðc½0;s�Þic when s!1.

VII. SIMPLE EXAMPLES
A. Quantum jumps of a driven two-level system in a
thermal environment

As a first example we consider a single two-level system driven by
a coherent field in contact with a thermal environment at a finite tem-
perature T, whose emission and absorption of excitations (e.g., pho-
tons) are monitored. We denote the Hamiltonian of the two-level
system (without driving) as HS ¼ xj1ih1j, with system computational
basis fj0i; j1ig. The driving is assumed to be weak and resonant
with the two-level system. It induces an extra time-dependent term
reading VðtÞ ¼ eðe�ixtrþ þ eixtr�Þ, with r� � j0ih1j, rþ � j1ih0j
¼ r†

�, and driving strength e� x. In order to make contact with the
thermodynamic framework for trajectories, we identify the control
parameter as kðtÞ ¼ eeixt , and hence, K represents a cyclic protocol
running during an arbitrary interval of time ½0; s�. Moreover, we
assume that the driving is instantaneously switched on at the beginning
of the protocol and switched off at time s, that is kð0Þ ¼ kðsÞ ¼ 0.

The master equation governing the unconditional dynamical
evolution of the dissipative-driven system is given by Eq. (1), with
HðkÞ ¼ HS þ VðkÞ and two Lindblad (jump) operators, (k ¼ þ;�),
associated with emission and absorption events reading

L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0ð�n þ 1Þ

p
r�; Lþ ¼

ffiffiffiffiffiffiffiffiffi
C0 �n

p
rþ; (86)

which verify L� ¼ e�x=TL†þ, with C0 the spontaneous emission rate
and �n ¼ ðex=T þ 1Þ�1 the average number of excitations in the ther-
mal (bosonic) environment with frequency x. The above master

equation in Lindblad form can be derived using standard methods in
open quantum systems such as the Born–Markov and Secular approx-
imations, and possess a single nonequilibrium steady state pðtÞ which
follows a closed unitary orbit, _p ¼ �i½HS;p�, due to the presence of
coherences in theHS basis.

55

For assessing the thermodynamics during trajectories within the
TPM, we assume the initial state of the system to be sampled from
the local Gibbs state of the system before the driving is applied,
q0 ¼ e�bHS=Z with Z ¼ Tr½e�bHS � ¼ 1þ e�bx, at the (inverse) envi-
ronmental temperature b ¼ 1=T . Therefore, the two possible initial
states of the system are either j0i or j1i with probabilities p0 ¼ 1=Z
and p1 ¼ e�bx=Z, that is, P0

n ¼ fjnihnjg; for n¼ 0, 1. As for the final
projectors, we consider the simplest situation where they are given by
the basis of the density operator at the final time, E ðq0Þ, i.e., no extra
disturbance at the unconditional level (½Ps

m;E ðq0Þ� ¼ 0).
When the emission and absorption processes are (efficiently)

monitored during the evolution, the state of the system conditioned to
detections can be described by the stochastic Schr€odinger equation

djwcðtÞi ¼ dt �iH kðtÞ½ � þ C0

2
ðhrþr�i � rþr�Þ

� �
jwcðtÞi

þ dN�
r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrþr�i

p � 1
� �

jwcðtÞi

þ dNþ
rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr�rþi

p � 1
� �

jwcðtÞi; (87)

where the Poissonian stochastic increments dN6ðtÞ are zero almost
all the time interval except when any jump of type k ¼ 6 is detected,
in which case they become 1. An example of the evolution of the state
of the system in the Bloch sphere of the two-level system is provided
in Fig. 2(a). A trajectory starts in the circle point marking the ground
state and is driving up along the surface of the sphere while rotating
at frequency x. At some point an emission is detected producing a
jump in the system back to the ground state (straight line), followed
by a second period of rotation where the system is again directed
toward the equator of the sphere up to the diamond point.

We also notice that in some situations (e.g., photocounting)
detection of absorption events dNþ may be difficult to implement and
hence require some detection engineering, like, e.g., using an auxiliary
highly unstable third level j2i from which emissions j2i ! j1i can be
photocounted.67 In superconducting qubits, this problem can be over-
come by implementing a high-precision detection of the temperature
variations due to the jumps that are produced in a resonator acting as
the thermal reservoir.95

The jump operators (86) do not depend on the control param-
eter k and promote jumps in the bare Hamiltonian basis HS, i.e.,
½HS; L6� ¼ 6xL6, in accordance with Eq. (34) for energy jumps. It
can be easily checked that the dissipative part of the unconditional
evolution, DþðqÞ þD�ðqÞ, has a single invariant state of Gibbs
form, e�HS=T=Z (but the steady state of the entire dissipative-driven
dynamics is not of Gibbs form). Therefore, we can identify the
energy change in the system during the jumps as DE6 ¼ 6x, corre-
sponding to a photon absorbed (emitted) from (into) the environ-
ment. In addition, we observe that since the set of Lindblad
operators is complete in the sense introduced in Sec. III, we obtain
the local detailed balance for the jump operators in Eq. (21) with
associated entropy changes
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Ds6 ¼ 6
x
T
¼ �DE6

T
; (88)

confirming that the energy quanta exchanged with the reservoir dur-
ing the jumps can be interpreted as heat. This is all what we need to
characterize the heat over trajectories. Substituting the form of Ds6 in
Eqs. (23) and (32), we obtain

QKðc 0;s½ �Þ ¼
ðs

0
xðdNþ � dN�Þ ¼ x NþðsÞ � N�ðsÞ½ �; (89)

thus the heat along the trajectory is the net energy absorbed from the
reservoir during the jumps, i.e., energy absorbed with jumps of type
k ¼ þ minus energy released in the jumps of type k ¼ �, during the
interval ½0; s�.

We now turn our attention to the total work, WKðc½0;s�Þ
¼ DEKðc½0;s�Þ � QKðc½0;s�Þ and its three contributions as introduced in
Eq. (46). First we notice that since there is a single conserved quantity
(the energy) the chemical work contribution associated with extra con-
servation laws is zero in this case. The driving contribution can be cal-
culated from Eq. (43) and reads

Wdriving
K ðc 0;s½ �Þ ¼ Tr P0

nVð0Þ
� �

� Tr qcðsÞVðsÞ
� �

�ixe
ðs

0
dtðe�ixthrþi � eixthr�iÞ; (90)

where the two terms in the first line correspond, respectively, to the
work needed to switch on and off the driving at the beginning and end
of the protocol. Since the initial state is diagonal in the HS basis, we
have Tr½P0

nVð0Þ� ¼ 0, i.e., no work is needed to switch on the driving.
Moreover, since the steady state also verifies Tr½Vp� ¼ 0, we have also
zero switch- off work cost in this case.

The work contribution due to continuous measurement is from
Eq. (50)

Wmeas
K ðc 0;s½ �Þ ¼ Tr HðksÞPs

m

� �
� Tr HðksÞqcðsÞ

� �
�
ðs

0
dtC0

hfH;rþr�gi
2

� Echrþr�i
� �

þ
ðs

0
dN�C0ð�n þ 1Þ 1

2
hfH; rþr�gi
hrþr�i

� Ec

� �

þ
ðs

0
dNþC0�n

1
2
hfH;r�rþgi
hr�rþi

� Ec

� �
; (91)

where we recall that the first line is due to the final projective measure-
ment at time s, and EcðtÞ ¼ hHðktÞi is the instantaneous expected
energy of the driven two-level system conditioned on the continuous
measurement record.

In Fig. 2(b), we show the energy change DEKðc½0;s�Þ, heat
QKðc½0;s�Þ and total work WKðc½0;s�Þ evaluated along a sample trajec-
tory starting in the ground state [the first part of the trajectory is
depicted in the Bloch sphere in Fig. 2(a)]. The energy changes in the
qubit reveal the Rabi oscillations followed by the two-level system dur-
ing the no-jump periods, which are interrupted by the jumps associ-
ated with the emission and adsorption events. Heat is exchanged with
the thermal environment only during the jumps, and we can appreci-
ate three emission events (downstairs jumps) and two absorption ones
(upstairs jumps). Instead, work is realized or extracted during both
no-jump periods and jumps, contrary to the classical case. In Fig. 2(c),
the total work is split into the drivingWdriving

K ðc½0;s�Þ and measurement
Wmeas

K ðc½0;s�Þ contributions introduced in Sec. IVB, which are shown
for the same trajectory. The driving contribution is continuous during
the whole trajectory and shows a smooth behavior between jumps,
reflecting the work performed to generate the Rabi oscillations. The
jumps instead do not contribute to the driving work, but its detection
produce cusps on it. On the other hand, the measurement work suffers
abrupt changes owing to its stochastic nature and it is monotonous
and slightly decreasing between jumps. This reflects the fact that when
no jumps are detected the system is more likely in its ground state
implying that less work have been employed in driving it from its ini-
tial (ground) state. In a similar way, detection of a emitted excitation
suddenly increases the conditional work, since we just learn that
energy (provided previously by the drive as work) has been dissipated
into the environment, and the other way around for absorption
events.

We are also interested in the stochastic entropy production in
this example and its fluctuations and contributions. The stochastic
entropy production, as given by Eq. (59), reduces to the expression for
a single thermal reservoir Stotðc½0;s�Þ ¼ bðWðc½0;s� � DFÞ given in Eq.
(61), where DFðc½0;s�Þ ¼ DEðc½0;s�Þ � TDSðc½0;s�Þ is the stochastic non-
equilibrium free energy. We plot Stotðc½0;s�Þ in blue in Fig. 3(a) by
assuming virtual end measurements performed at each value of the
final time s. High-frequency noisy changes in the entropy production
reflect the quantum fluctuations associated with the final measurement
and pinpoints the intervals in which the stochastic wave function

FIG. 2. (a) Sample trajectory evolution of the stochastic wave function in the surface of the Bloch sphere, starting in j0i (blue dot) and reaching a coherent state near the equa-
tor (blue diamond) at time t � C�10 before the final projection. During the trajectory a single emission is recorded, leading to a jump to the ground state (straight line). (b)
Energy change (dashed blue), work (solid black) and heat (solid red), and (c) total work (solid black), driving work (solid orange) and measurement work (dashed green) along
a single trajectory of the two-level system evolution as a function of the final time s (including the final measurement). In all plots energetic quantities are given in �hx units.
Here, C0 ¼ 0:001x, and e ¼ 0:01�hx; kBT ¼ 5�hx.
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jwcðtÞi is in a superposition of the density operator eigenstates. The
decomposition into uncertainty and martingale components in Eq. (79)
is shown by means of the dashed orange line. As can be appreciated, the
above quantum fluctuations are absent in the martingale entropy pro-
duction, leading to a smooth version of the total entropy production,
showing abrupt changes only corresponding to the energy jumps in the
two-level system. The effect of the Rabi oscillations can be also appreci-
ated in the evolution of Smarðc½0;s�Þ during the no-jump intervals. The
local maxima and minima during such intervals correspond to zero
quantum fluctuations, i.e., the stochastic wave function jwcðsÞi prior to
measurement becomes one of the eigenstates of the density matrix qðsÞ
at that time. The uncertainty entropy production (not shown in the fig-
ure) is the difference between Stotðc½0;s�Þ and Smarðc½0;s�Þ, hence captur-
ing only the high-frequency quantum fluctuations produced in the final
measurement. In Fig. 3(b), we show the convergence of the three differ-
ent fluctuation theorems for the total he�Stotic (blue), martingale
he�Smaric (orange), and uncertainty he�Suncic (green) entropy production
as a function of the number of trajectories employed in the simulations
for three different final times xs (see caption). We can see a good

convergence in the three cases, being the uncertainty entropy produc-
tion fluctuation theorem the one that converges more quickly to 1. In
the inset, we provide estimations of the total entropy production and
uncertainty probability distributions, PðDStotÞ and PðSuncÞ, respectively,
for a fixed final time xs ¼ 2500. As we can appreciate the entropy pro-
duction distribution is close to a Gaussian with positive mean
hDStotic � 0. The uncertainty entropy production instead displays a
large peak but also some secondary peaks at both positive and negative
sides. Since Sunc is a bounded non-extensive quantity over time, the
whole distribution is closer to zero as compared with PðDStotÞ.

On the other hand, the split into adiabatic and non-adiabatic
entropy production contributions in Eq. (68) cannot be implemented
in this setup. This is because the condition in Eq. (69) is not verified,
since the jumps promoted by the Lindblad operators are not eigenop-
erators of the steady state pðkÞ and hence of the nonequilibrium
potential UðkÞ, breaking the fluctuation theorems in Eqs. (74). This
sets apart this configuration from any classical jump process, for which
the adiabatic and non-adiabatic entropy production are always well
defined and remarks the importance of quantum effects in the fluctua-
tions. In this respect, the situation is very similar to the weakly driven
cavity mode dissipating into a thermal environment considered in Ref.
68, where the break of the split leads to an adiabatic entropy produc-
tion which would be negative on average.

B. Nondemolition monitoring of a driven
superconducting qubit

As a second example, we consider the case of a coherently driven
superconducting qubit over which a dispersive measurement of energy
is applied.80,81 This setup has been experimentally implemented in
Ref. 77 using a transmon qubit coupled to a 3D aluminum cavity to
implement a Maxwell demon. No further contact with a thermal reser-
voir is assumed. The qubit does not exchange energy with the cavity
mode, so that it acts as a dephasing environment for the qubit, induced
by the continuous (homodyne) measurement of the cavity.

The Hamiltonian of the qubit is againHðkÞ ¼ HS þ VðkÞ, where
the free system Hamiltonian reads HS ¼ ð�xq=2Þrz , and the driving
contribution VðkÞ ¼ �iryk with kðtÞ ¼ XR cos ðxqtÞ the control
parameter inducing the driving. We assume again a weak driving
XR � xq. The coupling with the cavity mode is assumed to be of the
formHint ¼ �nrza†a, with a and a† the ladder operators of the cavity
mode, so that ½HS;Hint� ¼ 0. The cavity has energy Hc ¼ xca†a and
is coherently probed to acquire information about the state of the sys-
tem.77 This leads to a diffusive trajectory over the qubit, with a noisy
output signal proportional to rz.

In this situation, the unconditional state evolution of the system
can be described by a Lindblad equation implementing pure dephasing
over the qubit, with a single Lindblad operator Lz ¼

ffiffiffi
j
p

rz , where j is
a constant characterizing the strength of the measurement. We note
that since we have a single self-adjoint Lindblad operator, Lz ¼ L†z , the
micro-reversibility relation for diffusive trajectories stated in Sec. IIIC
holds. Moreover, there the steady state of the evolution is not unique
in this case: any state of the qubit diagonal in the HS basis is invariant
under the action of the environment. In particular, the maximally
mixed state p ¼ 1=2 is also an invariant state, that is, the map generat-
ing the dynamics is unital.

A single current proportional to the qubit energy corresponds to
the measurement record, namely cð0;sÞ ¼ fIðtÞ; 0 � t � sg, with

FIG. 3. (a) Total entropy production (blue) and martingale entropy production
(dashed orange), along a single trajectory of the two-level system evolution as a
function of the final time s (including the final measurement). (b) Convergence of
integral fluctuation theorems he�Stot ic (blue), he�Smar ic (orange), and he�Sunc ic
(green), as a function of the number of trajectories employed in the simulations for
different times xs ¼ 100 (solid), xs ¼ 500 (dashed), and xs ¼ 800 (dotted).
Inset: probability distributions for the total (left), and uncertainty entropy production
(right) evaluated at final time s. In all plots energetic quantities are given in �hx
units. We used again C0 ¼ 0:001x; e ¼ 0:01�hx; kBT ¼ 5�hx and 104 trajecto-
ries for the simulations.
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IðtÞ ¼ 2jhrzidt þ dwðtÞ and the Wiener increment satisfies the
rules dw2ðtÞ ¼ dt and hdwðtÞic ¼ 0. Taking into account the mea-
surement record, the following stochastic master equation for the evo-
lution of the qubit conditioned on the continuous measurement is
obtained

dqc ¼ �i H; qc
� �

dt � 1
2

Lz; Lz;qc
� �

dt
�

þðLzqc þ qcLz � 2hLziqcÞdw; (92)

where we assume efficient detection of the qubit by reading-out the
cavity. Analogously to the previous example, we consider the initial
state of the system at thermal equilibrium, q0 ¼ e�bHS=Z, from which
we sample the initial state of the trajectories (in the HS basis), accord-
ing to the probabilities p0 ¼ e�bxq=2=Z and p1 ¼ e�bxq=2=Z with
Z ¼ e�bxq=2 þ ebxq=2. We also consider that the final measurement of
the TPM is performed in the E ðq0Þ basis. In the long time limit, the
state of the system approaches the fully mixed state 1=2. A sample tra-
jectory generated by the stochastic master equation in Eq. (92) is
shown in Fig. 4, to be compared with Fig. 2(a). We note that since the
initial state of the system is pure, and efficient detectors are considered,
the evolution remains in the surface of the Bloch sphere also here
(non-efficient detection would lead to excursion inside the sphere
volume).

For assessing the energetics we note that, as stated in Sec. IVA,
no heat is dissipated from the system into the environment during a
dispersive monitoring verifying the micro-reversibility relation in
Eq. (28). This is in accordance with the fact that the interaction with
the cavity preserves the qubit energy, and hence for every trajectory

DEKðc 0;s½ �Þ ¼WKðc 0;s½ �Þ; (93)

which, consequently, will only depend on the initial and final eigen-
states of the trajectory c½0;s�. The two different contributions to the
work are in this case

Wdriving
K ðc 0;s½ �Þ ¼ Tr P0

n Vð0Þ
� �

� Tr qcðsÞVðsÞ
� �

þixqXR

ðs

0
dthryit sin ðxqtÞ; (94)

where again the switch-on and switch-off interaction energy costs are
identically zero. On the other hand, the measurement work reads in
this case, from Eq. (52):

Wmeas
K ðtÞ ¼ Tr HðksÞPs

m

� �
� Tr HðksÞqcðsÞ

� �
þ2

ffiffiffi
k
p ðs

0
dwðtÞ hHrzit � EcðtÞhrzit

� �
; (95)

with again EcðtÞ ¼ hHðktÞi including both the qubit and driving
Hamiltonians. In Fig. 5(a), we compare the above driving and mea-
surement contributions to the work for a single trajectory together
with the total work WKðc½0;s�Þ. We observe that the total work (being
equal to the energy changes in the qubit) shows again Rabi oscillations
due to the driving, which however are not damped or intersected by
abrupt changes anymore. Since the trajectory starts in the excited state,
the total work is negative and oscillates between 0 (whenever the state

FIG. 5. (a) Total (stochastic) work WKðc½0;s�Þ and contributions from driving
W driving

K ðc½0;s�Þ and measurement Wmeas
K ðc½0;s�Þ as a function of the final time s, dur-

ing a sample trajectory starting in the excited state. (b) Total entropy production
Stotðc½0;s�Þ and martingale entropy production Smarðc½0;s�Þ during the same trajec-
tory. Parameters of the simulation: j ¼ 0:001x; XR ¼ 0:01xq.

FIG. 4. Initial moments for a sample trajectory evolution of the stochastic wave func-
tion in the surface of the Bloch sphere for the diffusive case. The qubit starts in the
excited state j1i (blue dot) and drifts downward while rotating along the z axis,
leading to a coherent state at time t ¼ x�1q (blue diamond) before the final projec-
tion is applied. Parameters of the simulation: j ¼ 0:001x; XR ¼ 0:01xq.
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of the system is again excited) and�xq (when the system state reaches
the ground state) and hence xq is extracted. Nevertheless, the period
of such oscillations becomes stochastic due to noise with a variance
that increases over time, leading to the dephasing behavior when aver-
aging over trajectories. The driving work is perfectly smooth in this sit-
uation and shows oscillations that reproduce the total work frequency
combined with a slower modulation. Instead, the measurement work
captures all the energy fluctuations due to white noise in the evolution,
which are associated with the disturbance in the state of the system
due to the measurement.

Since the stochastic heat is zero for every trajectory, the entropy
production in this case only accounts for the entropy changes in
the system due to the (unital) measurement process, Stotðc½0;s�Þ
¼ DSðc½0;s�Þ ¼ �log ps

ns
þ log p0n0 . In this case, the entropy production

admits a trivial split into adiabatic and non-adiabatic contributions.
Because of the unitality property of the map, the nonequilibrium
potential operator Uk ¼ �log pk verifies ½Uk; Lz� ¼ 0, and hence, all
nonequilibrium potential changes are zero, D/kðkÞ ¼ 0 for all k in Eq.
(69). As a consequence, the non-adiabatic entropy production in Eq.
(71) just becomes the total entropy production, and the adiabatic
entropy production in Eq. (70) vanishes. Importantly, the latter does
not imply that there might not be extra entropy production due to
processes not related to the heat exchanged with the system, as it is the
case, e.g., in Ref. 161. The split between uncertainty and martingale
entropy productions is also simpler in this case and becomes
DSuncðc½0;s�Þ¼�logðps

ns
Þ�SwðsÞ and DSmarðc½0;s�Þ¼ logðp0n0ÞþSwðsÞ.

In Fig. 5(b), we plot the total entropy production (blue curve) for
a single trajectory and compare it with the martingale (classicalized)
version (orange curve). As can be seen there, quantum fluctuations are
dominant in this diffusive scenario since the changes in the entropy of
the system due to the final virtual measurement are in general greater
than the changes accumulated during the evolution. Blank spaces cor-
responds to intervals of time where the system state is very close to an
eigenstate of qðsÞ at that time. As time becomes comparable to the
fully dephasing time, 1=j, the entropy change converges to a definite
value which is independent of the final outcome, DSðc½0;s�Þ ! log 2
þlog p0n0 for n0 ¼ f0; 1g. Since the sample trajectory in the figure
starts in the excited state (n0 ¼ 1), we have DSðc½0;s�Þ ! �0:62 corre-
sponding to p00 ¼ 0:269 the excited state probability at the initial time.
On the other hand, the martingale entropy production shows small
fluctuations due to the white noise contribution, similarly to the
energy variation and the total work. It always remains within the enve-
lope generated by the quantum fluctuations in Stotðc½0;s�Þ and coincides
with it in the periods where the conditional state of the system is close
to a eigenstate of the density matrix.

The stochastic evolution of the total and martingale entropy pro-
ductions can be best appreciated in the inset of Fig. 6, where the proba-
bility distributions for Stotðc½0;s�Þ and Smarðc½0;s�Þ are plotted for a fixed
final time, s ¼ 1000x�1q ¼ j�1. In particular we observe the four
points in PðStotÞ, two on the left side corresponding to the cases where
the system is initially in the excited state [and hence Stot takes on nega-
tive values as in Fig. 5(b)] and two positive corresponding to the case
in which initially the qubit starts in the ground state. Moreover, as can
be appreciated from PðSmarÞ, the martingale entropy production can
take continuous values between the maximum and minimum of Stot
for each initial state (but it cannot cross from positive to negative val-
ues and vice versa). The bimodal, highly non-Gaussian shape of the

entropy production makes that the averages hStotic � 0 and
hSmar � 0ic (or even they variances) are poorly informative of the
actual dynamics of the system, and the effect of the measurement noise
on the system. In any case we check in Fig. 6 that the fluctuation theo-
rems for both the total and martingale entropy productions are again
verified as the functionals he�Stotic; he�Smaric, and he�Suncic all tend to 1
when increasing the number of trajectories in the simulation.

VIII. DISCUSSION AND OUTLOOK

In this Review, we have discussed the application of the quantum
trajectories framework for describing open quantum systems that are
continuously monitored and to assess their thermodynamics. We con-
clude by stressing the key elements we used to accomplish a coherent
description of all thermodynamic quantities at the stochastic level,
namely, the introduction of a general TPM scheme on which quantum
trajectories are embedded, the identification of entropy flow (and
hence heat) from the micro-reversibility principle for quantum trajec-
tories, Eq. (20), a suitable identification of the stochastic work induced
by measurement back-action, Eqs. (50) and (52), and the identification
of entropy production from the likelihood of probabilities in forward
and backward processes. For the latter point, it was important to
define both processes in clear operational terms, that is, explicitly stat-
ing the initial states, driving protocol implemented, and monitoring
scheme implemented. The benefits of following such a recipe consist
in recovering a coherent framework for the description of fluctuations
of the main thermodynamic quantities, where central nonequilibrium
relations associated with the second law, such as the fluctuation theo-
rems, hold (as expected from an all-inclusive analyses17,113,114).

From the experimental perspective, despite many works have
already explored the thermodynamics of average quantities in open
systems, still very few aspects of stochastic quantum thermodynamics
have been tested in the laboratory. Some remarkable exceptions are for
example the implementation of a Maxwell demon following diffusive
trajectories in a circuit QED setup.77 The authors showed how the

FIG. 6. Integral fluctuation theorems for total he�Stot ic (blue), martingale he�Smar ic
(orange), and uncertainty he�Sunc ic (green) entropy production, as a function of the
number of trajectories employed in the simulations for xs ¼ 1000. Inset: histo-
grams of the total and martingale entropy productions for N ¼ 104 trajectories and
xs ¼ 1000, the estimated probability densities are obtained by dividing the number
of counts over the total number of trajectories. Other parameters of the simulation:
j ¼ 0:001x; XR ¼ 0:01xq.
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information acquired by monitoring a superconducting qubit system
could be used to adequately implement a discrete feedback pulse for
work extraction. We considered this setup in Sec. VIIB (without feed-
back), where other thermodynamic quantities not considered in Ref.
77, like the driving/measurement work split or the martingale entropy
production could be also accessed, and their fluctuation relations
tested. Another promising QED platform,186 where most of the pre-
dictions of the framework for the case quantum jumps could be tested,
consists of the implementation of extremely precise calorimetry on
resistors acting as (finite-size) thermal reservoirs through fluorescence
measurements.95,187

Two other experiments tested the energetics of quantum moni-
tored systems at an effective zero temperature,83,94 a situation that
involves many subtleties from the thermodynamic perspective and
over which there is hence not complete consensus within the commu-
nity. In Ref. 94, a driven superconducting qubit is radiatively coupled
to a transmission line whose electromagnetic field is subjected to a
homodyne measurement by a Josephson parametric amplifier.
Tracking the stochastic state of the system, the authors construct the
total energy exchanged with the environment along single trajectories
and compare their results with a TPM scheme using energy measure-
ments at different instants of time, and with a feedback loop that effec-
tively isolates the system. Moreover, the authors compare tentative
definitions of work and heat with the standard average expressions
from the master equation, obtaining good agreement. Unfortunately,
the experimental results are not sufficient for confirming or discarding
a particular decomposition into heat and work along trajectories. In
Ref. 83, an optomechanical system was subjected to homodyne detec-
tion of the cavity field, leading to the monitoring of the nanomechani-
cal oscillator Gaussian state at effective zero temperature. The focus
was the assessment of the Wigner entropy production, and the authors
were also able to identify the informational gain term due to the
measurement. Finally, a closely related situation has been considered
in Refs. 188 and 189, where fluctuation theorems have been tested in
some particular situations using a nitrogen-vacancy (NV) center in
diamond and an engineered dissipation channel. The system is sub-
jected to repeated projective measurements (rather than following a
continuous monitoring) while the authors could address driven-
dissipative cases where only measurements of the system energy
changes are needed to construct either heat or work.189

We notice that situations with strictly zero temperature remain
out of the formalism introduced here, since the condition for the
Lindblad operators to include their adjoint pairs (or to be self-adjoint)
would not be verified. However, we stress that such situations corre-
spond to an idealization, since following the third-law of thermody-
namics, attaining zero temperature would need infinite time,150,190

infinite dimensions,191 or infinite resources.192,193 This situation can
be solved within the formalism by allowing a small but non-zero tem-
perature, accounting for the fact that adjoint processes (e.g., absorption
of energy quanta from the environment) are improbable but not
completely impossible.

In order to improve the applicability of the framework to most
common experimental situations in different platforms, it would be
desirable to systematically include the effects of non-efficient detectors in
the thermodynamic framework. Moreover, the present approach for
both quantum jumps and diffusive trajectories might be extended to
cases where not all Lindblad operators are included in the monitoring.

In such cases, the expressions for the entropy flows above derived, and
hence of heat and work, would need to be modified to take into account
the flow of entropy not detected from the measured currents or jumps.
Such an extension would be interesting in view of possible applications
of the framework for, e.g., entropy production estimation under hidden
currents, in analogy to stochastic thermodynamics.194 A detailed analysis
of such an extension is left for future work.

It is also worth mentioning that the results obtained within the
quantum trajectory approach followed here are equivalent, in the case of
quantum jumps, to multi-time correlation function approaches195 and to
the full counting statistics (FCS) method,112,196 although the difficulty to
obtain and interpret themain thermodynamic quantities might be differ-
ent. A comparison of those frameworks with the quantum jumpmethod
has been provided, e.g., in Refs. 197–199, for particular cases, as well as
with alternative methods.200,201 In the FCS method, counting fields
modeling the interaction between system and detectors in the reservoirs
are introduced, which leads to a generalized master equation for a modi-
fied density operator that depends on these fields,112,196 and from which
the moments of the heat currents can be obtained (see also Ref. 202).
This approach have been extended to the case of periodically driven sys-
tems combining it with Floquet theory203,204 and non-equilibrium Green
function approaches,205 and it has been used to assess work, heat, or effi-
ciency fluctuations in thermoelectric systems,206,207 quantum thermal
machines,208–211 to study Landauer’s principle,212 or to explore the con-
sequences of TUR breakdown.213,214 Connections of the quantum trajec-
tory approach with collisional models used to describe the dynamics of
open quantum systems have been discussed in the recent review.160

Moreover, recent developments used a collisional approach to assess
information dynamics and their connection with thermodynamics in the
continuously monitored scenario (see also Ref. 70).215,216

Finally, many works in recent years discussed the advantages and
inconveniences of using TPM schemes, including both fundamental
and practical considerations. On the fundamental side, one of the
main critiques to the TPM scheme using projective energy measure-
ments is that it is not suitable for considering initial states of the sys-
tem bearing coherences in the energy basis145 (but coherences
developed during the system evolution are captured217). Although
often overlooked in the literature, this issue is avoided by allowing
more general observables in the initial and final projective measure-
ments of the TPM. When such observables coincide with the density
operator of the unconditioned system, the TPM does not cause indeed
any disturbance on the system state, as discussed before. This
approach can be complemented by introducing so-called augmented
trajectories (or Bayesian networks), which include extra virtual mea-
surements (e.g., over subsystems) without introducing their backac-
tion,6,218 and have shown useful to obtain extra fluctuation
relations.219 On the more practical side, although the TPM have been
directly implemented in several experiments,220–224 projective mea-
surements are often difficult to control and may destroy the quantum
system over which they are performed. Alternative schemes reproduc-
ing their results have been hence proposed which reproduce the TPM
statistics by using indirect measurements and interferometry techni-
ques.117,225–230 Some of these alternative schemes have been success-
fully tested in the laboratory to measure work distributions and test
fluctuation theorems in closed systems.231–233 We expect that such
techniques may be easily extended to the case of more general observ-
ables than the energy, as considered here.

AVS Quantum Science REVIEW scitation.org/journal/aqs

AVS Quantum Sci. 4, 025302 (2022); doi: 10.1116/5.0079886 4, 025302-21

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/aqs


ACKNOWLEDGMENTS

The authors acknowledge the Spanish State Research Agency
QUARESC Project (No. PID2019-109094GB-C21/AEI/10.13039/
501100011033), the Severo Ochoa and Maria de Maeztu Program
for Centers and Units of Excellence in R&D (No. MDM-2017-
0711), and CAIB QUAREC Project (No. PRD2018/47). G.M.
acknowledges funding from Spanish MICINN through the “Juan de
la Cierva” program (No. IJC2019-039592-I).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

APPENDIX A: DERIVATION OF WORK CONTRIBUTIONS
WITH MULTIPLE CONSERVED QUANTITIES

In order to reach the decomposition of work (power) in Eq.
(46) with the contributions from driving work in Eq. (43), chemical
work in Eq. (47) and measurement work in Eq. (50), we start by
subtracting the heat flux(es), that is, work is identified as
_WKðtÞ � _EKðtÞ �

P
r

_Q
ðrÞ
K , which from Eq. (44) yields

_WKðtÞ ¼ _W
drive
K ðtÞ þ Tr½HðktÞ _qcðtÞ� �

X
r

_Q
ðrÞ
K ¼ _W

drive
K ðtÞ

�
X
k

Tr½HMkðqcÞ� þ
X
k

dNk

dt
Tr½HJkðqcÞ� �

X
r

_Q
ðrÞ
K ;

(A1)

where in the second line we expanded the middle term using the
stochastic master equation as in Eq. (45).

We will now manipulate the middle term in the second line
of (A1) associated with the quantum jumps, Tr½HJkðqcÞ�
¼ Tr½L†kHLkqc�=hL†kLki � Ec by using the commutation relations
between the Hamiltonian H and the Lindblad operators Lk. For this
purpose, and for remaining as general as possible, we split the
Hamiltonian as H ¼ HS þ V , where HS is the part of the system
energy which verifies energy conservation within system and reser-
voir [and hence enters as a charge in Eq. (38)] and V is a weak
interaction. Hence, we split the term Tr½L†kHLkqc� ¼ Tr½L†kHSLkqc�
þTr½L†kVLkqc�. Crucially, we now rewrite Eq. (38) for the entropy
flow with multiple conserved quantities as

½HS; Lk� ¼ �TrDs
ðrÞ
k Lk þ

X
i>1

�
ðrÞ
i ½Xi; Lk�; (A2)

where we simply assumed X1 ¼ HS (energy conservation) with
�
ðrÞ
1 ¼ �1 and rearranged terms. Notice that here above k repre-

sents a channel that belongs to reservoir r with which energy and
the other charges fXig for i>1 are exchanged. This equation allow
us to manipulate the expression Tr½L†kHSLkqc� for such a channel by
using the following two equations directly coming from (A2)

HSLk ¼ LkHS � TrDs
ðrÞ
k Lk þ

X
i>1

�
ðrÞ
i ½Xi; Lk�; (A3)

L†kHS ¼ HSL
†
k � TrDs

ðrÞ
k Lk þ

X
i>1

�
ðrÞ
i ½Xi; Lk�; (A4)

which introduced into Tr½L†kHSLkqc� give us the two following
equivalent relations:

Tr½L†kHSLkqc� ¼ Tr½L†kLkHSqc� � hL†kLkiTrDs
ðrÞ
k

þ
X
i>1

�
ðrÞ
i Tr½L†k½Xi; Lk�qc�; (A5)

Tr½L†kHSLkqc� ¼ Tr½HSL
†
kLkqc� � hL†kLkiTrDs

ðrÞ
k

þ
X
i>1

�
ðrÞ
i Tr½½L†k;Xi�Lk�qc�: (A6)

Combining the rhs of Eqs. (A5) and (A6) with equal 1/2 weights
then leads to the expression that we wanted

Tr½L†kHSLkqc� ¼
1
2
Tr½ L†kLk;HS

� �
qc� � hL†kLkiTrDs

ðrÞ
k

þ
X
i>1

�
ðrÞ
i Tr½DkðqcÞ�; (A7)

where we recall that channel k belongs to reservoir r. Introducing
Eq. (A7) into the quantum jump term proportional to Tr½HJkðqcÞ�
in Eq. (A1) and performing the sum over k for the different reser-
voirs, we immediately obtainX

k

dNk

dt
Tr½HJkðqcÞ�

¼
X
k

dNk

dt

Tr½L†kVLkqc�
hL†kLki

þ 1
2

Tr½fL†kLk;HSgqc�
hL†kLki

� Ec

 !

þ
X
r

_Q
ðrÞ
K þ _W

chem
K ; (A8)

where we identified the heat currents _Q
ðrÞ
K ¼ �Tr

P
kðdNk=dtÞDsðrÞk

coming from the second term in Eq. (A7), and the chemical power
_W
chem
K in Eq. (47), coming from the last contribution in Eq. (A7).
Introducing Eq. (A8) into the power split of Eq. (A1) the heat

current contributions cancel and we obtain

_WKðtÞ ¼ _W
drive
K ðtÞ þ _W

chem
K �

X
k

Tr½HMkðqcÞ�

þ
X
k

dNk

dt

Tr½L†kVLkqc�
hL†kLki

þ 1
2

Tr½fL†kLk;HSgqc�
hL†kLki

� Ec

 !
:

(A9)

Finally, Eq. (46) is recovered by identifying the remaining terms in
the above equation with the measurement work

_W
meas
K � �

X
k

Tr½HMkðqcÞ�

þ dNk

dt

Tr½L†kVLkqc�
hL†kLki

þ 1
2

Tr½fL†kLk;HSgqc�
hL†kLki

� Ec

 !
;

(A10)
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where we recall that MkðqcÞ ¼ 1=2 fL†kLk;qcg � TrðL†kLkqcÞqc. We
notice that in the case HS ¼ H and V¼ 0, we recover Eq. (50).
Moreover, assuming V is of the order of the coupling between system
and reservoirs, terms like Tr½VMkðqcÞ� � OðjjV jj3Þ can be neglected,
and we can replace H by HS in the first term of the r.h.s. in the above
equation. However, the second (jump) term proportional to the weak
interaction V during the jumps remains (since it is normalized by
hL†kLki). By noticing that Ec ¼ Tr½Hqc� ¼ Tr½HSqc� þ Tr½Vqc�, we
may interpret the extra term in Eq. (A10)

X
k

dNk

dt

Tr½L†kVLkqc�
hL†kLki

� Tr½Vqc�
 !

� _W
int
K ; (A11)

as the work needed to maintain the interaction V connected to the
system (or to instantaneously switching it off and on again) when
local jumps occur. This contribution should only be neglected at the
average level where hdNkic ¼ dthL†kLki compensates for the normal-
ization and hence Tr½L†kVLkq� � hL

†
kLkiTr½Vqc� � OðjjV jj3Þ, and

hence h _W
int
K ic ¼ 0. Therefore, although no network is needed to

maintain the interaction V while the system (locally) exchanges
energy with the reservoirs, this nevertheless induces extra power
fluctuations as quantified by Eq. (A11).

APPENDIX B: DERIVATION OF THE ADIABATIC AND
NON-ADIABATIC DECOMPOSITION FOR QUANTUM
STOCHASTIC ENTROPY PRODUCTION

In this appendix, we provide more details on the decomposi-
tion into adiabatic and non-adiabatic contributions of the entropy
production for monitored systems (Sec. V). As mentioned there, we
introduce dual and dual-reversed processes that are similar to the
forward and backward process, but employ a modified set of
Lindlbad operators. We denote these sets by fLþk g

K
k¼1 and f~L

þ
k g

K
k¼1,

respectively, which verify:59,68

Lþk ðktÞ ¼ e
1
2ðDskþD/kÞ L†kðktÞ; (B1)

~L
þ
k ðks�tÞ ¼ eD/k=2 HL†kðktÞH

†: (B2)

On the other hand, the Hamiltonian part of the evolution is the
same as in forward and backward processes, HðkÞ and ~HðkÞ,
respectively. That is, the control protocol K is implemented in the
dual process and the time-reversed control protocol ~K is imple-
mented in the dual-reverse process. Moreover, the above equations
also guarantee that the instantaneous steady states in the dual and
dual-reverse dynamics coincide with those in the forward and back-
ward dynamics, respectively.

In this context, it is useful to define the trajectory operator that
generates the environmental record cð0;sÞ in the dual process. We

denote it TþKðcð0;sÞÞ ¼ U þðs; tJÞLþkJ…Lþk1U
þðt1; t0Þ, where the no

jump intervals are governed by the same drift evolution as in the
forward process, U þðtj; tiÞ ¼ U ðtj; tiÞ and the dual jumps are given
in Eq. (B1) in terms of the original ones. Analogously, we denote
the operator associated with the trajectory ~c ½0;s� in the dual-reverse

process as Tþ~Kð~cð0;sÞÞ ¼
~U
þðs; tJÞ~L

þ
kJ…

~L
þ
k1

~U
þðt1;0Þ with ~U

þðtj; tiÞ
¼HU †ðs� tj; s� tiÞH† and ~L

þ
k in Eq. (B2). These operators are

related to the probabilities of observing the trajectories c½0;s� and
~c½0;s� in the dual and dual-reversed process, respectively,

PþK ¼ p0n0Tr½P
s
ns
TþKðcð0;sÞÞPs

n0T
þ†
K ðcð0;sÞÞ�; (B3)

Pþ~K ¼ ps
ns
Tr½ ~P0

n0
~T
þ
Kð~cð0;sÞÞ ~P

s
n0

~T
þ†
K ð~cð0;sÞÞ�; (B4)

to be compared with Eqs. (16) and (17). Using the relations in Eqs.
(B1) and (B2) for the dual and dual-reversed jumps, together with
the corresponding ones for the drift evolution operators, we obtain
the following relations:

Tþ†K ðcð0;sÞÞ ¼ TKðcð0;sÞÞ e1=2 ½DUKðcð0;sÞÞþrKðcð0;sÞÞ�; (B5)

H†Tþ†~K
ð~cð0;sÞÞH ¼ TKðcð0;sÞÞ eDUKðcð0;sÞÞ=2; (B6)

where we introduced the accumulated change in nonequilibrium
potential during the whole trajectory:

DUKðcð0;sÞÞ ¼
XJ
j¼1

D/kjðktj Þ: (B7)

The relations (B5) and (B6) are analogous to the micro-reversibility rela-
tion in Eq. (20) but help us to relate the statistics of the dual and dual-
reversed processes to the original forward process, which are the key to
obtain the detailed fluctuation theorems in Eqs. (70) and (71).

On a more technical side, we note that in Ref. 234 it was shown
that conditions equivalent to Eq. (69) on the Lindblad operators
(called a privileged representation) are verified when the so-called s-
dual generator ~L

þ
k ðqÞ � p1�s

k L 	
kðpsqp1�sÞps

k associated with L k,
for s 2 ½0; 1� commutes with the modular automorphism, M ðqÞ ¼
pkqp�1k (see Theorem 8 and Proposition 19 in Ref. 234). This con-
straint in turn ensures that the maps generated by ~L

þ
k ðqÞ are unique

and form a quantum Markov semigroup 8 s 2 ½0; 1�, while the sym-
metric dual generator (s¼ 1/2) always leads to a quantum Markov
semigroup even when commutation with the modular automor-
phism is not ensured (see Theorem 36 and Example 41 in Ref. 234).
The condition in Eq. (69) allowing the entropy production split and
the derivation of separate fluctuation theorems for the two pieces are
equivalent to the existence of a privileged representation for the sym-
metric dual generator in the case of jump trajectories.59 However,
such conditions, as introduced in Refs. 64 and 68, ensure the split
and the fluctuation theorems for general CPTP maps, not necessarily
forming a quantumMarkovian semigroup.
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