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UNIT 3:
Time-domain representations for LTI systems —2

3.1 Properties of impulse response representation:

Impulse Response
Def. Linear system: system that satisfies superposition theorem.

Input ——» n:ﬁgrrk = Output
x(t) hit) yit)
X(f) H(f) Y(f)

For any system, we can define its impulse response as:
h(t) = y(t) whenx(t) = o(t)

For linear time invariant system, the output can be modeled as the convolution of the impulse
response of the system with the input.

YO =x(ONO = [x(D)h(t-7)dr

For casual system, it can be modeled as convolution integral.

y(t) = [ X(0)h(t - 7)dz
0
3.2 Differential equation representation:

General form of differential equation is

N k

d
zﬂk k}f’ zbkdrkxm

k=0

where ak and bk are coefficients, x(.)is input and y(.) is output and order of differential or
difference equation is (M,N).

Example of Differential equation
« Consider the RLC circuit as shown in figure below. Let x(t) be the input voltage source and
y(t) be the output current. Then summing up the voltage drops around the loop gives
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Ri0) + L53t0) + ¢ [ v@a =0

R L
—AM— Y

x(1) C_“D y(1) = C

3.3 Solving differential equation:

A wide variety of continuous time systems are described the linear differential equations:

ag—y(t) = >, bi—7x(1)
=0 dt =0 dt

e Just as before, in order to solve the equation for y(t), we need the ICs. In this case, the ICs are
given by specifying the value of y and its derivatives 1 through N —1 att=0—
Note: the ICs are given at t= 0— to allow for impulses and other discontinuities att =0.
Systems described in this way are

e linear time-invariant (LTI): easy to verify by inspection

e Causal: the value of the output at time t depends only on the output and the input at times 0 <
t<t

e As in the case of discrete-time system, the solution y(t) can be decomposed into y(t) =
yn(t)+yp(t) , where homogeneous solution or zero-input response (ZIR), yh(t) satisfies
the equation

e The zero-state response (ZSR) or particular solution y,(¢) satisfies the

equation
N—-1 (i) m )
WO+ Y a0 =3 buxM=0(p), >0
i=0 i=0
with ICs y,(07) = ¥4 (07) = ... = 34" Y(0~) = 0.

Homogeneous solution (ZIR) for CT

e A standard method for obtaining the homogeneous solution or (ZIR) is

by setting all terms involving the input to zero.

N ;
Za,;yg;’}(r) =0, t>0

=0
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and homogeneous solution is of the form

N
ya(t) = Z Cie'*
=1

where r; are the /V roots of the system’s characteristic equation

N
Z akf"( =0
k=0

and Ci,...,Cx are solved using ICs.
Homogeneous solution (ZIR) for DT
e The solution of the homogeneous equation
N
z agypln—kl =0
k=0
is

N
yuln = cir?
=

where r; are the /N roots of the system’s characteristic equation
N
Z aij_k =0
k=0

and C1,...,Cy are solved using ICs.
Example 1 (ZIR)

e Solution of

2
%y(r) + Sd%y(r) +6y(t) = 2x(¢) +%X(f)
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is

yu(t) = cre 3+ cpe

e Solution of y{n| —9/16y[n—2] = x[n—1] is yp[n] = ¢1(3/4)"+ c2(—3/4)
Example 2 (ZIR)

e Consider the first order recursive system described by the difference

equation y{n| — py[n— 1] = x[n|, find the homogeneous solution.

e The homogeneous equation (by setting input to zero) is y[n] — py[ln—
1]=0,

e The homogeneous solution for N = 1is y,[n] = ¢ 1.
e 1 is obtained from the characteristics equation r —p =0, hence r, =p

e The homogeneous solution is yu[n] = ¢ p”

Example 3 (ZIR)
e Consider the RC circuit described by y(t) + R'C%y{r) ==k{1)
e The homogeneous equation is y(t) + RC% (i) =0
e Then the homogeneous solution is
yu(t) = a1 e’

where ry is the root of characteristic equation 1 + RCr; =0

e This gives r} = _??l‘C

e The homogeneous solution is

n(t) = crer
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Particular solution (ZSR)

e Particular solution or ZSR represents solution of the differential or dif-

ference equation for the given input.

e To obtain the particular solution or ZSR, one would have to use the

method of integrating factors.
e ypis not unique.

e Usually it is obtained by assuming an output of the same general form

as the input.

e If x[n] = o, then assume yp[n] = co” and find the constant ¢ so that

Vpln] is the solution of given equation

1.1.3 Examples
Example 1 (ZSR)

e Consider the first order recursive system described by the difference
equation y[n] —py[n— 1] = x|n], find the particular solution when x[n| =
(1/2)m.

e Assume a particular solution of the form y,[n] = c,(1/2)".

e Put the values of y,[n] and x{n] in the equation then we get c,(3)" —
pep(z)" ! = (3)"

o Multiply both the sides of the equation by (1/2)" we get c, = 1/(1—
2p).

e Then the particular solution is

ol = = 55()"

5:4 GETMYUNI



WWW. get myuni . con
e For p = (1/2) particular solution has the same form as the homoge-

neous solution

e However no coefficient Cp satisfies this condition and we must assume

a particular solution of the form y,[n] = c,n(1/2)".

e Substituting this in the difference equation gives c,n(1—2p)+2pc,=
1

e Using p = (1/2) we find that ¢, = 1.
Example 2 (ZSR)
e Consider the RC circuit described by y(¢) + R’Cff;y({) = x(t)

e Assume a particular solution of the form y, () = ¢; cos(wpt) + ¢z sin(wgt).

e Replacing y(¢) by y,(¢) and x(¢) by cos(wyt) gives
c1 cos(mgt) +cz sin(wpt) — RCwq ¢y sin(wgt) + RCwgcy cos(wpt) = cos(mpt)

e The coefficients ¢; and ¢ are obtained by separately equating the co-

efficients of cos(wp?) and sin(wpt), gives

. 1 J . RC&)(}
T r (RCop2 ™" = 1+ (RCoxy)?
e Then the particular solution is
1 RC(D[].
)= 0————— t ————5i

Complete solution

e Find the form of the homogeneous solution y; from the roots of the

characteristic equation

e Find a particular solution y,, by assuming that it is of the same form as

the input, yet is independent of all terms in the homogeneous solution

e Determine the coefficients in the homogeneous solution so that the

complete solution y = yj;+ y) satisfies the initial conditions
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3.4 Difference equation representation:

e A wide variety of discrete-time systems are described by linear differ-

ence equations:

N M
)/{n]Jrzaky[n—k]:zbkx[n—k]. n=0,1,2,...
k=1 k=0
where the coefficients ay,...,ay and by, . .., bys do not depend on n. In

order to be able to compute the system output, we also need to specify
the initial conditions (ICs) y[—1].3[—2]...y[—N]

e Systems of this kind are

— linear time-invariant (LTI): easy to verify by inspection

— causal: the output at time 7 depends only on past outputs y[{n—

1],...,¥[n— N] and on current and past inputs x[n], x[n—1],... x[n—

e Systems of this kind are also called Auto Regressive Moving-Average

(ARMA) filters. The name comes from considering two special cases.

e auto regressive (AR) filter of order N, AR(N): bp = ... = by =0
N
An|+ > ayln—k =0 =012
=1

In the AR case, the system output at time 7 is a linear combination of
N past outputs; need to specify the ICs y[—1],...,){—N].
e moving-average (MA) filter of order N,AR(N) :ap=...=an=0

M
y{n]:Zbkx[n—k] n=20,1,2,...
k=0

In the MA case, the system output at time 1 is a linear combination of

the current input and M past inputs; no need to specify ICs.
e An ARMA(N, M) filter is a combination of both.

e [ et us first rearrange the system equation:

N M
v = — D agyn— K+ D byx[n— k] n=20,1,2,...
k=1 k=0
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e atn=20

N M
MOl = — > axy[—4] 2 bix|—K|

L o A o

depends on ICs  depends on input x[0]— x[— M|

e atn=1

N M
V1] = > a[l — k + D, bex[1 — 4]
k=1 k=0
After rearranging
N-1 M
M =-aff0]- Y -0+ Y bl -4
k=1 k=0

depends on ICs depends on inputx(1]...x{1—M]

e atn=>2
N M
A2 =Y aple—K+ Y, b2 — K
k=1 k=0
After rearranging
N-1 M
N =—apfl]—ay0]- X ai-K+ X bl =K
k=1 k=0

depends on ICs  depends on input x[2]...x]2—M]

Example of Difference equation

e An example of II order difference equation is
1
yinl+yn—1]+ Z‘y[n — 2] = x{n] + 2x{n— 1]

e Memory in discrete system is analogous to energy storage in continu-

ous system
e Number of initial conditions required to determine output is equal to
maximum memory of the system

Initial Conditions
Initial Conditions summarise all the information about the systems past that is needed to

determine the future outputs.
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e In discrete case, for an N order system the /V initial value are

e The initial conditions for N/-order differential equation are the values

of the first V derivatives of the output

d 2 dN—l
0. — ()| —0. — ()| i—0, - - . —— (1) |—
Y(D)|e=o0 dr’V( M=o drz.«V( ) e=o, drN_l’V( ) =0
Solving difference equation
e Consider an example of difference equation y{n| +ay[n— 1| = x{n|, n=

0,1,2... with y{—1] =0 Then

0] = —ay{—1]+ x{0]

M1 = —ay{0] +x(1]
—a(—ay{—1]+ x{0]) + x{1]
a’y|—1] — ax{0]) + x{1]

2] = —ayl]+x(2]

—a(—a’y[—1] — ax[0] + x[1]) + 2]
a’y[—1] + a°x[0] — ax[1] + x[2]

and so on

e We get y[n] as a sum of two terms:

vn) = (—a)™ty[—1]+ 32 (—a)" ix[], n=0,1,2,...

e First term (—a)”*!y[—1] depends on IC’s but not on input
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e Second term Y ((—a

IC’s

)"~ x{1] depends only on the input, but not on the

e This is true for any ARMA (auto regressive moving average) system:
the system output at time n is a sum of the AR-only and the MA-only
outputs at time 7.

e Consideran ARMA (N,M) system y{n] = — SV  ayln—i+3M bax{n—
1, n=0,1,2,... with the initial conditions y{—1],...,y[—N].

e Output at time n is:
) = yuln] +ypln]

where y;[n] and y,[n] are homogeneous and particular solutions
e First term depends on IC’s but not on input
e Second term depends only on the input, but not on the IC’s

e Note that yp[n] is the output of the system determined by the ICs only
(setting the input to zero), while y,[n] is the output of the system de-

termined by the input only (setting the ICs to zero).

e yp[n| is often called the zero-input response (ZIR) usually referred as
homogeneous solution of the filter (referring to the fact that it is deter-

mined by the ICs only)

e y,[n] is called the zero-state response (ZSR) usually referred as partic-
ular solution of the filter (referring to the fact that it is determined by

the input only, with the ICs set to zero).
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~MNAINL

Step responseﬂ of a system

Figure 1.2: Step response
e Consider the output decomposition y[n| = ya[n| + yp[n] of an ARMA
(N, M) filter

N M
Mnl=-=> ayln—1+ D bixn—1, n=0,1,2,...
i=1 i=0

with the ICs y[—1],...,y[—N].

e The output of an ARMA filter at time n is the sum of the ZIR and the
ZSR at time n.

Example of difference equation

e example: A system is described by y[n] —1.143y[n— 1] +0.4128y{n —
2] =0.0675x[n] +0.1349x{nn— 1] 4+ 0.675x{n — 2]

e Rewrite the equation as y{n] =1.143y{n— 1] —0.4128y{n— 2] 4 0.0675x[n| +
0.1349x{n — 1] 4 0.675x[n— 2]

3.5 Block Diagram representation:
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e A block diagram is an interconnection of elementary operations that

act on the input signal

e This method is more detailed representation of the system than impulse

response or differential/difference equation representations

e The impulse response and differential/difference equation descriptions
represent only the input-output behavior of a system, block diagram

representation describes how the operations are ordered

e Each block diagram representation describes a different set of internal

computations used to determine the system output
e Block diagram consists of three elementary operations on the signals:

— Scalar multiplication: y(t) = cx(¢) or y[n] = x[n], where c is a

scalar
— Addition: y(¢) = x(¢) + w(¢t) or y[n] = x[n] + win].
e Block diagram consists of three elementary operations on the signals:

— Integration for continuous time LTI system: y(¢) = [*_ x(t)d=

Time shift for discrete time LTI system: y[n] = x[n— 1]

e Scalar multiplication: y(f) = cx(t) or y[n| = x[n|, where c is a scalar

x(r) c y(1r) =cx(t)

x[n] o yin] = ecx[n]

Scalar Multiplication

x(1) y(1) = x(1) + w(1)
- TS

x[n] v[n] = x[n] + w[n]

w(r)

wn]

Addition
e Addition: y(t) = x(t) + w(t) or y[n| = x[n| + w{n|

e Integration for continuous time LTI system: y(t) = [*_ x(t)dt

)
Time shift for discrete time LTI system: y[n] = x{n— 1
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X(T) i f —_— (1) = J x(bDdt

o

x[n] —= 8§ — yv[n]l=x[n-—1]

Integration and timeshifting

: by | w(n]
x[n] | - > ¥ —t—— ¥ 1 » y[n]
|
R |
: 5 | S
| |
| b |
| XIn=1] > > ¥ | I = = yln-1]
| |
' :
I &
| S | S
| |
| l b, i -t l
: x[n -2] > : « y(n -2}
B e e e i i I
Figure 1.10: Example 1: Direct form I
Example 1

e Consider the system described by the block diagram as in Figure 1.10
e Consider the part within the dashed box

e The input x[7] is time shifted by 1 to get x[n— 1] and again time shifted

by one to get x[n— 2]. The scalar multiplications are carried out and
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x[n]

yin]

» — O -
> M
1
=
vV € n »n -

(a)

Figure 1.11: Example 2: Direct form I

they are added to get w[n] and is given by
w{n] = box[n] + byx[n— 1] + bax[n— 2].

e Write y[n] in terms of w(n| as input y[n] = wln| — a1 y{n— 1] — azy[n— 2]

e Put the value of w{n|] and we get y[n] = —ai1y[n— 1] — azy|{n— 2] + box|n]
+ by x[n— 1] + bax{n— 2]
and y[n|+ay[n— 1]+ axy[n—2] = box[n] + by x[n— 1] + by x[n— 2]
e The block diagram represents an LTI system

Example 2

e Consider the system described by the block diagram and its difference

equation is y[n] 4+ (1/2)y[n— 1] — (1/3)y[n— 3] = x[n] + 2x{n— 2]
Example 3

e Consider the system described by the block diagram and its difference
equation is y[n|+ (1/2)y[n— 1]+ (1/4)y[n— 2] = x{n— 1]

x[n] — S > 1 > y[n]
_1 =
2
_1 B3
=
(b)

Figure 1.12: Example 3: Direct form 1
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e Block diagram representation is not unique, direct form II structure of

Example 1

e We can change the order without changing the input output behavior

Let the output of a new system be £[n]| and given input x{n] are related

by
fln) = —a1 fln— 1] — az f[n— 2] + x|[n]

e The signal f[n| acts as an input to the second system and output of

second system is
Mn] = bo fln]| + by fln— 1]+ bz fln— 2].
e The block diagram representation of an LTT system is not unique

Continuous time

e Rewrite the differential equation

z akd k_)/(f) k:zabkd ;(X(r)

as an integral equation. Let {9 (¢) = v(¢) be an arbitrary signal, and

set

Jﬂ)(r):/_r =D (tygr, n—1,2,3,...

where {7 (¢) is the n-fold integral of v(¢) with respect to time

e Rewrite in terms of an initial condition on the integrator as

v (1) :f{)tv(”—ll'(r)d1+ UM (0), n=1,2.3,...

e If we assume zero ICs, then differentiation and integration are inverse

operations, ie.

%v(”)(r): WS 50 andl =128

e Thus, it V= M and integrate /V times, we get the integral description
of the system

> k= 0Va, N0 () = k= 0Mp V=B (¢)

e For second order system with ap = 1. the differential equation can be
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b,
x(1) I — 3 > ¥ I—» y(1)
J ‘ ‘ Iy
h -a
xMn) @ ) «—« ')“”m
I ‘ f
b -a
x12)“] | .__D ﬂ \l.'-!}(”
Direct form | structure
Figure 1.25: Direct form I
written as
—ay "V (¢) — agy® (¢) + bpx(t) + a1 XV (6) + box¥ (¢
fn b,
X(1) m— ¥ I - -y — y(!

|

by
—al
- > ¥
f“’(‘) i
J

—dg l b,
« >
21
Direct form Il structure
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Recommended Questions

1. Show that
(a) x(r)=8(t)=1x(1)

(b) x(e)*8(t—1t,)=x(t—1,)
(¢) x(t)*u(l)=f‘ x(r)dr

(d) x()xult=1)= [ "x(r)dr

-0

(a) By definition (2.6) and Eq. (1.22) we have

x(t)=8(1) =fx x(r)d(t—=7)dr=x(7)l,u, =x(1)

(b) By Egs. (2.7) and (/.22) we have
x(1)+8(t—tg) =8(t = ty) +x(1) = [ 8(r~tp)x(t~7)dr

=X(l "T)l,.,"”X(l _10)

(¢) By Eqgs. (2.6) and (1.19) we have

x(l)'u(l)-—'/: x(r)u(t—r)dr= [ x(r)dr

7<t

. 1
since w1t 1-)—{0 m—

2. Evaluate y (t) =x (t) * h(t), where x (t) and h (t) are shown in Fig. 2-6 (a) by analytical
technique, and (b) by a graphical method.

xii) hin)

Fig. 2-6
3. Consider a continuous-time LTI system described by

1 s
Y1) =T(x()) = 7 [ k() dn

"_
a. Find and sketch the impulse response h(t) of the system.
b. Is this system causal?

5. Lety (t) be the output of a continuous-time LTI system with input x(t) . Find the output of
the system if the input is X!(t) , where X' (t) is the first derivative of X(t) .

6. Verify the BIBO stability condition for continuous-time LTI systems.

- ¥

‘v’
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7. Consider a stable continuous-time LTI system with impulse response h (t) that is real and even.
Show that Cos wt and sin wt are Eigen functions of this system with the same real Eigen value.

8. The continuous-time system shown in Fig. 2-19 consists of two integrators and two scalar
multipliers. Write a differential equation that relates the output y(t) and the input x(t).

¢
x(1) et) J-

j‘ wi)

wir)

ﬂ"

Fig. 2-19
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