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Abstract. Variant satisfiability is a theory-generic algorithm to decide
quantifier-free satisfiability in an initial algebra TΣ{E when the theory
pΣ,Eq has the finite variant property and its constructors satisfy a com-
pactness condition. This paper: (i) gives a precise definition of several
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1 Introduction

SMT solving is at the heart of some of the most effective theorem proving and
infinite-state model checking formal verification methods that can scale up to
impressive verification tasks. A current limitation, however, is its lack of ex-
tensibility : current SMT solvers support a (typically small) library of decidable
theories. Although these theories can be combined by the Nelson-Oppen (NO)
[32, 33] or Shostak [35] methods under some conditions, only the theories in the
SMT solver library and their combinations are available to the user: any other
theories extending the tool must be implemented by the tool builders.

In practice, of course, the problem a user has to solve may not be expressible
by the theories available in an SMT solver’s library. Therefore, the goal of making
SMT solvers user-extensible, so that a user can easily define new decidable
theories and use them in the verification process is highly desirable.

For a well-known subproblem of SMT solving, such user extensibility has re-
cently been achieved: E-unifiability is the subproblem of satisfiability defined by:
(i) considering theories of the form thpTΣ{EpXqq, associated to equational the-
ories pΣ,Eq, where thpTΣ{EpXqq denotes the theory of the free pΣ,Eq-algebra
TΣ{EpXq on countably many variables X, and (ii) restricting ourselves to posi-
tive (i.e., negation-free) quantifier-free (QF) formulas. Lack of extensibility was
the same: a unification tool supports a usually small library of theories pΣ,Eq,
which can be combined by methods similar to the NO one (the paper [2] explic-
itly relates the NO algorithm and combination algorithms for unification). Again,
the user could not extend such decidable unifiability/unification algorithms by
defining new theories and using a theory-generic algorithm. This is now possi-
ble for theories pΣ,Eq satisfying the finite variant property (FVP) [13] thanks
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to variant unification based on folding variant narrowing [18]. In fact, variant
unification for user-definable FVP theories is already supported by Maude 2.7.1.

This suggests an obvious question: could variant unification be generalized
to variant satisfiability, so that, under suitable conditions on and FVP theory
pΣ,Eq, satisfiability of QF formulas in the initial algebra TΣ{E becomes decidable
by a theory-generic satisfiability algorithm? This would then make satisfiability
user-extensible as desired. This question has been positively answered in [28–30]
by giving general conditions under which satisfiability of QF formulas in the
initial algebra TΣ{E of an FVP theory pΣ,Eq is decidable. Section 3 summarizes
the main results from [28–30]; but the punchline is easy to summarize: Suppose
that: (i) the convergent rewrite theory R “ pΣ,B,Rq is a so-called FVP decom-
position of pΣ,Eq (which is what it means for pΣ,Eq to be FVP), (ii) B has
a finitary B-unification algorithm, and (ii) R has an OS-compact constructor
decomposition RΩ (definition in Section 3). Then satisfiability of QF formulas
in TΣ{E is decidable by a theory-generic algorithm called variant satisfiability.

What this paper is about. The results in [28–30] do not really provide an
algorithm in the full sense of the word, but rather a theoretical skeleton on which
such an algorithm can be fleshed out. Specifically, they assume that the construc-
tor decomposition RΩ is OS-compact, but do not provide a way to automate both
the checking of OS-compactness and the implementation of the various auxiliary
functions needed for variant satisfiability based on OS-compactness. They also
use the notions of constructor variant and constructor unifier (see Section 3),
but give only their theoretical definitions instead of algorithms to compute them.

Main Contributions. A theory-generic algorithms such as variant satisfiability
manipulates metalevel data structures such as theories, signatures, equations,
disequations, rewrite rules, and the like. In this paper we provide for the first
time: (i) a full-fledged algorithm for variant satisfiability with its sub-algorithms;
(ii) a proof of its correctness; and (iii) a reflective Maude implementation of it.
The algorithm uses the following auxiliary functions:

These functions automate solutions for the two main subproblems already men-
tioned: (a) checking and satisfiability in OS-compact theories; and (b) com-
puting constructor variants and constructor unifiers. These sub-algorithms are
defined and proved correct at the metalevel of rewriting logic. Since rewriting
logic is reflective [10], the correctness-preserving passage from the metalevel de-
scription of the sub-algorithms to their implementations is very direct: we just
meta-represent them at the logic’s object level as suitable meta-level theories
extending Maude’s META-LEVEL module [8].



Metalevel Algorithms For Variant Satisfiability 3

This paper is a substantially extended version of the conference paper [36]. In
comparison with the conference version, the following are totally new additions:

1. Proofs of all results are given.

2. More examples are given throughout the paper to illustrate key notions and
point out counterexamples, including several substantial new examples in
Sections 4.3 and 5.1.

3. A description of important new optimizations, now supported by the tool, of
the algorithms for generating constructor variants and constructor unifiers
has been added in Section 4.4.

4. A new section describing several descent maps in the sense of [28, 30] now
supported by the tool to both widen the scope of theories it can handle and
increase efficiency has also been added (Section 4.5).

2 Preliminaries on Order-Sorted Algebra and Rewriting

The material is adapted from [26, 18, 29]. Due to space limitations the following
elementary notions, which can be found in [26], are assumed known: (i) order-

sorted (OS) signature Σ; (ii) set pS “ pS{”ďq of connected components (denoted

rss P pS) of a poset of sorts pS,ďq; (iii) sensible OS signature; (iv) order-sorted
Σ-algebras and homomorphisms, and its associated category OSAlgΣ ; and (v)
the construction of the term algebra TΣ and its initiality in OSAlgΣ when Σ

is sensible. Furthermore, for connected components rs1s, . . . , rsns, rss P pS,

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ď i ď n, s1 P rssu

denotes the family of “subsort polymorphic” operators f .

TΣ will (ambiguously) denote: (i) the term algebra; (ii) its underlying S-

sorted set; and (iii) the set TΣ “
Ť

sPS TΣ,s. For rss P pS, TΣ,rss “
Ť

s1Prss TΣ,s1 .
An OS signature Σ is said to have non-empty sorts iff for each s P S, TΣ,s “ H.
We will assume throughout that Σ has non-empty sorts. An OS signature Σ is
called preregular [19] iff for each t P TΣ the set ts P S | t P TΣ,su has a least
element, denoted lsptq. We will assume throughout that Σ is preregular.

An S-sorted set X “ tXsusPS of variables, satisfies s “ s1 ñ Xs XXs1 “ H,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣpXq, is the initial algebra for the signature
ΣpXq obtained by adding to Σ the variables X as extra constants. Since a ΣpXq-
algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α P rXÑAs, the ΣpXq-initiality of
TΣpXq can be expressed as the following theorem:

Theorem 1. (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ and
α P rXÑAs, there exists a unique Σ-homomorphism, α : TΣpXq Ñ A extending
α, i.e., such that for each s P S and x P Xs we have xαs “ αspxq.
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In particular, when A “ TΣpXq, an interpretation of the constants in X, i.e.,
an S-sorted function σ P rXÑTΣpXqs is called a substitution, and its unique
homomorphic extension σ : TΣpXq Ñ TΣpXq is also called a substitution. De-
fine dompσq “ tx P X | x “ xσu, and ranpσq “

Ť

xPdompσq varspxσq. A variable
specialization is a substitution ρ that just renames a few variables and may lower
their sort. More precisely, dompρq is a finite set of variables tx1, . . . , xnu, with
respective sorts s1, . . . , sn, and ρ injectively maps the x1, . . . , xn to variables
x11, . . . , x

1
n with respective sorts s11, . . . , s

1
n such that s1i ď si, 1 ď i ď n.

The first-order language of equational Σ-formulas is defined in the usual
way: its atoms are Σ-equations t “ t1, where t, t1 P TΣpXqrss for some rss P pS
and each Xs is assumed countably infinite. The set FormpΣq of equational Σ-
formulas is then inductively built from atoms by: conjunction (^), disjunction
(_), negation ( ), and universal (@x :s) and existential (Dx :s) quantification
with sorted variables x:s P Xs for some s P S. The literal  pt “ t1q is denoted
t “ t1. Given a Σ-algebra A, a formula ϕ P FormpΣq, and an assignment α P
rYÑAs, with Y “ fvarspϕq the free variables of ϕ, the satisfaction relation
A,α |ù ϕ is defined inductively as usual: for atoms, A,α |ù t “ t1 iff tα “

t1α; for Boolean connectives it is the corresponding Boolean combination of
the satisfaction relations for subformulas; and for quantifiers: A,α |ù p@x:sq ϕ
(resp. A,α |ù pDx :sq ϕ) holds iff for all a P As (resp. some a P As) we have
A,αZtpx:s, aqu |ù ϕ, where the assignment αZtpx:s, aqu extends α by mapping
x:s to a. Finally, A |ù ϕ holds iff A,α |ù ϕ holds for each α P rYÑAs, where
Y “ fvarspϕq. We say that ϕ is valid (or true) in A iff A |ù ϕ. We say that ϕ is
satisfiable in A iff Dα P rYÑAs such that A,α |ù ϕ, where Y “ fvarspϕq. For a
subsignature Ω Ď Σ and A P OSAlgΣ , the reduct A|Ω P OSAlgΩ agrees with
A in the interpretation of all sorts and operations in Ω and discards everything
in Σ ´Ω. If ϕ P FormpΩq we have the equivalence A |ù ϕ ô A|Ω |ù ϕ.

An OS equational theory is a pair T “ pΣ,Eq, with E a set of Σ-equations.
OSAlgpΣ,Eq denotes the full subcategory of OSAlgΣ with objects those A P

OSAlgΣ such that A |ù E, called the pΣ,Eq-algebras. OSAlgpΣ,Eq has an
initial algebra TΣ{E [26]. Given T “ pΣ,Eq and ϕ P FormpΣq, we call ϕ T -valid,
written E |ù ϕ, iff A |ù ϕ for each A P OSAlgpΣ,Eq. We call ϕ T -satisfiable iff
there exists A P OSAlgpΣ,Eq with ϕ satisfiable in A. Note that ϕ is T -valid iff
 ϕ is T -unsatisfiable. The inference system in [26] is sound and complete for OS
equational deduction, i.e., for any OS equational theory pΣ,Eq, and Σ-equation
u “ v we have an equivalence E $ u “ v ô E |ù u “ v. Deducibility
E $ u “ v is abbreviated as u “E v, called E-equality. An E-unifier of a system
of Σ-equations, i.e., a conjunction φ “ u1 “ v1 ^ . . . ^ un “ vn of Σ-equations
is a substitution σ such that uiσ “E viσ, 1 ď i ď n. An E-unification algorithm
for pΣ,Eq is an algorithm generating a complete set of E-unifiers Unif Epφq for
any system of Σ equations φ, where “complete” means that for any E-unifier
σ of φ there is a τ P Unif Epφq and a substitution ρ such that σ “E τρ, where
“E here means that for any variable x we have xσ “E xτρ. The algorithm is
finitary if it always terminates with a finite set Unif Epφq for any φ.
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Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular1 iff for each u “ v P B and variable special-
ization ρ, lspuρq “ lspvρq.

In the above logical notions the lack of predicate symbols is only apparent :
full order-sorted first-order logic can be reduced to order-sorted algebra and
equational formulas. The essential idea is to view a predicate ppx1:s1, . . . , xn:snq
as a function symbol p : s1 . . . sn Ñ Pred , with Pred , a new sort having a
constant tt . An atomic formula ppt1, . . . , tnq is then expressed as the equation
ppt1, . . . , tnq “ tt . We refer the reader to [28, 29] for a detailed account of this
reduction of predicate symbols to function symbols.

Recall the notation for term positions, subterms, and term replacement from
[14]: (i) positions in a term viewed as a tree are marked by strings p P N˚
specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) trusp denotes the result of replacing subterm t|p at position p by u.

Definition 1. A rewrite theory is a triple R “ pΣ,B,Rq with pΣ,Bq an order-
sorted equational theory and R a set of Σ-rewrite rules, i.e., sequents l Ñ r,
with l, r P TΣpXqrss for some rss P pS. In what follows it is always assumed that:

1. For each lÑ r P R, l R X and varsprq Ď varsplq.
2. Each rule l Ñ r P R is sort-decreasing, i.e., for each variable specialization

ρ, lsplρq ě lsprρq.
3. Σ is B-preregular (if B “ B0 Z U , in the broader sense of Footnote 1).
4. Each equation u “ v P B is regular, i.e., varspuq “ varspvq, and linear, i.e.,

there are no repeated variables in u, and no repeated variables in v.

The one-step R,B-rewrite relation t ÑR,B t1, holds between t, t1 P TΣpXqrss,

rss P pS, iff there is a rewrite rule l Ñ r P R, a substitution σ P rXÑTΣpXqs,
and a term position p in t such that t|p “B lσ, and t1 “ trrσsp. Note that, by
assumptions (2)–(3) above, trrσsp is always a well-formed Σ-term.

R is called: (i) terminating iff the relation ÑR,B is well-founded; (ii) strictly
B-coherent [27] iff whenever u ÑR,B v and u “B u1 there is a v1 such that
u1 ÑR,B v1 and v “B v1; (iii) confluent iff u Ñ˚

R,B v1 and u Ñ˚
R,B v2 imply

that there are w1, w2 such that v1 Ñ
˚
R,B w1, v2 Ñ

˚
R,B w2, and w1 “B w2 (where

Ñ˚
R,B denotes the reflexive-transitive closure of ÑR,B); and (iv) convergent if

(i)–(iii) hold. If R is convergent, for each Σ-term t there is a term u such that
t Ñ˚

R,B u and pEvq u ÑR,B v. We then write u “ t!R,B, and call t!R,B the
R,B-normal form of t, which, by confluence, is unique up to B-equality.

1 When the axioms B consist of a combination of associativity, commutativity, and
(left and/or right) identity axioms, we can decompose B into the disjoint union
B “ B0 Z U , where B0 are associativity and/or commutativity axioms, and U are
left and/or right identity axioms. The equations in U , of the general form fpe, xq “ x
and/or fpx, eq “ x, can be oriented as rewrite rules RpUq of the form fpe, xq Ñ x
and/or fpx, eq Ñ x to be applied modulo B0. The B-preregularity notion can then
be broadened by requiring only that: (i) Σ is preregular; (ii) Σ is B0-preregular in
the standard sense that lspuρq “ lspvρq for all u “ v P B0 and sort specializations
ρ; and (iii) the rules RpUq are sort-decreasing in the sense of Definition 1. Maude
automatically checks B-preregularity of an OS signature Σ in this broader sense [8].
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Given a set E of Σ-equations, let RpEq “ tuÑ v | u “ v P Eu. A decompo-
sition of an order-sorted equational theory pΣ,Eq is a convergent rewrite theory
R “ pΣ,B,Rq such that E “ E0 Z B and R “ RpE0q. The key property of a
decomposition is the following:

Theorem 2. (Church-Rosser Theorem) [22, 27] Let R “ pΣ,B,Rq be a decom-
position of pΣ,Eq. Then we have an equivalence:

E $ u “ v ô u!R,B “B v!R,B .

If R “ pΣ,B,Rq is a decomposition of pΣ,Eq, and X an S-sorted set of
variables, the canonical term algebra CRpXq has CRpXqs “ trt!R,BsB | t P
TΣpXqsu, and interprets each f : s1 . . . sn Ñ s as the function CRpXqf :
pru1sB , . . . , runsBq ÞÑ rfpu1, . . . , unq!R,BsB . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ{EpXq – CRpXq, where h : rtsE ÞÑ rt!R,BsB . In
particular, when X is the empty family of variables, the canonical term algebra
CR is an initial algebra, and is the most intuitive possible model for TΣ{E as an
algebra of values computed by R,B-simplification.

Quite often, the signature Σ on which TΣ{E is defined has a natural decom-
position as a disjoint union Σ “ Ω Z ∆, where the elements of CR, that is,
the values computed by R,B-simplification, are Ω-terms, whereas the function
symbols f P ∆ are viewed as defined functions which are evaluated away by
R,B-simplification. Ω (with same poset of sorts as Σ) is then called a construc-
tor subsignature of Σ. Call a decomposition R “ pΣ,B,Rq of pΣ,Eq sufficiently
complete with respect to the constructor subsignature Ω iff for each t P TΣ we
have: (i) t!R,B P TΩ , and (ii) if u P TΩ and u “B v, then v P TΩ . This en-
sures that for each rusB P CR we have rusB Ď TΩ . Of course, we want Ω as
small as possible with these properties. In Example 1 below, Ω “ tJ,Ku and
∆ “ t ^ , _ u. Tools based on tree automata [11], equational tree automata
[21], or narrowing [20], can be used to automatically check sufficient completeness
of a decomposition R with respect to constructors Ω under some assumptions.

Sufficient completeness is closely related to the notion of a protecting theory
inclusion.

Definition 2. An equational theory pΣ,Eq protects another theory pΩ,EΩq iff
pΩ,EΩq Ď pΣ,Eq and the unique Ω-homomorphism h : TΩ{EΩ Ñ TΣ{E |Ω is an
isomorphism h : TΩ{EΩ – TΣ{E |Ω.

A decomposition R “ pΣ,B,Rq protects another decomposition R0 “ pΣ0, B0, R0q

iff R0 Ď R, i.e., Σ0 Ď Σ, B0 Ď B, and R0 Ď R, and for all t, t1 P TΣ0pXq
we have: (i) t “B0 t1 ô t “B t1, (ii) t “ t!R0,B0 ô t “ t!R,B, and (iii)
CR0

“ CR|Σ0
.

RΩ “ pΩ,BΩ , RΩq is a constructor decomposition of R “ pΣ,B,Rq iff R
protects RΩ and Σ and Ω have the same poset of sorts, so that by (iii) above R
is sufficiently complete with respect to Ω. Furthermore, Ω is called a subsignature
of free constructors modulo BΩ iff RΩ “ H, so that CR0

“ TΩ{BΩ .
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3 Variants and Variant Satisfiability

The notion of variant answers two questions: (i) how can we best describe sym-
bolically the elements of CRpXq that are reduced substitution instances of a given
pattern term t? and (ii) when is such a symbolic description finite?

Definition 3. Given a decomposition R “ pΣ,B,Rq of an OS equational theory
pΣ,Eq and a Σ-term t, a variant2 [13, 18] of t is a pair pu, θq such that: (i)
u “B ptθq!R,B, (ii) if x R varsptq, then xθ “ x, and (iii) θ “ θ!R,B, that is,
xθ “ pxθq!R,B for all variables x. pu, θq is called a ground variant iff u P TΣ.
Note that if pu, θq is a ground variant of some t, then rusB P CR. Given variants
pu, θq and pv, γq of t, pu, θq is called more general than pv, γq, denoted pu, θq ĚR,B

pv, γq, iff there is a substitution ρ such that: (i) θρ “B γ, and (ii) uρ “B v. Let
JtKR,B “ tpui, θiq | i P Iu denote a most general complete set of variants of t,
that is, a set of variants such that: (i) for any variant pv, γq of t there is an
i P I, such that pui, θiq ĚR,B pv, γq; and (ii) for i, j P I, i “ j ñ ppui, θiq ĞR,B

puj , θjq ^ puj , θjq ĞR,B pui, θiqq. A decomposition R “ pΣ,B,Rq of pΣ,Eq has
the finite variant property [13] (FVP) iff for each Σ-term t there is a finite most
general complete set of variants JtKR,B “ tpu1, θ1q, . . . , pun, θnqu.

If B has a finitary unification algorithm, the folding variant narrowing strat-
egy described in [18] provides an effective method to generate JtKR,B . Further-
more, JtKR,B is finite for each t, so that the strategy terminates iff R is FVP.

Example 1. Let B “ pΣ,B,Rq with Σ having a single sort, say Bool , constants
J,K, and binary operators ^ and _ , B the associativity and commutativity
(AC) axioms for both ^ and _ , and R the rules: x^ J Ñ x, x^ K Ñ K,
x _ K Ñ x, and x _ J Ñ J. Then B is FVP. For example, Jx ^ yKR,B “

tpx^ y, idq, py, tx ÞÑ Juq, px, ty ÞÑ Juq, pK, tx ÞÑ Kuq, pK, ty ÞÑ Kuqu.

FVP is a semi-decidable property [7], which can be easily verified (when
it holds) by checking, using folding variant narrowing, that for each function
symbol f the term fpx1, . . . , xnq, with the sorts of the x1, . . . , xn those of f , has
a finite number of most general variants.

Folding variant narrowing provides also a method for generating a complete
set of E-unifiers when pΣ,Eq has a decomposition R “ pΣ,B,Rq with B having
a finitary B-unification algorithm [18]. To express systems of equations, say,
u1 “ v1 ^ . . . ^ un “ vn, as terms, we can extend Σ to a signature Σ^ by
adding:

1. for each connected component rss that does not already have a top element,
a fresh new sort Jrss with Jrss ą s1 for each s1 P rss. In this way we obtain
a (possibly extended) poset of sorts pSJ,ěq;

2. fresh new sorts Lit and Conj with a subsort inclusion Lit ă Conj , with a
binary conjunction operator ^ : Lit Conj Ñ Conj , and

2 For a discussion of similar but not exactly equivalent versions of the variant notion
see [7]. Here we follow the formulation in [18].



8 S. Skeirik and J. Meseguer

3. for each connected component rss P xSJ with top sort Jrss, binary operators
“ : Jrss Jrss Ñ Lit and “ : Jrss Jrss Ñ Lit .

Theorem 3. [29] Under the above assumptions on R, let φ “ u1 “ v1 ^ . . . ^
un “ vn be a system of Σ-equations viewed as a Σ^-term of sort Conj . Then

tθγ | pφ1, θq P JφKR,B ^ γ P Unif Bpφ
1
q ^ pφ1γ, θγq is a variant of φu

is a complete set of E-unifiers for φ, where Unif Bpφ
1q denotes a complete set

of most general B-unifiers for each variant φ1 “ u11 “ v11 ^ . . . ^ u1n “ v1n.

Since if R “ pΣ,B,Rq is FVP, then R^ “ pΣ^, B,Rq is also FVP, Theo-
rem 3 shows that if a finitary B-unification algorithm exists and R is an FVP
decomposition of pΣ,Eq, then E has a finitary E-unification algorithm.

The key question asked and answered in [28, 29] is: given an FVP decom-
position R “ pΣ,B,Rq of an equational theory pΣ,Eq, under what condi-
tions is satisfiability of QF equational Σ-formulas in the canonical term alge-
bra CR decidable? It turns out that: (i) R having a constructor decomposition
RΩ “ pΩ,BΩ , RΩq, and (ii) the associated notions of constructor variant and
constructor unifier [29] play a crucial role in answering this question.

Definition 4. Let R “ pΣ,B,Rq be a decomposition of pΣ,Eq, and let RΩ “

pΩ,BΩ , RΩq be a constructor decomposition of R. Then an R,B-variant pu, θq
of a Σ-term t is called a constructor R,B-variant of t iff u P TΩpXq.

Suppose, furthermore, that B has a finitary B-unification algorithm, so that,
given a unification problem φ “ u1 “ v1 ^ . . . ^ un “ vn, Theorem 3 allows us
to generate the complete set of E-unifiers

tθγ | pφ1, θq P JφKR,B ^ γ P Unif Bpφ
1
q ^ pφ1γ, θγq is a variant of φu

Then a constructor E-unifier3 of φ is either: (1) a unifier θγ in the above set
with φ1γ P TΩ^pXq; or otherwise, (2) a unifier θγα such that: (i) θγ belongs the
above set, (ii) α is a substitution of the variables in ranpθγq such that φ1γα P
TΩ^pXq, and (iii) pφ1γα, θγαq is a variant of φ. mguΩRpφq denotes a set of most
general constructor E-unifiers of φ, i.e., for any constructor E-unifier µ of φ
there is another one η P mguΩRpφq and a substitution ν such that µ “B ην.

Note that if pv, δq is a ground variant of t, then rvsB P CR, so that v is
an Ω-term. Therefore, any ground variant pv, δq of t is “covered” by some con-
structor variant pu, θq of t, i.e., pu, θq ĚR,B pv, δq. If pΣ,Eq has a decomposition
R “ pΣ,B,Rq, B has a finitary B-unification algorithm and we are only inter-
ested in characterizing the ground solutions of an equation in the initial algebra
TΣ{E , only constructor E-unifiers are needed, since they completely cover all
such solutions. Likewise, if we are only interested in unifiability of a system of
equations only constructor E-unifiers are needed.

Theorem 4. [28, 29] Let pΣ,Eq have a decomposition R “ pΣ,B,Rq with B
having a finitary B-unification algorithm. Then, for each system of Σ-equations
φ “ u1 “ v1 ^ . . . ^ un “ vn, where Y “ varspφq, we have:

3 [28, 29] give examples of constructor variants and constructor unifiers.
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1. (Completeness for Ground Unifiers). If δ P rYÑTΣs is a ground E-unifier
of φ, then there is a constructor E-unifier η P mguΩRpφq and a substitution
β such that δ “E ηβ, i.e., xδ “E xηβ for each variable x P Y .

2. (Unifiability). TΣ{E |ù pDY q φ iff φ has a constructor E-unifier.

Given an OS equational theory pΣ,Eq, call a Σ-equality u “ v E-trivial iff
u “E v, and a Σ-disequality u “ v E-consistent iff u “E v. Likewise, call a
conjunction

Ź

D of Σ-disequalities E-consistent iff each u “ v in D is so.
Theorem 4 is a key step to find conditions for the decidable satisfiability of

QF equational Σ-formulas in CR for R “ pΣ,B,Rq an FVP decomposition of
pΣ,Eq, where B has a finitary B-unification algorithm and R has a constructor
decomposition RΩ “ pΩ,BΩ , RΩq. The key idea is to reduce the problem to
one of satisfiability of a conjunction of Ω-disequalities in the simpler canonical
term algebra CRΩ

. By CR|Ω “ CRΩ
, Theorem 4, and the Descent Theorems in

[28, 29] (see [28, 29] for full details), we can apply the following algorithm to a
conjunction of literals φ “

Ź

G ^
Ź

D, with G equations and D disequations:

1. Thanks to Theorem 4 we need only compute the constructor E-unifiers
mguΩRp

Ź

Gq, and reduce to the case of deciding the satisfiability of some
conjunction of disequalities p

Ź

Dαq!R,B , for some α P mguΩRp
Ź

Gq, discard-
ing any p

Ź

Dαq!R,B containing a B-inconsistent disequality.
2. For each remaining p

Ź

Dαq!R,B we can then compute a finite, complete set of
most general R,B-variants Jp

Ź

Dαq!R,BKR,B by folding variant narrowing,
and obtain for each of them its BΩ-consistent constructor variants

Ź

D1.
3. Then by the Descent Theorems in [28, 29], φ will be satisfiable in CR iff

Ź

D1

is satisfiable in CRΩ
for some such

Ź

D1 and some such α.

Therefore, the method hinges upon being able to decide when a conjunction
of Ω-disequalities

Ź

D1 is satisfiable in CRΩ
. This is decidable if RΩ is the

decomposition of an OS-compact theory, which generalizes the notion of compact
theory in [12]:

Definition 5. [28, 29] An equational theory pΣ,Eq is called OS-compact iff:
(i) for each sort s in Σ we can effectively determine whether TΣ{E,s is finite
or infinite, and, if finite, can effectively compute a representative ground term
repprusq P rus for each rus P TΣ{E,s (ii) “E is decidable and E has a finitary
unification algorithm; and (iii) any E-consistent finite conjunction

Ź

D of Σ-
disequalities whose variables all have infinite sorts is satisfiable in TΣ{E.

The reason why satisfiability of a conjunction of disequalities in the initial
algebra of an OS-compact theory is decidable [28, 29] is fairly obvious: by (iii) it
is decidable when all variables have infinite sorts; and we can always reduce to a
disjunction of formulas in that case by instantiating each variable with a finite
sort s by all the possible representatives in TΣ{E,s. Therefore we have:

Corollary 1. For R “ pΣ,B,Rq an FVP decomposition of pΣ,Eq, where B
has a finitary B-unification algorithm and R has an OS-compact constructor
decomposition RΩ, satisfiability of QF equational Σ-formulas in CR is decidable.
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The papers [28, 29] contain many examples of commonly used theories that
have FVP specifications whose constructor decompositions are OS-compact.
This can be established by one of the two methods discussed below.

A first method to show OS-compactness is both very simple and widely appli-
cable to constructor decompositions of FVP theories. It applies to OS equational
theories of the form pΩ,ACCU q, where ACCU stands for any combination of
associativity and/or commutativity and/or left- or right-identity axioms, except
combinations where the same operator is associative but not commutative. We
also assume that if any typing for a binary operator f in a subsort-polymorphic

family f
rss rss
rss satisfies some axioms in ACCU , then any other typing in f

rss rss
rss

satisfies the same axioms. The following theorem generalizes to the order-sorted
and ACCU case a similar result in [12] for the unsorted and AC case:

Theorem 5. [28, 29] Under the above assumptions pΩ,ACCU q is OS-compact.
Furthermore, satisfiability of QF Ω-formulas in TΩ{ACCU is decidable.

The range of FVP theories whose initial algebras have decidable QF satisfi-
ability is greatly increased by a second method of satisfiability-preserving FVP
parameterized theories. For our present purposes it suffices to summarize the ba-
sic general facts and assumptions for the case of FVP parameterized data types
with a single parameter X. That is, we can focus on parameterized FVP theories
of the form RrXs “ pR, Xq, where R “ pΣ,B,Rq is an FVP decomposition of
an OS equational theory pΣ,Eq, and X is a sort in Σ (called the parameter sort)
such that: (i) is empty, i.e., TΣ,X “ H; and (ii) X is a minimal element in the
sort order, i.e., there is no other sort s1 with s1 ă X.

Consider an FVP decomposition G “ pΣ1, B1, R1q of a finitary OS equa-
tional theory pΣ1, E1q, which we can assume without loss of generality is dis-
joint from pΣ,Eq, and additionally let s be a sort in Σ1. Then the instantiation
RrG, X ÞÑ ss “ pΣrΣ1, X ÞÑ ss, BYB1, RYR1q is the decomposition of a theory
pΣrΣ1, X ÞÑ ss, E Y E1q, extending pΣ1, E1q, where the signature ΣrΣ1, X ÞÑ ss
is defined as the union ΣrX ÞÑ ssYΣ1, with ΣrX ÞÑ ss just like Σ, except for X
renamed to s. Its set of sorts is pS´tXuqZS1, and the poset ordering combines
those of ΣrX ÞÑ ss and Σ1. Furthermore, RrG, X ÞÑ ss is also FVP under mild
assumptions [28].

Suppose B, B1 and B Y B1 have finitary unification algorithms and both
RrXs “ pR, Xq and G protect, respectively, the two constructor theories, say
RΩrXs “ pΩ,BΩ , RΩq and GΩ1 “ pΩ1, BΩ1 , RΩ1q. Then RrG, X ÞÑ ss will protect
RΩrGΩ1 , X ÞÑ ss. Suppose, further, that BΩ , BΩ1 , and BΩ Y BΩ1 have decid-
able equality. The general satisfiability-preserving method of interest is then as
follows: (i) assuming that GΩ1 is the decomposition of an OS-compact theory,
then (ii) under some assumptions about the cardinality of the sort s, prove the
OS-compactness of RΩrGΩ1 , X ÞÑ ss. It then follows from our earlier reduction
of satisfiability in initial FVP algebras to their constructor decompositions that
satisfiability of QF formulas in the initial model of the instantiation RrG, X ÞÑ ss
is decidable.

In [28] the following parameterized data types have been proved satisfiability-
preserving following the just-described pattern of proof: (i) LrXs, parameterized
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lists, which is just an example illustrating the general case of any constructor-
selector-based [31] parameterized data type; (ii) LcrXs, parameterized compact
lists, where any two identical contiguous list elements are identified [16, 15]; (iii)
MrXs, parameterized multisets; (iv) SrXs, parameterized sets; and (v) HrXs,
parameterized hereditarily finite sets.

4 Metalevel Algorithms for Variant Satisfiability

For R “ pΣ,B,Rq an FVP decomposition of pΣ,Eq, where B has a finitary B-
unification algorithm and R has a constructor decomposition RΩ , the issue of the
decidable satisfiability of QF equational Σ-formulas in CR has been condensed
in Section 3 to two key sub-issues: (i) steps (1)–(3) in the high-level algorithm,
which reduce satisfiability of a conjunction of Σ-literals in CR to satisfiability
of a conjunction of Ω-disequalities in CRΩ

; and (ii) decidable satisfiability of
conjunctions of Ω-disequalities in CRΩ

when RΩ is OS-compact (Corollary 1).
At a theoretical level this gives the skeleton of a high-level algorithm for vari-

ant satisfiability. But at a concrete, algorithmic level several important questions,
essential for having an actual satisfiability algorithm, remain unresolved, includ-
ing: (1) how can we automatically check that the constructor decomposition RΩ

is OS-compact using the two methods for OS-compactness outlined in Section
3? (2) how can we compute constructor variants and constructor unifiers? (3)
how can we prove that the auxiliary algorithms answering questions (1) and (2)
are correct? and (4) how can we implement both the main algorithm and the
auxiliary algorithms in a correctness-preserving manner?

Let us begin with question (3). The algorithm skeleton sketched in Section 3
manipulates metalevel entities like operators, signatures, terms, equations, and
theories. Likewise, the checks for OS-compactness and the computation of con-
structor variants and constructor unifiers (questions (1)–(2)) are problems fully
expressible in terms of such metalevel entities. Therefore, both for mathematical
clarity and for simplicity of the needed correctness proofs, the definitions of the
auxiliary algorithms should be carried out at the metalevel of rewriting logic.

This brings us to question (4), which has a simple answer: since rewriting
logic is reflective [10], once we have defined and proved correct at the metalevel
the auxiliary algorithms solving questions (1) and (2), we can derive correct
implementations for them by meta-representing them at the logic’s object level
as equational or rewrite theories. In fact, this can be carried out in Maude by
defining suitable meta-level theories extending the META-LEVEL module [8].

The previous paragraphs lead us to the main contributions of the present
paper. We answer questions (1) and part of (3) by defining and proving correct
at the metalevel a method to check OS-compactness, including: (a) checking
which sorts s satisfy |TΩ{BΩ ,s| ă ℵ0, and (b) computing for each such s a unique
representative repprtsBΩ q for each rtsBΩ P TΩ{BΩ ,s. We answer question (2) and
the other part of (3) by defining and proving correct at the meta-level a method
to compute constructor unifiers and constructor variants. Furthermore, for im-
proved efficiency we also provide an optimized version of constructor variant and
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unifier generation in Section 4.4; and discuss also the method of descent maps
in the sense of [28, 30] —which can both increase efficiency and widen the scope
of decidable theories— and some specific descent maps currently supported in
Section 4.5. Finally, we answer question (4) by meta-representing both the auxil-
iary algorithms (proved correct in this section), and the main algorithm (already
proved correct in [28–30]) in Section 5.

To help guide the discussion, the reader may refer to the tree diagram in the
Introduction, which describes the dependencies among different subalgorithms.

4.1 Checking OS-Compactness

In this section we present a high-level description of the algorithms needed to
check that a constructor decomposition RΩ “ pΩ,BΩ , RΩq is OS-compact. Since
these checks are auxiliary to the main functionality needed, namely, computing
constructor variants and constructor unifiers, some details are omitted to ease
readability; all remaining details, together with full proofs of correctness, can be
found in Appendix A.

EΩ-consistency of a conjunction of Ω-disequalities
Ź

D1 in a constructor
decomposition RΩ “ pΩ,BΩ , RΩq is easy to check: we may assume

Ź

D1 in
RΩ , BΩ-normal form and just need to check that u “BΩ v for each u “ v in
Ź

D1.
Checking that the constructor subtheory RΩ of R is OS-compact breaks into

two cases: (1) when R is an unparameterized theory ; and (2) when R is the
instantiation of a possibly nested collection of satisfiability-preserving parame-
terized theories such as, for, example, sets of lists of natural numbers. In case (2)
it is enough (for the parameterized theories described in Section 3) to check that:
(i) the unparameterized theory G in the innermost instantiation (in our example
the theory N` of naturals with addition) is OS-compact, and the chosen sort (in
our example the sort Nat) is infinite; and (ii) that the sorts chosen to instanti-
ate each remaining parameter is the principal sort of the parameterized module
immediately below in the nesting. In the above example this is just checking
that the parameter sort X for the set parameterized module is instantiated to
the principal sort, namely List , of the list parameterized module immediately
below. In this way, checking OS-compactness of RΩ in the, nested, parameter-
ized case is reduced to checking OS-compactness of the unparameterized inner
argument, plus a check of an infinite sort. All checks for the unparameterized
case (1), including the two needed in case (2), are described below.

OS-Compactness Check (Unparameterized Case). As shown in Theorem
5, a sufficient condition for an unparameterized constructor decomposition RΩ “

pΩ,BΩ , RΩq to be OS-compact is for RΩ to be of the form RΩ “ pΩ,ACCU ,Hq.
Thus, a sufficient condition is to require: (1) BΩ to be a set of ACCU axioms,
and (2) Ω to be a signature of free constructors modulo BΩ . Fortunately, both of
these subgoals are quite simple to check. Goal (1) can be solved by iterating over
each axiom and applying a case analysis against its structure. Goal (2) can be
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solved by an application of propositional tree automata (PTA). In particular, if
the rules R in R are linear and unconditional, then constructor freeness modulo
B is translatable into a PTA emptiness problem; see [34] for further details.

Finite Sort Classification. Another needed algorithm takes as input a signa-
ture Ω and a sort s and checks if |TΩ{BΩ ,s| ă ℵ0. We solve this problem in two
phases: (1) we devise an algorithm to check |TΩ,s| ă ℵ0 (2) we use this as a sub-
routine in an approximate algorithm to check |TΩ{BΩ ,s| ă ℵ0 when BΩ “ ACCU .
If the approximate algorithm fails to classify some s as either infinite or finite,
s returned to the user as a proof obligation (Appendix A, Corollary 6).

If Ω is finite and has non-empty sorts, we show that |TΩ,s| “ ℵ0 iff there
exists a cycle in the relation păq Ď S2 reachable from s where s ă s1 iff the
formula Df : s1 ¨ ¨ ¨ sn Ñ s2 P Ω Di P Nrs2 ď s ^ s ď sis _ rs

1 ă ss holds.
We construct a rewrite theory RF over S such that s ÑRF s1 iff s ă s1. If
cypSq “ ts P S | s Ñ`

RF
su, then s Ñ˚

RF
s1 with s1 P cypSq implies |TΩ,s| “ ℵ0.

Then
Ž

s1PcypSĄHq
RF $ s Ñ˚ s1 holds iff there is a cycle in the relation păq

reachable from s (Appendix A, Theorem 10).

We now lift the algorithm above to phase (2). We can show that for ACC
axioms BΩ there is an exact correspondence |TΩ{BΩ ,s| ă ℵ0 iff |TΩ,s| ă ℵ0. The
tricky case is when BΩ contains unit axioms, since they may break this happy
correspondence. For example, consider the unsorted signatureΩ “ p0, ` q where
0 is a unit element for ` . For the ACCU case, two simple checks apply in most
cases (Appendix A, Lemmas 11, 12, and 13). Failing that, the classification of
sort s is returned to the user as a proof obligation Note that, thanks to the results
in Appendix B of [30], any remaining proof obligations for checking |TΩ{BΩ ,s| ă
ℵ0 when BΩ “ ACCU are always decidable, but additional algorithms beyond
those presented here are needed to discharge such remaining proof obligations.
Extending the current algorithms and their meta-level implementation to check
finiteness of sorts in all cases when BΩ “ ACCU is left for future research.

Finite Sort Representative Generation. Here we require a method to do
two things: (1) when |TΩ{BΩ ,s| ă ℵ0, we can compute each rtsBΩ P TΩ{BΩ ,s
(2) for each such rtsBΩ , we can compute a unique representative repprtsBΩ q. We
first show how to generate TΩ,s. Recall that any order-sorted signature Ω can be
viewed as a tree automaton such that the tree automaton accepts a term t in final
state s iff t P TΩ,s. Note also that tree automata are very simple ground rewrite
theories. Let RP be the ground rewrite rules for Ω’s tree automaton over TΩYS ,
so that t P TΩ,s iff t Ñ`

RP
s. Let RG “ R´1

P then TΩ,s “ tt P TΩ | s Ñ
!
RG

tu
(Appendix A, Corollary 5). Furthermore, if |TΩ,s| ă ℵ0 and Ω has no empty
sorts, this process will always terminate. Note that we can apply the rules RG
modulo BΩ . Then the set ReppTΩ{BΩ ,sq “ trepprtsq | rts P TΩ{BΩ ,su is exactly

the set ReppTΩ{BΩ ,sq “ tt | sÑ
!
RG,BΩ

tu.
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4.2 Constructor Variants and Constructor Unifiers

We first show how to compute a set of most general constructor variants of a
term t (i.e. a set of constructor variants JtKΩR,B such that for any constructor

variant pt1, θq, we have Dpt2, ψq P JtKΩR,Brpt
2, ψq ĚR,B pt1, φqs) and then show

how to use this method to compute a set of most general constructor unifiers
mguΩRpφq. Recall that a constructor variant is just an variant pt, θq such that
t P TΩpXq. Thus, JtKΩR,B can be computed in two steps: (1) computing a set
of most general variants JtKR,B (2) for each most general variant pt1, θq, com-
pute the set of its most general constructor instances, i.e. a set of instances
mgciBpt

1q “ tt1η1, ¨ ¨ ¨ , t
1ηnu where for any other instance t1α, there exists a sub-

stitution γ and ηi with α “B ηiγ. Note that (1) can be solved via folding variant
narrowing, so we tackle (2) by a reduction to a B-unification problem via a
signature transformation Σ ÞÑ Σc. In this transformed signature, the instances
mgciBpt

1q correspond exactly to the solutions of a single B-unification problem.
The signature transformation Σ ÞÑ Σc splits into two steps: (i) we extend

the sort poset pS,ăq of Σ and Ω and (ii) likewise extend the operator sets F
and FΩ , as specified by the definitions below, respectively. Recall we assume Σ
(and thus Ω) are finite; otherwise these transformations would not be effective.

Definition 6. A constructor sort refinement of pS,ăq is defined by the follow-
ing: (a) a set Sc “ S Z SÓ with c : S Ñ SÓ a bijection, (b) a relation păcq the
smallest strict order where: (i) @s, s1 P S rs ă s1 ô rs ăc s1 ^ cpsq ăc cps1qss and
(ii) @s P S rcpsq ăc ss, and (c) functions p‚q : Sc Ñ S and p‚q : Sc Ñ SÓ defined
by s‚ “ s if s P S else c´1psq and s‚ “ s if s P SÓ else cpsq.

We let păcq also ambiguously denote its extension to strings of sorts pScq˚.
Also, note that păq Ď păcq by definition and functions p‚q and that p‚q have
unique homomorphic extensions to free monoid homomorphisms denoted by:
p‚q : pScq˚ Ñ S˚ and p‚q : pScq˚ Ñ pSÓq˚. Likewise, p‚q and p‚q have unique
extensions to powersets, p‚q : PpScq Ñ PpSq and p‚q : PpScq Ñ PpSÓq. Lastly,
p‚q|pSÓq˚ and p‚q|S˚ are bijective by definition and lift into poset and powerset
isomorphisms.

Definition 7. Given Σ “ ppS,ăq, F q and Ω “ ppS,ăq, FΩq where Ω Ď Σ and
pSc,ăc, p‚q, p‚qq is a constructor sort refinement of pS,ăq, we define:

1. Σ` “ ppSc,ăcq, F q and Ω` “ ppSc,ăcq, FΩq

2. ΣÓ “ ppSc,ăcq, F Óq and ΩÓ “ ppSc,ăcq, F ÓΩq
3. Σc “ ppSc,ăcq, F cq and Ωc “ ppSc,ăcq, F cΩq

4. ΩÓ‚ “ ppSÓ,ăc|SÓq, F
Ó

Ωq

where F Ó “ pF {FΩq Z F ÓΩ, F ÓΩ “ tf : w‚ Ñ s‚ | f : w Ñ s P FΩu, F
c “

F Z F ÓΩ, and F cΩ “ FΩ Z F ÓΩ. Similarly, we also define XÓ “ tXsusPSÓ . Then
Xc “ X ZXÓ.

We can summarize the definition above with the figure below:
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ΣpXq Σ`pXcq ΣcpXcq ΣÓpXcq ΣÓpXÓq

ΩpXq Ω`pXcq ΩcpXcq ΩÓpXcq ΩÓpXÓq ΩÓ‚pXÓq

where each arrow is a signature inclusion. The signature decorations are in-
tended to be suggestive of the transformation: Σ` extends the subsort relation;
Σc copies each constructor; ΣÓ shifts constructors below; and finally ΩÓ‚ shifts
constructors below and discards sorts S by applying p‚q. In this section, we will
primarily consider ΣcpXcq and ΩÓpXcq which we refer to as the constructor sort
refinements of Σ and Ω. The other signatures will be referenced as needed.

Note that p‚q and p‚q naturally extend into signature morphisms. The sort
mapping is either p‚q or p‚q. If t P TΣcpX

cq, then the term mapping is given
by: (a) if t “ x : s P Xc, then px : sq‚ “ x : ps‚q and px : sq‚ “ x : ps‚q, (b) if
t “ a : Ñ s P F c, then a‚ “ a‚ “ a (c) if t “ fpt1, ¨ ¨ ¨, tnq, then t‚ “ fpt‚1, ¨ ¨ ¨, t

‚
nq

and t‚ “ fpt1‚ , ¨ ¨ ¨, tn‚q. The term mappings p‚q and p‚q also naturally extend to
substitutions θ P rXc Ñ TΣcpX

cqs. Then for each px, tq P θ, we have px‚, t‚q P θ‚

and px‚, t‚q P θ‚. In particular, we note three facts: (i) p‚q : ΩpXq Ñ ΩÓ‚pXÓq is a
signature isomorphism with inverse p‚q (ii) p‚q : ΣcpXcq Ñ ΣpXq is a signature
morphism (iii) as sets of terms, TΩÓpX

Óq “ TΩÓ‚pX
Óq and TΩ “ TΩÓ “ TΩÓ‚ .

Our first goal in this subsection is to show that term sorting, sensibility, and
preregularity are all preserved by constructor sort refinement, i.e., refinement
in the sense that all existing sort information is preserved and only new sort
information is added. Note that we trivially have preservation of term sorts by
facts (i)-(iii) above since @s P Sc @t P TΣcpX

cqsrt
‚ P TΣpXqs‚ ^ s ďc s‚s, p‚q

specializes to the identity when t P TΣpXq, and @s P Srt P TΩÓ‚ ,s‚ ô t P TΩ,ss.
Thus, it is enough to prove preservation of sensibility and preregularity. However,
the example below shows our current assumptions are not strong enough.

Example 2. Consider sort poset pS,ăq “ pta, bu, tpa, bquq and signatures Σ “

ppS,ăq, tf : a Ñ a, f : b Ñ buq and Ω “ ppS,ăq, tf : b Ñ buq. The ctor sort
refinement pSc,ăcq “ pS Z ta‚, b‚u, păqZ tpa‚, aq, pb‚, bq, pa‚, b‚q, pa‚, bquq where
Σc “ ppSc,ăcq, tf : aÑ a, f : bÑ b, f : b‚ Ñ b‚uq violates preregularity for sort
a‚ where pa‚ ď

c a^ a‚ ď
c b‚q but pa ęc b‚^ b‚ ę

c aq even though Σ and Ω are
both preregular by construction.

Note in the previous example the violation occurred when a constructor had
a subsort-overloaded defined operator below. However, just restricting subsort-
overloading does not fix the problem.

Example 3. Let pS,ăq “ pta, b, cu, tpa, bq, pa, cquq, Σ “ ppS,ăq, tf : b Ñ a,
f : cÑ cuq, and Ω “ ppS,ăq, tf : c Ñ cuq. Then pSc,ăcq “ pS Z ta‚, b‚u,
păqZtpa‚, aq, pb‚, bq, pc‚, cq, pa‚, b‚q, pa‚, c‚q, pa‚, bq, pa‚, cquq. But now note Σc “

ppSc,ăcq, tf : b Ñ a, f : c Ñ c, f : c‚ Ñ c‚uq violates preregularity for sort a‚
where pa‚ ď

c b^ a‚ ď
c c‚q holds but pa ęc c‚ ^ c‚ ę

c aq.

Essentially, the invariant violated by both examples was Ω was not preregular
below Σ, in the sense that, given a symbol and arity with a constructor typing,
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it’s minimal typing was not a constructor. In order to formally specify this
invariant, we will need some auxiliary notation.

Let Σ “ ppS,ăq, F q be an arbitrary signature and pP,�q an arbitrary poset.
Let tyΣ : TΣ Ñ F be defined by the two equations tyΣpcq “ tc :Ñ s P F u
and tyΣpfpt1, ¨ ¨ ¨, tnqq “ tf : s1 ¨ ¨ ¨ sn Ñ s P F | ti P TΣsi u. Also let tyΣ
denote the function tyΣpf, wq “ tf : w1 Ñ s P F | w ď w1u. Further let
min� : PpP q Ñ P Z tHu be min�pIq “

Ź

I if pD
Ź

Iq ^
Ź

I P I else H where
Ź

I denotes the greatest lower bound of I in pP,�q if it exists.

Definition 8. Let Σ “ ppS,ăq, F q have subsignature Ω “ ppS,ăq, FΩq. Then
Ω is preregular below Σ (written Ω ă Σ) iff Ω and Σ are preregular and for
any f we have @w P S˚rtyΩpf, wq ‰ H ñ minăptyΣpf, wqq P tyΩpf, wqs where
pF,ăq is the poset where f : w Ñ s ă g : w1 Ñ s1 ô s ă s1.

We now prove constructor sort refinements ΩÓpXcq and ΣcpXcq preserve
sensibility and preregularity iff Ω and Σ are sensible and Ω ă Σ. Note, by
definition, for any signature Σ, we have lsΣptq “ minăptyΣptqq for the poset
pF,ăq and to prove Σ is preregular it is enough to show @t P TΣrlsΣptq ‰ Hs.
To complete the proof, we will need four lemmas. To preserve the logical flow
of the argument, we state them here as assumptions to be used in the main
argument and give a detailed proof of each of them in Appendix B.

Lemma 1. @t P TΣ rt P TΩ ñ lsΩptq “ lsΣptqs

Lemma 2. @t P TΩÓpX
cq{Xc rtyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓqptqs

Lemma 3. @t P TΣcpX
cq{Xc rtyΣ`pXcqptq “ tyΣpXqpt

‚qs

Lemma 4. Σ “ ppS,ăq, F q is sensible iff pΣ “ pppS,Hq, pF q is sensible where

f : rs1s ¨ ¨ ¨ rsns Ñ rs0s P pF iff Df : s11 ¨ ¨ ¨ s
1
n Ñ s10 P F with s1i P rsis for 0 ď i ď n.

Theorem 6. If Ω ă Σ and Ω and Σ are sensible, then the constructor sort
refinements ΣcpXcq “ ppSc,ăcq, F c Z Xcq and ΩÓpXcq “ ppSc,ăcq, F ÓΩ Z Xcq

are both sensible and preregular.

Proof.
Note proving Σc is sensible implies ΣcpXcq is sensible which implies ΩÓpXcq is

sensible. Then note that xΣc – pΣ and signature isomorphism preserves sensibility,
and finally apply Lemma 4.

We now prove that ΩÓpXcq is preregular. By abuse of language, let X
also denote the signature ppS,ăq, Xq. Then note @t P TΩÓpX

cqrtyΩÓpXcqptq “

tyΩÓpXÓqptq Z tyXptqs and ΩÓpXÓq X X “ H. Thus, by Lemma 2, we obtain
that @t P TΩÓpX

cq{Xc rtyΩÓpXÓqptq “ tyΩÓ‚pXÓqptqs. Thanks to the facts above,

lsΩÓpXcq “ lsΩÓ‚pXÓq Z lsX . By signature isomorphism ΩÓ‚pXÓq – ΩpXq, this

is equivalent to lsΩÓpXcq “ p‚q; lsΩpXq; p‚q Z lsX where semicolon denotes in-
order function composition. Since X is preregular by definition and ΩpXq by
assumption, lsΩÓpXcq satisfies @t P TΩÓpX

cqrlsΩÓpXcqptq ‰ Hs, as required.
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We now prove ΣcpXcq is preregular. First let t P Xc. Then t P X Z XÓ. If
t “ x :s P X then lsΣcpXcqpx :sq “ lsΣpXqpx :s‚q “ s. Similarly, if t “ x : s P XÓ,
lsΣcpXcqpx :sq “ lsΩpXqpx :s‚q‚ “ s.

Now let t P TΣcpX
cq{Xc. Note tyΣcpXcqptq “ tyΩÓpXcqptq Z tyΣ`pXcqptq, i.e.,

the type of non-variable t is from F ÓΩ or F and lsΣcpXcqptq “ minăptyΩÓpXcqptqZ

tyΣ`pXcqptqq. Suppose t P TΩÓpX
Óq{XÓ. By Lemma 2 and ΩÓ‚pXÓq – ΩpXq,

we obtain tyΩÓpXcqptq “ tyΩÓ‚pXÓqptq “ tyΩpXqpt
‚q‚. By Lemmas 1 and 3, we

have minăptyΩpXqpt
‚qq “ minăptyΣpXqpt

‚qq “ minăptyΣ`pXcqptqq. Then note
lsΣcpXcqptq “ minăptyΩpXqpt

‚q‚ Z tyΩpXqqpt
‚qq “ lsΩpXqpt

‚q‚. Finally, assume
that t P TΣcpX

cq{TΩÓpX
cq. Then we obtain tyΩÓpXcqptq “ H and lsΣcpXcqptq “

minăptyΣ`pXcqptqq “ minăptyΣpXqpt
‚qq “ lsΣpXqpt

‚q by Lemma 3. Thus, we
have @t P TΣcpX

cqrlsΣcpXcqptq ‰ Hs, as required. [\

Corollary 2. The functions lsΩÓpXcq and lsΣcpXcq are defined by:

(a) @t P TΩcpX
cq lsΩÓpXcqptq “ lsΩpXqpt

‚q‚ if t P TΩÓpX
Óq else lsΣpXqpt

‚q

(b) @t P TΣcpX
cq lsΣcpXcqptq “ lsΩpXqpt

‚q‚ if t P TΩÓpX
Óq else lsΣpXqpt

‚q

We now extend the result above to show that B-preregularity is preserved
under a weak assumption that is often satisfied in practice. We first state the
required condition and then give the proof.

Definition 9. Let B be a set of axioms, t “ t1 P B with varspt “ t1q “ Y and
α P rY Ñ Xs. We say B respects constructors iff tα P TΩpXq ô t1α P TΩpXq.

Theorem 7. Assume ΣpXq and ΩpXq are sensible and B-preregular and that
ΩpXq ă ΣpXq and B respects constructors. Then their respective constructor
sort refinements ΣcpXcq and ΩÓpXcq are also B-preregular.

Proof. We apply Theorem 6 to immediately show that ΣcpXcq and ΩÓpXcq

are sensible and preregular. We first prove ΣcpXcq is B-preregular. Thus, let
t “ t1 P B with Y “ varsptq “ varspt1q and α P rY Ñ Xcs. Note the value of
functions lsΩÓpXcq and lsΣcpXcq is completely determined by the input term t
and functions lsΩpXq and lsΣpXq. In particular, if lsΣpXqptαq “ lsΣpXqpt

1αq, then

lsΣcpXcqptαq “ lsΣcpXcqpt
1αq iff tα P TΩÓpX

Óq ô t1α P TΩÓpX
Óq by Corollary 2

(the same holds true for lsΩÓpXcq). Since B protects constructors, it is enough to

show @t P TΩpXqrtα P TΩÓpX
Óq ô α P rY Ñ TΩÓpX

Óqss where Y “ varsptq ‰ H.
The base case where t “ x : s is trivial, so assume t “ fpt1, ¨ ¨ ¨, tnq. Then
tα “ fpt1α, ¨ ¨ ¨, tnαq and tiα P TΩÓpX

Óq ô α P rY Ñ TΩÓpX
Óqs for 1 ď i ď n

by induction hypothesis. But then f : s1¨ ¨ ¨sn Ñ s P FΩ with ti P TΩpXqsi iff

f : s1‚̈ ¨ ¨sn‚ Ñ s‚ P F
Ó

Ω and fpt1α, ¨ ¨ ¨, tnαq “ tα P TΩÓpX
Óq, as required. [\

The following corollary lifts the result above to decompositions.

Corollary 3. Let R “ pΣ,B,Rq be convergent with constructor decomposition
RΩ “ pΩ,BΩ , RΩq and Ω ă Σ. Then Σc and ΩÓ are sensible and B-preregular.
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Proof. Note that protecting a constructor decomposition implies B respects con-
structors (see Def. 2). Then apply Theorem 7.

We have now shown that our construction, under mild conditions, preserves
sensibility and B-preregularity. Thus, B-unification will be well-defined in our
new signature. We now move to prove the main theorem of this section which
shows how most general constructor instances of a term modulo B may be
obtained by a single unification problem in ΣcpXcq. We first collect a number
of essential facts which relate TΩpXq to TΩÓpX

Óq we will use in the proof.

Lemma 5. Suppose that α, β P rX Ñ TΩpXqs, α
1, β1 P rXÓ Ñ TΩÓpX

Óqs, and
θ, γ P rXc Ñ TΣcpX

cqs. Let idÓ P rXc Ñ XÓs where idÓpx : sq “ x : s‚. Then:

(a) pα‚q
‚ “ α^ pα‚q‚ “ α

(b) @t, t1 P TΩpXqrt “B t1 ô t‚ “B t1‚s ^ @t, t1 P TΩÓpX
Óqrt “B t1 ô t‚ “B t1‚s

(c) rα “B β ô α‚ “B β‚s ^ rα1 “B β1 ô α1‚ “B β1‚s

(d) @t PTΣcpX
cqrt‚ “ tpidÓqs ^ pidÓq‚ “ id

(e) @t PTΣcpX
cqrptθq‚ “ t‚pθ‚q^ptθq

‚“ t‚pθ‚q^pθγq‚ “ θ‚pγ‚q^pθγq
‚“ θ‚pγ‚qs

Proof. Both (a) and (b) follow immediately since TΩÓ‚ pX
Óq “ TΩÓpX

Óq and by

isomorphism p‚q : ΩÓ‚pXÓq Ñ ΩpXq. Then (c) is an immediate application of
(b). Finally, (d) and (e) are easy structural induction proofs. [\

We now give a precise construction of mgciΩB using B-unification in ΣcpXcq.

Theorem 8. Suppose ΣpXq and ΩpXq are sensible and B-preregular, Ω ă Σ,
and B respects constructors. Then (a) @t P TΣpXqs @t

1 P TΩpXqs1 with s ”ă s1

and x R varsptq, tα “B t1 iff there are η P mguBpt “ x : cps1qq and θ such that
η‚θ|varsptq “B α where α P rvarsptq Ñ TΩpXqs and θ P rX Ñ TΩpXqs and
(b) the set of most general constructor instances of t modulo B is defined by
mgciΩBptq “ ttpη

‚q | η P mguBpt “ x : lsΣpXqptq‚qu.

Proof. We first prove (a). Let β “ α‚ Z tpx :s1‚, t
1
‚qu. Then observe:

tα “B t1 ô ptαq‚ “B t1‚

ô t‚pα‚q “B t1‚

ô t‚β “B x :s1‚β

ô Dη1 P mguBpt‚ “ x :s1‚q Dθ
1 P rXÓ Ñ TΩÓpX

Óqs rη1θ1 “B βs

which follow by Lemma 5 and the fact B respects constructors so tα P TΩpXq.
Let id be the identity substitution and note x :ps1‚q‚ “ x :s1‚. Then we obtain:
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η1 P mguBpt‚ “ x :s1‚q

ô η1 P mguBpt‚ “ x :ps1‚q‚q

ô η1 P mguBptpid
Ó
q “ x :s1‚pid

Ó
qq

ô idÓη1 P mguBpt “ x :s1‚q

η1θ1 “B β

ô pη1θq‚ “B β‚

ô η1‚pθ1‚q “B β‚

ô η1‚pθ1‚q|varsptq “B α ^

η1‚pθ1‚qpxq “B t1

by Lemma 5. Now let η “ idÓη1 and θ “ θ1‚. Then we can derive equalities
η‚θ “ pidÓη1q‚θ “ pidÓq‚pη1‚qθ “ idpη1‚qθ “ η1‚pθ1‚q as required. Finally pbq is
an immediate application of paq. [\

In case the constructor decomposition has no rules (constructors are free
modulo BΩ), Theorem 8 provides a method to compute constructor variants.

Corollary 4. Let pΣ,B,Rq be convergent and protect constructor decomposition
pΩ,BΩ ,Hq and Ω ă Σ. The most general constructor variants of t P TΣpXq are
JtKΩR,B “ tpt

1pη‚q, θη‚q | pt1, θq P JtKR,B ^ η P mguBpt1, x : lsΣpXqpt
1q‚qu.

Proof. Apply Corollary 3. It is sufficient to prove: (a) each pt1η θηq P JtKΩR,B
is a constructor variant (b) for any constructor variant pt2, ψq, we obtain that
Dpt1η, θηq P JtKΩR,Brpt

1η, θηq ĚR,B pt2, φqs. To see (a), suppose pt1, θq P JtKR,B .
By definition of most general unifier and Theorem 8, mguBpt

1, x : cplsΣpXqpt
1qqq

is the set of most general substitutions η modulo B such that t1η‚ P TΩpXq.
Since pΣ,B,Rq protects pΩ,BΩ ,Hq and Ω is a signature of free constructors
modulo B, we obtain t1η‚!R,B “ t1η‚, and pt1η‚, θη‚q is a constructor variant. To
see (b), note, by definition, JtK covers every variant, and mgciΩBpt

1q covers every
constructor instance, as required. [\

The reduction of constructor unifiers to constructor variants is simple. Recall
any unification problem φ is a Σ^-term φ P TΣ^pXqConj . Let tαiuiPI denote the
finite set of most general R,B-variant unifiers of φ obtained as explained in
Theorem 3. Then the set of most general constructor unifiers of φ is the set
tαiη

‚ | η P mguBppφαiq!R,B , x : Conj ‚qu.

4.3 Constructor Variants and Unifiers: An Example

The notions of constructor variant and constructor unifier become more subtle
when, due to order-sortedness, a same subsort-polymorphic operator f has some
typings that are constructors and some other typings that are defined functions.
The following examples illustrates the issues involved.

Example 4. (Integers with Addition). The FVP decomposition Z` for integers
with addition has sorts Nat , NzNat , NzNeg , and Int , and subsorts NzNat ă Nat
and Nat NzNeg ă Int , where NzNat (resp. NzNeg) denotes the non-zero naturals
(resp. negatives). The constructor signature Ω has constants 0 of sort Nat and
1 of sort NzNat , and operators ` : Nat Nat Ñ Nat , ` : NzNat NzNat Ñ
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NzNat , and ´ : NzNat Ñ NzNeg . The only defined function symbol is: `

: Int Int Ñ Int , also ACU . The rewrite rules R defining ` and making
pΩ,ACU,Hq an ACU -free constructor decomposition of Z` are the following
(with i a variable of sort Int , and n,m variables of sort NzNat): i`n`´pnq Ñ
i, i ` ´pnq ` ´pmq Ñ i ` ´pn ` mq, i ` n ` ´pn ` mq Ñ i ` ´pmq, and
i` n`m`´pnq Ñ i`m.

Note Z` is FVP and protects its constructor subtheory, so we can already
compute variants as usual. To compute constructor variants/unifiers in Z`, we
generate its refinement according to Definition 7. Figure 1 below illustrates how
this is done, where for each sort s, we let s‚ denote its lowered sort.

Consider now the term x`y with x, y variables of sort Int . By folding variant
narrowing, it is easy to show x`y has twelve variants in general, but to simplify
the example, we focus on its most simple variant, i.e. u “ px` y, idq with id the
identity substitution. Note that u is not a constructor variant in Z`, and there
are variants that are less general than px ` y, idq and are constructor variants.
The most general constructor variants that are less general than px` y, idq are:
(i) px, ty ÞÑ 0uq, (ii) py, tx ÞÑ 0uq, and (iii) px1 ` y1, tx ÞÑ x1 :Nat , y ÞÑ y1 :Natuq.
In Section 5, we show that these constructor variants are all generated by our
Maude implementation. Likewise, let φ be the equation z “ x ` y, with x, y, z
of sort Int . Then tz ÞÑ x` yu is a trivial Z`-unifier of φ, but not a constructor
unifier. A complete set mguΩRpφq of most general constructor Z`-unifiers of φ
is given by the unifiers: (i) tz ÞÑ x, y ÞÑ 0u, (ii) tz ÞÑ y, x ÞÑ 0u, and (iii)
tz ÞÑ x1 ` y1, x ÞÑ x1 : Nat , y ÞÑ y1 : Natu. Similarly, these can be shown to be
the solution to the corresponding unification problem in the signature pΣ^qc as
described in the end of Section 4.2.

For other examples of constructor variants and constructor unifiers we refer
the reader to Examples 3–4 in [29].

Fig. 1. Int signature Σ and its refinement Σc
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4.4 Optimizing Constructor Variant and Unifier Generation

As the example in Section 4.3 illustrates, the subtleties involved in generating
constructor variants and constructor unifiers are all related to the fact that we
can have a subsort-overloaded operator f (` in the above example), which is a
constructor for some typings and a defined symbol for other typings. But this
of course is impossible in a many-sorted signature, because there all subsort-
overloaded typings must coincide. Also, in many order-sorted examples, the dis-
tinction between constructors and defined symbols applies to entire families of
subsort-overloaded symbols: either all typings in the family are constructors, or
they are all defined symbols.

This suggests an obvious optimization: before solving a constructor variant
or a constructor unifier problem, check first whether any subsort-overloaded
function symbol has both constructor and defined symbol typings. If it does,
apply the general algorithms developed in Section 4.2. If it does not (and an
additional property on B´BΩ holds, see below) apply instead the considerably
simpler and more efficient algorithms described below.

First of all, the above check can be made more precise as follows. Recall the
notation used in Section 2 for a subsort-overloaded family of operators f :

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ď i ď n, s1 P rssu

for connected components rs1s, . . . , rsns, rss P pS. Given a constructor subsigna-
ture Ω Ď Σ, we have two different subsort-overloaded families for f : (i) we can

further qualify the above family by f
rs1s...rsns
rss,Σ , and (ii) we can denote instead

by f
rs1s...rsns
rss,Ω the subset f

rs1s...rsns
rss,Ω “ tf : s11 . . . s

1
n Ñ s1 P Ω | s1i P rsis, 1 ď

i ď n, s1 P rssu. The above-mentioned check that there is no subsort-overloaded
symbol with both constructor and defined symbol typings can now be easily ex-

pressed. We just need to check that for each non-empty family f
rs1s...rsns
rss,Ω the

following set-theoretic equality holds:

f
rs1s...rsns
rss,Σ ´ f

rs1s...rsns
rss,Ω “ H.

This check has an easy implementation as a meta-level function in Maude. In
their metalevel representations the operators in Σ (resp. Ω) are represented as
sets with associative-commutative union. We just need to extract for each f in

Ω its subsort-overloaded family f
rs1s...rsns
rss,Ω and likewise compute in Σ the family

f
rs1s...rsns
rss,Σ . The check is then a simple emptiness check for the corresponding set

difference.

As mentioned above, an additional property must be checked. If B, resp. BΩ ,
denotes the equational axioms of Σ, resp. Ω, then we must also check that for
each u “ v P B ´ BΩ we have u R TΩpXq and v R TΩpXq. This ensures that
if t P TΣpXq ´ TΩpXq and t “B t1, then t1 P TΣpXq ´ TΩpXq. For example, if
all axioms in B ´ BΩ are combinations of associativity and/or commutativity
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axioms, the condition holds. But if B ´ BΩ contains any identity axioms, the
condition would fail.

The two algorithms for the case when no subsort-overloaded symbol is both
a constructor and defined symbol, and where the above condition on B ´ BΩ
holds, are both very simple forms of filtering the corresponding variants (resp.
variant unifiers):

1. JtKΩR,B “ tpu, θq P JtKR,B | u P TΩpXqu.
2. Given a system of Σ-equations φ “ u1 “ v1 ^ . . . ^ un “ vn, the set

mguΩRpφq of its most general constructor unifiers is defined by:

mguΩRpφq “ tα P mguRpφq | puiαq!R,B P TΩpXq, 1 ď i ď nu,

where mguRpφq denotes the set of most general variant unifiers of φ.

The Maude meta-level functions needed for the filtering performed in (1) and
(2) are also very simple. In case (1), the check that u P TΩpXq is a simple call to
Maude’s wellFormed predicate, that takes the meta-representations of a module
and a term and returns true iff the term is well-formed in that module. In case
(2), we can incrementally compute each variant unifier α using Maude 2.7.1
metaVariantUnify function; then we can compute each puiαq!R,B by calling the
metaReduce function; and we finally check puiαq!R,B P TΩpXq for each 1 ď i ď n
by calling the wellFormed predicate.

4.5 Descent Maps

There are two ways in which the methods presented in this paper may be insuffi-
cient to prove satisfiability of QF formulas in the initial algebra of an order-sorted
equational theory having an FVP decomposition R:

1. At the theoretical level, R may lack an OS-compact constructor decomposi-
tion, so that the methods presented here cannot be applied to R.

2. At the practical level, even if R has an OS-compact constructor decom-
position amenable to the methods and algorithms presented here, directly
checking satisfiability of QF formulas in R may be quite inefficient. This
can happen because: (i) B-unification itself may generate a large number of
unifiers; and (ii) there may also be a large number of variant R,B-unifiers
of a given term t.

Faced with any of these theoretical and/or practical limitations, the following
notion of a descent map, presented in [28, 30], may provide a way out of such
limitations:

Definition 10. A descent map is a triple pR, ‚,Dq where R and D are decom-
positions of order-sorted equational theories, and R conservatively extends D,
and where ‚ is a total computable function, ϕ ÞÑ ϕ‚, mapping each QF formula
ϕ in the theory decomposed by R into a corresponding QF formula ϕ‚ in the
theory decomposed by D and such that CR |ù D ϕ ô CD |ù D ϕ‚, where D ϕ
denotes the existential closure of ϕ.
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Limitation (1) can be overcome when R lacks an OS-compact constructor de-
composition but D has one. And limitation (2) can be overcome because solving
satisfiability in CD of the QF formula ϕ‚ may be considerably more efficient than
solving satisfiability in CR of the original formula ϕ. Since descent maps form
a category and therefore can be composed, suitable compositions of such maps
can greatly help in solving limitations (1) and (2). Furthermore, they can sub-
stantially extend the theoretical and practical reach of the variant satisfiability
methods presented in this paper.

In experimenting with the current implementation of the variant-satisfiability
algorithms described in Section 5 for solving SMT problems for various auto-
mated deduction applications, we have found descent maps to be quite helpful in
overcoming type (1) and (2) limitations, specifically in the context of Presburger
arithmetic,4 for the following reasons: (i) the simplest FVP specifications Z`,ą,ě,
resp. N`,ą,ě, of Presburger arithmetic for the integers (resp. the naturals) fail
to have OS-compact constructor decompositions [30]; (ii) solving satisfiability of
QF formulas by variant satisfiability in the initial algebras of Z`,ą,ě, or even
just in that of Z` (the Abelian group of the integers) is quite inefficient due to
a usually large number of variants modulo ACU ; whereas (iii) solving satisfia-
bility of QF formulas by variant satisfiability in the initial algebra of N` (the
Abelian monoid of the integers) is much more efficient, since, being free modulo
ACU and OS-compact, it essentially reduces to computing ACU unifiers, which,
although expensive for large terms, is efficiently supported by Maude 2.7.1.

In [30] three descent maps are defined: (i) N`,ą,ě
lit2at δ0
ÝÑ N`, reducing nat-

ural Presburger arithmetic satisfiability to satisfiability in the Abelian monoid

of the naturals; (ii) an entirely similar map Z`,ą,ě
lit2at δ0
ÝÑ Z`, reducing integer

Presburger arithmetic satisfiability to satisfiability in the Abelian group of the

integers; and (iii) Z`
v´
ÝÑ N`, reducing satisfiability in the Abelian group of

the integers to satisfiability in the Abelian monoid of the naturals. These three
maps ease limitations of type (1) and/or (2). Furthermore, it is shown in Theo-
rems 14–15 of [30] that the descent maps (i)–(ii) can be modularly extended to
FVP theory combinations where N`,ą,ě, resp. Z`,ą,ě, is a subspecification of
a larger FVP theory. Although not explicitly treated in [30], descent map (iii)

has a natural extension to a descent map (iv) Z`,ą,ě
v´
ÝÑ N`,ą,ě, so that we

get the following diagram of descent maps:

4 This does not exclude the possibility of using not only descent maps, but also well-
known domain-specific SMT solving algorithms for Presburger arithmetic. However,
the applications we have experimented with, in which variant satisfiability algo-
rithms are used, almost never involve just Presburger arithmetic alone. For such
applications, the less efficient use of theory-generic variant satisfiability algorithms
is compensated for by the trivial way in which various FVP theories can be combined
by theory union, as opposed to by a more complex Nelson-Oppen theory combination
infrastructure [32, 33]. Experimenting with such tradeoffs between domain-specific
and theory-generic algorithms and their various forms of composition is an important
topic for future research.
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Z`,ą,ě Z`

N`,ą,ě N`

lit2at δ0

v´ v´

lit2at δ0

We have implemented in Maude maps (i) and (iv) as meta-level functions
and, as further explained in Section 6, have used those maps effectively in a
considerable number of reachability logic verification tasks.

5 Implementation and Examples

Here we describe our implementation of all the above metalevel algorithms us-
ing Maude. The complete codebase, including binaries and examples, can be
downloaded from our website: http://maude.cs.illinois.edu/tools/var-sat/.

Thanks to the reflective nature of rewriting logic and the fact that Maude
directly implements rewriting logic, we can directly represent metalevel concepts
in Maude as terms in a theory. In fact, such a library already exists in Maude’s
META-LEVEL module. By using META-LEVEL, we can directly write functions over
meta-level constructs to implement our algorithms. Essentially, the algorithm
follows the outline sketched in Section 4 and shown in the diagram in the Intro-
duction, except that the finite sort checks for theories with unit axioms have not
been implemented yet. The algorithm takes as input a reflected theory M and
a formula φ “

Ź

G ^
Ź

D and returns a boolean indicating if the formula is
satisfiable in M . Thanks to mixfix parsing, we can use a more natural notation
to write φ as:

u1 ==? v1 /\ ¨ ¨ ¨ /\ uk ==? vk /\ u11 =!? v11 /\ ¨ ¨ ¨ /\ u1l =!? v1l

where each ui, vi and u1j , v
1
j for 1 ď i ď k and 1 ď j ď l is a meta-term. Though

in the tool we always operate at the meta-level, for readability, in this section
we render all of our examples in object level notation.

5.1 Examples

We illustrate our implementation by means of a few examples. As a first ex-
ample, we consider Example 4 in Section 4.3, the theory Z`. Recall that we
wanted to compute all of the most general constructor variants that are less
general than variant px` y, idq. Conveniently, our codebase provides a function
ctor-variants which takes a theory and a variant and generates a complete
set of most general constructor variants. When we run ctor-variantspZ`, px`
y, idqq we obtain px1`y1, tx ÞÑ x1 :Nat , y ÞÑ y1 :Natuq, px, ty ÞÑ 0uq, py, tx ÞÑ 0uq,
and p0, tx ÞÑ 0, y ÞÑ 0uq. Note that an extra variant was generated beyond what
the theory requires; in general, our algorithms only generate a complete, but not
necessarily minimal, set of constructor variants/variant unifiers.

Example 5. (Lists of Natural Numbers) The FVP decomposition of the theory
NatList has four sorts: Bool, Nat, NeList, and List such that NeList ă List,
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seven constructors 0 :Ñ Nat, 1 :Ñ Nat, ` : Nat Nat Ñ Nat, : : Nat List Ñ
NeList, nil :Ñ List, true :Ñ Bool, and false :Ñ Bool, and three defined
operators ă : Nat Nat Ñ Bool, hd : NeList Ñ Nat, and tl : NeList Ñ List
where ` satisfies associativity, commutativity, and identity axioms for element
0. The theory has four equations: m ` 1 ` n ą n “ true, n ą n `m “ false,
hdpn : lq “ n and tlpn : lq “ l where n,m : Nat and l : List.

Suppose we want to show φ “ hdplq ą hdpl1q “ true ñ l ‰ l1 is a theorem
of the initial algebra of NatList. Usually, to solve equations in this combined
theory, we would need a separate solver for each subtheory and use the Nelson-
Oppen combination method to reason in the combined theory, but here, since
the theory NatList is FVP and protects an OS-compact subtheory, we can
directly reason in the combined theory. Thus, we proceed by proving  φ, i.e.
the formula hdplq ą hdpl1q “ true ^ l “ l1, is unsatisfiable. In this case, to
answer this question, it is enough to show this unification problem has no vari-
ant unifiers, since then it trivially also has no constructor variant unifiers, and
thus is unsatisfiable. We provide a function var-unifiers which takes a theory
and a unification problem and returns its set of variant unifiers. In this case,
var-unifiers(NatList, φ) returns the empty set of unifiers, as expected.

Example 6. (Zero Predicate) The FVP decomposition of the theory ZeroPred
has sorts Nat and Bool and four constructors: 0 :Ñ Nat, s : Nat Ñ Nat, true :
Ñ Bool, and and false :Ñ Bool and one defined symbol zero? : Nat Ñ Bool.
Finally, it satisfies two equations: zero?pspNqq “ false and zero?p0q “ true.

Suppose we want to check if zero?pnq “ x ^ x ‰ true ^ x ‰ false is
satisfiable in ZeroPred where n,m : Nat and x : Bool. This example was
originally used in [28] to show that variants and variant unifiers are in general
insufficient to reduce the satisfiability problem from one theory into its subtheory.
To see why, we can compute the variants/constructor variants of zero?(N) by the
aptly named functions, variants and ctor-variants which take a theory and
a term and compute its variants (constructor variants) respectively. Then the
function call variantspZeroPred, zero?pnqq gives variants ptrue, tn ÞÑ 0uq,
pfalse, tn ÞÑ spmquq, and pzero?pnq, idq. Obviously, letting x “ zero?pnq, the
formula above is satisfiable since zeropnq ‰ true^ zero?pnq ‰ false are both
consistent with the empty theory; this is clearly not what we want. However,
computing ctor-variantspZeroPred, zero?pnqq gives only the two variants
ptrue, tn ÞÑ 0uq and pfalse, tn ÞÑ spmquq since zero?pnq is not a constructor
term. Substituting x by these constructor variants, the disequations are trivially
inconsistent, as we expected.

6 Conclusions and Related Work

We have presented the meta-level sub-algorithms needed to obtain a full-fledged
variant satisfiability algorithm, proved them correct, and derived a Maude re-
flective implementation. Correctness has been the main concern, but efficiency
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has also been taken into account. Much work remains ahead. A crucial next
step is experimentation. We have initiated such an experimentation by using the
Maude reflective implementation of variant satisfiability as a key component to
mechanize a new version of reachability logic for rewrite theories developed in
[37], which further advances reachability logic ideas in [38, 25]. We have been
able to verify various reachability properties for a substantial number of exam-
ples using the variant satisfiability algorithm as a backend procedure. This is
already helping us optimize the performance of the main algorithm and its sub-
algorithms, which has been an explicit theme in Sections 4.4–4.5. Furthermore,
we also plan to use the variant satisfiability algorithm in other theorem prov-
ing and infinite-state model checking applications in the near future. Further
work is needed to experimentally evaluate our algorithm in a more systematic
way. As pointed out in Footnote 4, this should also involve comparison with
domain-specific algorithms when those are available, including a comparison of
the tradeoffs between different kinds of theory combination methods. Such com-
parisons will require developing new theory combination infrastructure not yet
available in our implementation (besides of course theory unions for FVP theo-
ries, which are fully supported already).

The most closely-related work is [28–30], for which it provides the first full-
fledged algorithm and implementation. Other related topics include folding vari-
ant narrowing [18], the FVP [13], and unsorted compactness [12]. Of course,
this work occurs in the larger context of decidable satisfiability algorithms and
the vast literature on SMT solving, e.g., [6, 23, 3, 5, 4, 6, 24, 1, 17], and additional
references in [28, 29]. Finally, the literature on Maude’s reflective algorithms and
tools, e.g., [9, 8] is also closely related.
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A Empty and Finite Sort Constructions

In this section, we present three algorithms and prove their correctness. Given
an order-sorted signature, possibly with axioms, we define rewrite theories and
sentences in rewriting logic which represent solutions to the: (i) sort empti-
ness, (ii) sort finiteness, and (iii) term generation problems by rewrite theories
implementable in the Maude rewrite engine. In the following definitions we al-
ways assume that we are reasoning over an order-sorted, kind-complete5 signa-
ture Σ “ ppS,ăq, F q where B is a set of associative/commutative/unit axioms
over Σ. Before proceeding, we define some notation. For f : s1 ¨ ¨ ¨ sn Ñ s, let
ragspfq “ ts1, ¨ ¨ ¨ , snu and ranpfq “ s. Let SĄH “ ts P S | TΣ{B,s ‰ Hu,
FĄH “ tf P F | argspfq Ď SĄHu, and ΣĄH “ ppSĄH,ă|SĄHq, FĄHq. Given
F 1 Ď F , let Σ|F 1 “ ppS,ăq, F 1q. Given binary relations R1 Ď S1 ˆ S1, and

5 Any signature can be easily extended to a kind-complete one by: (i) adding a top sort,
named rss, above each connected component rss; and (ii) adding for each operator
f : s1 . . . sn Ñ s in the original signature a new typing f : rs1s . . . rsns Ñ rss. For the
original sorts s P S, the terms in the original signature and in its kind-completion are
the same. Maude always perform this kind completion for any user-given signature.



Metalevel Algorithms For Variant Satisfiability 29

R2 Ď S2ˆS2, we write R1 – R2 iff R1 and R2 are bisimilar. Given S Ď S1XS2,

R1
S
ÐÑ R2 holds iff for all s P S, pR1, sq terminates iff pR2, sq terminates where,

by definition, pR, sq terminates iff there is no infinite R-path starting from s.

A.1 Sort Emptiness Check for General Signatures.

Here we develop an algorithm that checks if a sort s P S satisfies TΣ,s “ H by
performing unsorted rewriting over PpSq. The initial state is the sort we wish
to check for non-emptiness. We trace the operator declarations in reverse to see
which sorts are needed to build operators inhabiting the argument sort.

Definition 11. Let RM pΣq “ pΣM , ACI,RM q where:

(1) ΣM “ S Z t*u Z t , u (an unsorted signature)
(2) ACI “ tx,y “ y,xu Y tpx,yq,z “ x,py,zqu Y tx,x “ xu

(3) RM is the smallest rewrite relation such that:

(a) ps, s1q P păq ñ s1 Ñ s P RM
(b) c : Ñ s P F ñ sÑ * P RM
(c) f : s1 ¨ ¨ ¨ sk Ñ s P F ^ k ě 1 ñ sÑ s1, ¨ ¨ ¨ ,sk P RM

In the text below, let pÑq Ď TΣM ˆ TΣM abbreviate p“ACI ;ÑRM ;“ACIq. We
further let pÑ0q “ p“ACIq, pÑ

n`1q “ pÑq; pÑnq, pÑ˚q “
Ť

ně0pÑ
nq, and also

pÑ`q “
Ť

ną0pÑ
nq.

Lemma 6. Let a1, . . . , ak, k ě 1 be a ground ΣM -term, so that ai P SZt*u, i.e.,
a1, . . . , ak is a multiset. If a1, . . . , ak Ñ

n *, then for each nonempty submultiset
B Ď a1, . . . , ak there is an m ď n such that B Ñm *.

Proof. By induction on n.
Base Case. If n “ 0 we must have ai “ *, 1 ď i ď k, and the result follows
trivially.
Induction Step. Suppose the result true for n and let a1, . . . , ak Ñ

n`1 *. Since
rewriting takes place modulo ACI we may assume without loss of generality
that i “ j ñ ai “ aj . Then we must have some ai P S, a rule ai Ñ D in RM ,
and rewrites

a1, . . . , ak Ñ a1, . . . , ai´1, D, ai`1, . . . , an Ñ
n *.

Note that a1, . . . , ai´1, D, ai`1, . . . , an may have repeated elements. We now rea-
son by cases on B Ď a1, . . . , ak. If ai R B, then B Ď a1, . . . , ai´1, D, ai`1, . . . , an
and the result follows trivially by the induction hypothesis. If B “ ai, B

1 (where
by convention B1 could be empty), then B Ñ D,B1 and we have an inclusion
D,B1 Ď a1, . . . , ai´1, D, ai`1, . . . , an so the result follows again trivially by the
induction hypothesis. [\

Lemma 7. @s P S rTΣ,s ‰ Hô sÑ` *s
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Proof. pñq. Let s P S with TΣ,s ‰ H. Pick any t P TΣ,s and proceed by
structural induction on t.
Base case. [t “ c]: Suppose c : Ñ s2 P F is a constant. Since c P TΣ,s, we
know s2 ď s. If s2 “ s, then directly apply rule sÑ * generated by declaration
c : Ñ s2 P F . If s2 ă s, we will have an additional rule s Ñ s2, which we can
apply followed by sÑ *. In either case, obtain sÑ` *.
Induction Step. [t “ fpt1, ¨ ¨ ¨ , tnq]: Since t “ fpt1, ¨ ¨ ¨ , tnq P TΣ,s, we have Df :
s1 ¨ ¨ ¨ sk Ñ s2 P F with s2 ď s where ti P TΣ,si for i P k. If s2 “ s, then directly
apply rule sÑ s1, ¨ ¨ ¨ ,sk generated by declaration f : s1 ¨ ¨ ¨ sk Ñ s2 P F . Since
ti P TΣ,si for i P k, we know that TΣ,si ‰ H. Thus, by inductive hypothesis,
obtain that si Ñ

` * for i P k. By transitivity, we have s2 Ñ` *, ¨ ¨ ¨ ,*. By
idempotency, obtain s2 Ñ` *. If s2 ă s, we will have an additional rule sÑ s2

we can apply followed by s2 Ñ` *. In either case, obtain sÑ` *.
pðq. Suppose towards a contradiction the set S1 “ ts P S | TΣ,s “ H^sÑ

` *u

is non-empty. For each s P S1 these is an mpsq P N with s Ñmpsq * and mpsq
smallest possible with that property. Pick s0 P S

1 with mps0q smallest among
such mpsq. We now have two cases to consider: mps0q “ 1 or mps0q ą 1. Suppose
mps0q “ 1. Then s0 Ñ *. But this can only happen if there is a c :Ñ s0 P F . But
then c P TΣ,s0 and TΣ,s0 ‰ H, a contradiction. Thus, assume mps0q ą 1. Again,
there are two possibilities: s0 Ñ s1 Ñmps0q´1 * or s0 Ñ s1, ¨ ¨ ¨ ,sk Ñ

mps0q´1 *. If
s0 Ñ s1 Ñmps0q´1 *, since mps0q is smallest possible in S1, we must have s1 R S1

and therefore TΣ,s1 ‰ H. But this rewrite can only occur if s1 ă s0. Thus,
TΣ,s1 Ď TΣ,s0 , so that TΣ,s0 ‰ H, a contradiction. If s0 Ñ s1, ¨ ¨ ¨ ,sk Ñ

mps0q´1

*, by Lemma 6 for each 1 ď i ď k we have si Ñ
mi * for some mi ď mps0q ´ 1.

Therefore, TΣ,si ‰ H, 1 ď i ď k. But the rewrite s0 Ñ s1, ¨ ¨ ¨ ,sk can only
occur if there is an f : s1 ¨ ¨ ¨ sk Ñ s0 P F . But given any ti P TΣ,si , 1 ď i ď k,
we can construct fpt1, ¨ ¨ ¨ , tkq P TΣ,s0 . Thus, TΣ,s0 ‰ H, a contradiction. [\

There are two remaining questions: (i) is checking the sentence s Ñ` *

decidable? and (ii) can this approach compute emptiness of equivalence classes
of terms TΣ{E defined by a theory pΣ,Eq? Fortunately, in this case, there is no
extra work to be done. To answer (i), note that whenever |S| ` |F | ă ℵ0, then
|PpSq|`|RM | ă ℵ0 by construction. Thus, we have a finite number of states and
rules, rendering the search problem decidable. To answer (ii), note that, TΣ{E,s
is just an equivalence relation over TΣ,s. Thus, TΣ{E,s “ H iff TΣ,s “ H. As a
result of this section, note that the set of sorts SĄH Ď S is computable; thus,
we obtain that FĄH and ΣĄH are computable as well.

A.2 Term Generation for General Signatures.

In this section, we present an algorithm which, given an order-sorted signature
Σ and a sort s, will generate all terms in TΣ,s. We begin with a few opening
remarks. Note that: (i) an order-sorted signature Σ can be modeled as a tree
automaton so that t P TΣ,s iff t is accepted by the corresponding automaton when
the accepting state is s; and (ii) any tree automaton and its computations can be
modeled as an unsorted ground rewrite theory. Clearly, an order-sorted ground
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rewrite theory will also work; here we prefer an order-sorted theory because
it gives a simpler definition that preserves the original signature. Throughout
this section, we let SΣ denote the signature of constants s associated to sorts
s P S, where each sort s is declared a constant whose sort is the top sort rss:
SΣ “ ppS,ăq, ts : Ñ rss | s P Suq.

Definition 12. Let RP pΣq “ pΣĄH Z SΣ ,H, RP q where RP is the smallest
rewrite relation RP “ RP,S ZRP,NC ZRP,C such that:

(a) ps, s1q P păq ñ sÑ s1 P RP,S
(b) f : s1 ¨ ¨ ¨ sk Ñ s P FĄH ^ k ě 1 ñ fps1, ¨ ¨ ¨ , skq Ñ s P RP,NC
(c) c : Ñ s P FĄH ñ cÑ s P RP,C

Note that, even though ΣĄH Ď Σ, we do not lose completeness for parsing,
since any sort in s P S{SĄH necessarily satisfies TΣ,s “ H. Furthermore, it is
straightforward to show that Σ Z SΣ is sensible and preregular iff Σ is sensible
and preregular and @s P SĄH rt P TΣ,s ô t Ñ`

RP
ss. We now turn to term

generation.

Definition 13. Let RGpΣq “ pΣĄHZSΣ ,H, RGq with RG “ R´1
P . Since RP “

RP,S ZRP,NC ZRP,C we will use the notation: RG,S “ R´1
P,S, RG,NC “ R´1

P,NC ,

and RG,C “ R´1
P,C .

Again, by only considering ΣĄH Ď Σ, we do not lose completeness for term
generation. We immediately obtain the following corollary.

Corollary 5. @s P SĄH rt P TΣZSΣ ô sÑ!
RG

ts

A.3 Finite Sort Detection for Finite Signatures.

Here we develop an algorithm which, given s P S, checks if |TΣ,s| ă ℵ0. Note
that using RG we already trivially obtain a semi-decidable algorithm for sort
finiteness: compute SĄH via RM ; if s R SĄH, then return yes; otherwise compute
tt P TΣ,s | s Ñ

!
RG

tu; if the process terminates, then return yes. Of course, an
efficient, decidable algorithm would be preferable. Nevertheless, RG is not too
far from our desired decidable solution.

Our strategy is as follows: (i) give sufficient conditions so that termination of
RG corresponds to sort finiteness in Σ, (ii) define a rewrite system RF and give
sufficient conditions to prove termination of RF , (iii) show RF terminates if and
only if RG terminates, (iv) and finally, present a decidable algorithm using LTL
model checking to characterize when RF terminates.

Lemma 8. If |S| ` |F | ă ℵ0 then pRG, sq is non-terminating iff |TΣ,s| “ ℵ0

Proof. By construction of RG, |RG| “ |păq| ` |F | ă |S|2 ` |F | ă ℵ0. View-
ing possible rewrite paths starting from s as forming a tree, observe that the
tree branches finitely, since each term has finite positions and possible rewrites.
Suppose pRG, sq is terminating. Then, by K onig’s Lemma, the tree of rewrites
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must be finite and therefore there is a finite number of final states, so that
|TΣ,s| ă ℵ0. Otherwise, if pRG, sq is non-terminating, we have an infinite path
s ÑRG t1 ÑRG t2 ÑRG ¨ ¨ ¨ tn ÑRG ¨ ¨ ¨ . Since |RG| ă ℵ0, DR Ď RG that
repeats infinitely often. Since RG “ RG,S Z RG,C Z RG,NC and RG,S Z RG,C
terminates (because acyclicicty/finiteness of ă and only S-terms can be rewrit-
ten), we must have R X RG,NC ‰ H. But note that, if |t| is the of t as
viewed as a tree, then if t ÑRG,SZRG,C t1, we must have |t| “ |t1|, whereas
if t ÑRG,NC t1, we must have |t| ă |t1|, so that t|ti|uiPN is a sequence such
that |ti| Ñ 8. Also note that by the definition of RG, all sorts s1 occurring as
a subterm of ti belong to SĄH “ ts1, ¨ ¨ ¨ , smu, so that we can choose terms
u1 P TΣ,s1 , ¨ ¨ ¨ , um P TΣ,sm . We can then regard SĄH as a set of variables
and view σ “ ts1 ÞÑ u1, ¨ ¨ ¨ , sm ÞÑ unu as a substitution. But, by definition of
RG, this gives us an infinite sequence ttiσuiPN of terms where for each i P N,
tiσ P TΣ,s and |tiσ| ě |ti|. Therefore, |tiσ| Ñ 8, and since TΣ,s contains terms
of unbounded size, we have |TΣ,s| “ ℵ0. [\

Definition 14. Let RF pΣq “ pSĄH,H, RF q where RF “ RF,S Y RF,NC is the
smallest rewrite relation such that:

(a) s ă s1 ñ s1 Ñ s P RF,S
(b) f : s1 ¨ ¨ ¨ sn Ñ s1 P FĄH ^ tsu Ď ts1, ¨ ¨ ¨ , snu ñ s1 Ñ s P RF,NC

Note that we only consider SĄH and FĄH, because, implicitly, any sort s P
S{SĄH trivially satisfies |TΣ,s| ă ℵ0 and any operator f P F {FĄH cannot
contribute meaningfully to building a term t P TΣ,s. Before we complete the
main proof, we prove a lemma and add an additional definition.

Lemma 9. Given |SĄH| ă ℵ0 and s P SĄH, then the following are equivalent:

1. pRF , sq is non-terminating
2. Ds1 P SĄHrsÑ

˚
RF

s1 Ñ`
RF

s1s
3. there is an infinite RF -rewrite path sÑRF s1 ÑRF s2 ¨ ¨ ¨ ÑRF sn ÑRF ¨ ¨ ¨

and s1 P SĄH occurring infinitely often in the sequence

Proof. Obviously, (3) implies (2), since if s1 occurs infinitely often, we must have
sÑ˚

RF
s1 Ñ`

RF
s1. Also, (2) implies (1) since sÑ˚

RF
s1 Ñ`

RF
s1 Ñ`

RF
s1 Ñ`

RF
¨ ¨ ¨

is a non-terminating sequence. Finally, (1) implies (3), since |SĄH| ď ℵ0, which
forces some s1 P SĄH to occur infinitely often in any infinite sequence. [\

Definition 15. Given Σ “ ppS,ăq, NC ZCq with non-constants and constants
NC and C respectively, let R‹

GpΣq “ pΣĄH|NCZSΣ ,H, RG,‹q such that RG,‹ “
RG,S ZRG,NC .

Observe that R‹
G is identical to RG except that R‹

G contains neither constants
nor rewrite rules over constants. Now we are ready to prove the main theorem.

Theorem 9. RF – R‹
G and R‹

G

SĄH
ÐÑ RG
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Proof. We first prove RF – R‹
G. Define a relation H Ď pSĄHˆTΣ|NCZŜq where

ps, tq P H iff s Ĳ t. To prove RF – R‹
G, we show that given two arrows, we can

find another two arrows to make the diagrams below commute.

s s1

t t1

RF
H H

RG,‹

s s1

t t1

RF
H H

RG,‹

Suppose s Ĳ t. If ps, s1q P RF then ps, s1q P RF,S or ps, s1q P RF,NC . Assume
ps, s1q P RF,S . Then s1 ă s in ΣĄH. But then, by definition, ps, s1q P RG,S .
Thus, trss ÑRG,‹ trs1s and s1 Ĳ trs1s, as required. Alternatively, assume ps, s1q P
RF,NC . Then Df : s1 ¨ ¨ ¨ sn Ñ s1 P FĄH with tsu Ď argspfq. But then, by
definition, ps1, fps1, ¨ ¨ ¨ , snqq P RG,NC . Thus, trss ÑRNCG

trfps1, ¨ ¨ ¨ , snqs and

s1 Ĳ trfps1, ¨ ¨ ¨ , snqs. Since we used only definitional equivalences, the other
direction follows symmetrically.

To prove R‹
G

SĄH
ÐÑ RG, given s P SĄH, we must show pR‹

G, sq terminates
iff pRG, sq terminates. To begin, note RG “ RG,‹ Z RG,C . Thus, if RG,‹ is
non-terminating, RG must also be non-terminating. To see the other direction,
note RG,C always terminates since each rule has the form s Ñ c P C and
constants cannot be rewritten. We proceed by proving the contrapositive. Thus,
assume RG,‹ terminates. By Lemma 10, s Ñn

RG
t iff s Ñi

RG,‹
t1 Ñj

RG,C
t with

n “ i ` j. Since RG,‹ and RG,C are terminating and finitely branching, there
are maximum bounds on the size of i and j, say, imax and jmax respectively. But
then any rewrite path sÑn

RG
t necessarily has n ď imax ` jmax ; thus pRG, sq is

terminating. [\

Lemma 10. @n P N rrsÑn
RG

ts ô rDi, j P N rsÑi
RG,‹

t1 Ñj
RG,C

t^ n “ i` jsss

Proof. To begin, recall RG “ RG,‹ Z RG,C and note the following equivalence
for s P SĄH, n P N, and t P TΣ :

sÑn
RG

t
ô

Dl1, l2,m1,m2 P N Dt1, t2, t3, tiv P TΣ
rrrsÑl1

RG,‹
t1 Ñl2

RG,C
ts _ rsÑm1

RG,‹
t2 ÑRG,C t

3 ÑRG,‹ tiv Ñm2

RG
tss ^

l1 ` l2 “ m1 `m2 ` 2 “ ns

That is, either all the applications of rules in RG,C occur at the end, or there
is at least one such application before a rule in RG,‹. Since the first case already
fits the desired form, we need only consider the second case. Note all rules in RG
have the form S Q sÑ t P TΣZSΣ . RG,C rules in particular have the form sÑ c
for c P F . Thus, if a RG,C rule is applied to trssp at position p, a RG,‹ rule cannot
later also be applied at p. Now suppose sÑm1

RG,‹
t2 ÑRG,C t

3 ÑRG,‹ tiv Ñm2

RG
t.

Then, t2 “ t2rs1, s2sp,q with p, q disjoint positions and:
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s t2rs1, s2s t2rc, s2s

t2rs1, us t2rc, us

RG,‹

˚

RG,‹

RG,C
RG,‹

RG,C

for any c P C and u P TΣZSΣ , the diagram above commutes. We complete
the proof by induction on m2, the number of rewrites occurring after the first
RG,C rule followed by a RG,‹ rule. Suppose m2 “ 0. Then we can commute
the RG,‹ and RG,C arrows as above, to obtain a rewrite chain of the form
s Ñm1`1

RG,‹
v ÑRG,C t, for some v P TΣZSΣ , as required. Now suppose m2 ą 0.

Again, we commute the two arrows to obtain sÑm1`1
RG,‹

v1 ÑRG,C v2 Ñ
m2

RG
t. We

apply our induction hypothesis to obtain s Ñm1`1
RG,‹

v1 Ñ
k1
RG,‹

v3 Ñ
k2
RG,C

t with

k1`k2 “ m2 which is equivalent to sÑm1`k1`1
RG,‹

v3 Ñ
k2
RG,C

t andm1`k1`k2`1 “
m1 `m2 ` 1 “ n, as required. [\

Thus, according to Lemmas 8 and 9 and Theorem 9, pRF , sq will generate a
rewrite path containing a cycle iff |TΣ,s| “ ℵ0. To complete the proof, for any
s P S, we just to characterize when Ds1 P SĄHrs Ñ

˚
RF

s1 Ñ`
RF

s1s holds. Thus,

define the set of cycle sorts by cypSĄHq “ ts P SĄH | s Ñ`
RF

su. This set can
be computed by search, since the sort set and rules are both finite. Then, we
immediately obtain the following theorem.

Theorem 10. @s P SĄH |TΣ,s| “ ℵ0 iff
Ž

s1PcypSĄHq
RF $ sÑ˚ s1

Proof. By Lemmas 8 and 9 and Theorem 9, obtain |TΣ,s| “ ℵ0 iff the formula
Ds1 P SĄHrsÑ

˚
RF

s1 Ñ`
RF

s1s holds. But by definition, any s1 which satisfies the
formula satisfies s1 P cypSĄHq, so reduce to Ds1 P cypSĄHqrs Ñ

˚
RF

s1s. Since S
is finite by assumption, cypSĄHq is finite. So, reduce to

Ž

s1PcypSĄHq
s Ñ˚

RF
s1,

which holds iff
Ž

s1PcypSĄHq
RF $ sÑ˚ s1 holds, as required. [\

A final consideration is how to check, for a theory pΣ,Bq, whether equivalence
classes of terms TΣ{B,s are finite, given that TΣ,s is finite. Since TΣ{B,s is a set
of B-equivalence classes rts, each containing at least one t1 P rts with t1 P TΣ,s, if
|TΣ,s| ă ℵ0, then TΣ{B,s ă ℵ0. Nevertheless, in general, it may be the case that
|TΣ{B,s| ă ℵ0 but |TΣ,s| “ ℵ0.

Example 7. Σ “ ppta, bu, tpa, bquq, 0 :Ñ a, 1 :Ñ b, ` : a aÑ a, ` : b bÑ bq.
Let B contain a unit axiom for 0 over p`q. Then |TΣ,a| “ |TΣ,b| “ ℵ0 but
|TΣ{B,a| “ 1 and |TΣ{B,b| “ ℵ0.

However, under some conditions onB, finiteness of TΣ{B,s can still be checked.

Lemma 11. Suppose B is a set of associativity and/or commutativity axioms,
|Σ| ă ℵ0, and that Σ is B-preregular. Then |TΣ{B,s| ă ℵ0 iff |TΣ,s| ă ℵ0.

Proof. Since Σ is B-preregular, all axioms in B are sort preserving. Then obtain
rusB P TΣ{AC,s iff rusB Ď TΣ,s, proving pðq. To show pñq, note that for any
combination of associativity and/or commutativity axioms, rusB is a finite set.
Since TΣ{B,s is finite, then TΣ,s is a finite union of finite sets and thus finite. [\
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Let U be a set of unit axioms for unit elements e1 :Ñ s1, ¨ ¨ ¨ en :Ñ sn in Σ.
Then define Σ ´ U “ Σ ´ te1 :Ñ s1, ¨ ¨ ¨ en :Ñ snu.

Lemma 12. Let B0 be a set of associative and/or commutative axioms and U
a set of unit axioms in Σ, B “ B0 Z U , |Σ| ă ℵ0, and Σ “ ppS,ăq, F q be
B-preregular according to Footnote 1. If |TΣ´U,s| “ ℵ0, then |TΣ{B,s| “ ℵ0.

Proof. We can orient a unit axiom fpx, eq “ x as a rewrite rule fpx, eq Ñ x,
so that the set U becomes a set of rewrite rules RpUq. In this way the theory
pΣ,B0 Z Uq can be decomposed as a convergent rewrite theory pΣ,B0, RpUqq.
Observe TΣ´U{B0

Ď CRU
and CRU

– TΣ{B . By Lemma 11, |TΣ´U,s| “ ℵ0 iff
|TΣ´U{B0,s| “ ℵ0. Thus, ℵ0 “ |TΣ´U,s| “ |TΣ´U{B0,s| ď |CRB ,s| “ |TΣ{B,s|.
Since |TΣ{B,s| ď ℵ0, obtain |TΣ{B,s| “ ℵ0, as required. [\

The following lemma gives sufficient conditions such that |TΣ,s| “ ℵ0 but
|TΣ{B,s| ă ℵ0 when B is a combination of associativity and/or commutativity
and/or unit axioms.

Lemma 13. Let B0 be a set of associative and/or commutative axioms and U
a set of unit axioms in Σ, B “ B0 Z U , |Σ| ă ℵ0, and Σ “ ppS,ăq, F q be B-
preregular according to Footnote 1. Let f : s1s2 Ñ s1 with lspeq ď s1, s2 ď s1 ď s
and let e be a unit element satisfying either a left-unit, right-unit, or left- and
right-unit axiom(s) for f with s P S. If Eg : w Ñ s2 P F {tf, eurs2 ď ss then
|TΣ,s| “ ℵ0 and TΣ{B,s “ tteuu.

Proof. By an easy structural induction, @u P TΣ,sru!RpUq,B0
“ es. [\

A.4 Decidable Sort Classifications

Here, we present a summary of the results of the previous sections by illustrating
how our methods can be used to compute a partitioning of S that respects sort
classifications.

Corollary 6. Let B be a set of associative and/or commutative axioms, |Σ| ă
ℵ0, and Σ be B-preregular. Then S has the following computable partitioning:

S “ SĄH Z SH “ S8 Z SF Z SH

where S8 “ ts P SĄH | |TΣ{B,s| “ ℵ0u and SF “ SĄH{S8.

Proof. First apply Lemma 11 to reduce to the case with no axioms. By Lemma
7, s ÑRM ,ACI * iff s P SH, and SĄH “ S{SH. Thus, obtain ΣĄH. By Theorem
10, if s P SĄH then s P SF iff  p

Ž

s1PcypSĄHq
RF $ s Ñ˚ s1q. Otherwise, by

definition, s P S8. Since each step—performing search via p“ACI ;ÑRM ;“ACIq,
filtering FĄH, computing cypSĄHq, and search over RF—is decidable, the entire
sort classification algorithm is decidable, as required. [\

In the more general ACU case, this partitioning can no longer be computed
by the methods we have presented. However, in many cases we can still compute
such a partition, for example if all sorts s for which |TΣ,s| “ ℵ0 fall into one of
the cases laid out in Lemmas 12 and 13. Otherwise, the partitioning algorithm
will fail to classify some sorts, leaving some proof obligations for the user.
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B Auxiliary Lemmas for Section 4.2

In these proofs, we always assume pSc,ăcq is a constructor sort refinement of
pS,ăq. In Lemma 1, we require two simple lemmas which are left as an exercise
to the reader. Let Σ be an arbitrary signature. Then (1) if Σ is preregular and
fpt1, ¨ ¨ ¨, tnq P TΣ then tyΣpfpt1, ¨ ¨ ¨, tnqq “ tyΣpf, lsΣpt1q ¨ ¨ ¨ lsΣptnqq with n ě 0
and (2) t P TΣ ô tyΣptq ‰ H.

Lemma 1. If Ω ă Σ then @t P TΣrt P TΩ ñ lsΩptq “ lsΣptqs.

Proof. Assume Ω ă Σ and t P TΩ . Suppose that t “ c P TΩ is a con-
stant. Then tyΩpc, nilq ‰ H and minăptyΣpc, nilqq P tyΩpc, nilq. Since we
have tyΩpc, nilq Ď tyΣpc, nilq then minăptyΩpc, nilqq “ minăptyΣpc, nilqq and
lsΩptq “ lsΣptq. Now suppose t “ fpt1, ¨ ¨ ¨, tnq. Then tyΩpfpt1, ¨ ¨ ¨, tnqq ‰ H and
tyΩpf, wq ‰ H where w “ lsΩpt1q ¨ ¨ ¨ lsΩptnq. But t1 ¨ ¨ ¨ tn P TΩ , so by induc-
tion hypothesis, w “ lsΣpt1q ¨ ¨ ¨ lsΣptnq. Since minăptyΣpf, wqq P tyΩpf, wq and
tyΩpf, wq Ď tyΣpf, wq, then we have minăptyΩpf, wqq “ minăptyΣpf, wqq and
lsΩptq “ lsΣptq, as required. [\

Lemma 2. @t P TΩÓpX
cq{Xc rtyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓqptqs

Proof. The base case where t “ c P TΩÓpX
cq{Xc, a constant, is trivial, so suppose

t “ fpt1, ¨ ¨ ¨ , tnq. There are two cases: either for each 1 ď i ď n, we have
varsptiq Ď XÓ or not. If not, tyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓqptq “ H since

these three signatures share the same non-variable operators F ÓΩ whose arity is
contained in pSÓq˚. Otherwise, by induction hypothesis, for 1 ď i ď n, we have

tyΩÓpXcqptiq “ tyΩÓpXÓqptiq “ tyΩÓ‚pXÓqptiq, and since operators F ÓΩ are shared,

we have tyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓqptq. [\

Lemma 3. @t P TΣcpX
cq{Xc rtyΣ`pXcqptq “ tyΣpXqpt

‚qs

Proof. The case where t “ c P TΣcpX
cq{TΩÓpX

cq, a constant, is trivial, so
suppose t “ fpt1, ¨ ¨ ¨ , tnq. By definition, Df : s1 ¨ ¨ ¨sn Ñ s P F with si P S,
ti : s1i, and s1i ď

c si for 1 ď i ď n. But p‚q : pS,ăcq Ñ pS,ăq—also p‚q :
Σ`pXcq Ñ ΣpXq Ď Σ`pXcq—is a poset/signature morphism, so s1‚i ď s‚i “ si,
t‚i P TΣpXq, and tyΣ`pXcqptq “ tyΣ`pXcqpt

‚q. Also note tyΣ`pXcq|TΣpXq “ tyΣpXq,
since f : s1 ¨ ¨ ¨sn Ñ s P F YXc with s1 ¨ ¨ ¨ sn P S

˚ iff f : s1 ¨ ¨ ¨sn Ñ s P F YX.
But t‚ P TΣpXq, thus tyΣ`pXcqptq “ tyΣ`pXcqpt

‚q “ tyΣpXqpt
‚q, as required. [\

Lemma 4. Σ “ ppS,ăq, F q is sensible iff pΣ “ pppS,Hq, pF q is sensible where

f : rs1s ¨ ¨ ¨ rsns Ñ rs0s P pF iff Df : s11 ¨ ¨ ¨ s
1
n Ñ s10 P F with s1i P rsis for 0 ď i ď n.

Proof. Given a tuple of sorts w “ s1 ¨ ¨ ¨ sn, let rws “ rs1s ¨ ¨ ¨ rsns. To see pñq,
suppose if f : w Ñ s, f : w1 Ñ s1 P F and w ”ď w1 then s ”ď s1. But
note w ”ď w1 iff w,w1 P rws and s ”ď s1 iff s, s1 P rss. To see pðq, assume

f : rws Ñ rss, f : rw1s Ñ rs1s P pF and rws ”ď rw
1s then rss ”ď rs

1s. But note

rws ”ď rw
1s iff rws “ rw1s and rss ”ď rs

1s iff rss “ rs1s since in pΣ, pďq “ H.
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Then assume towards a contradiction that Df : w1 Ñ s1, f : w2 Ñ s2 P F with
w1 ”ď w2 and s1 ıď s2. But then w1, w2 P rw1s “ rw2s and s1 P rs1s and
s2 P rs2s with rs1s ‰ rs2s, a contradiction.


