
Section 05: Solutions

1. Gradient Descent

(Note: This question is repeated from the Section 4 notes.)

We will now examine gradient descent algorithm and study the effect of learning rate α ≥ 0 on the convergence of
the algorithm. Recall from lecture that Gradient Descent takes on the form of xt+1 = xt − α∇f(xt).

(a) Assume that f : Rn → R is convex and differentiable, and additionally,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for any x, y ∈ Rn ,

i.e., ∇f is Lipschitz continuous with constant L > 0
Show that: Gradient descent with fixed step size η ≤ 1

L satisfies

f(x(k))− f(x∗) ≤ ‖x(0) − x∗‖2

2ηk
,

i.e., gradient descent has convergence rate O
(
1
k

)
.

Hints:

(i) ∇f is Lipschitz continuous with constant L > 0 =⇒ f(y) ≤ f(x) +∇f(x)>(y − x) + L
2 ‖y − x‖2 for all

x, y.

(ii) f is convex =⇒ f(x) ≤ f(x∗)+∇f(x)>(x−x∗), where x∗ is the local minima that the gradient descent
algorithm is converging to.

(iii) 2η∇f(x)>(x− x∗)− η2‖∇f(x)‖2 = ‖x− x∗‖2 − ‖x− η∇f(x)− x∗‖2

Solution:

Proof:
For any positive integer k, x(k) = x(k−1) − η∇f

(
x(k−1)

)
, according to the gradient descent algorithm.

By hint (1), we have

f
(
x(k)

)
≤ f

(
x(k−1)

)
+∇f

(
x(k−1)

)> (
x(k) − x(k−1)

)
+

L

2

∥∥∥x(k) − x(k−1)
∥∥∥2

= f
(
x(k−1)

)
− η

∥∥∥∇f
(
x(k−1)

)∥∥∥2 + L

2
η2

∥∥∥∇f
(
x(k−1)

)∥∥∥2
≤ f

(
x(k−1)

)
+

(
−η +

η

2

)∥∥∥∇f
(
x(k−1)

)∥∥∥2 (∵ η ≤ L−1)

= f
(
x(k−1)

)
− η

2

∥∥∥∇f
(
x(k−1)

)∥∥∥2
≤ f (x∗) +∇f

(
x(k−1)

)> (
x(k−1) − x∗

)
− η

2

∥∥∥∇f
(
x(k−1)

)∥∥∥2 (By hint (2))

= f (x∗) +
1

2η

(
2η∇f

(
x(k−1)

)> (
x(k−1) − x∗

)
− η2

∥∥∥∇f
(
x(k−1)

)∥∥∥2)
≤ f (x∗) +

1

2η

(∥∥∥x(k−1) − x∗
∥∥∥2 − ∥∥∥x(k−1) − η∇f(x(k−1))− x∗

∥∥∥2) (By hint(3))

= f (x∗) +
1

2η

(∥∥∥x(k−1) − x∗
∥∥∥2 − ∥∥∥x(k) − x∗

∥∥∥2) .

1

Hence, we have

f
(
x(k)

)
− f(x∗) ≤ 1

2η

(∥∥∥x(k−1) − x∗
∥∥∥2 − ∥∥∥x(k) − x∗

∥∥∥2) .

Adding up from 1 to k, we obtain

k∑
i=1

(
f(x(i))− f(x∗)

)
≤ 1

2η

k∑
i=1

(∥∥∥x(i−1) − x∗
∥∥∥2 − ∥∥∥x(i) − x∗

∥∥∥2)

=⇒
k∑

i=1

f
(
x(i)

)
− kf (x∗) ≤ 1

2η

(∥∥∥x(0) − x∗
∥∥∥2 − ∥∥∥x(k) − x∗

∥∥∥2)
≤ 1

2η

∥∥∥x(0) − x∗
∥∥∥2

Since f
(
x(k)

)
≤ f

(
x(k−1)

)
, f

(
x(k)

)
≤ 1

k

∑k
i=1 f

(
x(i)

)
.

Hence,

f
(
x(k)

)
− f (x∗) ≤ 1

2kη

∥∥∥x(0) − x∗
∥∥∥2 .

2. Subgradients

We start with the definition of subgradients before discussing the motivation and its usefulness.

Definition 1 (subgradients). A vector g ∈ Rd is a subgradient of a convex function f : D −→ R at x ∈ D ⊆ Rd if

f(y) ≥ f(x) + gT (y − x) for all y ∈ D.

One interpretation of subgradient g is that the affine function (of y) f(x) + gT (y − x) is a global underestimator of
f . Note that if a convex function f is differentiable at x (i.e., ∇f(x) exists), then f(y) ≥ f(x) +∇f(x)T (y − x) is
true for all y ∈ D, meaning that ∇f(x) is a subgradient of f at x. But a subgradient can exist even when f is not
differentiable at x.

(a) Why are subgradients useful in optimization? If g = 0 is a subgradient of a function f at x∗, what does it
imply?

Solution:

Consider the problem of minimizing a function f . If f is differentiable, we know that ∇f(x) = 0 is a
necessary condition for x to be a local extremum. Together with the convexity of f , ∇f(x) = 0 becomes
a sufficient condition for x to be a local minimizer, and hence global minimizer. If solving for ∇f(x) = 0
analytically is difficult or infeasible, we have numerical methods such as gradient descent to obtain the
solution(s). These results are very useful in minimizing a convex differentiable function and subgradients
can be treated as a generalization to situations when the underlying function (to be minimized) is nondif-
ferentiable. In the analytical aspect, if g = 0 is a subgradient of f at x∗, then from the definition above,
we have

f(y) ≥ f(x∗) + gT (y − x∗) = f(x∗) for all y ∈ D,

indicating that f(x∗) is a global minimum. To obtain the solution(s) numerically, we can consider sub-
gradient descent.

(b) What are the subgradients of f(x) = |x| at 0? (Hint: draw a picture and note that subgradients at a point
might not be unique)

Solution:

2

From definition, a scalar g is a subgradient of f at x = 0 if |y| = f(y) ≥ f(0)+g(y−0) = gy for any y ∈ R.
Solving |y| ≥ gy yields that g ∈ [−1, 1]. That is, for any g ∈ [−1, 1], g is a subgradient of f at 0.

(c) Some important results about subgradients are

• If f is convex, then a subgradient of f at x ∈ int(D) (interior of the domain of f) always exists.

• If f is convex, then f is differentiable at x if and only if ∇f(x) is the only subgradient of f at x.

• A point x∗ is a global minimizer of a function f (not necessarily convex) if and only if g = 0 is a subgra-
dient of f at x∗.

3. Stochastic Gradient Descent

Consider minimizing an average of functions:

min
w

1

n

n∑
i=1

`i(w),

where w is a d−dimensional vector (or the feature dimension is d). The minimization of the negative of a log-
likelihood function can serve as an example. Recall that the (full) gradient descent step is given by

w(t+1) = w(t) − η · 1
n

n∑
i=1

∇`i
(
w(t)

)
.

The computational cost of a single step here is O(dn). To reduce cost, one idea is to just use a subset of all samples
to approximate the full gradient. Specifically, consider revising the gradient descent step as follows:

w(t+1) = w(t) − η · ∇`It(w
(t)),

where It is chosen randomly within {1, 2, ..., n} with equal probabilities. This is called stochastic gradient descent
(SGD), and the computational cost of a single step now reduces to O(d).

(a) The following two results provide intuitions or foundations for why SGD works.

• EIt(∇`It(w
(t))) = 1

n

∑n
i=1 ∇`i

(
w(t)

)
, which is the full gradient. Hence the estimate of gradient is unbi-

ased.

• Let `(w) = 1
n

∑
i `i(w) and w∗ = argminw `(w). Assume ||w(1) − w∗||22 ≤ R and supw maxi ||∇`i(w)||22 ≤

G. Then

E[`(w̄)− `(w∗)] ≤
√

RG

T
,

where w̄ := 1
T

∑T
t=1 w

(t). Therefore, the expected error over T iterations is O(1√
T
). (The proof of this

result is provided in the solution part for reference.)

Solution:

We first consider deriving an upper bound for E(`(w(t))− `(w∗)):

E||w(t+1) − w∗||22 = E||w(t) − η∇`It(w
(t))− w∗||22

= E||w(t) − w∗||22 − 2ηE
(
∇`It(w

(t))T (w(t) − w∗)
)
+ η2E||∇`It(w

(t))||22

≤ E||w(t) − w∗||22 − 2ηE
(
∇`It(w

(t))T (w(t) − w∗)
)
+ η2G

≤ E||w(t) − w∗||22 − 2ηE(`(w(t))− `(w∗)) + η2G,

3

where the last inequality holds because of the following:

E
(
∇`It(w

(t))T (w(t) − w∗)
)

∗
= EE

[
∇`It(w

(t))T (w(t) − w∗)|I1, w(1), ..., It−1, w
(t−1)

]
= E

1

n

∑
i

∇`i(w
(t))T (w(t) − w∗)

= E∇`(w(t))T (w(t) − w∗)

≥ E
(
`(w(t))− `(w∗)

)
,

where the last inequality holds from the convexity of `(·). Furthermore, in the right-hand side of starred
equality above, the outer expectation is over the variables I1, . . . , It−1 and w(1), . . . , w(t−1), and the inner
expectation is over It, w(t) conditioned on the other variables.

Therefore, we’ve proved that E||w(t+1) − w∗||22 ≤ E||w(t) − w∗||22 − 2ηE(`(w(t)) − `(w∗)) + η2G, which
implies (from rearrangement) that

E(`(w(t))− `(w∗)) ≤ 1

2η

(
E||w(t) − w∗||22 − E||w(t+1) − w∗||22 + η2G

)
. (1)

Now note that the convexity of ` and Jensen’s inequality ensure that `(w̄) ≤ 1
T

∑T
t=1 `(w

(t)), which implies

E
(
`(w̄)− `(w∗)

)
≤ 1

T

∑
t

E
(
`(w(t))− `(w∗)

)
. (2)

From (1) and (2), we have

E
(
`(w̄)− `(w∗)

)
≤ 1

T

∑
t

E
(
`(w(t))− `(w∗)

)
≤ 1

T

∑
t

1

2η

(
E||w(t) − w∗||22 − E||w(t+1) − w∗||22 + η2G

)
=

1

2ηT

(
E||w(1) − w∗||22 − E||w(T+1) − w∗||22

)
+

ηG

2

≤ 1

2ηT
E||w(1) − w∗||22 +

ηG

2

≤ R

2ηT
+

ηG

2

=

√
RG

T
,

where the last equality holds by choosing η =
√

R
GT .

(b) What disadvantages can SGD have? How can we balance between the noise in updates and computational
cost?

Solution:

By treating SGD as noise-injected gradient descent:

∇`It(w
(t)) = EIt∇`It(w

(t)) + et =
1

n

n∑
i=1

`i(w
(t)) + et,

where et represents the noise term and is random, we know that the steps taken towards a minimum
can be very noisy because the gradient used in updating involves noise. One way to balance the noise in

4

updates and computational cost is to consider a technique called mini-batching, which is employed with
SGD.

(c) Gradient descent requires the full gradient when updating while (standard) SGD utilizes the gradient of one
sample when updating. Mini-batching is somewhere between the two extremes. That is, we choose a random
subset It ⊆ {1, ..., n} with size |It| = b � n in the stochastic gradient descent step:

w(t+1) = w(t) − η · 1
b

∑
it∈It

∇`it(w
(t)).

With mini-batching, we have the following results:

• EIt

(
1
b

∑
it∈It

∇`it(w
(t))

)
= 1

n

∑n
i=1 ∇`i(w

(t)): we still have an unbiased estimate of the full gradient.

• Compared to standard SGD, variance of the gradient estimate is reduced approximately by 1
b .

• Computational cost for each step now becomes O(db).

Remark: By matrix computations (computing b gradients at a time) and parallelization, we can denoise the
estimated gradients without increasing much computational cost (for batch size b that is not large).

(d) How should we choose the batch size? Are there other extensions or variants of the basic stochastic gradient
descent algorithm?

Solution:

The choice of the optimal batch size is not an easy question, and there is no standard answer to it. How-
ever, we still try to provide some important intuitions regarding the choice of batch size. Firstly, when
the objective function (to be minimized) behaves ”better” (e.g., Lipschitz continuous, strong convex) than
convex functions, the difference in the convergence rates between GD and SGD becomes significant, sug-
gesting a nontrivial gain of having a faster convergence rate and hence we should consider relatively larger
batch size. Secondly, a smaller batch size yields less stable gradient estimates, suggesting that we shall
employ a fairly small step size/learning rate. An increase in the batch size can be paired with an increase
in the step size/learning rate.

Many improvements, which are listed below, on the basic SGD algorithm have been developed and used.

• Implicit updates (ISGD)

• Momentum

• Averaged stochastic gradient descent

• Adaptive gradient algorithm (AdaGrad)

• Root Mean Square Propagation (RMSProp)

• Adaptive Moment Estimation (Adam)

Basically, these methods consider to fine-tune the step size parameter, take previous update magnitude
into account, or introduce the second moments of the gradients when updating. For example, Momentum
remembers the previous update magnitude so that w(t) tends to keep traveling in the same direction,
preventing oscillations:

w(t+1) = w(t) − η∇`It(w
(t)) + α(w(t) − w(t−1)).

Adam, as another example, considers to tune to step size with the second moments of the gradients:

w(t+1) = w(t) − ηG
(
∇`(t),∇`(t−1), ..., (∇`(t))2, (∇`(t−1))2, ...

)
,

5

where ∇`(t) = ∇`It(w
(t)) and G is a function that involves element-wise square of all previous gradients.

The paper below provides more details on Adam:

https://arxiv.org/pdf/1412.6980.pdf

6

	Gradient Descent
	Subgradients
	Stochastic Gradient Descent

