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In [G1], J. A. Green investigated certain subalgebras, called Borel
subalgebras, of the Schur algebra associated with the Borel subgroups of
the general linear group. Besides their combinatorial definition, these
algebras are quasi-hereditary and give rise to a triangular decomposition of
the Schur algebra with which Weyl and co-Weyl modules can be described
as induced modules by using tensor and hom functors (see [Sa]). In [PW],
part of Green’s work has been generalized to the g-Schur algebra. Re-
cently, a new class of quasi-hereditary algebras, called the g-Schur?
algebras, associated with the Hecke algebra of the Weyl group of type B
has been introduced by Du and Scott [DS] (see [DJM1] for a Morita
equivalent version). Associated with Ariki—Koike Hecke algebras, a more
general class of quasi-hereditary algebras, called cyclotomic g-Schur alge-
bras, has been introduced by Dipper, James, and Mathas in [DJMZ2]. Since
these algebras do not occur naturally in the context of Lie theory or
guantum groups (cf. [DS1]), it would be interesting to find possible
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568 DU AND RUI

connections between the representation theories of these algebras and
relevant quantum groups. As an attempt to this problem, we will investi-
gate in this paper some Lie-theoretic structure of these algebras, and
especially seek the existence of their Borel type subalgebras.

We shall aim at the g-Schur? algebra first, since the construction for the
g-Schur? algebra in [DS] is almost parallel to that for the g-Schur algebra.
Especially, the existence of both a natural basis (i.e., the counterpart for
the centralizer algebra of a permutation module) and a Green—Murphy
type (or cellular) basis for a g-Schur? algebra guarantees that we can
mimic Green’s construction in this case. Surprisingly, the work for Borel
type subalgebras in the m = 2 case can be easily generalized to the
cyclotomic g-Schur algebras, though there is no natural basis available in
the work [DIJM2] for m > 2. In this generalization, we first aim at a
subclass of cyclotomic g-Schur algebras, called g-Schur™ algebras indexed
by bidegree (n, r) as for the g-Schur algebras and will prove that Borel
type subalgebras exist in a g-Schur™ algebra. It is also interesting to note
that a Borel type subalgebra of the ¢-Schur™ algebra of degree (n,r) is
isomorphic to a Borel subalgebra of the g-Schur algebra of degree (N, r)
for some N = N(m, n, r). We will also explain how we can easily get the
Borel type subalgebras for an arbitrary cyclotomic g-Schur algebra.

It is worth pointing out that the notion of Borel subalgebras for an
arbitrary quasi-hereditary algebra has been introduced by Scott [Sc]. It
would be interesting to know if the Borel type subalgebras of g-Schur™
algebras fit the definition given in [Sc]. If it was the case, it would imply
that the higher derived functors vanished in the case discussed in (4.10)
and (5.16(f)). Thus, we would have an analogue of the Borel-Bott—Weil
theorem for g-Schur™ algebras.

We organize the paper as follows. Section 1 collects results on g-Schur?
algebras and related combinatorics. Candidates %2 > and .#2 = for Borel
type subalgebras are introduced as subspaces. In Section 2, we prove that
these subspaces are subalgebras, where we discover an important connec-
tion with the subalgebra structure on the Borel subalgebras .3 = and
F = of the g-Schur algebra .. This important observation indicates that
a somewhat easy generalization exists. In Section 3, we will prove that a
g-Schur? algebra is a product of the Borel type subalgebras, and hence, we
obtain a triangular decomposition of the g-Schur? algebra. The represen-
tation theory is investigated in Section 4, where the quasi-heredity of .%> =
and 2= is obtained by using the criterion established in [DR] and is
used to determine the PIMs and some induced standard and costandard
modules. In Section 5, we shall define the Borel type subalgebras S% =
and S§ = for the g-Schur™ algebra S% and show how all results in
Sections 2—4 for the m = 2 case are generalized to S§; for arbitrary m.
Finally, we determine the tilting modules and the Ringel duals of these
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Borel type algebras. We will see that S} > and S}~ are Ringel dual to
each other.
Throughout, unless specified, R denotes a commutative ring with 1.

1. THE ¢-SCHUR? ALGEBRA

Let W be the Weyl group of type B,. As a Coxeter group, we denote the
set of Coxeter generators of W by S = {sg,s,,...,s,_,} with relations
described in the Coxeter diagram

0 1 2 r—1
O O oo O O

In Section 5, W will be identified with the wreath product (Z/mZ) \ &,
for m = 2, where ©, = &, ,, is the symmetric group on r letters.

Let 2 = Zlq,, 95", q,q '] be the Laurent polynomial ring in the inde-
terminates go, ¢ and let g, =g, and g, =q for 1 <i<r—1 The
generic Hecke algebra /# associated to W is an associative algebra over 2
with a Z-basis {7, |w € W} and multiplication defined by

(T, -g)(T,+1) =0, ifses,
I.T,=T,, if I((xy) =1(x) +1(y).

Here [ is the length function on W. For a commutative ring R which is a
Z-algebra, let 7, =27 ®, R be the Hecke algebra over R. For simplicity,
we shall continue to use 7, for 7,, ® 1 and ¢, for ¢, ® 1.

We need the notion of multi-compositions. Let Z* be the set of
nonnegative integers. Fix n,r € Z* with n > 0. A composition A of r with
n parts is a sequence (A;,..., A,) such that A, € Z* and [Al =X, A, =1,
and A is called a partition if the sequence is weakly decreasing. For any
positive integer m, an m-composition A of r is defined to be a sequence of
compositions A = (A?, ..., A®) such that » = X7 ,|A®| and A is called an
m-partition if each X is a partition. Here the number of parts in each A
may be different. Denote by A, (r)* the set of all m-partitions of r.
Putting a, =0 and a; = a,_, +|A"| for all i > 1, the sequence a =
(aq,ay,...,a,) is called the cumulative norm sequence (or simply, c.n.s.) of
A. Let < be the dominance order on m-compositions. Thus, A < w means
that, for every i, 1 <i < m, —

i—1 k ) i—1 k )
Yoa,+ YA < Yob 4+ you”, VK,
j=0 t=1 j=0 t=1
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where a = (aq,a,,...,4a,,) resp. b =(by,b,,...,b,) is the c.ns. of A
resp. u.

Let A(n,r) be the set of all compositions of r with n parts, and let, for
m >0,

Am(n,r) = U/\EA(m,r) A(maxn,r’ /\l)
X o XCA(max, ., A, _q) X A(n,A,) (1.1)
A, (nr) =A,(nr)nA,(r)"

where max,, , is the maximum of n,r. Note that A(n,r) = Ay(n,r) and
that A,(n,r) is denoted II(n,r) in [DS]. Note also that A, (n,r)* is a
coideal of the poset A, (r)*= A, (r,r)*. An m-composition A € A, (n,r)
will sometimes be viewed as a single composition by concatenating
AL A@ A To indicate the difference, the latter will be denoted by
X € A(N, r), where N is defined by

N=N(m,n,r)=(m—1)max, , + n. (1.2)

For example, A = (30 - 0201) € A(9,6) if A = ((30 - 0),(201)) € A,(3,6).
Clearly, the map A — A defines a bijection from A, (n, ) to A(N, r). Note
that, for A, u € A, (n,r), we have A< w if and only if A< 7.

The subgroup of W generated by {s,...,s,_,} will be identified with
©,. For a (1-)composition A of r, let

~

Oy =9 g XX O e +a, 41 (1.3)

be the Young subgroup of &, corresponding to A, and 2, the set of
distinguished representatives of right ©,-cosets. If w is another composi-
tion of r, then 9, , =9, 09’1 is the set of distinguished representatives

of double &, — @M cosets, and ford ez, d'S,dn S, is a Young
(or parabolic) subgroup. For convenience, we will use in the sequel the

notation
Crin, =d2,dN3,, ©,,,=8,ndS,d* (14)

To any 2-composition A = (A, \®) € A,(n, r), we associate a so-called
quasi- parabolic subgroup W, of W (see [DS]). By definition, we have
W, = C,©5, where C, is the subgroup of W generated by ¢, =s;_; -
5,808, = 8, for 1 <i <[A®] Let A = (]AD|, A®). Then W% is the mini-
mal parabolic subgroup of W containing W,. For quasi- parabolic sub-
groups, the distinguished coset representatives are introduced in [DS, Sect.
2]. Let 9,u (resp. 2) be the set of distinguished representatives in the
right coset S0\ ©, with a = [XP| (resp. W5\ W). Then 9, = 2,0.%



BOREL TYPE SUBALGEBRAS 571

(resp. D =9, mgﬂ‘l) is the set of distinguished representatives in the
right ,-cosets (resp. double ,-W,-cosets) in the sense of [DS, (2.2.5)].
The reader should not confuse the notation 2, for type 4 with that for
type B.

For A = (AD, A®) € A,(n,r), let x, = xym where m = [TA)(g" ! +
T,), and x; = X, c=.T,. The element x, serves as the generator of the
trivial representation for W,. Following [DS, Sect. 3], we introduce the
endomorphism algebras

S =S (n,r) = End%( D xA%)
reA(n,r)
(1.5)
S =2 (n,r;R) = End%( @ xA%).
AEA(n, 1)

These endomorphism algebras are called the g-Schur? algebras of degree
(n, r) (see also [DIM1] for a Morita equivalent version).

For any d €9, ,, the conjugate intersection W N w, = d'W,dn W,
is a subgroup of W, which will be denoted by W, with v = Ad N w (cf. [DS,
(2.2.8)]). Similarly, write W5 N W, = W;. Then W is a parabolic subgroup
of W. Let 7, ; €#; be the element obtained by deleting the product =;
from =,. So 7, = mm, ;. Forany A, u € A,(n,r) and d €9, ,, there is a

w
unique element ¢, in % such that

¢Adp(xvh) = Su,vxkﬂtﬂu\'ﬁTuTgxdﬁﬁﬁWﬁ h’ (16)
where d = ’ycaj is the right distinguished decomposition of d (see [DS, Sect.

23], ie, d €Zz;, u €, and dv ' €2, and Ty = X, , T, for any
subset X c . Moreover, the set

{%du“‘:MEAz(”v")vdegm} (1.7)

forms a basis for .. We shall call it the natural basis for .#3.
Write Xy, ;5 = ¢ (x,). Let ¢ be the anti-automorphism of %, sending

T, to T, .. By[DS, (4.2.2.2)]
Xy aw, = Xy, (1.8)

So ¢ induces an anti-involution

-1

v SR> % such that ((p;’”)b = ¢! (1.9)
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Now we mimic Green’s construction in [G1] to introduce certain sub-
spaces of % via its natural basis given in (1.7). First, we need some
combinatorics.

Let I(n,r) ={i = (i, ...,i)|1<i;<n for 1 <j<r}, where n,r
are positive integers. Then, the symmetric group &, acts on I(n,r) by
place permutation: iw = (i, ,..., i) for any i € I(n,r) and w € &,.
Following [G1, Sect. 3], I(n, r) is a poset with the partial order < defined
by setting i < j if i, <j, forall k with1 <k < r. The weight wt(i) of i is a
composition (A, ..., A,) of r, where A; = #{i; € ili, = j}. Obviously, we
have wt(i) > wt(j) |f i<j Forany A A(n r), let

i, = (1,...,1,...,n,...,n).

A A
If A=(\D,...,A"™) e A, (n,r), then we define i, = i; € I(N, r), where
N is defined in (1.2).

(1. 10) LEMMA. Let A, p € A, (n,r) be of c.n.s. a, b, respectively. Then
iw =i, if and only if, for every i with 1 <i < m and every k, w(j) <b,_,
+ Zf 1 ,u,’) foralljwitha, , <j<a;,_,+ Xk, A,

Proof. Since i, = iy forany A € A, (n, r), we have i,w *= i, if and only
if i;w>=i;. So we may assume A =A=(A;,...,Ay) and u=7u=
(peqy ooy y) Thus, iw = i, if and only if

Loyt W(m) > 1,
Laugt s g+ = 20
bty = 4uog by oy 2 N,

which are equivalent to

w(1),. . w(Ay) < g,
w(A + 1), w(A +A,) < pg + oy,
w(A + o+ Ay +1),..o,w(r) <7,
as required. |
(1.11) DeFiNniTION.  For any u € A, (n,r), let
Qr(p)={(rxd)IrxeA,(nr)dezs;andid =i},
Q5 (w)={(Ad)IrxeA,(nr)deadzandid<i,},
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and

Fpr=SF"(n,r) =R-Span{<P)\M|()\ d) € Q7 (n), m € Ay(n, ”)}
Fo= == (n,r) = Rspan{ef, |(A,d) € O35 (), w € Ay(n,r)}.

Clearly, (A, d) € Q7 (w) if and only if (A,d™!) € QF (w), and there-
fore, we have, by (1.9), % = = (&% )~

2. THE SUBALGEBRA STRUCTURE ON .#?* AND .#% <

In this section, we will prove that the vector spaces .%2 ~ and %% < are
actually subalgebras of .%2. We shall see that the subalgebra structures of
27 and 2= are closely related to the subalgebra structure of the
Borel subalgebras % = and .#y = for the corresponding g-Schur algebra.
Let us first look at the g-Schur algebra case.

For a commutative ring R, let R[M,(q)] be the associative algebra over
R generated by X;; with 1 <, j < n such that

(1) X, X, = qX, X, if j >k,

(2) XX = XX, if j >k,

(3) XX, = q_lX”Xl-j, ifi>r,j<s, (2.1)
(4) XX,y — X, Xy = (q_l - 1)Xierj, ifi<r,j<s.

As an R-module, R[M,(q)] has a basis {Il,; X/} |t; € Z"}, where the
products are formed with respect to any flxed order of the X;'s (see, for
example, [DPW, (1.D)] with @ = g, B = 1 there). Let A4 (n, r) be the rth
homogeneous component of R[M (n)]. Then A4 (n,r) has a basis

{Xfu = Xiai, A, weA(nr)d EQAM}’

where 9, , denotes the set of distinguished representatives for the double
cosets VA\ S/, and X; =X, ; X, ; - X, ; ifi=0(@,...,i) and

i=0Ggn ) Denote by A (n r)* the iinear dual of A,(n,r). Then by
[DPW, (5.5)],

Aq(n, ry* = End%( GBAEA(n,r)x/\%)'

where %, is the Hecke algebra associated to the symmetric group &, over
the commutative ring R.
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(2.2) DEFINITIONS AND RESULTs. The algebra
y]% =<%I(n,r; R) = End%(EB/\EA(n,r)x)\%)

is called the g-Schur algebra of degree (n, r) (cf. [DJ2]). The natural basis
for a g-Schur algebra is given as follows: For A, u € A(n, r),d €9, let
%, €.%% be defined by

dl)\i(xvh) = 8,uv Z Twh = BAVTSAdSMh'
wed,ds,

Then %% has an R-basis {43’ | A, u € A(n,r),d €2,,}. Moreover, if we
identify l[l)i with its image under the isomorphism above, the basis
{yd I\ weAln,r)deg,) is the dual of the basis {X{, |\ pe
Aln,r),r €2,,} for A (n,r). Thus, we have % (X = §,,8,,8, , (see
[DPW, (5.7)D.

The following theorem was first obtained by Parshall and Wang (see
[PW, Sect. 11.2]). The proof below is different.

(2.3) THEOREM. Suppose A, w, v € A(n,r) and d, € Z,

A dZ eg,uv'
@ If i\d, =i, and i d, =i, then i1t = ¥

a b’ for some

=
= R ixd=i,
JER.
(b) Ifiyd, <i, and i, d, <i,, then Y1z = = agyy, for some
4. €R id<in
JER.

(©) Let Fp==S57(n,r) (resp. S~ =S~ (n,r)) be the free R-
submodule of % spanned by {%‘L [(A,d) € Q7 (), w € A(n,r)} (resp.
{d 1\, d) € OF (w), u € Ay(n, r)}). Then the subspaces Sy = and Sy =
are subalgebras for the q-Schur algebra Fy.

Proof. By embedding .7 into 5% via ¢ = @ g0 (Or a direct
construction), we obtain an anti-automorphism ¢ on .%; of order 2 which
turns (b) into (a). The statement (c) follows easily from (a) and (b). So it
remains to prove (b).

Suppose A, u € A(n,r), d €2,, with i,d <i,. We claim that ¢,/ (X, )+
0 implies i < k. Indeed, we have, by the hypothesis and (2.2), k = i w for
some w. If I(w) =0, ie,w=e, theni, =k Soi=i,d<i, =k Assume
now I(w) > 0. Write w = w't with t = (a,a + 1) and I(w) =I(w’) + 1.
Then k, >k, ... If i, <i,,q, then, by (21(3)), X; = ¢Xj, \, = aXi i
By induction, it < i w’ = kt, which implies i < k. If i, >i_,,,, then by
(2.1(4@3)),

X v X X v —(qfl—l)Xi

gk igeakysn igr1ker1 ik, ar1ki ik

= Xin+1kn+1Xinka - (l - q)Xiaka+1Xia+1ka'
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Thus, X =X, — 1 —@)X;,,. Since §%(X;) # 0, we have either
d/M(X” k) # 00r Yl (X; ) # 0. By mductlon either iz < kt ori < kz. If
it < kt,theni < k. Assume i < kt. By definition,i,,, <k,andi, <k,
which implies i,,, <i, <k,,, <k, Hence, i <k This completes the
proof of our claim.

Let lp w"z =Yica, a,¥’. We hope to prove that if i,d; < i, and
i d2 =< iV, then a, # 0 implies i,d < i,. Suppose now a, # 0. Then
«j/A (X)) # 0, where (i,j) = (i,d, i,). If we denote by A the comultipli-
cation on Aq(n, r), then,

B (X)

multo(a,l/)\‘i1 ® llf,fyz) ° A(XG)

> ‘ﬁ)\l(X.k)%df(ij) # 0.

kel(n,r)

So there is a k € I(n, r) such that (X, ) # 0 and % (ij) # 0. Thus,
< k and k < j by the above claim, and hence, i < j,ori,d <i,. |1

In the rest of this section, we shall try to find the relation between gof“
and 5 for A, u € Ay(n,r) and d €25, and then we prove that %% ~
and .%% = are subalgebras via (2.3). First, we recall a result on the Weyl
group of type B,.

For A = (A, X®) € A,(n,r), let C, be the subgroup of W generated
by ¢, with 1 <i <|[A®)] (as given in Section 1). Recall from (1.6) that
D€ Ay(n,r) is defined by Wi N W, = W, where A, p € A,(n,r) and d is
distinguished, uniquely determined by d. In particular, we have (cf. [DS,
Sect. 4.2])

G=CGnG=CInCl=2c.c(d), (2.4)

where ZCmC#(c'l\) is the centralizer of d in G, nC,.
(2.5) THEOREM. The subspaces %% = and & = are subalgebras of F.

Proof. We claim first that, for any A, u € Ay)(n,r), d €2 5, with
id =i

¢Adp(xu) =x/\T;wlA77;L\$Tuthmﬁ = TE; d(VJ)—LWp. = ltl/fxiﬁ(xﬁ)ﬂ- ' (26)

where iy, = Tg,, nc, and d = udv is the right distinguished decom-

position of d (see (1. 6)) Indeed since i,d = i, implies d(j) < | | for all
j <1x®| (see (1.10)), we have d~'C, d c C Let d = udv be the rlght
distinguished decomposition of d W|th u 69(1), teg @ and d e
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Then, d- c, dc C,, since C, is a normal subgroup of W(B,) with a =
|AD|. For any ¢, € CA, write td dld- ', d). We have I(t) + I(d) =1(d)
+Ud ' d) as d- ' de C,. Consequently, Id- ' d)= l(t) Comparing
the numbers of s, occurrlng ind- 1t d and t;, we have d 1t d =t;, and
hence, C, = -d 'c, d. Thus, C,isa subgroup of C,, and hence CA =C,
and m,; = 1. Let d ! = wu,d,v, be the right dlstlngwshed decomposmon
for d~1. Then, by (1.6),

XWudle)\ ¢uA (x)\) ,u. uldlﬂ-)\\VT h/\dlﬁu = 77 T~ e

>

Thus, ¢ (x,) = Xyaw, = Xy 4 1W) =Tz, 42,m,. The last equality in
(2.6) follows from the deflnltlon of zpw

If ol ol €77, then ¢l =0 unless p = v. Let d, = = ud,v be
the nght dlstlngmshed decomposmon of d,. By repeatedly applymg (2.6),
we have

¢Au¢nz(x ) = gokdﬁ(quudz T als h)\dz )

=T a, T

ud, "o\

Tsﬁdz 5/-,7Tp (2_7)

T h)\dz

S3d,1©; "n

= Tgxm Din dlﬁle
— d
= dipdbus(x;),

= Z adlpfiﬁ(xﬁ)ﬂ )

degxﬁ, ixd = iﬁ

where the notation A N d,  is given in (1.4), and the last equality follows
from (2.3(a)). Noting i, = i3, we obtain

QD)\,U.()D;_Ld; = Z ad¢Adp Ey]?’ - (28)
deD;,id =i,

for some a, € R. Hence the subspace .2 > is a subalgebra of .#3.
Applying (1.9), we see that %> = is also a subalgebra of .72, |

(2.9) CoROLLARY. We have the following isomorphisms of R-algebras
FE 7 (n,r) =Sy~ (max, , +n,r),
“(n,r)y =S~ (max, ,+n,r).

Proof. This immediately follows from (2.7) and (2.8). 1
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3. THE TRIANGULAR DECOMPOSITION OF .%;

In [G1], Green proved that a Schur algebra is a product of its two
(opposite) Borel subalgebras. In this section, we are going to generalize
this result to g-Schur? algebras. Let .#? >.%% = denote the submodule of
#2 generated by all products ab with a €.9% > and b €. <. We shall
prove that .%? =72 %2 = and call this the triangular decomposition of
. Using the embedding of a g-Schur algebra into a ¢g-Schur? algebra, we
will reobtain the triangular decomposition of a g-Schur algebra, which was
first established by Parshall and Wang [PW] in the context of quantum
linear groups. Our proof below is in fact a simple application of the
Green—Murphy type basis for the g-Schur? algebra given in [DS]. These
basis elements have double indices of semi-standard tableaux. Let us
briefly recall some combinatorics first.

As usual, we identify each w € A(n, r) with its Young diagram, which
consists of boxes arranged in a manner as illustrated by the example
u = (4021) € A(4,7) for which we have

o o o o
o O
d

A p-tableau t is obtained by replacing each box by one of the numbers
1,2,...,r, and t is called regular if the set of entries in t is equal to
{1,...,r}. Aregular u-tableau t is row-standard if its entries are increasing
along each row. Let t* be the regular u-tableau in which the numbers
1,2,...,r appear in order along successive rows. For example, for u =
(4021)

3 4

[S2 B T ]
N

tr =
7

The symmetric group &, acts on the regular tableaux by permuting its
entries. The set of distinguished representatives &, can be characterised
as

2, = {d € &, |t#d is row standard}.

A up-tableau t is said to be of zype A if the number of entries i in tis
equal to A;. For any u € A(n, r)*, a p-tableau is said to be semi-standard
if its entries are weakly increasing along each row and strictly increasing
down each column. Let T(pu, ) (resp. T(u, A)) be the set of all
u-tableaux (resp. semi-standard u-tableaux) of type A.
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For we &, and 3 € T(u, A), let 8(w, 3) €9, be defined by the
row-standard A-tableau t*5(w, 3) for which i belongs to row « if the place
occupied by i in t*w is occupied by a in s. Thus, we obtain a map
8(x, %) ©, X T(u, A) = 2,. In particular, the map 8(1, *) gives a bijec-
tion between T(u, A) and 2,, and 3 has non-decreasing rows (i.e., 3 is
weakly row-standard) if and only if 8(1, 8) €2, , [DJ1, (1.7)].

We now introduce appropriate terminology for multi-compositions. For
w=u® ... um e A, (nr), a multi-tableau 3 =(3,,3,,...,3,) is
called a u-tableau if

51

5
I

gWl

is a u-tableau. Clearly, each 3, is a u”-tableau. The multi-tableau 3 is
said to be regular (resp. row-standard) if 3 is regular (resp. row standard).
For u, A € A, (n,r), a p-tableau s is said to be of type A if the u-
tableau 3 is of type A. Let t* be the regular tableau such that t* = t*.
For example,

123

b Iu(l) H<m> _
te= () = ]

~ o1
oo O

if u=((310---0),(220---0),(10)) € A4(2,9). Here the rows in each single
tableau corresponding to 0 parts at the end of each A’ are omitted for
visual clarity.

The symmetric group &, acts on regular u-tableaux diagonally, i.e.,
Sw = (3w,...,3,w). Note that Sw = 3w.

The notion of semi-standard multi-tableaux has been introduced by Du
and Scott in [DS] for m = 2 (see also a version given in [DJM1]), and by
Dipper, James, and Mathas for arbitrary m in [DIJM2]. The following
definition is a generalized version of [DS, (1.2.2)].

(3.1) DeriNITION.  For w e A, (n,r)*™ and A € A, (n,r), a u-tableau
3 of type A is said to be semi-standard if

@ 3,...,8
columns,

(b) all entries in &; are strictly bigger than (j — Dmax,, , for 2 <
Jj<m.

have non-decreasing rows and strictly increasing

m

Note that if we write every entry in & as i+ (j — Dmax, , with
1 <i<max,, and replace it by the symbol i;, the definition above is

turned into the definition given in [DIM2, (4.4)].
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Let T:°(u, A) be the set of all semi-standard u-tableaux of type A. For
any 3 € I5(pu, A), let

8(3) = 8(1,3). (3.2)

Since 3 is a semi-standard p-tableau of type A, 3 is a weakly row-standard
p-tableau of type A, and hence, §(3) € Z5,.

(3.3) LEMMA. For any 3 € T3(u, A), we have i,8(3) =

Proof. Let a resp. b be the c.n.s. of A resp. w. For a tableau t, write
row,(a) = i, if a is an entry in t whose row index is i. By (1.10), it suffices
to prove that for every i with 1 <i <m and every k, 8(3)j) <b,_, +
Yk, ud for all j with a;_; <j <a;, ; + X5, A, Suppose there are
io, jor ko With a; | <j, <a, _, + Xk AP such that 8(3)(jg) > b; 4 +
Yo w. Then rowp(é(f)(;o)) > (i, — 1)max + (ko + 1). Since 3 is a
semi-standard u-tableau of type A, we have by (3.1(a)) that a > (i, —
Dmax, , + (k, + 1), where a is the entry of 3 in the place which is
occupied by 8(3)(j,) in t*. By definition, a = rows .,(8(3)(jp)) = (iy —
Dmax,, , + (kg + 1. However a = rowgs 5 (8(8)(jp)) = rowa(j,), since
the symmetrlc group &, acts on t* by entry permutation. Therefore,
a < (i, — Dmax,, , + k,, a contradiction. ||

The first part of the following theorem guarantees the existence of the
expected triangular decomposition of 72

(3.4) THEOREM [DS, Sect. 6]. (a) The set
{soﬁf @20 | we Ay(n,r) A v e Ay(n,r),
seTy(m ) te Ty(pv))

is an R-basis of F3.
(b) For any commutative Noetherian ring R, the algebra 7% is quasi-
hereditary.

We shall generalize this result to the g-Schur™ algebra S¥ in order to
get its triangular decomposition in Section 5.

(3.5) THEOREM. Let 27 and %= be the subalgebras of % as
defined in (1.11). Then %% has the following triangular decomposition

A== L T
;LEAZ(H, l‘)+

Proof. Applying (3.3) for m = 2, we have ) €.9% = for any s €
T3( s A). Let ¢ be the anti- |nvolut|on on # as in (1.8). By (1.9),
Q20 = (g2 e (=) =< for every t € T3(p, v). So the basis
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given in (3.4) is contained in ¥ =% = , and therefore, %% = 52 752 = .
Finally, for any 3 € T3(u, M) and t € T5°(w, v),

8(8) M7 _ _8(8) .1 87t 2,= 1 2, <
QDME )QD,UUS) _QDME )gDMM(’DILV() EyR>¢MuyR<'

So the last equality follows. |

4. THE QUASI-HEREDITY OF 2= AND %%~

In this section, we will discuss the representation theory of the Borel
type subalgebras %2 = and .#? > of a g-Schur? algebra .. We will show
that both %2 = and %2 ~ are quasi-hereditary. The proof is based on the
notion of a standardly based algebra introduced by the authors in [DR].
Then, using the triangular decomposition, we will also prove that the
standard modules and costandard modules for .#? can be induced from a
left (resp. right) standard modules for %% = (resp. %2 ). We should point
out that, by (2.9), the quasi-heredity (4.5) of .2 = and .2 > follows from
that of the Borel subalgebras of g-Schur algebras (see [DR, (5.6.1)]). For
completeness, we include a direct proof below. First, we recall the defini-
tion of standardly based algebras.

(4.1) DerFiNITION.  Assume that R is a commutative ring with 1. Let 4
be an R-algebra and (A, <) a poset. A is called a standardly based algebra
on A (or standardly based) if the following conditions hold.

(@) Forany A € A, there are index sets I(A), J(A) and subsets
ar = {al (i, j) € I(A) X J(A)}

of A such that the union &/ = U , ., #* is disjoint and forms an R-basis
for A.

(b) Forany a €4, a}; €, we have
a-a};= ), fo(a,i)a};  mod A(> ))
i'el())

al;-a Y hp(a)al;, mod A(> A),
eI

where A(> A) is the R-submodule of A spanned by &* with w > A, and
fia, D, f, (j,a) € R are independent of j and i, respectively. Such a
base .7 is called a standard base for the algebra A.
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Note that a cellular algebra [GL] must be standardly based. However,
the converse may not be true. We shall prove that . = and %2~ are
standardly based algebras whose standard bases are not cellular bases.

(4.2) DeFINITION.  For any A € A, let f,: J(A) X I(A) = R be a func-
tion, whose value f,(j,i") at (j,i') € J(A) X I(A) is defined by

afal;, =fi(j.i")a}y,  mod A(> A).
The function f, induces a bilinear form B,: A* X A* -» R such that
B\(a}, a};) = f,(j', i), where A" is the free R-submodule of 4 spanned by
a}s for all (i, j) € I(A) X J(A). We say A is a standardly full-based algebra
if im( B8,) = R for all A € A (compare [DR, (1..3.1).

The following result has been proved by the authors in [DR,
(3.2.1,4.2.7].

(4.3) THEOREM. (a) Let R be a commutative Noetherian ring. If A is a
standardly full-based algebra, then A is a quasi-hereditary algebra over R in the
sense of [CPS2].

(b) If R is a commutative local Noetherian ring, then A is split quasi-
hereditary if and only if A is a standardly full-based algebra.

If A is quasi-hereditary with poset A, then we use A(A, A) and
V(A, M)(A € A) to denote the standard and costandard (left) .4-modules.
Since A% is also quasi-hereditary, the left A4°°-modules A(A, A) and
V(A°, A) are naturally right A-modules by shifting the left action of 4
to the right action of 4. We shall denote these right modules by A°°( A4, A)
and V(A4, ).

Let 4 be a standardly based algebra on the poset A with a standard
base as in (4.1). For each A € A and (i, j) € I(A) X J(A), let A(A, j) (resp.
A(i, A) be the left (resp. right) A-submodule generated by the elements
a,-)‘j + A(> A) with j fixed (resp. with i fixed). The following result (see
[DR, (3.2.2)] identifies these modules with the standard and costandard
modules under the quasi-heredity structure of A.

(4.4) THEOREM. If R is a commutative local Noetherian ring and A is
standardly full-based, then the module A(A, j) (resp. A(i, A)) is isomorphic to
the left standard module A(A, A) (resp. right standard modules A°°( A, ) of
A under its quasi-heredity structure as considered in (4.3).

We are now ready to prove the main results of this section.

(4.5) THEOREM. (a) The subalgebras > > and .#?~ are standardly
full-based, and hence are quasi-hereditary over a commutative Noetherian
ring R.
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() If R is a field, then all the costandard modules V(% = , \) (resp.
standard modules A(F2 =, N)) for F% 7~ (resp. 52 =) are simple and of
dimension one.

Proof. For any u € A,(n,r), let < be the dominance order < on
A=Anr). Let I(p) =Q; (M) and J( w) =i } (see (1.11) for the
definition of Q; (w)). Forany ¢!, €.9% =, write ¢, = ¢, 4 i, It is easy
to see that (4. 1)(a) holds. Now, (2. 8) implies (4 1)(b). So sz ="is standardly
based. Moreover, it is full in the sense of (4.2) since goM Mgo M,M for
every u € A,(n,r). So ¥ = is quasi-hereditary over R by (4. 3) Similarly,
we have 2= is quasi-hereditary. Thus (a) follows. The statement (b)
follows immediately from (a) and (4.4), easily. |

(4.6) PROPOSITION.  Suppose that the base ring R is a field.

@ LetV, =57 ¢l foreach A € Ay(n,r). Then{V, | A € A,(n, r)}
is a complete set of non-isomorphic principal indecomposable 7 = -modules.
Moreover, dim gV, = TTM%n-t1(X +i-1) where A, is the ith component of A,
ie., /\_(All"'lAmax +n)

(b) Let rad Vi be the radical of V. Then radV, is spanned by go \ €
S with ¢!, # @, Thus, the dimension of any irreducible % ~ -module
is one.

Proof. (a) Since any element in ¢!, * ¢!, is an R-linear combina-
tion of ¢ withi,d > i, and d €2,,, we must have d = 1. Thus, ¢}, is a
primitive idempotent element, since ¢,.7*~ ¢!, = R¢},. On the other
hand, the identity element has the decomposition 1 =X, , (, , ey So
{V, | A € A,(n,r)}is a complete set of non-isomorphic principal indecom-
posable .#% * -modules. The last assertion follows from [Sa, (6.1)] by
counting the elements in Q3 (A).

(b) The first assertion follows from a straightforward computation. The
last assertion follows from the fact that {V, /rad V(M) | A € A,(n, r)} is the
complete set of non-isomorphic simple .2 = -modules. i

We are now going to look at the relationship between the standard
modules and costandard modules for g-Schur? algebras (see (3.4)) and
their Borel type subalgebras.

Let R be a commutative ring. For any A € A,(n,r), let x,: %5~ > R
be an R-linear map such that

d 1, ifu=v=2Aandd =1
- 4.7
x4l { 0, otherwise. (4.7)

Clearly, x, is an algebra homomorphism and via x,, R can be made into
a rank-one (left or right) %2 = -module R,. One may define similarly



BOREL TYPE SUBALGEBRAS 583

algebra homomorphism x,: &% = — R and (left or right) % < -module
R,. The following result can be proved easily.

(4.8) PROPOSITION.  If R is a commutative local Noetherian ring, then R A
(resp. R,) is isomorphic to the left standard module A(F2 =, \) (resp. right
standard module AP(FF =, \)).

Proof.  Obviously, A(5%2 <, A) is a free R-module spanned by g}, = ¢!,
+%§ <(> A), where %2 < (> )A) is the submodule of .#% = spanned by
o, eyR with u > A. Obviously, g}, = (@)@, for ¢ €57 <. Thus
A((Sf”2 , A) = R,. One can prove A®(%% =, \) = R, similarly. I

(4.9) THEOREM. Let R be a commutative local Noetherian ring and
A € Ay(n,r). Then we have

A(yZ,A), if)\eAz(n,r)+

a y2®2‘sAy2’$n)\E
(a) R <A} (% ) {0, otherwise, and

NP(FEN) A ()"

b AOp /\ ® 2= y =
(b) ( ) TR TR {0, otherwise.

Proof. We prove (a). The proof of (b) is similar. By (4.8), it suffices to
prove .72 ®z= Ry =0for A& A(n,r)*. By (34), %2 has an R- ba5|s
gopd; )qo,j’“) where 3T (m,p)and te T ”( u, v). By (3.3), qp's(*)

df re Az(n )\ Ay(n, r)*, then qolf,f“ ®u< 1=1 ®X,\(¢jy(r) 1)l

—0 Thus, 52 8,7« R, = 0.
Suppose now A € Az(n r)*. By (4.8), it is equivalent to prove .7 ®2
= A(F, A). The proof is similar to that given by J. A. Green in [GZ]
Recall from [DS, Sect. 6], that the Green—Murphy basis element
N )gojy“) is denoted by ®%, where 3 € T5(pu, M), t € TH(pw, v), and
we A,(n, ) A ve Ay(n,r). Let F2(> u) be the submodule of .72
spanned by tI)if’, with p > u, where < is the dominance order < on

A,(n,r). Then the standard module A(yR,)\) /\ € Ay(n, r)+ for_the
g-Schur? algebra 5”15 satisfies A(S%, A) =57, where @, = o, +
FZ(> 1. Write S ®, < R, =521 ® 1). It is enough to find two .%2-
homomorphisms f: gl = %% ®yz< R AA and g SR Bz < R - e
such that £(gh) =1 ® 1and g(1 ® 1) = B -

We first define f. Consider the .%-homomorphism f: SZel, — .5
®,.- R, satisfying f(¢l) =1 & 1. For Pt e 9R(> ),
golj’V( )go;if“ ® 1 =0, since »> A. It follows that f(yR(> A) =0 So f
induces an .%2-homomorphism f from #?¢!, to . ®gz < R such that
flgp =18l
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To define g, we note that, for any ¢/, €.%5 <, if p# A, then ¢/ €
(> M) by [DS, (6.1.4)]. Consequently, we have ¢g;, = x,(¢)or, for all
® €% <. Now, using the universal property of tensor product, g is
defined. |1

For A € Ay(n,r), let H?(Q) = ExtZ; - (2 -%, R)). Then, H°(A) may
be regarded as a module induced from a Borel subalgebra. The following
result generalized the classical Borel-Weil theorem (compare the remarks
after [G1, (5.9)].

(4.10) CoROLLARY. Let V(%, ) be the (left) costandard module for
F2 associated to w € Ay(n,r)*, and A € \,(n,r). Then

HO()) = V(y,?,/\), if)\eAz(n,r)+
0, otherwise.

Proof. By the adjoint isomorphism (see, e.g., [CR, 2.19]), we see that
H(A) = Homg(AP(F 7, A) ®.2- S, R).

Now, the result follows from (4.9). 1

(4.11) Remark. As mentioned in the Introduction, it would be interest-
ing to know if H?(A) =0 forall A € A,(n,r)and p > 0.

5. THE GENERAL CASE

In [AK], Ariki and Koike introduced certain algebras associated to the
complex reflection groups (Z/mZ)\ &,, which are now known as
Ariki-Koike Hecke algebras. When m =1 and 2, these algebras are
isomorphic to the Hecke algebra of types A4,_; and B,, respectively. In
[DJIM2], Dipper, James, and Mathas introduced some associated endomor-
phism algebras, called cyclotomic g-Schur algebras. In this section, we
generalize the results in Sections 2—4 to cyclotomic g-Schur algebras. For
simplicity, we will mainly work on a subclass of cyclotomic g-Schur
algebras, called g-Schur™ algebras. We will see that results for other
cyclotomic g-Schur algebras can be obtained easily from that for g-Schur™
algebras.

Though the natural basis like (1.7) is not available for a g-Schur”
algebra S§ with m > 2, having a close look at the work in previous
sections, we notice that only part of the basis elements in (1.7), which are
involved in the definition of Green—Murphy type basis (3.4), have been
used. Note also that a Murphy type basis for S is introduced in [DIM2].
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So, if we can prove this basis is a Green type basis (cf. [G2)), i.e., is of the
form (3.4), then our generalization to arbitrary m will be almost straight-
forward. So we aim to construct those elements ¢, involved in (1.11). To
do this, it suffices to generalize the relation (2.6). The next combinatorial
lemma will lead a generalization of (2.6). Recall the c.n.s. of a multi-com-
position in Section 1.

(5.1) Lemma. If A, pe A, (n,r) and d ED 5z with i,d =1, then
d=w, - wy with I(d) =X I(w,), where w; € S 41....py for all
1 <j <m,where a =" (ay,ay,...,a,)resp.b=(by, by,...,b,) is the c.n.s.
of A resp. .

Proof.  We first construct inductively a sequence of elements x,,,..., x,
with x; € &, | ;) suchthat d~* =x; - x,. Applying (1.10) to d, we
have, for every i with 1 <i <m, d(j) <b, for all j <a;_,. Thus, for
i = m, we obtain {d(1), d(2),...,d(a, _,)} C {1 2,...,b,_,}. Taking com-
plements, we have

{b

m

a+1.rbc{d(i)la, +1<j<r}.

So we may choose x,, € &, .; ,, such that x,d(j)=j for all
b, ,+1<j<b,=rand x,d(j) =d(j) for all j <a,_,. Now, since
d(j) <b,_, forall j<a it follows that

m-—2

{d(1),d(2),...,d(a,_,)} c{1,2,...,b, _,},

and hence,

{bpz+1by_iibyy + 1,0, c{d(f) la,_, +1<j<r}
={x,d(j)la,_,+1<j<r}

Therefore,

{bm—2 + 1""'bm—1} c {xmd(j)|am—2 +1 Sj =< bm—l}'

Thus, there isan x,,_, € S, ., , _, suchthat x,_,x,d(j) =] for
all j withb, ,+1<j<r and x,_,x, d(])—d(])for]<a . Con-
tinue this process. After finitely many steps, we will find x,, .. x with
X; € & 41, py SUCh that x, - x,d(j) =j for all j >b +1 and
x, - x, d(j) = d(j) for all j<a,. Flnally, choose x;, € &, ,, such
that x, --- x,,d(j) =j for all j <b,. Since x,(j) =j for all j > b, + 1,
we have x; -+ x,d(j) =j for all j >b, + 1. Thus, x; - x,,d = 1, and

1y .
A= =x, = X,



586 DU AND RUI

Next, applying induction on m and noting the exchange condition for
Coxeter groups, one sees easily that there are y; € 6(%1“ ..... b) such that
d*t=y,y, -y, and I(d ') =X" I(y,). Putting w, =y, !, the result
follows. |

(5.2) Remark. This lemma can be used to give a weak version of the
middle equality in (2.6). That is, we want to prove that, for A, u € A,(n,r)
and d € 5, with i, > i

" Tgxdgﬁﬂ'ﬂ € X, 2y

Write A = (AD, A@), = (u®, u®) and put a = [AY| and b = | u®|.
Then the c.n.s. of A and u are (0,a,r) and (0, b, r), respectively, and
a <b.Since i,d = i,, by (5.1), we can write d = w,w, withw, € &, ),
and w, € S, , Writing Ts s, = x;T,h, for some h, € ©; and
noting that =, is in the center of Z;(/;), we have

Tz yz.m, =xT,hm, =51, T, m hy

W2 Wy
=x;1,,mT, hy = x;T, mm, T, hy

= x;mT, w1, hy € X7

Note that, with (5.2), ¢/, can be defined easily for those A, u € Ay(n,r)
and d € 75, withi,d > i, (compare the general definition in [DS, (4.2.6)].
We are now ready to generalize (5.2) to the Ariki—-Koike Hecke algebras.

In the rest of the paper, let H, be the Ariki—Koike Hecke algebra
associated to the complex reflection group (Z/mZ) \ &,. Then Hy is an
associative algebra over a commutative ring R containing ¢, q *, uy, ..., u
with generators 7;, 0 <i <r — 1, and relations

r

T,1,1,T, = T\T,T,T,,
TT.\T, = T, TT,,,  forl<i<r—2
T, =TT, if li —jl>2
(T, —g)(T,+ 1) =0, ifi =0

(Ty —uy) - (Ty —u,) = 0.
Note that the subalgebra generated by T, with 1 <i <r — 1 is the Hecke
algebra Hz(&,) of type A,_,, and, when m = 2and u; = g, and u, = —1,
Hy is the Hecke algebra of type B, as defined at the beginning of Sec-

tion 1. We will use the notation Hz(3,) for the subalgebra of H, defined
by a parabolic subgroup ©, of &,. Ariki and Koike proved that the set

(L} - LST,lwe ©,,and0<c,<m —1,i=1,2,...,r}, (53)
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is a R-basis of Hy, where L, = ¢*~'T,_, --- T,T,T, --- T,_

i_1. Moreover, we
have the results (see [AK, (2.1)—(2.2)]),

(1) L;and L; commute forall 1 <i,j <r

54
(2) Ifa €Randi#k,then T, commutes with [T¢_,( L, —a). (54)
Suppose that A € A, (n,r) is of cns. a=(ay,...,qa,) Following
[DJM2], we denote
m Ag—1
m = kljz 1__[1 (L, —u), x,=mx;. (5.5)

(5.6) LEMMA. Let A e A,(n,r) be of c.n.s. a and b, respectively. If
d €5, with i\d > i, then T~ m, € x,Hpg.

S3dGy

Proof. We first note that if 7, € Hx(S,), then i # b, for all j. By
(5.4)(2) and (5.5), all the elements in Hz(S;), commute with 7,. Since
Tz, 4z, = %;T;h for some h € HR(V_) we need only prove T,m, = mHg.
For simplicity, we put my, =7 (L; — uy, ). Then, @, = 7, - @, .
Since a, < b, the product ., 1s part of m,. Let 7, ., denote the
product obtained by deleting m,, from m, .

By 61, T,=7, - T,T, forsomeweo{ oy L] <m.
Thus, for every 1 <] <m, (5 4)(2) implies that T commutes with the
product 7, T 7-rb ,and 7,, -+ T, ., commutes with m, forall [ <j.

Taking j = 1, we obtaln T, m, g T, ., and, for j=2,we have by (5.4)(1)
r,T,m =T,mT,

wamwy
= TWz a1(7Tb2 Wbm—l)wbl\”lTwl
77-5’1(77-172 b, - 1) ﬂ-bl\al wy'

Now, if we rewrite the product in the parentheses as a product of
m, (my, - m, ) and m, ., then the former commutes with T,, . Con-
tinue this process. We finally obtain

Iym, = m1, ),

A T, € mHg,

—1\am—1TWm—1 T Nayt w,
as desired. |

Note that, for d = 8(3), (5.6) holds by (3.3). This case was proved in
[DIM2, (4.10)].

Cyclotomic g-Schur algebras S;(A) associated to H are introduced in
[DIM2] for a finite set A of m-compositions of r such that A N A, (r)* is
a coideal of A, (r)*. We are interested in those cyclotomic g-Schur
algebras defined by A, (7, r).
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(5.7) DeriNITION.  The g-Schur™ algebra S¥ of degree (n,r) is the
cyclotomic g-Schur algebra associated to the poset A, (n,r). In other
words, we define

SR = Sg(n,r) = EndHR(EBAEAm(n,r)x/\HR)'

The g-Schur™ algebra is a natural generalization of the g-Schur algebra
and the g-Schur? algebra. When m =2 and u, = q,, u, = —1, S is
isomorphic to 2. Many nice properties of g-Schur? algebras such as the
quasi-heredity (over fields), a cellular basis, etc., have also been estab-
lished in [DJMZ2] for a cyclotomic g-Schur algebra. In particular, as in the
m = 2 case, we have, for any m-compositions A, u, the isomorphism
[DIM2, (5.17(i))] Homy, (x,Hg, x,Hg) =x,Hr N Hgx,, and a Murphy
type basis for x,Hz N Hzx, [DIM2, (6.3)]. This leads to a nice basis, i.e., a
cellular basis, for any cyclotomic g-Schur algebra (see [DIM2, (6.6))).

Let us give a little more details about this construction. For any
standard u-tableau s, let f,(s) be the u-tableau of type A obtained from s
by replacing each entry a in s by i, if a is in the row i of the kth
component of t* Take a semi-standard u-tableau s of type A and
consider the inverse image T, , = f,*(8). Thus, T, , is the set of all
standard u-tableaux whose image under the map f, is 3. Let < be the
partial order on the set of standard u-tableaux (see [DIM2, (3.1.1)]). Thus,
for standard u-tableaux s, t, s<it means s| k <t| k for 1 < k < r, where
s| k is a multi-composition determined by the entries 1,2,...,k in's. For
example, if

w

Il
MW
o

then s | 6 = ((221)(10)) and s | 8 = ((321)(20)). Among the elements in the
set T, ,, there is a unique standard u-tableau, which is maximal with
respect to <. Such a tableau was denoted by first(3) in [DIM2]. Let d(3)
be a distinguished coset representative in &, defined by t*d(3) = first(3).
Then, if we define, for s € T3(u, ), t € T3(w, v), P, € SE such that

(I):‘r/j;(xp) = 8Vph1Td(~:~)71x,u,Td(f)h2’ (58)
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where hy =Y, cc.ng, Lt and h, =X cc T,, then, by

md(s)N T ¥ X € 05N Dnytyny X!

[DIM2, (6.6)], the set
[y 18 € T(v,A), t € T(v, p), A,
pweA,(nr),ve,(nr)) (5.9)

forms a basis for the g-Schur™ algebra S%(n, r). Note that the element

®4(x,) is in fact a sum of Murphy’s basis elements, which is denoted m ¢,
in [DIM2, (6.2)] (see the proof of (4.10) there). Note also that we adopt the
®-notation used in [DS] instead of the ¢-notation in [DJM2] as we have
already used ¢ for natural basis elements.

As a consequence of (5.9), we obtain the quasi-heredity of the g-Schur™
algebra. For a field R, the following result is given in [DIM2, (6.18)]. The
general case follows from [DR, (3.2.1)] (see (4.3a)).

(5.10) THEOREM. Let R be a commutative Noetherian ring. Then the
algebra S} is quasi-hereditary.

We are now going to define the Borel type subalgebras of a g-Schur™
algebra Sg(n,r). For A, w € A, (n,r) and d €27, with i,d =i, let
(pM € S§ be defined by

el (x,h) =8, Tz gz, mh, ve A, (n,r),h €Hg (511)
This is well-defined by (5.6). Let « be the R-linear anti-automorphism on
Hy sending 7, to 7, for 0 <i <r — 1 (see [GL, (6.5)]. Then (m)* = m,
for any A € A, (n,r) (see (5.5) for the definition of ;). It implies that
(7-rA Om_)b Ts 4rg;m forany A ue A, (n,r). Thus we can define
qo)\ﬂ = ((p “ifid <

(5.12) LEMMA. For any p € A, (n, 1), let Q7 () and Q5 (w) be de-
fined in (1.11). Then

(@) the set {go [(A,d) € Q) (w), u € A, (n, 1)} is R-linearly indepen-
dent.

(b) the set {cp,fA [((A,d) € Q5 (), p € A, (n,r)}is R-linearly indepen-
dent.

Proof. Suppose ¥ al @ =0with af, € R. Applying the left

neEA,(n,r)

A, e ()
hand_ side to X, We have X\ sye 0z () aMLTc_d\o a, = 0. Since =, is a
monic polynomial in L;, by (5.3), we have X, ;c >, aMde:)_L‘{1

L% =0, where L% - L”r is the highest term of 7. This implies aA =0,
forall (A, d) € Q. (), by (5.3) again. Thus, (a) follows The statement (b)
follows from (a). 1
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(5.13) THEOREM. Maintain the notation above. Let S~ =S¥ > (n, r)
(resp. St == S =(n,r)) be the free R-submodule of Sp spanned by ¢,
with (A, d) € O () (resp. o, with (A, d) € Q<(,u,))f0rall we A, (nr)
Then S}~ and S = are subalgebras of the q-Schur™ algebra S}, and we
have, for N = N(m, n,r) as in (1.2), the following isomorphisms of R-alge-
bras:

S#*(n,r) =Sk”(N,r), Se=(n,r) =Sy~ (N,r).

Proof. By Definition (5.11), we have ¢! (x,) = 55d %, M = Pt (),
for (A, d) € Q7 (w) and p € A, (n,r). Now, the multlpllcatlve closure
condition and the isomorphisms can be proved similarly as in (2.7) and

28). 1

These two subalgebras are called the Borel type subalgebras of S%.

Before generalizing (3.4) to S% via (5.9), we observe from (3.3) that
e e sp” if € T, A). So we must find some relation between
this element 5(3) and the element d(3) used in the definition (5.9).

We first recall from (3.2) the definition of &(3). Let 3 € T(u, A).
Then 8(3) is the distinguished coset representative defined by row stan-
dard tableau t*%5(3) for which i belongs to row « if the place occupied by i
in t* is occupied by a in 3. For example, if u = ((3210---0), (210 --- 0),
(111) € A4(3,12)* and A = ((2110-+- 0), (220 -+ 0), (112)) € A4(3,12), we
take

1 1 14 13 13 25
s=1|2 27 14 26
3 27
Then
1 2 3 7 8 10
th*=14 5 9 11
6 12
and
1 2 7 8 10
t5(3) =| 4 3 9 11
6 5 12

Here, again rows corresponding to those 0-parts are omitted. Note that the
standard u-tableau t“5(3)~* is obtained by replacing all the numbers i in
3 by the sequence obtained by reading the ith row in t*, the replacements
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in 3 are made from left to right, down successive rows (compare [DS,
(1.2.2)]). Thus, in the previous example, we have

1 2 7 5 6 9
tre(s) =3 11 8 10
4 12

Clearly, the standard u-tableau t*5(3)~! is the maximal element first(s)
in T, , under the partial order < on standard tableaux. Therefore, we
have the result

forany 3 € T3(u, A), th5(8) " = first(s);
therefore, d(3) = 5(3)(5.14)

This result implies immediately the following.

(5.15) THEOREM. Maintain the notation in (5.8) and (5.11). For any
we A, (nrt, ALve Aml(n, r), and 3€ I%(w, A), t € T, (u, v), we
have ¢ € Si 7, 920 € Spr =, and ® = ¢V . Thus, the set

(@020 [N ve A (n,r), me A (nr)",
se (), teT(py))

forms a basis for S§.

Proof. We have seen that part of the first assertion follows from (3.3).
Let t* be the unique element in T*(w, w). By (5.14) and (5.8), one
checks easily that @2 = @, 920" = @, and . P, ., = ;. Hence
we have ®,, = <pf‘f‘~“’5:ofv(“fl. The last assertion follows from (5.9). 1

As in (4.7), we have an algebra homomorphism y, from S} > to R. Let
R, be the S} * -module induced by ;.

(5.16) THEOREM. Let S%' 7= (resp. S§"=) be the Borel type subalgebras
of S§.

(@ The g-Schur™ algebra S} has a triangular decomposition

SH=SpTSit= L SpTelspc.
reA,(n,r)*

(b) The Borel type subalgebras S§ > and S¥ = are quasi-hereditary
with simple costandard modules and simple standard modules, respectively, if
R is a commutation local Noetherian ring.
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(c) The set{g}, | A € A, (n,r)} is the complete set of primitive idempo-
tents in S§'” and S¥ = if R is a field.

(d) Suppose R is a field, and let V, = SF = @b, for A € A, (n,r).
Then V, = ASE =, N and {V, | A€ A, (n,r)} is a complete set of all
principal indecomposable S?* -modules. Moreover, if we write A =
(Ayy ..., Ay), where N is defined in (1.2), then

dimgV, =

N
i=1

N+i—1
i—-1 )

(e) Suppose R is a field. Then {V,/radV, | A € A, (n,r)} is the com-
plete set of non-isomorphic simple S§* = -modules and any simple module is of
dimension one.

(f)  Suppose that R is a commutative local Noetherian ring. Let A(S§, A)
(resp. V(SE, A) be the left standard module (resp. costandard module) of S}
with respect to A € A, (n,r)*. Let A(SF =, ) (resp. A®(S} =, \)) be the
left (resp. right) standard module for S} = (resp. for S} *). Then

m . +
S @ A(Sp <, A) = [ASRA) FASA(mr)
* 0, otherwise,

and

. V(S™, A), ifre A, (nr)’,
Homg, - (s - Sk, R,) = ( ) f . (n,7)
0, otherwise.
Proof. All statements can be proved formally by using arguments
similar to those given in Section 4.

(5.17) Remark. (1) We remark that an arbitrary cyclotomic g-Schur
algebra Sz(A) defined in [DJM2] is Morita equivalent to a centralizer
subalgebra of a g-Schur™ algebra defined by a coideal of A, (n,r)* for
some n. This is because, by [DIM2, (3.9)], #:(A) is Morita equivalent to
Sg(A™), where A*= A N A,(r)* and hence, is Morita equivalent to the
subalgebra Sy (n, r)e, where e = L, _ . ¢t for any subset A’ of A,,(n, r)
whose intersection with A, (r)* is A*. Moreover, the Borel type subalge-
bras of eSy(n,r)e are S§' = NeSye and S§' = NeSye.

(2) It would be nice to prove that the Borel type subalgebra S§' = is a
Borel subalgebra of the quasi-hereditary algebra S in the sense of [Sc],
and to establish the Borel-Bott—Weil theorem in this generality as de-
scribed in (4.11).
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6. TILTING MODULES AND RINGEL DUALS

In this section, we discuss the tilting modules and Ringel duals for Borel
type subalgebras S§** and S¥°= over a field R.

Let A4 be a quasi-hereditary algebra over a field R. Then the category of
left A-modules ,Z is a highest weight category on a poset (A, <) in the
following sense (see [CPS1)).

(@) For each A € A, there is a simple A-module L(A) such that
{L(A)| A € A} is the set of the non-isomorphic left 4-modules.

(b) For each A € A, the standard module A(A) has simple head
L(A) and all other composition factors L( w) satisfy u < A.

(c) The projective cover P(A) of L(A) has a filtration 0 = F, C
F, c -~ C F, = P(A) such that any section F//F/_, = A(p) with w > A if
i#tand u=Aif i =t The section F,/F,_, is called the top section.

The conditions (b) and (c) can be replaced by (b’) and (c’) as follows.

(b’) The costandard module V(A) has socle L(A) and all other
composition factors L( w) satisfy u < A;

(¢’) The injective envelope I(A) has a filtration 0 = Fy c F; € +-- C
F), = I()M) such that any section F//F/_, = A(u) with > A if i # 1 and
w = Aif i = 1. The section F,/F, is called the bottom section.

We shall say a left 4-module M has a A-filtration (resp. V-filtration) if
M has a filtration whose sections are of forms A(A) (resp. V(A)) for some
A€ A. A module M is called a tilting module if it has A-filtration and
V-filtration. Let ,Z(s«lt) be the subcategory of tilting modules. In [R],
Ringel proved that, for each A € A, there is a unique indecomposable
X(AN) € ,Z(4ilt), called partial tilting module with respect to A, such that
X(A) has a A-filtration with bottom section A(A) and a V-filtration with
top section V(A). A module X € ,Z(¢lr) is called a full tilting module if X
has a decomposition X = @ , . , X(1)®"™X) such that m,(X) > 0 for all
A € A. For full tilting modules X and Y, Ringel proved that the endomor-
phism algebras End ,(X) and End ,(Y) are Morita equivalent. Such an
endomorphism algebra is called a Ringel dual of the quasi-hereditary
algebra A. It is known that the Ringel dual is a quasi-hereditary algebra.

(6.1) THEOREM. Let R be a field. The Borel type subalgebras S} > and
SE =, viewed as regular modules, are full tilting modules, and therefore, they
are Ringel dual to each other.

Proof. By (5.16)(d), V, = S% * ¢}, is a principal indecomposable Sy ~ -
module, and is isomorphic to the standard module A(A) = A(SE >, ).
Hence 0 c ¥, is a A-filtration of V] with bottom section A(A). On the
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other hand, has a basis qD 2 with (u, d) € Q) (A). If we order these
basis elements go” L 8S @, ©5,..., Where ¢, = Py 1 such that My L < 1)
implies i < j, and define M, as the R-space spanned by ¢; with j < i, then
M, is an S > -module, and M, =V, where t = #Q,, (/\) Consider the
filtration 0 =M, Cc M, C --- ch =V, of V. Obviously, its section
M, /M, _, is of dimensional one for all 1 <i < ¢. Suppose that M,/M;_, is
spanned by @.,. Then, for any ¢ € S~ , we have <ppdy'<,‘o/fA =0 if pF u
If p=u, then v=pu, d' =1, and qopyqow\ gow\ Thus, gopygoMA =
)(Ii((pp,,)(pm So M;/M,_, is isomorphic to R, defined by y,. On the other
hand, by definition, V(1) = Hom (A% ), R) where A"p(n) is the right
standard S%" = -module defined by y,,, too (see (4.8)). Therefore, M,/M,_,
= V(). In particular, M,/M,_, = V()). So V, |s the partial tilting module
corresponding to A. Since 1 = ZAeAm(W) o, we have that Sy ==
Sca,mnV and so, Sg-~ is a full tilting S~ -module. Consequently,
the Ringel dual Endg, -(Sg~) (= (Sg 7)®) of Sg~ is isomorphic
toSg=. 1
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