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w xIn G1 , J. A. Green investigated certain subalgebras, called Borel
subalgebras, of the Schur algebra associated with the Borel subgroups of
the general linear group. Besides their combinatorial definition, these
algebras are quasi-hereditary and give rise to a triangular decomposition of
the Schur algebra with which Weyl and co-Weyl modules can be described

Ž w x. w xas induced modules by using tensor and hom functors see Sa . In PW ,
part of Green’s work has been generalized to the q-Schur algebra. Re-
cently, a new class of quasi-hereditary algebras, called the q-Schur 2

algebras, associated with the Hecke algebra of the Weyl group of type B
w x Ž w xhas been introduced by Du and Scott DS see DJM1 for a Morita

.equivalent version . Associated with Ariki]Koike Hecke algebras, a more
general class of quasi-hereditary algebras, called cyclotomic q-Schur alge-

w xbras, has been introduced by Dipper, James, and Mathas in DJM2 . Since
these algebras do not occur naturally in the context of Lie theory or

Ž w x.quantum groups cf. DS1 , it would be interesting to find possible
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connections between the representation theories of these algebras and
relevant quantum groups. As an attempt to this problem, we will investi-
gate in this paper some Lie-theoretic structure of these algebras, and
especially seek the existence of their Borel type subalgebras.

We shall aim at the q-Schur 2 algebra first, since the construction for the
2 w xq-Schur algebra in DS is almost parallel to that for the q-Schur algebra.

ŽEspecially, the existence of both a natural basis i.e., the counterpart for
.the centralizer algebra of a permutation module and a Green]Murphy

Ž . 2type or cellular basis for a q-Schur algebra guarantees that we can
mimic Green’s construction in this case. Surprisingly, the work for Borel
type subalgebras in the m s 2 case can be easily generalized to the
cyclotomic q-Schur algebras, though there is no natural basis available in

w xthe work DJM2 for m ) 2. In this generalization, we first aim at a
subclass of cyclotomic q-Schur algebras, called q-Schur m algebras indexed

Ž .by bidegree n, r as for the q-Schur algebras and will prove that Borel
type subalgebras exist in a q-Schur m algebra. It is also interesting to note

m Ž .that a Borel type subalgebra of the q-Schur algebra of degree n, r is
Ž .isomorphic to a Borel subalgebra of the q-Schur algebra of degree N, r

Ž .for some N s N m, n, r . We will also explain how we can easily get the
Borel type subalgebras for an arbitrary cyclotomic q-Schur algebra.

It is worth pointing out that the notion of Borel subalgebras for an
w xarbitrary quasi-hereditary algebra has been introduced by Scott Sc . It

would be interesting to know if the Borel type subalgebras of q-Schur m

w xalgebras fit the definition given in Sc . If it was the case, it would imply
Ž .that the higher derived functors vanished in the case discussed in 4.10

Ž Ž ..and 5.16 f . Thus, we would have an analogue of the Borel]Bott]Weil
theorem for q-Schur m algebras.

We organize the paper as follows. Section 1 collects results on q-Schur 2

algebras and related combinatorics. Candidates SS 2, # and SS 2, U for BorelR R
type subalgebras are introduced as subspaces. In Section 2, we prove that
these subspaces are subalgebras, where we discover an important connec-
tion with the subalgebra structure on the Borel subalgebras SS 1, # andR
SS 1, U of the q-Schur algebra SS 1. This important observation indicates thatR R
a somewhat easy generalization exists. In Section 3, we will prove that a
q-Schur 2 algebra is a product of the Borel type subalgebras, and hence, we
obtain a triangular decomposition of the q-Schur 2 algebra. The represen-
tation theory is investigated in Section 4, where the quasi-heredity of SS 2, #

R
2, U w xand SS is obtained by using the criterion established in DR and isR

used to determine the PIMs and some induced standard and costandard
modules. In Section 5, we shall define the Borel type subalgebras Sm , #

R
and Sm , U for the q-Schur m algebra Sm and show how all results inR R
Sections 2]4 for the m s 2 case are generalized to Sm for arbitrary m.R
Finally, we determine the tilting modules and the Ringel duals of these
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Borel type algebras. We will see that Sm , # and Sm , U are Ringel dual toR R
each other.

Throughout, unless specified, R denotes a commutative ring with 1.

1. THE q-SCHUR2 ALGEBRA

Let W be the Weyl group of type B . As a Coxeter group, we denote ther
� 4set of Coxeter generators of W by S s s , s , . . . , s with relations0 1 ry1

described in the Coxeter diagram

1 2 r y 10
` ` ` ` `???

Ž .In Section 5, W will be identified with the wreath product ZrmZ X S r
for m s 2, where S s S is the symmetric group on r letters.r �1, 2, . . . , r4

w y1 y1 xLet ZZ s Z q , q , q, q be the Laurent polynomial ring in the inde-0 0
terminates q , q and let q s q and q s q for 1 F i F r y 1. The0 s 0 s0 i

generic Hecke algebra HH associated to W is an associative algebra over ZZ

� < 4with a ZZ-basis T w g W and multiplication defined byw

T y q T q 1 s 0, if s g S,Ž . Ž .s s s

T T s T , if l xy s l x q l y .Ž . Ž . Ž .x y x y

Here l is the length function on W. For a commutative ring R which is a
ZZ-algebra, let HH s HH m R be the Hecke algebra over R. For simplicity,R ZZ

we shall continue to use T for T m 1 and q for q m 1.w w s s
We need the notion of multi-compositions. Let Zq be the set of

nonnegative integers. Fix n, r g Zq with n ) 0. A composition l of r with
Ž . q < <n parts is a sequence l , . . . , l such that l g Z and l s Ý l s r,1 n i i i

and l is called a partition if the sequence is weakly decreasing. For any
positive integer m, an m-composition l of r is defined to be a sequence of

Ž Ž1. Žm.. m < Ž i. <compositions l s l , . . . , l such that r s Ý l and l is called anis1
m-partition if each lŽ i. is a partition. Here the number of parts in each lŽ i.

Ž .qmay be different. Denote by L r the set of all m-partitions of r.m
< Ž i. <Putting a s 0 and a s a q l for all i G 1, the sequence a s0 i iy1

Ž . Ž .a , a , . . . , a is called the cumulatï e norm sequence or simply, c.n.s. of0 1 m
l. Let e be the dominance order on m-compositions. Thus, le m means
that, for every i, 1 F i F m,

iy1 k iy1 k
Ž i. Ž i.a q l F b q m , ;k ,Ý Ý Ý Ýj t j t

js0 ts1 js0 ts1
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Ž . Ž .where a s a , a , . . . , a resp. b s b , b , . . . , b is the c.n.s. of l0 1 m 0 1 m
resp. m.

Ž .Let L n, r be the set of all compositions of r with n parts, and let, for
m ) 0,

¡L n , r s D L max , lŽ . Ž .m lg LŽm , r . n , r 1

~ = ??? = L max , l = L n , lŽ . Ž . 1.1Ž .n , r my1 m
q q¢L n , r s L n , r l L r ,Ž . Ž . Ž .m m m

Ž . Ž .where max is the maximum of n, r. Note that L n, r s L n, r andn, r 1
Ž . Ž . w x Ž .qthat L n, r is denoted P n, r in DS . Note also that L n, r is a2 m

Ž .q Ž .q Ž .coideal of the poset L r s L r, r . An m-composition l g L n, rm m m
will sometimes be viewed as a single composition by concatenating
lŽ1., lŽ2., . . . , lŽm.. To indicate the difference, the latter will be denoted by

Ž .l g L N, r , where N is defined by

N s N m , n , r s m y 1 max q n. 1.2Ž . Ž . Ž .n , r

Ž . Ž . ŽŽ . Ž .. Ž .For example, l s 30 ??? 0201 g L 9, 6 if l s 30 ??? 0 , 201 g L 3, 6 .2
Ž . Ž .Clearly, the map l ¬ l defines a bijection from L n, r to L N, r . Notem

Ž .that, for l, m g L n, r , we have le m if and only if le m.m
� 4The subgroup of W generated by s , . . . , s will be identified with1 ry1

Ž .S . For a 1- composition l of r, letr

S s S = ??? = S 1.3Ž .l �1 , . . . , l 4 �l q ??? ql q1, . . . , r41 1 ny1

be the Young subgroup of S corresponding to l, and DD the set ofr l

distinguished representatives of right S -cosets. If m is another composi-l

tion of r, then DD s DD l DDy1 is the set of distinguished representativeslm l m

of double S y S cosets, and, for d g DD , dy1 S d l S is a Youngl m lm l m

Ž .or parabolic subgroup. For convenience, we will use in the sequel the
notation

S s dy1 S d l S , S s S l dS dy1 . 1.4Ž .ld l m l m ll dm l m

Ž Ž1. Ž2.. Ž .To any 2-composition l s l , l g L n, r , we associate a so-called2
Ž w x.quasi-parabolic subgroup W of W see DS . By definition, we havel

W s C S , where C is the subgroup of W generated by t s s ???l l l l i iy1
Ž1. ˆ Ž1. Ž2.< < Ž < < .s s s ??? s for 1 F i F l . Let l s l , l . Then W is the mini-ˆ1 0 1 iy1 l

mal parabolic subgroup of W containing W . For quasi-parabolic sub-l

wgroups, the distinguished coset representatives are introduced in DS, Sect.
x Ž .Ž1.2 . Let DD resp. DD be the set of distinguished representatives in theˆl l

< Ž1. < Ž .Ž1. Ž1.right coset S _ S with a s l resp. W _ W . Then DD s DD DDˆ ˆl a l l l l
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Ž y1 .resp. DD s DD l DD is the set of distinguished representatives in thelm l m

Ž . w Ž .xright W -cosets resp. double W -W -cosets in the sense of DS, 2.2.5 .l l m

The reader should not confuse the notation DD for type A with that forlm

type B.
Ž1. Ž2. < lŽ1. < iy1Ž . Ž . ŽFor l s l , l g L n, r , let x s x p where p s Ł q q2 l l l l is1

.T , and x s Ý T . The element x serves as the generator of thet l w g S w li l w xtrivial representation for W . Following DS, Sect. 3 , we introduce thel

endomorphism algebras

SS 2 s SS 2 n , r s End x HHŽ . [q HH lž /Ž .lgL n , r2
1.5Ž .

2 2SS s SS n , r ; R s End x HH .Ž . [R q HH l RR ž /Ž .lgL n , r2

These endomorphism algebras are called the q-Schur 2 algebras of degree
Ž . Ž w x .n, r see also DJM1 for a Morita equivalent version .

For any d g DD , the conjugate intersection W d l W s dy1W d l Wlm l m l m

Ž wis a subgroup of W, which will be denoted by W with n s ld l m cf. DS,n
d̂Ž .x.2.2.8 . Similarly, write W l W s W . Then W is a parabolic subgroupl̂ m n nˆ ˆ ˆ

of W. Let p g HH be the element obtained by deleting the product pm_ n R nˆ ˆ
Ž .from p . So p s p p . For any l, m g L n, r and d g DD , there is am m n m_ n 2 lmˆ ˆ

unique element w d in SS 2 such thatlm R

w d x h s d x T p T T h , 1.6Ž . Ž .ˆlm n m , n l ud m_ n ¨ DD l Wˆ ld l m m

ˆ Ž wwhere d s ud¨ is the right distinguished decomposition of d see DS, Sect.
ˆ ˆ y1x. Ž1.2.3 , i.e., d g DD , u g DD , and d¨ g DD , and T s Ý T for anyˆ ˆlm l l X w g X wˆ

subset X ; W. Moreover, the set

d <w l, m g L n , r , d g DD 1.7Ž . Ž .� 4lm 2 lm

forms a basis for SS 2. We shall call it the natural basis for SS 2.R R
d Ž .Write X s w x . Let i be the anti-automorphism of HH sendingW dW lm m Rl m

w Ž .xy1T to T . By DS, 4.2.2.2w w

X i s X y1 . 1.8Ž .W dW W d Wl m m l

So i induces an anti-involution

i y12 2 d di : SS ª SS such that w s w . 1.9Ž .Ž .R R lm ml
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w xNow we mimic Green’s construction in G1 to introduce certain sub-
2 Ž .spaces of SS via its natural basis given in 1.7 . First, we need someR

combinatorics.
Ž . � Ž . < 4Let I n, r s i s i , i , . . . , i 1 F i F n for 1 F j F r , where n, r1 2 r j

Ž .are positive integers. Then, the symmetric group S acts on I n, r byr
Ž . Ž .place permutation: iw s i , . . . , i for any i g I n, r and w g S .wŽ1. wŽ r . r

w x Ž .Following G1, Sect. 3 , I n, r is a poset with the partial order U defined
Ž .by setting i U j if i F j for all k with 1 F k F r. The weight wt i of i is ak k

Ž . � < 4composition l , . . . , l of r, where l s a i g i i s j . Obviously, we1 n j k k
Ž . Ž . Ž .have wt i dwt j if i U j. For any l g L n, r , let

i s 1, . . . , 1 , . . . , n , . . . , n .ž /l ^ ` _ ^ ` _
l l1 n

Ž1. Žm.Ž . Ž . Ž .If l s l , . . . , l g L n, r , then we define i s i g I N, r , wherem l l

Ž .N is defined in 1.2 .

Ž . Ž .1.10 LEMMA. Let l, m g L n, r be of c.n.s. a, b, respectï ely. Thenm
Ž .i w # i if and only if , for e¨ery i with 1 F i F m and e¨ery k, w j F bl m iy1

q Ýk mŽ i. for all j with a - j F a q Ýk lŽ i..ts1 t iy1 iy1 ts1 t

Ž .Proof. Since i s i for any l g L n, r , we have i w # i if and onlyl l m l m

Ž .if i w # i . So we may assume l s l s l , . . . , l and m s m sl m 1 N
Ž .m , . . . , m . Thus, i w # i if and only if1 N l m

i , . . . , i G 1,wŽ1. wŽ m .1

i , . . . , i G 2,wŽ m q1. wŽ m qm .1 1 2

??? ,
i , . . . , i G N ,wŽ m q ??? qm q1. wŽ r .1 Ny1

which are equivalent to

w 1 , . . . , w l F m ,Ž . Ž .1 1

w l q 1 , . . . , w l q l F m q m ,Ž . Ž .1 1 2 1 2

??? ,
w l q ??? ql q 1 , . . . , w r F r ,Ž . Ž .1 Ny1

as required.

Ž . Ž .1.11 DEFINITION. For any m g L n, r , letm

# <V m s l, d l g L n , r , d g DD and i d # i ,Ž . Ž . Ž .� 4m m lm l m

U <V m s l, d l g L n , r , d g DD and i d U i ,Ž . Ž . Ž .� 4m m ml m l



BOREL TYPE SUBALGEBRAS 573

and

2, # 2, # d < #SS s SS n , r s R-span w l, d g V m , m g L n , r ,Ž . Ž . Ž . Ž .� 4R R lm 2 2

2, U 2, U d < USS s SS n , r s R-span w l, d g V m , m g L n , r .Ž . Ž . Ž . Ž .� 4R R ml 2 2

Ž . # Ž . Ž y1 . U Ž .Clearly, l, d g V m if and only if l, d g V m , and there-m m
Ž . 2, U Ž 2, #.ifore, we have, by 1.9 , SS s SS .R R

2. THE SUBALGEBRA STRUCTURE ON SS 2, # AND SS 2, U
R R

In this section, we will prove that the vector spaces SS 2, # and SS 2, U areR R
actually subalgebras of SS 2. We shall see that the subalgebra structures ofR
SS 2, # and SS 2, U are closely related to the subalgebra structure of theR R
Borel subalgebras SS 1, # and SS 1, U for the corresponding q-Schur algebra.R R
Let us first look at the q-Schur algebra case.

w Ž .xFor a commutative ring R, let R M q be the associative algebra overn
R generated by X with 1 F i, j F n such thati j

¡ 1 X X s qX X , if j ) k ,Ž . i j i k ik i j

2 X X s X X , if j ) k ,Ž . ji k i k i ji~ 2.1Ž .y13 X X s q X X , if i ) r , j - s,Ž . i j r s r s i j

y1¢ 4 X X y X X s q y 1 X X , if i - r , j - s.Ž . Ž .i j r s r s i j i s r j

w Ž .x � t i j < q4As an R-module, R M q has a basis Ł X t g Z , where then i j i j i j
Žproducts are formed with respect to any fixed order of the X ’s see, fori j

w Ž .x . Ž .example, DPW, 1.1 with a s q, b s 1 there . Let A n, r be the r thq
w Ž .x Ž .homogeneous component of R M n . Then A n, r has a basisq q

d <X s X l, m g L n , r , d g DD ,Ž .½ 5lm i d , i lml m

where DD denotes the set of distinguished representatives for the doublelm

Ž .cosets S _ S rS , and X s X X ??? X if i s i , . . . , i andl r m ij i , j i , j i , j 1 r1 1 2 2 r r
Ž . Ž . Ž .j s j , . . . , j . Denote by A n, r * the linear dual of A n, r . Then, by1 r q q

w Ž .xDPW, 5.5 ,

A n , r * ( End [ x HH ,Ž . Ž .q HH lg LŽn , r . l RR

where HH is the Hecke algebra associated to the symmetric group S overR r
the commutative ring R.
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Ž .2.2 DEFINITIONS AND RESULTS. The algebra

SS 1 s SS n , r ; R s End [ x HHŽ . Ž .R q HH lg LŽn , r . l RR

Ž . Ž w x.is called the q-Schur algebra of degree n, r cf. DJ2 . The natural basis
Ž .for a q-Schur algebra is given as follows: For l, m g L n, r , d g DD , letlm

c d g SS 1 be defined bylm R

c d x h s d T h s d T h.Ž . Ýlm n mn w mn S d Sl m

wgS d Sl m

1 � d < Ž . 4Then SS has an R-basis c l, m g L n, r , d g DD . Moreover, if weR lm lm

identify c d with its image under the isomorphism above, the basislm

� d < Ž . 4 � d <c l, m g L n, r , d g DD is the dual of the basis X l, m glm lm l, m

Ž . 4 Ž . d Ž d1. ŽL n, r , r g DD for A n, r . Thus, we have c X s d d d seelm q lm rn lr mn d, d1w Ž .x.DPW, 5.7 .

ŽThe following theorem was first obtained by Parshall and Wang see
w x.PW, Sect. 11.2 . The proof below is different.

Ž . Ž .2.3 THEOREM. Suppose l, m, n g L n, r and d g DD , d g DD .1 lm 2 mn

Ž . d1 d2 da If i d # i and i d # i , then c c s Ý a c for somel 1 m m 2 n lm mn d lndgDDln
i d# il na g R.d

Ž . d1 d2 db If i d U i and i d U i , then c c s Ý a c for somel 1 m m 2 n lm mn d lndgDDln
i dU il na g R.d

Ž . 1, # 1, # Ž . ( 1, U 1, U Ž .)c Let SS s SS n, r resp. SS s SS n, r be the free R-R R R R
1 � d < Ž . # Ž . Ž .4 (submodule of SS spanned by c l, d g V m , m g L n, r resp.R lm 1 1

� d < Ž . U Ž . Ž .4) 1, # 1, Uc l, d g V m , m g L n, r . Then the subspaces SS and SSml 1 1 R R
are subalgebras for the q-Schur algebra SS 1.R

1 2 d d ŽProof. By embedding SS into SS via c ¬ w or a directR R lm Žl, 0.Ž m , 0.
. 1construction , we obtain an anti-automorphism i on SS of order 2 whichR

Ž . Ž . Ž . Ž . Ž .turns b into a . The statement c follows easily from a and b . So it
Ž .remains to prove b .
Ž . d Ž .Suppose l, mgL n, r , dgDD with i dUi . We claim that c X /lm l m lm ik

Ž .0 implies i U k. Indeed, we have, by the hypothesis and 2.2 , k s i w form

Ž .some w. If l w s 0, i.e., w s e, then i s k. So i s i d U i s k. Assumem l m

Ž . Ž . Ž . Ž .now l w ) 0. Write w s w9t with t s a, a q 1 and l w s l w9 q 1.
Ž Ž ..Then k ) k . If i F i , then, by 2.1 3 , X s qX s qX .a aq1 a aq1 ik i t, k t i t, i w 9m

By induction, i t U i w9 s k t, which implies i U k. If i ) i , then bym a aq1
Ž Ž .Ž ..2.1 4 3 ,

X X s X X y qy1 y 1 X XŽ .i k i k i k i k i k i ka a aq1 aq1 aq1 aq1 a a aq1 a a aq1

s X X y 1 y q X X .Ž .i k i k i k i kaq 1 aq1 a a a aq1 aq1 a
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Ž . d Ž .Thus, X s X y 1 y q X . Since c X / 0, we have eitherik i t, k t i, k t lm ik
d Ž . d Ž .c X / 0 or c X / 0. By induction, either i t U k t or i U k t. Iflm i t, k t lm i, k t

i t U k t, then i U k. Assume i U k t. By definition, i F k and i F k ,aq1 a a aq1
which implies i - i F k - k . Hence, i U k. This completes theaq1 a aq1 a
proof of our claim.

Let c d1c d2 s Ý a c d . We hope to prove that if i d U i andmn mn d g DD d ln l 1 mln

i d U i , then a / 0 implies i d U i . Suppose now a / 0. Thenm 2 n d l n d
d1 d2Ž . Ž . Ž .c c X / 0, where i, j s i d, i . If we denote by D the comultipli-lm mn ij l n

Ž .cation on A n, r , then,q

c d1c d2 X smult( c d1 m c d2 (D XŽ . Ž .Ž .lm mn ij lm mn ij

s c d1 X c d2 X / 0.Ž . Ž .Ý lm ik mn kj
Ž .kgI n , r

Ž . d1Ž . d2Ž .So there is a k g I n, r such that c X / 0 and c X / 0. Thus,lm ik mn kj
i U k and k U j by the above claim, and hence, i U j, or i d U i .l n

In the rest of this section, we shall try to find the relation between w d
lm

d 2, #Ž .and c for l, m g L n, r and d g DD and then we prove that SSlm 2 lm R
2, U Ž .and SS are subalgebras via 2.3 . First, we recall a result on the WeylR

group of type B .r
Ž Ž1. Ž2.. Ž .For l s l , l g L n, r , let C be the subgroup of W generated2 l

< Ž1. < Ž . Ž .by t with 1 F i F l as given in Section 1 . Recall from 1.6 thati
d̂ ˆŽ . Ž .n g L n, r is defined by W l W s W where l, m g L n, r and d isˆ ˆ2 l m n 2ˆ ˆ

Ž wdistinguished, uniquely determined by d. In particular, we have cf. DS,
x.Sect. 4.2

ˆ ˆ ˆd d d ˆC s C l C s C l C s Z d , 2.4Ž .Ž .ˆn l m l m C l Cˆ ˆ l m

ˆ ˆŽ .where Z d is the centralizer of d in C l C .C l C l ml m

Ž . 2, # 2, U 22.5 THEOREM. The subspaces SS and SS are subalgebras of SS .R R R

Ž .Proof. We claim first that, for any l, m g L n, r , d g DD with2 lm

i d # i ,l m

d dw x s x T p T h s T p s c x p , 2.6Ž . Ž . Ž .ˆlm m l m d m_ n ¨ ld l m S d G m lm m mˆ l m

ˆwhere h s T and d s ud¨ is the right distinguished decom-ld l m DD l Sld l m m

Ž Ž .. Ž . < Ž1. <position of d see 1.6 . Indeed, since i d # i implies d j F m for alll m
Ž1. y1 ˆ< < Ž Ž ..j F l see 1.10 , we have d C d : C . Let d s ud¨ be the rightl m

y1 ˆŽ1. Ž1.distinguished decomposition of d with u g DD , ¨ g DD and d g DD .ˆl m lm̂
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ŷ1 ˆ Ž .Then, d C d : C , since C is a normal subgroup of W B with a sl m l a
Ž1. ˆ ˆ ŷ1 ˆ ˆ ˆ< < Ž . Ž . Ž . Ž .l . For any t g C , write t d s d d t d . We have l t q l d s l dj l j j j

ŷ1 ˆ ŷ1 ˆ ŷ1 ˆŽ . Ž . Ž .q l d t d as d t d g C . Consequently, l d t d s l t . Comparingj j m j j
ŷ1 ˆ ŷ1 ˆthe numbers of s occurring in d t d and t , we have d t d s t , and0 j j j j

ŷ1 ˆhence, C s d C d. Thus, C is a subgroup of C , and hence, C s Cl l l m n lˆ
y1 ˆand p s 1. Let d s u d ¨ be the right distinguished decompositionl_ n 1 1 1ˆ

y1 Ž .for d . Then, by 1.6 ,

dy1
y1 y1X s w x s x T p T h s p T .Ž . ˆW d W ml l m u d l_ n ¨ ld l m m S d Sˆm l 1 1 1 1 m l

d Ž . Ž .i
y1Thus, w x s X s X s T p . The last equality inlm m W dW W d W S d S ml m m l l mdŽ .2.6 follows from the definition of c .lm

d1 d2 2, # d1 d2 ˆIf w , w g SS , then w w s 0 unless m s n . Let d s ud ¨ belm nr R lm nr 2 2
Ž .the right distinguished decomposition of d . By repeatedly applying 2.6 ,2

we have

d d d1 2 1w w x s w x T p T hŽ . ˆž /lm m r r lm m ud r _ m ¨ ld l mˆ2 2

s T p T p T hˆS d S m ud r _ m ¨ ld l mˆl 1 m 2 2

s T T T pS l DD d S d S rl ll d m 1 m 2 r1 2.7Ž .
d d1 2s c c x pŽ .lm m r r r

ds a c x p ,Ž .Ý d lr r r

dgDD , i d#il rl r

Ž .where the notation l l d m is given in 1.4 , and the last equality follows1
Ž Ž ..from 2.3 a . Noting i s i , we obtainl l

w d1 w d2 s a w d g SS 2, # 2.8Ž .Ýlm m r d lr R
dgDD i d#il rl r

for some a g R. Hence the subspace SS 2, # is a subalgebra of SS 2.d R R
2, U 2Ž .Applying 1.9 , we see that SS is also a subalgebra of SS .R R

Ž .2.9 COROLLARY. We ha¨e the following isomorphisms of R-algebras

SS 2, # n , r ( SS 1, # max q n , r ,Ž . Ž .R R n , r

SS 2, U n , r ( SS 1, U max q n , r .Ž . Ž .R R n , r

Ž . Ž .Proof. This immediately follows from 2.7 and 2.8 .
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3. THE TRIANGULAR DECOMPOSITION OF SS 2
R

w xIn G1 , Green proved that a Schur algebra is a product of its two
Ž .opposite Borel subalgebras. In this section, we are going to generalize
this result to q-Schur 2 algebras. Let SS 2, # SS 2, U denote the submodule ofR R
SS 2 generated by all products ab with a g SS 2, # and b g SS 2, U . We shallR R R
prove that SS 2 s SS 2, # SS 2, U and call this the triangular decomposition ofR R R
SS 2. Using the embedding of a q-Schur algebra into a q-Schur 2 algebra, weR
will reobtain the triangular decomposition of a q-Schur algebra, which was

w xfirst established by Parshall and Wang PW in the context of quantum
linear groups. Our proof below is in fact a simple application of the

2 w xGreen]Murphy type basis for the q-Schur algebra given in DS . These
basis elements have double indices of semi-standard tableaux. Let us
briefly recall some combinatorics first.

Ž .As usual, we identify each m g L n, r with its Young diagram, which
consists of boxes arranged in a manner as illustrated by the example

Ž . Ž .m s 4021 g L 4, 7 for which we have

I I I I
] ] ]

m s I I
I

A m-tableau t is obtained by replacing each box by one of the numbers
1, 2, . . . , r, and t is called regular if the set of entries in t is equal to
� 41, . . . , r . A regular m-tableau t is row-standard if its entries are increasing
along each row. Let t m be the regular m-tableau in which the numbers
1, 2, . . . , r appear in order along successive rows. For example, for m s
Ž .4021

1 2 3 4
] ] ]mt s
5 6
7

The symmetric group S acts on the regular tableaux by permuting itsr
entries. The set of distinguished representatives DD can be characterisedm

as
< mDD s d g S t d is row standard .� 4m r

A m-tableau t is said to be of type l if the number of entries i in t is
Ž .qequal to l . For any m g L n, r , a m-tableau is said to be semi-standardi

if its entries are weakly increasing along each row and strictly increasing
Ž . Ž s sŽ ..down each column. Let T m, l resp. T m, l be the set of all

Ž .m-tableaux resp. semi-standard m-tableaux of type l.
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s sŽ . Ž .For w g S and s g T m, l , let d w, s g DD be defined by ther l
l Ž .row-standard l-tableau t d w, s for which i belongs to row a if the place

occupied by i in t mw is occupied by a in s. Thus, we obtain a map
Ž . Ž . Ž .d ), ) : S = T m, l ª DD . In particular, the map d 1, ) gives a bijec-r l

Ž . Žtion between T m, l and DD , and s has non-decreasing rows i.e., s isl

. Ž . w Ž .xweakly row-standard if and only if d 1, s g DD DJ1, 1.7 .lm

We now introduce appropriate terminology for multi-compositions. For
Ž Ž1. Žm.. Ž . Ž .m s m , . . . , m g L n, r , a multi-tableau s s s , s , . . . , s ism 1 2 m

called a m-tableau if

s1
..s s .

s m

Ž i.is a m-tableau. Clearly, each s is a m -tableau. The multi-tableau s isi
Ž . Ž .said to be regular resp. row-standard if s is regular resp. row standard .

Ž .For m, l g L n, r , a m-tableau s is said to be of type l if the m-m
m m mtableau s is of type l. Let t be the regular tableau such that t s t .

For example,

Ž1. Žm . 1 2 3 5 6 9m m mt s t , . . . , t sŽ . 4 7 8

ŽŽ . Ž . Ž .. Ž .if m s 310 ??? 0 , 220 ??? 0 , 10 g L 2, 9 . Here the rows in each single3
tableau corresponding to 0 parts at the end of each lŽ i. are omitted for
visual clarity.

The symmetric group S acts on regular m-tableaux diagonally, i.e.,r
Ž .sw s s w, . . . , s w . Note that sw s sw.1 m

The notion of semi-standard multi-tableaux has been introduced by Du
w x Ž w x.and Scott in DS for m s 2 see also a version given in DJM1 , and by

w xDipper, James, and Mathas for arbitrary m in DJM2 . The following
w Ž .xdefinition is a generalized version of DS, 1.2.2 .

Ž . Ž .q Ž .3.1 DEFINITION. For m g L n, r and l g L n, r , a m-tableaum m
s of type l is said to be semi-standard if

Ž .a s , . . . , s have non-decreasing rows and strictly increasing1 m
columns,

Ž . Ž .b all entries in s are strictly bigger than j y 1 max for 2 Fj n, r
j F m.

Ž .Note that if we write every entry in s as i q j y 1 max withn, r
1 F i - max and replace it by the symbol i , the definition above isn, r j

w Ž .xturned into the definition given in DJM2, 4.4 .
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s sŽ .Let T m, l be the set of all semi-standard m-tableaux of type l. Form
ssŽ .any s g T m, l , letm

d s s d 1, s . 3.2Ž . Ž . Ž .

Since s is a semi-standard m-tableau of type l, s is a weakly row-standard
Ž .m-tableau of type l, and hence, d s g DD .lm

Ž . s sŽ . Ž .3.3 LEMMA. For any s g T m, l , we ha¨e i d s # i .m l m

Proof. Let a resp. b be the c.n.s. of l resp. m. For a tableau t, write
Ž . Ž .row a s i, if a is an entry in t whose row index is i. By 1.10 , it sufficest

Ž .Ž .to prove that for every i with 1 F i F m and every k, d s j F b qiy1
Ýk mŽ i. for all j with a - j F a q Ýk lŽ i.. Suppose there arets1 t iy1 iy1 ts1 t

k 0 Ž i. Ž .Ž .i , j , k with a - j F a q Ý l such that d s j ) b q0 0 0 i y1 0 i y1 ts1 t 0 i y10 0 0k 0 Ž i. Ž Ž .Ž .. Ž . Ž .mÝ m . Then row d s j G i y 1 max q k q 1 . Since s is ats1 t t 0 0 n, r 0
Ž Ž .. Žsemi-standard m-tableau of type l, we have by 3.1 a that a G i y0

. Ž .1 max q k q 1 , where a is the entry of s in the place which isn, r 0
mŽ .Ž . Ž Ž .Ž .. Žloccupied by d s j in t . By definition, a s row d s j G i y0 t d Žs . 0 0

. Ž . Ž Ž .Ž .. Ž .l l1 max q k q 1 . However, a s row d s j s row j , sincen, r 0 t d Žs . 0 t 0
lthe symmetric group S acts on t by entry permutation. Therefore,r

Ž .a F i y 1 max q k , a contradiction.0 n, r 0

The first part of the following theorem guarantees the existence of the
expected triangular decomposition of SS 2.R

Ž . w x Ž .3.4 THEOREM DS, Sect. 6 . a The set

y1 qd Žs . d Ž t . <w w m g L n , r , l, n g L n , r ,Ž . Ž .½ lm mn 2 2

s g T s s m , l , t g T s s m , nŽ . Ž . 52 2

is an R-basis of SS 2.R
Ž . 2b For any commutatï e Noetherian ring R, the algebra SS is quasi-R

hereditary.

We shall generalize this result to the q-Schur m algebra Sm in order toR
get its triangular decomposition in Section 5.

Ž . 2, # 2, U 23.5 THEOREM. Let SS and SS be the subalgebras of SS asR R R
Ž . 2defined in 1.11 . Then SS has the following triangular decompositionR

SS 2 s SS 2, # SS 2, Us SS 2, # w1 SS 2, U .ÝR R R R mm R
qŽ .mgL n , r2

Ž . d Žs . 2, #Proof. Applying 3.3 for m s 2, we have w g SS for any s glm R
ssŽ . Ž . Ž .T m, l . Let i be the anti-involution on HH as in 1.8 . By 1.9 ,2 R
d Žt.y1 Ž d Žt..i Ž 2, #.i 2, U s sŽ .w s w g SS s SS for every t g T m, n . So the basismn nm R R 2
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Ž . 2, # 2, U 2 2, # 2, Ugiven in 3.4 is contained in SS SS , and therefore, SS s SS SS .R S R R R
ssŽ . s sŽ .Finally, for any s g T m, l and t g T m, n ,2 2

w d Žs .w d Žt.y1 s w d Žs .w1 w d Žt.y1 g SS 2, # w1 SS 2, U .lm mn lm mm mn R mm R

So the last equality follows.

4. THE QUASI-HEREDITY OF SS 2, U AND SS 2, #
R R

In this section, we will discuss the representation theory of the Borel
type subalgebras SS 2, U and SS 2, # of a q-Schur 2 algebra SS 2. We will showR R R
that both SS 2, U and SS 2, # are quasi-hereditary. The proof is based on theR R

w xnotion of a standardly based algebra introduced by the authors in DR .
Then, using the triangular decomposition, we will also prove that the
standard modules and costandard modules for SS 2 can be induced from aR

Ž . 2, U Ž 2, #.left resp. right standard modules for SS resp. SS . We should pointR R
Ž . Ž . 2, U 2, #out that, by 2.9 , the quasi-heredity 4.5 of SS and SS follows fromR R

Ž w Ž .x.that of the Borel subalgebras of q-Schur algebras see DR, 5.6.1 . For
completeness, we include a direct proof below. First, we recall the defini-
tion of standardly based algebras.

Ž .4.1 DEFINITION. Assume that R is a commutative ring with 1. Let A
Ž .be an R-algebra and L, F a poset. A is called a standardly based algebra

Ž .on L or standardly based if the following conditions hold.

Ž . Ž . Ž .a For any l g L, there are index sets I l , J l and subsets

l l <AA s a i , j g I l = J lŽ . Ž . Ž .� 4i , j

of A such that the union AA s D AAl is disjoint and forms an R-basislg L

for A.
Ž . lb For any a g A, a g AA, we havei, j

a ? al ' f a, i al mod A ) lŽ . Ž .Ýi , j i9 , l i9 , j
Ž .i9gI l

al ? a ' f j, a al , mod A ) l ,Ž . Ž .Ýi , j l , j9 i , j9
Ž .j9gJ l

Ž . mwhere A ) l is the R-submodule of A spanned by AA with m ) l, and
Ž . Ž .f a, i , f j, a g R are independent of j and i, respectively. Such ai9, l l, j9

base AA is called a standard base for the algebra A.
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w xNote that a cellular algebra GL must be standardly based. However,
the converse may not be true. We shall prove that SS 2, # and SS 2, U areR R
standardly based algebras whose standard bases are not cellular bases.

Ž . Ž . Ž .4.2 DEFINITION. For any l g L, let f : J l = I l ª R be a func-l

Ž . Ž . Ž . Ž .tion, whose value f j, i9 at j, i9 g J l = I l is defined byl

al al ' f j, i9 al mod A ) l .Ž . Ž .i j i9 j9 l i j9

The function f induces a bilinear form b : Al = Al ª R such thatl l

Ž l l . Ž . lb a , a s f j9, i , where A is the free R-submodule of A spanned byl i j i9 j9 l
l Ž . Ž . Ž .a for all i, j g I l = J l . We say A is a standardly full-based algebrai j

Ž . Ž w Ž .x.if im b s R for all l g L compare DR, 1..3.1 .l

wThe following result has been proved by the authors in DR,
Ž . Ž .x3.2.1 , 4.2.7 .

Ž . Ž .4.3 THEOREM. a Let R be a commutatï e Noetherian ring. If A is a
standardly full-based algebra, then A is a quasi-hereditary algebra o¨er R in the

w xsense of CPS2 .
Ž .b If R is a commutatï e local Noetherian ring, then A is split quasi-

hereditary if and only if A is a standardly full-based algebra.

Ž .If A is quasi-hereditary with poset L, then we use D A, l and
Ž .Ž . Ž .= A, l l g L to denote the standard and costandard left A-modules.

op op Ž op .Since A is also quasi-hereditary, the left A -modules D A , l and
Ž op . op= A , l are naturally right A-modules by shifting the left action of A

opŽ .to the right action of A. We shall denote these right modules by D A, l
opŽ .and = A, l .

Let A be a standardly based algebra on the poset L with a standard
Ž . Ž . Ž . Ž . Ž . Žbase as in 4.1 . For each l g L and i, j g I l = J l , let D l, j resp.

Ž .. Ž .D i, l be the left resp. right A-submodule generated by the elements
l Ž . Ž . Ža q A ) l with j fixed resp. with i fixed . The following result seei j

w Ž .x.DR, 3.2.2 identifies these modules with the standard and costandard
modules under the quasi-heredity structure of A.

Ž .4.4 THEOREM. If R is a commutatï e local Noetherian ring and A is
Ž . ( Ž .)standardly full-based, then the module D l, j resp. D i, l is isomorphic to

Ž . ( opŽ .)the left standard module D A, l resp. right standard modules D A, l of
Ž .A under its quasi-heredity structure as considered in 4.3 .

We are now ready to prove the main results of this section.

Ž . Ž . 2, # 2, U4.5 THEOREM. a The subalgebras SS and SS are standardlyR R
full-based, and hence are quasi-hereditary o¨er a commutatï e Noetherian
ring R.
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Ž . Ž 2, # . (b If R is a field, then all the costandard modules = SS , l resp.R
Ž 2, U .) 2, # ( 2, U)standard modules D SS , l for SS resp. SS are simple and ofR R R

dimension one.

Ž .Proof. For any m g L n, r , let F be the dominance order e on2
Ž . Ž . # Ž . Ž . � 4 Ž Ž .L s L n, r . Let I m s V m and J m s i see 1.11 for the2 2 m

# Ž .. d 2, # ddefinition of V m . For any w g SS , write w s w . It is easy2 l, m R l, m i d, il m

Ž .Ž . Ž . Ž .Ž . 2, #to see that 4.1 a holds. Now, 2.8 implies 4.1 b . So SS is standardlyR
Ž . 1 1 1based. Moreover, it is full in the sense of 4.2 since w w s w form, m m , m m , m

Ž . 2, # Ž .every m g L n, r . So SS is quasi-hereditary over R by 4.3 . Similarly,2 R
2, U Ž . Ž .we have SS is quasi-hereditary. Thus a follows. The statement bR

Ž . Ž .follows immediately from a and 4.4 , easily.

Ž .4.6 PROPOSITION. Suppose that the base ring R is a field.

Ž . 2, # 1 Ž . � < Ž .4a Let V s SS w for each l g L n, r . Then V l g L n, rl R ll 2 l 2
is a complete set of non-isomorphic principal indecomposable SS 2, # -modules.R

max qn l q i y 1n , r iŽ .Moreo¨er, dim V s Ł , where l is the ith component of l,R l is1 ii y 1

Ž .i.e., l s l , . . . , l .1 max qnn , r
Ž . db Let rad V be the radical of V . Then rad V is spanned by w gl l l ml

SS 2, # with w d / w1 . Thus, the dimension of any irreducible SS 2, # -moduleR ml ll R
is one.

Ž . 1 2, # 1Proof. a Since any element in w SS w is an R-linear combina-ll R ll

tion of w d with i d # i and d g DD , we must have d s 1. Thus, w1 is all l l ll ll

primitive idempotent element, since w1 SS 2, # w1 s Rw1 . On the otherll ll ll

hand, the identity element has the decomposition 1 s Ý w1 . Solg L Žn, r . ll2
� < Ž .4V l g L n, r is a complete set of non-isomorphic principal indecom-l 2

2, # w Ž .xposable SS -modules. The last assertion follows from Sa, 6.1 byR
U Ž .counting the elements in V l .2

Ž .b The first assertion follows from a straightforward computation. The
� Ž . < Ž .4last assertion follows from the fact that V rrad V l l g L n, r is thel 2

2, #complete set of non-isomorphic simple SS -modules.R

We are now going to look at the relationship between the standard
2 Ž Ž ..modules and costandard modules for q-Schur algebras see 3.4 and

their Borel type subalgebras.
Ž . 2, #Let R be a commutative ring. For any l g L n, r , let x : SS ª R2 l R

be an R-linear map such that

1, if m s n s l and d s 1dx w s 4.7Ž .Ž .l mn ½ 0, otherwise.

Clearly, x is an algebra homomorphism, and via x , R can be made intol l

Ž . 2, #a rank-one left or right SS -module R . One may define similarlyR l
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2, U Ž . 2, Ualgebra homomorphism x : SS ª R and left or right SS -modulel R R
R̂ . The following result can be proved easily.l

ˆŽ .4.8 PROPOSITION. If R is a commutatï e local Noetherian ring, then Rl

( ) Ž 2, U . (resp. R is isomorphic to the left standard module D SS , l resp. rightl R
opŽ 2, U .)standard module D SS , l .R

2, U 1 1Ž .Proof. Obviously, D SS , l is a free R-module spanned by w s wR ll ll
2, U Ž . 2, U Ž . 2, Uq SS ) l , where SS ) l is the submodule of SS spanned byR R R

d 2, U 1 1 2, UŽ .w g SS with m ) l. Obviously, ww s x w w for w g SS . Thusmn R ll l ll R
2, U op 2, #ˆŽ . Ž .D SS , l ( R . One can prove D SS , l ( R similarly.R l R l

Ž .4.9 THEOREM. Let R be a commutatï e local Noetherian ring and
Ž .l g L n, r . Then we ha¨e2

q2D SS , l , if l g L n , rŽ .Ž .2 2, U R 2
2,Ua SS m D SS , l (Ž . Ž .R SS RR ½ 0, otherwise, and

qop 2D SS , l , if l g L n , rŽ .Ž .op 2, # 2 R 2
2,#b D SS , l m SS (Ž . Ž .R SS RR ½ 0, otherwise.

Ž . Ž . Ž .Proof. We prove a . The proof of b is similar. By 4.8 , it suffices to
2 ˆ q 2Ž . Ž .2,Uprove SS m R s 0 for l f L n, r . By 3.4 , SS has an R-basisR SS l 2 RRdŽs . dŽt .y1 s sŽ . s sŽ . Ž . d Žt .y1

w w , where s g T m, r and t g T m, n . By 3.3 , w grm mn 2 2 mn
2, U Ž . Ž .q d Žt .y1 Ž d Žt .y1 .2,USS . If l g L n, r _ L n, r , then w m 1 s 1 mx w 1R 2 2 mn SS l mnR2 ˆ2, Us 0. Thus, SS m R s 0.R SS lR

Ž .q Ž . 2
2,USuppose now l g L n, r . By 4.8 , it is equivalent to prove SS m2 R SSRˆ 2Ž . w xR ( D SS , l . The proof is similar to that given by J. A. Green in G2 .l R

w xRecall from DS, Sect. 6 , that the Green]Murphy basis element
d Žs . d Žt .y1 m s sŽ . s sŽ .w w is denoted by F , where s g T m, l , t g T m, n , andlm mn s t 2 2

Ž .q Ž . 2Ž . 2m g L n, r , l, n g L n, r . Let SS ) m be the submodule of SS2 2 R R
spanned by F r with r ) m, where F is the dominance order e ons 9t 9

Ž . Ž 2 . Ž .qL n, r . Then the standard module D SS , l , l g L n, r , for the2 R 2
2 2 2 2 1 1 1Ž .q-Schur algebra SS satisfies D SS , l ( SS w , where w s w qR R R ll ll ll

2 2 ˆ 2 2Ž . Ž .2, USS ) l . Write SS m R s SS 1 m 1 . It is enough to find two SS -R R SS l R RR
2 1 2 2 2 1ˆ ˆ2, U 2, Uhomomorphisms f : SS w ª SS m R and g : SS m R ª SS wR ll R SS l R SS l R llR R1 1Ž . Ž .such that f w s 1 m 1 and g 1 m 1 s w .ll ll

2 ˜ 2 1 2We first define f. Consider the SS -homomorphism f : SS w ª SSR R ll R
ˆ 1 dŽs . dŽ t .y 1 2Ž . Ž .2, Um R satisfying f w s 1 m 1. For w w g SS ) l ,SS l l l rn nm RR

dŽs . dŽt .y1 ˜ 2 ˜Ž Ž ..w w m 1 s 0, since n ) l. It follows that f SS ) l s 0. So frn nm R
2 2 1 2 ˆ2, Uinduces an SS -homomorphism f from SS w to SS m R such thatR R ll R SS lR1Ž .f w s 1 m 1.ll
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To define g, we note that, for any w d g SS 2, U , if r / l, then w d gr, m R r , m
2 1 1Ž . w Ž .x Ž .SS ) l by DS, 6.1.4 . Consequently, we have ww s x w w for allR ll l ll

w g SS 2, U . Now, using the universal property of tensor product, g isR
defined.

Ž . pŽ . p Ž 2 . 0Ž .2, # 2, #For l g L n, r , let H l s Ext SS , R . Then, H l may2 SS SS R lR R

be regarded as a module induced from a Borel subalgebra. The following
Žresult generalized the classical Borel]Weil theorem compare the remarks

w Ž .x.after G1, 5.9 .

Ž . Ž 2 . ( )4.10 COROLLARY. Let = SS , m be the left costandard module forR
2 Ž .q Ž .SS associated to m g L n, r , and l g l n, r . ThenR 2 2

q2= SS , l , if l g L n , rŽ .Ž .0 R 2H l (Ž . ½ 0, otherwise.

Ž w x.Proof. By the adjoint isomorphism see, e.g., CR, 2.19 , we see that

H 0 l ( Hom Dop SS 2, # , l m 2 , # SS 2 , R .Ž . Ž .Ž .R R SS RR

Ž .Now, the result follows from 4.9 .

Ž .4.11 Remark. As mentioned in the Introduction, it would be interest-
pŽ . Ž .ing to know if H l s 0 for all l g L n, r and p ) 0.2

5. THE GENERAL CASE

w xIn AK , Ariki and Koike introduced certain algebras associated to the
Ž .complex reflection groups ZrmZ X S , which are now known asr

Ariki]Koike Hecke algebras. When m s 1 and 2, these algebras are
isomorphic to the Hecke algebra of types A and B , respectively. Inry1 r
w xDJM2 , Dipper, James, and Mathas introduced some associated endomor-
phism algebras, called cyclotomic q-Schur algebras. In this section, we
generalize the results in Sections 2]4 to cyclotomic q-Schur algebras. For
simplicity, we will mainly work on a subclass of cyclotomic q-Schur
algebras, called q-Schur m algebras. We will see that results for other
cyclotomic q-Schur algebras can be obtained easily from that for q-Schur m

algebras.
Ž . mThough the natural basis like 1.7 is not available for a q-Schur

algebra Sm with m ) 2, having a close look at the work in previousR
Ž .sections, we notice that only part of the basis elements in 1.7 , which are
Ž .involved in the definition of Green]Murphy type basis 3.4 , have been

m w xused. Note also that a Murphy type basis for S is introduced in DJM2 .R
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Ž w x.So, if we can prove this basis is a Green type basis cf. G2 , i.e., is of the
Ž .form 3.4 , then our generalization to arbitrary m will be almost straight-

d Ž .forward. So we aim to construct those elements w involved in 1.11 . Tolm

Ž .do this, it suffices to generalize the relation 2.6 . The next combinatorial
Ž .lemma will lead a generalization of 2.6 . Recall the c.n.s. of a multi-com-

position in Section 1.

Ž . Ž .5.1 LEMMA. If l, m g L n, r and d g DD with i d # i , thenm lm l m

Ž . m Ž .d s w ??? w with l d s Ý l w , where w g S for allm 1 is1 i j �a q1, . . . , b 4jy 1 j

Ž . Ž .1 F j F m, where a s a , a , . . . , a resp. b s b , b , . . . , b is the c.n.s.0 1 m 0 1 m
of l resp. m.

Proof. We first construct inductively a sequence of elements x , . . . , xm 1
y1 Ž .with x g S such that d s x ??? x . Applying 1.10 to d, wej �a , . . . , b 4 1 mjy 1 j

Ž .have, for every i with 1 F i F m, d j F b for all j F a . Thus, foriy1 iy1
� Ž . Ž . Ž .4 � 4i s m, we obtain d 1 , d 2 , . . . , d a : 1, 2, . . . , b . Taking com-my 1 my1

plements, we have

<� 4b q 1, . . . , r : d j a q 1 F j F r .� 4Ž .my 1 my1

Ž .So we may choose x g S such that x d j s j for allm �a q1, . . . , b 4 mmy 1 m

Ž . Ž .b q 1 F j F b s r and x d j s d j for all j F a . Now, sincemy 1 m m my1
Ž .d j F b for all j F a , it follows thatmy 2 my2

� 4d 1 , d 2 , . . . , d a : 1, 2, . . . , b ,� 4Ž . Ž . Ž .my 2 my2

and hence,

<� 4b q 1, . . . , b , b q 1, . . . , b : d j a q 1 F j F r� 4Ž .my 2 my1 my1 m my2

<s x d j a q 1 F j F r .� 4Ž .m my2

Therefore,

<� 4b q 1, . . . , b : x d j a q 1 F j F b .� 4Ž .my 2 my1 m my2 my1

Ž .Thus, there is an x g S such that x x d j s j formy 1 �a q1, . . . , b 4 my1 mmy 2 my1
Ž . Ž .all j with b q 1 F j F r, and x x d j s d j for j F a . Con-my 2 my1 m my2

tinue this process. After finitely many steps, we will find x , . . . , x with2 m
Ž .x g S , such that x ??? x d j s j for all j G b q 1 andi �a q1, . . . , b 4 2 m 1iy1 i

Ž . Ž .x ??? x d j s d j for all j F a . Finally, choose x g S such2 m 1 1 �1, . . . , b 41
Ž . Ž .that x ??? x d j s j for all j F b . Since x j s j for all j G b q 1,1 m 1 1 1

Ž .we have x ??? x d j s j for all j G b q 1. Thus, x ??? x d s 1, and1 m 1 1 m
dy1 s x ??? x .1 m
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Next, applying induction on m and noting the exchange condition for
Coxeter groups, one sees easily that there are y g S such thatj �a q1, . . . , b 4jy 1 j

y1 Ž y1 . m Ž . y1d s y y ??? y and l d s Ý l y . Putting w s y , the result1 2 m is1 i i i
follows.

Ž .5.2 Remark. This lemma can be used to give a weak version of the
Ž . Ž .middle equality in 2.6 . That is, we want to prove that, for l, m g L n, r2

and d g DD with i # i , T p g x HH .lm l m S d S m l Rl m

Ž Ž1. Ž2.. Ž Ž1. Ž2.. < Ž1. < < Ž1. <Write l s l , l , m s m , m and put a s l and b s m .
Ž . Ž .Then the c.n.s. of l and m are 0, a, r and 0, b, r , respectively, and

Ž .a F b. Since i d # i , by 5.1 , we can write d s w w with w g S ,l m 2 1 1 �1, . . . , b4
and w g S . Writing T s x T h for some h g S and2 �aq1, . . . , r4 S d S l d 1 1 ml m

Ž .noting that p is in the center of HH W , we havem R m̂

T p s x T h p s x T T p hS d S m l d 1 m l w w m 1l m 2 1

s x T p T h s x T p p T hl w m w 1 l w l m_ l w 12 1 2 1

s x p T p T h g x HH .l l w m_ l w 1 l R2 1

Ž . d Ž .Note that, with 5.2 , w can be defined easily for those l, m g L n, rlm 2
Ž w Ž .x.and d g DD with i d # i compare the general definition in DS, 4.2.6 .lm l m

Ž .We are now ready to generalize 5.2 to the Ariki]Koike Hecke algebras.
In the rest of the paper, let H be the Ariki]Koike Hecke algebraR

Ž .associated to the complex reflection group ZrmZ X S . Then H is anr R
associative algebra over a commutative ring R containing q, qy1, u , . . . , u1 r
with generators T , 0 F i F r y 1, and relationsi

T T T T s T T T T ,0 1 0 1 1 0 1 0

T T T s T T T for 1 F i F r y 2i iq1 i iq1 i iq1

< <T T s T T , if i y j G 2i j j i

T y q T q 1 s 0, if i / 0Ž . Ž .i i

T y u ??? T y u s 0.Ž . Ž .0 1 0 m

Note that the subalgebra generated by T with 1 F i F r y 1 is the Heckei
Ž .algebra H S of type A , and, when m s 2 and u s q and u s y1,R r ry1 1 0 2

H is the Hecke algebra of type B as defined at the beginning of Sec-R r
Ž .tion 1. We will use the notation H S for the subalgebra of H definedR l R

by a parabolic subgroup S of S . Ariki and Koike proved that the setl r

c1 cr <L ??? L T w g S , and 0 F c F m y 1, i s 1, 2, . . . , r , 5.3� 4 Ž .1 r w r i
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is a R-basis of H , where L s q1y iT ??? T T T ??? T . Moreover, weR i iy1 1 0 1 iy1
Ž w Ž . Ž .x.have the results see AK, 2.1 ] 2.2 ,

1 L and L commute for all 1 F i , j F rŽ . i j
5.4Ž .k½ 2 If a g R and i / k , then T commutes with Ł L ya .Ž . Ž .i is1 i

Ž . Ž .Suppose that l g L n, r is of c.n.s. a s a , . . . , a . Followingm 0 m
w xDJM2 , we denote

am ky1

p s L y u , x s p x . 5.5Ž . Ž .Ł Łl i k l l l
ks2 is1

Ž . Ž .5.6 LEMMA. Let l, m g L n, r be of c.n.s. a and b, respectï ely. Ifm
d g DD with i d # i , then T p g x H .lm l m S d S m l Rl m

Ž .Proof. We first note that if T g H S , then i / b for all j. Byi R m j
Ž .Ž . Ž . Ž .5.4 2 and 5.5 , all the elements in H S , commute with p . SinceR m m

Ž .T s x T h for some h g H S , we need only prove T p g p H .S d S l d R m d m l Rl m bk Ž .For simplicity, we put p s Ł L y u . Then, p s p ??? p .b is1 i kq1 m b bk 1 my1

Since a F b , the product p is part of p . Let p denote thek k a b b _ ak k k k

product obtained by deleting p from p .a bk k
Ž .By 5.1 , T s T ??? T T for some w g S , 1 F j F m.d w w w j �a q1, . . . , b 4m 2 1 jy1 j

Ž .Ž .Thus, for every 1 F j F m, 5.4 2 implies that T commutes with thew j

product p Łmy 1 p , and T ??? T commutes with p for all l - j.a ksj b w w ajy 1 k m jq1 l
Ž .Ž .Taking j s 1, we obtain T p s p T , and, for j s 2, we have by 5.4 1w m m w1 1

T T p s T p Tw w m w m w2 1 2 1

s T p p ??? p p TŽ .w a b b b _ a w2 1 2 my1 1 1 1

s p p ??? p T p T .Ž .a b b w b _ a w1 2 my1 2 1 1 1

Now, if we rewrite the product in the parentheses as a product of
Ž .p p ??? p and p , then the former commutes with T . Con-a b b b _ a w2 3 my1 2 2 3

tinue this process. We finally obtain

T p s p T p T ??? p T g p H ,d m l w b _ a w b _ a w l Rm my1 my1 my1 1 1 1

as desired.

Ž . Ž . Ž .Note that, for d s d s , 5.6 holds by 3.3 . This case was proved in
w Ž .xDJM2, 4.10 .

Ž .Cyclotomic q-Schur algebras S L associated to H are introduced inR R
w x Ž .qDJM2 for a finite set L of m-compositions of r such that L l L r ism

Ž .qa coideal of L r . We are interested in those cyclotomic q-Schurm
Ž .algebras defined by L n, r .m
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Ž . m m Ž .5.7 DEFINITION. The q-Schur algebra S of degree n, r is theR
Ž .cyclotomic q-Schur algebra associated to the poset L n, r . In otherm

words, we define

Sm s Sm n , r s End [ x H .Ž . Ž .R R H lg L Žn , r . l RR m

The q-Schur m algebra is a natural generalization of the q-Schur algebra
and the q-Schur 2 algebra. When m s 2 and u s q , u s y1, S2 is1 0 2 R
isomorphic to SS 2. Many nice properties of q-Schur 2 algebras such as theR

Ž .quasi-heredity over fields , a cellular basis, etc., have also been estab-
w xlished in DJM2 for a cyclotomic q-Schur algebra. In particular, as in the

m s 2 case, we have, for any m-compositions l, m, the isomorphism
w Ž Ž ..x Ž .DJM2, 5.17 ii Hom x H , x H ( x H l H x , and a MurphyH m R l R l R R mR w Ž .xtype basis for x H l H x DJM2, 6.3 . This leads to a nice basis, i.e., al R R m

Ž w Ž .x.cellular basis, for any cyclotomic q-Schur algebra see DJM2, 6.6 .
Let us give a little more details about this construction. For any

Ž .standard m-tableau s, let f s be the m-tableau of type l obtained from sl

by replacing each entry a in s by i if a is in the row i of the k thk
component of t l. Take a semi-standard m-tableau s of type l and

y1Ž .consider the inverse image T s f s . Thus, T is the set of alls , l l s , l

standard m-tableaux whose image under the map f is s. Let e be thel

Ž w Ž .x.partial order on the set of standard m-tableaux see DJM2, 3.1.1 . Thus,
for standard m-tableaux s, t, set means sx ketx k for 1 F k F r, where
sx k is a multi-composition determined by the entries 1, 2, . . . , k in s. For
example, if

1 2 8 6 7
s s 3 5 9

4

ŽŽ .Ž .. ŽŽ .Ž ..then sx6 s 221 10 and sx8 s 321 20 . Among the elements in the
set T , there is a unique standard m-tableau, which is maximal withs , l

Ž . w x Ž .respect to e. Such a tableau was denoted by first s in DJM2 . Let d s
m Ž . Ž .be a distinguished coset representative in DD defined by t d s s first s .m

s sŽ . s sŽ . mThen, if we define, for s g T m, l , t g T m, n , F g S such thatm m s t R

F m x s d h T y1 x T h , 5.8Ž . Ž .s t r nr 1 dŽs . m dŽt . 2
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where h s Ý T y1 and h s Ý T , then, by1 x g S l DD x 2 x g S l DD xl m dŽs .l l n m dŽ t .l nw Ž .xDJM2, 6.6 , the set

< s s s sF s g T n , l , t g T n , m , l,Ž . Ž .� s t

q
m g L n , r , n g L n , r 5.9Ž . Ž . Ž .4m m

m mŽ .forms a basis for the q-Schur algebra S n, r . Note that the elementR
m Ž .F x is in fact a sum of Murphy’s basis elements, which is denoted ms t n ST
w Ž .x Ž Ž . .in DJM2, 6.2 see the proof of 4.10 there . Note also that we adopt the

w x w xF-notation used in DS instead of the w-notation in DJM2 as we have
already used w for natural basis elements.

Ž . mAs a consequence of 5.9 , we obtain the quasi-heredity of the q-Schur
w Ž .xalgebra. For a field R, the following result is given in DJM2, 6.18 . The

w Ž .x Ž Ž ..general case follows from DR, 3.2.1 see 4.3a .

Ž .5.10 THEOREM. Let R be a commutatï e Noetherian ring. Then the
algebra Sm is quasi-hereditary.R

We are now going to define the Borel type subalgebras of a q-Schur m

mŽ . Ž .algebra S n, r . For l, m g L n, r and d g DD with i d # i , letR m lm l m

w d g Sm be defined bylm R

w d x h s d T p h , n g L n , r , h g H . 5.11Ž . Ž . Ž .lm n mn S d S m m Rl m

Ž .This is well-defined by 5.6 . Let i be the R-linear anti-automorphism on
Ž w Ž .x. Ž .iH sending T to T for 0 F i F r y 1 see GL, 5.5 . Then p s pR i i l l

Ž . Ž Ž . .for any l g L n, r see 5.5 for the definition of p . It implies thatm l

Ž .i Ž .y1p T s T p for any l, m g L n, r . Thus we can definel S d S S d G l ml m m l
d Ž dy1 .iw s w if i d U i .lm ml l m

Ž . Ž . # Ž . U Ž .5.12 LEMMA. For any m g L n, r , let V m and V m be de-m m m
( )fined in 1.11 . Then

Ž . � d < Ž . # Ž . Ž .4a the set w l, d g V m , m g L n, r is R-linearly indepen-lm m m
dent.

Ž . � d < Ž . U Ž . Ž .4b the set w l, d g V m , m g L n, r is R-linearly indepen-ml m m
dent.

Proof. Suppose Ý ad w d s 0 with ad g R. Applying the leftl, m lm lmŽ .mgL n , rm
#Ž . Ž .l , d gV mm

hand side to x , we have Ý # ad T p s 0. Since p is am Žl, d.g V Ž m . lm S d S m mm l m

Ž . d a1#monic polynomial in L , by 5.3 , we have Ý a T L ???i Žl, d.g V Ž m . lm S d S 1m l m

Lar s 0, where La1 ??? Lar is the highest term of p . This implies ad s 0,r 1 r m lm

Ž . # Ž . Ž . Ž . Ž .for all l, d g V m , by 5.3 again. Thus, a follows. The statement bm
Ž .follows from a .
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Ž . m , # m , # Ž .5.13 THEOREM. Maintain the notation abo¨e. Let S s S n, rR R
( m , U m , U Ž .) m dresp. S s S n, r be the free R-submodule of S spanned by wR R R lm

Ž . # Ž . ( d Ž . U Ž .) Ž .with l, d g V m resp. w with l, d g V m for all m g L n, r .m ml m m
Then Sm , # and Sm , U are subalgebras of the q-Schur m algebra Sm, and weR R R

Ž . ( )ha¨e, for N s N m, n, r as in 1.2 , the following isomorphisms of R-alge-
bras:

Sm , # n , r ( S1, # N , r , Sm , U n , r ( S1, U N , r .Ž . Ž . Ž . Ž .R R R R

d dŽ . Ž . Ž .Proof. By Definition 5.11 , we have w x s T p s c x plm m S d S m lm m ml m

Ž . # Ž . Ž .for l, d g V m and m g L n, r . Now, the multiplicative closurem m
Ž .condition and the isomorphisms can be proved similarly as in 2.7 and

Ž .2.8 .

These two subalgebras are called the Borel type subalgebras of Sm.R
Ž . m Ž . Ž .Before generalizing 3.4 to S via 5.9 , we observe from 3.3 thatR

d Žs . m , # s sŽ .w g S if s g T m, l . So we must find some relation betweenlm R m
Ž . Ž . Ž .this element d s and the element d s used in the definition 5.8 .

Ž . Ž . s sŽ .We first recall from 3.2 the definition of d s . Let s g T m, l .m
Ž .Then d s is the distinguished coset representative defined by row stan-

l Ž .dard tableau t d s for which i belongs to row a if the place occupied by i
m ŽŽ . Ž .in t is occupied by a in s. For example, if m s 3210 ??? 0 , 210 ??? 0 ,

Ž .. Ž .q ŽŽ . Ž . Ž .. Ž .111 g L 3, 12 and l s 2110 ??? 0 , 220 ??? 0 , 112 g L 3, 12 , we3 3
take

1 1 14 13 13 25
s s 2 27 14 26

3 27

Then

1 2 3 7 8 10
mt s 4 5 9 11

6 12

and

1 2 7 8 10
lt d s s .Ž . 4 3 9 11

6 5 12

Here, again rows corresponding to those 0-parts are omitted. Note that the
m Ž .y1standard m-tableau t d s is obtained by replacing all the numbers i in

ls by the sequence obtained by reading the ith row in t , the replacements
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Ž win s are made from left to right, down successive rows compare DS,
Ž .x.1.2.2 . Thus, in the previous example, we have

1 2 7 5 6 9
y1mt d s s .Ž . 3 11 8 10

4 12

m Ž .y1 Ž .Clearly, the standard m-tableau t d s is the maximal element first s
in T under the partial order e on standard tableaux. Therefore, wes , l

have the result

y1s s mfor any s g T m , l , t d s s first s ;Ž . Ž . Ž .m

y1therefore, d s s d s .r5.14Ž . Ž .Ž .

This result implies immediately the following.

Ž . ( ) ( )5.15 THEOREM. Maintain the notation in 5.8 and 5.11 . For any
Ž .q Ž . s sŽ . s sŽ .m g L n, r , l, n g L n, r , and s g T m, l , t g T m, n , wem m m m

ha¨e w d Žs . g Sm , # , w d Žt .y1 g Sm , U , and F s w d Žs .w d Žt .y1
. Thus, the setl, m R m , n R s t lm mn

y1 qd Žs . d Žt . <w w l, n g L n , r , m g L n , r ,Ž . Ž .½ lm mn m m

s g T s s m , l , t g T s s m , nŽ . Ž . 5m m

forms a basis for Sm.R

Ž .Proof. We have seen that part of the first assertion follows from 3.3 .
m s sŽ . Ž . Ž .Let t be the unique element in T m, m . By 5.14 and 5.8 , onem

checks easily that w d Žs . s F m, w d Žt .y1 s F m and F mF m s F . Hencelm s t mn t t s t t t s ty1d Žs . d Žt . Ž .we have F s w w . The last assertion follows from 5.9 .s t lm mn

Ž . m , #As in 4.7 , we have an algebra homomorphism x from S to R. Letl R
R be the Sm , # -module induced by x .l R l

Ž . m , # ( m , U)5.16 THEOREM. Let S resp. S be the Borel type subalgebrasR R
of Sm.R

Ž . m ma The q-Schur algebra S has a triangular decompositionR

Sm s Sm , # Sm , Us Sm , # w1 Sm , U .ÝR R R R ll R
qŽ .lgL n , rm

Ž . m , # m , Ub The Borel type subalgebras S and S are quasi-hereditaryR R
with simple costandard modules and simple standard modules, respectï ely, if
R is a commutation local Noetherian ring.
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Ž . � 1 < Ž .4c The set w l g L n, r is the complete set of primitï e idempo-ll m
tents in Sm , # and Sm , U if R is a field.R R

Ž . m , # 1 Ž .d Suppose R is a field, and let V s S w for l g L n, r .l R ll m
Ž m , # . � < Ž .4Then V s D S , l and V l g L n, r is a complete set of alll R l m

m , #principal indecomposable S -modules. Moreo¨er, if we write l sR
Ž . ( )l , . . . , l , where N is defined in 1.2 , then1 N

N l q i y 1idim V s .ŁR l ž /i y 1is1

Ž . � < Ž .4e Suppose R is a field. Then V rrad V l g L n, r is the com-l l m
plete set of non-isomorphic simple Sm , # -modules and any simple module is ofR
dimension one.

Ž . Ž m .f Suppose that R is a commutatï e local Noetherian ring. Let D S , lR
( Ž m .) ( ) mresp. = S , l be the left standard module resp. costandard module of SR R

Ž .q Ž m , U . ( opŽ m , # .)with respect to l g L n, r . Let D S , l resp. D S , l be them R R
( ) m , U ( m , #)left resp. right standard module for S resp. for S . ThenR R

qmD S , l , if l g L n , r ,Ž .Ž .m m , U R m
m , US m D S , l (Ž .R S RR ½ 0, otherwise,

and

qm= S , l , if l g L n , r ,Ž .Ž .m R m
m , # m , #Hom S , R (Ž .S S R lR R ½ 0, otherwise.

Proof. All statements can be proved formally by using arguments
similar to those given in Section 4.

Ž . Ž .5.17 Remark. 1 We remark that an arbitrary cyclotomic q-Schur
Ž . w xalgebra S L defined in DJM2 is Morita equivalent to a centralizerR

m Ž .qsubalgebra of a q-Schur algebra defined by a coideal of L n, r form
w Ž .x Ž .some n. This is because, by DJM2, 3.9i , SS L is Morita equivalent toR

Ž q. q Ž .qS L , where L s L l L r and hence, is Morita equivalent to theR m
mŽ . 1 Ž .subalgebra eS n, r e, where e s Ý w for any subset L9 of L n, rR lg L9 ll m

Ž .q qwhose intersection with L r is L . Moreover, the Borel type subalge-m
mŽ . m , # m m , U mbras of eS n, r e are S leS e and S leS e.R R R R R

Ž . m , U2 It would be nice to prove that the Borel type subalgebra S is aR
m w xBorel subalgebra of the quasi-hereditary algebra S in the sense of Sc ,R

and to establish the Borel]Bott]Weil theorem in this generality as de-
Ž .scribed in 4.11 .
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6. TILTING MODULES AND RINGEL DUALS

In this section, we discuss the tilting modules and Ringel duals for Borel
type subalgebras Sm , # and Sm , U over a field R.R R

Let A be a quasi-hereditary algebra over a field R. Then the category of
Ž .left A-modules CC is a highest weight category on a poset L, F in theA

Ž w x.following sense see CPS1 .

Ž . Ž .a For each l g L, there is a simple A-module L l such that
� Ž . < 4L l l g L is the set of the non-isomorphic left A-modules.

Ž . Ž .b For each l g L, the standard module D l has simple head
Ž . Ž .L l and all other composition factors L m satisfy m - l.

Ž . Ž . Ž .c The projective cover P l of L l has a filtration 0 s F ;0
Ž . X X Ž .F ; ??? ; F s P l such that any section F rF ( D m with m ) l if1 t i iy1

i / t and m s l if i s t. The section F rF is called the top section.t ty1

Ž . Ž . Ž . Ž .The conditions b and c can be replaced by b9 and c9 as follows.

Ž . Ž . Ž .b9 The costandard module = l has socle L l and all other
Ž .composition factors L m satisfy m - l;

Ž . Ž . X Xc9 The injective envelope I l has a filtration 0 s F ; F ; ??? ;0 1
X Ž . X X Ž .F s I l such that any section F rF ( D m with m ) l if i / 1 andt 9 i iy1

m s l if i s 1. The section F rF is called the bottom section.1 0
Ž .We shall say a left A-module M has a D-filtration resp. =-filtration if

Ž . Ž Ž ..M has a filtration whose sections are of forms D l resp. = l for some
l g L. A module M is called a tilting module if it has D-filtration and

Ž . w x=-filtration. Let CC tilt be the subcategory of tilting modules. In R ,A
Ringel proved that, for each l g L, there is a unique indecomposable
Ž . Ž .X l g CC tilt , called partial tilting module with respect to l, such thatA
Ž . Ž .X l has a D-filtration with bottom section D l and a =-filtration with

Ž . Ž .top section = l . A module X g CC tilt is called a full tilting module if XA
Ž .[mlŽ X . Ž .has a decomposition X s X l such that m X ) 0 for all[ lg L l

l g L. For full tilting modules X and Y, Ringel proved that the endomor-
Ž . Ž .phism algebras End X and End Y are Morita equivalent. Such anA A

endomorphism algebra is called a Ringel dual of the quasi-hereditary
algebra A. It is known that the Ringel dual is a quasi-hereditary algebra.

Ž . m , #6.1 THEOREM. Let R be a field. The Borel type subalgebras S andR
Sm , U , ¨iewed as regular modules, are full tilting modules, and therefore, theyR
are Ringel dual to each other.

Ž .Ž . m , # 1 m , #Proof. By 5.16 d , V s S w is a principal indecomposable S -l R ll R
Ž . Ž m , # .module, and is isomorphic to the standard module D l s D S , l .R

Ž .Hence 0 ; V is a D-filtration of V with bottom section D l . On thel l
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d Ž . # Ž .other hand, V has a basis w with m, d g V l . If we order thesel m , l m
basis elements w d as w , w , . . . , where w s w , such that m 1 mm, l 1 2 i m , l Ž i. Ž j.Ž i.

implies i - j, and define M as the R-space spanned by w with j F i, theni j
m , # # Ž .M is an S -module, and M s V where t s aV l . Consider thei R t l m

filtration 0 s M ; M ; ??? ; M s V of V . Obviously, its section0 1 t l l

M rM is of dimensional one for all 1 F i F t. Suppose that M rM isi iy1 i iy1
d d9 m , # d9 dspanned by w . Then, for any w g S , we have w w s 0 if r / m.ml rn R rn ml

d9 d d d9 dIf r s m, then n s m, d9 s 1, and w w s w . Thus, w w srn ml ml rn ml
d9 dŽ .x w w . So M rM is isomorphic to R defined by x . On the otherm rn ml i iy1 m m

Ž . Ž opŽ . . opŽ .hand, by definition, = m ( Hom D m , R , where D m is the rightR
m , # Ž Ž ..standard S -module defined by x , too see 4.8 . Therefore, M rMR m i iy1

Ž . Ž .( = m . In particular, M rM ( = l . So V is the partial tilting modulet ty1 l

corresponding to l. Since 1 s w1 , we have that Sm , #sÝ lg L Žn, r . ll Rm

[ V , and so, Sm , # is a full tilting Sm , # -module. Consequently,lg L Žn, r . l R Rm
Ž m , #. Ž Ž m , #.op. m , #

m , #the Ringel dual End S ( S of S is isomorphicS R R RRm , Uto S .R
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