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1. INTRODUCTION

Let m € {0} U N and A(x) be a suitable function on R". For m € N,
let

1
R, (A;x,y) =A(x) = ¥ — DA (x =),

la|<m

where a = (ay,...,@,), o; €{0} UN for i € {1,...,n}, D*=(3/dy,)
«+(d/3dy,)*, and Ry(A; x,y) = A(x). We consider the non-standard sin-
gular integral operator

Q(x—y)

T.f(x) = /‘kyl” mRm(A; x,y)f(y) dy
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and the corresponding maximal operator

T.f(x) = sup|T,f(x)|.

e>0

The following theorem on the (L?(R"), LY(R"))-boundedness of the oper-
ator T, which was proved by “the method of rotations,” can be found
in [1].

THEOREM A. Let Q(x) be homogeneous of degree zero and integrable on
S"~1, the unit sphere on R". Let m € {0} U N and A(x) have derivatives of
order m in L'(R") forsome 1 <r<ow. If 1 <p,q<wand 1/q=1/r+
1/p, then the following propositions hold:

() if Q(—x) = (—D""1Q(x), then

”T*f”L"([R”) < C”Q”Ll(s"’l) Z ”DaAHL’(R”)“f”L”(R”); (1-1)

la|l=m
(i) if Q(—x) =(—D"Q(x), Q € Llog™ L(S"" ") and
/ 1Q(x))c”‘dcr()c) =0  forall |la|=m, (1.2)
s
where and in what follows, d o (x) represents the Lebesgue measure on S" ',

then (1.1) holds with || Q|| 1sn-1y replaced by ||Q|l L 105+ Lcs7—1).

In the proof of Theorem A, Bajsanski and Coifman also established the
following estimate:

(1.3) Let N(y) be homogeneous of degree 0 and let ¢(¢) be such
that

fwt’”+"’1¢(t)dt<oo
0

and that t%(¢) is decreasing for some s < 0. Let A(x) have derivatives of
order m in L'(R") for some 1 <r <o, and let 1 <p <o, 1 <q <o,

1/q =1/r+1/p,

|x =yl

G = e [ NG )0 2 Ruix ) )

and

|x =yl

Uyf(x) =supie™™ ™" | IN(x—y)o R, (A;x,y)f(y)|dy|.
-

e>0
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Then

WU, fllown < C ) ||DaA”L'(R")||f||LP(R")/;"7] IN(x)|do(x).
lal=m
Moreover, U, f(x) converges in both LY(R") and almost everywhere, and
its limit is equal to

1
) ¥ LMo arfpeace.
See [1, (3.1)]. We will also need to use this estimate later in the proof of
our main theorem.

We point that if m = 0, (1.1) is equivalent to the L?(R")-boundedness
for the maximal operator of the classical Calderén—Zygmund convolution
type singular integral, which was proved by Calder6n and Zygmund in [2].
In [7, 10], it was proved that the classical Calder6n—Zygmund convolution
type singular integral is bounded on LP(R") if Q € H'(S"™!). Later, in
[8], Fan and Pan improved the Calderén—Zygmund result in [2] and
showed that the L?(R")-boundedness for the corresponding maximal
operator still holds if O € Llog* L(S"™!) is replaced by QO € H'(S"™ 1),
in fact, Fan and Pan’s result is more general. But Fan and Pan’s proof
strongly depends on Fourier transform. Obviously, their method cannot be
used for non-convolution type operators. So it is still an unsolved problem
whether (1.1) holds under the weaker assumption that Q € H'(S"™ 1)
when m > 0. Fortunately, in [9], Grafakos and Stefanov rebuild the
L?(R")-boundedness by “the method of rotation.” This provides us with a
new idea to improve Bajsanski and Coifman’s theorem. We can prove the
following theorem.

THEOREM 1. Let m € {0} UN and Q(—x) = (—D"Q(x), Q €
H'(S" ') and satisfy the moment condition (1.2). Let A(x) be the same as in
Theorem A. Then (1.1) holds with ||Qll 1151, replaced by [|Qllpisn-1y.

We remark that Theorem 1 with m = 0 is obtained in [8].

2. PROOF OF THEOREM 1

Before proving Theorem 1, we first establish some properties of the
Hardy spaces on the unit sphere which play an essential role in the proof
of Theorem 1. Let us begin with the definition of the space H'(S"~!). For
feL(S" Yand x € $"!, we define

Prf(x) = sup |[ | PL(0)F(3) do(y)],

0<r<1
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where
1-1
P.(y) = ol
for y € S L.

DEFINITION 1. An integrable function f on §" ' is in the space
H'(S§"~ ') if and only if

1P fllissry = [ IPTF() o (x) <=

and we define
I fllisn-1y = IPTfllLisn-1y.
A very useful characterization of the space H'(S"~!) is its atomic
decomposition. Let us first recall the definition of atoms.

DEFINITION 2. A function a(n) on §"~! is a regular atom if a(n) €
L*(S" 1), and there exist £ € §" ! and p € (0,2] such that

(i) suppa c S" ' N B(&, p), where B(&,p) ={y € R":|y — &|
< pl;
() lall=m-1y < p™"
(i)  fgn-1a(y)do(y) = 0.

A function a(n) on $"~ ! is an exceptional atom if a(n) € L*(S"~ ') and

1.
’

lall p=sn-1y < 1.

The following can be found in [3, 5].

LEMMA 1. For any f € H'(S"™") there are complex numbers A; and
atoms (regular or exceptional) a; such that

f= X\
j

and

”f“Hl(S"’l) ~ Z|/\j|-
J

Here are some additional properties of the Hardy space H'(S"1).

LEMMA 2. Suppose that Q € H'(S" 1), Q(—x) = (—=1D"Q(x), and
(1.2) holds. Then there exist {Q}7_, such that for every j, Q; € C(§"™1),
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Qj(_X) = (_1)mQj(x)’
f le(x)x“do'(x) =0  forall|la|=m,
N

and lim;__|1Q; — Qllg1sn-1) = 0.

Jjo®

Proof. 1In [6], it is proved that the Bochner—Riesz means of the spheri-
cal harmonic expansion of ) converges to  in H'($"~')-norm. While
the Bochner—Riesz means of spherical harmonic expansion are C*(S"~ ')
functions, we deduce from this that C*(S"~!) is dense in H!(S"~1). Now,
suppose that { fj};’L1 are C*(S"~ 1) functions and

_lim ||f, - Q“HI(S”’]) = 0.

jo®

Take

(x - fi(—x
g = 0T D),

Then g,(—x) = (= 1D"g,(x) and lim,_, llg; = Qllu(s»-1) = 0. Let {a ™},
be all the multi-index such that |a®| = m. Denote by A4 the matrix

(€3] 1) 1) (Ng)
x“x* do(x) - x* x* " da(x)
Snfl Snfl
@ @ @) (Ng)
x“x* do(x) - x* x* " do(x)
Snfl Snfl
(No) 1) (No) (Ng)
/ x* x*do(x) - f x* "x " do(x)
Sn*l Sn—l
. (k) . .
Since x* ", k =1,2,..., N,, are linearly independent, we have det(A) #
0. Let
(k)
Caw= [ g(x)xVda(x),  k=1,2,...,N,
sn-
and
— —1
(a_,-7 a®s {l]-7 a@s s aj, a(NO)) = (Cj’ as C]-’ a@s e Cj’ a(NU))A .

By using the moment condition (1.2), it is easy to verify that for every k,

|Cj,a(k)| < IIg,- — Qllgisn-1y >0
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as j — . Thus, |a; ,o| = 0 as j — . Take
q (k)
0,(x) = /(1) - T 4y ox”.
k=1

Then it is not difficult to check that {Q]}7_, is just the sequence we are
looking for. This finishes the proof of Lemrna 2.

The following lemma with s = n is included in [11, Theorem 2]; see also
[9]. However, our proof is simple and elementary, which is different from
that in [11].

LemMA 3. If Q € HY(S" 1) and

fS’HQ(x)da(x) =0,

then for any s € R, (QUx)/1xI) x1 2 < 15 < (%) € H'(R").
Proof. By Lemma 1 and [5.-1Q(x) do(x) = 0, we can write

Q(x) = gl Aa;(x),

where {a;}7_, is a sequence of regular atoms. Suppose a; is supported in
B(§j, pj) N S" 1 with |§j| = 1. If p; is large, it is easy to check that
(a;(x)/1xI) X4 2 < v <2y is an H'(R")-atom times a constant C. Here, a
function a(x) on R" is called an H'(R™)-atom if suppa C B(x,,r)
for some x, € R" and some r > 0, llall;=g < r™" and [g.a(x)dx = 0.
If p; is small, we split (a,(x)/|x[") x;; /2 < x| <2 into no more than [3/4p;]
parts along the radial direction, where [s] is the biggest integer no more
than s. Then it is not difficult to check that every part is an H'(R")-atom
times a constant no more than Cp;. Thus, we have decomposed (Q(x)/
1XI) X1 2 < x| <2 into the sum of a sequence of H'(R")-atoms with the
sum of the coefficients no more than CY7_ lI/\ | Therefore, (Q(x)/
|x]* X2 <px<2 € HY(R") and

< C||Q||H1(S”")-
H'(R™)

H Q(x)

%’ o Xus2<ix<2y

This finishes the proof of Lemma 3.
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LEMMA 4. Let Q be the same as in Theorem 1. Define

Q X — Q
Mi(x) =% ( (+)m)(x>—p f 8

n+1 |y|n+m

Here, % is the Riesz transform and #,(x) is a vector-valued function. Then
(4a) #(x) is homogeneous of degree —n — m;
(4b) A(=x) = (=D"* (x);
o) [p- (DN do(x) < CllQ prsn-1y.

Proof.  The proofs of (4a) and (4b) are trivial. To see (4c), for 3/4 < |x]|
< 3/2, we write

x—y Q)
A1(x) = p.v. — dy + p.v. et
i(x) =p f\y|<1/2 | x —yI"Jrl ly|"* y P /1/25|y|<2 ‘/I‘y\ZZ

=1(x) + L(x) + I;(x).

By the argument in [1, p. 13], we can see that Q(—x) = (—1)"Q(x) and
the moment condition (1.2) imply that

f Q(x)x*do(x) =0  forall[a| <m.
Sll*

Thus,
Lol =| [ [(_;y)— > Da( ) )( 0 y)] 20
lyl<1/2 | [x =yl al=m
o
_C'[Iy|<1/2 Iyl"_l dy_C”Q”LI(SVI)'

Note that the Riesz transforms map H'(R") into L'(R"). By Lemma 3, we
know that I,(x) € L'(R™). Finally, it is easy to see that

1Q(y)]

|2n+m

|L(x)|<C
lyl>2 |y

dy < C||Q||L1(s"-1)-
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Now, we have shown that /1(x) X3 /4 < 4 < 3,2(%) € L'(R™). This is equiva-
lent to .#;(x) € L'(S"~ ). Moreover,

f Mi@lde =cf - bneo)]ds
()

< ClIQl sy + CHWXH/2<-I<2}

HY(R™
< C||Q||H'(S”")-
This finishes the proof of Lemma 4.

LEMMA 5. Let ¢(t) be a C* function on (0, %) which satisfies ¢(t) = 0
fort <1/4, (1) =1 fort = 3/4, and 0 < ¢(t) < 1 for all t. Define the
vector-valued function

()
() =%(W¢(|-|))(x) =pv.[

R” |

x=y Q)
n+1 n+m ¢(|y|) dy
x—y" Iyl

Then

(5a) W5(x) — A0 < Clxl™ Y for x| = 1;

(5b) 5 (0l < G(x) for |x| < 1, where G(x) is homogeneous of degree
zero and

Gl iesn-1y < ClIQ g1esn-1y;
(5¢) if g(x) is a vector-valued Cj(R") function, then
YUx—y) (lx—yl

I (

y|n+m

)(%-g)(y)dy

n|x — e

e [ =) s @

Proof. If |x| = 1, since ¢(¢) = 1 for ¢ > 3 /4, we have

[ [M— > Dﬂ(%)(x)(—w“]
lyl<3/4 -]

n+1
lx =yl lal<m

75(x) —A(x)] <

Q
X[¢(y) - 1]|y|(n—f,)ndy

Q
< Clx[ "t [ | (,X)ll
lyl<3/4 |yl

- 1
= CllQlrgsrnlx "D
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For the case |x| < 1, notice first that if [x| < 1/8, L#5(x)| < ClIQll 11 sy
because the singularity of the integrand in the integral representation of
A, is away from x. If 1/8 < |x| < 1, write

5(x) = $(Ix)A(x)]

x — 1 .
< (—?21 - X —,Da( nil)(x)(—Y)a‘
Iyl<1/16||x — ¥ lal<m @ |
X || |£Z,)n| [o(lyl) — &(lxl)| dy
L Q@)
" 116<lyl<2 |x = yI" [yl"" [2(1y1) = d(lxhldy

1 [em)
+/\y|>2 lx — " [y [¢(lyD) — &(Ixl)|dy

=J(x) +J,(x) +J5(x).

Trivial computation leads to

1Q(y)]
Ji(x) <C — 1 dy < CllQllpysn-1)
lyl<1/16 |yl
and
1Q(y)l
Ji(x) < Cf i @ < ClIQll sy,
yl>2 [yl

For the second term, we use that ¢ is a Lipschitz function to obtain

1Q(y)]
L(x)<C — — dy
(%) f/16<|y|<2 [y 172 -yl !
. Q)]
< Clxl 3/2f n—1/2 n—1
R* |yl lx — yl

Therefore, (5b) follows if we set

G(x) = C[IIQll g1y + |x|"+m|%(x)|

. 1Q(y)]
" e d
R |yl [x — yl
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Finally, (5¢) is easy to check; see [1, 2] for the ideas. This completes the
proof of Lemma 5.

Proof of Theorem 1. We will follow a procedure similar to that in [1,
Sect. 7. By Lemma 2, we may assume that € C*(S"" ') and g(x) =
Zf(x). Let #,(x) be the same as in Lemma 4. Define

S.g(x)=[  M(x=y)R,(A:x,y) g(y)dy

[x—yl>e

and S, its corresponding maximal operator. By Lemma 4, Theorem A(i),
and the LP(R")-boundedness of the Riesz transforms, we obtain

||S*g||Lq(R") < C||Q||H‘(S"") Z ”DuA”L’([RE")”f”LP([R{")-

lal=m

Since f(x) = C(Z - g)(x) with C a constant, to finish the proof, it suffices
to estimate the operator

Ag(x) = Sgl?]ng(%-g)(X) - 5,8(x)|.

Let ¢ and .#; be the same as in Lemma 5. We represent |7,(% - g)(x) —
S.g(x)| as the sum of the following three terms:

D,g(x) =T.(#-g)(x)

o S(_xy}f?m('x ;y')Rm<A;x,y>(%~g><y)dy,
Q(x—y) (lx—=yl
Esg(x) = '[[R" |x_y|n+m ¢( - )%

TR.(A;x,)g()](y) dy — S.8(x),
Q(x — X —
(x =) d)(l yl)

y|n+m

Fg(x) = [

R” |x —_ &

X{R,(A;x,y)(%-8)(y) —#[R,(A;x,)8(")](y)} dy.

The corresponding maximal operators are denoted by D, E,, and F,,
respectively. It is easy to see that

1Dg(x)| < Ce ™ [ |Q(x = y)R,(4; %, )(% g)(y)|dy.

[x—yl<e
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Applying (1.3) with the case ¢ = X[0,11» We can obtain a desired estimate
for || D, gll o). Using Lemma 5, by an estimate similar to that for E, g in
[1], we can show

|E.g(x)|<Cem [

[x—yl>e

|x_y| n—m—1
. R, (A;x,y)g(y)|dy

+ e [ |G(x = y)R, (A5 x,y)g(y)|dy.

[x—yl<e

Applying (1.3) again to each part on the right-hand side of the above
inequality, we can obtain a desired estimate for || E, gl «w~). Finally, as we
pointed at the end of Section 1, Theorem 1 is true if m = 0. Thus, the
term F, can be estimated by induction on m as in [1] on F,, which leads to
a desired estimate for [|F gllLown)-

This finishes the proof of Theorem 1.

Finally, we remark that in [4], a conclusion similar to Theorem A was
proved to be true for this kind of operator with several remainders. By the
idea in [4], we can also extend Theorem 1 to a several remainders case. For
brevity, we state the result without a proof.

THEOREM 2. Let Q(x) be homogeneous of degree zero and integrable on
8"~ ' Letk € N, {m, }k L, {0} UN, and M = Zk \m;. Suppose thatAj(x)

has derivatives of order m; in L'(R") for some 1 <1, <=, j=1,....k If
1<p,g<candl/q = Z 11/r; + 1/p, then the operator
= Q(x —y)

T.f(x) = sup|[

e>0 | lx—yl>e |x —yI

T n+M HR (Aj;xay)f(y) dy

has the following properties:
() if (=1 = (=DM 1Q(x), then

k
N7 fllLomy < C||Q||L‘(s"*’)_l—[ > DAl il fll Loy (2.1)

I=Val=m;

Gi) if Q(—x) =(—-D"Q(x), Q € H'(§" ") and
/ Q(x)x*do(x) =0  forallla|=M
Sn—l

then (2.1) holds with || Q| ;1sn-1y replaced by ||Q] g1sn-1).

Part (i) of the preceding theorem was proved in [4], while (ii) is new.
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