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We introduce an :-calculus with the help of the generalized Bernoulli polynomials.
The parameter : is the order of a Bessel function of the first kind. The differential
:-calculus can be put in a general context where the concept of supporting function
is an important tool for practical purposes. Our somewhat more restrictive point of
view has the advantage of permitting a consistent definition of an :-integral with
several interesting properties. It results in the possibility of expressing a remainder,
in the aforementioned context, in a completely new form in our case. � 2001

Academic Press

1. INTRODUCTION

The :-Bernoulli polynomials Bn, :(x) are defined by the generating function

e(x&1�2) z

g: \iz
2+

= :
�

n=0

Bn, :(x)
n!

zn, (1)

where g:(z) :=2:1(:+1)(J:(z)�z:). The series in (1) converges for |z|<
2 | j1 |, where j1= j1(:) is a zero of J:(z)�z: of least modulus. The polyno-
mials Bn, :(x), n=0, 1, 2, ..., are defined for all complex values of : except
for :=&1, &2, &3, ... . Some general properties of these polynomials are
given in [5, 6]. Among other things we proved the following result.
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Theorem A. Let : be a complex number, not a negative integer. For
each entire function f of exponential type {<2 | j1 | which is bounded on the
real axis, we have

f (1)= f (0)& :
�

k=1

Bk, :

k!
( f (k)(1)&(&1)k f (k)(0)) . (2)

Here, Bk, : :=Bk, :(0). We denote by B{ the class of all entire functions of
exponential type { bounded on the real axis. In the case := 1

2 it had been
observed that a complex variable can be introduced in (2); the formula

f $(z)= :
�

k=0

Bk(z)
k!

( f (k)(1)& f (k)(0)) (3)

holds [3, Formula 9.5; 9, p. 220] for all complex numbers z if f # B{ ,
{<2?. A natural extension of (3) using the :-Bernoulli polynomials leads
us to consider a generalized derivative defined by

b:( f ; z) := :
�

k=0

((&1)k&1)
k!

Bk, : f (k)(z)

=f $(z)+(2:&1) \ 1
48(:+1)

f $$$(z)

+
(2:2&:&13)

7680(:+1)2 (:+2)
f (v)(z)+ } } } + (4)

if the series converges. We see at once from (4) that

b1�2( f ; z)= f $(z). (5)

The limiting case : � � gives, in view of Taylor's formula and the relation
[5, p. 309] lim: � � Bk, :(x)=(x& 1

2)k with x=0,

b�( f ; z)= f (z+ 1
2)& f (z& 1

2) . (6)

So, the �-derivative corresponds exactly to the central finite differences'
operator. It will also be seen that

b&1�2( f ; z)=4 :
�

k=1

(22k&1)
(2k)!

B2k f (2k&1)(z)

= :
�

k=1

(&1)k&1

2k&1 2kf (z) (7)
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if both the series converge. Here, 2f (z) :=f (z+1)& f (z) is the usual finite
difference's operator and 2kf (z) :=2k&1(2f (z)) for k�2. The first series in
(7) converges for each f # B{ with {<?. The second series is defined for
more general functions, including f (z)= 1

z , z{0, &1, &2, ... .
In general the series in (4) converges for each f # B{ with {<2 | j1 |. This

is a consequence of the famous Bernstein's inequality [1], which we use
here in the form [2]

| f (k)(z)|�Me{ | y|{k, (8)

where z :=x+iy, M :=max&�<x<� | f (x)|, and the asymptotic relation
[5, p. 134]

Bk, : t
&k!(e&ij1+(&1)k eij1)

2:1(:+1)(2i)k j k&:+1
1 J$:( j1)

(9)

as k � �.
Here we present approximation theoretic applications of the :-derivative

(4). This is done by introducing an expansion of the form

f (z)= :
�

n=0

b (n)
: ( f ; z0)

n!
,n, :(z&z0), (10)

where b (0)
: ( f; z) :=f (z) and b (n)

: ( f; z) :=b:(b (n&1)
: ( f; z); z) for n=1, 2, 3, ... .

The polynomials ,n, :(z) are introduced through the recurrence relation

,n, :(z)=zn& :
n&1

k=0

b (k)
: (`n ; `=0)

k!
,k, :(z), (11)

with ,0, :(z)#1, ,1, :(z)=z, ,2, :(z)=z2,

,3, :(z)=z3&
(2:&1)
8(:+1)

z,

,4, :(z)=z4&
(2:&1)
2(:+1)

z2,

,5, :(z)=z5&
5(2:&1)
4(:+1)

z3+
(2:&1)(18:2+31:&7)

64(:+1)2 (:+2)
z,

,6, :(z)=z6&
5(2:&1)
2(:+1)

z4+
(2:&1)(4:&1)(16:+31)

32(:+1)2 (:+2)
z2, etc.

The polynomials ,k, :(z), 0�k�n, are linearly independent since they are
of exact degree k.
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Functions possessing a representation of the form (10) are said to be
:-analytic in the neighborhood of z0 .

The particular cases (5), (6), and (7) are respectively Taylor's expansion

f (z)= :
�

n=0

f (n)(z0)
n!

(z&z0)n, {�0, (12)

Stirling's expansion

f (z)= :
�

n=0

2nf \z0&
n
2+

n!

(z&z0) 1 \z&z0+
n
2+

1 \z&z0+1&
n
2+

, {<ln(3+2 - 2),

(13)

and (essentially) Newton's expansion

f (z)= :
�

n=0

2nf (z0) \z&z0

n + , {<ln 2. (14)

The associated polynomials ,n, :(z) are

,n, 1�2(z)=zn, (15)

,n, �(z)=
z1 \z+

n
2+

1 \z+1&
n
2+

=z \z+1&
n
2+n&1

, (16)

and

,n, &1�2(z)= :
n

r=1

n!
2n&r \n&1

r&1+\
z
r+ . (17)

The expansion (10) can be put in a more general context (Subsection 2.1)
where a remainder can be presented with the concept of indicator diagram
of f. Our method gives another representation for the remainder associated
with the expansion (10). In order to state the result in question, it is useful
to introduce the :-integral

:|
z

z0

f (t) dt := :
�

k=1

b (k&1)
: ( f ; z0)

k!
,k, :(z&z0) (18)
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if the series converges. It will become clear that the following identities
hold,

:|
z

z0

b: ( f (t); t) dt= f (z)& f (z0), (19)

b: \:|
z

z0

f (t) dt; z+= f (z), (20)

:|
z

z0

f (t) dt=&:|
z0

z
f (t) dt (21)

so that

b: \:|
z

z0

f (t) dt; z0+=&f (z0), (22)

:|
z

z0

f (&t) dt=&:|
&z

&z0

f (t) dt, (23)

:|
z

z0

f (t+t0) dt= :|
z+t0

z0+t0

f (t) dt (24)

and the additivity property

:|
z

z0

f (t) dt= :|
`

z0

f (t) dt+ :|
z

`
f (t) dt. (25)

The classical cases := 1
2 , : � �, and :=&1

2 are respectively

1�2|
z

z0

f (t) dt=|
z

z0

f (t) dt, (26)

�|
z

z0

f (t) dt= :
�

k=1

2k&1f \z0&
(k&1)

2 +
k!

(z&z0) 1 \z&z0+
k
2+

1 \z&z0+1&
k
2+

(27)

and (to be justified)

&1�2|
z

z0

f (t) dt= :
�

k=0

2kf (z0) \z&z0

k+1 ++ 1
2 ( f (z)& f (z0)). (28)
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Formula (28) readily gives

&1�2|
N

0
f (t) dt= :

N

k=0

f (k)& 1
2 ( f (N)+ f (0)) (29)

if N is a nonnegative integer.
With the help of the :-integral it becomes possible to give a representa-

tion for a remainder which can be considered in (10). The representation
is explicit in the sense that

f (z)= :
N

n=0

b(n)
: ( f ; z0)

n!
,n, :(z&z0)+RN, :(z0 , z)

+ :
N

n=1

:
�

m=2

:
m

k=1

(&1)k

(n&k)!
ck, m(1, :) :|

z

z0

,n&k, :(z&t) b (n&k+m)
: ( f; t) dt,

(30)

where

RN, :(z0 , z) :=
1

N! :|
z

z0

,N, :(z&t) b (N+1)
: ( f ; t) dt (31)

and

ck, m(1, :) :=
1

k!(m&k)!
b:(,k, :(`) ,m&k, :(`); `=0). (32)

We now describe the details of the :-calculus.

2. THE :-DIFFERENTIAL CALCULUS

Consider formally the integrals

IN, : :=
1

N! |
z

1
BN, :(z&t+1) f (N+1)(t) dt

&
1

N! |
z

0
BN, :(z&t) f (N+1)(t) dt. (33)
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The polynomials Bn, :(x) satisfy [5] the relations B$n, :(x)=nBn&1, :(x) and
Bn, :(1)=(&1)n Bn, : ; using these properties and integrating by parts, we
obtain

IN, :=
((&1)N&1)

N!
BN, : f (N)(z)

&
1

N!
BN, :(z)( f (N)(1)& f (N)(0))+IN&1, : (34)

and infer the relation

IN, := :
N

k=0

((&1)k&1)
k!

Bk, : f (k)(z)

& :
N

k=0

Bk, :(z)
k!

( f (k)(1)& f (k)(0)). (35)

Concerning the question of convergence, we prove the following result,
from which Theorem A corresponds to z=0 and (3) corresponds to := 1

2 .

Theorem 2.1. Let z be a complex number. For each f # B{ we have, if
{<2 | j1 |,

:
�

k=0

((&1)k&1)
k!

Bk, : f (k)(z)= :
�

k=0

Bk, :(z)
k!

( f (k)(1)& f (k)(0)). (36)

Proof. Given a complex number t we have, by (1),

BN, :(t)=
d N

dzN

e(t&1�2) z

g: \iz
2+ } z=0

.
(37)

Using Cauchy's inequalities, we obtain

|BN, :(t)|�
N!
\N max

|z|=\ }
e(t&1�2) z

g: \iz
2+ }

�c0

N!
\N (38)
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for \<2 | j1 |, where c0 is independent of N. Now we have

IN, :=
1

N! |
z

1
BN, :(t) f (N+1)(z&t+1) dt

&
1

N! |
z

0
BN, :(t) f (N+1)(z&t) dt. (39)

It follows from (8) and (38) that, for each \<2 | j1 |,

|IN, : |�kf (:, {, z) \{
\+

N

, (40)

where kf (:, {, z) is independent of N. Thus,

lim
N � �

IN, :=0 (41)

if {<\ and the result follows since \ can be chosen arbitrarily close
to 2 | j1 |. K

We denote the left-hand member of (36) by b:( f; z). The sum defining it
contains only the derivatives of odd order of f. The particularity of the case
:= 1

2 is that the Bernoulli numbers Bn=: Bn, 1�2 are all equal to zero if n�3 is
odd. It remains then only one term (the one corresponding to k=1) in the left-
hand member of (36); that term is f $(z) and we get (3). In that sense, b:( f; z)
is an extension of the ordinary derivative; we may call it the :-derivative (or
the Bernoulli�Bessel derivative) of the function f at the point z. In view of
Theorem 2.1, b:( f; z) is certainly defined for all complex numbers z if f # B{ ,
{<2 | j1 |. Also, the :-derivative of a polynomial of degree n is a polynomial
of degree (n&1).

It is not difficult to define precisely the :-derivative of order n. We put
b(0)

: ( f; z) :=f (z) and

b(n)
: ( f; z) :=b(n&1)

: (b:( f; z); z) (42)

for n=1, 2, 3, ... . We have

b(n)
: ( f; z)= :

�

k=0

d (n)
k, :

k!
f (k)(z), (43)

where d (1)
k, : :=((&1)k&1) Bk, : and

d (n)
k, : := :

k

l=0
\k

l+ ((&1)k&l&1) Bk&l, : d (n&1)
l, : (44)
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for n=2, 3, ... . Also, d (0)
0, : :=1 and d (n)

0, : :=0 for n�1. The sequences d (n)
k, : are

fundamental quantities in our theory. Using the relation Bk, :(1)&Bk, :(0)=
((&1)k&1) Bk, : and (1), we see that

d (1)
k, :=

d k

dzk \
ez�2&e&z�2

g: \iz
2+ +

n

} z=0

. (45)

By mathematical induction, we then obtain

d (n)
k, :=

d k

dzk \
ez�2&e&z�2

g: \iz
2+ +

n

} z=0

.
(46)

Note also that, from (43) where f (z)=zm,

d (n)
m, :=b(n)

: (`m ; `=0). (47)

In particular, for n�1,

d (n)
k, :=0, 0�k<n (48)

and, since the function (ez�2&e&z�2)�g:(iz�2) is odd,

d (n)
k, :=0 if k&n is odd, k>n. (49)

Some examples of non-zero coefficients are

d (n)
n, :=n!,

d (n)
n+2, :=

n(n+2)! (2:&1)
48(:+1)

,

and

d (n)
n+4, :=

n(n+4)! (2:&1)(&(10n+29)+(15n&18) :+(10n&4) :2)
23040(:+1)2 (:+2)

.

A more general relation than (46) is

:
k

l=0
\k

l+ d (n)
l, :F (k&l)(0)=

d k

dzk \
ez�2&e&z�2

g: \iz
2+ +

n

F(z) } z=0

. (50)
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The choice F(z)=((ez�2&e&z�2)�g:(iz�2))m, in (50), gives the relation

d (m+n)
k, : = :

k

l=0
\k

l+ d (m)
l, : d (n)

k&l, : . (51)

Here are some examples. We have

b:(zm ; z)=Bm, :(z+1)&Bm, :(z), (52)

which follows from the definition (4) and the relation [5, p. 309] Bm, :(x+ y)
=�m

k=0 ( m
k ) Bk, :( y) xm&k. Also, we have

b (n)
: (,m, :(z); z)=

m!
(m&n)!

,m&n, :(z), (53)

for n=0, 1, ..., m. In order to prove (53), we consider the :-expansion (10)
where z0=0. Applying the operator b: on both sides, we obtain

b:( f; z)= :
�

m=1

b (m)
: ( f ; 0)

m!
b:(,m, :(z); z). (54)

On the other hand, the :-expansion (10) applied to b:( f ; z) gives

b:( f ; z)= :
�

m=0

b (m+1)
: ( f ; 0)

m!
,m, :(z)

= :
�

m=1

b(m)
: ( f ; 0)

m!
m,m&1, :(z). (55)

It readily follows from (54) and (55) that

b:(,m, :(z); z)=m,m&1, :(z), (56)

and (53) is simply the direct extension. Another formula, which follows
from (43) and (46), is

b(n)
: (ecz ; z)=\ec�2&e&c�2

g:(ic�2) +
n

ecz (57)

for |c|<2 | j1 |.
The :-derivative is not defined in general for functions like f (z)= 1

z .
Formally, we have

b(n)
: \1

z
; z+= :

�

k=0

(&1)k d (n)
k, :

zk+1 , (58)
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but this series may not converge even for large values of |z|. We would
want to treat b:( 1

z ; z) as a kind of ``:-distribution''; we will not go further
in that direction except to note that

b(n)
: ($(z); z)=zb (n)

: \1
z

; z+ $(z), (59)

where $ is the Dirac distribution. For :=&1
2 it is possible to extend the

definition of the (&1
2)-derivative so that b&1�2( 1

z ; z) has a sense for all z{0,
&1, &2, ... (see Subsection 4.1).

Some properties of the :-derivative follow at once from the definition.
The operator b: is linear and

b:(b;( f ; z); z)=b;(b:( f ; z); z). (60)

We have also

b:( f (z+`); z=z0)=b:( f (z); z=z0+`) (61)

and

b:( f (&z); z=z0)=&b:( f (z); z=&z0). (62)

Other simple properties are already less obvious. For example, no simple
expression for b:( f (cz); z), in terms of the b (k)

: ( f (`); `=cz), seems to be
easily available, except for c=0, \1. In order to obtain non-trivial proper-
ties, we introduce a representation formula.

2.1. The :-Expansion

We examine briefly a general situation. See [2, Sect. 9.10] for generalities
and [4] for more specific details. Consider the expansion

ezw= :
�

n=0

Gn(w) un(z), (63)

where the Gn(w) are continuous and the convergence is uniform on a
contour 1 containing the indicator diagram of f (z). There is a representa-
tion of the form

f (z)= :
�

n=0

Tn( f ) un(z), (64)

289A UNIFIED CALCULUS



where

Tn( f ) :=
1

2?i |1
,(w) Gn(w) dw. (65)

The function ,(w) is the Borel transform of f. A case of particular interest
is Gn(w)=(`(w))n where `(w) is analytic and univalent in the neighbor-
hood of the origin, with `(0)=0. Then we have

ezw= :
�

n=0

`nun(z), (66)

where

un(z)=
1
n!

d n

d`n ezw(`) } `=0

. (67)

The classical expansions are

(A) Taylor Series. We take `(w)=w so that w(`)=`, un(z)=zn�n!,
and Tn( f )= f (n)(0).

(B) Stirling Series. We take `(w)=ew�2&e&w�2 so that w(`)=2 ln((`
+- `2+4)�2), un(z)=z1(z+n�2)�n! 1(z+1&n�2), and Tn( f )=2nf (&n

2).

(C) Newton Series. We take `(w)=ew&1 so that w(`)=ln(1+`),
un(z)=( z

n) and Tn( f )=2nf (0).

The :-expansion (10) corresponds to the choice

`(w)=
ew�2&e&w�2

g: \iw
2 +

, (68)

with Tn( f )=b (n)
: ( f (z); z=0). This follows from (65), (57), and the Po� lya

representation [2, p. 74]

f (z)=
1

2?i |1
ewz,(w) dw. (69)

It is also a consequence of (65), (43), and the relation (see (46))

(`(w))n= :
�

k=0

d (n)
k, :

k!
wk. (70)
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Remark 2.1. It is not without interest to observe here that (56) can be
obtained from (67) and (57):

b:(,m, :(z); z)=b: \d mezw

d`m } `=0

; z+

=
d m

d`m \
ew�2&e&w�2

g: \iw
2 + + ezw } `=0

=
d m

d`m `ezw } `=0

by (68)

=m
d m&1ezw

d`m&1 } `=0

=m,m&1, :(z).

Before we present our second theorem, we observe that the condition
b:( f ; z)#0, where f is :-analytic (i.e., expressible in the form (10)), implies
that f (z) is a constant. Indeed, if b:( f (z); z=z0)=0 for all z0 then
b(n)

: ( f (z); z=z0)#0, n�1, and so

f (z)= f (z0)+ :
�

n=1

b (n)
: ( f ; z0)

n!
,n, :(z&z0)

= f (z0).

Looking now at (57), we see that

b:(e2l?iz ; z)#0 (71)

if l is an integer such that |l|<| j1 |�?.

Remark 2.2. For := 1
2 we have g1�2(ic�2)=(ec�2&e&c�2)�c so that the

factor (ec�2&e&c�2) cancels out in (57). We have j1(
1
2)=? and the only

admissible integer in (71) is l=0.

The relations (71) means that the function f (z)=ecz cannot be :-analytic
for |c|�2? if | j1 |>?, which is certainly true for :> 1

2 since [10, p. 508]
the positive zeros of J:(z) increase as : is increased. This proves the last
assertion of the following result.
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Theorem 2.2. Let z0 and z be complex numbers. There exists a positive
constant {(:) such that the expansion

f (z)= :
�

n=0

b (n)
: ( f ; z0)

n!
,n, :(z&z0) (72)

holds for all f # B{ if {<{(:). Moreover, we have {(:)<2? if :> 1
2 .

The proof of Theorem 2.2 will be a direct consequence of the next two
lemmas.

Lemma 2.1. Let z be a complex number. There exists a positive constant
\1=\1(:) such that

|,n, :(z)|�c1

n!
\n

1

, (73)

where c1 is independent of n.

Proof. The function `(w) defined by (68) is analytic for |w|<2 | j1 | and
`(0)=0. By the Lagrange�Bu� rmann Theorem [8, Sect. 2.4] it has an
analytic inverse w=w(`) in a neighborhood of `=0. Thus, using (67) and
Cauchy's inequalities, we obtain

|,n, :(z)|=n! |un(z)|

= } d n

d`n ezw(`) } `=0 }
�

n!
\n max

|`|=\
|ezw(`) |,

if \ is sufficiently small. K

Remark 2.3. (a) Since ,n, :(0)=0, n�1, we deduce at once from the
above inequality and Schwarz Lemma that

|,n, :(z)|�c*
n!
\n

1

|z| (74)

for |z|�1, where c* is independent of n and z.

(b) Formula (17) readily implies that

|,n, &1�2(z)|�n! ( 3
2)n&1, n�1, (75)
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for |z|�1, with |,n, &1�2(1)|=n!�2n&1. The bound given in (73) is thus
essentially best possible for arbitrary :. We note also that, in view of (16)
and Stirling's formula,

,n, �(z)t

zn! sin \n?
2

&?z+
- 2? n3�22n&2

(76)

as n � �.

Lemma 2.2. Let \2 be a positive number such that \2<2 | j1 |. We have

|d (n)
k, : |�cn

2

k!
\k

2

, (77)

where c2 is independent of n and k.

Proof. The inequality (77) follows from (46) with another application
of Cauchy's inequalities. K

Remark 2.4. A straightforward consequence of (43), (8), and (77) is an
inequality of the form

|b (n)
: ( f; z)|�M*cn

3 e{ | y|, (78)

which holds for each f # B{ if {<2 | j1 |. In particular, the class B{ is closed
under :-differentiation whenever {<2 | j1 |.

Proof of Theorem 2.2. The formal proof runs as follows:

:
�

n=0

b (n)
: ( f ; z0)

n!
,n, :(z&z0)= :

�

n=0

:
�

k=n

d (n)
k, :

k! n!
f (k)(z0) ,n, :(z&z0)

= :
�

n=0

:
n

k=0

d (k)
n, :

n! k!
f (n)(z0) ,k, :(z&z0)

= :
�

n=0

f (n)(z0)
n!

(z&z0)n, by (11) and (47),

=f (z).

Thus, we need only to justify the change in the order of summation. The
series in consideration are absolutely convergent since, by Lemmas 2.1 and
2.2, they are bounded by geometrical series which converge for all z if { is
sufficiently small. K
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2.2. The Product Formula

Leibniz's formula

( f (z) g(z)) (n)= :
n

k=0
\n

k+ f (k)(z) g(n&k)(z) (79)

is one of the most classical result of differential calculus. It can be proved
easily by mathematical induction. In order to obtain an extension of this
formula, we choose another approach. We write

f (z) g(z)=\ :
�

k=0

f (k)(z0)
k!

(z&z0)k+\ :
�

k=0

g(k)(z0)
k!

(z&z0)k+
= :

�

m=0

:
m

k=0

f (k)(z0)
k!

g(m&k)(z0)
(m&k)!

(z&z0)m,

whence

d nf (z) g(z)
dzn } z=z0

= lim
z � z0

:
�

m=n

:
m

k=0

f (k)(z0)
k!

g(m&k)(z0)
(m&k)!

}
m!

(m&n)!
(z&z0)m&n

= :
n

k=0
\n

k+ f (k)(z0) g(n&k)(z0).

This simple method leads us to the following extension of (79).

Theorem 2.3. For n=0, 1, 2, ..., we have the relation

b (n)
: ( f (z) g(z); z)= :

�

m=n

:
m

k=0

ck, m(n, :) b (k)
: ( f (z); z) b (m&k)

: ( g(z); z),

(80)

where

ck, m(n, :) :=
1

k! (m&k)!
b (n)

: (,k, :(`) ,m&k, :(`); `=0). (81)

Some simple calculations show that

ck, m(n, :)=0 if (m&n) is odd, (82)

and

ck, m(m, :)=\m
k + , 0�k�m. (83)
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Proof of Theorem 2.3. Using the :-expansion (10), we may write

f (z) g(z)= :
�

m=0

:
m

k=0

b (k)
: ( f ; z0)

k!
b (m&k)

: (g; z0)
(m&k)!

,k, :(z&z0) ,m&k, :(z&z0),

whence

b (n)
: ( f (z) g(z); z)= :

�

m=n

:
m

k=0

b (k)
: ( f ; z0)

k!
b (m&k)

: (g; z0)
(m&k)!

} b (n)
: (,k, :(z&z0) ,m&k, :(z&z0); z),

from which (80) follows with the help of (61). K

Applying (80) to f (z)=eaz and g(z)=ebz, we obtain the following
generalization of the binomial formula

(a+b)n= :
n

k=0
\n

k+ akbn&k. (84)

Corollary 2.1. Let n be a positive integer. We have the relation

\
e(a+b)�2&e&(a+b)�2

g: \i
(a+b)

2 + +
n

= :
�

m=n

:
m

k=0

ck, m(n, :) \
ea�2&e&a�2

g: \i
a
2+ +

k

\
eb�2&e&b�2

g: \i
b
2+ +

m&k

(85)

if the series converge.

Formula (85) can also be seen as an addition formula for g:(z). The
relation (84) corresponds to := 1

2 . For : � �, it follows from (124), the
polynomial inequality |2nP(z)|�(m!�(m&n)!) max |`| =|z|+n |P(`)| and (73)
that the series in (85) are absolutely convergent for |a|, |b| sufficiently
small. When :=&1

2 , we may also obtain estimates for |ck, m(n, &1
2)| and

infer the absolute convergence at least for small |a|, |b|.

Remark 2.5. In the context of the general situation encountered at the
beginning of Subsection 2.1, it is possible to give a more algebraic extension
of (84). It follows indeed from (67) that (79) that

un(a+b)= :
n

k=0

uk(a) un&k(b). (86)
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The limiting case : � � of (86) gives, in view of (16) and (68), the gamma
identity

(a+b) 1 \a+b+
n
2+

1 \a+b+1&
n
2+

= :
n

k=0 \
n
k+

a1 \a+
k
2+

1 \a+1&
k
2+

}
b1 \b+

(n&k)
2 +

1 \b+1&
(n&k)

2 +
.

(87)

We can also deduce from Theorem 2.3 another (see (51)) addition formula
for the quantities d (n)

k, : .

Corollary 2.2. The coefficients d (n)
k, : defined by (44) satisfy the relation

d (n)
j+k, := :

�

m=n

:
m

l=0

cl, m(n, :) d (l)
j, :d (m&l)

k, : . (88)

Proof. Using (43) and (79), we obtain

b (n)
: ( f (z) g(z); z)= :

�

k=0

:
k

j=0
\k

j +
d (n)

k, :

k!
f ( j)(z) g(k& j)(z)

= :
�

k=0

:
�

j=0

d (n)
j+k, :

f (k)(z)
k!

g( j)(z)
j!

. (89)

On the other hand, Theorem 2.3 and (43) give

b (n)
: ( f (z) g(z); z)= :

�

k=0

:
�

j=0

:
�

m=0

:
m

l=0

cl, m(n, :) d (l)
j, :d (m&l)

k, :

f ( j)(z)
j !

g(k)(z)
k!

,

(90)

and the result follows by comparison of (89) and (90). K

The particular case f (z)=z, in (80), readily gives the

Corollary 2.3. We have the relation

b (n)
: (zg(z); z)=zb (n)

: ( g(z); z)+ :
�

m=n

c1, m(n, :) b (m&1)
: ( g(z); z). (91)

296 CLE� MENT FRAPPIER



2.3. The Composition Formula

A general formula for the expansion of ( f (g(z)))(n) is that of Faa Di
Bruno [7, p. 34], namely

( f (g(z))) (n)= :
n

k=1

:
?(n, k)

c(r1 , ..., rn) `
n

j=1

( g( j)(z))rj } f (k)( g(z)), (92)

where c(r1 , ..., rn) :=n!�(r1 ! } } } rn !(1!)r1 } } } (n!)rn ) and ?(n, k) means that the
summation is over all the nonnegative integers r1 , ..., rn such that r1+2r2

+ } } } +nrn=n and r1+r2 } } } +rn=k. In order to extend (92), we consider
the :-expansion

f ( g(z))= :
�

k=0

1
k!

b (k)
: ( f (`); `= g(z0)) ,k, : ( g(z)& g(z0)). (93)

Applying the operator b (n)
: ( ; z) on both sides of (93), we obtain

b (n)
: ( f ( g(z)); z=z0 )= lim

z � z0

:
�

k=0

1
k!

b (k)
: ( f (`); `= g(z0))

} b (n)
: (,k, :( g(z)& g(z0)); z). (94)

We have thus the following result.

Theorem 2.4. We have the composition formula

b (n)
: ( f ( g(z)); z)= :

�

k=0

1
k!

b (n)
: (,k, :( g(`)& g(z)); `=z)

} b (k)
: ( f (`); `= g(z)). (95)

Let us show that (92) is a special case of Theorem 2.4. For := 1
2 , we

have

b (n)
: (,k, :( g(`)&g(z)); `=z)

=
d n

d`n ( g(`)& g(z))k } `=z

= lim
` � z

d n

d`n :
�

&1=1

} } } :
�

&k=1

`
k

j=1
\g(&j )(z)

&j ! + (`&z)&1+ } } } +&k

= :
&1+ } } } +&k=n

n!
&1 ! } } } &k !

`
k

j=1

(g(&i )(z)),

and we obtain a formula which is known to be equivalent to (92).

297A UNIFIED CALCULUS



Remark 2.6. We can also expand b (n)
: ( f (g(z)); z) starting with (43) and

using (92). It results an expression which gives, when compared with the
right-hand member of (95), the formula

:
l

k=1

d (k)
l, :

k! l!
b (n)

: (,k, :( g(`)& g(z)); `=z)

= :
�

k=l

:
?(k, l)

d (n)
k, :

k!
c(r1 , ..., rk) `

k

j=1

( g( j)(z))rj, (96)

for l=1, 2, 3, ... .

The expression b (n)
: (,k, :(g(`)& g(z)); `=z), in (95), cannot be simplified

easily in general. It remains however some cases of particular interest.
Consider the example g(z)=ez. The formula

( f (ez)) (n)= :
n

k=1

S(n, k) ekzf (k)(ez) (97)

may be used to introduce the so-called Stirling's numbers of the second
kind S(n, k), 1 � k � n. We have S(n, 1) = S(n, n) = 1 and S(n, k) =
kS(n&1, k)+S(n&1, k&1) for 1<k<n. Using (43) and (97), we can
write

b (n)
: ( f (ez); z)= :

�

k=1

:
�

r=k

d (n)
r, :

r!
S(r, k) ekzf (k)(ez), (98)

where

:
�

r=k

d (n)
r, :

r!
S(r, k)=: S:(n, k) (99)

may be called the :-Stirling's numbers of the second kind. For instances,
we have S1�2(n, k)=S(n, k) and some elementary combinatorial identities
lead us to

k! S�(n, k)= :
k&1

&=0

(&1)& \k
&+ (e(k&&)�2&e&(k&&)�2)n. (100)
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Another particular value is S&1�2(n, 1)=( 2(e&1)
e+1 )n, n�1. The :-Stirling's

numbers of the first kind may be defined by the relation

b (n)
: ( f (ln z); z)= :

�

k=1

s:(n, k)
f (k)(ln z)

zn , (101)

with

s:(n, k) := :
�

r=k

(&1)r+k

r!
d (n)

r, : s(r, k). (102)

The numbers s(n, k)=s1�2(n, k), 1�k�n, are the usual Stirling's numbers
of the first kind, which can be defined by the recurrence relation s(n, n)=1,
s(n, 1)=(n&1)! and s(n, k)=(n&1) s(n&1, k)+s(n&1, k&1) for 1<k<n.

3. THE :-INTEGRAL CALCULUS

The way chosed to introduce the :-integral by (18), namely

:|
z

z0

f (t) dt= f (z0)(z&z0)+ 1
2 b:( f ; z0)(z&z0)2

+1
6 b (2)

: ( f ; z0) ,3, :(z&z0)+ } } } , (103)

is very natural and properties (19), (20), (23), (24) follow easily from this
definition. Some examples of calculations are

:|
z

z0

,n, :(t) dt=
,n+1, :(z)&,n+1, :(z0)

n+1
, (104)

:|
z

z0

tn dt= :
n+1

k=1

d (k&1)
n, :

k!
(,k, :(z)&,k, :(z0)) (105)

and

:|
z

z0

ect dt=
g: \i

c
2+

(ec�2&e&c�2)
} (ecz&ecz0 ) (106)

if |c| is sufficiently small.
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Proof of (21). Using the :-expansion and (104), we have

:|
z

z0

f (t) dt= :|
z

z0

:
�

k=0

1
k!

b (k)
: ( f ; 0) ,k, :(t) dt

= :
�

k=0

1
k!

b (k)
: ( f ; 0) }

,k+1, :(z)&,k+1, :(z0)
k+1

=& :
�

k=0

1
k!

b (k)
: ( f ; 0) }

,k+1, :(z0)&,k+1, :(z)
k+1

=&:|
z0

z
f (t) dt. K

We present now two proofs of the additivity property (25).

Proof (First Proof of (25)). We use the idea of the preceding proof:

:|
z

z0

f (t) dt= :|
z

z0

:
�

k=0

b (k)
: ( f ; `)

k!
,k, :(t&`) dt

= :
�

k=0

b (k)
: ( f ; `)

k!
}
,k+1, :(z&`)&,k+1, :(z0&`)

k+1

= :
�

k=1

b (k&1)
: ( f ; `)

k!
,k, :(z&`)

& :
�

k=1

b (k&1)
: ( f ; `)

k!
,k, :(z0&`)

= :|
z

`
f (t) dt& :|

z0

`
f (t) dt

= :|
`

z0

f (t) dt+:|
z

`
f (t) dt. K

Proof (Second Proof of (25)). Recall that an :-analytic function F such
that b:(F(z); z)#0 must be a constant. Let

F(z) := :|
z

z0

f (t) dt& :|
`

z0

f (t) dt& :|
z

`
f (t) dt.

Using (20), we have b:(F(z); z)= f (z)& f (z)=0 for all z. Thus, F(z)#
F(z0)=0 by (21) and the result follows. K

We look now more closely at formula (30). We will deduce it from a
general version of the integration by parts formula.
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Theorem 3.1. The following formula holds:

:|
z

z0

f (t) b:( g(t); t) dt

=f (z) g(z)& f (z0) g(z0)&:|
z

z0

b:( f (t); t) g(t) dt

& :
�

m=2

:
m

k=1

ck, m(1, :) :|
z

z0

b (k)
: ( f (t); t) b (m&k)

: ( g(t); t) dt. (107)

Proof. For n=1, the product formula (80) can be written as

b:( f (t) g(t); t)=f (t) b:( g(t); t)+b:( f (t); t) g(t)

+ :
�

m=2

:
m

k=1

ck, m(1, :) b (k)
: ( f (t); t) b (m&k)

: ( g(t); t). (108)

Formula (107) follows from (19) when an :-integration is performed on
both sides of (108). K

The first :-integral appearing in the right-hand member of formula (107)
is the case m=1 in the double summation. Written in the way chosed, we
see at once that (107) is a direct generalization of the classical integration
by parts formula since ck, m(1, 1

2)=0 for m�2, 1�k�m. It has also the
appropriate form for an immediate application.

A limited version of the general expansion (64) is obtainable from (65)
when Gn(w)=(`(w))n, with |`(w)|<1 on 1. Then we have

f (z)= :
N

m=0

Tn( f ) un(z)+|
1

,(w)
(`(w))N+1

1&`(w)
dw. (109)

In the case (68), the relation (30) is a new form for the remainder. We
replace, in (107), f (t) by 1

n! ,n, :(z&t) and g(t) by b (n)
: ( f (t); t). The applica-

tion of Theorem 3.1 then gives

Rn, :(z0 , z)=&
1
n!

,n, :(z&z0) b (n)
: ( f ; z0)+Rn&1, :(z0 , z)

& :
�

m=2

:
m

k=1

(&1)k

(n&k)!
ck, m(1, :)

_:|
z

z0

,n&k, :(z&t) b (n&k+m)
: ( f (t); t) dt, (110)
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where Rn, :(z0 , z) is defined by (31). The relation (30) is obtained by
simplification of the telescoping series �N

n=1 (Rn, :(z0 , z)&Rn&1, :(z0 , z)).

Remark 3.1. It is clear that (30) holds for any polynomial. For f (z)=z j,
0� j�N, we obtain the relation

:
N

n=1

:
�

m=2

:
m

k=1

(&1)k

(n&k)!
ck, m(1, :) :|

z

z0

,n&k, :(z&t) b (n&k+m)
: (t j ; t) dt#0.

(111)

4. OTHER RESULTS

4.1. The case :=&1
2

The relation [7, p. 313] En(0)= 2
(n+1)

(1&2n+1) Bn+1(0), relating the
values of the Bernoulli and Euler polynomials at x=0, gives at once

b&1�2 ( f (z); z)=4 :
�

k=1

(22k&1)
(2k)!

B2k f (2k&1)(z). (112)

A particularity of the case :=&1
2 is the pair of relations

b (n)
&1�2( f (z); z)= :

�

m=n

(&1)m&n

2m&n \m&1
n&1 + 2mf (z), (113)

2nf (z)= :
�

m=n

1
2m&n \m&1

n&1+ b (m)
&1�2( f (z); z). (114)

That (113) and (114) are equivalent is an immediate consequence of the
combinatorial pair

an= :
�

m=n \
m&1
n&1 + bm , (115)

bn= :
�

m=n

(&1)m&n \m&1
n&1 + am . (116)

Proof of Formula (114)). We may put the (&1
2)-expansion

f (z)= :
�

n=0

1
n!

b (n)
&1�2( f ; z0) ,n, &1�2(z&z0) (117)
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in the context of (64) where we take `(w)=2((ew�2&e&w�2)�(ew�2+e&w�2)),
so that

,n, &1�2(z)=n! un(z)=
d n

d`n \2+`
2&`+

z

} `=0

= :
n

r=1

n!
2n&r \n&1

r&1+\
z
r+ ,

whence

2m,n, &1�2(z)={ :
n

r=m

n! \n&1
r&1+ 1(z+1)

(r&m)! 2n&r 1(z+m+1&r)

0

if m�n,

if m>n,

with, in particular,

2m,n, &1�2(0)={
n!

2n&m \ n&1
m&1+

0

if m�n

if m>n.
(118)

It follows from (117) and (118) that

2mf (z0)= lim
z � z0

:
�

n=m

1
n!

b (n)
&1�2( f ; z0) 2m,n, &1�2(z&z0)

= :
�

n=m

1
2n&m b (n)

&1�2( f ; z0) \ n&1
m&1+ . K

Newton's expansion (14) follows from (113) since, by (117),

f (z)= f (z0)+ :
�

n=1

:
�

m=n

(&1)m&n \m&1
n&1 +

2m&n n!
2mf (z0) ,n, &1�2(z&z0)

= f (z0)+ :
�

n=1

:
n

m=1

(&1)n&m \ n&1
m&1+

2n&m m!
,m, &1�2(z&z0) 2nf (z0)

= f (z0)+ :
�

n=1

2nf (z0) \z&z0

n +
= :

�

n=0

2nf (z0) \z&z0

n + .
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In the above reasoning, the identity

:
n

m=1

(&1)m&n \ n&1
m&1+

2n&m m!
,m, &1�2(z&z0)=\z&z0

n + (119)

has been used. An example of calculation using (113) is

b&1�2 \\ z
k+1++

1
2 \

z
k+ ; z+=\z

k+ (120)

for k=0, 1, 2, ... . Formula (113) permits to give a sense at b&1�2(
1
z ; z). We

have indeed 2m( 1
z)=(&1)m m!�(z(z+1) } } } (z+m))=�m

j=0 ((&1) j+m ( m
j )�

(z+ j)), which gives

b&1�2 \1
z

; z+=&
2
z

&4 :
�

m=1

(&1)m

z+m
, (121)

for z{0, &1, &2, ... .
At this point, several approaches are available to justify (28). One of

them uses the same idea as in the proof of Newton's expansion using (119),
except that the identity

:
n

m=1

(&1)m&n \ n&1
m&1+

2n&m(m+1)!
,m+1, &1�2(z&z0)=\z&z0

n + (2(z&z0)&(n&1))
2(n+1)

(122)

must be used. We choose the following method. Let

G(z) := :
�

k=0

2kf (z0) \z&z0

k+1 ++
1
2

( f (z)& f (z0)).

Using the expansion (14), we can write

G(z)= f (z0)(z&z0)+ :
�

k=1

2kf (z0) \z&z0

k+1 ++
1
2 \

z&z0

k ++ ,
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whence, in view of (120),

b&1�2(G(z); z)= f (z0)+ :
�

k=1

2kf (z0) \z&z0

k +
= :

�

k=0

2kf (z0) \z&z0

k +
= f (z) by (14).

It follows that

G(z)= &1�2|
z

z0

f (t) dt+c,

with c=G(z0)=0. This proves formula (28). A direct calculation using (28) is

&1�2|
z

z0

1
t

dt= :
�

k=0

:
k

j=0

(&1) j+k

z0+ j \k
j +\

z&z0

k+1 ++
1
2 \

1
z

&
1
z0+ . (123)

The right-hand member of (123) is a finite sum when z&z0 is an integer.

4.2. The Stirling's Expansion with Remainder

We examine the coefficients ck, m(n, :) as : � �. From (16) and (81) we
see that

lim
: � �

ck, m(n, :)=
1

k! (m&k)!
2nFk, m \&

n
2+ , (124)

where

Fk, m(z) :=
z1 \z+

k
2+

1 \z+1&
k
2+

}
z1 \z+

(m&k)
2 +

1 \z+1&
(m&k)

2 +
.

Using the �-binomial formula (see (85)) where a=b and a is replaced by
ia, we obtain, with w :=sin( a

2),

(2i)n (2w - 1&w2)n= :
�

m=0

:
m

k=0

ck, m(n, �)(2iw)m, (125)

whence

m!(2i)m :
m

k=0

ck, m(n, �)=22ni n d m

dwm (w - 1&w2)n }w=0

, (126)
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i.e.,

:
m

k=0

ck, m(n, �)={22n&m \
n
2

m&n
2 + if (m&n) is even

(97)

0 if (m&n) is odd.

We will be more precise for n=1, the case to be considered in the
expansion (30).

Lemma 4.1. The coefficients ck, m(1, �), 0�k�m, are all equal to zero
if k{1 or (m&1). Moreover,

c1, m(1, �)=cm&1, m(1, �)={ 1
2m&1 \

1
2

m&1
2 + if m is odd

(128)

0 if m is even.

Proof. The first part of the lemma is obtained by direct computation
using (124); we have

k!(m&k)! ck, m(1, �)=2Fk, m \&
1
2+

=Fk, m \1
2+&Fk, m\&

1
2+

=\1
2+

2 1 \1+
(k&1)

2 + 1 \1+
(m&k&1)

2 +
1 \1&

(k&1)
2 + 1 \1&

(m&k&1)
2 +

&\1
2+

2 1 \(k&1)
2 + 1 \(m&k&1)

2 +
1 \&

(k&1)
2 + 1 \&

(m&k&1)
2 +

=0 if k{1, (m&1) since 1(z+1)=z1(z).
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Formula (128) follows at once from (127) since its left-hand member
then reduced to 2c1, m(1, �). K

Taking into account the above lemma, we deduce the following result.

Corollary 4.1. The Stirling's expansion takes the form

f (z)= :
N

n=0

2nf \z0&
n
2+

(z&z0) 1 \z&z0+
n
2+

n! 1 \z&z0+1&
n
2+

+RN, �(z0 , z)

& :
N

n=1

:
�

k=1

c1, 2k+1(1, �)
(n&1)! �|

z

z0

,n&1, �(z&t) 2n+2kf \t&
(n+2k)

2 + dt

+ :
N

n=1

:
[n�2]

k=1

c2k, 2k+1(1, �)
(n&2k)!

_�|
z

z0

,n&2k, �(z&t) 2n+1f \t&
(n+1)

2 + dt, (129)

where c1, 2k+1(1, �)=c2k, 2k+1(1, �)=(&1)k&1 ( 2k
k )�24k(2k&1).

The particular case N=1 of (129) can be written as

�|
z

z0

(z&t) 22f (t&1) dt= :
�

k=0

(&1)k&1 \2k
k +

24k (2k&1)
(22kf (z&k)&22kf (z0&k))

&\ f \z0+
1
2+& f \z0&

1
2++ (z&z0). (130)

4.3. The Fundamental Quantities d (n)
k, :

We add a remark concerning the form of the coefficients d (n)
k, : defined by

(44). Empirical computations seem to indicate that these quantities can be
written as

d (n)
n+2k, :=

n(n+2k)! (2:&1) PN(k)(:, n)
dk >k

j=1 (:+ j)[k�j] (131)
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for k=1, 2, 3, ..., where dk is an integer depending only on k and PN(k)(:, n)
is a polynomial in : of degree N(1) :=0 and N(k) :=�k&1

j=1 [k�j], k=2,
3, ... . For example, apart the values given in Section 2, we find that

d (n)
n+6, :=

n(n+6)! (2:&1)((3012+1827n+210n2)
+(3080&1911n&665n2) :+(1808&2856n+175n2) :2

+(544&1176n+560n2) :3+(64&168n+140n2) :4)
.

23224320(:+1)3 (:+2)(:+3)

The integers dk grow very rapidly, as is seen with the calculations d1=48,
d2=23,040, d3=23,224,320, d4=22,295,347,200, d5=11,771,943,321,600,
etc.

In this context, the recurrence relation (44) can be written as

d (n)
n+2k, :=&2 :

k

l=0
\ n+2k

n&1+2l+ B2k&2l+1, :d (n&1)
n&1+2l, : . (132)

Using repeatedly this relation, we obtain

d (n)
n+2k, :

(n+2k)!
=(&2)n :

l0

l1=0

:
l1

l2=0

} } } :
ln&2

ln&1=0

`
n

j=1 \
B2(lj&1&lj )+1, :

(2(lj&1&lj )+1)!+ , (133)

where l0 :=k and ln :=0.

4.4. Special Quantities

The limiting case : � 1
2 has a special character (we would also consider

: � &1, &2, ...). Looking at a general pattern which occurs in our context,
we may be interested to study quantities as lim: � 1�2((Bn, :(z)&Bn(z))�
(:&1�2)), lim: � 1�2((b:( f ; z)& f $(z))�(:&1�2)), lim: � 1�2(d (n)

n+2k, :�(:&1�2)),
etc. (and similar limits as : � &1, &2, ...). More generally, we may want to
consider such quantities as

lim
: � ;

Bn, :(z)&Bn, ;(z)
:&;

=: Bn, ;, 2(z)

(the ;-Bernoulli polynomials of the second kind),

lim
: � ;

b (n)
: ( f ; z)&b (n)

; ( f ; z)
:&;

=: b (n)
;, 2( f ; z)
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(the ;-derivative of the second kind),

lim
: � ;

b (n)
:, 2( f ; z)&b (n)

;, 2( f ; z)

:&;
=: b (n)

;, 3( f ; z)

(the ;-derivative of the third kind), etc. For examples, we have B2, :, 2(z)=
1�8(:+1)2, B3, :, 2(z)=3(2z&1)�16(:+1)2, B4, 1�2, 3(z)=(&49+1000z&
1000z2) �2250, b:, 2( f ; z) = (1 �16(:+1)2) f $$$(z) + ((4:3+14:2&:&23)�
1536 (: + 1)3 (: + 2)2) f (v) (z) + } } } , b1 � 2, 3 ( f ; z) = &(1 � 27) f $$$ (z) +
(353�162000) f (v)(z)&(18197�222264000) f (vii)(z)+ } } } , etc.

A situation where some kind of symmetry seems to happen is for the
polynomials

�n(z) := lim
: � 1�2

zn&,n, :(z)
:&1�2

. (134)

We have �0(z)=�1(z)=�2(z)=0, �3(z)=z�6, �4(z)=2z2�3, �5(z)=
(z�180)(300z2&13), �6(z)=(z2�30)(100z2&13), �7(z)=(z�1260)(7350z4&
1911z2+94), �8(z)=(2z2�315)(1470z4&637z2+94); these calculations and
others indicate a possible relation of the form

�2m(z)=c2mz2Pm&2(z2), m=2, 3, ..., (135)

�2m+1(z)=d2m+1 zQm&1(z2), m=1, 2, ..., (136)

where c2m=2m d2m&1 , m=2, 3, ..., and

|
z

0
Qm(t2) dt=zPm(z2), (137)

for m=0, 1, 2, ... .
Another situation is for the quantities

#(k, m, 1) := lim
: � 1�2

ck, m(1, :)
:&1�2

, (138)

where 1�k�m. We have #(k, m, 1)=0 for m=2, 4, 6, ... . Letting #(m) :=
#(1, m, 1), we find that #(3)= 1

12 , #(5)=& 13
4320 with #(2, 5, 1)=2#(5), #(7)

= 47
453600 with #(2, 7, 1)=3#(7) and #(3, 7, 1)=5#(7), #(9)=& 1703

508032000 with
#(2, 9, 1) = 4#(9), #(3, 9, 1) = 28

3 #(9) and #(4, 9, 1) = 14#(9), #(11) =
7817

75442752000 with #(2, 11, 1) = 5#(11), #(3, 11, 1) = 15#(11), #(4, 11, 1) =
30#(11) and #(5, 11, 1)=42#(11).
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4.5. The Universal Character of the Exponential Function

If f (z) is an :-analytic function such that b:( f ; z)#f (z) then we have
b(n)

: ( f ; z)#f (z) for n=0, 1, 2, ..., whence

f (z)= :
�

n=0

b (n)
: ( f ; z0)

n!
,n, :(z&z0)

= f (z0) :
�

n=0

1
n!

,n, :(z&z0).

Let

e:(z) := :
�

n=0

1
n!

,n, :(z) (139)

if the series converges. A simple expression is sometimes available for e:(z).
Consider the expansion (see (57))

ecz= :
�

n=0

1
n! \

ec�2&e&c�2

g: \i
c
2+ +

n

,n, :(z), (140)

which is valid for all z if |c| is sufficiently small. Assume that the equation
ec�2&e&c�2= g:(i c

2) has a solution c=w: (numerical calculations indicate
that a solution 0<w:<1 seems to exist at least for positive values of :).
If the expansion (140) is valid for the value c=w: then we see that

e:(z)=ew:z. (141)

For instances, we have e1�2(z)=ez, e�(z)=((- 5+1)�2)2z, and e&1�2(z)=3z.

4.5.1. A Representation for Bessel Functions. We take z0=&1
2 and z= 1

2

in (106). The resulting formula holds for small |c|. Replacing c by the new
variable 2iz gives the following result.

Proposition 4.1. Let z be a complex number such that |z| is sufficiently
small. We have the representation

J:(z)
z: =

1
2:1(:+1) :|

1�2

&1�2
e2izt dt. (142)
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For := 1
2 a cancellation occurs during the proof of (142) and the formula

is of course valid for all complex numbers z:

sin(z)
z

=|
1�2

&1�2
e2izt dt. (143)

The case :=&1
2 , namely

cos(z)= &1�2|
1�2

&1�2
e2izt dt, (144)

is an immediate consequence of (28). The limiting case : � � gives a
relation which is readily seen to be equivalent to a binomial formula:

- 1&u=1& :
�

k=1

\2k
k + uk

22k(2k&1)
, 0�u�1. (145)

4.5.2. A Generalized Orthogonality Property. The orthogonality of the
set of functions [e2n?it : n # Z], on the interval (0, 1), is equivalent to the
relation

|
1

0
e2k?it dt={0,

1,
k # Z, k{0
k=0.

(146)

Let c=(2k?i�(z&z0) in (106), k{0 an integer, where z&z0 { k
l for an

integer l. Then the numerator in the right-hand member of (106) vanishes
and the denominator does not. We mention the

Proposition 4.2. Let z0 , z be complex numbers and k be an integer such
that 0<|k|�c(:) |z&z0 | for some sufficiently small positive constant c(:).
Then we have

:|
z

z0

e2k?it�z&z0 dt=0. (147)

5. FINAL REMARKS

A basic idea in order to obtain concrete applications of the :-calculus
could be to write first the classical formulas in the :-extended form. Then
a typical situation is that we can isolate a factor (:& 1

2) (or (:&;)) and
after suitable passages to the limits as : � 1

2 (or : � ;) we get new formulas
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which are hoped to be useful. We illustrate the kind of procedure that may
be followed with an example. For {<2 min( | j1(:)|, | j1(;)| ), formula (2)
implies that

:
�

k=0

(Bk, ;&Bk, :)

k!
( f (k)(1)&(&1)k f (k)(0))=0. (148)

Dividing both sides of (148) by (;&:) and letting ; � :, we obtain

:
�

k=0

Bk, :, 2

k!
( f (k)(1)&(&1)k f (k)(0)=0. (149)

The relation (149) is also valid for any polynomial. For f (z)=z j, j=2l+1,
we obtain the recurrence relation

B2l+1, :, 2=&
1
2

:
2l

k=0
\2l+1

k + Bk, :, 2 (150)

for l=0, 1, 2, ... .
We wish also to consider the apparent possibility to define a more general

operator than b:( ; z). Let

b:(x; f ; z) := :
�

k=0

(Bk, :(x+1)&Bk, :(x))
k!

f (k)(z), (151)

so that b:( f ; z)=b:(0; f ; z). Denote the right-hand member of (151) by F(x).
We have F (l)(0)=b:( f (l) ; z) and thus

F(x)= :
�

l=0

F (l)(0)
l!

xl

= :
�

l=0

b:( f (l) ; z)
l !

xl

=b: \ :
�

l=0

f (l)(z)
l !

xl ; z+
=b:( f (x+z); z),

i.e.,

b:(x; f ; z)=b:( f (`); `=x+z). (152)

Other elements of interest of the :-calculus are first the possibility to define
consistently the double :-integral. An elementary geometric construction
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permits also to define correctly the curvilinear :-integral. A generalized
version of Green�Riemann Theorem is then available:

:�
C

F(u, v) du+G(u, v) dv

=:| :|
D

(b:(G(u, v); u)&b:(F(u, v); v)) du dv. (153)

The complex :-calculus appears in a natural way. An :-extension of Cauchy
Theorem,

�
C

f (z) dz=0, (154)

can be proved in the appropriate context. These points will be the main
purpose of a subsequent paper.
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