
Divide-and-Conquer Neighbor-Joining
Algorithm: 0{N^) Neighbor-Joining on Additive

Distance Matrices

CHAN, Ho Fai

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Mathematics

(g) The Chinese University of Hong Kong

September 2008

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in this thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

广 統 系 傲 t 回 N ^ �

•(T7W)考
UNIVERSITY / M J J

SYSTEM

Thesis/Assessment Committee

Prof. Thomas K.K. AU (Chairperson)

Prof. Raymond H.F. CHAN (Thesis supervisor)

Prof. Jun ZOU (Committee member)

Prof. Michael K.P. NG (External Examiner)

Divide-and-Conquer Neighbor-Joining ‘ 1

Abstract

An evolutionary history of a set of species can be visualized by phylogenetic trees.

After giving pairwise distances between the species in the form of a distance

matrix, Neighbor-Joining (NJ) is a well-known greedy algorithm that constructs

such a tree with branch lengths. Owing to its speed and accuracy, NJ has been

widely used by the phylogeny community.

In the thesis, we explore the properties of binary trees, where a binary tree

is the mathematical model of a phylogenetic tree. We also prove a necessary

and sufficient condition for neighbor pairs on a binary tree given the distance

matrix corresponding to this tree. Based on these, we propose an algorithm of

NJ on additive matrices using the idea of divide-and-conquer. Our experiments

on the additive matrices outperforms the current algorithms of NJ implemented

in MEGA and PHYLIP.

Divide-and-Conquer Neighbor-Joining ‘ 2

摘 要

生物的演化歷史可用親緣樹(phylogenetic tree)來圖象化。

鄰近連接法(Neighbor-Joining，NJ)是一個著名的貪婪算法

(greedy algorithm)。它可找出一親緣樹來表示一些生物間之

互相距離，這些距離通常會用距離矩陣（distance matrix)的

形式來儲存。由於NJ的速度及準確度，它已被親緣分析者廣泛

使用。

本文會研究親緣樹之數學模型——二分樹(Binary Tree)。我

們也會證出一個充要條件去用對應於一棵二分樹之距離矩陣去

找出它所有的鄰對(neighbor pairs)。基於這些結果，我們

會對NJ提出一個有分治理念(divide-and-conquer)的新算法并

將其應用在相離矩陣(additive matrix)。在對於相離矩陣之

貴驗中，這個新算法的速度比知名軟件MEGA、PHYLIF中的NJ算

法更快。

Divide-and-Conquer Neighbor-Joining ‘ 3

ACKNOWLEDGMENTS

The completion of a thesis is never easy. I would like to express my thanks

to Prof. Raymond H.F. Chan, his patience, always-listening, professorship and

professionship has great influence in my personal philosophy and my ways of

thinking.

I am very whole-heartedly grateful to my parents, whom have been unreserv-

ingly supportive and caring. I also wish to give my thanks to Ms. Kitty H.K.

Chan, Ms. Kaman K.M. Chu for their sweetness, and also other family members

for their supports. A few of my very best friends are also worth to mention as

they have been very important to my growth: Mr. Wai-yip Leung, Mr. Lawrence

K.T. Leung, Mr. Chris T.K. Wong. Last but not least, I have to thank my

colleagues under the same big umbrella: Mr. Jian-feng Cai, Mr. Daniel K.T.

Cheng, Ms. Yi-qiu Dong, Mr. Eric S.H. Lau, Ms. Hai-xia Liang, Mr. Wei Wang,

Mr. Jesse Z.X. Wang.

Contents

1 Introduction 5

2 Current methods on Neighbor-Joining 9
2.1 Introduction to graph theory 9
2.2 General discussion on visualizing distance matrices

by binary trees 18
2.3 Original Neighbor-Joining algorithm 21
2.4 Speedup of NJ 22

2.4.1 NJ for arbitrary distance matrices . . . 23
2.4.2 oIn'^) NJ on additive matrices 23

3 Finding neighbor pairs 25
3.1 Properties of Binary trees 25
3.2 Similar rows: finding all neighbor pairs in additive

matrices 28

4 Divide-and-Conquer Neighbor-Joining 35
4.1 DCNJ Algorithm 36
4.2 Theories of DCNJ on additive matrices: Correctness

and Complexity 44

5 Experimental Results 56

6 Conclusions 58

4

Chapter 1

Introduction

The phylogenetic reconstruction problem is to determine evolutionary relation-

ships from biological data. Usually, relationships between different organisms can

be found by using external characteristics of a species, or, by the DNA sequences

of a species. The overall relationship can be visualized using a tree, where the tips

of the tree represent the current species and the internal nodes represent common

ancestors of those descendants. The distance between any two species in the tree

represents their level of dissimilarity. Phylogenetics itself is an important branch

in biology, and also it has important applications such as classifying unknown

species, for example, in the quick design of influenza vaccines when there is an

outbreak.

Phylogenetics treats each species as a group of lineage-connected objects in

time, where different species are linked by the process of evolution. Evolution

is regarded as a diversifying process, whereby existing species populations are

altered over time: differentiate into separate branches, hybridize together, or ter-

minate by extinction. Therefore a tree model is very suitable in representing this

biological structure. The 'Tree of Life' model (Figure 1.1) is believed within the

biologist community and it follows the underlying principle of the 'Evolutionary

Theory' proposed by Darwin. Both of them postulates that all different species

existed on Earth have a common ancestor. Figure 1.2 is an example of a phy-

5

Divide-and-Conquer Neighbor-Joining ‘ 6

BAaew/T^ I a j _ p T A

All life on Earth
is related, and
can be
represented 八
in a single tree,

ARCHAEA

Figure 1.1: The Tree of Life model.

logenetic tree appeared in [2]. For a detailed introduction on phylogeny, readers

may refer to [10].

Over the past several decades, many methods in constructing phylogenetic

trees have been proposed: Maximum Parsimony (Minimum Evolution) [7], Maxi-

mum Likelihood [5], Neighbor-Joining (NJ) [11], Unweighted Pair-Group Method

using Arithmetic mean (UPGMA) [13]. Besides representing biological distances

using trees, several other methods used other structures such as networks, for

example, Splitstree [9], Quartnet [8]. Several computer programmes are available

to draw the phylogenetic trees using NJ or other methods, a few to mention are

MEGA [16], PHYLIP [6], PAUP [15], Splitstree [9].

The famous Neighbor-Joining algorithm was proposed by Saitou and Nei [11],

and was improved to 0{N^) by Studier and Keppler [14], where N is the num-

ber of taxa. After given the pairwise biological distances between the interested

species, the algorithm outputs a tree with branch lengths representing the dis-

similarity between connected nodes. Besides NJ, there are other neighbor-joining

Divide-and-Conquer Neighbor-Joining 7

f

I Homarus americanus
‘ Homarus gammarus

I — ^ ― — “ Nephrops norvegicus
I Thaumastocheles dochmiodon
‘ Thaumastocheles japonicus

I Eunephrops cadenasi

‘ Eunephrops manningi
I Nephropides caribaeus

‘ Thymopides grobovi

Metanephrops rubellus

Metanephrops thomsoni

Nephropsis serrata

Nephropsis stewarti

‘ Acanthacaris tenuimana

Neoglyphea inopinata

— * Enoplometopus crosnieri

‘ ― — Enoplometopus occidentalis

Enoplometopus daumi

Enoplometopus debulius

1 1
10

Figure 1.2: A phylogenetic tree of Nephropidae appeared in [2' •

(I

Divide-and-Conquer Neighbor-Joining ‘ 8

methods, such as, ADDTREE [12], Fast Neighbor-Joining (FNJ) [3], Relaxed

Neighbor-Joining (RNJ) [4].

In the thesis, we develop a new algorithm named Divide-and-Conquer Neighbor-

Joining (DCNJ) for additive matrices on implementing NJ. Although Waterman

et al. [17] has already proposed an 0{N'^) algorithm on implementing NJ on

additive matrices, that algorithm cannot be applied to non-additive matrices. It

is mentioned in Atteson [1] that the number of additive matrices is too small

compared to the non-additive ones. Therefore the standard complexity in NJ

now is still Although our algorithm has the complexity of and

is only applicable to additive matrices now, it can be further developed to apply

to non-additive matrices. Moreover, this algorithm is based on a new idea on

implementing NJ — divide-and-conquer.

The next chapter includes an introduction to graph theory, the NJ algorithm,

the algorithm of Studier and Keppler, and the algorithm of Waterman. Chap-

ter 3 discusses in details the properties of binary trees and the necessary and

sufficient condition for finding neighbor pairs in NJ. Chapter 4 describes our al-

gorithm DCNJ and its theories. Chapter 5 shows the experimental results on the

algorithm. The last chapter summarizes our work and discusses about further

research directions.

I

Chapter 2

Current methods on
Neighbor-Joining

In this chapter, an introduction to graph theory will be given first, followed by

a general discussion on visualizing distance matrices. Then we introduce the

original Neighbor-Joining (NJ) algorithm and its speedup versions proposed by

Studier and Keppler [14], and Waterman et al. [17].

2.1 Introduction to graph theory

To construct a phylogenetic tree visualizing a distance matrix, it is better to

understand the properties of trees first. Hence we briefly recall several results in

graph theory related to trees. For further references, see [18].

Definition 2.1 (graph, vertex, edge). A graph G is a collection of vertices (nodes)

and a collection of edges (lines) that connect pairs of vertices. Usually, we use

V £ G to say that v is a vertex in G.

Definition 2.2 (subgraph). A graph S is a subgraph of G if all the vertices and

edges in S appears in G.

Definition 2.3 (adjacent vertex, vertex degree). Two vertices are adjacent if

there exists an edge between them. The degree of a vertex v, deg(i'), is defined as

the number of vertices adjacent to it

9

Divide-and-Conquer Neighbor-Joining ‘ 10

Definition 2.4 (end-vertex, internal vertex). In a tree T, a vertex with degree 1

is called an end-vertex. We call a vertex on T an internal vertex if this vertex is

not an end-vertex.

Definition 2.5 (path). A path is a finite collection of vertices and edges alterna-

tively: {？;0, ei,！‘!, 62, • • • , ^K^vpc}, where e^ connects exactly the vertices Vi-i and

Vi. A path for vertices i,j，denoted by Pij, is a path such that vq = i, Vk = j-

Definition 2.6 (connected, disconnected). A graph is connected if there exists

at least one path between any two vertices. A graph is disconnected if it is not

connected.

Definition 2.7 (weighted graph). A graph G is a weighted graph if there is a

positive number associated with each edge. The weight (or length) of the edge is

denoted by w{e) (or 1(e)).

Figure 2.1 is an example of a weighted graph.

2 3 6

\ 丨 /

\ L y
/ 丨 \
1 4 5

Figure 2.1: A graph with branch lengths.

Definition 2.8 (path length). Let P ••= {vo,ei,Vi,e2, •.. , be a path in a

weighted graph G. The length of the path P, denoted by 1{P), is Xljli K^i)-

Divide-and-Conquer Neighbor-Joining ‘ 11

Proposition 2.1 (Handshaking Lemma). In a graph G, the total sum of vertex

degrees is equal to two times the number of edges, i. e.

[d e g � = 2 x 阅， （2.1)
veG

where \E\ is the number of edges in G.

Proof. Since for each edge joining a pair of vertices, the total sum of vertex degree

will be increased by two. Hence, X^vecdegW = 2 x \E\. •

Definition 2.9 (tree). A tree is a connected graph such that any pair of vertices

are connected by a unique path.

Definition 2.10 (distance between vertices). If u,v are vertices in a connected

tree T, then the distance between u,v in T is defined as:

distT[u,D) := l{Pu,v)-

Proposition 2.2 ([18] Theorem 9.1). A tree T with M vertices has M - 1 edges.

Definition 2.11 (binary tree). A tree T is called a binary tree if all vertex degrees

are either one or three.

Figure 2.2 is an example of (unweighted) binary tree, with 13 edges and 14

vertices: 8 end-vertices and 6 internal vertices. In the thesis, a binary tree will

always mean a weighted binary tree (see Figure 2.1) with end-vertices labeled

1，. • •，iV，with N > 4： unless otherwise stated.

Definition 2.12 (neighbor pair). In a binary tree T, two distinct end-vertices i,j

form a neighbor pair, denoted by i � j , if the path Pij contains only two edges.

For example in Figure 2.2, 1 ~ 2,5 ~ 6 and 7 � 8 .

Usually, we view a binary tree as a composition of branch lengths and topology.

Divide-and-Conquer Neighbor-Joining ‘ 12

4 ‘ >——16

•
5

Figure 2.2: A binary tree with 13 edges (line) and 14 vertices: 8 end-vertices
(square nodes) and 6 internal vertices (circle nodes).

Definition 2.13 (topology of binary tree). Given a binary tree T, we can compute

a topology of T, denoted by T, by joining neighbor pairs step-by-step. Precisely,

in each step, if we have a ~ b，then a, b are removed from T. Now the vertex

adjacent to both a and b becomes a new end-vertex and is named a � b or simply

a.

For example, given the binary tree in Figure 2.2, we can find a topology of

the tree by joining neighbor pairs step-by-step:

1. 1 ~ 2, and renamed as 1，see Figure 2.3,

2. (1 � 2) � 3 or simply 1 � 3，a n d then renamed as 1,

3. 5 � 6 , and renamed as 5，

4. 4 � （ 5 � 6) or simply 4 � 5，a n d then renamed as 4

5. ((1 � 2) � 3) � （ 4 � （ 5 � 6)) or simply 1 � 4 , and then renamed as 1,

6. ((1 � 2) � 3) � （ 4 � （ 5 � 6)) � 7 or simply 1 � 7 , and then renamed as 1，

see Figure 2.5，

7. (((1 � 2) � 3) � (4 � （ 5 � 6)) � 7) � 8 or simply 1 � 8 .

Divide-and-Conquer Neighbor-Joining ‘ 13

Therefore a topology of T is:

= [1 � 2 ’ 1 � 3 ’ 5 � 6 ’ 4 � 5 ’ 1 � 4 ’ 1 � 7 ’ 1 � 8] . (2.2)

We have several important points to note:

1. If the end-vertices 1 and 2 form a neighbor pair, we always write 1 ~ 2

instead of 2 � 1 for consistency.

2. The bracket (•) is necessary, e.g. (((1 ~ 2) � 3) � 4) ~ 5 T ^ I ~ 2) ~

((3 � 4) � 5) .

3. Although 7 and 8 form a neighbor pair in T, 7 ~ 8 never appeared in 7[.

Actually it is hidden among 1 ~ 7, 1 ~ 8.

4. As we can have more than one neighbor pairs to choose in some steps, we

can construct another topology of T, e.g.

r2 = [5 � 6， 1 � 2 ’ 7 � 8 ’ 1 � 3，1 � 7，1 � 4 ’ 1 � 5] . (2.3)

5. In the second last step (Figure 2.5), we are left with three end-vertices and

any two of them can form a neighbor pair.

Given a topology of a binary tree, we can reconstruct the shape of the binary

tree (i.e. the binary tree with branch lengths missing). For example, given the

topology Ti in (2.2) of a binary T, we can construct the shape of T by joining

the end-vertices according to the order of the neighbor-pairs on T . First, we join

2 to 1 in Figure 2.7 to form Figure 2.8. Second, we join 3 to 1(= 1 � 2) forming

Figure 2.9. Third, we join 6 to 5 forming Figure 2.10, and etc. At last, we join 8

to 14 in Figure 2.11 to recover the shape of the binary tree T, which has already-

been shown in Figure 2.2. 丨

*

Divide-and-Conquer Neighbor-Joining ‘ 14

3 8

1 〜 2 丄

4 ‘ >——MQ

m
5

Figure 2.3: The end-vertices 1,2 are joined together to form 1 ~ 2.

4

(1 � 2) � 3 /

4 ‘ >——HG

•
5

Figure 2.4: After joining 1,2 to form 1 � 2 , it continues to form pair with 3.

Divide-and-Conquer Neighbor-Joining ‘ 15

V
((1〜2)〜3)〜（4〜（5〜6)) •——

Figure 2.5: Only three end-vertices are left, any two end-vertices form a neighbor
pair.

z
(((1〜 2)〜 3)〜 (4〜 (5〜 6)))� 1 ‘

Figure 2.6: Finally, we join the last pair.

Divide-and-Conquer Neighbor-Joining ‘ 16

3

1_ • 18

2"
4_ " 6

•
5

Figure 2.7: We begin with a graph with no edges.

3
iW^ • " 8

/
4_ " 6

•
5

Figure 2.8: Joining 2 to 1 in Figure 2.7.

2* 職7

4_ " 6

•
5

Figure 2.9: Joining 3 to 1 in Figure 2.8.

Divide-and-Conquer Neighbor-Joining ‘ 17

2m m7

4B 5 f — — " 6

•
§

Figure 2.10: Joining 6 to 5 in Figure 2.9.

—̂—
•

Figure 2.11: Only 1 and 8 remain unjoined, and therefore we join 8 to 1.

Divide-and-Conquer Neighbor-Joining ‘ 18

2.2 General discussion on visualizing distance
matrices by binary trees

Pairwise biological distance data are given in the form of a matrix, usually abbre-

viated by D, where the entry Dij is the dissimilarity between taxa Since D

is representing biological distances, it is called a distance matrix and is assumed

certain properties:

Definition 2.14 (distance matrix). A matrix D is a distance matrix if:

1. The matrix D is symmetric, i.e. Dij = Dji for all

2. The diagonal entries of D are zero, i.e. Da = 0 for all i.

3. The non-diagonal entries of D are positive, i.e. Dij > 0 for all i +

The neighbor-joining algorithms or other representations are trying to 'visu-

alize' the distance matrix, for example using a binary tree. Hence, scientists can

make judgements or get insights by viewing a graph instead of a matrix.

Definition 2.15 (visualize). Let D be a distance matrix of size N x N. A binary

tree T with end-vertices labeled 1，• • • , N is said to visualize D if

KPid) = Dij,

for all i, j = 1，... iV.

For example, the following matrix D,

/ O 5 13 14 24 25\
5 0 12 13 23 24
13 12 0 3 13 14
14 13 3 0 12 13 '
24 23 13 12 0 5

\25 24 14 13 5 0 /

Divide-and-Conquer Neighbor-Joining ‘ 19

is visualized by the binary tree in Figure 2.1. We can easily check that D is a

distance matrix.

Given a tree we can always construct a distance matrix D corresponding to

T, i.e. for all z, j = 1, • • • , N,

Dij ：= l(Pi,j). (2.4)

The fundamental questions about visualizing distance matrices will be —

correctness and feasibility (i.e. do-able):

1. Can we know if a binary tree T is correctly visualizing a distance matrix?

2. Can all the distance matrices be visualized correctly using binary trees?

To answer the first question, we compute the distance matrix D from the

binary tree T using (2.4), and then compare D with the given distance matrix D.

The answer to the second question is negative, as we can show that the fol-

lowing distance matrix cannot be visualized by any binary trees:

/ O 7 12 9\
7 0 9 14
12 9 0 7 •

\ 9 14 7 0

To see that, we note that since there are only four end-vertices, the binary tree

has a unique topology (Figure 2.12). For instance if we set [i, j , fc, /] = [1,2,3,4],

then we have to solve the following for a, b, c, d, e:

’ a + b = Di2,
a + e + c = D i 3 ,
a + e + d = D i 4 ,
6 + e + c = D23，

b + e + d == D24,
� c + d = D34.

Here we have (a + e + c) + (6 + e + d) = D13 + L>24 = 26 — 18 = Du + D23 =

(a + e + d) + (6+e+c) ’ but the leftmost term equals the rightmost term! Therefore

Divide-and-Conquer Neighbor-Joining ‘ 20

the system of equations has no solution. That means no binary tree with these

end-vertex labels can visualize D. Similarly we find that the remaining cases

[1,3,2,4] and [1,4,2,3] have no solution.

a c

Figure 2.12: The only topology for binary trees having four end-vertices.

Though the answer to the second question is negative, we have a condition to

check if a matrix is visualizable — 'Additive matrix'.

Definition 2.16 (additive matrix). A distance matrix D is additive or is called

an additive matrix, if for all distinct i,j,k,l，we have

Dij + Dki < max{Ai + Djk, Afc + Dji}. (2.5)

The following theorem relates additive matrices and visualization.

Theorem 2.3 (Visualization of additive matrices, [17] Theorem 1). Given an

additive matrix D, there exists a unique binary tree T that visualizes D.

Proposition 2.4. If T is a binary tree, and D is the distance matrix computed

from T, then D is additive.

Proof. Since every four points of T must have the topology like Figure 2.12, the

additive condition must be satisfied for any 4-tuples from D. •

Proposition 2.5. A square submatrix of an additive matrix D is additive.

Proof. It is automatic by definition, as the indices in the submatrix is a subset

of D. •

Divide-and-Conquer Neighbor-Joining ‘ 21

As now we know only some distance matrices D can be visualized, how can

we represent the non-additive ones visually? Naturally, there are two ways. The

first is to search for a binary tree T, such that the corresponding distance matrix

is 'near' to D. Another is to use structures other than binary trees to visualize

D, for example, networks [8], [9].

2.3 Original Neighbor-Joining algorithm ,

Neighbor joining (NJ) [11] is an algorithm that computes the topology and branch

lengths of a binary tree T after given a distance matrix D. In NJ, the topology

of the tree T, denoted by T , is found by:

1. Given a distance matrix D, define T = 0’ iV :=size of D, indx=[l, 2，• • •，iV].

2. For each pair of taxa compute the (z, j)-th entry of the matrix Wpjj

from D:

… “ � ： 二 ^！；^+，臺如Ji,严"（2.6)
3. For all i, WMj{i,i) '•= oo.

4. Find a^p such that WJVJ(Q；, p) is a minimum entry of Wpjj.
\

5. For all /c, set Dak •= {Dak + D灿) /2 and Dka := D^k-

6. Remove the /3-th row and column from D, remove the /3-th entry from indx.

7. N ..= N -1.

8. T := [T,indx{a)�

9. If iV > 3, repeat from Step 2.

10. Else T := [T,indx(l)�incb(2)’<rida:(l)�incte(3)].

Divide-and-Conquer Neighbor-Joining ‘ 22

After finding the topology of T, the branch lengths of T can be estimated by

the formula mentioned in [7]. If the end-vertices a,j3 are joined in the topology

T , then /(Cq), Z(e卢）can be estimated by:

l{ea) = (2.7)

Z(e") = + D^z - D^z). (2.8)

where D^z = E^a.^^afc/CiV — 2).

Theorem 2.6 (Correctness of NJ on additive matrices [11] P.411-412). Let T be

a binary tree with N end-vertices, and D be the additive matrix corresponding to

T. Then the binary tree computed from D by NJ equals T.

We now give the complexity of NJ. The computation of each Wjvj(i,j) in (2.6)

needs operations. Since there are 0[N"^�entries in W^j, we need

operations to compute W^j. After that O^N"̂) is needed to find the argmin of

Wnj- Finally we have to repeat the above steps 0{N) times to join the N end-

vertices. Thus the NJ algorithm has an overall complexity of O(N^). Hence, it

is quite slow.

2.4 Speedup of NJ

There are algorithms to implement NJ faster: O(N^) for arbitrary distance ma-

trices and 0(N'^) for additive matrices.

Divide-and-Conquer Neighbor-Joining ‘ 23

2.4.1 0{N^) NJ for arbitrary distance matrices

Studier and Keppler [14] spotted that the complexity of NJ can be significantly

reduced to 0 {N^) from To see that, they rewrite (2.6):

= (2 . 9)

where Si := Y!k=\ Dik and S := J2i<i<j<N ^iy As only the argmin of W^j is

concerned in Step 4 of the NJ algorithm, the computation of S in (2.9) becomes

unnecessary. Therefore the formula of Wjvj in (2.6) can be replaced by Wsk in

[14]：

WsK^HJ) •= {N - 2)DIJ - S i - Sj. (2.10)

As Wsk = 2[N - 2)Wnj — 2S, we can see W^J and Wsk have identical argmin.

Thus the replacement of W ^ j by Wsk will not affect the outcome of NJ.

We now analyze the complexity of this approach. The computation of all

S I , where i = 1广.，N needs 0{N^). Therefore the computation of Wsk takes

and finding the argmin needs Since there are 0(N) steps to do,

the overall complexity becomes which is a huge speedup.

2.4.2 0{N^) NJ on additive matrices

On additive matrices, the complexity of NJ is reduced to by the algorithm

of Waterman et al. [17]:

1. Pick any two end-vertices and construct the unique binary tree T (actually

a line).

Divide-and-Conquer Neighbor-Joining ‘ 24

2. While there are end-vertices not added to T:

(a) Pick a remaining end-vertex k ^T and two end-vertices i,j e T.

(b) Form the unique binary tree T' visualizing the distances among k.

(c) If the internal vertex in T' does not coincide with any internal vertices

lying in the path Pij in T, k has been properly added to T.

(d) Else select another end-vertex in T not tested before to replace j and

repeat from Step 2b.

Theorem 2.7 (Correctness of Waterman's algorithm on additive matrices [17]

Theorem 2). Let T be a binary tree with N end-vertices, and D be the additive

matrix corresponding to T. Then the binary tree computed from D by Waterman's

algorithm equals T.

Since at each step, we have at most N end-vertices to test, the complexity of

the algorithm is in total 0{N'^).

Although this algorithm is an 0(N'^) algorithm on implementing NJ on ad-

ditive matrices, it cannot be applied to non-additive matrices. It is mentioned

in Atteson [1] that the number of additive matrices is too small compared to the

non-additive ones. Therefore the standard complexity in NJ now is still O(N^).

Although our algorithm, the DCNJ algorithm, has the complexity of O(N^) and

only applicable to additive matrices now, it can be further developed to apply

to non-additive matrices. Moreover, this algorithm is based on a new philosophy

on implementing NJ — decoupling the computation of Wsk (2.10). The further

application of the philosophy may speed up NJ to log N).

Chapter 3

Finding neighbor pairs

In this chapter, we investigate the properties of binary trees. Moreover, we pro-

pose and prove the equivalent condition on the branch length matrix Wsk for

finding neighbor pairs, where Wsk is defined by (2.10). For simplicity, we use W

to denote Wsk onwards.

3.1 Properties of Binary trees

In Neighbor-Joining (NJ) or other neighbor-joining methods, phylogenetic infor-

mation in a distance matrix is represented by a binary tree. Therefore, we first

understand the properties of binary trees, especially their internal vertices. Recall

that all internal vertices in a binary tree have exactly degree three by definition.

Proposition 3.1. Given a binary tree T with N >4： end-vertices, we have

1. T has N — 2 internal vertices;

2. T has 2N -2 vertices;

3. T has 2N -3 edges.

Proof. Suppose there are I internal vertices in T. By Proposition 2.2, there are

25

4

Divide-and-Conquer Neighbor-Joining ‘ 26

N + I — 1 edges. Using the handshaking lemma, the sum of vertex degrees is:

J^deg{v) = 2(N + I-l). (3.1)

veT

On the other hand, we have N vertices of degree 1 and I vertices of degree 3.

Therefore the sum of vertex degrees is

'^deg{v) = N+ 31. (3.2)
V€T

Since (3.1) equals (3.2)，we have I = N-2. Thus there are 2N-2 (= N-\-N-2)

vertices. Hence by Proposition 2.2，we have 2N — 3 (二 iV + / — 1) edges in T. •

Definition 3.1 (parent/link/bridge vertex). In a binary tree T, an internal ver-

tex is a parent/link/bridge vertex, if it is adjacent to 2/1/0 end-vertices (i.e.

1/2/3 internal vertices) respectively. The number of respective vertices are de-

noted by P/L/B.

Note that P + L + B is the number of internal vertices in T if T has at least

four end-vertices, and also two end-vertices form a neighbor pair if and only if

they are adjacent to the same parent vertex. Figure 3.1 gives an example of

parent, link and bridge vertices, where P = 3,L = 2,B = 1.

Proposition 3.2. In a binary tree T with N > A end-vertices, the number of

parent vertices is equal to the number of bridge vertices plus two, i. e.

P = B + 2. (3.3)

Proof. Let T be a binary tree with N > 4 end-vertices. By Proposition 3.1, we

have

P + L + B = N-2. (3.4)

Let Tj be the connected subtree of T containing only the internal vertices and

the edges connecting them. Therefore, T； has N — 2 vertices. By Proposition 2.2,

Divide-and-Conquer Neighbor-Joining ‘ 27

4m ^——16

•
5

Figure 3.1: The vertices in a binary tree are categorized into 4 types: 1) black
square — end-vertex, with degree one; 2) white square — parent vertex, adjacent
to one internal vertex and two taxa; 3) black circle — link vertex, adjacent to
two internal vertices and one taxon; 4) white circle — bridge vertex, adjacent to
internal vertices only.

Tj has N — 3 edges. By the handshaking lemma, sum of vertex degrees in T/

is 2N — 6. On the other hand, as Tj contains internal vertices only, the sum of

vertex degrees in T； is P + 2L + 3J5. Hence

P + 2L + 3 5 = 2iV - 6. (3.5)

Considering 2 x (3.4) - (3.5)，we have P-B = 2, i.e. P = B + 2. •

Proposition 3.3. In a binary tree T with N > 4： end-vertices, the number of

parent vertices is greater than or equal to two, i.e.

P > 2 . (3.6)

Proof. Since the number of bridge vertices in a binary tree is always non-negative,

by Proposition 3.2, the number of parent vertex is greater than or equal to two.

•
Proposition 3.4. If a binary tree T has only two neighbor pairs say 1 � 2 and

3 〜4，then its topology is exactly as shown in Figure 3.2.

Divide-and-Conquer Neighbor-Joining ‘ 28

Proof. We know T has only two parent vertices, hence by Proposition 3.2，we

have no bridge vertices. Therefore the remaining internal vertices must be link

vertices. If the neighbor pairs are 1 � 2 and 3 � 4 ， t h e tree must have the

topology shown in Figure 3.2. •

2 4 « > • • • • •

1 • • • • • • • • • 3

Figure 3.2: A binary tree with two parent vertices must have no bridge vertices.

3.2 Similar rows: finding all neighbor pairs in
additive matrices

In each step of NJ, the matrix W is computed from D using (2.10). Then the

global minimum on W is found and a neighbor pair is joined. By Proposition 3.3,

every binary tree has at least two neighbor pairs. Therefore the number of steps

in NJ can at least be halved by joining two neighbor pairs in every step. In

this section, we describe an equivalent condition, called similar rows, for finding

neighbor pairs using W. In this section, we assume all W are computed from a

given additive matrix D using (2.10)，where D corresponds to a binary tree T.

We first give a definition which will be useful later.

Definition 3.2 (strict local minimum). An entry of a matrix M, denoted by Mij,

is said to be a strict local minimum of M if Mij is simultaneously the row and

the column minimum of M, i.e.

Mij < Mik and Mij < Mkj, V/c + i j . (3.7)

Divide-and-Conquer Neighbor-Joining ‘ 29

It was shown in Saitou and Nei [11] that if form a neighbor pair in T,

then Wij is a strict local minimum of the matrix W. Therefore, the strict local

minimum condition is a necessary condition for neighbor pairs. On the other

hand, Studier and Keppler [14] proved that if (z, j) is an argmin of W, then i and

j must be a neighbor pair in T. Therefore, the argmin is a sufficient condition

for neighbor pairs.

We now show that the strict local minimum condition is not a sufficient con-

dition and the argmin condition is not a necessary condition. Consider the binary

tree shown in Figure 3.3. We can compute Di corresponding to T\:

f 0 2 22 22 11 12\
2 0 22 22 11 12

_ 22 22 0 2 13 12

1 = 22 22 2 0 13 12 •

11 11 13 13 0 3

\12 12 12 12 3 0 /

Hence Wi computed from Di using (2.10) is:

(0 - 1 3 0 —52 - 5 2 - 7 6 - 7 2 \

- 1 3 0 0 - 5 2 - 5 2 - 7 6 - 7 2

... —52 - 5 2 0 -134 - 7 0 - 7 4

购 = - 5 2 - 5 2 - 1 3 4 0 - 7 0 - 7 4 • (3.8)

- 7 6 —76 - 7 0 - 7 0 0 - 9 0
乂 一72 - 7 2 - 7 4 - 7 4 - 9 0 0 /

Since 6) is a strict local minimum on Wi and 5,6 do not form a neighbor

pair in Ti, a strict local minimum is not a sufficient condition for neighbor pairs.

Since Wi (l ,2) is not an minimum entry in W and 1 � 2 in Ti，being an argmin

is not a necessary condition for neighbor pairs.

We now propose the necessary and sufficient condition for two end-vertices to

form a neighbor pair in T.

Definition 3.3 (similar rows). Suppose rrii and rrij are two distinct rows of a

matrix M. They are called similar rows in M, denoted by rrii �rrij, if

Mik = (3.9)

Divide-and-Conquer Neighbor-Joining ‘ 30

2 b . 5 了 了 6 M4

Figure 3.3: The binary tree Ti with 1 � 2 and 3 � 4 but W34 <

For example of the matrix Wi in (3.8), we have Wi � W 2 and W3 � W 4 .

Theorem 3.5 (Necessary and sufficient condition for neighbor pairs). Let T be

a weighted binary tree and D be the additive matrix corresponding to T. Let W

be computed from D using (2.10) and Wi, Wj be two rows ofW. We have

i ~ j in T Wi � W j in W. (3.10)

Proof. WLOG, assume T has N end-vertices. First we have for all k ^

Wik = Wj, {N - 2) Afc -Si-Sk = {N- 2)Djk - Sj - Sk

{N - 2)(Afc - Djk) = Si- Sj

台 D认’ - D j , = (3.11)

5. 一 S-
{ < =) If Wi �Wj.，then we have Dik — Djk 二 ——；^ for all k ^ i,j from (3.11).

iV — 2
Therefore

{Dim - Djm) - {Din " Djn) = 0， Vm，u + i � j . (3.12)

If 2, j are not neighbor pairs, then path Pij contains at least three edges (Fig-

ure 3.4). Therefore the path P := (-Pi,j\{ei, Cj}) + 0 and there must be two other

t a x a a a n d b s u c h t h a t P C Pa,b- Hence, (A a 一 Dja) - (A b — Djb) = 2xl{P) ^ 0 ,

a contradiction to (3.12).

Divide-and-Conquer Neighbor-Joining ‘ 31

(==>)If i � j , then they have a common parent vertex p (Figure 3.5). Since

paths in a tree are unique, the paths Pi�k, Pj,k must pass through p. Hence for all

k + i j ,

Dik - Dj, = - /(P,-fc)

= m . p) + KPp,k)]-m,p) + l{Pp,k)]

=M、P)-M、V)'

Therefore

= E C A . - Dj,)]/(N - 2)
fc=i

={N-2)m,,)-l{Pj,,)]/(N-2)

=KPi,p) - KPj,p)

=Dik _ Djk,

for all k + From (3.11), we have Wj � W j . •

a b
m m

im——ei——4 p ^ ej——mj

Figure 3.4: i, j do not form neighbor pairs.

We know that from Theorem 2.3 that a binary tree is exactly corresponding to

one and only one additive matrix. Also, by Theorem 3.5 we can find the neighbor

pairs in the binary tree T after given the additive matrix D corresponding to

T only. Therefore we can say 'the neighbor pair i ~ j in to mean � j

is a neighbor pair in the binary tree corresponding to D\ We can also say 'the

Divide-and-Conquer Neighbor-Joining ‘ 32

N
> Uk

y-
Figure 3.5: i, j form neighbor pairs.

number of neighbor pairs in an additive matrix D is Q, to mean 'the number of

neighbor pairs in the binary tree corresponding to D is Q\

We use Theorem 3.5 in Algorithm 1 to find all neighbor pairs in an additive

matrix D.

Algorithm 1: Finding Neighbor Pairs.
Input: Additive distance matrix D
Output: Neighbor pairs: ii � j i , i 2 �J.2， . . . ’ where ii < j i , i2 < j'2’.. •

1 Compute W from D using (2.10)
2 Find all strict local minima (3.7) on the upper triangular part of W.
3 For each strict local minima, if similar row condition (3.9) is satisfied, store

z ~ j as a neighbor pair

Note that we make use of the strict local minimum condition (3.7) to reduce

the complexity of Algorithm 1. If we find the neighbor pairs in D by similar

row condition (3.9) only, it takes 0{N^). It is because checking the similar row

condition for each pair of end-vertices takes 0[N) and hence to check every pair

of end-vertices takes x 0{N) = 0{N^).

We now give the complexity of Algorithm 1. First, we compute W(:= Wsk)

(2.10) in Then, we find all the strict local minima in the upper triangular

part of W in 0(N'^). Note that there are at most N strict local minima in the

upper triangular part of W. After that, for each strict local minimum, we test the

similar row condition on it, which takes 0{N). Therefore, testing the similar row

condition for all strict local minima takes at most 0(N'^). Hence, the complexity

of Algorithm 1 is 0{N'^).

Divide-and-Conquer Neighbor-Joining ‘ 33

After knowing the neighbor pairs, how do we make use of it? For example if a

binary tree T has only two neighbor pairs, Algorithm 2 can visualize this special

T. It is possible because we know that the topology is unique from Proposition

3.3.

Algorithm 2: Visualize D having only 2 neighbor pairs.
Input: Additive distance matrix D with 2 neighbor pairs
Output: Topology T of the binary tree visualizing D

1 Find neighbor pairs using Algorithm 1, and assume they are
1 �2’（iV - 1)� iV

2 for /e = 3, • • , iV - 2 do
3 Compute Skel(/c) = (Di^ + Din — � f c) / 2 (see Figure 3.6)
4 end
5 Define Skel(l)=Skel(2)=Skel(iV — l)=:Skel(A^)=oo
6 SortSkel:=Sort Skel in ascending order, and assume

Skel(wi) <Skel(u2) S … 级 e l (_ _ 4)
7 return ：二 [1 � 2， 1 � u i ’ • •.，1 �zi^v—4’ 1 � (A / • — 1)，1 � i V]

The graphical meaning of Skel(/c) is shown in Figure 3.6.

Proposition 3.6. Algorithm 2 is correct for any additive matrices with only two

neighbor pairs.

Proof. The neighbor pairs found by Algorithm 1 must be correct, as guaranteed

by Theorem 3.5. WLOG, assume the neighbor pairs found are 1 � 2 and (i V — l) �

N. Therefore the true binary tree must have the topology shown in Figure 3.6.

Hence the order of the numbers Skel(fc) := {Dik + Dim - D^k)!'^ must represent

the correct order of the end-vertices k in T, where fc = 3, • • • , AT — 2. Therefore

Algorithm 2 is correct. ' •

We give the complexity of Algorithm 2. First, we use Algorithm 1 to find

the neighbor pairs in O(N^). Then, we sort N numbers and find their respective

indices using 0 {N\ogN) . Therefore the overall complexity of Algorithm 2 is

O們.

Divide-and-Conquer Neighbor-Joining ‘ 34

2 k � N-1
• • • • • • •

1 • • • • • • • • • N

"" Skel(/c)

Figure 3.6: Graphical meaning of Skel(fc).

Chapter 4

D i vide- and- Conquer
Neighbor-Joining

We propose a new algorithm 一 Divide-and-Conquer Neighbor-Joining (DCNJ)

to implement NJ on additive matrices with complexity where N is the

size of the input matrix. Although Waterman et al. [17] has already proposed

an 0{N'^) algorithm on implementing NJ on additive matrices, that algorithm

cannot be applied to non-additive matrices. In Atteson [1], it was mentioned

that the number of additive matrices is too small compared to the non-additive

ones. Therefore the standard complexity in NJ now is still Although

our algorithm, the DCNJ algorithm, has the complexity of 0{N^) and is only

applicable to additive matrices now, it can be further developed to apply to non-

additive matrices. Moreover, this algorithm is based on a new philosophy on

implementing NJ 一 decoupling the computation of W. The further application

of the philosophy may speed up NJ to log A)̂. Therefore, this algorithm

serves as a stepping stone to a more general algorithm.

In Section 4.1，we give an example to illustrate the idea of DCNJ and the

algorithm. In Section 4.2, we explain the theories of DCNJ: its correctness and

complexity.

35

Divide-and-Conquer Neighbor-Joining ‘ 36

4.1 DCNJ Algorithm

Given the binary tree T shown in Figure 4.1，let D be the additive matrix cor-

responding to it. We give an example on applying DCNJ to find the topology of

T given D. In the DCNJ algorithm, there are two phases. In phase one, we first

find the number of pairs in D by applying Algorithm 1 to D. If the number of

neighbor pairs found := Q > 4, then we add all the neighbor pairs found to the

topology Tp and update D. For example, ii i � j is one of the neighbor pairs

found by Algorithm 1，we will add i � j to 7p and then remove the j-th row

and column from D. In fact, this step is exactly doing the same as NJ, but we

just join more than one neighbor pairs. After that, we repeat this phase with the

updated D. We will end this phase and go to phase two when we find that the

number of pairs Q remaining in D is less than four.

In phase two, we apply different methods to D according to the number of

pairs Q remaining in D. If Q = 3，we start our divide-and-conquer procedure to

find the topology of the remaining end-vertices in D. Or if Q = 2, we can just

apply Algorithm 2 to Z) to find the topology of the remaining end-vertices in D.

In either case, the topology found will be added to the topology Tp to form the

final topology T for output.

To begin with the example, we start with the empty topology 7}? 0 and

we apply Algorithm 1 to D and find four neighbor pairs: 1 � 2 ’ 6 � 7 , 8 � 9 and

12 � 1 3 . As now the number of pairs Q = 4, we add the neighbor pairs to Tp

consecutively to form

TP 二 [1 � 2， 6 � 7，8 � 9 , 1 2 � 1 3] . (4.1)

After that, we remove the rows and columns corresponding to the end-vertices

2,7,9 and 13 from D to form D'. In terms of the trees, we remove the end-vertices

2，7，9 and 13 from T to form T' (Figure 4.2).

Divide-and-Conquer Neighbor-Joining ‘ 37

We now repeat phase one, which means again we look for neighbor pairs in D'‘

Therefore we apply Algorithm 1 to D' and find the neighbor pairs 5 ~ 6,8 ~ 10

and 12 � 1 4 in T'. This time the number of pairs Q = 3. Therefore we go to

phase two and begin the divide-and-conquer procedure.

In this procedure, we first form one cluster for each neighbor pair, and then

we put the remaining end-vertices to either one of these clusters. In our case,

we form the cluster of 5 � 6 ， 8 � 1 0 and 12 � 1 4 . Then we put the remaining

end-vertices 1,3,4,11 and 15 into either one of these clusters. To determine

which cluster should the end-vertex 1 be put into, we consider 了⑴，which is the

binary tree containing only the end-vertices 1,5,8 and 12 (Figure 4.3). Visually

we see that 1 � 1 2 in 了⑴’ and therefore we put end-vertex 1 into the cluster of

12. Numerically for end-vertex 1，we compute D � which is the submatrix of D'

containing the pairwise distances between 1,5,8 and 12. We apply Algorithm 1

to D � and find 1 ~ 12. Therefore we put 1 into the cluster of 12. The case is

similar for end-vertices 3，4 and 15.

For end-vertex 11, we compute D(ii) which is the submatrix of D' containing

the pairwise distances between 11，5，8 and 12. This matrix is represented visually

by the binary tree 了⑴）in Figure 4.4. We can find 8 ~ 11 by applying Algorithm

1 to and therefore we put 11 in the cluster of 8.

All the remaining end-vertices have been clustered. We see that the cluster

of 5，Vs, does not receive any extra end-vertices. Summing up, we have:

1. The cluster of neighbor pair 5 ~ 6 := Is = [5,6],

2. The cluster of neighbor pair 8 ~ 10 := Yg = [8,10,11],

3. The cluster of neighbor pair 12 � 1 4 ：二 Y î = [12,14’ 1,3,4,15].

We now illustrate the graphical meaning of these clusters. If we consider the

binary tree T'，there is only one bridge vertex B in it. After removing B and its

Divide-and-Conquer Neighbor-Joining ‘ 38

adjacent edges from T', there are three separated trees remaining. Each cluster

is exactly containing every end-vertices in one such tree.

Now we find the topology of each cluster. Since Ys has only two end-vertices,

obviously, the topology of ¥5 is [5 � 6] . Here the end-vertex 6 will be joined with

5 and therefore the end-vertex 5 is the unjoined vertex in Y5.

To find the topology of the cluster Yg, we cannot follow the same approach

as ¥5. It is because Ig has more than two end-vertices and therefore there are

more than one choices on the topology, for instance [8 � 1 0 ’ 8 � 1 1] and [10 �

11，8 � 1 0] . We can see from T' that the first one is correct while the second one

is wrong. To obtain the correct topology of Yg, we need to use some tricks. First,

we append an end-vertex outside Vg, say 12, to Ys to form Ys = [8,10,11,12]. Let

Tg be the binary tree containing the end-vertices in fs (Figure 4.5) and we see

the topology of = [8 � 1 0，8 � 1 1，8 ~ 12]. As we know the end-vertex 12 is

external to Ys, we remove the neighbor pair containing it, i.e. 8 � 1 2 ’ to obtain

the topology of V̂s = [8 〜10，8 〜11].

Numerically, we first let Dg be the submatrix of D' containing the pairwise

distances between the end-vertices in Y .̂ Visually, D^ is corresponding to the

binary tree Tg- Therefore there are two neighbor pairs in Dg and hence we can

apply Algorithm 2 to them. In fact, we will prove in Proposition 4.3 that every
t

such appended cluster contains exactly two neighbor pairs. In our case, we apply

Algorithm 2 to D^ and get the topology [8 � 1 0 , 8 � 1 1 , 8 � 1 2] . As we know

that the end-vertex 12 is outside Vg, we remove the last neighbor pair 8 ~ 12 from

this topology to get [8 � 1 0 ’ 8 � 1 1] ’ which is the correct topology of Ys,. Since

the end-vertices 10 and 11 will be joined with 8 successively in this topology, the

unjoined vertex in Yq is the end-vertex 8.

Since the cluster Y12 has more than two end-vertices, we use the same approach

as Ys to find its topology. We first append the end-vertex 5 to Yu to form

>̂ 12 = [12,14,1,3’ 4’ 15，5]. Let D^ be the submatrix of D' containing the pairwise

Divide-and-Conquer Neighbor-Joining ‘ 39

distances between the end-vertices in Y^. Visually, D12 is corresponding to the

binary tree f u shown in Figure 4.6. Again we see that there are only two neighbor

pairs in the appended cluster T'12, as guaranteed by Proposition 4.3, and therefore

it is valid to apply Algorithm 2 to D12 to find the topology of ^12- The topology

found is [12 � 1 4 , 1 2 � 1 5 ’ 1 � 1 2 ’ 1 � 3 ， 1 � 4 , 1 � 5] , which is exactly the

topology of T'12. As we know the end-vertex 5 is not in ¥12, we remove the last

neighbor pair 1 � 5 from this topology to get [12 � 1 4 , 1 2 �15，1 � 1 2 ’ 1 � 3 ’ 1 �

4]. The unjoined end-vertex in Y12 is the end-vertex 1 instead of 12 because we

have to keep the index notation consistent, so we write 1 ~ 12 instead of 12 ~ 1.

Summing up, we have

1. The topology of Ys := T5 = [5 � 6] ,

2. The topology of : = 石 = [8 �10，8 � l l j ,

3. The topology of Yn ：= Tu = [12 �14，12 � 1 5 ’ 1 � 1 2 ’ 1 � 3 ’ 1 � 4] .

After computing the topologies for each cluster, there are only three unjoined

end-vertices 5,8 and 1 from the clusters >5, Ŷ and Yn respectively. As mentioned

in the notes after the definition of topology (Definition 2.13), we know that any

two end-vertices form a neighbor pair if there are only three end-vertices left.

Therefore, we form the topology of the three remaining end-vertices

= 〜5,1 〜8]. (4.2)

At last, we recombine the topologies: 7p in (4.1), and % in (4.2)

to get the topology of the binary tree that visualizes D:

r = [1 � 2 ’ 6 � 7 ’ 8 � 9，1 2 �13，5 � 6，8 �10，8 � 1 1 ，

12 〜14，12 〜15，1 〜12，1 〜3’ 1 〜4，1 〜5’ 1 〜8],

which is exactly the topology of T in Figure 4.1. To see that, we can join neighbor

pairs in T step-by-step, i.e. first join the end-vertices 1 and 2 in T to 1, and then

Divide-and-Conquer Neighbor-Joining ‘ 40

join the end-vertices 6 and 7 in T to 6，and etc. To find the branch lengths of T,

we follow the same approach as NJ, which has been described in Section 2.3.

2«
3 4 5 6

•——H 11"——O \
15
• 10" n
14

1 3 入 入

Figure 4.1: A binary tree T with fifteen end-vertices.

3 4 5 6

•——<. 11"——
15
• • 10" P
14 T

\ \
Figure 4.2: A binary tree T' with eleven end-vertices.

Divide-and-Conquer Neighbor-Joining ‘ 41

J

\ \
Figure 4.3: The binary tree T(i) with four end-vertices corresponding to ！？⑴.

We see that 1 � 1 2 .

5 •

9

!!•——P

\ \
Figure 4.4: The binary tree T(ii) with four end-vertices corresponding to
We see that 8 � 1 1 .

Divide-and-Conquer Neighbor-Joining ‘ 42

11"——0

10"——0

\ \
Figure 4.5: The binary tree T � containing only the end-vertices of the cluster
1>8 = [8，10,11,12].

3 4 5

• n
15
• •
14 T

\
Figure 4.6: The binary tree T(i2) containing only the end-vertices of the cluster
yi2 = [12,14,1,3,4,15,5].

Divide-and-Conquer Neighbor-Joining ‘ 43

Algor i thm 3: Divide-and-Conquer Neighbor-Joining Algorithm (DCNJ)
Input: Additive distance matrix D
Output: Topology T of a binary tree visualizing D

1 while size of D > 4： do
2 Find all neighbor pairs in D: ii ~ j i , • • • , zq ~ jq by Algorithm 1
3 if Q > 4 then
4 Tp := [Tp, � j . i，…’ iQ � j Q]
5 Remove the ji,j2-, •.. , jg-th row and column from D
6 else break
7 end
8 end
9 if Q = 3 then

10 Define Yg ••= [iq,jq] for g = 1,2,3
11 forall V ̂ ii, ji,- • • ,̂ 3, js do
12 Define x :=[幻，化、�3]
13 for a, 6 = 1, • • • ,4 do
14 D�(ci，&) := D(x{a),x{b))
15 end
16 Find all the neighbor pairs in D � by Algorithm 1
17 if V � i q in D…）then
18 Yq ：= KJ -U]
1 9 e n d

20 end
21 for q = 1,2,3 do
22 if l y j = 2 t h e n
23 7； [ig �Jg]
24 else
25 m := q (mod 3) + 1’ define Yq ：二

26 Find Jg := the topology of Yq by Algorithm 2
27 Tq'.= 'fq with the last neighbor pair removed
2 8 e n d

2 9 e n d
30 Define Sq := minVg for g = 1,2,3，and assume Si < S2 < S3
3 1 T u ：= [S i � S 2 , S i � S 3]
32 return T := [7>’7"i’T2，7"3’Tc/]/* Recombine T^'s * /
33 else
34 Apply Algorithm 2 to D to get T'
35 return T := [Tp,T']
36 end

Divide-and-Conquer Neighbor-Joining ‘ 44

4.2 Theories of DCNJ on additive matrices: Cor-
rectness and Complexity

In this section, we provide theories of DCNJ. We now give several propositions

useful in proving the correctness of DCNJ. Let us recall from Proposition 2.5,

that any square submatrices of an additive matrix are additive, and therefore it

is valid to talk about neighbor pairs in submatrices. Another point to remind is

from P. 31 that the sentence � j in D, is to mean H � j in the unique binary

tree that corresponds to D\

Proposition 4.1. If i � j is a neighbor pair in an additive matrix D of size

N，then i � j is a neighbor pair in any square submatrices of D containing the

end-vertices

Proof. WLOG, we assume z = 1 and j = 2. Let D' be the {N - 1) x {N - 1)

square submatrix of D, where the N-th row and column of D are removed. By

Theorem 3.5, we have for fc = 3，4’ …，iV,

WD{l,k) = WD(2,k), (4.3)

where Wd is computed from D using (2.10).

Let Wd' be computed from D' using (2.10). Let Snik) := TZ=iD[k,m)

for /c = 1, • • • , iV and Sd'{1) ：= Em=} D'(l,m) for / = 1, • • • , AT - 1. Then for

Divide-and-Conquer Neighbor-Joining ‘ 45

n = 3, • • • — 1, we have

WD'(hn)-WD'{2,n) = {N - 3)[D'(l ,n) - D'(2,n)] - Sd'{1) + Sd'{2)

= { N - 3) [D(l ,n) — D(2,n)] - � + Sd'{2)

= { N - 2)[D(l，n) — D(2,n)] - [D(l ,n) - Z)(2’n)]

-Sd{1) + ^(1, N) + — D(2，N)

= { N - 2)[D(l’n) - D(2,n)] - 5 ^ 1) + S d ^

-[Z)(l, n) — D(2, n)j + D(l, N) - D(2, N)

= - WD(2,n) - [D(l,n) - D(2,n)]

+ D (l , i V) - D (2 , A 0

=-陣’ n) - D(2, n)l + D(l , N) - D{2, iV), (4.4)

where the last inequality follows from (4.3). As 1 � 2 in D，we have D{1, N) +

D(2, n) - D (l , n) - D (2 , N) = 0. Therefore from (4.4), we have for n 二 3’ • •. , i V -

1,

WD'{l,n)-WD'(2,n) = 0,

which means 1 � 2 in by Theorem 3.5.

Any square submatrices of D can be formed by removing a row and the

corresponding column from D consecutively. Therefore the above argument can

be repeated each time and thus we have i ~ j in any square submatrices of D

containing the end-vertices •

Propos i t ion 4.2. Let D be an additive distance matrix of size Â > 4, then the

number of neighbor pairs in any square submatrices of D is less than or equal to

D.

Proof. Let T be the binary tree corresponding to D. Let D' be the square sub-

matrix of D, where the TV-th row and column of D is removed. Recall that the

indices in the matrix D are corresponding to only end-vertices in T. Let N be

Divide-and-Conquer Neighbor-Joining ‘ 46

an end-vertex in T, and b be the internal vertex adjacent to N in T. Let c, d be

the other two vertices adjacent to 6 in T (see Figure 4.7).

Let T' be the binary tree constructed by the following steps: first, we remove

the end-vertex N, the internal vertex b and also the edges e � e ^ , e^ from T; then

we add an edge ecd to connect c, d with length

Kccd) := l{ec) + l(ed)- (4.5)

Now T' looks exactly like Figure 4.8. We can see that T' is a binary tree because

the vertex degrees of c, d are unchanged.

k N
？ T

z i 7 j
• 厂 e 十 “1 •

Figure 4.7: The binary tree T in Proposition 4.2.

k •
• i o
I i J
“••••••••.̂•••••••.•…广〜 •

Figure 4.8: The binary tree V in Proposition 4.2

We want to show that the binary tree T' constructed this way is visualizing

D'. It means we have to show l(P(’j) = D'(i,j) for all z, j = 1, • • •，iV — 1, where

P- j is the path of in T'.

First, we want to show / (P/ j) = l(J\j), where Pij is the path of in T. To

see that, if the path “ in T' does not contain the edge ecd, then it is exactly

the path Pi,k in T. Therefore l{Plf^) = l(J\k). If the path P^j in T' contains the

Divide-and-Conquer Neighbor-Joining ‘ 47

edge Bed, then the path Pij in T contains the edges e � ’ e .̂ Therefore we have

KKj) = mMKKci)+m’j)

=KPU) + KKd) + KKj)

=l{Pi,c) + l{ecd) + l{Pdj)

=l{Pi,c) + l{ec) + l{ed) + l(Pd,j)

=l{Pi,c) + l{Pc,a) + l(Pa4) + l{Pd,j)

=KPij)-

Therefore we have for alH, j = 1, • • • , N _ 1

m,j) = i(Aj) = Dij = D'iiji

and hence the binary tree T' visualizes D'.

We now prove that the operations on T to form T' will not increase the number

of parent vertices in T'. Since only the vertices b, c, d, N are modified from T to

T', we investigate the cases on them only. As 6, N are removed in T', we only

consider the cases for c, d in T: (i) both c, d are end-vertices, (ii) c, d are both

internal vertices, only c is an internal vertex and (iii) d is an end-vertex.

Case(i): We now prove that the case (i) is not possible. Recall that any-

internal vertices in a binary tree are of degree three, and any end-vertices in it

are of degree one. Now the internal vertex b is connecting exactly the three end-

vertices c, d, N in T, and therefore b, c, d, N cannot connect to other vertices in

T. Hence if there are another vertex in T, then T will be disconnected. Therefore

T has only three end-vertices, i.e. iV = 3，which contradicts to our assumption

that N > 4： stated in the beginning of the proposition.

Case(ii): If both c, d are internal vertices in T, then c,d remain as internal

vertices in T', e.g. if c is a link vertex in T', then c will remain a link vertex in

r .

Divide-and-Conquer Neighbor-Joining ‘ 48

Case(iii): If c is an internal vertex and d is an end-vertex in T, then 6 is a

parent vertex in T as it is adjacent to both d and N in T. No matter what c will

change to, the number of neighbor pairs in T' will not be increased as a parent

vertex 6 in T has already been removed in T',

Summing up the three cases, we have that the number of parent vertices in

T' is less than or equal to T. As each parent vertex corresponds to a neighbor

pair, the number of neighbor pairs in T' is less than or equal to T, and therefore

the number of neighbor pairs in D' is less than or equal to D.

Any square submatrices of D can be formed by removing a row and the

corresponding column from D consecutively. Therefore the above argument can

be repeated each time and thus we have the number of neighbor pairs in any

square submatrices of D is less than or equal to D. •

Proposition 4.3. Let T be a binary tree with N end-vertices and let a �b，c ~ d

and e � f be the only neighbor pairs in T. Let the set Y be defined as:

Y {a,b,c,vw • ,'Ufc}, (4.6)

where Vi^Y if and only if Vi � a in the binary tree containing only vi, a, c and e.

Then the binary tree T' containing the end-vertices in Y has only two neighbor

pairs.

Proof. By Proposition 3.3, we know T' has at least two neighbor pairs. Therefore

we want to show that if T' has more than two neighbor pairs, we will have a

contradiction. We separate the proof into three cases: \Y\ < 6, \Y\ — 6 and

m > 6.
If |y| < 6, then T' must have two neighbor pairs because we need two end-

vertices to form a neighbor pair. If \Y\ = 6, then T' will look like either Figure 4.9

or Figure 4.10. Note that the existence of a ~ 6 in T' is guaranteed by Proposi-

tion 4.1.

Divide-and-Conquer Neighbor-Joining ‘ 49

V2
m

V3
am vi u • • uc

^ i • Z

Figure 4.9: A binary tree T'.

am • • • •

Figure 4.10: A binary tree having two neighbor pairs.

Divide-and-Conquer Neighbor-Joining ‘ 50

We will show that the first case is not possible and therefore T' must look

like Figure 4.10. Suppose T' is the binary tree as shown in Figure 4.9. We

add the end-vertex d to T' to form T". As c, d form a neighbor pair in T, by

Proposition 4.1，they must form a neighbor pair in T". Therefore T" must look

like Figure 4.11.

V2
u

e?
vz

am^ t'lH——ee——^ 了

ea 62 64 Be
^ ei i——63——i es

66 Sd

Figure 4.11: The binary tree T".

Now we add e, / to T" to form T….By Proposition 4.1，e � f must be a

neighbor pair in T'". If e � / are added at the edge 65 in T" to form Figure 4.12,

then we have four neighbor pairs in V " . By Proposition 4.2, it implies the binary

tree T has four or more neighbor pairs, which is contradicting to our assumption

that T has exactly three neighbor pairs. The case is similar for adding e � / at

the edges ei, 62,63 and 64 in T".

If e � / were added in between the neighbor pair a � b or c ~ d in T'\ i.e.

Co, Cb, Cc or ed in Figure 4.11，then a ~ b 01 c ~ d would not be a neighbor pair

in T'". Since a ~ b and c � d are neighbor pairs in T, by Proposition 4.1，they

must also be neighbor pairs in T〃'，hence we have a contradiction and therefore

e � f cannot be added in between the neighbor pair a ~ b ot c � d .

f

Divide-and-Conquer Neighbor-Joining ‘ 51

V2
u

am Vim • • mc

� ^ ^ ^ ^

• A .
Figure 4.12: A binary tree having four neighbor pairs.

Therefore the only places that e ~ f can be added to T" are the edges

between the neighbor pair vi � V 2 , i.e. Cq, e-j. WLOG, we assume e ~ / is added

in between ee to T" and forming V" as shown in Figure 4.13. However, if we

consider only the binary tree containing the end-vertices Vi^a^c and e, we see

that vi ^ e which implies Vi ^ V, el contradiction to the definition of the set Y

in (4.6).

We have shown that existence of T'" lead to contradictions, and therefore the

binary tree T' in Figure 4.9 is wrong. Therefore T' must look like Figure 4.10

and hence it has only two neighbor pairs.

For \Y\ > 6, and if T' has three or more neighbor pairs, then there exists Vi, Vj

that form a neighbor pair in T'. Using a similar approach in the above, we can

add d and e � / to T' to obtain a contradiction. Therefore the binary tree T'

containing 'the end-vertices in Y has only two neighbor pairs. •

Proposition 4.4. The divide-and-conquer procedure (line 10 to 32) in Algo-

rithm 3 is correct, i.e. given a binary tree T with exactly three neighbor pairs,

the topology obtained from the procedure given the input D is the topology of T,

Divide-and-Conquer Neighbor-Joining ‘ 52

e V2 • •

/•~~i
am 4 o • uc > \

Figure 4.13: The binary V" .

where D is the additive matrix corresponding to T.

Proof. WLOG assume the neighbor pairs in T are 1 � 2 ， 3 � 4 and 5 � 6 . Since

T has three neighbor pairs, by Proposition 3.2, T has only one bridge vertex.

Therefore we can assume T looks like Figure 4.14 and the topology of T is

T = [1 ~ 2,1 ~ ？；!, • • • , 1 ~ ~ 4,3 ~ ui,3 ~ 1̂ 2, ••‘ ~

5 〜6’ 5 〜《；1’... ’ 5 ~ 叫，1 〜3’ 1 〜5].

We now show that T' , the topology found by the divide-and-conquer proce-

dure given D, is exactly T. To prove this, we will show both cases

r = [. . . ’1 �ixi’...]， (4.7)

i.e. ui is in the cluster of the neighbor pair 1 ~ 2,

T' = [" '，1 �i»2，1 � …] , (4.8)

i.e. the ordering of Vî V2 from the topology of cluster 1 is wrong, are not possible.

For the first case, if 1 ~ is found in T' , it means that ui will form a

neighbor with the end-vertex 1 in the binary tree containing Ui, 1,3 and 5 only.

Divide-and-Conquer Neighbor-Joining ‘ 53

However, as we can see from T, it is not possible as ui will form a neighbor

with the end-vertex 3 in this binary tree instead of 1. Hence the first case is not

possible.

If the second case is true, it means that the topology computed on the ap-

pended cluster {1，2’ 3，？；1，̂；2’... , ^̂ n} is [1 ~ 2’ 1 �？；2，1 �^；1’. . •，1 � 3] instead

of the correct one [1 � 2 , 1 〜？;1’ 1 �?;2，...，1 � 3] . However, as we have proved

in Proposition 4.3 that the appended cluster has exactly two neighbor pairs, we

can apply Algorithm 2 to the appended cluster to find the topology. By Propo-

sition 3.6，Algorithm 2 will return the correct topology of the appended cluster,

and hence the second case is not possible.

We have proved both (4.7) and (4.8) are not possible. The end-vertices ui,vi

and V2 in the above argument can be generalized to any Ui,Vj,Vk. Therefore the

only topology which the divide-and-conquer can find is exactly the same as T. •

5 6

Y
4 •

Vi V2 Vn Wr U^ Ui
2* • • • • • • m mi

尸 — 一 K s
Figure 4.14: Binary tree T corresponding to Proposition 4.4.

Theorem 4.5 (Correctness of DCNJ on additive matrices). Let T be a binary

tree with N end-vertices and D be the additive matrix corresponding to T. Then

the binary tree computed from D by DCNJ equals T.

Divide-and-Conquer Neighbor-Joining ‘ 54

Proof. The DCNJ algorithm has two phases (see beginning of Section 4.1). The

phase one is combining several neighbor pairs found by Algorithm 1. Since the

end-vertices joined must be neighbor pairs, as guaranteed by Theorem 3.5, phase

one is correct. In phase two, we will either apply the divide-and conquer proce-

dure or Algorithm 2. Their correctness have been proved in Proposition 4.4 and

Proposition 3.6 respectively. Hence DCNJ is correct. •

Proposition 4.6 (Complexity of DCNJ). DCNJ is an O(N^) algorithm, where

N is the size of the input matrix D.

Proof. The DCNJ algorithm has two phases. In phase one, the process of finding

all neighbor pairs in D by Algorithm 1 needs 0{N'^). If the number of pairs

> 4, then we add all the neighbor pairs to the topology T in 0(N). After that

we remove Q rows and columns from D, and therefore it needs at most 0(N'^).

Hence the complexity for each run of this phase is 0{N'^). We need to repeat

phase one at most 0{N) times, as there are N end-vertices in D. Hence, we need

at most O(N^) before going to phase two.

In phase two, if the number of pairs Q = 3, we start our divide-and-conquer

approach. For each end-vertex v that does not form neighbor pairs, we find the

submatrix D(…of D, where the size of this matrix is 4. Therefore computing the

neighbor pairs in Z) � by Algorithm 1 needs 0(4^) 二 0 { l) . Hence, the process

of dividing the remaining end-vertices into different clusters takes 0(N) as there

are at most 0{N) end-vertices that do not form a neighbor pair. We know that

the size of each cluster is at most 0{N), and therefore applying Algorithm 2 to

compute the topology on each cluster takes There are three clusters in

total and therefore the complexity to compute the topology for each of them is

3 X O(N^) = (9(iV"2). Hence, the complexity of divide-and-conquer procedure is

In phase two, if the number of pairs Q = 2’ we can apply Algorithm 2

to get the topology using 0(N'^).

Divide-and-Conquer Neighbor-Joining ‘ 55

We need O(N^) in phase one, O(N^) in phase two and 0(N) to combine

the topologies found in both phases. Therefore the total complexity for DCNJ is

O(N^). •

Although DCNJ has the same complexity compared to NJ, our experiments

in Chapter 5 show that DCNJ outperforms NJ.

I

1

I

I
i
I

Chapter 5

Experimental Results

Although Waterman et al. [19] has already proposed an 0{N^) algorithm on

implementing NJ on additive matrices, this algorithm cannot be applied to non-

additive matrices. It is mentioned in Atteson [1] the number of additive matrices

is too small compared to the non-additive ones, and therefore the standard com-

plexity in NJ now is still Although our algorithm has the complexity of

0{N^) and only applicable to additive matrices now, it can be further developed

to apply to non-additive matrices. Therefore, this algorithm serves as a stepping

stone to a more general algorithm. Hence, we only compare the speed of our

algorithm to the algorithm of Studier and Keppler (Section 2.4) implemented

in two famous software packages containing NJ: PHYLIP [6] and MEGA [17].

Both of them are written in C + + and we download the executables directly. Our

algorithm is written in MATLAB.

All experiments were done in a desktop computer having 3.2G CPU and

IG Ram on a Windows XP environment. We first generate a binary tree with

arbitrary topology and then assign a random positive number to each branch as

branch length. Next, we compute the distance matrix corresponding to the binary

tree. By Proposition 2.4，we know that the distance matrix must be additive.

After that, we input the matrix into PHYLIP [6], MEGA [17] and our algorithm

DCNJ separately. Finally, we take the average time of ten independent runs. On

56

‘ 57 Divide-and-Conquer Neighbor-Joining

additive distance matrices, as we have proved in Chapter 4’ all of our results are

identical to NJ. We can see from Table 5.1 that the speed of DCNJ outperforms

the other two algorithms, despite they all have the same complexity O(N^). The

size of the matrices in the real applications ranges from tens to several hundreds

(for example in [9] and [18]).

Matrix Size, N NJp [6l NJm [17] DCNJ —

100 < 1 < 1 0-1
200 < 1 < 1 0.3
400 1.6 1.9 0.4
800 9.8 6.4 3.3
1600 75.3 40 5.2
2000 150.6 81.3 11.2

Table 5.1: Comparison of NJ, DCNJ on additive matrices with NJ implemented
in PHYLIP (NJp) and MEGA (NJM)- Time is measured in seconds.

t

Chapter 6

Conclusions

In the thesis, we showed various properties of binary trees. Also, we proposed and

proved the equivalent condition for neighbor pairs on W. Using this condition,

we gave a new algorithm named DCNJ on implementing Neighbor-Joining in

O(N^) operations on additive matrices. Besides, we proved the correctness of

this algorithm. Our experiments show that this algorithm is much faster than

the NJ method implemented in MEGA and PHYLIP, despite they are of the same

complexity. Although this algorithm is not as good as Waterman's algorithm on

additive matrices in terms of complexity, from our experiments we believe DCNJ

can be modified to achieve the complexity of 0(N"^\ogN).

On the other hand, we are trying to relax the similar row condition in finding

neighbor pairs in DCNJ such that it can be applied to non-additive matrices. In

DCNJ, the similar condition Wj � W j can be rewritten as

In non-additive matrices, the above equation has to be relaxed to, for instance,

E l̂ ifc - < c’

where e is a parameter to be determined after giving the distance matrix. Our

target will be to estimate e such that DCNJ can compute the binary tree exactly

as in NJ.

58

Bibliography

[1] K. Atteson. The performance of neighbor-joining methods of phylogenetic

reconstruction. Algorithmica, 25(2-3):251—278, 1999.

2] K. H. Chu, C. P. Li, and J. Qi. Ribosomal RNA as molecular barcodes:

a simple correlation analysis without sequence alignment. Bioinformatics,

22(14):1690-1701, 2006.

[3] I. Elias and J. Lagergren. Fast neighbor-joining. In Proc. of the 32nd Interna-

tional Colloquium on Automata, Languages and Programming (ICALP,05),

volume 3580 of Lecture Notes in Computer Science, pages 1263-1274.

Springer-Verlag, 2005.

[4] J. Evans, L. Sheneman, and J. Foster. Relaxed neighbor-joining: A fast

distance-based phylogenetic tree construction method. Journal of Molecular

Evolution, 62(6):785-792, 2006.

[5] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likeli-

hood approach. J. Mol. Evol., 17:368—376，1981.

[6] J. Felsenstein. PHYLIP (Phylogeny Inference Package) version 3.5c. Dis-

tributed by the author. Department of Genetics, University of Washington,

Seattle., 1993.

[7] W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,

155:279-284, 1967.

59

Divide-and-Conquer Neighbor-Joining ‘ 60

[8] S. Grenewald, K. Forslund, A. W. M. Dress, and V. Moulton. Qnet: An

agglomerative method for the construction of phylogenetic networks from

weighted quartets. Mol Biol. Evol, 24(2):532-538, 2007.

[9] Daniel H. Huson. Splitstree: analyzing and visualizing evolutionary data.

Bioinformatics, 14(1):68—73, 1998.

[10] Regents of the University of California: History of life through time (2008).

http://wwwMcmp.berkeley.edu/exhibits/historyoflife.php.

[11] N. Saitou and M. Nei. The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. EvoL, 4(4):406-425，1987.

[12] S. Sattath and A. Tversky. Additive similarity trees. Psychometrika,

42(3):319-345, 1977.

13] P.H.A. Sheath and R. R. Sokal. Numerical Taxonomy. Freeman, San Pran-

cisco, California, 1973.

[14] J.A. Studier and K.J. Keppler. A note on the neighbor-joining method of

Saitou and Nei. Mol. Biol. Evol, 5:729-731, 1981.

[15] D. L. Swofford. PA UP*: Phylogenetic Analysis Using Parsimony (and Other

Methods) Version 4- Sinauer Associates, Sunderland, Massachusetts, 2003.

[16] K. Tamura, J. Dudley, M. Nei, and S. Kumar. MEGA4: Molecular Evolu-

tionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol. EvoL,

24(8):1596-1599, 2007.

[17] M. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. Additive evolution-

ary trees. J. Theo. Bio., 64:199-213, 1977.

[18] R. J. Wilson. Introduction to Graph Theory (4th ed.). John Wiley & Sons,

Inc., New York, NY, USA, 1996.

http://wwwMcmp.berkeley.edu/exhibits/historyoflife.php

t

%
. (• ‘

；'•‘‘

-I；

. ’ / •

•

‘ ‘ 1 , : .
.‘；

• 1

•；:

：V'

-t

y. r-

i

...e

. . • ' - " •
. . ’ . ： . •

. . . . •

• . •

CUHK Libraries

004561363

