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Abstract

Geometric constructions of quantum groups and their associated R-matrices arose

in the early 90’s and have been generalized further in recent works of Aganagic, Maulik,

and Okounkov [1, 2], creating a bridge between geometry and solvable lattice models.

One nice aspect of this bridge is that the “hard” basis of one theory corresponds to

the “easy” basis of the other. In this thesis, we explore various lattice models using

this perspective as guidance. We first describe how both the torus fixed point basis

and the basis of Schubert classes in the equivariant cohomology of the flag variety are

manifest in the “Frozen Pipes” lattice model of [3]. This analysis is a straightforward

generalization of results due to Gorbunov, Korff, and Stroppel [4] (see also the notes [5]

of Zinn-Justin) for the Grassmannian.

Then we describe how the fixed point basis and the basis of motivic Chern classes in

the equivariant K-theory of the cotangent bundle of the flag variety appear (in a more

novel way) in the Tokuyama model of [6] and colored Iwahori Whittaker model of [7].

The recent work [8] of Aluffi, Mihalcea, Schürmann, and Su identifies these geometric

bases with the Casselman and standard bases, respectively, of the Iwahori fixed vectors

in the principal series representation, so this perspective allows us to make contact with

formulas from p-adic representation theory, such as the Langlands-Gindikin-Karpelevich

formula.
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Chapter 1

Introduction

Solvable lattice models, while initially created in the context of statistical mechan-

ics, have proven useful in the study of many functions from representation theory and

Schubert calculus. In statistical mechanics, one is interested in determining the global

properties of a lattice of particles via the local particle interactions. The local inter-

actions are encoded in functions called Boltzmann weights assigned to each particle,

and the global partition function of the model is the generating function made from

summing over the weights of potential particle configurations. A lattice model is con-

sidered solvable (or integrable) if there exists a system of solutions to the (quantum)

Yang-Baxter equation that allow one to solve the model : Baxter [10] recognized that,

given a solution to the Yang-Baxter equation, one is able to prove recursive formulas

for the partition function and thus potentially get a handle on its closed-form solution.

Being able to express a function as the partition function of a solvable lattice model

then naturally leads to other interesting combinatorial properties, such as branch-

ing rules, exchange rules under the action of Hecke divided-difference operators, and

Cauchy- and Pieri-type identities. Remarkably, Zinn-Justin [11], Wheeler and Zinn-

Justin [12], and Knutson and Zinn-Justin [13, 14] have also used solvability to prove the

Littlewood-Richardson rule and some of its generalizations, long considered the most

important and most difficult formulas in Schubert calculus. The fact that lattice mod-

els encode lots of algebraic structure simultaneously is one of the main sources of their

appeal. Moreover, since quantum groups are a natural source of solutions to the Yang-

Baxter equation, there is a strong link between solvable lattice models and quantum

1
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groups.

Going one step further, quantum groups and lattice models can often be understood

as arising via a geometric construction of solutions to the quantum YBE. This construc-

tion allows one to identify certain (generalized) cohomology rings with Bethe algebras

of quantum groups, as summarized in Figure 4.2, reproduced from the paper [9]; also

shown in Figure 1.1.

Figure 1.1: From [9].

This thesis aims to concretely flesh out these connections for certain existing lattice

models, namely, the Frozen Pipes model of [3] and the Tokuyama and Iwahori models of

[6, 7], whose partition functions are (β)-Grothendieck polynomials, spherical Whittaker

functions, and Iwahori Whittaker functions, respectively.

We now outline the structure of this thesis and summarize our main results. Chapter

2 gives an overview of the theory of both spherical and Iwahori Whittaker functions in

the context of p-adic representation theory. Chapter 3 reviews the general mechanics

of solvable lattice models and briefly introduces the specifics of the models in [3, 6, 7].

Chapter 4 introduces the necessary background on Schubert calculus and its generaliza-

tions. Chapter 5 details our first concrete connection between the material in Chapters

3 and 4: in Proposition 5 we derive the R-matrix (the solution to the YBE) of the Frozen

Pipes model as a change of basis matrix in equivariant cohomology, and in Propositions

5.6 and 5.7, we employ the algebraic Bethe ansatz to identify the partition function

with the geometric Poincaré pairing between a Schubert class and the class of a torus

fixed point; consequently, we are able to easily calculate the coefficients of the expansion

of the fixed point basis into the Schubert basis. These results are likely well-known to
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experts, as they generalize those of [4, 5].

In the same vein, but with notable differences in technique, Chapter 6 explores the

geometry of the Tokuyama and Iwahori models. Theorem 6.2 gives an expression for

the Tokuyama partition function (and hence the spherical Whittaker function) using

a method similar to the algebraic Bethe ansatz. Alternatively, it is known that the

spherical Whittaker function can be written as a sum of Iwahori Whittaker functions.

Equating this sum with the expression in Theorem 6.2, and using geometric results of

Aluffi, Mihalcea, Schürmann, and Su [8], we obtain Theorem 6.6 and Corollary 6.1,

which results in the expansion of a (modified) motivic Chern class–a generalization of

a Schubert class–into the fixed point basis of the equivariant K-theory ring of the flag

variety, as well as interpretations of the partition functions as K-theoretic Poincaré

pairings with line bundles. In p-adic representation theory, this expansion is closely

related to the Langlands-Gindikin-Karpelevich formula. We then end by comparing

and contrasting the results of Chapter 5 and Chapter 6.



Chapter 2

Background on Whittaker

functions

We review the construction of spherical Whittaker functions and Iwahori Whittaker

functions, mostly following the presentation in [7]. Let F be a non-archimedean local

field with ring of integers o. (Common examples are finite extensions of the field Qp of

p-adic numbers, or the field of Laurent series over Fp.) Let p “ x$y be the maximal

ideal of o with uniformizer $. Then the residue field o{p is isomorphic to a finite field,

whose cardinality we denote by q.

Let pG be a split reductive Chevalley group, i.e., an affine algebraic group scheme

over Z with a fixed Chevalley basis for its Lie algebra gZ. (We use the notation pG,

instead of G, since we will primarily be working with the Langlands dual group
p

pG “ G.

In addition, when working with lattice models, we will only be considering the case

pG “ GLn, but it is worth noting that many of the following definitions and results hold

in this most general case.) Let T be the maximal split torus of pG obtained from our

choice of Chevalley basis, and let N be the maximal unipotent subgroup of pG whose

Lie algebra is the union of the positive root spaces. These form the standard Borel

subgroup B “ TN . Let W “ N
pG
pT q{T be the Weyl group of G, where N

pG
pT q denotes

the normalizer of T in pG. Since pG is defined over Z, we can consider the group pGpF q

of F -points of pG. The Iwahori subgroup J´ of GpF q is the subgroup of K “ pGpoq

defined as the preimage of B´ :“ w0Bw0 in the mod p reduction map from K to pGpFqq.

4
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For GLn, B is the subgroup of upper triangular matrices, T is the diagonal matrices,

W – Sn is the group of permutation matrices, and J´ consists of matrices in GLnpoq

which are lower triangular mod p.

We will also need to consider the Langlands dual group
p

pG “: G of pG, whose root

system is dual to that of pG. We denote the root system of G by ∆ and the root system

of pG by ∆_. Denote the simple roots of ∆ by α1, . . . , αn, and the sets of positive and

negative roots by ∆` and ∆´, respectively.

Consider an unramified character τ , i.e., a character τ : T pF q Ñ Fˆ that is trivial

on T poq. The group of such characters is isomorphic to pT pCq – pCˆqn. Indeed, for each

z P pT pCq, we will now describe how to obtain the corresponding unramified character

τz. First, we note that the group X˚pT q of rational cocharacters of T is isomorphic

to T pF q{T poq: to a cocharacter λ : Fˆ Ñ T pF q we associate the coset $λT poq, where

$λ is the image of $ under λ. On the other hand, by the definition of dual root

systems, X˚pT q is isomorphic to the weight lattice Λ :“ X˚p pT q. Considering λ now as

an element of Λ, let zλ P Fˆ denote the image of z P pT pCq under λ. Then we define τz

by τzptq “ zλ when t P $λT poq.

For pG “ GLn, with λ “ pλ1, . . . , λnq P Zn – Λ and z “ pz1, . . . , znq P pCˆqn – pT pCq,
we have

$λ “

¨

˚

˚

˚

˚

˚

˝

$λ1

$λ2

. . .

$λn

˛

‹

‹

‹

‹

‹

‚

P GLnpF q and τzp$
λq “ zλ “

n
ź

i“1

zλii .

We can trivially extend τz to BpF q. Then the principal series representation

pπ, Ipzqq is the induced representation

Ipzq :“ Ind
pG
Bpδ

1{2τzq

under the the right-regular action π of pGpF q, where δ1{2 is the modular quasicharacter

of B. In other words, Ipzq consists of locally constant functions f on pGpF q such that

fpbgq “ δ1{2pbqτzpbqfpgq for all b P B.
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The space IpzqJ´ of Iwahori fixed vectors generates Ipzq as a pGpF q-module [15] and

has dimension dim Ipzq “ |W |. There are two well-known bases of IpzqJ´ that we will

be interested in. The first, the standard basis tΦzwuwPW , consists of the characteristic

functions on the double cosets in the decomposition

pGpF q “
ğ

wPW

BpF qwJ´,

obtained by combining the Bruhat decomposition pGpF q “
Ů

wPW BpF qwBpF q and the

Iwahori factorization J´ “ NppqT poqN´poq (where N´ is the opposite maximal unipo-

tent subgroup). In other words, for b P BpF q, w1 PW, and k P J´,

Φzwpbw
1kq “

#

δ1{2τzpbq if w1 “ w

0 otherwise.

The second, called Casselman’s basis, is defined in terms of duality with the

standard intertwining operators Azw : Ipzq Ñ Ipwzq, defined below. To avoid technical

issues with the poles and zeroes of Azw, we will assume that zα
_

‰ 1, q˘1 for all α.

Then:

AzwΦpzq “

ż

NpF qXwN´pF qw´1

Φpw´1ngqdn.

This integral converges for |zα| ă 1 for α P ∆`, and can be meromorphically

continued to arbitrary z. It defines an induced map Azw : IpzqJ´ Ñ IpwzqJ´ on the

Iwahori fixed vectors, and Casselman’s basis is defined by the condition that:

Azwpfvqp1q “ δv,w.

These functions are difficult to calculate explicitly, but have proven to be very useful

regardless. They were first employed in Casselman [15] and Casselman and Shalika [16]

to calculate Macdonald’s formula for the zonal spherical function and the Casselman-

Shalika formula for the spherical Whittaker function, respectively. For their methods,

one only needs to know fw0 explicitly, and in [15], Proposition 3.7 it is shown that:

fw0 “ Φw0 .
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The rest of their calculations then follow from functional equations. The action of Azw

on the standard basis can be calculated explicitly; see Proposition 3 in [17], which is

equivalent to Theorem 3.4 in [15].

We now define the Iwahori Whittaker functions, which are obtained by applying the

Whittaker functional to right translates of standard basis elements. First, we need some

setup in order to define this functional. Let α P ∆ be a root of G, and let xα : Ga Ñ pG

be the one-parameter subgroup of pG associated to α_, i.e., xαptq “ expptXαq, where

Xα is a Chevalley basis element of the Lie algebra. Fix a unitary character ψ on N´pF q

such that, for any α_, ψ ˝ xα : F Ñ cˆ is trivial on o but no larger fractional ideal.

Then the space of Whittaker functionals consists of linear maps Ωz : Ipzq Ñ c

satisfying Ωzpπpn´qfq “ ψpn´qΩzpfq for n´ P N´pF q. It is well-known that this space

is one-dimensional [18, 19], so we need only consider the following explicit Whittaker

functional:

Ωzpfq :“

ż

N´pF q
fpnqψpnq´1 dn, f P Ipzq,

which is convergent if |zα| ă 1 for positive roots α, and can be analytically continued

to all z.

Then the Iwahori Whittaker functions φw : pGpF q Ñ cˆ, up to conventions and

normalizations used for convenience, are defined by

φwpz; gq :“ δ´1{2pgqΩz´1pπpgqΦz
´1

w q. (2.1)

Since Ωz´1 is left N´pF q-invariant and Φz
´1

w is right J-invariant, these functions are

determined by their values at $´λw for $´λ P T pF q{T poq and w P W . Similarly,

the spherical Whittaker function W is defined by applying the Whittaker functional to

right translates of the (unique) K “ pGpoq-fixed vector Φ P IpzqK . Unlike the Iwahori

Whittaker functions, the spherical Whittaker functions are determined solely by their

values at torus elements $´λ:

W pz;$λq :“ δ´1{2p$´λqΩz´1pπp$´λΦqqs.

(And in fact, W vanishes unless λ is a dominant weight.) The spherical and Iwahori
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Whittaker functions are related via:

W pz;$´λq “
ÿ

wPW

φwpz;$´λq (2.2)

(see, for example, [7] Proposition 4.8). This is a deformation of the Demazure character

formula for Schur functions.

Brubaker, Bump, Buciumas, and Gustafsson, in §2 of [7] show, inspired by methods

in [16], that one can compute φw1pz;$λw2q recursively via what they call Demazure-

Whittaker operators, generalizing the results from [17] which calculated the values of φw

on $´λ only. The idea is to prove the following base case:

φwpz;w´λwq “ q´lpwqzλ

and then develop the recursion by computing ΩzpAsi ¨Φwq in two ways and comparing

the results.

We will omit the details of these calculations, but now describe the resulting oper-

ators. Let O be the ring of polynomial functions on pT “ pcˆqn, which is isomorphic to

the group algebra of Zn and is spanned by the functions zλ. Let v P cˆ and f P O. The

Demazure-Whittaker operators Ti,v “ Ti are defined by:

Tifpzq “
p1´ vq

zαi ´ 1
fpzq ´

p1´ vzαiq

zαi ´ 1
fpsizq.

These operators satisfy the braid relations, as well as the quadratic relation

T2
i “ pv ´ 1qTi ` v,

which implies that Ti is invertible. Its inverse is:

T´1
i fpzq “

zαipv´1 ´ 1q

zαi ´ 1
fpzq `

pv´1 ´ z´αiq

zαi ´ 1
fpsizq.

Thus, these operators generate a finite Iwahori Hecke algebra. See the published version

of [17] for proofs of these facts and further investigation of the Hecke algebra structure.

We have the following recursion:
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Proposition 1 ([17] Theorem 2; [7] Proposition 2.4) For any w P W , simple re-

flection si, and with v “ q´1,

φsiwpz; gq “

#

Ti ¨ φwpz; gq if lpsiwq ą lpwq

T´1
i ¨ φwpz; gq if lpsiwq ă lpwq

(2.3)

Note that since the Ti satisfy the braid relations, this recursion does not depend on the

choice of reduced word for w.

Later, we will also make use of the well-known Demazure-Lusztig operators Li

of [20], which are very similar and also arose in the context of Hecke algebra represen-

tations:

Lifpzq “
1´ v

zαi ´ 1
fpzq `

vzαi ´ 1

zαi ´ 1
fpsizq.



Chapter 3

Brief introduction to lattice

models

In this section, we will illustrate the general setup of solvable lattice models by briefly

describing the six-vertex “Tokuyama” model from [6], whose partition function is (up

to a factor) the spherical Whittaker function described in §2, and whose degeneration

to a five-vertex model gives the Schur polynomial. We will then introduce two models

obtained by modifying the Tokuyama model: the six vertex Iwahori model of [7], whose

partition function is an Iwahori Whittaker function, and the five vertex Frozen Pipes

model of [3], whose partition function is a β-Grothendieck polynomial. The results

about these models in subsequent sections should be viewed as supplementary to those

described in the papers [7, 6, 3].

Consider a finite two-dimensional square grid as depicted below in Figure 3.1. To

each edge we assign a value of ` or ´, called a spin. For a specific system, boundary

spins are fixed, and a state of the system is a specification of interior spins. In statistical

mechanics, one is interested in determining the global properties of this system, such as

its free energy and the probability of it being in a certain state, via the local interactions

at each vertex. The local information is contained in certain Boltzmann weights that

are assigned to each type of vertex, and the global information can be ascertained from

the partition function:
ÿ

s

ź

vPs

wpvq,

10
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z3 z3 z3 z3 z3

z2 z2 z2 z2 z2

z1 z1 z1 z1 z1

´ ` ´ ` ´

` ` ´ ´ `

` ` ` ´ `

` ` ` ` `

` ´ ´ ´ ` ´

` ` ` ´ ´ ´

` ` ` ` ´ ´

4 3 2 1 0

3

2

1

Figure 3.1: A state of a lattice model.

where s denotes an admissible state (i.e. one whose weights are nonzero) of the model,

v a vertex in the state s, and wpvq its corresponding Boltzmann weight. We also call

the product
ś

vPswpvq the Boltzmann weight of s and denote it wpsq. The labels zi

associated to the rows of the lattice are called spectral parameters, and the weights of

the vertices often depend on these parameters.

As mentioned in the introduction, a lattice model is considered solvable or integrable

if the Boltzmann weights satisfy a Yang-Baxter equation (YBE). The YBE can then be

used to prove functional equations for the partition function. We will now describe the

Boltzmann weights, boundary conditions, YBEs, and resulting functional equations for

each of our specific models.

3.0.1 The Tokuyama model

Recall that for pG “ GLn, the nonzero spherical Whittaker functionsWλpzq :“W pz;$´λq

are indexed by dominant weights, i.e., partitions λ of n. For a fixed k, let ρ “

pk ´ 1, k ´ 2, . . . , 1, 0q. Then for a given λ “ pλ1, . . . , λkq, the Tokuyama model has

k rows, labeled 1 through k from top to bottom, and λ1 ` k columns, labeled 0 to

λ1 ` k ´ 1 from right to left. The right boundary is filled with ´ spins, the bottom

and left boundaries with ` spins, and the top boundary with ´ spins in the columns

labeled by the parts of λ`ρ and ` spins elsewhere. Recall that q denotes the cardinality

of the residue field o{p. The Boltzmann weights are given by Figure 3.2. As a useful
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perspective, one can interpret the entries of Figure 3.2 as encoding matrix coefficients

of an endomorphism of V b V for a two-dimensional vector space V “ spantv`, v´u.

a1 a2 b1 b2 c1 c2

`

`

`

`

zi ´

´

´

´

zi `

´

`

´

zi ´

`

´

`

zi ´

`

`

´

zi `

´

´

`

zi

1 zi ´q´1 zi p1´ q´1qzi 1

Figure 3.2: (Figure 7 of [7], arXiv v2, see also [6].) Boltzmann weights for vertices in
row i of the Tokuyama model. If a vertex configuration does not appear in this table,
its Boltzmann weight is zero.

For the Yang-Baxter equation, we consider the following set of rotated vertices

(Figure 3.3, which we call R-vertices. Indeed, the R-vertices are the matrix coefficients

of (a Drinfeld twist of) the R-matrix for the quantum group Uqppglp1|1qq [7].

`

` `

`̀

zi, zj

´

´ ´

´

zi, zj

`

´ `

´

zi, zj

´

` ´

`

zi, zj

´

` `

´

zi, zj

`

´ ´

`

zi, zj

zj ´ q
´1zi zi ´ q

´1zj q´1pzi ´ zjq zi ´ zj p1´ q´1qzi p1´ q´1qzj

Figure 3.3: (Figure 8 in [7], see also BBF) The R-vertex weights for the Tokuyama
model.

With this choice of R-vertex weights, the Tokuyama model satisfies the Yang-Baxter

equation (sometimes also called the star-triangle relation, or RTT relation, in this con-

text), meaning that for any choice of boundary conditions pa, b, c, d, e, fq, we have the

following equality of partition functions.
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a

b

c

d

e

f

zi

zj

zi, zj

a

b

c

d

e

f

zj

zi

zi, zj (3.1)

As mentioned above, the Yang-Baxter equation allows one to prove functional equa-

tions for the partition function. Let Sλpzq denote the Tokuyama lattice system (i.e., the

choice of the lattice shape, Boltzmann weights, and boundary conditions) and ZpSλpzqq

the partition function of the system. In this case, we can apply the YBE to show that

pzi`1 ´ qziqZpSλpzqq is symmetric as follows ([6], Lemma 4).

We modify the vertex model for ZpSλpzqq by interchanging the spectral parameters

zi and zi`1 and attaching an R vertex to the left:

`

` ¨ ¨ ¨

¨ ¨ ¨ ´

´zi`1

zi

zi`1

zi

zi`1, zi

Consulting Figure 3.3, we see that the only admissible possibility for the R vertex

is the one in which all spins are `, and hence the partition function for this model

is pzi ´ qzi`1qZpSλpsizqq, where ZpSλpsizqq denotes pzi ´ qzi`1qZpSλpzqq with the

variables zi and zi`1 switched. By repeatedly applying the YBE 3.1, we see that this

configuration is equal to:

¨ ¨ ¨

¨ ¨ ¨zi

zi`1

zi

zi`1

zi`1, zi

´

´

`

`
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which has partition function pzi`1 ´ qziqZpSλpzqq. Thus,

pzi ´ qzi`1qZpSλpsizqq “ pzi`1 ´ qziqZpSλpzqq

and hence pzi`1 ´ qziqZpSλpzqq is symmetric.

This method of proof is standard and often referred to as the “train argument.”

3.0.2 The Iwahori model

The Iwahori model is obtained by adding an extra piece of data–color–to each edge in

the Tokuyama model. Specifically, we replace the ´ spins by n distinct ordered colors,

which we identify with the integers 1 ă ¨ ¨ ¨ ă n. In addition, vertical edges are allowed

to carry multiple colors, via a process similar to fusion for quantum groups (see [7] §5).

The Boltzmann weights are shown in Figure 3.4 below, where v “ q´1.

The boundary conditions now also depend on an additional piece of data, namely,

a permutation w P Sn. (In fact, [7] define a more general lattice model that depends

on two permutations w1 and w2, but we will consider only w2 “ id here for simplicity.)

The top boundary is still dictated by the partition λ ` ρ, as for the Tokuyama model,

but now the ´ spins (in the unfused model) are instead labeled by the colors 1 through

n in order from left to right. The right boundary is labeled by the colors n`1´w´1p1q

through n ` 1 ´ w´1pnq from top to bottom, and the left and bottom boundaries still

consist of ` spins.

There exist colored R-vertices and a corresponding YBE (with some additional, but

manageable, subtleties due to the fusion construction) for the Iwahori model; see §6 of

[7]. In contrast to that of the Tokuyama model, the partition function of the Iwahori

model can actually be calculated via the train argument, using induction on the length

of the permutation w. Let Sλ,wpzq denote the lattice system with fixed boundary

according to λ and w, and ZpSλ,wpzqq its partition function. When we apply the train

argument to ZpSλ,wpzqq, there are now two possibilities for the R vertex on one side of

the “train,” and upon rearranging the resulting equation, we obtain an expression for

ZpSλ,siwpzqq in terms of the conjugated Demazure-Whittaker operator zρTiz´ρ acting

on ZpSλ,wpzqq. Hence:

Proposition 2 ZpSλ,wpzqq “ zρφwpz;$´λq.



15

Figure 3.4: The Boltzmann weights for row i of the Iwahori model.

See Proposition 7.1 and Theorem 7.2 of [7] for more details on the proof, and for its

statement in full generality.

In this way, we think of color as “refining” the Tokuyama model, since we can write

the Tokuyama model associated to λ as a sum over the Iwahori models ZpSλ,wpzqq

for w P Sn, and, moreover, it is possible to identify each colored state with a unique

uncolored state (see [7], arXiv v2, Proposition 6.3).

3.0.3 The Frozen Pipes model

The Frozen Pipes model of [3] is also related to the Tokuyama model via the addition

of color to the spin set (as well as a horizontal flip of and enlargement of the lattice).

However, instead of being a refinement of the Tokuyama model, the Frozen Pipes model
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utilizes color in order to represent a wider class of functions. Specifically, recall that

when q “ 0, the partition function of the Tokuyama model returns zρ times a Schur

polynomial sλpzq. Schur polynomials are the same as Schubert polynomials associated

to Grassmannian permutations, i.e., permutations with a single descent. The partition

functions of the five-vertex Frozen Pipes model (after setting the parameter β “ 0), on

the other hand, calculate Schubert polynomials for arbitrary permutations. The model

was inspired by the combinatorial realization of Schubert polynomials in terms of dia-

grams called pipe dreams. Further, for β ‰ 0, we leave the connection to the Tokuyama

model behind, and the partition function is a β-Grothendieck polynomial.1 See section

4 for the initial geometric definitions of Schubert/Grothendieck polynomials, and [3]

for more discussion on and references for pipe dreams. There is also discussion in [3]

Remark 3.3 about how to obtain the lattices for Schur and Grassmannian Grothendieck

polynomials from the Frozen Pipes lattice.

The Frozen Pipes model is defined on an nˆ n square lattice, and depends on two

sets of spectral parameters: x “ tx1, . . . , xnu and y “ ty1, . . . , ynu, which we choose to

think of as being associated to the rows and columns, respectively, of the model. We will

work primarily with what is called the “pipe model” in [3], in which the left boundary

is labeled with the colors 1 to n from top to bottom, the top boundary is labeled with

w´1p1q to w´1pnq from left to right for a permutation w P Sn, the right and bottom

boundaries are labeled with `, and the Boltzmann weights are listed below.

Figure 3.5: The Frozen Pipes pipe model Boltzmann weights for vertices in row i,
column j, where b ą a and the notation x‘ y “ x` y` βxy denotes the multiplicative
formal group law. Note that ` behaves like the largest color: 1 ă ¨ ¨ ¨ ă n ă `.

1There is also a six-vertex generalization of the Frozen Pipes model (in preparation), very similar to
that of [14], and which we expect to represent a variant of the motivic Chern class of a Schubert variety,
but we will not discuss this version of the model here.
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There again exists a row YBE for this set of weights, and, with the addition of the

column parameters y, we also obtain a column YBE, which gives the equivalence of the

following partition functions for any fixed choice of boundary conditions.

Figure 3.6: The column Yang-Baxter equation.

As with the Iwahori model, we can use the train argument inductively–on the

columns, in this case–and recognize the resulting equations in terms of the operators

defining the β-Grothendieck polynomials. The Schubert polynomials are obtained by

setting β “ 0 and y “ ´y, and the (ordinary) Grothendieck polynomials by setting

β “ ´1. See [3], §5.
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Chapter 4

Schubert calculus background

We now describe the relevant background on Schubert calculus, following primarily the

sources [21, 22, 23, 24, 5]

4.0.1 Flag varieties and Schubert classes

Let Xnpd1, . . . dkq denote the set of flags in Cn of type pd1, . . . , dkq, i.e.,

Xnpd1, . . . dkq :“ t0 Ă V1 Ă ¨ ¨ ¨ Ă Vk´1 Ă Cn : dimpViq “
i
ÿ

j“1

dj ,
n
ÿ

j“1

dj “ nu.

For example, Xnpd, n´ dq is the Grassmannian Grpd, nq of d-dimensional subspaces of

Cn. Let G :“ GLnpCq, and fix a basis te1, . . . , enu of Cn. Then G acts transitively on

Xnpd1, . . . , dkq with stabilizer P pd1, . . . , dkq, the parabolic subgroup with diagonal blocks

of sizes d1, . . . , dk, and hence Xnpd1, . . . dkq – G{P pd1, . . . , dkq. When the sequence

d1, . . . , dk is clear from context, we will refer to the relevant parabolic subgroup simply

as P . By embedding G{P in a suitable projective space, one finds that it is a smooth

variety, which we refer to as a partial flag variety. We will often switch between

the two perspectives on flag varieties (in terms of matrices or in terms of the flags

themselves) depending on context.

Flags in Xnpd1, . . . , dkq are parametrized by cosets in W {WP :“ Sn{pSd1ˆ¨ ¨ ¨ˆSdkq.

Each coset has a minimal representative: a unique permutation w such that wp1q ă

¨ ¨ ¨ ă wpd1q, wpd1 ` 1q ă ¨ ¨ ¨ ă wpd1 ` d2q, and so forth. Following Brion, we denote

19
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the set of minimal representatives as WP . Let FP denote the flag

FP : 0 Ă xe1, . . . , ed1y Ă ¨ ¨ ¨ Ă xe1, . . . , edk´1
y Ă Cn.

Then, indeed, the flags in Xnpd1, . . . , dkq are exactly FwP :“ wFP – wP {P for w PWP .

For example, if w “ 2341 in one-line notation, the flag FwP in X4p1, 2, 1q is:

0 Ă xe2y Ă xe2, e3, e4y Ă C4.

Alternatively, we can represent a coset in W {WP as a word w in the alphabet t1, . . . , ku

such that i appears di times: wpjq “ i indicates that the basis vector ei first appears in

the jth flag. For example, the flag above corresponds to w “ 3122.

In particular, the full flag variety Xnp1, . . . , 1q is parametrized by permutations in

W “ Sn and is isomorphic to G{B, where B is the Borel subgroup of upper triangular

matrices. By sending a flag to the corresponding partial flag of type d1, . . . , dk, we

obtain a G-equivariant fibration

G{B Ñ G{P

with fiber P {B over B{B. Due to the existence of this map, one can address many

questions about partial flag varieties by reducing to the case of the full flag variety.

We define Schubert cells CwP (w PWP ) in terms of intersections with the standard

flag FB P Xnp1, . . . , 1q as follows:

CwP “t0 Ă Vd1 Ă ¨ ¨ ¨ Ă Vdk Ă Cn : dimpVdi X Cmq “ #tj ď di : wpjq ď mu

for 1 ď i ď k and 1 ď m ď nu.

To obtain the corresponding Schubert varieties XwP , replace ““” with “ě” in the

definition above. In terms of matrices, CwP is the Borel orbit BFwP – BwP {P , and

the Schubert variety XwP is its Zariski closure BFwP .

From now on, we will work solely with the full flag variety G{B, and denote the

Schubert classes/varieties simply by Cw and Xw. We can make the definition of Schubert

cells and varieties in terms of matrices more explicit: a flag F P Cw is represented–in the
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sense that the first k rows span the k-th subspace of F–by a unique matrix pxijq1ďi,jďn

such that

xi,wpiq “ 1, and xi,j “ 0 if j ą wpiq or i ą w´1pjq,

i.e., we place 1’s in the wpiq-th entry of the i-th row, and zeros to the right of and down

from each 1. For example, if w “ 3142 P S4, Cw consists of matrices of the form

¨

˚

˚

˚

˚

˚

˝

˚ ˚ 1 0

1 0 0 0

0 ˚ 0 1

0 1 0 0

˛

‹

‹

‹

‹

‹

‚

.

One can verify that the number of free entries is always lpwq, where lpwq “ #ti ă

j : wpiq ą wpjqu is the the length of w, and thus Cw – Clpwq. Moreover,

Xw “
ğ

vďw

Cv and G{B “
ğ

wPW

Cw

(see e.g., [22] §3.6 for proof). Thus, by general facts from cohomology, the Schubert

classes Sw in H˚pG{Bq form an additive basis of the cohomology ring H˚pG{B;Zq. On

the other hand, there is an algebraic presentation of H˚pG{Bq in terms of generators

x1, . . . , xn P H
2pG{Bq. (These generators are the first Chern classes of some natural

line bundles on G{B; see Fulton [23] Chapter 10 for more details.) The presentation is

as follows:

Proposition 3 Let ekpxq denote the k-th elementary symmetric polynomial in the vari-

ables x “ tx1, . . . , xnu. Then

H˚pG{B;Zq – Zrxs{pe1pxq, . . . , enpxqq.

The monomials xi11 ¨ ¨ ¨x
in
n , with exponents ij ď n´j, form an additive basis for H˚pG{B;Zq.

Thus, we should be able to express the basis of Schubert classes in terms of elements

in this quotient ring. Moreover, we would like the representatives we pick to satisfy

the following stability property : since w P Sk can be regarded as an element of Sk`1

fixing k ` 1, and there is a natural embedding Xkp1, . . . , 1q ãÑ Xk`1p1, . . . , 1q inducing
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a pullback H˚pXk`1p1, . . . , 1qq Ñ H˚pXkp1, . . . , 1qq that maps the Schubert class Sw to

itself, an ideal polynomial representative would respect this inclusion. Indeed:

Proposition 4 ([23], §10.2 Proposition 3) For w P Sk, let Swk denote the Schubert

class Sw considered as an element of H˚pXkp1, . . . , 1qq. Then there is a unique homo-

geneous polynomial of degree lpwq, the Schubert polynomial Sw corresponding to w,

in Zrx1, . . . , xks that maps to Sw0w
k in H˚pXkp1, . . . , 1qq.

4.0.2 Generalized Schubert Calculus

Before discussing how to actually calculate the Schubert polynomials, we will introduce

some of their natural generalizations so that we can treat them simultaneously. Indeed,

the classical Schubert calculus story can be generalized in many different directions. The

three “orthogonal” directions that are relevant for this thesis are nicely encapsulated

by the following figure from [9].

Figure 4.1: [9], Figure 1: three “orthogonal” directions to generalize classical Schubert
calculus.

For X a flag variety, the lower left corner corresponds to the classical Schubert

calculus story described above. Traveling to the right, we obtain increasingly more

general cohomology theories: K-theory KpXq and elliptic cohomology EllpXq. We

single out these theories in particular because they (along with their “universal” version,

complex cobordism) are oriented cohomology theories: certain cohomology theories that

are classified by 1-dimensional formal group laws. Quillen described how to extract a

formal group law from an oriented cohomology theory in his landmark 1969 paper [25]:
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such theories are equipped with Chern classes (of line bundles over the base space X),

and the formal group law F describes the first Chern class c1 of the tensor product of

two line bundles:

c1pL1 b L2q “ F pc1pL1q, c1pL2qq.

The significance of this for our purposes is the fact that solutions to the quantum

Yang-Baxter equation (YBE) are also classified by these formal group laws, and hence

we might expect there to be integrable systems associated to each of the points on

the cube. The recent work of Aganagic, Maulik, and Okounkov [1, 2] has begun to

flesh out the connection between quantum integrable systems and the cohomology of

Nakajima quiver varieties, a broad class of varieties that includes both flag varieties and

their cotangent bundles, by identifying the (oriented) cohomology ring with the Bethe

algebra of commuting transfer matrices of the integrable system. An especially nice

feature of this correspondence is that the “easy” basis of one theory matches up with

the “hard” basis of the other, as summarized in [9] and reproduced in Figure 4.2. This

correspondence is what initially inspired the investigation in §6.0.1.

Figure 4.2: From [9].

Traveling up to the top face of the box in Figure 4.1 corresponds to passing from X

to T ˚X, and traveling to the back face of the diagram corresponds to passing from ordi-

nary (oriented) cohomology to equivariant (oriented) cohomology, which we will discuss

in more detail in 4.0.4. We also note that here we will really only focus on the left half

of the cube, as well as on connective K-theory CK, a theory that interpolates between

H˚ and K. Elliptic cohomology is often singled out due to its relative complexity in
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the hierarchy: while H˚,K, and CK have naturally defined Schubert classes that do

not depend on the choice of a Bott-Samelson resolution, the classes in Ell do depend

on choices. While we will not be discussing elliptic cohomology in detail, we mention

that there has been recent progress in this area. In particular, Kumar, Rimányi, and

Weber [26, 27] have defined an “h-deformed Schubert class” in equivariant elliptic co-

homology EllT pXq that does not depend on choices (though its specialization to the

non-equivariant theory has a singularity, again reflecting the need for choices in the

non-equivariant case), and have shown that these classes can be represented by “elliptic

weight functions,” functions which already existed in the literature [28]. Motegi [29]

has begun analysis of certain nested lattice models whose partition functions give these

elliptic weight functions.

4.0.3 K-theory and connective K-theory

The K-theory ring KpXq is the Grothendieck ring generated by symbols rEs for vector

bundles E Ñ X, modulo the relations rEs “ rE1s ` rE2s whenever there exists a short

exact sequence 0 Ñ E1 Ñ E Ñ E2 of vector bundles. Addition and multiplication in

KpXq are given by direct sums and tensor products, respectively, of vector bundles.

When X is smooth, as in the case of X “ G{B, this definition of KpXq coincides

with the Grothendieck group of coherent sheaves on X, since every coherent sheaf has

a finite resolution by vector bundles. There is a topological filtration F0 Ą F1 Ą ¨ ¨ ¨

of KpXq, where Fj consists of coherent sheaves with codimension at least j, and with

respect to this filtration, the lowest graded piece of the associated graded ring of KpXq

is isomorphic to the cohomology ring H˚pXq. This is the sense in which K-theory is

considered a generalization of cohomology.

Connective K-theory, which we denote CKpXq, is a graded version of KpXq,

obtained by tensoring KpXq with Zrβ, β´1s, for degpβq “ 1, and modifying the push-

forward and pullback maps to include powers of β. When β “ 0, we recover H˚pXq,

and when β “ ´1, we recover KpXq. For a nice summary of connective K-theory in

the context of oriented cohomology theories and formal group laws (from the coherent

sheaf point of view), we like the reference [30]. Both KpG{Bq and CKpG{Bq have ad-

ditive bases consisting of Schubert classes rOXw s, where OXw is the structure sheaf of

Xw. We denote the polynomial representatives of these Schubert classes in KpG{Bq and
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CKpG{Bq by Gw and Gβw, respectively; these are the (β)-Grothendieck polynomials.

Schubert and (β)-Grothendieck polynomials via divided difference operators

In this subsection, we will work primarily with β-Grothendieck polynomials, since they

specialize both to Schubert polynomials (when β “ 0) and to Grothendieck polynomials

(when β “ ´1). We now describe one method for calculating these polynomials: via

divided-difference operators, which turn out to correspond to certain push-pull operators

in geometry, as we will describe. Schubert polynomials were initially defined by Lascoux

and Schutzenberger in [31], and Fomin and Kirillov defined β-Grothendieck polynomials

in [32]. Fomin and Kirillov were motivated, in part, by attempts to classify exponential

solutions to the Yang-Baxter equation; the connection to connective K-theory came

much later, in [30]. See the appendix to [30] for a nice exposition of the relation between

Fomin-Kirillov’s definition and the divided difference operator definition.

Let Bi be the ith divided difference operator, which acts on functions f “ fpx1, . . . , xnq

by:

Bipfq “
f ´ fsi

xi ´ xi`1
,

where fsi “ fpx1, . . . , xi`1, xi, . . . , xnq. The β-Grothendieck polynomials Gpβqw pxq are

built from the modified operators

π
pβq
i :“ Bi ˝ p1` βxi`1q

recursively with respect to length in the symmetric group, starting with the longest

word w0. Specifically, let ρ “ pn´ 1, n´ 2, . . . , 2, 1q. Then we define

Gβw0
“ xρ

and for w P Sn and si “ pi i` 1q P Sn, if lpwsiq “ lpwq ´ 1,

Gwsi “ π
pβq
i Gpβqw .

Note that these polynomials are well-defined since the operators π
pβq
i satisfy the braid

relations π
pβq
i π

pβq
i`1π

pβq
i “ π

pβq
i`1π

pβq
i π

pβq
i`1.
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To interpret these operators geometrically, we first need to define Bott-Samelson

varieties. In general, Schubert varieties Xw can be singular; the corresponding Bott-

Samelson varieties Γw provide a resolution of singularities rw : Γw Ñ Xw. Let Pi denote

the minimal parabolic subgroup generated by B and si, i.e.,

Pi “

$
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.

Note that if w “ si1 ¨ ¨ ¨ sik is a reduced decomposition of w, then Xw “ Pi1Xsi1w
“

Pi1 ¨ ¨ ¨Pik{B. Letting v :“ si1w, we see that lpvq “ lpwq ´ 1. Then the Bott-Samelson

varieties Γw are defined by:

Γid “ Xid

and

Γwsi “ Pi1 ˆB Γv,

where the action of B is by conjugation. We will denote the Bott-Samelson classes

prwq˚rΓws in CKpG{Bq by Zw. Consider the following pullback square, where φ and

pik are the natural projection maps:

Γsi1 ¨¨¨sik G{B

Γsi1 ¨¨¨sik´1
G{B G{Pik .

rsi1 ¨¨¨sik

φ pik
rsi1 ¨¨¨sik´1 pik

Then:

Theorem 1 ([33]) Let Ai “ ppiq
˚ppiq˚, and let w “ si1 ¨ ¨ ¨ sik be a reduced decomposi-

tion of w. Then:

Zw “ Ai1 ¨ ¨ ¨AikpZ
idq.
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The Ai satisfy the braid relations, and hence the class Zw does not depend on the choice

of reduced decomposition for w. Moreover, Zw is equal to the Schubert class Sw0w,

and the image of the push-pull operator ppiq
˚ppiq˚ in the realization of CKpG{Bqq as

a polynomial ring is π
pβq
i . Thus, the β-Grothendieck polynomials are indeed polynomial

representatives of the Schubert classes in CKpG{Bq.

(Note: Bressler and Evans demonstrated that connective K-theory is essentially the

last oriented cohomology theory in the hierarchy for which the Ai satisfy the braid

relations, and hence the last theory in which we can identify the Schubert classes with

the Bott-Samelson classes.)

4.0.4 Equivariant Cohomology and Localization

For a topological space X equipped with an action of a group Γ, one can exploit the

symmetry imparted by this action to define the Γ-equivariant cohomology ring

H˚ΓpXq. A significant advantage to working with equivariant cohomology is the fact that,

in many situations, all important information about H˚ΓpXq is contained in H˚ΓpX
Γq,

the cohomology of the fixed point locus. This fact can be a huge aid in calculations,

particularly in the case when X has finitely many Γ-fixed points.

To define H˚ΓpXq, first consider the case where Γ acts freely, in which H˚ΓpXq is

defined very naturally as:

H˚ΓpXq :“ H˚pX{Γq.

In general, we can always find a contractible space EΓ with a free Γ-action, and then

H˚ΓpXq :“ H˚ppX ˆ EΓq{Γq.

Note that the equivariant cohomology of a point, H˚Γpptq “ H˚ΓpEΓ{Γq, can now be

nontrivial–this is a key feature of the theory. Every Γ-invariant subvariety Y of X has

a fundamental class rY sΓ P H
˚
ΓpXq. Consider the map π : X Ñ tptu. It induces a

graded ring map π˚ : H˚Γpptq Ñ H˚ΓpXq on cohomology, giving H˚ΓpXq the structure

of an H˚Γpptq-module. Moreover, employing the Poincaré isomorphism to identify the

homology group HΓ
i pXq with Hn´i

Γ pXq, where n “ dimRpXq, we obtain the pushforward
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π˚ : H˚ΓpXq Ñ H˚Γpptq and (for torsion-free X) the symmetric Poincaré pairing

xa|by “ π˚paY bq,

which extracts the coefficient of rpts in the cup product aY b.

Similarly, (connective) Γ-equivariant K-theory is defined analogously to ordinary

(connective) K-theory, but with generators given by Γ-equivariant vector bundles. The

pushforward to a point, π˚ : CKΓpXq Ñ CKΓpptq, is now the graded Euler characteristic

π˚prEsq “ χpX,Eq “
ÿ

i

βiH ipX;Eq

so the Poincaré pairing is

xrEs, rF sy :“ χpX,E b F q “
ÿ

i

βiH ipX;E b F q.

In our case, we are interested in H˚T pG{Bq, KT pG{Bq, and CKT pG{Bq where T –

pcˆqn is the torus of diagonal matrices, acting on G via conjugation and hence on G{B

by left multiplication. To understand the structure of H˚T pptq, note that we can take

ET “ tpziqią0|zi P cn, finitely many zi ‰ 0u

so

ET {T – pcP8qn

and thus HT pptq – Zry1, . . . , yns.

For KT pptq, since equivariant vector bundles E Ñ pt are equivalent to representa-

tions of T , KT pptq is isomorphic to the representation ring RpT q of T . Alternatively,

we can view it as Zre˘t1 , . . . , e˘tns, where eti are characters corresponding to a basis of

the Lie algebra of T .

Recall from §4.0.1 that the Schubert varieties are defined by incidence conditions

with respect to the standard flag FB in the full flag variety. The flags Fw :“ FwB,

w P W , are T -invariant, and in fact are exactly the T -fixed points in G{B. Hence the

equivariant Schubert classes defined instead with respect to FwB are T -invariant as well.
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Thus, for each w, we obtain another basis of w-twisted Schubert classes tSv
pwquvPSn

for each of our equivariant theories. Explicitly, denote the ith subspace in Fw by pFwqi.

Then the w-twisted Schubert cell is

Cpwqv “t0 Ă V1 Ă ¨ ¨ ¨ Ă Vn “ Cn| dimpVi X pFwqiq “ #tj ď i : wpvpjqq ď mu

for 1 ď i ď k and 1 ď m ď nu.

and X
pwq
v “

Ę

C
pwq
v . In the matrix formulation, representing w as a permutation matrix,

we have X
pwq
v “ w ¨Xv. The classes Sw

pw0q
´1 are dual to the classes Sw with respect to

the Poincaré pairings.

We now describe the key localization results that facilitate computations in H˚T (and

K, and CK). Let rH˚T pG{Bq denote the cohomology ring H˚T pG{Bq localized at HT pptq,

and let ιw denote the class of the fixed point Fw in H˚T pG{Bq. Applying the pullback i˚w

of the inclusion iw : tFwu Ñ G{B is commonly called restricting to the fixed point Fw

and denoted by |w. The localization theorem states that rH˚T pG{Bq is generated (as a

vector space over rH˚T pptq) by the classes ιw. For practical purposes, however, we would

like to know how to actually decompose in this basis. To that end, we have the following

general theorem (due to Atiyah, Bott, Berline, and Vergne in the cohomology case):

Theorem 2 Let X be a compact, nonsingular variety equipped with an action of a torus

T – pcˆqn, and let Ep denote the product of weights of T acting on the tangent space

TpX of X at the fixed point p. Then:

rXs “
ÿ

pPXT

rps

Ep
P rH˚T pXq,

and in K-theory and connective K-theory, respectively, we have:

rXs “
ÿ

pPXT

rps

λ´1pT ˚pXq
P rKT pXq

and

rXs “
ÿ

pPXT

rps

λβpT ˚pXq
P ĄCKT pXq
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where if V is a complex vector space with T -action and weight decomposition V “ ‘iVµi ,

λypV q “
ś

ip1` ye
µiq.

(The Atiyah-Bott-Berline-Vergne theorem is really a slightly more general version of

this theorem, which expands π˚α P H
˚
T pptq into fixed points for any class α P H˚T pXq–

see [24]. The above theorem follows from this general version by taking α “ X and

applying the pushforward pipq˚ : H˚T ptpuq Ñ H˚T pXq.)

This theorem will first come into play for us in the next section, when we derive the

Boltzmann weights for the (five-vertex) Frozen Pipes model.



Chapter 5

Deriving the Frozen Pipes model

via geometry

To connect our discussion of Schubert calculus to the lattice model world, we consider

the Hilbert space:

H :“
n
à

k“1
d1`¨¨¨`dk“n

H˚T pXnpd1, . . . , dkqq,

We can also think of H as a tensor product
Ân

i“1 V ryis, where V is an n-dimensional

vector space whose basis elements we denote by the “colors” c1, . . . , cn. Then there is

a natural basis of H indexed by length n words in the alphabet tc1, . . . , cnu, i.e., by

elements of W {WP for some parabolic P , as described in §4.0.1, where we saw that the

Schubert classes in the H˚T pXnpd1, . . . , dkqq are also classified by such words. For each

P “ P pd1, . . . , dkq, fix a color vector

cP “ c1 ¨ ¨ ¨ c1
loomoon

d1

¨ ¨ ¨ ck ¨ ¨ ¨ ck
looomooon

dk

.

For w P W {WP , we identify the basis vector |wcP y with the Schubert class Sw P

H˚T pG{P q, and xw´1cP | with its Poincaré dual Sw
´1

pw0q
. Then the twisted Schubert class

Sw
pvq can be identified with |vpwcP qv

´1y (or xv´1pw´1cP qv|).

We now show that the change of basis matrix between tSv
psiq
u and tSvu is exactly

the matrix of Boltzmann weights for the (Schubert) Frozen Pipes model. This is a

31
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straightforward generalization of the argument presented in Zinn-Justin’s notes [5] in

the case where X is a Grassmannian. In fact, the arguments in this section can be

modified easily to obtain analogous results for the (β-)Grothendieck model–provided

we replace yi with ayi, where a denotes the inverse of the multiplicative formal group

law: ayi “
´yi

1`βyi
.

For w PW , let Rw be the change of basis matrix defined by

Sv “
ÿ

uPW

pRwquvS
u
pwq.

Then we claim that

Proposition 5 The change of basis matrix Rsi associated to the elementary transposi-

tion si “ pi, i` 1q acts nontrivially only on the i-th and pi` 1q-st tensor factors of H;

in particular, for Sv, it acts nontrivially only on the colors cvpiq and cvpi`1q. The piece

of Rsi acting on each pair of colors b ă r is of the form:

¨

˚

˚

˚

˚

˚

˝

‚‚ ‚‚ ‚‚ ‚‚

‚‚ 1 0 0 0

‚‚ 0 yi`1 ´ yi 1 0

‚‚ 0 1 0 0

‚‚ 0 0 0 1

˛

‹

‹

‹

‹

‹

‚

Recall that Pi is the minimal parabolic subgroup generated by B and si. Consider

the quotient Xw ˆB Pi (with B acting on the left of both factors), which comes with

two natural projection maps:

Xw ˆB Pi

Xw BzPi – P1.
f

g

BzPi has two T -fixed points, r1s :“ B and rsis :“ Bsi, so by the localization formula:

rP1s “
r1s

yi`1 ´ yi
`

rsis

yi ´ yi`1
.

Applying f˚g
˚ to this equation and rearranging, we obtain
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rXws “ rsi ¨Xws ` pyi`1 ´ yiqrPi ¨XwsδdimpPi¨Xwq,dimpXwq`1.

In terms of Schubert classes, we have rXws “ Sw, rsi ¨ Xws “ Sw
psiq

, and rPi ¨

XwsδdimpPi¨Xwq,dimpXwq`1
“ Ssiw

psiq
if wci ă wci`1 (and rPi ¨ XwsδdimpPi¨Xwq,dimpXwq`1 “ 0

otherwise), giving us the desired formula for Rsi .

In terms of the Frozen Pipes lattice, this matrix describes the weights of the column

R-matrix acting on the vectors xv´1| and |vy associated to the Schubert classes, where

yi is the the spectral parameter in the ith column. (Recall that we treat ` as the largest

color.) For instance, the entry in the second row and second column corresponds to the

vertex:

.

We can think of the spectral parameters yi and yi`1 as being attached to the strands

of the R-vertex. Then, by rotating the R-vertices and adjusting the associated spectral

parameters, we obtain the matrix of Boltzmann weights and the row R-matrix from

section 3.0.3. (Note: In the pβq´Grothendieck case, the column and row R-matrices

are not simply rotations of one another. They are, however, related by duality.)

We can break up the matrix of Boltzmann weights into blocks, one for each fixed

pair of left and right boundary conditions. In other words, each block corresponds to

an endomorphism of a column module V ryis. (We will interpret the endomorphism

diagrammatically as “flowing” from the bottom to the top of a vertex, i.e., the bottom

edge is the input and the top edge is the output.) More generally, we can consider

a single lattice row of any length with fixed left and right boundary; then the matrix

blocks correspond to endomorphisms of H. We break these endomorphisms into four

types: Apxq, which has ` on both the left and the right; Bipxq, which has color i on the

left and ` on the right; Cipxq, which has ` on the left and i on the right; and Dijpxq,

which has i on the left and j on the right. Thus, we obtain a block matrix of the form
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Apxq: ` ¨ ¨ ¨ `

Bipxq: i ¨ ¨ ¨ `

Cipxq: ` ¨ ¨ ¨ i

Dijpxq: i ¨ ¨ ¨ j

Figure 5.1: The monodromy operators.

¨

˚

˚

˚

˚

˚

˚

˚

˝

Apxq B1pxq B2pxq ¨ ¨ ¨ Bnpxq

C1pxq D11pxq D12pxq ¨ ¨ ¨ D1npxq

¨ D21pxq ¨

¨ ¨ ¨

Cnpxq Dn1pxq Dn2pxq ¨ ¨ ¨ Dnnpxq

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

called the monodromy matrix. The Yang-Baxter equation leads to commutation

relations between these operators, and we will see some of them put to use in §5.0.1.

Further, the algebra generated by the entries of the monodromy matrix modulo these

commutation relations, sometimes called a Yang-Baxter algebra, is a degeneration

of (a Drinfeld twist of) the Yangian Y pslnq (in the Schubert case) and the quantum

group Uqpslnq (in the (β-)Grothendieck case) via an “RTT” construction [34]. This is

a special case of the general construction employed by Maulik and Okounkov [1].

5.0.1 The algebraic Bethe ansatz

The algebraic Bethe ansatz is a standard method for finding the eigenvectors and eigen-

values of, and thus diagonalizing, the transfer matrix of an integrable system. For the
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Frozen Pipes model, the transfer matrix is defined to be

T puq “
n
ÿ

i“1

Diipuq,

and as the “ansatz”, we start by assuming that the (right) eigenvectors of T puq are of

the form B1px1q ¨ ¨ ¨Bnpxnq|Hy, where |Hy is the vacuum vector consisting of all ` spins.

We then use the Yang-Baxter commutation relations to obtain conditions (called Bethe

equations) on x “ tx1, . . . , xnu to ensure that these vectors are indeed eigenvectors of

T puq. In general, one usually needs to employ the nested algebraic Bethe ansatz for

higher rank models, but the analysis simplifies nicely in our five-vertex case, and will

serve as a good illustration for our purposes.

Thus, we start by examining

n
ÿ

i“1

DiipuqB1px1q ¨ ¨ ¨Bnpxnq|Hy.

Note that, based on our set of admissible vertices, the empty vector is an eigenvector

for Diipuq with eigenvalue
śn
j“1 u´ yj . Hence, if we commute the Diipuq’s through the

Bjpxjq’s in each summand, we will obtain (up to the factors obtained by applying the

commutation relations) a multiple of B1px1q ¨ ¨ ¨Bnpxnq|Hy, and setting the unwanted

factors equal to zero will determine the Bethe equations. Let i ă j. By applying the

usual YBE train argument, we have the following commutation relation:

pu´ xjqDiipuqBjpxjq `BipuqDijpxjq “ BipxjqDijpuq ` pu´ xjqBjpxjqDiipuq,

so, rearranging:

DiipuqBjpxjq “ BjpxjqDiipuq ´
1

u´ xj
BipuqDijpxjq `

1

u´ xj
BipxjqDijpuq (5.1)

and, similarly,
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DjjpuqBipxiq “ ´
1

u´ xi
BjpuqDjipxiq `

1

u´ xi
BjpxiqDjipuq. (5.2)

In the case where i “ j, we have:

DiipuqBipxiq “ ´
1

u´ xi
BipuqDiipxiq`

1

u´ xi
BipxiqDiipuq`

1

u´ xi
BipxiqDiipuq (5.3)

Thus, we need the last two terms in each of equations (5.1), (5.2), and (5.3) to be

zero. Note that then onlyD11puq will be able to commute past all of the Bj ’s. Examining

the possible partition functions ofBipuqDijpuq, BipxjqDijpuq, BjpuqDjipxiq, BjpxiqDjipuq, BipxiqDiipuq,

and BipuqDiipxiq–which is not too cumbersome, as we only care about the possible

placements of the crossing vertices a:2 and b2–we see that in order for these terms to

disappear, we need the xi to be distinct and to satisfy

n
ź

j“1

pxi ´ yjq “ 0. (5.4)

This is only possible if the xi’s are a permutation of the yj ’s. By similar calculations,

these are also the conditions required for xH|C1px1q ¨ ¨ ¨Cnpxnq to be a (left) eigenvector

of T puq. Thus, we have shown:

Proposition 6 Let w P Sn. Then B1pywp1qq ¨ ¨ ¨Bnpywpnqq|Hy and xH|C1pywp1qq ¨ ¨ ¨Cnpywpnqq

are right and left eigenvectors, respectively, of T puq, both with eigenvalue

śn
i“1 u´ yi
u´ ywp1q

“
ź

i‰wp1q

u´ yi.

From now on, we will use the suggestive notation:

|ιw0wy :“ B1pywp1qq ¨ ¨ ¨Bnpywpnqq|Hy,

and we now show that |ιw0wy is indeed the class ιw0w of the fixed point Fw0w.

Proposition 7 |ιw0wy is the class ιw0w of the fixed point Fw0w. In other words, the

partition function of the following model, where the dotted line indicates that the top
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boundary is unspecified and hence can range over all permutations, represents the ex-

pansion of ιw0w into the Schubert classes xv´1| “ Sv
´1

pw0q
:

,

and the partition function of the model obtained by specifying a top boundary according

to v´1 P Sn:

is the Poincaré pairing xSv, ιw0wy, i.e., Sv restricted to the fixed point Fw0w. Since

equivariant Schubert classes are determined by their restrictions to fixed points, this

gives another proof that xv´1|B1px1q ¨ ¨ ¨Bnpxnq|Hy is the double Schubert polynomial

associated to v.

In the case where w “ id, ιw0w “ ιw0 coincides with the Schubert class Sid
pw0q

. And

indeed, since a crossing at the ith diagonal vertex of |ιw0y has a weight of yi ´ yi “ 0,

|ιidy pairs non-trivially only with the ket xid| “ Sid
pw0q

, with weight 1 (n “ 3 case shown

below).
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x3, y1 x3, y2 x3, y3

x2, y1 x2, y2 x2, y3

x1, y1 x1, y2 x1, y3

1 2 3

1 2 3 `

2 3 `

2 3 ` `

3 ` `

3 ` ` `

` ` `

Hence the proposition is true in this base case. The other cases then follow via the

action of Sn: the matrix Rw acts on |ιw0y by permuting the row variables according to

w, as we can see in the case of the simple reflection w “ si from the train argument

below (where we only record row variables):

i+1

i `

`

yi

yi`1

yi, yi`1 =

i+1

i `

`

yi`1

yi

yi, yi`1

since the only possibility for the R-vertex on the left side is a52, with weight 1, and the

only possibility for the R-vertex on the right is a1, also with weight 1. This matches

the geometric action of w on the fixed point ιw0 .

(We note that choosing to use the pipe model boundary conditions instead of the

“Demazure model” ones was arbitrary–the same process works with the Demazure model

if we use single-column monodromy operators rather than single-row operators.)



Chapter 6

The Tokuyama partition

function: Deformation of the

Weyl character formula and

geometric interpretation

We now turn to a geometric analysis of the Tokuyama model. We employ solvability in

two ways, each resulting in different expressions for the partition function. First, we can

immediately take advantage of equation (2.2) to identify the Tokuyama model with a

sum of Iwahori models, which we calculated via the standard train argument in §3.0.2:

ZpSλ,zq “
ÿ

wPW

pzρTiz´ρqpzλ`ρq “
ÿ

wPW

zρφwpz;$´λq (6.1)

The second method, inspired by the algebraic Bethe ansatz and similar to that in [35],

results in the well-known expression of Wλpzq in terms of the Schur function (by way

of the Weyl character formula), due originally to Casselman and Shalika.

In §6.0.1, we state the geometric meanings of these two expressions for the spherical

Whittaker function. Moreover, we show that by equating them, one can deduce a variant

of the Langlands-Gindikin-Karpelevich formula (and its geometric analogue) evaluating

certain structure constants. In the p-adic formulation, the structure constants express

39
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the spherical vector in terms of Casselman’s basis for the space of Iwahori-fixed vectors.

In the geometric formulation, they express the motivic Chern class of the full flag

variety in terms of the fixed point basis in equivariant cohomology. Once we have the

two expressions, the structure constant formulae can be deduced without recourse to

the lattice model; however, it seems significant that the expressions themselves result

purely from applying solvable lattice model techniques.

6.0.1 Bethe ansatz-type calculation

We saw in section 5.0.1 an example of the Bethe ansatz, in which we determined condi-

tions on the spectral parameters for the Frozen Pipes model such thatBpx1q ¨ ¨ ¨Bpxnq|Hy

is an eigenvector of the transfer matrix. A similar method can also be used to com-

pute an explicit symmetrization formula for the Bethe vectors Bpz1q ¨ ¨ ¨BpzM q|Hy of

the Tokuyama model with arbitrary z1, . . . , zM (these are sometimes called “off-shell”

Bethe vectors, in contrast with the “on-shell” Bethe vectors whose parameters are re-

quired to satisfy the Bethe equations). Here, Apzq, Bpzq, Cpzq, and Dpzq denote the

monodromy operators depicted in Figure 6.1.

Apzq: ` ¨ ¨ ¨ `

Bpzq: ` ¨ ¨ ¨ ´

Cpzq: ´ ¨ ¨ ¨ `

Dpzq: ´ ¨ ¨ ¨ ´

Figure 6.1: The monodromy operators.

Borodin and Petrov ([35], Theorem 4.14), inspired by arguments of Felder and

Varchenko [36], apply this method for the higher spin six-vertex model. Here we apply a
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modified version of their argument to calculate the partition function of the Tokuyama

model, obtaining the following:

Theorem 3

ZpSλ,zq “
ź

iăj

zi ´ q
´1zj

zi ´ zj

ÿ

wPSM

p´1qlpwqzwpλ`ρq. (6.2)

We start by considering the effect of BpzM q ¨ ¨ ¨Bpz1q on two tensor factors. If

˜

Ai Bi

Ci Di

¸

denotes the monodromy matrix for a single vertex acting on the vector space Vi, we

obtain the following monodromy matrix for the action on the vector space V1 b V2:

T “

˜

A B

C D

¸

“

˜

A2 B2

C2 D2

¸˜

A1 B1

C1 D1

¸

and thus Bpzq “ A2pzqB1pzq ` B2pzqD1pzq. Thinking about this pictorially, we are

simply summing over the two possible spins for the middle edge in a one row, two

column lattice with boundary conditions prescribed by B:

` ´ = ` ` ´ + ` ´ ´ .

In our case, V1 “ V2 “ V , so the subscripts only matter insofar as they keep track

of which column the operators are acting on. Note that operators acting on different

columns commute with one another.

Thus, an expression for the composition BpzM q ¨ ¨ ¨Bpz1q in terms of single-vertex

operators is given by expanding

pB1pz1qA2pz1q `D1pz1qB2pz1qq ¨ ¨ ¨ pA2pzM qB1pzM q `B2pzM qD1pzM qq,

and acting on e0 b e0. The terms that survive, i.e., those that correspond to nonzero

partition functions with our choice of admissible vertices, consist of all possible combi-

nations of factors B1 and D1 acting on the first column and of B2 and A2 acting on the
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second. Since e0 is an eigenvector for the A and D operators, we would like to be able to

commute the A’s and D’s past the B’s in each term. We will see that the Yang-Baxter

equation allows us to do so, at the expense of multiplying by certain factors. Thus, we

can write the partition function as a linear combination of terms of the form

B1pzk1q ¨ ¨ ¨B1pzkM´s
qD1pzl1q ¨ ¨ ¨D1pzlsqe0 bB2pzi1q ¨ ¨ ¨B2pzisqA2pzj1q ¨ ¨ ¨A2pzjM´sqe0

where

I “ ti1 ă ¨ ¨ ¨ ă isu, J “ tj1 ă ¨ ¨ ¨ ă jM´su, I \ J “ t1, . . . ,Mu

K “ tk1 ă ¨ ¨ ¨ ă kM´su, L “ tl1 ă ¨ ¨ ¨ ă lsu, K \ L “ t1, . . . ,Mu.

Note that I XK “ H. We see that the action of the desired product of B operators

on e0 b e0 has the form

ÿ

KĎt1,...,Mu
CK

˜

ź

kPK
B1pzkq

ź

lRK
D1pzlq

¸

e0 b

˜

ź

lRK
B2pzlq

ź

kPK
A2pzkq

¸

e0 (6.3)

for some unique coefficients CKpz1, . . . , zM q. Since their A, B, and D operators all

commute among themselves, Borodin and Petrov are able to use symmetry to reduce

to computing only those coefficients CK with K “ t1, . . . , ru, 1 ď r ď M . In our case,

however, the B operators only commute up to a factor. So instead, we calculate each

CK individually by analyzing the necessary commutations between the B’s and D’s and

those between the B’s and A’s.

To aid our calculations, note that in our model, composing more than one B operator

and acting on a single tensor factor results in an inadmissible state. Thus, without loss

of generality, we can consider only the case where |K| ď 1. However, since our goal is a

formula for an arbitrary number of tensor factors, we will not yet impose any restrictions

on the size of Kc :“ t1, . . . ,MuzK. This will allow us to iteratively apply our formula

for acting on two tensor factors and eventually “share out” the B operators so that each
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is acting on a single tensor factor.

Indeed, suppose we would like to compute the action on N tensor factors, where N ě

M . (In other words, we have an M ˆN lattice.) Recall that e0 is an eigenvector for the

operators Aipzq and Dipzq (for any i), and let aipzq and dipzq denote the corresponding

eigenvalues. In each term of (6.3), once we factor out these eigenvalues, the second

tensor factor involves a sequence of B operators acting on e0. By replacing e0 with

e0 b e0, we can again apply our method for computing the action of B operators on

two tensor factors, repeating until we have chosen K1, . . . ,KN Ď t1, . . . ,Mu such that

K1 \ ¨ ¨ ¨ \ KN “ t1, . . . ,Mu and |Ki| ď 1. The coefficient of the term corresponding

to a particular sequence K1, . . . ,KN of subsets will then be the product CK1,...,KN
:“

CK1CK2 ¨ ¨ ¨CKN
of the coefficients from each step in this process, and by pulling out

eigenvalues at each stage, we recover the factor

ź

iăj

dipKjqajpKiq,

where we have used the notation fpKq “
ś

kPK fpzkq.

We now go through the process of calculating the coefficients CK1,...,KN
. Via the

usual train argument, we obtain the following relation between the A and B operators:

pzj ´ q
´1ziqBpziqApzjq “ pzi ´ zjqApzjqBpziq ` p1´ q

´1qzjBpzjqApziq

and between the B and D operators:

pzj ´ q
´1ziqBpziqDpzjq “ pzj ´ ziqDpzjqBpziq ` p1´ q

´1qzjBpzjqDpziq

and therefore

ApzjqBpziq “
zj ´ q

´1zi
zi ´ zj

BpziqApzjq `
p1´ q´1qzj
qpzj ´ ziq

BpzjqApziq. (6.4)

and

DpzjqBpziq “
zj ´ q

´1zi
zj ´ zi

BpziqDpzjq `
p1´ q´1qzj
zj ´ zi

BpzjqDpziq. (6.5)

We are interested in swapping the operators without swapping spectral parameters,
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and thus are only concerned with the first summands appearing in (6.4) and (6.5).

With these relations in hand, we now turn again to analyzing the expansion of

pB1pz1qA2pz1q `D1pz1qB2pz1qq ¨ ¨ ¨ pA2pzM qB1pzM q `B2pzM qD1pzM qq (6.6)

in order to determine which commutation relations are needed. Note that for each term

in the expansion, the indices of the spectral parameters will always appear in increasing

order. Thus, we will always commute the A and D operators past those B operators that

have larger spectral parameter indices. In the case where K1 is empty, no commutations

are needed, and so CK1 “ 1. In the case where K1 “ tj1u, we obtain a factor of

ź

iăj1

zi ´ q
´1zj1

zi ´ zj1

from commuting Bpzj1q with Dpiqiăj1 , and a factor of

ź

mąj1

zj1 ´ q
´1zm

zm ´ zj1

from commuting Apzj1q with Bpzmqmąj1 . From the next non-empty subset K “ tj2u,
we obtain

ź

iăj2
i‰j1

zi ´ q
´1zj2

zi ´ zj2

from commuting B’s and D’s, and

ź

mąj2
m‰j1

zj2 ´ q
´1zm

zm ´ zj2

from commuting B’s and A’s. Continuing in this way, we obtain, for every pair pi, jq

with i ă j, either the factor
zi´q

´1zj
zi´zj

(from B and D commutations) or
zi´q

´1zj
zj´zi

(from B

and A commutations), which differ by a factor of ´1. Note that we can associate to each

partition K1\K2\¨ ¨ ¨KN into subsets a permutation w P SM by listing the elements of

t1, 2, . . .Mu in the order in which they appear in the sequence of K’s. (Multiple subset
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partitions will correspond to the same w, due to the presence of empty sets.) Factoring

p´1q out from each B and A commutation, we obtain one for each ascent of w. In other

words, we have:

CK1,...,KN
“ p´1qlpw0wq

ź

iăj

zi ´ q
´1zj

zi ´ zj
.

Now all that remains is to recall the effects of the operators A,B, and D on a single

tensor factor (i.e., look at the vertex weights) and to pick off the coefficient of eλ. From

§3.0.1, we have:

Bipzqe0 “ e1, dipzqe0 “ ze0, aipzqe0 “ e0.

Thus, to read off the coefficient of eλ, we examine the summands for which the

non-empty subsets are exactly Kλi`ρi . Each of these summands now corresponds to a

unique permutation w, and for each w it is straightforward to see that

ź

iăj

dipKjqajpKiq “ zw0wpλ`ρq.

Finally, putting everything together, the coefficient of eλ is:

ź

iăj

zi ´ q
´1zj

zi ´ zj

ÿ

wPSM

p´1qlpw0wqzw0wpλ`ρq “
ź

iăj

zi ´ q
´1zj

zi ´ zj

ÿ

wPSM

p´1qlpwqzwpλ`ρq (6.7)

and thus our theorem is proved.

Geometric bases equal p-adic bases

The first connection between p-adic representation theory and equivariant K-theory

arose in the work [20] of Lusztig, in which he used the operators Li to define an affine

Hecke algebra representation on the equivariant K-theory ring of a flag variety. These

results were subsequently used to prove the Deligne-Lusztig conjecture in [37]. Recent

work of Aluffi, Mihalcea, Schürmann, and Su [8] and Mihalcea and Su [38] has pushed

this connection further, showing that both Li and Ti arise naturally in the study of

motivic Chern classes of generalized flag varieties G{B, where G is any complex simple

Lie group. In fact, these operators are adjoint to one another with respect to the
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equivariant K-theoretic Poincaré pairing. Moreover, the natural bases for the space

of Iwahori fixed vectors–the standard basis and Casselman basis, as defined in § 2–are

identified with the natural bases on the K-theory side. We now describe some of these

results in more detail.

The equivariant motivic Chern (MCy) class is a deformation of the fundamen-

tal class in equivariant K-theory with respect to a parameter y. It lives in the ring

KT pG{Bqry
˘s and generalizes the Chern-Schwartz-MacPherson (CSM) class in equiv-

ariant homology, which was originally defined in order to generalize the notion of the

total Chern class of a tangent bundle to singular varieties. It was shown (by different

methods) in both [8] and [39] that the motivic Chern classes of Schubert cells are equiv-

alent to the K-theoretic stable envelopes defined by Okounkov and Aganagic in [2]. Via

this equivalence, we can think of these classes as analogues of Schubert classes in the

equivariant K-theory of the cotangent bundle of G{B, i.e., roughly, the passage from

Schubert classes in KT pG{Bq to motivic Chern classes corresponds to moving from the

bottom to the top of the cube in Figure 4.1. It is not necessary for our purposes to use

the original construction of motivic Chern classes, as [8] show that they can be calcu-

lated recursively using (almost) the same operators as the Iwahori Whittaker functions,

starting from the class of a point. More details on the precise original definition can be

found in the works cited above.

Let λ be a weight of G and let Lλ :“ G ˆB cλ P KT pG{Bq be the line bundle over

G{B with fiber of weight λ over the coset 1.B. Then we define the following operators

on KT pG{Bqry
˘s:

Ti :“ p1` yLαiqDi ´ id, T _i :“ Dip1` yLαiq ´ id,

where Di is the Demazure operator in equivariant K-theory. By [8] Lemma 3.3, Ti and

T _i are adjoint, i.e., xTipaq, by “ xa, T _i pbqy. When we localize at 1.B, we obtain the

following algebraic versions of the above operators on KT pptqry
˘s:

rTi :“ p1` yeαiq rDi ´ id, rT _i :“ rDip1` yLαiq ´ id,

where, in terms of the divided difference operator Bi defined in § 4.0.3, rDi “ Bie
αi . Like

Ti and Li, rTi and rT _i generate a finite Iwahori Hecke algebra acting on KT pG{Bq.
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One of the main results in [8] is the following.

Theorem 4 ([8], Theorem 4.5) Let w P Sn and let si be a simple reflection such that

lpwsiq ą lpwq. Then

MCypCwsiq “ TiMCypCwq.

Together with the base case MCypCidq “ Oid, this gives a recursion for calculating

the MCy classes of Schubert cells. [8] also define dual motivic Chern classes MC_y

via:

MC_y pC
wq “ pT _w0wq

´1pCw0q,

where Cw is the opposite Schubert cell Cw :“ B´wB{B “ w0Cw0w. These classes are

so named because the classes MC_y pC
wq are (up to a factor) dual to MCypCwq with

respect to the Poincaré pairing (see [8], Theorem 5.2).

Before we state the results identifying these classes with their p-adic counterparts,

we detail how to translate the notational conventions of [7] into those of [8] and [38].

First, in [7], the Iwahori subgroup is defined as the preimage in K of B´ “ w0Bw0

modulo p, whereas [8] and [38] define it as the preimage of B. Consequently, the

standard basis element Φzw in [7] corresponds to πpw0qϕww0 in [8], as we justify below.

Let b P B,w1 PW,k P J, and k1 “ w0kw0 P J´. Then:

Φzwpbw
1kq “ Φzwpbw

1w0k
1w0q

“ πpw0qΦ
z
wpbw

1w0k
1q

“ πpw0qτzpbq if w “ w1w0; 0 otherwise

“ πpw0qϕww0 .

Note that the involution w ÞÑ ww0 is inclusion reversing with respect to the Bruhat

order. For consistency, since the definition (2.1) of Iwahori Whittaker functions involves

evaluating the Whittaker functional on the standard basis, we will adjust the notation

for the Whittaker functions as well. Specifically, we replace φw by φww0 to indicate that

φww0 is the Iwahori Whittaker function evaluated at πpw0qϕww0 .
1

1Unfortunately, [8] use the notation φ instead for
ř

ϕ–to avoid confusion, we will use φ exclusively
for the Whittaker function.
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Next, note that for τ a character of T and α a root of pG (aka a coroot of G), [8] and

[38] define eαpτq by eαpτq “ τphαp$qq, where hα : Fˆ Ñ T pF q is the one parameter

subgroup corresponding to α. Since [7] work with the contragredient representation

Ipz´1q of the principal series, we will usually take τ “ τz´1 , in which case eαpτq corre-

sponds to our earlier notation z´α from [7]. The notation eαpτq is deliberately similar

to that for the generators of KT pptq, due to the isomorphism we describe in the next

section.

Geometric versions of Tokuyama calculations

Keeping the above notational dictionary in mind, we now quote another main result

of [8] that will allow us to geometrically interpret the formulas for Whittaker functions

that were derived above using lattice model methods. Consider KT pptq – RrT s as

a subring of O, let τ be an unramified character, and let cτ be the one-dimensional

KT pptq-module induced by evaluation at τ . Let ιw P KT pG{Bq denote the fixed point

basis, let bw be the multiple of ιw defined by the condition bw|w “ MC_y pC
wq|w, and

let rbw “ bw b 1 P rKT pG{Bqry
´1s. The localization MC_y pC

wq|w is calculated explicitly

in [8] Proposition 7.3, and the resulting explicit formula for rbw is:

rbw “ p´1qdimpG{Bq´lpwq
ź

αP∆`, wαP∆`

y´1 ` e´wα

1´ ewα
ιw b 1

Theorem 5 (See [8], Theorem 10.2) Define a KT pptq-module homomorphism

Ψ : KT pG{Bqry
˘s bKT pptqry˘s cτ Ñ IpτqJ

via ΨpMC_y pC
wq b 1q “ ϕw and y ÞÑ ´q´1.2 Then:

1. Ψ is an isomorphism of Hecke algebra modules, where the Hecke actions are that

of T _i on KT pG{Bq and of Ti on Ipτz´1qJ .

2. We have the equality Ψprbwq “ fw.

So, under this isomorphism, Ti maps to (the algebraic version of) T _i |y ÞÑ´q
´1

τ“τz´1
, and

thus the operator zρTiz
´ρ associated to the lattice model in [7] corresponds to the

2In [8], y ÞÑ ´q rather than y ÞÑ ´q´1; we have adjusted this to account for the slight difference in
notation in [7].
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operator pL´ρ ˝ T _i ˝ Lρq |y ÞÑ´q
´1

τ“τz´1
in [8], or, equivalently, to the operator pL´ρ ˝D˝T _i ˝

D ˝Lρq|y ÞÑ´qτ“τz , where D is the Grothendieck-Serre duality operator (see [38] §3). We will

also need the following fact: for w P W and λ P Λ, we have ewλ “ Lλ|w “ xLλ, ιwy in

KT pptq.

Theorem 6 Applying the isomorphism Ψ to the equality

ÿ

wPW

zρφwpz;$
´λq “

ÿ

wPW

ź

iăj

zi ´ q
´1zj

zi ´ zj
p´1qlpwqzwp`ρq (6.8)

gives

ÿ

wPW

A

Lλ`ρ, p´qq´lpwqMC_´q´1pC
ww0q

E

“
ÿ

wPW

ź

αą0
w´1αă0

eα ´ q´1

1´ eα
xLλ`ρ, pw0 ¨ bwqy. (6.9)

We have the following immediate corollary:

Corollary 1 Since the Lλ`ρ form a generating set for KT pG{Bq, it follows from The-

orem 6 that

ÿ

wPW

p´qq´lpwqMC_´q´1pC
ww0q “

ÿ

wPW

ź

αą0
w´1αă0

eα ´ q´1

1´ eα
pw0 ¨ bwq. (6.10)

The sum
ř

wPW p´qq
´lpwqMC_

´q´1pC
ww0q can be identified with w0 acting on the modified

spherical vector Φ´ of Reeder [40]. Hence we have the decomposition

w0 ¨ Φ´ “
ÿ

wPW

ź

αą0
w´1αă0

eα ´ q´1

1´ eα
w0 ¨ fw, (6.11)

which is a modified version of the Langlands-Gindikin-Karpelevich formula expressing

Φ in terms of the fw.

[proof of Theorem 6] First, consider the left hand side, which, via Proposition 1 and

our notational dictionary equals:

ÿ

wPW

A

`

L´ρ ˝D ˝ T _w´1 ˝D ˝ Lρ
˘

|
y ÞÑ´q
τ“τpzq pLλ`ρq , ιid

E

.
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Since T _w and Tw´1 are adjoint with respect to the Poincaré pairing, this is equal to

ÿ

wPW

A

Lλ`ρ, pL´ρ ˝D ˝ Tw ˝D ˝ Lρq | y ÞÑ´qτ“τpzq pιidq
E

.

By Proposition 3.2 of [38], we can replace D ˝ Tw ˝D with pTw´1q´1:

ÿ

wPW

A

Lλ`ρ,
`

L´ρ ˝ pTw´1q
´1 ˝ Lρ

˘

|
y ÞÑ´q
τ“τpzq pιidq

E

and then, by Remark 3.3 of loc. cit., this equals

ÿ

wPW

B

Lλ`ρ,
ˆ

L´ρ ˝
´

ylpw
´1qLρ ˝ T _w´1 ˝ L´ρ

¯´1
˝ Lρ

˙

|
y ÞÑ´q´1

τ“τpzq pιww0q

F

.

Finally, cancelling Lρ with L´ρ, noting that lpw´1q “ lpwq, and recalling the definition

of MC_y pC
wq, this becomes:

ÿ

wPW

A

Lλ`ρ, p´qq´lpwqpT _w´1q
´1|

y ÞÑ´q´1

τ“τpzq pιidq
E

“
ÿ

wPW

A

Lλ`ρ, p´qq´lpwqMC_´q´1pC
ww0q

E

.

Now we consider the right hand side, which equals

ÿ

wPW

p´1qlpwq
ź

αą0

1´ q´1e´αpτzq

1´ e´αpτzq
xLλ`ρ, ιwy .

(To reduce clutter in the following calculations, we will write eαpτzq simply as eα.) To

isolate the w summand, we restrict to the fixed point Fw. Recall that

ιw1 |w “

$

&

%

ź

αą0

1´ e´wα if w1 “ w

0 otherwise.
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Thus, restricting to Fw gives

p´1qlpwq
ź

αą0

1´ q´1e´α

1´ e´α

ź

αą0

1´ e´wα

“ p´1qlpww0q
ź

αą0
w´1αą0

eα ´ q´1

1´ eα

ź

αą0
w´1αă0

eα ´ q´1

1´ eα

ź

αą0
wαą0

1´ e´wα
ź

αą0
wαă0

1´ e´wα.

Note that we can rewrite the fourth product so that it cancels with the denominators

of the first:

ź

αą0
wαă0

1´ e´wα “
ź

αă0
wαą0

1´ ewα “
ź

αą0
w´1αă0

1´ eα

and hence our full expression becomes

p´1qlpww0q
ź

αą0
w´1αă0

eα ´ q´1
ź

αą0
wαă0

1´ ewα

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

pw0¨bwq|w

ź

αą0
w´1αă0

eα ´ q´1

1´ eα
,

and one can check that the bracketed piece is w0 acting on bw, localized at w. Hence

the theorem follows.

Discussion

It is interesting to compare the results of Theorem 6 and Corollary 1 to our results in §5.

Proposition 7 expresses the fixed point basis in terms of the geometric (Schubert) basis,

and, symmetrically, Corollary 1 expresses the geometric (dual motivic Chern class) basis

in terms of the fixed point basis. However, their proofs are not symmetric: Corollary

1 relied on the intermediary step of pairing each basis with the line bundle Lλ`ρ, and

hence was obtained from a fundamentally different type of lattice model.

Equating the left hand sides of (6.8) and (6.9) enables us to interpret the Iwahori

and Tokuyama models pictorially as pairings–between MC_
´q´1pC

ww0q and Lλ`ρ and

between MC_
´q´1pX

idq and Lλ`ρ, respectively, as depicted below in Figure 6.2.
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Figure 6.2: The Iwahori model (left) and Tokuyama model (right) as Poincaré pairings.
(The Poincaré duals of MC_

´q´1pC
ww0q and MC_

´q´1pX
idq can be calculated explicitly

via [8], Theorem 6.2.)

Unfortunately, in contrast with the Frozen Pipes model, the terms involving the fixed

point basis cannot be as straightforwardly identified with a piece of the lattice model.

Figure 6.3 below depicts the Bethe ansatz-like process from §6.0.1 in the simple case

where λ “ H and the lattice is 2ˆ 2. This process does not result in admissible states

of the model; rather, it uses the commutation relations to break the lattice states into

easily calculable chunks. Regardless, it seems noteworthy that the analysis of lattice

models leading to equation (6.8) roughly follows the correspondence of Figure 4.2, in

which the geometric basis is identified with the spin basis, and where the fixed point

basis arises via the algebraic Bethe ansatz.
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Figure 6.3: A diagrammatic description of the Bethe ansatz-like process in section
6.0.1, in the 2 ˆ 2 case with λ “ H. We take each state of the model (left), and use
the commutation relations between the A,B,C,D operators to commute each column
separately, until all A’s and D’s are below all B’s (right). Note that the diagrams on
the right are no longer admissible states.



References

[1] Davesh Maulik and Andrei Okounkov. Quantum groups and quantum cohomology.

arXiv preprint arXiv:1211.1287, 2012.

[2] Mina Aganagic and Andrei Okounkov. Elliptic stable envelopes. Journal of the

American Mathematical Society, 34(1):79–133, 2021.

[3] Ben Brubaker, Claire Frechette, Andrew Hardt, Emily Tibor, and Katherine We-

ber. Frozen pipes: lattice models for grothendieck polynomials. arXiv preprint

arXiv:2007.04310, 2020.

[4] Vassily Gorbounov, Christian Korff, and Catharina Stroppel. Yang-baxter algebras

as convolution algebras: The grassmannian case. arXiv preprint arXiv:1802.09497,

2018.

[5] P Zinn-Justin. Lectures on geometry, quantum integrability and symmetric func-

tions, lecture notes from a course at hse, moscow, 2015.

[6] Ben Brubaker, Daniel Bump, and Solomon Friedberg. Schur Polynomials and

the Yang-Baxter Equation. Communications in mathematical physics, 308(2):281,

2011.

[7] Ben Brubaker, Valentin Buciumas, Daniel Bump, and Henrik Gustafsson. Colored

vertex models and iwahori whittaker functions. arXiv preprint arXiv:1906.04140,

2019.

[8] Paolo Aluffi, Leonardo C Mihalcea, Jörg Schürmann, and Changjian Su. Motivic
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