RLC Circuits - Part 3C.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis. Source of study material: 1). Electric Circuits 6th Ed., Nahvi & Edminister. 2). Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Resource: 3). Solutions & Problems of Control Systems, 2nd ed - AK Jairath. Karl S. Bogha.

RLC Circuits - Part 3C.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis. Source of study material: 1). Electric Circuits 6th Ed., Nahvi & Edminister. 2). Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Resource: 3). Solutions & Problems of Control Systems, 2nd ed - AK Jairath. Karl S. Bogha.

Next meet one of the 3 conditions: Part 3A page 61.). alpha > omega0 circuit is overdamped). alpha = omega0 solve for s1 and s2). alpha = omega0 natural response fn(t) = A1e^(s1t) + A2e^(s2t)). alpha = omega0 circuit is critically damped origonia alpha < omega0 circuit is underdamped origonia alpha < omega0 circuit is underdamped origonia alpha < omega0 circuit is underdamped origonia alpha < omega0 circuit is underdamped			< We had these
). alpha = omega0 circuit is critically damped solve for s1 and s2 natural response fn(t) = e^(-alpha)t (A1t + A2) circuit is underdamped solve for s1 and s2 natural response natural response natural response natural response fn(t) = e^(-alpha)t (A1t + A2) circuit is underdamped solve for s1 and s2	Next meet one of	the 3 conditions: circuit is overdamped solve for s1 and s2	Part 3A page 61. Note: These
). alpha < omega0 circuit is underdamped response.	6). alpha = omega0	circuit is critically damped solve for s1 and s2	natural response
$\frac{fn(t) = e^{(-alpha)t} (A1(\cos (wd)t + A2(\sin (wd)t))}{where (wd) = sqrt(w0^2 - alpha^2)}$	7). alpha < omega0	circuit is underdamped solve for s1 and s2 natural response is: $fn(t) = e^{(-alpha)t} (A1(cos (wd)t + A2(sin (wd)t))$	

$$i(t) = A1e^{-1.70 t} + A2e^{-298.3 t}$$

Next, obvious, we need to solve for coefficients A1 and A2.

What comes to mind? Continuity Condition.

Our circuit was off during t<0.

So no energy built up or storage is found in the inductor and capacitor.

 $iL(-0) = 0 \longrightarrow iL(0) = 0 \longrightarrow iL(0+.) = 0$ Here at 0+ the inductor is building up current and just past 0 at a low mill or micro second the current will be almost 0 which is practically 0.

In this circuit same for capacitor C:

iC(-0) = 0 - iC(0) = 0 - iC(0 + .) = 0

For our first equation at t=0, plug t=0 in the equation.

i (0) =	A1e ^{-1.70} (0) + A2e ^{-298.3} (0)	
0 =	A1 + A2 Eq 1.	l llse Only

- Recall we used to take the derivative of the equation, in this circuit we have inductor expression with a first order derivative L(di/dt) that equalled some voltage.
- What could this voltage be across the inductor in a series circuit?
- I dont know. Each component has a voltage across and their sum equal 50V. However, from my past exercise and theory from part 3A or B, we know THE
- MATH may provide that solution. We did something were we found di/dt or dv/dt.
- We take the equation we have started with i(t) and differentiate it.
- The LHS becomes di/dt.
- We start with a Voltage Loop Equation (KVL for most Kickoutt's Voltage Law).
 - We have V = 50V.

the derivative of current though the current is too low.

$$0 + 0 + L\left(\frac{di}{dt}\right) = 50$$

We just somehow or rather, if you feel comfortable with that way of looking at it, get the expression di/dt solved.

	0 + 0 + L ($\left(\frac{di}{dt}\right) = 50$	
	10	$\left(\frac{di}{dt}\right) = 50$	
		$\left(\frac{di}{dt}\right) = 5$	
$i(t) = A1e^{-1.70 t}$	$t + A2e^{-298.3 t}$	Our current expression	
We differentiate it:			
$\frac{di}{dt} = -1.7 \text{ A1 e}^{-1.70}$	^t -298.3 A2 ^{-298.3 t}	We plug in (di/dt)	
$5 = -1.7 \text{ A1 e}^{-1.70}$	^t -298.3 A2 ^{-298.3 t}	Next set this equation for $t=0$, which I question why we take it for $t=0$ rather th t=0+? Its $t=0+$, but in the math express	ion
t = 0		wise $e^0 = 1$. We normally do not go fui in this case to say $e^0.00000001$	
$5 = -1.7 \text{ A1 e}^{-1.70}$	⁽⁰⁾ – 298.3 A2 ^{-298.}	Not usually, but you are correct in asking that question. $e^{0.0000000001} = 1$. Solved that.	/
5 = -1.7 A1 - 298	.3 A2 Eq 2.		
0 = A1 + A2	Eq 1.		
$Coeff := \begin{bmatrix} 1 & 1\\ -1.7 & -298 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 8.3 \end{bmatrix} RHS := \begin{bmatrix} 0 \\ 5 \end{bmatrix}$	D] 5]	
InvCoeff≔Coeff ⁻¹	$= \begin{bmatrix} 1.0057316 \\ -0.0057316 \end{bmatrix}$	$\begin{array}{c} 0.0033715\\ -0.0033715\\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5] 5]
A1A2≔InvCoeff∙F	$RHS = \begin{bmatrix} 0.0169 \\ -0.0169 \end{bmatrix}$		
A1 = 16.9•10	-3 Or	16.9 mA	
A2 = -16.9•1	0 ⁻³ Or	-16.9 mA	
$i(t) = A1e^{-1.70 t}$	$t + A2e^{-298.3 t}$	Substitute A1 and A2	
(1) (1) (-1)	$^{.70}$ t $- 16.9 \cdot e^{-298.3}$ t	mA Answer.	
$I(t) = 16.9 \cdot e$			

		e time at which current is maximum we need ation from which we can solve for that time.
How	do w	e get that equation?
The	equat	ion i (t) = $16.9 \cdot e^{-1.70 t} - 16.9 \cdot e^{-298.3 t}$ is current relative to time.
		erivative of the equation i(t) gives us the expression providing the
		current time t. Logic wise what is this? Current per time. Though ave a word for it, like velocity, it gives us the maximum value.
		ATH on the i(t) working for a solution.
At ti	me t=	0, i(t) = 0. LHS of equation $=0.$
0	=	$16.9 \cdot e^{-1.70 t} - 16.9 \cdot e^{-298.3 t}$
The	deriva	ative of above equation:
0	=	(-1.7) 16.9 • e ^{-1.70 t} - (-298.3) 16.9 • e ^{-298.3 t}
		$-1.70 \cdot 16.9 = -28.73$ $-298.3 \cdot 16.9 = -5041.27$
0	=	$-28.73 \cdot e^{-1.70 t} + 5041.3 \cdot e^{-298.3 t}$ Answer.
Next	t we n	eed to calculate the time t that gives the maximum current:
<u>Use</u>	logari	thm to solve for maximum current time t:
		$e^{-1.70 \cdot t} + 5041.3 \cdot e^{-298.t} = 0$ 5.16749 = 0.0174224
5041	I.3•e [−]	$^{-298.t} = 28.73 \cdot e^{-1.70 \cdot t}$ 296.6
504	1.3	$= \frac{e^{-1.70 t}}{1.00 t}$
28.	73	$= \frac{1}{e^{-298.t}}$ 298.3 - 1.70 = 296.6
175.	47	$= e^{(-1.70 + 298.3)t} = e^{296.6t}$
In (1	75.47	2) = 296.6 \cdot t In (175.473) = 5.16749
	5.16	749 = 296.6 • t
	t	= <u>5.16749</u> = 0.01742 seconds. Answer.

t =	0.01742	2 seconds.
t =	17.2	ms - milliseconds.
		for maximum current we plug this into the i(t) equation. equation but the i(t) equation.
Next plo	ot.	
Note: P	lot time t in	milliseconds. This from our early calculation for this circuit.
clear (t))	
		$-16.9 \cdot e^{-298.3 \cdot t}$ mA. Note: vertical axis is in mA.
1(()-1	0.70	
20-		0.0174
19- 18-		
17 16.31		
16- 15-		
14-		
13-		
11- 10-		
9-		i (t)
8- 7-		
6-		
5-		
3-		
2-		0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
1-		0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
1-	0.005 0.01	
1-	0.005 0.01	
1- 0-0		
1- 0-0		4 ms and maximum current 16.31 mA. Answer.
We got	time at 17.4	4 ms and maximum current 16.31 mA. Answer.
We got	time at 17.4 nts: Looked	

Ŷ	R1 + +	L1		
	50 ohm	0.1 H		
(v _i) 100V		50 uF		
Ŷ				
ļ				
Obtain the curren	it transient, assur	me zero initial charg	ge charge on capacitor ?	
Solution:				
<u>Solution.</u>			R:=50 L:=0.1	
Case	Series RLC	Parallel RLC	$C := 50 \cdot 10^{-6}$	
Under damped: (Oscillatory)	$\alpha < \omega_0$	$\alpha^2 < \omega_0^2$		
Critically damped:	$\alpha = \omega_0$	$\alpha = \omega_0$	$\alpha = \frac{R}{2 \cdot L} = 250 \qquad s^{1}.$	
Over damped:	$\alpha > \omega_0$	$\alpha^2 > \omega_0^2$	1	
α :	$\left(\frac{R}{2L}\right)$	$\left(\frac{1}{2 RC}\right)$	$\omega = \frac{1}{\sqrt{L \cdot C}} = 447.2135955$	
	(1)			
ω ₀ :		\sqrt{IC}	$\beta \coloneqq \sqrt{250^2 - 447.21^2} = 370.8$	j
ω_0 :	(\sqrt{LC})	(V LC)	,	
	(<i>VLC</i>) 250<447, the set	ries RLC circuit is <u>ur</u>		
Alpha < Omega;		ries RLC circuit is <u>ur</u>		
Alpha < Omega; Solution takes the	e form:			
Alpha < Omega; Solution takes the				
		ries RLC circuit is <u>ur</u>		
Alpha < Omega; Solution takes the i (t) = OR the more con	e form: $e^{-\alpha \cdot t} \cdot (A1e^{j\beta t} + A)$ nmon sinusoidal f	$(42e^{-j\beta t})$		

i (t) =	e ^{-250•1} •(A	A1•cos(370.8	•t) + A2•sin (370.8•t))		
Circuit initia	conditions:						
No capacito	stored curr	ent to re	lease	e in circuit sinc	e circuit was	open for t<0.	
Inductor cor	dition at t=	0 :					
iL(0) =	0 = 6	$e^{-250 \cdot 0} \cdot ($	A1•c	xos (370.8•0) +	A2•sin (370).8•0))	
	0 = /	1 Eq.	1				
	0 _ /	-ι Ly	1.				
•		0		there is no co positive t side		the	
				erm (di/dt) in			
KVL at t(0+)							
		(di)					
$R \cdot i(t) + \frac{1}{C}$	∫ i (t) dt + l	$-\left(\frac{dt}{dt}\right)$	=	V			
		di)					
	0+0+L	dt)	=	V			
	0.1.($\left(\frac{it}{it}\right)$	_	100			
	0.10	it)	_	100			
		(di)	=	$\frac{100}{0.1} = 1000$	A/s.		
		(dt)		0.1			
Next differe	ntiate the ec	uation i((t), ar	nd place the va	alue of di/dt a	above at LHS:	
i (t) =	e ^{-250 • t}	\1.cos('	370 B	•t) + A2•sin (370 8 . +))		
(t) _							
	e ^{-250.1} •A	1•cos (3	70.8•	\cdot t) + e ^{-250 · t} · A	2•sin (370.8	•t)	
1000 =	-250•e ⁻²	^{250 · t} • A1	• cos ((370.8•t) - e ⁻²	^{.50•t} •370.8 A	1•sin (370.8•t) +	- 🔲
	-250 e ⁻²	^{50•t} •A2•	sin (3	370.8•t) + e ^{-2!}	^{50•t} •370.8 A	2•cos (370.8•t)	
Now lot to 0							
Now let t=0	and evaluat	e the eq	uatio	n above:			

						ns the same, so by linearity the vith the rest remaining the same.
(t)	=	e ⁻²⁵⁰	^{•†} •2.7•9	sin (370.8 •	t) A	 A. < We had this for problem 8.2. Next we half it. The math steps going forward like in problem 8.2 will do the same.
(t)	=	e ⁻²⁵⁰	$\cdot t \cdot \left(\frac{2.7}{2}\right)$)∙ sin (370.	8•t)	

Comment: Review problem 8.2, the results here were impacted by half the current per second ie 500 A/s. All other values were the same. Halving from 1000 to 500 halved the amplitude. The 370j was calculated prior to the initial condition, same for the exponential term e^-250t.

Problem 8.4:

A parallel RLC network with R=50 ohm, C=200 uF, and L=55.6 mH, has an initial charge Qo = 5.0 mC on the capacitor. Obtain the expression for the <u>voltage across the network</u>.

	Serie	es RLC			Parallel RLC	2		
Under damped: (Oscillatory)	α	$<\omega_0$			$\alpha^2 < \omega_0^2$	Char	t on series and p he three cases o	
Critically damped:	α	$= \omega_0$			$\alpha = \omega_0$		itions.	
Over damped:	a	$z > \omega_0$			$\alpha^2 > \omega_0^2$			
α :	(7	$\left(\frac{R}{2L}\right)$			$\left(\frac{1}{2 \ RC}\right)$			
ω_0 :		$\left(\frac{1}{\sqrt{LC}}\right)$			$\left(\frac{1}{\sqrt{LC}}\right)$			
$\alpha \coloneqq \frac{1}{2 \cdot \mathbf{R} \cdot \mathbf{C}} = 5$				$\alpha^2 = 2$	2500	1/s^2		
2.8.0								
$\omega_0 := \frac{1}{\sqrt{1 \cdot C}} = 2$	99.880072	1/s^:	2	ω_{d}	$=\sqrt{\omega_0}$	$\left(\alpha\right)^{2}-\left(\alpha\right)^{2}$	² = 295.6823592	rad/s
•				$\omega_{ m d}$	= 296	rad/s	Parallel circuit wd i <u>Beta B</u> , for underda	
Alpha < Omega Most likely I/We And if so this we	e use the? S	Sinusoida	al expr				sinusod wave. /(t).	
Most likely I/We And if so this we	e use the? S ould results	Sinusoida s in a sin	al expr iusoida	al expr	ession fo	or i(t).	ν(t).	
Most likely I/We	e use the? Sould results	Sinusoida s in a sin v (t) OR the i	al expr iusoida = more c	al expr $e^{-\alpha \cdot t}$	ession fo • (A1e ^{jβt} on sinusc	or i(t). + A2e ^{-jβt} pidal form	(t). ()	
Most likely I/We And if so this we	e use the? Sould results	Sinusoida s in a sin v (t) OR the i	al expr iusoida = more c	al expr $e^{-\alpha \cdot t}$	ession fo • (A1e ^{jβt} on sinusc	or i(t). + A2e ^{-jβt} pidal form	/(t). /)	
Most likely I/We And if so this we	e use the? Sould results	Sinusoida in a sin v (t) OR the i v (t)	al expr iusoida = more c =	e ^{$-\alpha \cdot t$} commo	$ \cdot (A1e^{j\beta t}) $	or i(t). + A2e ^{-jβt} bidal form (β • t) + A : s1	(t). $(t).$ (j) $(j$	
Most likely I/We And if so this we	e use the? Sould results	Sinusoida s in a sin v (t) OR the i v (t) Roots to	al expr iusoida = more d = o the e	e e $e^{-\alpha \cdot t}$ commo e $e^{-\alpha \cdot t}$ equatio	ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above	or i(t). + A2e ^{$-j\beta t$ oidal form ($\beta \cdot$t) + A : s1 s2}	u(t). $u(t).$ $u(t)$	
Most likely I/We And if so this we Solution takes the	e use the? Sould results	Sinusoida s in a sin v (t) OR the i v (t) Roots to v (t)	al expr ausoida = more c = o the e =	e e e e e e e e e e e e e e e e e e e	ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above • $(A1cos)$	or i(t). + A2e ^{$-j\beta t$} oidal form ($\beta \cdot t$) + A : s1 s2 (296 • t)	$u(t).$ $u(t).$ $u(t).$ $u(t).$ $u(\beta \cdot t)) = \alpha + j\beta$ $= \alpha - j\beta$ $u(296 \cdot t))$	
Most likely I/We And if so this we	e use the? Sould results he form: arallel circu =0 when th	Sinusoida s in a sin v (t) OR the i v (t) Roots to v (t) it, volta ie circuit	al expr iusoida = more c = o the e = ge acr : come	e e $e^{-\alpha \cdot t}$ commo e quatic e $e^{-50 \cdot t}$ oss ca	ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above • $(A1cos)$ pacitor is	or i(t). + A2e ^{$-j\beta t$} oidal form ($\beta \cdot t$) + A : s1 s2 (296 \cdot t) s the volt	$a_{i}^{\prime}(t).$ $a_{i}^{\prime}(t).$ $a_{i}^{\prime}(\beta \cdot t)) = \alpha + j\beta$ $a_{i}^{\prime}(\beta \cdot t)) = \alpha - j\beta$ $a_{i}^{\prime}(\beta \cdot t))$ $a_{i}^{\prime}(\beta \cdot t) = \alpha - \beta$ $a_{i}^{\prime}(\beta \cdot t)$	
Most likely I/We And if so this we Solution takes the Since this is a p circuit at time t Calculate voltag	e use the? S ould results he form: arallel circu =0 when th e across ca	Sinusoida s in a sin v (t) OR the r v (t) Roots to v (t) it, volta ie circuit ipacitor	al expr iusoida = more c = o the e = ge acr : come	e $e^{-\alpha \cdot t}$ commo e $e^{-\alpha \cdot t}$ equatio $e^{-50 \cdot t}$ oss ca es on. (ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above • $(A1cos)$ pacitor is Capacito	or i(t). + A2e ^{$-j\beta t$} oidal form ($\beta \cdot t$) + A : s1 s2 (296 \cdot t) s the volt r initial co	$a_{i}^{\prime}(t).$ $a_{2}^{\prime}sin (\beta \cdot t)) = \alpha + j\beta$ $= \alpha - j\beta$ $+ A2sin (296 \cdot t))$ age for the pondition.	Image: Constraint of the sector of the se
Most likely I/We And if so this we Solution takes the Solution takes the Since this is a p circuit at time te Calculate voltag $v_{c} \coloneqq \frac{Q_{0}}{C} = 25$	e use the? S ould results he form: arallel circu =0 when th e across ca	Sinusoida s in a sin v (t) OR the r v (t) Roots to v (t) iit, volta ie circuit ipacitor xt at tim	al expr nusoida = more c = o the e = ge acr : come : ue t=0,	e $e^{-\alpha \cdot t}$ commo e quatio e $e^{-50 \cdot t}$ oss ca s on. (ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above • $(A1cos)$ pacitor is Capacito solve for	or i(t). + A2e ^{$-j\beta t$} oidal form ($\beta \cdot t$) + A : s1 s2 (296 \cdot t) s the volt r initial co	$a_{i}^{\prime}(t).$ $a_{2}^{\prime}sin (\beta \cdot t)) = \alpha + j\beta$ $= \alpha - j\beta$ $+ A2sin (296 \cdot t))$ age for the pondition.	Image: Constraint of the sector of the se
Most likely I/We And if so this we Solution takes the Solution takes the Calculate voltage $v_{\rm C} := \frac{Q_0}{C} = 25$ 25 = e	e use the? Sould results he form: arallel circu =0 when th e across ca V. Nex	Sinusoida s in a sin v (t) OR the i v (t) Roots to v (t) iit, volta ie circuit ipacitor xt at tim os (296 •	al expr nusoida = more c = o the e = ge acr : come : come : t) + A	e $e^{-\alpha \cdot t}$ commo e quatio e $e^{-50 \cdot t}$ oss ca s on. (ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above • $(A1cos)$ pacitor is Capacito solve for	or i(t). + A2e ^{$-j\beta t$} oidal form ($\beta \cdot t$) + A : s1 s2 (296 \cdot t) s the volt r initial co	$a_{i}^{\prime}(t).$ $a_{2}^{\prime}sin (\beta \cdot t)) = \alpha + j\beta$ $= \alpha - j\beta$ $+ A2sin (296 \cdot t))$ age for the pondition.	
Most likely I/We And if so this we Solution takes the Solution takes the Since this is a p circuit at time to Calculate voltag $v_c := \frac{Q_0}{C} = 25$ 25 = e 25 = 1	e use the? Sould results he form: arallel circu =0 when th e across ca V. Ne: - ^{50-t} • (A1co A1cos (0)	Sinusoida s in a sin v (t) OR the i v (t) Roots to v (t) it, volta ie circuit ipacitor xt at tim os (296 • + A2sin	al expr iusoida = more c = o the e = ge acr : come : t) + A (0)	e $e^{-\alpha \cdot t}$ commo e $e^{-\alpha \cdot t}$ equatio $e^{-50 \cdot t}$ oss ca s on. (, and s 2sin (2	ession for • $(A1e^{j\beta t})$ on sinusc • $(A1cos)$ on above • $(A1cos)$ pacitor is Capacito solve for 296 • t))	or i(t). + A2e ^{$-j\beta t$} oidal form ($\beta \cdot t$) + A : s1 s2 (296 \cdot t) s the volt r initial co	$\alpha(t)$. $\alpha(t)$. $\alpha(t) = \alpha + j\beta$ $\alpha(t) = \alpha + j\beta$ $\alpha(t$	

- We want to solve for A2, that would make the solution. We take the derivative of v(t),
 - like we did in previous problem taking the derivative of i(t).

 $e^{-\alpha \cdot t} \cdot (A1\cos(\beta \cdot t) + A2\sin(\beta \cdot t))$

 $e^{-\alpha \cdot t} \cdot A1\cos(\beta \cdot t) + e^{-\alpha \cdot t} \cdot A2\sin(\beta \cdot t)$ Its the same 1st derivative.

 $(-\alpha \cdot e^{-\alpha \cdot t} \cdot A1\cos(\beta \cdot t) - e^{-\alpha \cdot t} \cdot \beta \cdot A1\sin(\beta \cdot t)) - \mathbf{I}$

$$((\alpha \cdot e^{-\alpha \cdot t} \cdot A2\sin(\beta \cdot t)) + e^{-\alpha \cdot t} \cdot \beta \cdot A2 \cdot \cos(\beta \cdot t))$$

Rearrange like terms; alpha and beta:

$$-\alpha \cdot e^{-\alpha \cdot t} \cdot (A1\cos(\beta \cdot t) + A2\sin(\beta \cdot t)) + \beta \cdot e^{-\alpha \cdot t} \cdot (-A1 \cdot \sin(\beta \cdot t) + A2 \cdot \cos(\beta \cdot t))$$

Review example 4 page 24 Part 3A for the derivative of voltage on the LHS.

In this circuit parallel RLC, voltage seen across the circuit would be the capacitor initial condition voltage. At t=0, the voltage across the inductor would be zero. We have a voltage across the resistor.

We seek dv/dt. This can be obtained thru the node equation.

	sine terms equal zero leaving the cosine term	IS:
-2500	$= -50 \cdot e^{-50 \cdot 0} \cdot 25 \cos(0) + 296 \cdot e^{-50 \cdot 0} \cdot A$	A2 • cos (0)
-2500	= -1250 + 296 A2	
296 A2	= -2500 + 1250 = -1250	
A	$2 := \frac{-1250}{296} = -4.222973$	
Now we pl	ug in A1 and A2 in the voltage v(t) equation f	for the solution.
v(t) =	$e^{-50 \cdot t} \cdot (A1\cos(296 \cdot t) + A2\sin(296 \cdot t))$	
v(t) =	$e^{-50 \cdot t} \cdot (25 \cdot \cos (296 \cdot t) - 4.233 \cdot \sin (296 \cdot t)$	•t)) V. Answer.
Problem 8	5 (Two Mesh circuit) :	
In the circ	uit below switch is closed at t=0.	
Obtain the	current i(t) and the capacitor voltage vC(t) ?	
	current i(t) and the capacitor voltage vC(t) ?	R1 := 10
Obtain the	current i(t) and the capacitor voltage vC(t) ?	
Obtain the	current i(t) and the capacitor voltage vC(t) ?	R1:=10
Obtain the	current i(t) and the capacitor voltage vC(t) ?	R1 := 10 R2 := 10
Obtain the	current i(t) and the capacitor voltage vC(t) ?	$R1 := 10$ $R2 := 10$ $C1 := 2 \cdot 10^{-6}$
Obtain the	current i(t) and the capacitor voltage vC(t) ?	$R1 := 10$ $R2 := 10$ $C1 := 2 \cdot 10^{-6}$

over it loos like sort of part inspection and a good understanding of initial conditions, solution looks challenging to me.

	:=	Vi	_=:	2.5	A.	dc s	stead	dy s	tate	e con	diti	on.									
		00.100													D2						
voita	ge a	ICI OS	5 เก	ie ope		, ii cui	i cap	Jaci		is th	e vc	naye	aci	055	RZ:						
V _{R2}	=	v _{C1} (∞)	=	i (∞) ∙	10 =	25	V.	This	is t	ne en	d co	ondi	tion	on	vC1				
NOT	if I r	emer	nbei	n 7.3 ⁻ rathe to a l	er g	o to p	bage	3 о	f Pa	rt 2B,	and	the T	ropio					l.			
Initia	l co	nditio	on c	on vC´	l eo	qual (0.														
							V	_{C1} (() + ') =	:	v _{C1} (0)		=	C)				
Math	of ⁻	Thinc	as (I	<u> ИоТ):</u>	Br	eakir	ng th	ne e	expr	essio	n V	o - Vo)(e [,]	^ (-	t/R(C1))				
wher	n t=i	nfini	ty, I	math nere c als fro	ap	acito	r is d	ope	n ci	rcuit	. Vo	ltage	is ri	sing	g gra	adu	ally a	acro	ss tl	he	
t/RC)	or	-Vo(e	e^-	t/tau)	<-																
				e rises discha																	
				=	-												-0. 0		last	piot	•
	10^{11}	т)			VC	(0)															
	_{:1} (0	+')•	e [–]	t 21 =	0.	e ⁻⁰	1	=				orrect	•								
V _C				<u>t</u> 21 = e^-t/F						0	Сс	orrect		Fro	ım t	=0,	vC1	(t) r	ises	, thi	S
V _C The i requi	mati res	n usii	ng e		RC 1	work	s at	t=C). <i>O</i>	0 f cou	Co Irse	orrect <i>it wo</i>	uld.								
V _C The i requi term	matł res <u>s</u> .	n usii a pos	ng e sitiv	e^-t/F e exp	RC N one	work: entia	s at I teri	t=C m b). <i>O</i> out t	0 f cou his <u>r</u>	Co Irse ise i	orrect <i>it wo</i> s sho	uld. wn	as \	/o -	Vo	(e^(·	- t/F	RC1)		
V _C The i requi term	matł res <u>s</u> .	n usii a pos	ng e sitiv	e^-t/F e exp	RC N one	work: entia	s at I teri	t=C m b). <i>O</i> out t	0 f cou his <u>r</u>	Co Irse ise i	orrect <i>it wo</i> s sho	uld. wn	as \	/o -	Vo	(e^(·	- t/F	RC1)		
v_{c} The irequitive terms v_{c1} (1)	math res <u>s</u> . t > 0 easir	n usii a pos) = ng frc	ng e sitiv v _c	e^-t/F e exp ₁ (t > -25V t	RC \ one 0) •	works ential e ^{-t} e ^{RC}	s at I teri ¹ =	t=C m b 2). <i>O</i> but t 25•	0 f cou his <u>r</u> e^{-t}	Co Irse ise i <	orrect <i>it wo</i> s sho 2n / - do	uld. wn d te ne l	as \ rm	/o - the	Vo ne((e^(· gative	- t/F e sic	RC1) de.) by	
v_{c} The requi	math res <u>s</u> . t > 0 easir circ ually	n usin a pos) = ng fro suit c /, tim	ng e sitiv v _C om - ond	e^-t/F e exp ₁ (t >	RC N one 0) • co ti whe	work: ential t e RC ⁻ he m ere tl volta	s at I teri = axin he ca	t=0 m b -2 num apa). <i>O</i> but t 25• n va cito oss t	0 f cou his <u>r</u> e^{-t} e ^{RC1} lue c r is f the c	Co irse ise i < of 0 ully apa	orrect <i>it wo</i> <u>s sho</u> 2n / - do charg citor r	uld. wn d te ne l jed. ises	as \ rm by t	/o - the he 2 om t	Vo ne 2nd =0	(e^(. gative term to 2!	- t/F e sic n, be 5V b	RC1) de. efore) by	
v _c The i requi term v _{c1} (1 Incre open Grad this i Add v	math res <u>s</u> . t > 0 easir circ ually s do	n usin a pos og fro uit c /, tim ne th = 25\	ng e sitiv v _c ond ond ne v nru / to	e^-t/F e exp 1 (t > 25V t ition v	RC n one 0) • co ti whe he nath essi	works ential t RC RC he m ere th volta n exp on -	s at l teri = axin he ca bress Vo(e	t=0 m b 2 nun apa acro ion e^(). <i>O</i> but t 25• n va cito bss t by - t/F	0 $f couthing r his r e^{-t}e^{RC1}ilue cr is fthe caddinRC1)$	Co ise i se i of 0 ully apa ng 2	orrect <i>it wo</i> <u>s sho</u> 2n / - do charg citor r 25V. V ecome	uld. wn d te jed. ises 'o =	as rm by t frc 25 o -	/o - the he 2 om t V, t Vo(Vo ne(2nd =0 he f	(e^(. gative term to 2! first t	- t/F e sic 5V b erm C1)	de. efore out).) by	

	$v_{C1}(t) = (V_C)$	$\frac{-t}{v_{1}(0+') \cdot e^{\frac{-t}{RC1}}} - v_{C1}(t>0) \cdot e^{\frac{-t}{RC1}} + v_{C1}(\infty)$
Parenthesis nart	expression above	is the gradual rise of the C1 voltage.
		ecause it's 0 - 25e [^] -(t/RC). Results in - 25 e [^] -(t/RC)
		end value of 25V ie vC1(t=infinity).
	(
	$v_{c1}(t) = (0 - t)^{-1}$	$-25 e^{10}$ + 25
		$-\frac{-t}{10}$ Thats all you knew it all along. Gets me everytime
	$v_{C1}(t) = 25 -$	-25 e Thats all you knew it all along. Gets me everytime
		when I been away from it for a few weeks.
	(1) 07	$\begin{pmatrix} -t \\ 1-e \end{pmatrix}$ V. Answer. Time t is in micro seconds
	$V_{C1}(t) = 25$.	relative to tau (RC) was in
		microseconds.
Why did we not	vrite the parenthes	
3	positive value ?	$V_{c1}(t > 0) \cdot e^{KCT} - V_{c1}(0 + 1) \cdot e^{KCT}$
it may result in a That would NOT negative, since t	result in a positive ne exponent term is	sis like this $\begin{pmatrix} -t \\ v_{C1}(t > 0) \cdot e^{-RC1} \\ -v_{C1}(0 + ') \cdot e^{-RC1} \end{pmatrix}$ value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT).
it may result in a That would NOT negative, since t	result in a positive ne exponent term is initial value maybe pacitor: v _{C1} =	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{21} \int i_{C1}(t) dt$
it may result in a That would NOT negative, since the be 0 because the	result in a positive ne exponent term is initial value maybe pacitor: v _{C1} =	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{21} \int i_{C1}(t) dt$
it may result in a That would NOT negative, since the be 0 because the	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$	value, since v(0+) = 0, this difference being s negative -t for t>0. Some cases v(0+) may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides.
it may result in a That would NOT negative, since the be 0 because the	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$	value, since v(0+) = 0, this difference being s negative -t for t>0. Some cases v(0+) may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$	value, since v(0+) = 0, this difference being s negative -t for t>0. Some cases v(0+) may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$	value, since v(0+) = 0, this difference being s negative -t for t>0. Some cases v(0+) may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$	value, since v(0+) = 0, this difference being s negative -t for t>0. Some cases v(0+) may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides. $i_{C1}(t)$
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$	value, since v(0+) = 0, this difference being s negative -t for t>0. Some cases v(0+) may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$ $\frac{-t}{10}$ $\frac{-t}{10}$ $\frac{-t}{10}$ $(-25) \cdot e^{\frac{-t}{10}}$	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides. $i_{C1}(t)$ Remember the 10 is in microseconds.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$ $\frac{-t}{10}$ $\frac{-t}{10}$ $\frac{-t}{10}$ $(-25) \cdot e^{\frac{-t}{10}}$	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides. $i_{C1}(t)$ Remember the 10 is in microseconds.
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$ $\frac{-t}{10}$ $\frac{-t}{10}$ $\frac{-t}{10}$ $(-25) \cdot e^{\frac{-t}{10}}$	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides. $i_{C1}(t)$ Remember the 10 is in microseconds.
it may result in a That would NOT negative, since the be 0 because the	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$ $\frac{-t}{10}$ $\frac{-t}{10}$ $\frac{-t}{10}$ $(-25) \cdot e^{\frac{-t}{10}}$	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides. $i_{C1}(t)$
it may result in a That would NOT negative, since the be 0 because the Current in the ca	result in a positive ne exponent term is initial value maybe pacitor: $v_{C1} =$ $C1 \cdot v_{C1} =$ $C1 \cdot \frac{dv_{C1}}{dt} =$ $\frac{-t}{10}$ $\frac{-t}{10}$ $\frac{-t}{10}$ $(-25) \cdot e^{\frac{-t}{10}}$	value, since $v(0+) = 0$, this difference being s negative -t for t>0. Some cases $v(0+)$ may not e some numerical value for t<0. End of Math of Things (MoT). $\frac{1}{C1} \int i_{C1}(t) dt$ $\int i_{C1}(t) dt$ Taking derivative on both sides. $i_{C1}(t)$ Remember the 10 is in microseconds.

Phase Angle	Given the v(t) or i(t) time function provide the Amplitude and e, and the complex frequency s. Table form. Completed. Given Amplitude and Phase Angle, and complex frequency s,
provide the	time function v(t) or i(t). Table form. Completed.
	Constructing function v(t) :
	nd phase angle of 10 SQRT(2) at 45 degrees V. ciated complex frequency s = -50 + j100 s^-1.
	tage at $t=10 \text{ ms.}$
Amplitude	= $10 \cdot \sqrt{2}$ PhaseAngle = 45 deg
Phasor	= $10 \cdot \sqrt{2} \angle 45 \text{ deg}$ = $-50 + j 100$
S	= -50 + J100
Solution:	
	$10 \cdot \sqrt{2}$
PhAng =	45 deg
	-50 + j 100
	$\sigma = -50$
	$\omega = 100$
Forming the	e expression for v(t) : $A \cdot e^{-\sigma \cdot t} \cdot \cos(\omega \cdot t + \theta)$
	$v(t) = 10 \cdot \sqrt{2} \cdot e^{-50 \cdot t} \cdot \cos(100 \cdot t + 45^{\circ})$
Now plug-in	the time t for 10 ms:
t =	
$\sigma \cdot t =$	_3
$\omega \cdot t =$	$100 \cdot 10 \cdot 10^{-3} = 1$ rad. $\omega t_{radians} = 1$. rad = 57.2957795 deg
v(t) =	$10 \cdot \sqrt{2} \cdot e^{-0.5} \cdot \cos(57.3^{\circ} + 45^{\circ})$
=	$10 \cdot \sqrt{2} \cdot e^{-0.5} \cdot \cos(102.3^{\circ})$
This express	sion can be evaulated for a final numerical value.
	$e^{-0.5} = 0.6065307$ $10 \cdot \sqrt{2} = 14.1421356$
cos (102.3	$e^{-0.5} = 0.6065307$ $10 \cdot \sqrt{2} = 14.1421356$
	$(14.142) \cdot (0.607) \cdot (-0.213) = -1.8284333$
v(t) =	$(14, 142) \cdot (0.007) \cdot (-0.213)1.0204333$

A passive	networ	rk contains resistors, a 70 mH inductor, and a 25 uF capacitor.
Obtain the	respe	ctive s-domain impedances for a <u>driving voltage</u>
(a): v = 10)0 sin(300t + 45 deg) V
(b): v = 10)0e^(-	100t) cos (300t) V
Solution:		
R does not	t have not fr	s resistors, but do they impact the s-domain? s assosiated with it like sL and 1/sC. equency, w omega, dependent. n L and C.
Constant:	j:	$=\sqrt{-1}$ $\frac{1}{\cdot} = -1j$
a) $v(t)$		$=\sqrt{-1}$ $\frac{1}{j} = -1j$ 100 sin (300 t + 45 deg)
Amp Phas	litude	e 45 degrees
and	NO sig	ma because we do not have an exponential term.
		itrate on j <i>w.</i>
$\int \omega t$		300 t 300
S	=	$\sigma + j\omega = 0 + j300$
L	=	70•10 ⁻³ H.
	=	$(0 + j300) \cdot 70 \cdot 10^{-3} = j21$ Answer.
sL		-6
sL	=	25•10 ⁻⁶ F
	=	$\frac{1}{(0+j300)\cdot 25\cdot 10^{-6}}$

S	= C	-j133.3 Answer.
(b):	v (t)	$= 100 e^{-100 t} \cos (300 t) V.$
Wha	t can	we get from this equation?
	litude	
	e ang hich is	le 0 degrees
		j300, sigma = -100, w = 300
		$\frac{1}{1}$
σ	=	-100
ω	=	300 t 300
S	=	$\sigma + j\omega = -100 + j300$
	=	$70 \cdot 10^{-3}$ H.
sL	=	$(-100 + j300) \cdot 70 \cdot 10^{-3}$
		$-100 \cdot 70 \cdot 10^{-3} = -7$ 300 \cdot 70 \cdot 10^{-3} = 21
sL	=	-7 + j21 Answer.
0		
С	=	25.10 ⁻⁶ F
1		1
$\frac{1}{sC}$	=	$(-100 + j300) \cdot 25 \cdot 10^{-6}$
		(-100+J300)+23+10
		$(-100) \cdot 25 \cdot 10^{-6} = -0.0025$
		$(j \cdot 300) \cdot 25 \cdot 10^{-6} = 0.0075j$
		1 1000 After multiplying by
	=	Alter multiplying by
		-0.0025 + J0.0075 $-2.5 + J7.5$ 1000 top and bottom.
	=	$\frac{1000 \cdot (-2.5 - j7.5)}{-2500 - j7500} = \frac{-2500 - j7500}{-2500 - j7500}$
		(-2.5 + j7.5) (-2.5 - j7.5) (6.25 + j18.75 - j18.75 + 56.25)
		2500 17500
	=	<u>-2500 - j7500</u>
1		62.5
sC	=	-40-j120 Answer.
	mont	Good exercise. Some steps from problem 8.6 and or 8.7 applied.

a).	i (t)	=	10 cos (2 t) (Note: Don't apply with time t=0.1 here). In the Part 2 notes: e^st = e^(sigma + jw)				
			$s = \sigma + jw$'s' as a complex function we work it indepdent of time t.				
			s = 0 + j2 = j2				
	we plug	this	e s, complex frequency, from the current source (given), in Zin so we get the precise impedance for this circuit for source i(t).				
			4 (s + 3) s + 4				
	Z _{in} (j2)	=	$4\left(\frac{j2+3}{j2+4}\right)$ Next fix the parenthesis term to a simple complex expression				
		=	$\frac{j2+3}{j2+4} = \left(\frac{j2+3}{j2+4}\right) \left(\frac{j2-4}{j2-4}\right) = \frac{-4-8j+6j-12}{-4-8j+8j-16} = \frac{-16-2j}{-20}$				
		_	$\left(\frac{-16}{-20}\right) + \left(\frac{-2j}{-20}\right) \dots > \left(\frac{-16}{-20}\right) = 0.8 \frac{2}{20} = 0.1 \dots > 0.8 + 0.1j$				
	Z _{in} (j2)	= 4	$\cdot (0.8 + 0.1j) = 3.2 + 0.4j$				
	Mag_Z _i	n≔V	$\sqrt{(3.2^2) + (0.4^2)} = 3.2249031$ Ang $Z_{in} := atan\left(\frac{0.4}{3.2}\right) = 7.1250163$ de				
	Z _{in} (j 2)	=	3.225∠7.125 deg Answer.				
	Which Zin is in the complex function s form (s = sigma + jw):						
	Z _{in} (s)	=	3.225∠7.125 deg Answer.				
	Next we proceed using Ohm's Discovery also known as Ohm's Law V=IZ.						
	i (t)	=	10 cos (2 t) No phase angle given this means its 0 degreess.				
	I (s)	=	10∠0				
	V (s)	=	$I(s) \cdot Z_{in}(s) = 10 \angle 0 \cdot (3.225 \angle 7.125 \text{ deg})$				
	V (s)	=	32.2∠7.13 deg Answer.				
	Nextla	nnlv	the time t=0.1 s in the time domain after conversion.				

i (t)	= 10 cos (2 t) < Our form of v(t) equation for the solution will be similar or same.	
V (s)	= 32.2∠7.13 deg	
Amplitu	e: 32.2	
Phase a	gle: 7.13 deg	
v (t)	= 32.2 cos (2 t + 7.13 °)	
v(t) at t	ne t = 0.1 s:	
v (t)	= 32.2 cos (2 (0.1) + 7.13 °)	
	= 32.2 cos (0.2 + 7.13 °)	
	0.2 rad = 11.4591559 deg	
	= 32.2 cos (11.46 ° + 7.13 °)	
v (t)	= 32.2 cos (18.59 °)	
	cos (18.59 °) = 0.9478241	
	32.2 • 0.948 = 30.5256	
v (t)	= 30.5 V. Answer.	
b). i ($= 10 \cdot e^{-t} \cdot \cos(2 t)$	
	$s = \sigma + jw$ s = -1 + j2	
Zi	$(s) = 4 \frac{(s+3)}{(s+4)}$	
	tute s = $-1+j2$	
$\frac{s+3}{s+4}$	$= \frac{(-1+j2)+3}{(-1+j2)+4} = \frac{2+j2}{3+j2}$	
	n-Commercial Use Or	

$\left(\frac{2+j2}{3+j2}\right)$	$\left(\frac{3}{3}\right)$	$\frac{j2}{j2} = \frac{6-j4+j6+4}{9-j6+j6+4} = \frac{10+j2}{13} = 0.7692+j0.1538$
Z _{in} (–1-	+ j 2)	$= 4 \cdot (0.7692 + j0.1538) = 3.077 + j0.615$
Mag_Z _i	n≔√	$\overline{(3.077^2) + (0.615^2)} = 3.1378582 \text{ Ang}_{\text{in}} := \operatorname{atan}\left(\frac{0.615}{3.077}\right) = 11.3027705 \text{ c}$
Z _{in} (–1-	+ j 2)	= 3.138∠11.303 deg Answer.
Which Z	in is ii	n the complex function s form (s = sigma + jw):
Z _{in} (s)	=	3.138∠11.303 deg Answer.
Next we	proce	ced using Ohm's Discovery also known as Ohm's Law V=IZ.
i (t)	=	$10 \cdot e^{-t} \cdot \cos(2 t)$ No phase angle given this means its 0 degreess.
I (s)	=	10∠0
V (s)	=	$I(s) \cdot Z_{in}(s) = 10 \angle 0 \cdot (3.138 \angle 11.303 \text{ deg})$
V (s)	=	31.38∠11.303 deg Answer.
Next I a	pply t	the time t=0.1 s in the time domain after conversion.
i (t)	=	10 e^{-t} cos (2 t) < Our form of v(t) equation for the solution will be similar or same.
V (s)	=	31.38∠11.303 deg
Amplitude:		31.38
Phase angl	e:	11.303 deg
v(t) =	31.38	8 e ^{-t} cos (2 t + 11.303 °)
v(t) at time	e t = C	D.1 s:
v (t) =	31.38	8 e ^{-0.1} cos (2 (0.1) + 11.303 °)
(31.38)	• (0.90	05) • cos (0.2 + 11.303 °)
0.0 mod	11 /	4591559 deg

$Z_{in}(s) =$	$\frac{(s4)\left(\frac{1}{s}\right)}{s^2 \ 4+1}$			
$Z_{in}(s) =$	$\frac{4}{\frac{s^2 4 + 1}{s}}$	$= 4 \cdot \left(\frac{s}{s^2 \ 4 + 1}\right) =$	$\frac{4(s)}{4\cdot\left(s^2+\frac{1}{4}\right)} =$	$\frac{s}{s^2 + \frac{1}{4}}$
$Z_{in}(s) =$	$\frac{s}{s^2 + 0.25}$	Answer.		
Next for the	frequencies, v	ı, for which the impe	edance Zin equal zero	or infinity:
Z _{in} (0) =	$\frac{s}{s^2 + 0.25}$	$=$ $\frac{0}{0+0.25}$ =	$\frac{0}{25} = 0$	

The impedance Zin equal 0 at <u>0 frequency</u>.

$$Z_{in}(\infty) = \frac{\infty}{\infty^2 + 0.25} = \frac{\infty}{\infty^2} = 0$$

The impedance Zin equal 0 at infinity frequency.

What frequency would it make for Zin equal infinity?

The poles and zeros?

Solving for the poles would provide the highest or peak or infinity response? Yes. Thats one option.

 $s^{2} + 0.25 = 0$

 $s^2 = -0.25$

s = $\sqrt{-25}$ = +/- j5 ... resulting in an infinite impedance.

s = +/- j5 rad/s this is the jw part of s

A source with w = +5 rad/s will provide an impedance Zin equal INFINITY. Usually on the frequency we go by the positive, +jw, the real part. This source may be a sinusoidal driving force of frequency 0.5 rad/s.

Problem 8.14 (Transfer Function of Circuit) :

<u>Obtain the H(s)</u> for the network in the circuit below.
 Where excitation is the driving current I(s).
 Response is the voltage V(s) at the input terminals.

H (s) =	$\frac{V(s)}{I(s)} = \left(\frac{2 s^2 + 15}{s}\right) \text{ Answer.}$								
Comment:	Easy to follow. Setting it up takes some getting used too.								
	The 13 problems for transfer functions from the Problems								
	and Solutions of Control Systems does provide some exercise -								
	Attached at end of this file.								
	We found a method to get capacitor C voltage V'(s) from a								
	current node equation, then we found a place to fix that V'(s) in								
	the voltage loop equation where we solved for V(s). Then got the								
	transfer function V(s)/I(s), we need to form a mathemtical								
	relationship some where to build toward the solution here it was								
	KCL and KVL. Then merely one divided by the other V(s) over I(s)								
	or I(s) over V(s).								

Review:

Before I start on this probelm. A very short review on two port network. Its used in power systems course for transmission lines. Transfer function is a

good example to apply in two port network, because we got voltages at both end separated by the transmission lines. Its a simplest 2 x 2 matrix. Its a chapter by itself usually after AC power and complex frequency. It uses the transfer function to solve its circuit problems. Easier in comparison to RLC circuits.

It comes before Laplace Transform Method For Electric Circuits.

0 V1 0 V1 0 0	3 ohm	12(s) - O - V2 - V2	Circuit to the left is a two port network. <u>V1</u> <u>one side, and V2 the</u> <u>other, thats the two</u> <u>ports.</u> Do a KVL for each loop. Set the equation to line up so we can form a matrix.
ZL	= s•1 = 1		
KVL 1: V1	= $11(s) 2 ohm + s(11(s) +$	12(s)) =	(2 + s) 11 (s) + (s) 12 (s)
KVL 2: V2	= $12(s) 3 \text{ ohm} + s(11(s) + s)$	12(s)) =	(s) 11(s) + (3 + s) 12(s)

V1 =	(2 + s) 11 (s) + (s) 12 (s)	> $V_1 = Z_{11} I_1 + Z_{12} I_2$
V2 =	(s) 11(s) + (3 + s) 12(s)	> $V_2 = Z_{21} I_1 + Z_{22} I_2$
Z ₁₁ =	$\frac{V_1}{I_1} \text{when} I_2 = 0$	$Z_{12} = \frac{V_1}{I_2}$ when $I_1 = 0$
Z ₂₁ =	$\frac{V_2}{I_1} \text{when} I_2 = 0$	$Z_{22} = \frac{V_2}{I_2} \text{ when } I_1 = 0$

The coefficients of Zij (matrix size i x j) are called Z-parameters of the network. Z parameters are also called open circuit impedance parameters since they may be measured at one terminal while the other terminal is open - Schaums page 335 Chapter 13 Two Port Network.

 $\begin{array}{c} (2+s) \ 11(s) + (s) \ 12(s) \\ (s) \ 11(s) + (3+s) \ 12(s) \end{array} \xrightarrow{---> \text{ Form the } Z} Z_{\text{parameters}} = \begin{bmatrix} (2+s) & s \\ s & (s+3) \end{bmatrix}$

0.2

 $s^{2} + 3s + 2$

Review completed.

Continuing problem 8:15 :

For the two port network circuit below, find the values of R1, R2, and C. Given that the voltage transfer function is:

Somewhere in the circuit we need to have a <u>differentiating line</u>, so we can form the two port network. Is that necessary in all cases? Its circuits! The components RLC in the above circuit could be made into Zequivalent, but the circuit needs a parallel connection to provide a V1 and V2 at either side. In this circuit we use the xx' branch for assisting the solution. Its an example problem. Learning Outcome is circuit analysis method(s).

+ Vi(s (i L	1 x x x x x x x x x x x x x
capa	itor o	on xx'.	ooking into xx', here for the right side off the xx' branch including the This mostly covers the impedance of the network on the right side. Thevenin's Equivalent. Not to rush.
Z _{R1_F}	2	=	R1 + R2
Z _{R1_F}	82_C1	=	$\frac{\left(\frac{1}{sC}\right) \cdot (R1 + R2)}{\left(\frac{1}{sC}\right) + (R1 + R2)} = \frac{\left(\frac{1}{sC}\right) \cdot (R1 + R2)}{\left(\frac{1}{sC}\right) + (R1 + R2)}$ Multiply by sC
Z _{R1_F}	R2_C1	=	$\frac{R1 + R2}{1 + sC (R1 + R2)}$ Impedance seen on xx' from the left, so it becomes the impedance of the output side.
Let	Z'	=	$Z_{R1_{R2_{C1}}} = \frac{R1 + R2}{1 + sC(R1 + R2)}$
Total	circu	it impe	edance of the network will be the input impedance (looking from Vi) :
Zi	=	ZL+	$Z' = s \cdot 1 + Z'$ $= s + Z'$
the le	eft fro	m the	up to here, usual impedance calculation. Here we separated right at xx'. And we see next why we choose this why impedances to the left and right help this solution.
	$\left(\frac{V_{o}}{V_{xx'}}\right)$	$\left(\frac{V_{xx'}}{V_i}\right)$	$= \frac{V_o}{V_i}$ This can be called <u>voltage division</u> . The method is in <u>representing voltages in terms of impedances</u> , voltage division, respective to their relationship in the

$=$ (P1 + P2) $ _{2}$	R1 + R2 • C (R1 + R2) + R1 + R2)	
(1(1+1(2))) (S+S	$\cdot C(RI + R2) + RI + R2)$	
= (<u>R2</u>		
$= \left(\frac{R2}{s+s^2 \cdot C(R1+R)}\right)$	2) + R1 + R2	
(R2		
$=$ $\left(\frac{1}{s^2} + C(P_1 + P_2)\right)$	Lets make the coefficiency of the coefficiency	ent of the 2nd
$(3 \cdot C(R) + RZ)$		$\frac{1}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1$
	R2	
	(C(R1 + R2))	
$= \frac{1}{1 + R^2} + C(R1 + R2)$	$+\frac{s}{C(R1 + R2))} + \frac{(R1 + R2)}{C(R1 + R2)} + \frac{(R1 + R2)}{C(R1 + R2)}$	
$\frac{1}{C}(R1+R2)$	$+\frac{3}{C(R1+R2)}+\frac{(R1+R2)}{C(R1+R2)}$	
(0 (111 / 12)		
(R2		
(C (R1 + R2))	
$= \left(\frac{\frac{R2}{(C(R1 + R2))}}{\frac{R2}{(C(R1 + R2))}} \right)$		
$(^{3} + \frac{1}{C(R1 + R2)})$	$\left(\frac{c}{c}\right)$	
Next we equate the give	n transfer function H(s) to the above :	
	(R2	
$H_{(s)} = V_{0}(s)$	= <u>0.2</u> $=$ (C (R1 + R2))
		1
$\overline{V_i(s)}$	$s^{2} + 3s + 2$ $s^{2} + \frac{1}{2(21 - 23)}$	$S + \frac{1}{2}$
$V_i(s)$	$= \frac{0.2}{s^2 + 3 s + 2} = \left(\frac{\frac{1}{(C (R1 + R2))}}{s^2 + \frac{1}{C (R1 + R2)}}\right)$	$S + \frac{1}{C}$
$V_i(s)$		
H (s) = 0.2	$\left(\begin{array}{c} R2\\ \hline C(R1+R2)\end{array}\right)$	Numerator
	$\left(\begin{array}{c} R2\\ \hline C(R1+R2)\end{array}\right)$	
$H_v(s) = \frac{0.2}{(s+2)(s+2)}$	$= \begin{pmatrix} \frac{R2}{C(R1+R2)} \end{pmatrix}$	Numerator < As in Schaums.
H (s) = 0.2	$\left(\begin{array}{c} R2\\ \hline C(R1+R2)\end{array}\right)$	Numerator < As in Schaums.
$H_{v}(s) = \frac{0.2}{(s+2) (s)}$ Numerator term: $0.2 = \frac{R2}{R2}$	$\frac{1}{(1+1)^{2}} = \left(\frac{\frac{R^{2}}{C(R^{1}+R^{2})}}{\frac{R^{2}}{c(R^{1}+R^{2})}} + \frac{1}{C(R^{1}+R^{2})} + \frac{1}{C}\right)$ $= 0.2 C(R^{1}+R^{2}) = R^{2}$	Numerator < As in Schaums.
$H_{v}(s) = \frac{0.2}{(s+2) (s)}$ Numerator term:	$\frac{1}{(1+1)^{2}} = \left(\frac{\frac{R^{2}}{C(R^{1}+R^{2})}}{\frac{R^{2}}{c(R^{1}+R^{2})}} + \frac{1}{C(R^{1}+R^{2})} + \frac{1}{C}\right)$ $= 0.2 C(R^{1}+R^{2}) = R^{2}$	Numerator < As in Schaums.
$H_{v}(s) = \frac{0.2}{(s+2) (s)}$ Numerator term: $0.2 = \frac{R2}{C (R1 + R2)}$	$\frac{R^{2}}{(R^{2} + 1)} = \left(\frac{R^{2}}{C(R^{2} + R^{2})}\right)$ $= \frac{R^{2}}{(R^{2} + \frac{1}{C(R^{2} + R^{2})})}$ $= \frac{R^{2}}{R^{2}}$ $= \frac{R^{2}}{R^{2}}$ $= \frac{R^{2}}{R^{2}}$ $= \frac{R^{2}}{R^{2}}$ $= \frac{R^{2}}{R^{2}}$ $= \frac{R^{2}}{R^{2}}$	Numerator < As in Schaums. Denominator
$H_{v}(s) = \frac{0.2}{(s+2) (s)}$ Numerator term: $0.2 = \frac{R2}{R2}$	$\frac{R^{2}}{(R^{2} + 1)} = \begin{pmatrix} \frac{R^{2}}{C(R^{2} + R^{2})} \\ \frac{R^{2}}{s^{2}} + \frac{1}{C(R^{2} + R^{2})} \\ \frac{R^{2}}{C(R^{2} + R^{2})} \\ R$	Numerator < As in Schaums. Denominator C was solved there.
$H_{v}(s) = \frac{0.2}{(s+2) (s)}$ Numerator term: $0.2 = \frac{R2}{C (R1 + R2)}$	$\frac{R^{2}}{(R^{2} + 1)} = \left(\frac{R^{2}}{C(R^{2} + R^{2})}\right)$ = 0.2 C (R1 + R2) = R2 0.2 CR1 + 0.2 CR2 = R2 0.2 CR1 + 0.2 CR2 = R2 0.2 CR1 + 0.2 CR2 - R2 = 0 Go to next page the denominator terms You can see it here from inspection also	Numerator < As in Schaums. Denominator C was solved there.
$H_{v}(s) = \frac{0.2}{(s+2) (s)}$ Numerator term: $0.2 = \frac{R2}{C (R1 + R2)}$	$\frac{R^{2}}{(R^{2} + 1)} = \begin{pmatrix} \frac{R^{2}}{C(R^{2} + R^{2})} \\ \frac{R^{2}}{s^{2}} + \frac{1}{C(R^{2} + R^{2})} \\ \frac{R^{2}}{C(R^{2} + R^{2})} \\ R$	Numerator < As in Schaums. Denominator C was solved there.

																	•	.9 .1) R	2		
													R1		=		9	R2			
De	enomii	nator	tern	ns:	s	2 + 3	3 s	+ 2		=		(s	+ 2)) (S +	1)					
	s ²	=	1		2nd	orde	er te	erm	her	e d	id r	not	app	ly i	n t	ran	sfer	functi	ion	equating of	terms.
	S	=	3 s	;	=	C	(R	1 1+	R2	_ s)	5	=		3 (CR	1+	3	CR2	=	1	
	2	=	1 C		=	С	=	1 2			>		$\left(\frac{3}{2}\right)$).	R1	+ ($\left(\frac{3}{2}\right)$	•R2	=	1	
							D	1	_		0	20			3	R1	+ 3	R2	=	2	
							ĸ		_		7	τz			27	R		3 R2 R2		2 2	
																		R2	=	2 30	
																		R2	_	<u>1</u> 15	
							R'	1	=		(9)) (-	1)		=		9		=	<u>3</u> 5	
Dr	iefly, i	ocan	the		luos	oft						,					15			5	
וט	ieny, i	ecap,	the	va	iues		.rre	co	inpc	ЛС	1113	R1		=	υ.	<u>3</u> 5		ohm		Answer.	
												R2	<u>)</u>	=		_1 _15		ohm		Answer.	
												С		=		<u>1</u> 2		F		Answer.	
Th To	ommer nis was ook me	s a <u>go</u> Ionge	r be	caus	se of	sev	eral	са	reles	ss r	nist	take	es. (Goo	od s	star	ter	proble	m.	skills.	

FIUDIEITI O.	<u>16 (Pole</u>	Zero Plot)	<u>:</u>				
Construct t	he pole	zero plot fo	or the transfer ad	mittance fu	nction :		
			$I_{o}(s)$	$s^{2} + 2 s$	+ 17		
		Π(S) =	$= \frac{I_{o}(s)}{V_{i}(s)} =$	$s^{2} + 3 s^{2}$	5+2		
Solution:							
Stort with	footoring	the edmitt	anas function				
The admitt	ance fun		ance function. = 1/Z = I/V. Z.				
The function	n here is	s admittanc	ce, treat it the sar	me way			
start with t	actoring	to get the	zeros and poles.				
$s^{2} + 3s + 2$		(s + 2) (s	+ 1)				
$s^{2} + 2 s + 1$	7 <	this equati	on isnt easy to fa	ctor.			
(s	+4) (s-	- 4) =	$s^{2} - 4 s + 4 s - s^{2} - 16$ $s^{2} - j4 s + j4 s$	16			
(s + i	4) (s_i	4) =	S = 10 $S^{2} = i4 S + i4 S$	$-i^{2} \cdot 16$			
(3)	i) (3 j	=	$s^{2} + 16$	J 10			
			2			2	
(s + 1 + j 4)	(s + 1 –	j4) =	$s^{2} + s - j4s + s$ $s^{2} + s + s + 1 - j4s + s$	+1-j4+j4 14	4s + j 4 — j	j [£] 16	
		=	$s^{2} + 2s + 1 + 1$	6			
			s ² + 2 s + 17		we were	looking for.	
(2, 1, 1, 1)							
(S + 1 + J 4)			ms, s 1 and j4, th ulting. By adding				d
	0		some inspection,	0			
	continu	ed effort to	get the factors.	Factoring is	s not my	favourite math	
H (s)	_ (s + 1 + j 4)((s + 1)((s + 1 - j 4) No	w factored	for zeros	and poles.	
(0)		(s + 1) ((s + 2)			and poise.	
Zeros:							
	(s + 1 +	j4) <	 For this express to equal 0, s mu 		(s + 1 – j	4)	
	s = -	1-i4	equal what?	43t	s = -	1 + i 4	
Poles:							
	(s + 2)				(s + 1)		

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

Z (s)	$= \frac{1}{Z_{R1}} + \frac{1}{Z_{C}} + \frac{1}{Z_{R2} + Z_{R2}}$	
	$= \frac{1}{1} + \frac{1}{\left(\frac{2}{s}\right)} + \frac{1}{(2+4 s)}$	all 3 branches in at once.
	$=$ 1 + $\left(\frac{s}{2}\right)$ + $\frac{1}{(2+4 s)}$	
	$=$ 1+ $\frac{s}{2}$ + $\frac{1}{(2+4 s)}$	
	$= \frac{1 \cdot (2) (2 + 4 s) + s \cdot}{(2) (2 + 4 s)}$	$(2+4 s) + 1 \cdot (2)$ 4 s)
	= 4+8 + 2 + 4 + 8 + 2 + 4 + 8 + 3 + 4 + 8 + 2 + 4 + 8 + 3 + 3 + 4 + 8 + 3 + 3 + 4 + 8 + 3 + 3 + 4 + 8 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3	- 2
	$= \frac{4 s^{2} + 10 s + 6}{4 + 8 s}$	Simplify this with a unity coefficient for s^2
$\frac{1}{Z(s)}$	$= \frac{\frac{4 s^{2}}{4} + \frac{10 s}{4} + \frac{6}{4}}{\frac{4}{4} + \frac{8 s}{4}}$	$= \frac{s^2 + 2.5 s + 1.5}{1 + 2 s}$ Unity coefficient for 2s in the
$\frac{1}{Z(s)}$		$= \left(\frac{1}{2}\right) \cdot \frac{s^2 + 2.5 s + 1.5}{(0.5 + s)}$
Z (s)	$= (2) \frac{s+0.5}{s^2+2.5 s+1.5}$	Next the other hard part to factor this, which in this solution the Engineers provided it. WORSTCASE I would solve using the roots of quadratic equation method !
Z (s)	$= 2 \cdot \frac{(s+0.5)}{(s+1) (s+1.5)}$	
Now we	e can identify the natural fre	equencies:
Zero :	s _{z1} = -0.5	Answer.
Poles :	$s_{p1} = -1$ $s_{p2} = -1.5$	Answer. Answer.

						Series
<u>1</u> Z _{R1_C}	=	1 R1	1 2 5	=	$\frac{1}{1} + \frac{s}{2}$	$=$ $\frac{2+s}{(1)(2)} =$ $\frac{2+s}{2}$ Parallel
Z _{R1_C}	=	$\frac{2}{2+s}$		Inverted		
Z (s)	=	(2 + 4	s)	$+\left(\frac{2}{2+s}\right)$	Serie	S
Z (s)	=	(2 + 4	- s)	$+\left(\frac{2}{2+s}\right)$	=	$\frac{(2+4 s)}{1} + \left(\frac{2}{2+s}\right)$
					=	$\frac{(2+4 s) (2+s) + (2) \cdot (1)}{(1) (2+s)}$
					=	$\frac{4+2 + 8 + 8 + 4 + 8^{2} + 2}{(2+s)}$
					=	$\frac{4 s^{2} + 10 s + 6}{(2 + s)}$ Factor out 4 for numerator
				Z (s)	=	$\frac{4(s^{2} + 2.5 s + 1.5)}{(s + 2)}$
				$\frac{1}{Z(s)}$	=	$\left(\frac{1}{4}\right) \cdot \frac{s+2}{s^2+2.5 \ s+1.5}$
H (s) =	l V	(s) (s)	=	$\frac{1}{Z(s)}$	=	$\left(\frac{1}{4}\right) \cdot \frac{(s+2)}{(s+1)(s+1.5)}$
Now we car	n ider	itify th	e n	atural fre	equencies	5:
Zero :	S _Z 2			-2	Answer.	
Poles :	S _p S _p	1 = 2 =		—1 —1.5	Answer. Answer.	

 coefficients A1 and A2. ndition. ound in the inductor and capacitor. iL (0 + .) = 0 Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0. 	t) = $A1e^{s1t} + A2e^{s2t}$ t) = $A1e^{-51.317 t} + A2e^{-1948.683}$ ext, obvious, we need to solve for hat comes to mind? Continuity Co ur circuit was off during t<0. o no energy built up or storage is f (-0) = 0> iL (0) = 0>
 coefficients A1 and A2. ndition. ound in the inductor and capacitor. iL (0 + .) = 0 Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0. 	ext, obvious, we need to solve for hat comes to mind? Continuity Co ur circuit was off during t<0. o no energy built up or storage is f
 ndition. ound in the inductor and capacitor. iL (0 + .) = 0 Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0. 	hat comes to mind? Continuity Co ur circuit was off during t<0. no energy built up or storage is f
 ound in the inductor and capacitor. iL (0 + .) = 0 Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0. 	ur circuit was off during t<0. no energy built up or storage is f
 iL (0 + .) = 0 Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0. 	no energy built up or storage is f
 iL (0 + .) = 0 Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0. 	no energy built up or storage is f
Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0.	$(-0) = 0 \dots > iL(0) = 0 \dots > iL(0)$
Here at 0+ the inductor is building up current and just past 0 at a low mili or micro second the current will be almost 0 which is practically 0.	
current will be almost 0 which is practically 0.	
iC(0+.) = 0	this circuit same for capacitor C:
iC(0+.) = 0	
	(-0) = 0 > iC(0) = 0 > = 0
=0 in the equation	r our first equation at t=0, plug t
	$D) = A1e^{-51.3170} + A2e^{-1948.683}$
	= A1 + A2 Eq 1.
on (KVL for most Voltage Loop Law VLL or V Double L).	
We can do a voltage at t=0+,	e have V = 200V.
meaning just micro or nano	R1 L1
say the voltage is building up	200 ohm 0.1 H
and at this time its zero across	
some or all comnponents.	
	$(\mathbf{v}_i)_{200V} \ge \mathbf{V} = 0$
some or all comnponents.	

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

	+):						
						Current is r	ising, and same
	R•i(t) + _	¹ ∫i(t) dt	+L(di)	=	V		R, but for C since
	((dt)			its an integ	ral we have the
						integral low	ver limit at t=0,
		0.0	, (di)		V	here the vC	c(0) will be zero.
		0+0+	$-L\left(\frac{di}{dt}\right)$	_	V	Agree.	
		0.0	, (di)		000		
		0+0+	$-L\left(\frac{di}{dt}\right)$	=	200		
			(ut)				
			(di)				
			$0.1 \left(\frac{di}{dt} \right)$	=	200		
			(ut)				
			(di)		200		
			$\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)$	=	200	= 2000	
			(dt)		0.1		
i (t) =	$A1e^{-51.317 t} + A$	A2e ^{-1948.683}	t Our o	urren	t expr	ession	
We differe	ntiate it:						
<u>ai</u> = -	51.3 A1 e ^{-51.3}	^t – 1948.7	A2 ^{-1948.7 t}	Wep	olug in	(di/dt)	
dt					Ŭ		
2000 =	–51.3 A1 e ⁻⁵	^{51.3 t} – 1948	.7 A2 ^{-1948.7}	t			
t =							
2000 =	_51.3 A1•e ⁻	^{.51.3•0} _ 194	87 A2.e	1948.7 • ()		
2000 -	31.37(1.0		0.7772.0				
We hav	e our 2 equatio	ons to solv	<u>م</u> .				
		5115 10 5010	0.				
0 –	A1 + A2		Eq 1.				
0 –	AT + A2		LYI				
2000	E1 2 A1 1	040 7 40	Ea C				
2000 =	-51.3 A1-1	948.7 AZ	EQ Z				
	1 1		[0]				
	-51.3 -1948.7	7 RHS:	⁼ 2000				
Coeff:=		-					
Coeff≔[00071			[1 0 2 7	0 00051
-	1	1 0 2 7 0	00051			1.027	0.0000
-	$= \operatorname{Coeff}^{-1} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}_{-1}$	1.027 0 -0.027 _0	.0005 .0005	InvC	coeff =	= 0 027 ·	-0.0005
Coeff:=[InvCoeff:	$=$ Coeff ⁻¹ = $\begin{bmatrix} \\ - \end{bmatrix}$	1.027 0 -0.027 —0	.0005 .0005]	InvC	coeff =	= [1.027 [0.027	–0.0005 j
InvCoeff:				InvC	coeff =	⁼ [-0.027	-0.0005 J
InvCoeff:	= Coeff ⁻¹ = [vCoeff•RHS			InvC	Coeff =	⁼ [—0.027 →	–0.0005 J

A1	=	1.0541 A.	
		-1.0541 A.	
		E1 217 t 1040 (02 t	
i (t)	=	$1.0541 \cdot e^{-51.317 t} - 1.0541 \cdot e^{-1948.683 t}$ Substitute A1	and A2
i (t)	=	1.0541 ($e^{-51 t} - e^{-1949 t}$) A Answer.	
Adde	d BOI	NUS part to question:	
		time at which current is maximum we need	
		tion from which we can solve for that time.	
How	do we	e get that equation?	
		on $i(t) = 1.0541 \cdot e^{-51t} - 1.0541 \cdot e^{-1949.t}$ is cul	
i ne e	equati	$On I(t) = 1.0541 \cdot e - 1.0541 \cdot e $ Is cul	rrent relative to time.
At tir	ne t=	0, i(t) = 0. LHS of equation =0.	
0	=	$1.0541 \cdot e^{-51 t} - 1.0541 \cdot e^{-1949 t}$	
The o	deriva	tive of above equation:	
0	_	(-51) $(1.0541) \cdot e^{-51 t} - (-1949.)$ $(1.0541) \cdot e^{-1949. t}$	
U			
0	=	$-53.759 \cdot e^{-51 t} + 2054 \cdot e^{-1949 t}$	
		eed to calculate the time t that gives the maximum cu hm to solve for maximum current time t:	irrent:
0361	oyanı		
-28.	73•e ⁻	$^{1.70 \cdot t} + 5041.3 \cdot e^{-298.t} = 0$	
		170 +	
5041	.3•e [_]	$^{298. t} = 28.73 \cdot e^{-1.70 \cdot t}$ 2054	00.0075550
205	4	e ^{-51 t} 53 759	= 38.2075559
53.7	59	e -1949 t	
			1949 + 51 = 2000
38.20)8	$= e^{(-51 - (-1949)) \cdot t} = e^{1898 t}$	
_			
In (38	3.208)	= 1898 • t	
اn (۲۶	3 208)) = 3.64304	
•	64304		
	L .	$=$ $\frac{3.64304}{1000}$ = 0.00192 seconds.	
	t	1898	

t	=	0.0019	92	seconds.	Α	nswer.
We rath	were her wh	not calcu ere t wil	ulating I give	g the conditi that maxim	on o um c	f the exponent's +ve or -ve sign current.
Nex Not	t plot. e: Plo	t time t i	n mill	iseconds. Th	nis fro	om our early calculation for this circuit.
clea	ır(t)					
i (t)	:=1.0	541•e ⁻⁵	^{1 t} — 1	.0541•e ⁻¹⁹⁴⁹	9. t	mA. Note: vertical axis is in mA.
1			0.001	92		
1.2-						
10.9	312851					
0.8-						
0.6-						i (t)
0.4-						
0.2-						
0	0	0.001	0.002	0.003 0.004	0.005	0.006 0.007 0.008 0.009 0.01
				t		
Tim	e at t	1.92 ms	and	maximum cu	urren	t 0.93 A. Answer.

Find the natural resonant frequency, Beta, of a series RLC circuit with R = 200, L = 0.1, and C = 5 uF. Solution: R = 200 Ohm L = 0.1 H C = 5 \cdot 10^{-6} F C = 5 \cdot 10^{-6} F $\alpha : \left(\frac{R}{2L}\right) \left(\frac{1}{\sqrt{LC}}\right)$ $\alpha := \frac{R}{2 \cdot L} = 1000$ $\omega_0 := \frac{1}{\sqrt{L \cdot C}} = 1414.2$ Alpha < Omega: 1000 < 1414.2; under damped case. $\beta = \sqrt{(\omega_0^2) - (\alpha^2)} < \cdots$ Under damped case. $\beta := \sqrt{\omega_0^2 - \alpha^2} = 1000$ rad/s Answer.		ary Problem 8.25			
$R := 200 \qquad Ohm$ $L := 0.1 \qquad H$ $C := 5 \cdot 10^{-6} \qquad F$ $\alpha : \qquad \left(\frac{R}{2L}\right) \qquad \left(\frac{1}{\sqrt{LC}}\right)$ $\omega_0 : \qquad \left(\frac{1}{\sqrt{LC}}\right) \qquad \left(\frac{1}{\sqrt{LC}}\right)$ $\omega_0 : \qquad \left(\frac{1}{\sqrt{LC}}\right) \qquad \left(\frac{1}{\sqrt{LC}}\right)$ $A := \frac{R}{2 \cdot L} = 1000 \qquad \omega_0 := \frac{1}{\sqrt{L \cdot C}} = 1414.2$ Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)} \qquad < \cdots \qquad Under damped case.$				S REC CITCUIT	
$A = 200 \qquad \text{orim} \qquad (\text{Oscillatory})$ $L := 0.1 \qquad H \qquad (\text{Oscillatory})$ $C := 5 \cdot 10^{-6} \qquad F \qquad (\text{Critically damped:} \alpha = \omega_0 \qquad \alpha = \omega_0 \qquad (\text{Over damped:} \alpha > \omega_0 \qquad \alpha^2 > \omega_0^2 \qquad (\frac{1}{2 RC}) \qquad (\frac{1}{2 RC}) \qquad (\frac{1}{2 RC}) \qquad (\frac{1}{\sqrt{LC}}) \qquad (\frac{1}{\sqrt$	Solution:		Case	Series RLC	Parallel RLC
$C := 5 \cdot 10^{-6} F$ $C := 5 \cdot 10^{-6} F$ $\alpha : \qquad \left(\frac{R}{2L}\right) \qquad \left(\frac{1}{2RC}\right)$ $\omega_0 : \qquad \left(\frac{1}{\sqrt{LC}}\right) \qquad \left(\frac{1}{\sqrt{LC}}\right)$ $\omega_0 : \qquad \left(\frac{1}{\sqrt{LC}}\right) \qquad \left(\frac{1}{\sqrt{LC}}\right)$ $\alpha := \frac{R}{2 \cdot L} = 1000 \qquad \omega_0 := \frac{1}{\sqrt{L \cdot C}} = 1414.2$ Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)} < \cdots Under \text{ damped case.}$	R:=200	Ohm		$\alpha < \omega_0$	$\alpha^2 < \omega_0^2$
$C := 5 \cdot 10^{-6} F$ $\alpha : \qquad \left(\frac{R}{2L}\right) \qquad \left(\frac{1}{2RC}\right)$ $\omega_0 : \qquad \left(\frac{1}{\sqrt{LC}}\right) \qquad \left(\frac{1}{\sqrt{LC}}\right)$ $\alpha := \frac{R}{2 \cdot L} = 1000 \qquad \omega_0 := \frac{1}{\sqrt{L \cdot C}} = 1414.2$ Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)} < \cdots \text{ Under damped case.}$	L:=0.1	H	Critically damped:	$\alpha = \omega_0$	$\alpha = \omega_0$
$\alpha := \frac{R}{2 \cdot L} = 1000$ $\omega_0 := \frac{1}{\sqrt{L \cdot C}} = 1414.2$ Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{(\omega_0^2) - (\alpha^2)} < \cdots$ Under damped case.	$C_{1} = 10^{-6}$	E E	Over damped:		
$\alpha := \frac{R}{2 \cdot L} = 1000 \qquad \qquad \omega_0 := \frac{1}{\sqrt{L \cdot C}} = 1414.2$ Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{(\omega_0^2) - (\alpha^2)} < \text{ Under damped case.}$	C≔5•10	F	α :	$\left(\frac{R}{2 L}\right)$	$\left(\frac{1}{2 RC}\right)$
Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{(\omega_0^2) - (\alpha^2)} < \text{ Under damped case.}$			ω ₀ :	$\left(\frac{1}{\sqrt{LC}}\right)$	$\left(\frac{1}{\sqrt{LC}}\right)$
Alpha < Omega; 1000 < 1414.2; under damped case. $\beta = \sqrt{(\omega_0^2) - (\alpha^2)} < \text{ Under damped case.}$	$\alpha := \frac{R}{R} = 1$	1000 ω_0	;==1414.2		
$\beta = \sqrt{(\omega_0^2) - (\alpha^2)} < \dots \text{ Under damped case.}$	2•L		√L•C		
$\beta = \sqrt{(\omega_0^2) - (\alpha^2)}$ < Under damped case.					
		1000 111			
$\beta := \sqrt{\omega_0^2 - \alpha^2} = 1000$ rad/s Answer.	Alpha < Or	nega; 1000 < 141	4.2; under damped case	e.	
$\beta := \sqrt{\omega_0^2 - \alpha^2} = 1000 \text{rad/s Answer.}$					
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		Image: Sector of the sector
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		Image: Sector (Sector (
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		Image: Sector (Sector (
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		Image: Sector of the sector
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		Image: Sector of the sector
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		Image: Sector of the sector
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		
	$\beta =$	$\sqrt{\left(\omega_0^2\right) - \left(\alpha^2\right)}$	< Under damped cas		

i (t)	=	$e^{-25t} \cdot (A1 \cdot \cos(139t) + A2 \cdot \sin(139t)) $
di (t) dt	=	$-25 \cdot e^{-25 \cdot t} \cdot A1 \cdot \cos(139 \cdot t) - e^{-25 \cdot t} \cdot 139 A1 \cdot \sin(139 \cdot t)$
		$-25 e^{-25 \cdot t} \cdot A2 \cdot \sin(139 \cdot t) + e^{-25 \cdot t} \cdot 139 A2 \cdot \cos(139 \cdot t)$
100	=	$-25 \cdot e^{-25 \cdot t} \cdot A1 \cdot \cos(139 \cdot t) + e^{-25 \cdot t} \cdot 139 A2 \cdot \cos(139 \cdot t)$
At t=0 :		
100	=	-25 A1 + 139 A2 Eq 2
0	=	A1 Eq 1
A2	=	$\frac{100}{139} = 0.7194$
i (t)	=	e ^{-25 t} •(A1cos (139 t) + A2sin (139 t))
i (t)	=	$e^{-25 t} \cdot (0 \cdot \cos(139 t) + 0.719 \cdot \sin(139 t))$
i (t)	=	$e^{-25 t} \cdot (0.719) \cdot \sin(139 t) = 0.719 \cdot e^{-25 t} \cdot \sin(139 t)$
v _{R1} (t)	=	R1 • $(e^{-25 t} \cdot (0.719) \cdot \sin(139 t))$
v _{R1} (t)	=	$5 \cdot (e^{-25 t} \cdot (0.719) \cdot \sin(139 t))$
v _{R1} (t)	=	3.595 e ^{-25 t} sin (139 t)
v _{R1} (t)	=	3.60 $e^{-25 t}$ sin (139 t) Answer. Transient voltage across resistor.
Continui	ng fo	or vL1(t): Continuing on for the other voltages not part of question.
i (t)	=	$e^{-25 t} \cdot (0.719) \cdot \sin(139 t)$
di (t) dt	=	$-25 \cdot 0.719 \cdot e^{-25 \cdot t} \cdot \sin(139 \cdot t) + (0.719) (139) \cdot e^{-25 \cdot t} \cdot \cos(139 \cdot t)$
L1• <u>di (</u>	t) _	$= 0.1 \left(-17.975 \cdot e^{-25 \cdot t} \cdot \sin(139 \cdot t) + 99.941 \cdot e^{-25 \cdot t} \cdot \cos(139 \cdot t) \right)$
v _{L1} (t) :=	-1.7	$79 \cdot e^{-25 \cdot t} \cdot \sin(139 \cdot t) + 9.99 \cdot e^{-25 \cdot t} \cdot \cos(139 \cdot t)$ Inductor voltage.

Capacitor Equation:
$$v_{C1}(t) = \frac{1}{Ct} \cdot \int_{t_{C1}} t_{t_{C1}} (t) dt$$

$$= \frac{0.719}{C1} \int_{0}^{t} e^{-2s_{1}} \sin(139 t) dt$$
Integrating i(t) is a mess not doing it. By parts! I done exp and sine term before.
i_C1(t) = i(t). Too long and messy.
Lets try Prime evaluation for the integral term *I* was just about to go on the internet.

$$\int_{0}^{t} e^{-2s_{1}} \sin(139 t) dt \rightarrow \lim_{t \to t} \frac{e^{-25 \cdot t} \cdot (139 \cdot \cos(139 \cdot t) + 25 \cdot \sin(139 \cdot t))}{19946} + \frac{139}{19946}$$

$$\int_{0}^{\infty} e^{-2s_{1}} \sin(139 t) dt \rightarrow \frac{139}{19946} \quad <--Remove the approximation to infinity from the above expression. Otherwise the capacitor voltage does not terminate to zero.
$$v_{C1}(t) = \left(\frac{0.179}{500 \cdot 10^{-6}}\right) \cdot \left(-\frac{e^{-2s_{1} \cdot (139 \cdot \cos(139 \cdot t) + 25 \cdot \sin(139 \cdot t))}{19946}\right)$$
Lets expression is acceptable. We have voltage of C1 in terms of time t. vC1(t) eventually dies out, becomes open circuit. Since C1 is in series voltage across its terminate is zero, unlike if it were in a parallel branch and it may not be same then. Variables we have below, caculated, are the transient values for the plot: clear (t)

$$V_{5}(t) \coloneqq 10 (t) \cdot \left(\frac{1}{t}\right) \quad \text{This gives Vs=10 for t>0 constant.} Not transient constant voltage.
i_{5}(t) \coloneqq 0.719 \cdot e^{-25 \cdot t} \sin(139 \cdot t) \quad \text{Same current passint thru R1.} v_{R1}(t) \coloneqq 3.60 \ e^{-2s \cdot t} \sin(139 \cdot t) + 9.99 \cdot e^{-25 \cdot t} \cos(139 \cdot t) + 25 \cdot \sin(139 \cdot t) v_{C1}(t) \coloneqq -358 \cdot \left(\frac{e^{-25 \cdot t} \cdot (139 \cdot \cos(139 \cdot t) + 25 \cdot \sin(139 \cdot t))}{19946}\right)$$
Plots next page.$$

Provide li	ne complex tr	equencies associ	ated with th	
	i (t) =	$5.0 + 10 e^{-3 t}$	cos (50 t +	90 °)
Colution				
Solution:				
	i (t) =	A $e^{-\sigma t} \cos(\omega$	$\sigma t + \phi$ °)	
	S =			
	5 =	σ + $j\omega$		
	i (t) =	$10 e^{-3 t} \cos($	50 t + 90 °)	
	s1 =	—3 + j 50	Answer.	w = +/-50 as the frequency is
	51 =	-3+550	AIISWEI.	both sides of the centre 0, for an
	s2 =	—3—j50	Answer.	amplitude versus frequency plot.
	i (t)	= 5.0 M	lo complex	frequencies because its a
		C	constant am	plitude A = 5.
		ſ	No other teri	ms associated to it.
Suppleme	ntary Probler	n 8.30 (Provide (urrent mag	nitude at time t) :
			Ŭ	
) deg A has a cor of i(t) at t=0.2s		$ency s = -2 + j3 s^{-1}$.
What is ti	ie magnitude	011(1) 41 1–0.23		
	i (t) =	25∠40 deg	t =	0.2
Solution				
Solution:				
Solution:	25∠40 deg) S =	= -2 + j 3	3
Solution:	25∠40 deg) S =	$\sigma =$	-2
Solution:	25∠40 deg		$\sigma = \omega =$	-2 3
Solution:	25∠40 deg	g s = Phase angle = Amplitude =	$\sigma = \omega = 40 \text{ deg}$	-2 3
		Phase angle = Amplitude =	$\sigma = \omega = 40 \text{ deg}$	-2 3
		Phase angle =	$\sigma = \omega = 40 \text{ deg}$	-2 3

		0.2
		$-2 \cdot 0.2 = -0.4$
ωt	=	$3 \cdot 0.2 = 0.6$ rad. $\omega t_{radians} = 0.6 \cdot rad = 34.3775$ deg
v(t)	=	$25 \cdot e^{-2 \cdot 0.2} \cdot \cos(34.37 + 40)$
()		25
		$e^{-2 \cdot 0.2} = 0.67032$
		$\cos(74.37 \text{ deg}) = 0.2694241$
		25 • 0.67 • 0.269 = 4.5058
v(t)	=	4.51 V Answer.
Supp	leme	ntary Problem 8.31 (Calculate Z(s)):
Jupp		
Calcu	ulate i	mpedance Z(s) for the circuit show below at:
<u>م</u> ارد	s = 0	
	s = 0 s = j´	
	s = j2	
		2 nfinity s2 1/s c1 1 ohm
		2 nfinity s2 1/s c1 1 ohm
	5 = 1	$R_{1} = 2 \text{ ohm} R_{2}$
d). s Solut	s = 1	2 1
d). s Solut Z _{R1L1}	ion: (s)	nfinity = (1 + s2) Either s2 or 2s, same, to multiply 2s maybe easier to read
d). s Solut Z _{R1L1}	ion: (s)	nfinity = (1 + s2) Either s2 or 2s, same, to multiply 2s maybe easier to read
d). s Solut Z _{R1L1}	ion: (s)	nfinity = $(1 + s2)$ Either s2 or 2s, same, to multiply
d). s Solut Z _{R1L1}	ion: (s)	$= (1 + s2)$ $= (2 + \frac{1}{s})$ Either s2 or 2s, same, to multiply 2s maybe easier to read.
d). s Solut Z _{R1L1} Z _{R2C}	ion: 1 (s) 1 (s)	Prinity $= (1 + s2)$ $= (2 + \frac{1}{s})$ Either s2 or 2s, same, to multiply 2s maybe easier to read. $= (1 + s2) \cdot (2 + \frac{1}{s})$
d). s Solut Z _{R1L1} Z _{R2C}	ion: (s)	$= (1 + s2)$ $= (2 + \frac{1}{s})$ Either s2 or 2s, same, to multiply 2s maybe easier to read.

Z (s) =	$\frac{2 + \frac{1}{s} + 4 s + 2}{3 + s^2 + \frac{1}{s}} = \frac{4 s + 3}{s^2 + 1 s^2}$	$\frac{\frac{1}{s} + 4}{\frac{1}{s} + 3}$
Numerator:	$4\left(s+\frac{1}{4 s}+1\right) = 4\left(\frac{4}{4 s}\right)$	$\frac{s^{2} + 1 + 4 s}{4 s} = \frac{4 s^{2} + 4 s + 1}{s}$
Denominator:	$\left(s2 + \frac{1}{s} + 3\right) = \frac{2 s^2}{s^2}$	$\frac{+1+3 \text{ s}}{\text{s}} = \frac{2 \text{ s}^2 + 3 \text{ s} + 1}{\text{s}}$
Z (s) =	$\frac{\frac{4 s^{2} + 4 s + 1}{s}}{\frac{2 s^{2} + 3 s + 1}{s}} = \left(\frac{4 s^{2}}{s}\right)$	$\frac{(s+4)(s+1)}{(s+1)}\left(\frac{(s+1)(s+1)}{(2)(s+1)(s+1)}\right)$
Z (s) =	$\left(\frac{4 s^{2} + 4 s + 1}{2 s^{2} + 3 s + 1}\right)$	
a). s = 0		
Z (0) =	$\left(\frac{4\ 0^{2}\ +\ 4\ 0\ +\ 1}{2\ 0^{2}\ +\ 3\ 0\ +\ 1}\right) = \frac{1}{1}$	= 1 Ohm Answer.
b). s = j1		
Z (j 1) =	$\left(\frac{4 j^{2} + 4 j + 1}{2 j^{2} + 3 j + 1}\right) = \left(\frac{4 (-1)}{2 (-1)}\right)$	$\frac{(-3+4)j}{(-1+3)j} = \left(\frac{(-3+4)j}{(-1+3)j}\right)$
—3 + 4 j :		
	$\sqrt{\left(3^2\right) + \left(4^2\right)} = 5$	Phase angle: $atan\left(\frac{4}{-3}\right) = -53.1301 \text{ deg}$
—1 + 3j :		
Magnitude:	$\sqrt{(1^2) + (3^2)} = 3.1623$	Phase angle: $\operatorname{atan}\left(\frac{3}{-1}\right) = -71.5651 \operatorname{deg}$
$\left(\frac{-3+4 j}{-1+3 j}\right) =$	$\left(\frac{5}{3.1622}\right)$ (-53.13 - (-71.56)	5)) = 1.581∠18.43 deg Ohm Answer.
		cial use univ

Z (s) =	$\left(\frac{4 s^{2} + 4 s + 1}{2 s^{2} + 3 s + 1}\right)$
$Z(j2) = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$	$\frac{(2^{2} \cdot j^{2}) + 4 (2j) + 1}{(2^{2} \cdot j^{2}) + 3 2j + 1} = \left(\frac{-16 + 8j + 1}{-8 + 6j + 1}\right) = \left(\frac{-15 + 8j}{-7 + 6j}\right)$
—15 + 8 j :	
Magnitude:	$\sqrt{(15^2) + (8^2)} = 17$ Phase angle: $atan\left(\frac{8}{-15}\right) = -28.0725$ deg
—7 + 6j :	
Magnitude:	$\sqrt{(7^2) + (6^2)} = 9.2195$ Phase angle: $\operatorname{atan}\left(\frac{6}{-7}\right) = -40.6013$ deg
$\left(\frac{-15+8 j}{-7+6 j}\right)$	$= \left(\frac{17}{5.196}\right) (-28.072 - (-40.601)) = 1.84 \angle 12.53 \text{ deg Ohm Answer.}$
d). s =	∞ Either $\sigma = \infty$ Or $j\omega = \infty$
Z (s) =	$\left(\frac{4 \text{ s}^2 + 4 \text{ s} + 1}{2 \text{ s}^2 + 3 \text{ s} + 1}\right)$ Absolute value of s equal infinity. s = sigma + jw, s can have a magnitude and angle based on this, but see it for infinity as the composite absolute value of sigma + jw.
	$\frac{4(\infty^{2}) + 4(\infty) + 1}{2(\infty^{2}) + 3(\infty) + 1} = \frac{4(\infty^{2}) + 4(\infty) + 1}{2(\infty^{2}) + 3(\infty) + 1}$
	$= 4 (\infty) + 1 = 3 (\infty) + 1$
	tley equal to B. So we can cancel these part of top and bottom. Jared term is far greater than infinity. Making A and B almost equal.
	$\frac{4 (\infty^2)}{2 (\infty^2)} = \frac{4}{2} = 2 \text{ Ohm Answer.}$
Comment:	
	pecific j term. The angle is not determinable, if we consider $s = 0 + jw$ if $w = the y-axis$ as +/- infinity, and angle wise at sigma=0 it maybe 90 deg or -90 deg

$\lambda (a)$		$V_{R}(s) \cdot \left(1 + \frac{Ls}{R} + \frac{1}{RCs}\right)$
$\frac{V_R(s)}{V_i(s)}$	=	$\frac{1}{\left(1+\frac{Ls}{R}+\frac{1}{RCs}\right)} = \frac{1}{\left(\frac{RCs+CLs^{2}+1}{RCs}\right)}$
	=	$1 \cdot \frac{\text{RCs}}{(\text{RCs} + \text{CLs}^2 + 1)}$
	=	$\frac{\text{RCs}}{(\text{RCs} + \text{CLs}^2 + 1)} = \frac{\text{RCs}}{C \cdot (\text{Rs} + \text{Ls}^2 + \frac{1}{C})}$
	=	$\frac{Rs}{\left(Rs + Ls^{2} + \frac{1}{C}\right)} = \frac{Rs}{Ls^{2} + Rs + \frac{1}{C}}$
		$\frac{\frac{Rs}{L}}{s^{2} + \frac{R}{L}s + \frac{1}{LC}}$ Divided by L so the coefficient of s^2 becomes 1.
$\frac{V_{R}(s)}{V_{i}(s)}$ b) :	=	$\frac{\frac{Rs}{L}}{s^{2} + \frac{R}{L}s + \frac{1}{LC}}$ Answer.
V _i (s)	=	$RI(s) + LsI(s) + \frac{I(s)}{Cs}$
V _C (s)	=	$\frac{I(s)}{Cs} \qquad I(s) = V_C(s) Cs$
V _i (s)	=	$RI(s) + LSI(s) + V_{C}(s)$
V _i (s)	=	$V_{C}(s) Cs \cdot (R + Ls) + V_{C}(s) = V_{C}(s) (RCs + LCs^{2}) + V_{C}(s)$
V _i (s)	=	$V_{\rm C}({\rm s}) \cdot (1 + {\rm RCs} + {\rm LCs}^2)$

V _i (s) =	$V_{\rm C}(s) \cdot (1 + {\rm RC}s + {\rm LC}s^2)$
$\frac{V_{C}(s)}{V_{i}(s)} =$	$\frac{1}{(LCs^2 + RCs + 1)}$ Divide by LC
$\frac{V_{C}(s)}{V_{i}(s)} =$	$\frac{\frac{1}{LC}}{\left(s^{2} + \frac{RCs}{LC} + \frac{1}{LC}\right)}$
$\frac{V_{C}(s)}{V_{i}(s)} =$	$\frac{\frac{1}{LC}}{s^{2} + \frac{R}{L}s + \frac{1}{LC}}$ Answer.

Supplementary Problem 8.34 (Transfer function and circuit) :

Obtain the electric circuit network function H(s) for the circuit provided below? The response is the voltage Vi(s).

Solution:

One method, if its correct, is to use Ohm's <u>Idea</u>, V = IZ.

The circuit input source is Ii(s), the response is the voltage across the whole circuit. When the current source is removed, the circuit is a <u>parallel circuit with 3 branches</u>. <u>A re-drawing/sketching of the circuit may show this</u>. Then we do V=IZ, and solve for Z = V/I. We need to get I(s) which we may be able to equate it to something, or substitute it for something. The other way is mesh analysis, two equations for loop voltages. Here, 2 solutions provided, first one turns out wrong, <u>second correct</u>.

		$Z1 \cdot I1(s) + Z3 \cdot I1(s) - Z3 \cdot I2(s)$ Eq-1substitute for I2(s).	
V _i (s)	=	$Z1 \cdot I1(s) + Z3 \cdot I1(s) - Z3 \cdot \left(I1(s) \cdot \left(\frac{Z3}{Z3 + Z2 + Z4}\right)\right)$	
V _i (s)	=	$11 (s) \cdot \left(Z1 + Z3 - \frac{Z3^2}{Z3 + Z2 + Z4} \right)$	
$\frac{11(s)}{11(s)}$	=	$Z1 + Z3 - \left(\frac{Z3^2}{Z3 + Z2 + Z4}\right)$ Reduce the RHS term. Remember 11(s) passing	
11(3)		(Z3+Z2+Z4) Remember I1(s) passing thru R1 is I(s) so we can	
Substitu	ite th	ne components values of Zs. substitute I(s) for I1(s)	
		The components values of Zs. Substitute I(s) for I1(s) I = Z1 $R2 = 6 = Z2$	
C1 =	<u>د</u>	$\frac{8}{s} = Z3 \qquad L1 = s1 = s = Z4 \qquad \\ 1 + \frac{8}{s} - \left(\frac{\left(\frac{8}{s}\right)^{2}}{\frac{8}{s} + 6 + s}\right) = 1 + \frac{8}{s} - \left(\frac{\left(\frac{8}{s}\right)\left(\frac{8}{s}\right)}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \left(\frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}}\right) = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}} = \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + \frac{8}{s} - \frac{1 + \frac{8}{s}}{\frac{8 + 6 + s^{2}}{s}} = 1 + $	
	5	$((8)^2)$	
V _i (s)			
I1 (s)	=	1 + - - - - - - - -	
		$\left(\frac{-+6+5}{5}\right)$ $\left(\frac{-6+6+5}{5}\right)$	
	=	$1 + \frac{8}{s} - \left(\frac{8}{s}\right) \left(\frac{8}{s}\right) \cdot \left(\frac{s}{8+6 s+s^2}\right)$	
	=	$\left(\frac{s+8}{s}\right) - \left(\frac{64}{s}\right) \cdot \left(\frac{1}{8+6s+s^2}\right)$	
		(5) (5) (8+6+5)	
		(s+8) (64)	
		$\left(\frac{s+8}{s}\right) - \left(\frac{64}{8s+6s^2+s^3}\right)$	
	=	$\frac{(s+8)(8 + 6 + 6 + s^{2}) - 64(s)}{(s+8)(s+6)(s+6)(s+6)(s+6)}$	
		$(s) \cdot (8 \ s + 6 \ s^2 + s^3)$	
		(8 s2 + 6 s3 + s4) + (64 s + 48 s2 + 8 s3) - 64 s	
	=	$8s^{2} + 6s^{3} + s^{4}$	
	_	$\frac{s^{4} + 14 s^{3} + 56 s^{2}}{s^{4} + 6 s^{3} + 8 s^{2}}$ Divide by s^2	
		$s^4 + 6s^3 + 8s^2$	
		$s^{2} + 14 s + 56 = s^{2} + 14 s + 56$	
	=	$\frac{s^{2} + 14 s + 56}{s^{2} + 6 s + 8} = \frac{s^{2} + 14 s + 56}{(s + 2) \cdot (s + 4)}$	
		$S + 0 S + \delta$ $(3 + 2) \cdot (3 + 4)$	

H(s) =	$\frac{V_{i}(s)}{11(s)}$	$= \frac{V_i(s)}{V_i(s)}$	=	$\frac{s^2 + 14 s + 56}{(s+2) \cdot (s+4)}$	Answer Corr	rect.
	11(S)	I (S)		$(S+2) \cdot (S+4)$		
You may fin You got to rea	nd a techniqu alise as the Eng	ie in the Mat	n textl <i>i can m</i>	er factored, which book. Or software ake the math first the	may do it.	
	V (s)	V (s)				Textbook
H (s) =	$\frac{v_{1}(3)}{11(s)}$	$=$ $\frac{\sqrt{3}}{1(3)}$	=	$\frac{(s+7-j2.65)}{(s+2)\cdot(s+2)}$	s + 1 + J2.05) s + 4	Answer.
	11(3)	1 (3)			5 1 1	In this case required answer.
Expansion p	proof below:					
(s + 7 – j 2.6	5)•(s+7+j	2.65)				
= s ² + 7	s + j2.65s +	7 s + 49 + j1	8.55 —	j 2.65s — j 18.55 — j	² 7.023	
= s ² + 7	s + j 2.65s +	7 s + 49 + j1	8.55 —	j2.65s — j 18.55 + ⁻	7.023	
= s ² + 1	4 s—j0+49	—j0 + 7.023				
= s ² + 1	4 s—j0+49	—j0 + 7.023				
= s ² + 1	4 s + 56.023	Close enou Admirable TOUGH! I take the 20	the u	se of the <u>j term</u> in	the expansio	n.
			find i	n the maths textbo	ook on how to	o factor
0 0	er order expr		vou tl	ne solution above	with the i ter	mis
				isically the zeros a		
			helps	. If we can get a j	term in there	<u>e that</u>
	een in the ne					
				g degree with a conce ses in Strength of Mate		
were tough co	ourses, the prob	olems in Dynami	cs were	3 dimensional. Here i	n electric circuits	s the math
				sing the problem, in m visualisation is in the		
of the math, r	ather than 3-d	object visualiati	on, may	vbe whats needed in e	lectric circuits. Y	ou cannot do
				isualisation of the wav Ids sure visualisation is		
				mine next to nil. 3D is		

$\beta 1$:	(3)
$V(4)^2$	$+(3.00)^2 = 5$ $V2_{ang} := atan\left(\frac{3}{4}\right) = 36.8699 \text{ deg}$
eta 2 :	
$\sqrt{(2)^2}$	+ $(3.00)^2 = 3.6056$ V2 _{ang} := $atan\left(\frac{3}{2}\right) = 56.3099$ deg
Plug in	the vectors we calculated:
H (s)	$= \frac{(s+7-j2.65)(s+7+j2.65)}{(s+2)\cdot(s+4)}$
H (s)	= (7.009∠2.862) (8.996∠38.908)
11(3)	= (5∠36.87) (3.606∠56.31)
	$= \frac{63.053 \angle 41.77}{18.03 \angle 93.18}$
	= 3.497∠-51.41
H(s)	= $3.5 \angle -51.41 \text{ deg}$ Answer. Same as textbook.
Can we	sion: If we wanted to show this on the graph where and whats its orientation? e convert it to cartesian, x-y axis, and place the location on the graph? it a try.
x:	$3.5 \cdot \cos(-51.41 \text{ deg}) = 2.1831012$
y:	$3.5 \cdot \sin(-51.41 \text{ deg}) = -2.7357027$
vectors values	pint (2.183 -j2.736) on the graph dont mean anything to me in relation to the s we placed. It looks OFF. But could this be the circuit's impedance at the given of j3? The transfer function is Vi(s)/I(s) is really Zin(s). So that transfer function cuit's impedance. Which in this circuit the transfer function was Zin.
H (s)	$= \frac{V_{i}(s)}{I(s)} = Z_{in}(s) = \frac{(s+7-j2.65)(s+7+j2.65)}{(s+2)\cdot(s+4)}$
H (s)	$= Z_{in}(s) = 3.5 \angle -51.41 \text{ deg} = 2.183 - j2.736 \text{ at } s = 0 + j3.$

Solve for I	2(s) ir	n terms of I1(s) :
11(s) Z2	=	12(s) (Z2 + Z3)
11 (s)	=	$\frac{12(s)(Z2+Z3)}{(Z2)}$
I1 (s)	=	$12 (s) \left(\frac{Z2 + Z3}{Z2}\right)$
12 (s)	=	I1 (s) $\left(\frac{Z2}{Z2+Z3}\right)$ Eq-3
Substitute	12(s)	in Eq-1:
Vi (s)	=	$I1(s)(Z1+Z2)-I2(s)\cdot Z2$
Vi (s)	=	11 (s) $(Z1 + Z2) - 11 (s) \cdot \left(\frac{Z2^2}{Z2 + Z3}\right)$
Vi (s)	=	11 (s) $\left((Z1 + Z2) - \left(\frac{Z2^2}{Z2 + Z3} \right) \right)$
li (s)	=	I1 (s) Current coming out of Vi(s) and goes into R1 is Ii(s).
Vi (s) Ii (s)	=	$H(s) = \left((Z1 + Z2) - \left(\frac{Z2^2}{Z2 + Z3} \right) \right)$
Substitu	ite co	mponent values for impedances.
L1 =		s = Z1
L2 =	0	$.5 s = \frac{s}{2} = Z2$
C1 =	2	$\frac{1}{2}$ = Z3
H (s)	=	$\left(s + \frac{s}{2}\right) - \left(\frac{\left(\frac{s}{2}\right)^2}{\left(\frac{s}{2} + \frac{1}{2s}\right)}\right)$
		Fommercial IIIde Only

H (s)	$=$ $\left(S + \frac{S}{2}\right) - \left \frac{4}{4}\right =$	$\left(\frac{2 \text{ s}+\text{s}}{2}\right) - \left \frac{4}{2}\right $
	$\begin{pmatrix} 2 \end{pmatrix} \left(\frac{s}{2} + \frac{1}{2s} \right)$	$\left(\frac{2 \text{ s}+\text{s}}{2}\right) - \left(\frac{\frac{\text{s}^2}{4}}{\frac{2 \text{ s}^2+2}{4 \text{ s}}}\right)$
		$\left(\frac{2 + s}{2}\right) = \left(\frac{2 + s}{2}\right) - \left(\frac{s^{3}}{2 + 2}\right)$
	$= \frac{(2 s+s) (2 s^{2}+2) - 2 s^{3}}{(2 s^{2}+2) - 2 s^{3}}$	$= \frac{(4 s^{3} + 4 s + 2 s^{3} + 2 s) - 2 s^{3}}{(4 s^{2} + 4)}$
	$= \frac{(4 s^{3} + 6 s)}{(4 s^{2} + 4)}$ Divide k	$y 4. = \frac{(s^3 + 1.5 s)}{(s^2 + 1)}$
H (s)		extbook. Finally after several wrong substitutions. signs. May been attacked by hacker.
Zeros and	() C	
7eros [.]	s. – 0 s	$-\sqrt{-15} - \sqrt{15} - \sqrt{15} - 12247$
20103.	3 _{z1} - 0 - 3 _{z2_z3}	$a_{3} = \sqrt{-1.5} = \sqrt{j1.5} = \sqrt{1.5} = 1.2247$ = -j1.225
Poles:	$s_{p1_p2} = \sqrt{-1} = \sqrt{j1}$	$= \sqrt{1} = 1$
	$s_{p1} = j1$ $s_{p2} = -j1$	
Novt just	place these zeros (O) and po	
	j	
	j1.225 🔞	
	j1 X i1	Required graph/sketch/plot.
		Answer.
-2 -	1 0 1 2 V Np/s	
	-j1_ X j1	
	-j1.223	

											-						
		1		jv I	v, ra	d/s											
		-20+	i40 🗸		40												
			\land	-	30-												
				-	20												
				-	10												
	-40	<u> </u>		-10			_ ح	Np/s									
		10 - 3	0 -20	-10 0	10 j10	20											
					j20-												
					j30_				-								
		-20-	40 X		j40-												
From t Zeros:	he plot s _{z1}			ole and 0 + j 0 0 + j 0	zero	o lo		ons: Poles:		S _{p1}			-20 -20	+ j 40			
	S _{z2}	=	4	0 + j 0						s _{p2}	=		-20-	– j 40			
<u>the fac</u> functio	nber the <u>tor(s).</u> n. So w here ar	So t /e <u>ne</u>	hese v eed to	/alues make	mak the	e tł <u>sig</u> i	nose n op	facto posite	or O e in	. Tho the	ose pro	fac [:] ces	tors n <u>s goir</u>	nake up ng in re	o the verse	trans <u>2</u> .	
Zoro o	xpressio	on:		(s +	10)	(s ·	+ 40) =		$s^{2} + $	40	s +	10 s +	400			
zero e								=		s ² +	50	S +	400	Answ	er.		
zero e																	
	pressic		-	jugate ge sign			-) an		-20 20 +	-						

Points to c		nges hack sinc	e what we have is how to you make s equal zero.
ų		Ŷ	ents in the factor, $(s+10)$ and $(s+20)$, at most we
	and order expr		
		o of the <u>constar</u>	nts, it may lead me to get the rest thru
trial and			
4. And in i	nis case navir	ig the answer p	provided helps make certain its correct.
(20 — j 40)	(20 + j 40)	= 400 + 800j —	$800j - j^2 1600 = 400 + 1600 = 2000$
Here 2000	is that value	we use to make	e simpler the complex term.
Example	(10 + j40)	$\frac{20 + j40}{1} =$	$\frac{200 + j400 + j800 + j^{2}}{400 + 800j - 800j - j^{2}}$ 1600
	(20-j40)((20 + j 40 <i>)</i>	400 + 800j - 800j - j ² 1600
			_1400 + j1200
			2000 <there 2000<="" is="" td="" that=""></there>
Here I am	making the ca	ase/point that 2	
	•	adratic expression	
$As^2 + Bs +$	- 2000		
s (As + B)	+ 2000	s = 0 and	$S = \frac{-B}{A}$ For this quadratic equation if it should matter.
	$h \cdot \sqrt{h^2}$	4	
s ₁ =	$\frac{-b+\sqrt{b^2-b^2}}{2a}$	4 80	
Try $B = 20$		sume the coeffi	icient of the highest order is unity,
$M/ith \Lambda - ^{\prime}$		Sume the coem	clent of the highest order is unity;
	000:		
and $C = 2$		-	
and $C = 2$	$0^2 - 4 \cdot 1 \cdot 2000$	-) _= -10 + 43.58	19j
and $C = 2$		 =10 + 43.58	39j
and C = 2 $-20 + \sqrt{20}$	0 ² - 4 • 1 • 2000 2 • 1	 =10 + 43.58	39j
and C = 2 $-20 + \sqrt{24}$ Try B = 40 With A = 7	$0^{2} - 4 \cdot 1 \cdot 2000$ 2 \cdot 1 0? 1 and C = 200	0 :	39j
and C = 2 $-20 + \sqrt{24}$ Try B = 40 With A = 7	0 ² - 4 • 1 • 2000 2 • 1)?	0 :	39j
and C = 2 $-20 + \sqrt{20}$ Try B = 40 With A = 7 $-40 + \sqrt{40}$	$0^{2} - 4 \cdot 1 \cdot 2000$ 2 \cdot 1)? 1 and C = 200 $0^{2} - 4 \cdot 1 \cdot 2000$	$\frac{10}{2} = -20 + 40j$	B9j Looks promising we got the values of the pole(s).

So what we go				
We set $A = 1$ We got $C = 20$			factors	
			0, and 40 resulted with the poles.	
$As^2 + Bs + C$	= 0			
$1 s^{2} + 40 s + 2$	000			
1 S + 40 S + 2	2000			
$s^2 + 40 s + 200$	00 Ar	nswer.		
Now we form	the trans	sfer function e	expression:	
H(s) =	$s^{2} + 50$	s + 400		
H(s) =	$s^{2} + 40$	s + 2000		
When we have	e our circ	uit we do lots	s of factoring including cancelling.	
			ctor or multiplier in front of it which	
we generally in	dontifod	as k, we place	a that in	
we generally h	uentileu			
			Answer.	
		50 s + 400 40 s + 2000		
			Answer.	
	$k \cdot \frac{s^2 + z}{s^2 + z}$		Answer. Image: Control of the section of the secti	
	$k \cdot \frac{s^2 + z}{s^2 + z}$		Answer.	

k≔	2	Gi	ver	n in	pro	obl	em	fig	ure).											
	•	/ (N	11.	N2))																
H (s	s)≔k	•[1	-	= 2	23.	608	3Z:	26.	56	5°									
		\	U	1	/																
H (s	5)	=	22	3.6	12	26	.57	0	An	ISW	er.										
Nex	t sup	olem	ent	ary	pr	obl	em	sta	art	on	ne	xt p	bag	e.							

Z _{in} =	R1 + R2 + s		$\frac{(10) + s(20) (0.1)}{0 + 10 + s \cdot 0.1}$
Z _{in} =	200 + s2 30 + s0.1	Multip	bly top and botom by 10
Z _{in} =	$\frac{(2000 + s20)}{(300 + s)}$)	
Now we c	an identify the	e natural frequenc	ies:
Zero :	20 s _{z1} =	-2000	
	s _{z1} =	-100	
Poles :	s _{p1} =	Here	Answer. the problem is concerned with the pole, ninaor, the maximum value we get.
Different	locations, in pa		Il result in the same pole frequency.
	V(s) y + -++++++++++++++++++++++++++++++++++	R2 10 Ohm	Place the voltage source in series and solve for a series circuit transfer function. Excitation is V(s), <u>response is I(s)</u> so place it in series same I(s) in series.
R1 20 Ohm			$Z_{in} = R1 + R2 + sL$ $Z_{in} = 20 + 10 + s0.1$
		0.1H	= 30 + s0.1
			$\frac{I(s)}{V(s0)} = \frac{1}{Z_{in}(s)}$
			Excitation is V(s) so the response is I(s).
	$=$ $\frac{1}{30+s}$	Multiply 1 0.1	top and bottom by 10
1 Z _{in} (s)			
-	$= \frac{10}{300 + }$	<u></u>	

	Using solve		s•25 + 50	$0 \xrightarrow{\text{conv}}$	-20						
	function in Matheory		$s^2 + 32 \cdot s$	+ 199.8 -	solve	[-8.50 [-23.4	03334 49666	07440 59255	3475 9652	51939] 24806]	
OR using t	he quadrat	ic roo	ots equation	on:							
s _{z1} =	<u>-32 + √3</u>	32 ² — -	4•1•199.	8 =8.0)984	(-	8.5) N	/lathca	d so	lve.	
s _{z1} =	<u>-32-√3</u>	32 ² —	4•1•199.	<u>8</u> = -22	.3778	(-	23.49) Math	cad	solve.	
Close enou output. Tex simple met	xtbook use	d the	solve me	thod, usi	ing son	ne num	nerical	methe	od so	olution	. The
Zeros:	S _{z1}	= .	-20	Zero r	espons	se at ze	ero(s),	(s + 2	20) s	5 = -20	
Poles:	S _{p1} = S _{p2} =	=	-8.5								
	S _{p2} :	= .	-23.5	Maxim	num re	sponse	is at	poles(s	S).		
Voltage so We use the that may b transfer fu	e exponent e RL or RL	ial for									t
We use the that may b	e exponent be RL or RL nction. <u>ponse:</u> or zero:	ial for C or F		compone		t prese		only f	nave		t
We use the that may b transfer ful Forced res Equation fo	e exponent be RL or RL nction. ponse: or zero: the s term? or pole: s	ial for C or F $\frac{1}{2}$	RC circuit (s + 20) 20	Compone Minim 8	ents. A	t prese s=-20		only f	nave stant	the	t
We use the that may b transfer ful <u>Forced res</u> Equation for Excluding t Equation for	e exponent pe RL or RL nction. ponse: or zero: the s term? or pole: s the s terms	ial for F C or F $c^2 + 40$	RC circuit (s + 20) 20 0 s + 199.1 199.8	Compone Minim 8 Appro:	ents. A um at :	t prese s=-20	nt we	only f	nave stant	the term.	t
We use the that may b transfer ful Forced res Equation for Excluding t Equation for Excluding t	e exponent pe RL or RL nction. ponse: or zero: the s term? or pole: s the s terms	ial for F C or F $c^2 + 40$	RC circuit (s + 20) 20 0 s + 199. 199.8	Minim Minim 8 Appro:	ents. A um at ximate 20	s=-20 sly: 20	nt we	only f	nave stant	the term.	t
We use the that may b transfer ful Forced res Equation for Excluding t Equation for Excluding t	e exponent be RL or RL nction. <u>ponse:</u> or zero: the s term? the s terms the s terms ransfer fund	ial for C or F $c^2 + 40$ ction i	RC circuit (s + 20) 20 0 s + 199. 199.8 s: $\frac{1}{Z(s)}$ Z (s) c source:	Minim Minim 8 Appro:	um at ximate	s=-20 sly: 20	nt we	only f	nave stant	the term.	
We use the that may b transfer fur <u>Forced res</u> Equation for Excluding t Now the tr Now the tr	e exponent be RL or RL nction. <u>ponse:</u> or zero: the s term? the s terms the s terms ransfer fund	ial for C or F $c^2 + 40$ ction i	RC circuit (s + 20) 20 0 s + 199. 199.8 s: $\frac{1}{Z(s)}$ Z (s) c source:	Minim Minim Appro: = -	ents. A um at s ximate 20 200	s=-20 sly: 20	200 <u>1</u> 10 Z (s)	only f	nave stant	the term.	

response	e steady state			onse has die lot for this so				
<u>Natural r</u>	esponse :							
In the tir	ne domain	i (t)	=	A1•e ^{-8.5•t} -	+ A2•6	e ^{−23.5} •t		
Initial co	ndition i(0+)	= 0. Appli	es to	both L and (C in th	e netwo	rk.	
i (t) =	A1•e ^{-8.5•0}	$^{\prime}$ + A2 • e ⁻²	3.5•0					
0 =	A1 + A2	at t=0						
Discussio	on: At t=0 the	e switch cle	oses	and 25V volta	age so	urce pro	vides forced	
excitation	n, at time t=0), the natu	iral re	esponse has i	0			
	ed response h uit sees 2.5A.				nrassi	on abov	o instoad of	0
	an 3063 2.0A.		υσ Ζ.		100221			0.
2.5 =	A1 + A2	at t=0	E	quation 1				
Next for	the 2nd equa	tion, and t	the ir	npact of the	circuit	complex	xity.	
Different	<u>iate i(t):</u> i	(t) = A1	•e ^{−8}	$^{.5 \cdot t} + A2 \cdot e^{-2}$	3.5 • t			
di (t)								
dt	= -8.5 A	1•e ^{-0.3•1} -	- 23.5	A2 • $e^{-23.5 \cdot t}$				
di (t)	= 25 g	iven in pro	oblem	n statement.				
dt	5							
25	= -8.5 A	1•e ^{-8.5•1} -	- 23.5	A2•e ^{-23.5•1}				
25	= -8.5 A	1–23.5 A	2	Equation 2	At	t=0.		
2.5	= A1 + A2	2		Equation 1	At	t=0.		
Coof	, [1 ·	1]		[2.5]	Novt	the usu	al maatriv/dat	orminant
Coer	$I := \begin{bmatrix} 1 \\ -8.5 & -2 \end{bmatrix}$	3.5	RHS	[25]			al matrix/det g the simulta	
		[1 5		0.0//71	equat		9	
Coef	linv≔Coef1	$^{-1} = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}$	667 667	0.0667] —0.0667]				
	efs≔Coef1ii		ſ	5.5833]	.			
1 (` `	ers := Coet 1 i	nv•RHS1	= i		Ih€	ese are N	NUT the	

I am not looking at the circuit from the Z(s) mathematical equation given complexity.

The expression Z(s) is of the 2nd order.

This means in the block diagram there can be a minimum of 2 meshes or loops.

The current has to be looked at from this perspective to make the 2nd equation valid.

So we have a voltage loop equation and current node equation possible.

This is the next step of the solution.

Mesh analysis:

	equat	tion at no	de:				
			I (s)	=	11(s) + 12(s)	Substitute for I2	2(s)
				Since	12(s) = 11(s)		
			I (s)	=	2 I1(s)		
Now we	e retur	n to our (early equ	ations fo	or I(s) and make	that 211(s).	
I (s)	=	$\frac{V(s)}{Z(s)}$	=	$25 \cdot \frac{1}{(s^2)}$	(s + 20) + 32 s + 199.8)		
					(s + 20) + 32 s + 199.8)		
		nas to be I1 (s)			(s + 20) + 32 s + 199.8)	divided by 2, from 2I(s) to I(s).	
			1	2 / (S	+ 32 s + 199.8)	from $2I(s)$ to $I(s)$	
			14	0.5)	(s + 20)		
		l (s)	= (1	2.5)•(s ²	(s + 20) ² + 32 s + 199.8)		
			= (1	,	, i i i i i i i i i i i i i i i i i i i		
di/dt is	a grac	I (s)	= (\ en its y-a	$(s)) \cdot \left(\frac{1}{\overline{z}}\right)$	1 (s)) nt value is halved		interval dt
di/dt is x axis, t	a grac he rat	I (s) lient, whe e of curre	= (\ en its y-a ent di/dt	$(s)) \cdot \left(\frac{1}{\overline{z}}\right)$ xis curre	1 (s)) nt value is halved		interval dt
di/dt is x axis, t	a grac he rat value 1	I (s) lient, whe e of curre	= (\ en its y-a ent di/dt s placed	$(s)) \cdot \left(\frac{1}{\overline{z}}\right)$ xis curre	1 (s) nt value is halved 1. d of 25 A/s.		interval dt
di/dt is x axis, t A new v 12.5 = Note: G	a grac he rat value 1 – i ive a l	I (s) lient, whe e of curre I2.5 A/s i 8.5 A1–	= (\ en its y-a ent di/dt s placed 23.5 A2 nalyse int	/ (s)) • ($-\frac{1}{2}$ xis curre is halved in instea At t: o the cir	1 (s)) nt value is halved 1. d of 25 A/s. >0. Equation cuitry thru the im	d, over the same time	interval dt
di/dt is x axis, t A new v 12.5 = Note: G	a grac he rat value 1 – i ive a l n this c	I (s) lient, whe re of curro 12.5 A/s i 8.5 A1 – ook or ar	= (\ en its y-a ent di/dt s placed 23.5 A2 nalyse int	/ (s)) • ($-\frac{1}{2}$ xis curre is halved in instea At t: o the cir equation.	1 (s)) nt value is halved 1. d of 25 A/s. >0. Equation cuitry thru the im	d, over the same time 2 Updated.	interval dt

Coeff:= $\begin{bmatrix} 1 & 1 \\ -8.5 & -23.5 \end{bmatrix}$ LHS:=	[2.5] [12.5]
$Coeff_Inv := Coeff^{-1} = \begin{bmatrix} 1.5667 & 0\\ -0.5667 & -0 \end{bmatrix}$	D.0667] D.0667]
$I_coeff \coloneqq Coeff_Inv \cdot LHS = \begin{bmatrix} 4.75 \\ -2.25 \end{bmatrix}$	
2.5A forced response in them. That n	icients for A1 and A2 but <u>they contain the</u> need to be subtracted, leaving the natural g into consideration the current directions.
Equation 1	
A1 + A2 = 2.5	
4.75 + (-2.25) = 2.5 Satisfied with	the forced response 2.5 A.
Equation 2	
-8.5 A1 - 23.5 A2 = 12.5	
-8.5 • (4.75) - 23.5 • (-2.25)	
	atisfied the derivative quation resulting in 12.5V.
2.5A Node A2	Actual values of A1 and A2:
	A1 = 2.5 - 4.75 = -2.25
A1 / I1(s)	A2 = 2.5 - 2.75 = -0.25
Current going into the node +ve current leaving the node -ve	Check sum of currents at node equal 0:
	(-2.25) + (-0.25) + 2.5 = 0

	=	A1•	e	+ A	2•e ⁻	20.0	• ι		l	Jpda	atin	g tl	he	curre	ent					
									e	qua	ntior	n fo	or A	1 ar	nd A	2.				
i (t)	=	-2.2	25•e ⁻	-8.5•t	-0.2	5 e	-23.5	۰t	ŀ	٨dd	the	fo	rce	d res	pon	ise r	next.			
i (t)	=	-2.2	25•e ⁻	-8.5•t	-0.2	5 e	-23.5	• t +	2.5		A.		ารพ							
														book						
Comme correct																				
Correct	· · · · · · · · ·	ne my	usual	lieng			50170		onio			Jou	1 10		orun			,		
Plot	clear	r (t)	i _{n_f}	(t):=	= - 2.	25•	e ^{-8.}	5•t_	- 0.2	5•e	-23.	.5•t	+ 2	.5	<	<	This	s fun	ctior	۱.
			i _n (t	t):=-	-2.2	5∙e	-8.5 •	^t — ().25	•e	23.5•	۰t			i _f	- (t)	:= 2.	5		
	↑																			
	3-																			
2.	5					_								-						
:	2-																			
1.	5-																			
	1-																			
0.	5-																			
0.	0													-	•					
- 0.	0 0 0.	2 0.4	1 O.	6 (0.8	1	1.	2	1.4	1.6	1	1.8		2	->	i _{n_f}	- (t)			
	0 0. 5-	2 0.4	ŧ 0.	6 (0.8	1	1.	2	1.4	1.6	I	1.8		2	•					
- 0.:	0 0. 5- 1-	2 0.4	ţ 0.	6 (0.8	1	1.	2	1.4	1.6	1	1.8		2	-	i _{n_f}				
- 0	0 0. 5- 1- 5-	2 0.4	ŧ 0.	6 (1	1.	2	1.4	1.6	1	1.8		2	•		t)			
- 0. 	0 0. 5- 1- 5- 2-	2 0.4	4 O.	6 (1	1.	2	1.4	1.6	1	1.8		2	•	i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -	2 0.4	, 1 O.	6 (0.8	1	1.	2	1.4	1.6	1	1.8		2		i _n (t)			
- 0 - 1 - 2	0 0. 5- 1- 5- 2-	2 0.4	4 O.	6 (0.8	1	1.	2	1.4	1.6		1.8		2		i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -	2 0.4	ţ 0.	6 (o.s	1	:	2	1.4	1.6		1.8		2		i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -	2 0.4	, t 0.	6 (t	1	1.	2	1.4	1.6		1.8		2		i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -	2 0.4	ŧ 0.	6 (t t	1	1.	2	1.4	1.6		1.8		2		i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -	2 0.4		6 (t	1	1.	2		1.6		1.8		2		i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -			6 (t		1.	2		1.6				2		i _n (t)			
- 0 - 1 - 2	0 0 5 - 1 - 5 - 2 - 5 - 5 - - - - - - - - - - - - -			6 (t		1.	2						2		i _n (t)			
	ents: T	he co	mplet	te so	t t lutioi	n, i_	 		forc	ed a	and	na			spol	i _n (1	t) t)			
	ents: T		mplet	te so	t t lutioi	n, i_	 		forc	ed a	and	na			spol	i _n (1	t) t)			
- 0 - 1 - 2	ents: T	he co tarts a	mplet at 0 a	te so nd th	t t lution	n, i_	 		forc	ed a	and	na			spol	i _n (1	t) t)			

RLC Circuits - Part 3C.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis. Source of study material: 1). Electric Circuits 6th Ed., Nahvi & Edminister. 2). Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Resource: 3). Solutions & Problems of Control Systems, 2nd ed - AK Jairath. Karl S. Bogha.

Transfer Functions RLC Circuits - Part of Part 3.

Resource: Solutions & Problems of Control Systems, 2nd ed - AK Jairath.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

published this boo							s engineer first
Solutions & Proble	ems in Cont	rol Syste	m. May	not be	in circul	lation now	. Its a small
book. Concise sin							
1 is Transfer Func	tions. All th	ie proble	ms in ch	apter 7	1 are are	e made up	of R L C
components. So th	nis was in li	ne with	my/our s	tarting	g plan to	stay with	in the electric
circuits corridor. F							
selected this chap							on at end of
Part B, so its best	to do them	n first sin	ce these	are fro	esh in m	inds.	
Got an oppurtunit	y to work w	ith RLC	compone	ents in	the tran	nsfer funct	ion and
secondly control s							
AK Jairath: The tra	ansfer func	tion of a	system	s tha r	ratio of I	analce tra	insforms of
the output and inp							
is analysed, a mat	•				0		3
the help of various							
differentials. The <u>r</u>		•		U 1		J	0
					g		
The steps involv	ed in obtai	ning the	transfer	functio	on are:		
1. Write differenti	al equation	s of the s	system.				
	d						
2 Replace terms i	involvina –	by s and	d f dt b	v 1/s	<Δ	nnlies to	1 & C
2. Replace terms i	involvingdt	-by s and	d∫∎dtb	y 1/s.	< A	pplies to	L & C. Was worked in
2. Replace terms	involvingdt	-by s and	d∫∎dtb	y 1/s.	L and C	> Irom RL	L & C. C was worked in
				y 1/s.	electric	circuits.	was worked in
 Replace terms i Eliminate all bu 				y 1/s.	electric	circuits.	L & C. C was worked in n next page.
	t the desire			y 1/s.	electric	circuits.	was worked in
 Eliminate all bu See figure next pa 	it the desire	ed variab	le.		electric See no	circuits. tes botton	n next page.
 Eliminate all bu See figure next pa 	it the desire	ed variab	le.		electric See no	circuits. tes botton	n next page.
3. Eliminate all bu	it the desire	ed variab	le.	sL•e	st	circuits. tes botton	$= \frac{1}{sC} \cdot e^{st}$
 Eliminate all bu See figure next pa 	it the desire	ed variab	le.	sL•e	electric See no	circuits. tes botton	$= \frac{1}{sC} \cdot e^{st}$
 Eliminate all bu See figure next pa 	it the desire	ed variab	le.	sL•e	st	circuits. tes botton	$= \frac{1}{sC} \cdot e^{st}$
3. Eliminate all bu See figure next pa $v(t) = e^{st}$ OR	it the desire	ed variab	$\frac{d(e^{st})}{dt} =$	sL•e ^ I He	st	$\frac{1}{2}\int e^{st} dt$	$= \frac{1}{sC} \cdot e^{st}$
 Eliminate all bu See figure next pa 	it the desire	ed variab e st L s) In	le. $\frac{d(e^{st})}{dt} =$	sL•e ^ I He	st derivativ	$\frac{1}{2}\int e^{st} dt$	$= \frac{1}{sC} \cdot e^{st}$ $= \frac{1}{Here^{st}} \cdot e^{st}$
3. Eliminate all bu See figure next pa $v(t) = e^{st}$ OR	it the desire	ed variab e st L s)In	le. $\frac{d(e^{st})}{dt} =$	sL•e ^ I He	st derivativ	$\frac{1}{2}\int e^{st} dt$ ve of i(t) -	$= \frac{1}{sC} \cdot e^{st}$ $= \frac{1}{Here^{st}} \cdot e^{st}$
3. Eliminate all bu See figure next pa $v(t) = e^{st}$ OR $L\left(\frac{di}{dt}\right)$ L : sL	it the desire ige. i (t) = $\frac{di}{dt}$: I (s	ed variab e st L s) In It:	le. <u>d (est)</u> <u>dt</u> ductor c s equival	sL•e ^ I He urrent ent fre	L and C electric See no	$\frac{1}{2}\int e^{st} dt$ ve of i(t) - domain: I	$= \frac{1}{sC} \cdot e^{st}$
3. Eliminate all bu See figure next pa $v(t) = e^{st}$ OR $L\left(\frac{di}{dt}\right)$ L : sL	it the desire ige. i (t) = $\frac{di}{dt}$: I (s	ed variab e st L s) In It:	le. <u>d (est)</u> <u>dt</u> ductor c s equival	sL•e ^ I He urrent ent fre	L and C electric See no	$\frac{1}{2}\int e^{st} dt$ ve of i(t) - domain: I	$= \frac{1}{sC} \cdot e^{st}$
3. Eliminate all bu See figure next pa $v(t) = e^{st}$ OR	it the desire ige. i (t) = $\frac{di}{dt}$: I (s	ed variab e st L s) In It:	le. <u>d (est)</u> <u>dt</u> ductor c s equival	sL •e ^ I He urrent ent fre Capa limit	electric See no	$\frac{1}{2}\int e^{st} dt$ ve of i(t) - domain: I	$= \frac{1}{sC} \cdot e^{st}$
3. Eliminate all bu See figure next pa $v(t) = e^{st}$ OR $L\left(\frac{di}{dt}\right)$ L : sL	it the desire ige. i(t) = $\frac{di}{dt}: I(s)$ $\frac{1}{sC} \int i$	ed variab e st L s) In Its (t) dt	le. $\frac{d(e^{st})}{dt} =$ ductor c s equival : I (s)	sL •e ^ I He urrent ent fre Capa limit	electric See no	$\frac{1}{2}\int e^{st} dt$ ve of i(t) - domain: I	$= \frac{1}{sC} \cdot e^{st}$

	R	î	Derive the transfer function of the circuit shown in figure to the left.
v _i		+ c	
<u> </u>	I(I)		
Solution:			
		le do a voltage conser You call that Kickoff's	
	s across the capacitor supply voltage for the	r terminals. e resistor and capacito	Dr.
v_i (t) =	R•i(t)+v_C(t)	i(t) is the circuit's cu	urrent.
Set v_o(t)	= v_C (t) =	$\frac{1}{C}\int i dt$	
v_i (t) =	R•i(t) + v_o(t)		
		bove to the s-domain. k they say 'Taking the	Laplace transform'.
			s-plane or in terms of
Which in con <i>Laplace Tran</i>	sforms starts with tra	we used a Controls t	extbook. Same.
Which in con Laplace Tran complex freq	sforms starts with tra		extbook. Same.
Which in con <i>Laplace Tran</i> <i>complex freq</i> V _i (s) = Vo(s) is that	sforms starts with tra- uency. So, thats why RI (s) + V_0 (s)	<i>y we used a Controls to</i> apacitor C terminals, w	

Koonw	orking	g a tra	oro an	d mar	0.01/2	mal	0.00	blom		rtially			ko o				
Keep w guess,										5	100	KS II	ke a				
The Electronic Such a v													' in				
manipul	ated ir	n vario	us way	s to tai	ke ful	l ber	nefit d	of the					me				
output t	hat se	rves a	circuit'	s purpo	ose -	Karl	Bogh	а.									
V _o (s)	=	1	• I (s)														
0 ()		sC	. ,														
		N / /															
l (s)		V ₀ (9	s)•sC														
V _i (s)	=	RI (s) + V ₍	, (s)	<	- Le	ts plu	ıg in	or if	you p	refer	sul	ostitu	ute	the		
							•		0	ot into	this	exp	oress	ion	we		
						TO	mea	earli	er.								
V _i (s)	=	R(V	∕₀(s)•9	sC) + '	$V_{0}(s)$)											
		`		ŕ													
	=	sRC	(V _o (s)) + V	_o (s)												
V _i (s)	=	V. (s)•(sR	2C + 1`) .	<	Ном	wou	ld we	had	kno	wn t	hat?				
			, (,			Sure	ely ha	d to	work	exar	nple	es.				
	=	V ₀ (9	s)•(1+	sRC))					people o to t							
										y hav							113,
										ce you			0				
										d end eering		•					
								most Bogha		you g	ot al	l the	time	e in t	he w	orld	-
$\frac{V_{o}(s)}{V_{i}(s)}$	_		1	_ A	nswe		καιτ	boyna									
V _i (s)		1	+ sRC	2													

	<u> </u>		We seek the transfer function I(s)/Vi(s) ?
	v _i		
		i(t)	
<u>Solution</u>	<u>.</u>		
	-	its a series circuit. We do a voltage cons ges add to zero. You call that <i>Kickoff's</i> L	
v_i (t)	=	$R \cdot i(t) + v_C(t)$ i(t) is the circuit's	s current.
		$v_C(t) = \frac{1}{C} \int i dt =$	$\frac{1}{sC}$ I (s)
v_i (t)	=	$R \cdot i(t) + v_C(t)$	
V _i (s)	=	RI (s) + $\frac{1}{sC}$ I (s)	
	=	RI (s) + $\frac{1}{sC}$ I (s)	
1 (s)	=	$I(s)\left(R + \frac{1}{sC}\right)$	
$\frac{I(s)}{V_i(s)}$	=	$\left(R + \frac{1}{sC} \right)$ Simplify this term, mult	tiply by sC/R.
I (s) V _i (s)	=	$\frac{\left(\frac{sC}{R}\right)}{\frac{sC}{R}\left(R+\frac{1}{sC}\right)} = \frac{\left(\frac{sC}{R}\right)}{sC+\frac{1}{R}} = \left(\frac{sC}{sC}\right)$	$\frac{1}{C + \frac{1}{R}} \frac{sC}{R} = \left(\frac{sC}{sCR + 1}\right)$
<u>I (s)</u> V _i (s)	=	(1 + sCR) this instead	can work the final form of expression lik of the one a few steps before. It takes effort to get it in a neat form that is <u>mo</u>

v _i (s)	(1 +	1 1 sCR)		s awk		hat is v	why w	e simplify			
Multiply k	by sCR:										
$V_o(s)$		1 sC	R_	sCF	२	Answ	ior				
V _i (s)	(1+	$\frac{1}{\text{sCR}}$	R	(sCR ·	+ 1)	AIISW					
Chp 1 Pro	oblem 1	-4:									
			7						с с		
°		•					Vo(s)	eek the tra /Vi(s), of t	he elec	trical	,
		~~~~	╷╷	R2				ork shown e lead form		left in	
v.											
			) {		v _o						
	i	(t)	) {		<b>v</b> o						
Solution:	i(	(t)	) {								
			) {								
Z1 is the	parallel	I of C and I									
Z1 is the $1 =$	parallel		_ 1 _	1		$\sigma + j$	ω	We are co			at
Z1 is the	parallel	I of C and I	$=\frac{1}{R1}+$		$S = \sigma =$	0	ω	We are co frequency sigma = 0	, so we		et
Z1 is the $\frac{1}{Z1} =$	parallel <u>1</u> R1	I of C and I + $\frac{1}{j \ \omega C}$	$=\frac{1}{R1}+-$	1 sC	$S = \sigma = S = S$	$\begin{array}{c} 0 \\ j \\ \omega \end{array}$		frequency	, so we		et
Z1 is the $1 =$	parallel	I of C and I + $\frac{1}{j \ \omega C}$	$=\frac{1}{R1}+$	1 sC	$S = \sigma =$	$\begin{array}{c} 0 \\ j \\ \omega \end{array}$		frequency	, so we		et
$\frac{1}{Z1} = \frac{1}{Z1}$	parallel <u>1</u> R1 <u>1</u> R1	I of C and I + $\frac{1}{j \ \omega C}$ + sC =	$= \frac{1}{R1} + \frac{1}{R1}$	1 sC sC 1	$S = \sigma = s = multiply$	0 <i>j ω</i> by R ²	1 1	frequency sigma = (	, so we		et
Z1 is the $\frac{1}{Z1} = \frac{1}{2}$	parallel <u>1</u> R1 <u>1</u> R1	Il of C and I + $\frac{1}{j \ \omega C}$ + sC =	$= \frac{1}{R1} + \frac{1}{R1$	1 sC	$s = \sigma = s =$ multiply	0 <i>j ω</i> by R ²		frequency sigma = (	, so we		et
Z1 is the $\frac{1}{Z1} =$ $\frac{1}{Z1} =$	parallel <u>1</u> R1 <u>1</u> R1 <u>R1</u> R1	I of C and I + $\frac{1}{j \ \omega C}$ + sC = + $\frac{sCR1}{1}$	$= \frac{1}{R1} + \frac{1}{R1}$ $= \frac{1}{R1} + \frac{1}{R1}$	1 sC sC 1 + sCF	$S = \sigma = S = multiply$	0 <i>j ω</i> by R ⁻	1 1 + sC	frequency sigma = 0	, so we		et



		$(1 + sCR1)^{+}$	R2 Next rearrange and multiply by> $\frac{1 + sCR1}{1 + sCR1}$
	=	$V_0(s) \cdot \left( \frac{1}{R^2} \right)$	
	=	$\frac{V_{o}(s)}{R2} \cdot \left( \left( \frac{R1}{1 + sCR1} \right) + \frac{1}{2} \right)$	$\frac{R2 \cdot (1 + sCR1)}{(1 + sCR1)}$
	=	$\frac{V_{o}(s)}{R2} \cdot \left(\frac{R1 + R2 + sCR}{1 + sCR1}\right)$	<u>21R2</u> )
	=	$V_{o}(s)\left(\frac{R1+R2}{R2}\right)\left(\frac{1+s}{1+s}\right)$	50101 /
		$V_{o}(s)\left(\frac{R1+R2}{R2}\right)\left(\frac{1+r}{1+r}\right)$	/ when multiplied.
$\frac{V_i(s)}{V_o(s)}$	=	$\left(\frac{R1+R2}{R2}\right)\left(\frac{1+\frac{sCR1F}{R1+F}}{1+sCR1}\right)$	Next invert both sides.
$V_0(s)$ $V_i(s)$	=	$\left(\frac{R2}{R1+R2}\right)\left(\frac{1+sCR1}{1+\frac{sCR1R}{R1+R2}}\right)$	As provided in textbook.
		$\left(\frac{R2}{R1+R2}\right)\left(\frac{1+s}{1+\left(\frac{R2}{R1+R}\right)}\right)$	
			ime constant in a series circuit = tau, a. OR just any constant T.
Т	=	CR1	<i>Comment: Previous example problems used T for RC in the final transfer functions.</i>
а	=	R2 R1 + R2	I left it out because my aim was the approach on how to get the transfer functions. T is not
$V_{0}(s)$ $V_{i}(s)$	=	$a\left(\frac{1+sT}{1+asT}\right)$	necessarily a time constant for this circuit. You can verify. We could use P of Q but since its RLC, T or tau makes more sense.
$V_{o}(s)$ $V_{i}(s)$	=	$\frac{a \cdot (1 + sT)}{(1 + a \ s \ \eta)} T$ Answer.	Took time with the algebra otherwise

not having							ame d proble		it. Thi	s pro	SVIC	ies a	a cor	וזוו	uity a	ana		
Derive the If v_i(t) =															1.4).			
Calculate	the o	outpu	ıt vol	tage i	n ma	gnitu	de an	d ph	ase a	ngle	<u>rel</u>	ative	e to i	npı	<u>it vo</u>	Itag	<u>e</u> ?	
Solution: Gain C $k := 10^3$	6 (s)	=	V _o V _i	(s) (s)	=	( <u></u>	R2 + R2	) (	$+\left(\frac{1}{R}\right)$	+ s( R2 1 + F		1 sCl	) R1					
k≔10 ³ R1≔50 k		M≔ R2≔	=10 ⁶ =5 k		u≔1 C≔′	0 ⁻⁶ 1 u					(2)							
Substitute	into	tran	sfer	functi	on:													
G (s) =		,(s) (s)	=	R2	•(R [·]	(1 1 + R2	+ sCF 2) + (s	21) CR1	IR2)									
			=	500	$\left(\frac{1}{5}\right)$	1 + 0 55000	0.05 s + 250	$\left(\frac{1}{s}\right)$	Divic denc	le nu mina	ime atoi	erato r by	r an 55,0	d )00.				
			=	0.0	91 (-	1 + ( 1 + 0.	).05 s 0045	_)										
	G	(s)		0.0	01 <u>(</u> (1	1 + 0. + 0.0	05 s) 045 sj	)	Cons	tant	0.0	)91 ı	roun	dec	l off	to O	.01	
						ero: ole:	•		).05 s ).0045	·								
We are in					jw, v	/here	sigma	=0			s	-	σ+	- j	ω			
Hence we Substitute	s fo	or jw	in tra	nsfer	func	tion.				ę	s	=	σ 0+	= j (	$\omega$ 0 $\omega$ =		0	
Now we h		and		e for I			this g e we h											

		eed the value of w?
$v(t) = 8 \sin(10)$	t)> Asin	(ω )
$\omega = 10$		
7 (1 0 07 14)	<b>N</b>	
Zero: (1 + 0.05 j10 Pole: (1 + 0.0045 j	1) = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	+ 0.5j + 0.045j
$Z_Ang_G_s := atan\left(\frac{0.5}{1}\right)$	) = 26.5651 <b>deg</b>	
P_Ang_G_s := $atan\left(\frac{0.0}{1}\right)$	$\frac{40}{2}$ = 2.5766 <b>de</b>	g
$Ang_G(s) = 26.565$	- 2.577 = 23.988	8 degrees. Answer.
Now for the magnitude	of the transfer fu	Inction
here is where the consta		
Magnituda of zoro	$\sqrt{1^2 + 0.5^2} = 1$	1 110
Magnitude of zero:		
Magnitude of pole:	$\sqrt{1^2 + 0.045^2}$	= 1.001
Magnitude of G(s):	$(0.1) \cdot \left(\frac{1.118}{1.001}\right)$	= 0.1117
	(1.001)	
The input signal is vi(t)		
From which we can obta		e is 8 V maximum. to 8V for the maximum output voltage.
	gintado or o(o)	
Amplitude:=8.0 Ma	g_G (s) ≔ 0.1117	
V _o ≔Amplitude • Mag_0	G ( <b>s</b> ) = 0.894	V. Answer.
		Good example. Can be found in most
		circuits and all controls textbook.

11115 15 11	ndicated	in the pr	oblem state	ement, ex	act same	circuit.		
			f problem 1 2 will give T		ec, and a	= 0.1		
Solution:								
G (s) =	$\left(\frac{R2}{R1+R}\right)$	$\left(\frac{1}{1+1}\right)$	$\frac{1 + \text{sCR1}}{\left(\frac{\text{R2}}{\text{R1} + \text{R2}}\right)}$	sCR1	T = C	R1 a = ·	R2 R1 + R2	
G (s) =	$\frac{a \cdot (1 + s)}{(1 + as)}$	sT) T)	C≔1uF		T≔0.6	a≔0.	1	
CR1 = 0	.6, solve	for R1:	CR1 = 0	.6				
			(1 uF) R1	= 0.6				
			R1 =	$\frac{0.6}{1 \cdot u} = 0$	6•10 ⁵ O	hm. = 0.6∙№	1 Ohm. /	Answer.
a =R^	R2 I + R2	>	0.1=	R2 000 + R2	>	0.1 (600000	) + R2) =	= R2
60000 +	0.1 R2	= R2						
0.9 R2	=	60000						
R2	=	<u>60000</u> 0.9	= 66666.7	= 0	.066 M O	hms. Answer.		

v _i	Loop 1 Or Mesh		→ )	+	, i1	(t)	→ 		Y	i2(t) + C	v				fu of ne th	e seek nction, the ele twork e left ir rm ?	Vo(s). ectrica shown	/Vi(s) to
Solution:																		
Current at node:	i (	(t)	=	i1	(t)	+ i	2 (1	t)										
Voltage conserva	ation i	n lo	op a	t left	sic	le:												
	v _i (t)		=	L	di dt	+ F	Ri1	(t)										
voltage, where C	er way Cis vol	Itag	e aci															
voltage, where C	er way Cis vol	ltag acit	e aci or.	ross	res	isto	or F	R, 2	nd	we	kn	ow						
voltage, where C	er way C is vol ne cap v _o (t)	ltag acit	e aci or. =	ross	res 1 (1	isto t)	or F	R, a	nd -∫	we	kn	ow						
voltage, where C	er way C is vol ne cap V _o (t) V _i	ltag acit (t)	e aci or. =	ross Ri	res 1 (1 di dt	istc t) + F	or F = Ri1	R, a 1 C (t)	nd - ∫	we	kn	ow						
Next, in a cleave voltage, where C voltage across th	er way C is vol ne cap V _o (t) V _i	ltag acit (t)	e aci or. =	Ri L	res 1 (1 di dt	istc t) + F	er F Ri1	₹, 2 <u>1</u> C (t)	nd - ∫ (s)	we i2 (	kn(	ow t	V_C	h(t)	is th		- 12 (s)	

Voltage acro	oss R:	$V_{o}(s) =$	12 (s) sC	= RI1(s)	thus	I1 (s)	$=\frac{V_{o}(s)}{R}$	
We update of	our I(s)	expressic	n here	$V_i(s) =$	sL	.I (s) + RI´	l (s)	
						i (t) =	i1 (t) + i2 (t)	
						I (s) =	11(s) + 12(s)	
				$V_i(s) =$	sL	. (I1(s) + I	2 (s)) + RI1 (s)	
				$V_i(s) =$	sL	. (I1(s) + I	$2(s)) + V_{o}(s)$	
Substitute v	oltage a	cross C 1						
V _i (s) =	sL(\	$\frac{I_0(s)}{R} + s$		$CV_{o}(s) =$ + $V_{o}(s)$	12 (s)			
V _i (s) =	V _o (s	$+ sL \left( - \frac{v}{v} \right)$	$\frac{V_{o}(s)}{R} + sC$	$CV_{o}(s)$				
V _i (s) =	V _o (s	) + V _o (s)	$\cdot \left(\frac{sL}{R} + s\right)$	sCsL				
$V_i(s) =$	V _o (s	$) \cdot \left(1 + \frac{\text{sl}}{\text{F}}\right)$	$\frac{1}{2}$ + s ² L(	c)				
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\overline{\left(1+\right)}$	$\frac{1}{R} + s^2$						
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\left(s^2\right)$	$\frac{1}{C + \frac{sL}{R}}$	+ 1)	Answer. Lo A compact			าร.	
							atic expression, nt but not here.	



	ige r	nesh	/loop equations in Laplace:
Left I	loop	•	
V _i (s)	)	=	Z1I1 (s) + Z2 (I1–I2)
V _i (s)	)	=	I1 (s) (Z1 + Z2) – Z2I2Eq 1
Right	t loo	p:	
0		=	Z2(I2–I1) + Z3I2(s) + Z4I2(s)
0		=	-Z2I1+I2(s) (Z2+Z3+Z4)Eq 2
Next	we	form	an expression for Vo:
V _o (s	)	=	Z412 (s)Eq 3
one e towa that	expre irds t expr	essio the tr essic	t, from these few examples we seen, we want to place n for current, into the the other equation, then work ansfer function, provided we have Vo(s) and Vi(s) in on to work with. bks the better simpler choice to place in Eq 2.
one e towa that Here Beca Then Then If we	expre irds 1 expr , I1( iuse n we n wor e dor	essio the tr essic (s) loo we d set N rk wi nt ha	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. Oks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. /o(s) for Z4I2(s). th the equation which can fit-in Vo, Vi, and I1 and I2 in it. ve it yet continue re-hashing.
one e towa that Here Beca Then Then If we	expre irds 1 expr , I1( iuse n we n wor e dor	essio the tr essic (s) loo we d set N rk wi nt ha	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. Oks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. /o(s) for Z4I2(s). th the equation which can fit-in Vo, Vi, and I1 and I2 in it.
one e towa that Here Beca Then Then If we	expre irds 1 expr , I1( iuse n we n wor e dor	essio the tr essic (s) loo we d set N rk wi nt ha	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. Oks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. /o(s) for Z4I2(s). th the equation which can fit-in Vo, Vi, and I1 and I2 in it. ve it yet continue re-hashing.
one e towa that Here Beca Then Then If we What	expre irds 1 expr , 11( iuse n we n wor e dor t you 0	essio the tr essic (s) loo we d set \ rk wi nt ha u thir =	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. Oks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. /o(s) for Z4I2(s). th the equation which can fit-in Vo, Vi, and I1 and I2 in it. ve it yet continue re-hashing. kk, that's the plan? <i>Of course</i> !
one e towa that Here Beca Then Then If we What	expre irds 1 expr , 11( iuse n we n wor e dor t you 0	essio the tr essic (s) loo we d set \ rk wi nt ha u thir =	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. to work with. to ks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. /o(s) for Z4I2(s). th the equation which can fit-in Vo, Vi, and I1 and I2 in it. ve it yet continue re-hashing. k, that's the plan? <i>Of course</i> ! -Z2I1 + I2(s) (Z2 + Z3 + Z4)Eq 2
one e towa that Here Beca Then Then If we What	expre irds 1 expr , I1( iuse n we n wor e dor t you 0 ) Z2	essio the tr essic (s) loo we d set \ rk wi nt ha u thir =	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. Toks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. /o(s) for Z4I2(s). th the equation which can fit-in Vo, Vi, and I1 and I2 in it. /ve it yet continue re-hashing. kk, that's the plan? <i>Of course!</i> -Z2I1 + I2(s) (Z2 + Z3 + Z4)Eq 2 I2(s) (Z2 + Z3 + Z4)
one e towa that Here Beca Then Then If we What I1 (s) I1 (s)	expre irds 1 expr , I1( iuse 1 n we n wor e dor t you 0 ) Z2	essio the tr essic (s) loo we d set \ rk wi nt ha u thir = =	n for current, into the the other equation, then work ransfer function, provided we have Vo(s) and Vi(s) in on to work with. boks the better simpler choice to place in Eq 2. o not have a voltage source on the RHS. I/o(s) for Z412(s). It the equation which can fit-in Vo, Vi, and I1 and I2 in it. we it yet continue re-hashing. I/o(s) (Z2 + Z3 + Z4)Eq 2 I2(s) (Z2 + Z3 + Z4) I2(s) (Z2 + Z3 + Z4) I2(s) (Z2 + Z3 + Z4) I2(s) (Z2 + Z3 + Z4)

		22
V _i (s)	$= \frac{12(s) \cdot (((Z2)))}{12(s) \cdot (((Z2)))}$	$+ Z3 + Z4) \cdot (Z1 + Z2)) Z2 - Z2^{2})$
		Z2
V _i (s)	((Z2 + Z3 + Z	$(Z1 + Z2)) Z2 - Z2^{2}$
$\frac{V_{i}(s)}{12(s)}$	=	Z2
		ist but certainly new I dont remember doing a Not typical. Hope I am gaining skills here.
V _o (s)	= Z412(s)	Eq 3
12 (s)	$=$ $\frac{V_{o}(s)}{Z4}$	
	Z4	
Substitut	e this in the expres	sion Vi(s)/I2(s)
V _i (s)	((Z2 + Z3 + Z	$(Z1 + Z2) - Z2^2)$
$\frac{V_{i}(s)}{\left(\frac{V_{o}(s)}{Z4}\right)}$		Z2
$\left( \begin{array}{c} Z4 \end{array} \right)$		
$V_i(s)$	((71+72))	$(Z2 + Z3 + Z4) - Z2^2)$
$\frac{V_{i}(s)}{V_{o}(s)}$	=	Z2•Z4
0 ( )		
Invert the	e expression so we	get Vo(s) in the numerator.
$V_{o}(s)$		72.74
$\overline{V_i(s)}$	$= {((71+72).($	$Z2 \cdot Z4$ $Z2 + Z3 + Z4) - Z2^{2}$
Lets expa	ind the denominato	or expression:
(Z1 + Z2)	• (Z2 + Z3 + Z4)	= Z1Z2 + Z1Z3 + Z1Z4 + Z2Z2 + Z2Z3 + Z2Z4
Now for t	he full denominato	r expression:
		= Z1Z2 + Z1Z3 + Z1Z4 + Z2Z2 + Z2Z3 + Z2Z4 - Z2Z2
		= Z1Z2 + Z1Z3 + Z1Z4 + Z2Z3 + Z2Z4
		Z2•Z4
V _o (s)		The transfer function.

$V_o(s)$	=		Z2•Z	Z4				
$\frac{V_{o}(s)}{V_{i}(s)}$		Z1Z2 + Z	21Z3 + Z1Z	4 + Z2Z3	+ Z2Z4			
Z1	= R	21 Z2	$=\frac{1}{sC1}$	Z3	= R2	Z4	$=\frac{1}{\mathrm{sC2}}$	
V (s)			<u>1</u> sC1	1				
$\frac{V_{o}(s)}{V_{i}(s)}$	=	$\frac{R1}{sC1}$ + R	$1R2 + \frac{R1}{sC2}$	$+\frac{R2}{sC1}+$	$\frac{1}{s^2 C1C2}$			
<u>It helps</u> We are	in bu buildi	ilding the p ing circuits	ohysical circ	cuit. Whic onents are	h l'almost	forgot th	n electric circuits. e true purpose here on a bread board b	
	=	(		1		<u>}. 1</u> .	1	
		$\frac{1}{1}$ R1 + F	$R1R2 + \frac{R1}{sC2}$	$\frac{1}{2} + \frac{R2}{sC1}$	$+\frac{1}{s^2 C1C2}$	sC1	sC2	
				1	3 CTC2	/		
	=	R1sC2 +	R1R2•s ²	т С1С2 + F	R1sC1 + R2	sC2 + 1	Multiplied by sC1 top and bottom.	sC2
	=			1				
		sR1C2 +	s ² R1R2•	C1C2 + s	R1C1 + sR	2C2 + 1		
	=			1				
		sR1C2 +	sR1C1 + s	R2C2 + 1	+ s ² R1R2	•C1C2		
$\frac{V_{o}(s)}{V_{i}(s)}$	=			1			Answer.	
V _i (s)		1 + s (R1	C2 + R1C1	+ R2C2)	+ s ² R1R2	•C1C2		
The circ	cuit is	also a prac		for appli	sion. cation in ele tronic applie			



Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

	$\frac{1}{s} + \left(\frac{1}{0.5 s^2}\right) + \left(\frac{1}{s}\right) + \left(\frac{1}{0.5 s}\right) + 1$
=	$\frac{s^{2}}{s+2+s+2s+s^{2}} = \frac{s^{2}}{2+4s+s^{2}} = \frac{s^{2}}{s^{2}+4s+2}$
$\frac{V_0(s)}{V_0(s)} =$	$\frac{s \cdot s}{s^2 + 4 s + 2}$
V _i (S)	s ² + 4 s + 2
Unit step vo	Itage comes on at t=0 and is of unit value, ie 1. Vi(s) must equal 1.
	$V_i(s) \cdot s \cdot s$ 1 · s · s
$V_0(S) =$	$\frac{V_i(s) \cdot s \cdot s}{s^2 + 4 s + 2} = \frac{1 \cdot s \cdot s}{s^2 + 4 s + 2}$
s _{z1} ≔ 1	$V_{0}(s) = \frac{s}{s^{2} + 4 s + 2}$
$ax^2 + bx + c$	$: s^{2} + 4 s + 2$
s1 = -	$\frac{-b - \sqrt{b} - 4 ac}{2 a} = \frac{-4 - \sqrt{4} - 4 12}{2 1} = -3.4142$
	$\frac{-b - \sqrt{b^{2} - 4 \text{ ac}}}{2 \text{ a}} = \frac{-4 - \sqrt{4^{2} - 4 12}}{2 1} = -3.4142$ $\frac{-b + \sqrt{b^{2} - 4 \text{ ac}}}{2 \text{ a}} = \frac{-4 + \sqrt{4^{2} - 4 12}}{2 1} = -0.5858$
s2 = -	$\frac{-b + \sqrt{b^2 - 4} ac}{2 a} = \frac{-4 + \sqrt{4^2 - 4} 12}{2 a} = -0.5858$
	he denominator for the poles. Which math wise were the
	ectrical wise these are the poles.
	S ² The poles going heak in the transfer
$V_{o}(s) =$	$s$ The poles going back in the transfer $(s + 3.414) \cdot (s + 0.586)$ function with the opposite sign.
For the pole	e to be maximum s1 and s2? -3.414 and -0.586
	the numerator what any value to solve?
Its NOT the	numerator its the COEFFICIENTS of Vo(s) and those same for time domain.
	x(0) = 0, and $t>0 Vo(>0) = 0$ , but for $t>>0 Vo(>>0) = 1u(t)$ .
	ar same as 0+ equal 0. So we use continuity here? <u>y math</u> . To solve for coefficients using the?
,	proper fractions OR Equating coefficients of like powers.

$V_0(s) =$	$\frac{1}{(s+3.4)}$	$s^2$ 14) • (s + 0	.586)	S	plit LHS	to s	olve for coe	fficients.	
s•s (s+3.414)•(	5	_ = .	A		В		2nd or	der eg.	
(s + 3.414) • (	(s + 0.586)	)	(s + 3.4 ⁻	14)	(s + 0.5	86)			
A	(s + 0.58	6) + B (s +	3.414)	=	As + 0.	586	A + Bs + B	3.414	
Arrange like	terms:						function - s*s coefficient of	split to s*s. ^f s = 1. Like terms.	
As + Bs	5 =	s>	>	А	A + B	=	1	Eq 1	
0.586 A + 3.4	14 B =	0>	> 0.586	5 A +	3.414 B	=	0	Eq 2	
			0.586	5 A +	0.586 B	=	0.586	Eq 1 x 0.586.	Eq 3
			0.586	5 A +	3.414 B	=	0	Eq 2	
			•		•	=	0.586	Eq 3 - 2	
		(0.586	- 3.414		-2.828 -2.828 B	_	0.586		
					2.020 D	_		0(	
						В	$= \frac{0.5}{-2.8}$	$\frac{86}{828} = -0.2072$	
							= 1		
							= 1	207 1 207	
						4		).207 = 1.207	
The circuit s-	domain:	V _o (s)	=		A 3.414) +		B		
				(S +	3.414)	(S	+ 0.586)		
		V _o (s)	_		1.21 _	-	0.21		
		- 0 (0)		(s +	3.414)	(s	+ 0.586)		
The general	form of v_	_o(t): Ae	^{-s1 · t} + B	e ^{-s1}	t				
	v _o (t)	) = 1.2	1 e ^{-3.414}	$\cdot^{t} - 0$	0.21 e ^{-0.5}	86•t	Answer.		
	-0(-)							solution math	
							wise. What	math can do foi	
								g coefficients by oefficients of like	
						_			

0	R1	·····	+  ( c1	(t) + i1(t) R2	i2	
v _i				i2(1		
		fer function of th				
Plot its	poles a	and zeros for R1	= R2 = 1, a	nd $C1 = C2$	= 1.	
<u>Solutic</u>	<u>n:</u>					
Curren	t equat	ion at node:				
i (t)	=	i1(t)+i2(t)	Note: (	Current thru	R1 and C1 is	i(t).
Voltag	e mesh	equations:				
v _i (t)	=	R1i(t) + $\frac{1}{C1} \cdot \int$	i dt + R2•((	(i1(t)—i2(t	)))	
Deviat	ion here	e: R2•((i1(t)-	i2(t))) we	neglect i2(t)	leaving>	R2i2 (t) Shown later.
-		s R2 is Vo(t). age mesh equatic	on using Vo(	(t).		
v _o (t)	=	R2•((i2(t) – i1	$(t))) + \frac{1}{C2}$ .	∫i2(t)dt	We may no equation.	ot need this mesh
	-	st so we see the with to s-domain			we could	
		erting to s-domain s taking the Lapla		·m:		
l (s)	=	l1(s) + l2(s)				







V ₀ (s)	1	Ν.Λ.	Itinly top and bottm by cC1D1
$\frac{V_0(s)}{V_i(s)} =$	$\frac{1}{\text{sC1R1}} + \text{sC2R2} - \frac{1}{\text{sC1R1}}$	— IVIC ⊦ 3	Itiply top and bottm by sC1R1
	sC1		
	1 + (sC1R1) (sC2	R2) + 3 (sC	C1R1)
=	sC1R		
	$1 + (s^2 \cdot C1C2R1F)$	R2) + 3 sC1	R1
Let C = C1 = R = R1 =			
$V_{o}(s) =$	sCR		Since R1=R2=C1=C2=1
V _i (s)	$\frac{\text{sCR}}{1 + (s^2 \cdot C^2 \cdot R^2) + (s^2 \cdot C^2 \cdot R^2)}$	- 3 sCR	We substitute for 1.
$\frac{V_{o}(s)}{V(s)} =$	$\frac{s}{1+s^2+3 s} =$	S	Answer for transfer function.
V _i (S)	$1 + s^2 + 3 s$	$s^{2} + 3 s$	+ 1
Zero: 0	Answer.		
Pole(s): Solve	quadratic equation	$s^{2} + 3 s =$	- 1
A3 + D3 + C	s1 s2 = <u>–B</u>	2 A	5 - 7 AC
	s1 =	$-3 + \sqrt{3^2} -$	$\frac{1}{1} = -4 \cdot 10^{-1}$
	s2 =		$(4 \cdot 1 \cdot 1) = -3$
Poles: -0.3	82 and -2.618	2.	
Poles0.5	oz allu —2.010 /	AIISWEI.	
	lot is easy, real x-a: ero and ploes are o		ginary y-axis. at 0, -0.382, and -2.618.
Lets try plotti	ng the functions, nu	imerator ar	d denominator.



		L1 	lll	· +	R1	~~~	<u> </u>			L2 +		ll	, ,	$\overline{}$	
v(t) (+	)		i1(1	t) <	$\Big)$			7	- c	ı i	2(t) <	$\sum$	-	R2	?
Write th	ne diff	erentia	l equa	tions	for th	e ele	ctrica	al circ	uit at	ove.					
Solution	<u>1:</u>														
l kickof I do an					e arou	ind a	loop	equa	al zero	).					
Loop i1	(t):														
v _i (t)	=	$L1\left(\frac{d}{d}\right)$	i1 (t) dt	) + R1	i1 (t)	+ <u>1</u> C1	_•∫i	i1 (t)	dt	<u>1</u> .∫	i2 (t)	dt			
Loop i2	(t):														
0	=	L2( <u>d</u>	i2 (t) dt	) + R2	i2(t)	$+\frac{1}{C1}$	_•∫ i	i2 (t)	dt	<u>1</u> .∫	i1 (t)	dt			
												Ans	wer.		
							o do	main	on th	ne time	e dom				
Not par typical o verify.										aplace	e tran	storm	YOL		
typical of			neerin	g cou	rse w	ill say	/ is ta	aking	the L	-		storm	YOL		



• ( • )	=	$\frac{1}{C1}\int i1(t) dt$	dt + R1i1 (t)					
e2 (t)	=	$\frac{1}{C2}\int i2(t) dt$	dt + R2i2 (t)					
e1 (t)	=	R1i1(t)	Amplifier left	side volta	ge.			
v _o (t)	=		Amplifier righ This being the		-	v_o(t)		
			ransforms of l lace or No Pla				in.	
V _i (s)	=	$\frac{11(s)}{sC1} + R1$	I1 (s)	Eq 1				
E2 (s)	=	$\frac{12(s)}{sC2} + R2$	12 (s)	Eq 2				
E1 (s)	=	R1•I1(s)		Eq 3				
V _o (s)	=	R2•12(s)		Eq 4				
The lor If I had You ma Method after fo	y buildin ng way d not do ay verify d 2 is ea prming t	and the answone this then y. asy, which wather	cted relations ver is same as it may remain as my first re- on without the ethod 1 comp	s the textl n a myste action to ne usual ir	book ar ry! the pro	blem. Just	place Vo/Vi,	<u>).</u>
Rearrai	nge Eq	1: V _i (s)	= I1(s)	$\cdot \left(\frac{1}{\mathrm{sC1}} + \right)$	R1)	Eq 5		
	nge Eq	2.	= 12 (s)			Eq 6		
Rearra								

	$E2(s) = \frac{V_{o}(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right) Eq 8$
E2(s) =	$E1(s): E1(s) = R1 \cdot I1(s) = E2(s)$
Next su	ubstitute E1(s) for E2(s) in Eq 8.
E1 (s)	= E2(s) = R1·I1(s) = $\frac{V_o(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right)$ Eq 9
Substitu	ute Eq 9 for R1I1(s) in Eq 1.
V _i (s)	$= \frac{11(s)}{sC1} + \frac{V_o(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right) \qquad \text{Eq 10}$
How do	o I substitute for I1(s), try Eq 5, then substitute into eq 10:
V _i (s)	$= 11(s) \cdot \left(\frac{1}{sC1} + R1\right) \qquad \text{Eq 5}$
l1 (s)	$= \frac{V_{i}(s)}{\left(\frac{1}{sC1} + R1\right)}$ Eq 11substitute in Eq 10.
V _i (s)	$= \frac{V_{i}(s)}{\left(\frac{1}{sC1} + R1\right)} + \frac{V_{o}(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right) \qquad \text{Eq 12looks messy may do it.}$
V _i (s) –	$\frac{\frac{V_{i}(s)}{\left(\frac{1}{sC1} + R1\right)}}{sC1} = \frac{V_{o}(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right)$
V _i (s) –	$\frac{V_{i}(s)}{\left(\frac{1}{sC1} + R1\right)} \cdot \frac{1}{sC1} = \frac{V_{o}(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right)$
$V_i(s) \cdot \Big($	$\left(1 - \frac{1}{\left(\frac{1}{sC1} + R1\right) \cdot sC1}\right) = \frac{V_{o}(s)}{R2} \cdot \left(\frac{1}{sC2} + R2\right)$

$V_i(s) \cdot \left(1 - \frac{1}{(1 + 1)^2}\right)$	$\frac{1}{1 + sC1R1} = V_{o}(s) \cdot \left(\frac{1}{sC2R2} + 1\right)$
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\frac{\left(1 - \frac{1}{(1 + sC1R1)}\right)}{\left(\frac{1}{sC2R2} + 1\right)}$ Transfer function. Need simplifying.
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\frac{\left(\frac{(1+sC1R1)}{(1+sC1R1)} - \frac{1}{(1+sC1R1)}\right)}{\left(\frac{1+sC2R2}{sC2R2}\right)} = \frac{\left(\frac{(sC1R1)}{(1+sC1R1)}\right)}{\left(\frac{1+sC2R2}{sC2R2}\right)}$
=	$\left(\frac{(sC1R1)}{(1+sC1R1)}\right) \cdot \left(\frac{sC2R2}{1+sC2R2}\right)$
=	$\left(\frac{(s^2 \cdot C1C2R1R2)}{(1 + sC2R2 + sC1R1 + s^2 \cdot C1C2R1R2)}\right)$
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\frac{(s^2 \cdot C1C2R1R2)}{(1 + s(C1R1 + C2R2) + s^2 \cdot (C1C2R1R2))}$
Let A = C	C1C2R1R2 B = C1R1 C = C2R2
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\frac{(A \cdot s^2)}{(1 + (B + C) \cdot s + A \cdot s^2)}$ One Transfer Function - METHOD 1.
C1:=1.10 ⁻⁶	$C2 := 0.5 \cdot 10^{-6}$ $R1 := 1 \cdot 10^{6}$ $R2 := 1 \cdot 10^{6}$
A≔C1•C2•	R1•R2 = 0.5 Or fraction: $\frac{1}{2}$ B = C1•R1 + C2•R2 = 2
$\frac{V_{o}(s)}{V_{i}(s)} =$	$\frac{\left(\frac{1}{2}\right) \cdot s^{2}}{1 + \left(\frac{3}{2}\right) \cdot s + \left(\frac{1}{2}\right) \cdot s^{2}}$ Multiply by 2.
	Commercial Use Only

	3)		2	•(1+	$\left(\frac{3}{2}\right)$	s + (	$\frac{1}{2}$	s ² )								
V _o (	(s) (s)	=		s ²		=			s ²		Answe	r. san	/IE AS TE	ХТВ	OOK!	
V _i (	(s)		2	+ 3•s	$+s^2$			$s^{2} + $	3•s+	2						
Calo	culate	e the	out	put v	oltage	e, t>	·>0,	for a	unit	step	voltag	<u>je i</u> npu	ut at t=0	:		
So i v	(-0) ⁄(-0)	= i =	(0+ v(0-	…just ⊦…jus	t near st nea	0) r 0)	=	0 an 0 v	d (++)	= 1		t<0 =				
				0									the Vi(s equal 0.	) = '	1	
$\frac{V_{o}}{V_{i}}$	(s) (s)	=(	S + 2	s ² 2) (s -	⊦ 1)	V	, (s)	=	V _i (s	)• <u>(</u> s	s ² + 2) (	s + 1)				
					-										В	
						V	, (s)	=	1		(0 1		$=\frac{A}{(s+2)}$	$\frac{-+}{0}$	(c + 1)	
									(:	5 + Z)	(S + 1)	)	(S + 2)		(3 + 1)	
				ficient	ts usii				`	,	•	,	(s + 2) OR <u>Equa</u>	, ,	. ,	
	ke p	ower	<u>s.</u>			ng tl	ne?	Meth	od of	prop	er fra	ctions	<b>`</b>	, ,	. ,	
	ke p	ower	<u>s.</u>			ng tl	ne?	Meth	od of	prop	•	ctions	<b>`</b>	, ,	. ,	
<u>of li</u>	ke p	ower	<u>s.</u>			ng tl - 2)	ne?	Meth	od of As +	prop A + I	er fra	B	<b>`</b>	, ,	. ,	
<u>of li</u> S	<u>ke p</u>	ower A	<u>s.</u> \(s +		B (s +	ng tl - 2)	ne?	Meth	od of As +	prop A + I	er frad Bs + 2	B	<b>`</b>	, ,	. ,	
<u>of li</u> s Arra	<u>ke p</u> = ange	ower	<u>s.</u> (s + ke t	- 1) + erms:	B (s +	ng tl - 2) s	ne?	Meth	od of As + s (A	prop A + I + B)	er frad Bs + 2 + (A +	B 2 B)	OR <u>Equa</u>	, ,	. ,	
of li s Arra s	<u>ke p</u> = ange :	ower A for li	<u>s.</u> (s + ke t (A +	- 1) + erms: - B)	B (s +	ng tl - 2) s	ne?	Meth = = A + E	As + s (A	prop A + I + B)	er frac Bs + 2 + (A +	B 2 B) Eq	OR Equa	, ,	. ,	
<u>of li</u> s Arra	<u>ke p</u> = ange	ower A for li	<u>s.</u> (s + ke t (A +	- 1) + erms:	B (s +	ng tl - 2) s	ne?	Meth	As + s (A	prop A + I + B)	er frad Bs + 2 + (A +	B 2 B)	OR Equa	, ,	. ,	
of li s Arra s	<u>ke p</u> = ange :	ower A for li	<u>s.</u> (s + ke t (A +	- 1) + erms: - B)	B (s +	ng tl - 2) s	ne?	Meth = = A + E	As + s (A B	prop A + I + B)	er frac Bs + 2 + (A +	B 2 B) Eq	OR Equa	, ,	. ,	
of li s Arra s	<u>ke p</u> = ange :	ower A for li	<u>s.</u> (s + ke t (A +	- 1) + erms: - B)	B (s +	ng tl - 2) s	ne?	Meth = A + E A + 2 B	As + s (A B	prop A + I + B) = =	er frac Bs + 2 + (A + 1 0 -1	B 2 B) Eq Eq	OR Equa	, ,	. ,	
of li s Arra s	<u>ke p</u> = ange :	ower A for li	<u>s.</u> (s + ke t (A +	- 1) + erms: - B)	B (s +	ng tl - 2) s	ne?	Meth = A + E A + 2 B	As + s (A B te B	prop A + I + B) = = = n Eq	er frac Bs + 2 + (A + 1 0 -1	B 2 B) Eq Eq	OR Equa	, ,	. ,	

h the		$=$ $\frac{2}{(s+2)} - \frac{1}{(s+1)}$
be a	coefficients, zeros, a	
ant.		and poles I can form the voltage output in time domain on because the voltage source is a step function, unity
	$Ae^{s1t} + Be^{s2t}$	
=	$-2 e^{-2t} - 1 e^{-1t}$	
conve	ert from s-domain to	time domain:
=	$-2 e^{-2t} - e^{-t}$	Answer. Same as textbook. Please verify the solution steps and reasoning on the voltage output equation where Vi(s) = 1.
Meth		to be simpler and shorter solution.
=	$\frac{11(s)}{sC1} + R1 \cdot 11(s)$	Eq 1
=	$\frac{12(s)}{sC2} + R2 \cdot 12(s)$	Eq 2
_	R1•I1(s)	Eq 3
-	R2•12(s)	Eq 4
ne tra	ansfer function, Vo(s)	)/Vi(s) based on their respective equations directly:
	$\frac{R2 \cdot I2 (s)}{\frac{I1 (s)}{sC1} + R1 \cdot I1 (s)}$	$= \frac{I2(s) \cdot R2}{I1(s) \cdot (R1(s) + \frac{1}{sC1})}$ Eq 5maybe I2(s) and I1(s) substituion may help.
=	<u>E1(s)</u> R1 I2(s)	$= \frac{E2(s)}{\left(R2 + \frac{1}{sC2}\right)}$ From Eq 2 above.
	conve = = = = = = = = = = = = =	Method 2, the supposed $\vec{r}$ = $\frac{11(s)}{sC1} + R1 \cdot I1(s)$ = $\frac{12(s)}{sC2} + R2 \cdot I2(s)$ = $R1 \cdot I1(s)$ = $R2 \cdot I2(s)$ the transfer function, Vo(s) = $\frac{R2 \cdot I2(s)}{\frac{11(s)}{sC1} + R1 \cdot I1(s)}$ = $E1(s) = I2(s)$

12 (s) 11 (s)	$= \frac{\frac{E2(s)}{\left(R^2 + \frac{1}{sC^2}\right)}}{\frac{E1(s)}{R1}} = \frac{E2(s)}{\left(R^2 + \frac{1}{sC^2}\right)} \cdot \frac{R1}{E1(s)}$
11 (s)	$\frac{E1(s)}{R1} \qquad \left(R2 + \frac{1}{sC2}\right) E1(s)$
Gain =	1, $E2(s)/E1(s) = 1$ , therefore $E1(s) = E2(s)$ .
E1 (s)	= E2(s)
Now the	e current ratio equation becomes: $\frac{12(s)}{11(s)} = \frac{R1}{\left(R2 + \frac{1}{sC2}\right)}$
Returnir	ng to Eq 5 substitute for I2(s)/I1(s):
$\frac{V_0(s)}{V_0(s)}$	$= \frac{12(s) \cdot R2}{11(s) \cdot \left(R1 + \frac{1}{sC1}\right)} $ Eq 5
V _i (S)	$I1(s) \cdot \left(R1 + \frac{1}{sC1}\right)$
	$= \frac{R1}{\left(R2 + \frac{1}{sC2}\right)} \cdot \frac{R2}{\left(R1 + \frac{1}{sC1}\right)}$
	$= \frac{R1R2}{R1R2 + \frac{R2}{sC1} + \frac{R1}{sC2} + \frac{1}{s^{2} C1C1}}$
Let:	$A = R1 \cdot R2 = 1 \cdot 10^{12}$
	B = $\frac{R2}{C1} = 1 \cdot 10^{12}$ C = $\frac{R1}{C2} = 2 \cdot 10^{12}$
	$D = \frac{1}{C1 \cdot C2} = 2 \cdot 10^{12}$
$\frac{V_{o}(s)}{V_{i}(s)}$	$= \frac{1 \cdot 10^{12}}{1 \cdot 10^{12} + \frac{1 \cdot 10^{12}}{s} + \frac{2 \cdot 10^{12}}{s} + \frac{2 \cdot 10^{12}}{s^2}}$
$\frac{V_{o}(s)}{V_{i}(s)}$	$= \frac{1}{1 + \frac{1}{s} + \frac{2}{s} + \frac{2}{s^{2}}} = \frac{1}{1 + \frac{3}{s} + \frac{2}{s^{2}}} $ Multiply by s^2 top and bottom.

	$= \frac{(s^2)}{(s^2) \cdot \left(1 + \frac{3}{s}\right)}$	$\left(\frac{3}{s}+\frac{2}{s^2}\right)$			
$\frac{V_{o}(s)}{V_{i}(s)}$	$= \frac{s^2}{s^2 + 3s + 2}$	- Answer.			
V _i (s)	$s^{2} + 3 s + 2$	Same metho	d used by engine	eer the faster met	hod.
compone function	ents like that estal 's definition is just	e the impression the longe that, output divide ons, and carefully c	er method. Howe ed by input. Do co	ver, the transfer	S
	aining part on the of the transfer fur	output voltage sar actions.	ne as completed	following the long	J
<u>Chp 1 Pr</u>	roblem 1.13:				
<b></b>	R1		MA		[
v _i i(t).		i1(t)	c i2(t)		Vo
<u> </u>		nction of the electri	cal network abov	e:	





$0 = \frac{1}{s}$	$\frac{1}{5C2}$ (I2(s) – I1(s)) + R2I2(s) + sL2·I2(s) Eq 6	
Solve for I	I2 above:	
	$(s) + R2I2(s) + sL2 \cdot I2(s) = \frac{I1(s)}{sC2}$ Multiply by sC2.	
12 (s) + R2	$212(s) sC2 + sL2 \cdot 12(s) sC2 = 11(s)$	
I2(s) • (1 +	$+ sC2R2 + s^{2} C2L2) = I1(s) Eq 7$	
12 (s) =	$= \frac{11(s)}{(1 + sC2R2 + s^{2} C2L2)}$	
$V_{0}(t)$	$12(s) \cdot (R2 + sL2)$	
$\frac{V_i(s)}{V_i(s)} =$	$= \frac{12(s) \cdot (R2 + sL2)}{11(s) \cdot (R1 + sL1 + \frac{1}{sC2}) - \frac{1}{sC2} 12(s)}$	
	e I2(s) in denominator above.	
$V_{o}(t) =$	= I2(s) • (R2 + sL2)	
V _i (s)	$= \frac{12(s) \cdot (R2 + sL2)}{11(s) \cdot (R1 + sL1 + \frac{1}{sC2}) - \frac{1}{sC2} \cdot \frac{11(s)}{(1 + sC2R2 + s^2) C2L2}}$	•)
V _o (t)	12 (s) • (R2 + sL2)	
$\overline{V_i(s)}$	$= \frac{12(s) \cdot (R2 + sL2)}{11(s) \cdot ((R1 + sL1 + \frac{1}{sC2}) - (\frac{1}{sC2 + s^2} C2^2 R2 + s^3 C2^2)}$	2 L2))
$V_{o}(t)$	(12(s)) (R2 + sL2)	
$\overline{V_i(s)} =$	$= \left(\frac{12(s)}{11(s)}\right) \cdot \frac{(R2 + sL2)}{\left(R1 + sL1 + \frac{1}{sC2}\right) - \left(\frac{1}{sC2 + s^2 C2^2 R2 + s^3 C}\right)}$	$2^2 L2$
Find an ec	quation for I2(s)/I1(s) Eq 7 below.	
	$+ sC2R2 + s^{2}C2L2) = I1(s) Eq 7$	

$$\frac{12 (s)}{11 (s)} = \frac{1}{(1 + sC2R2 + s^{2} C2L2)}$$
Substitute  $\frac{12 (s)}{11 (s)}$  in transfer function  
 $\frac{V_{o}(t)}{V_{i}(s)} = \left(\frac{1}{1 + sC2R2 + s^{2} C2L2}\right) \left(\frac{(R2 + sL2)}{(R1 + sL1 + \frac{1}{sC2}) - \left(\frac{1}{sC2 + s^{2} C2^{2} R2 + s^{3} C2^{2} L2}\right)}\right)$ 
 $\frac{V_{o}(t)}{V_{i}(s)} = \frac{(R2 + sL2)}{(1 + sC2R2 + s^{2} C2L2) \cdot (R1 + sL1 + \frac{1}{sC2}) - \left(\frac{(1 + sC2R2 + s^{2} C2L2)}{sC2 (1 + s C2R2 + s^{2} C2 L2)}\right)}$ 
Set C1 = C2 = C, as given.  
 $\frac{V_{o}(t)}{V_{i}(s)} = \frac{(R2 + sL2)}{(1 + sCR2 + s^{2} C2L2) \cdot (R1 + sL1 + \frac{1}{sC2}) - \left(\frac{1}{sC}\right)}$ 
Expand the left side terms at the bottom, and set equal to A.  
Then the bottom right side term's denominator set to B.  
 $(1 + sCR2 + s^{2} CL2) \cdot (R1 + sL1 + \frac{1}{sC}) =$ 
R1 + sL1 +  $\frac{1}{sC}$  + sCR1R2 + s^{2} CR2L1 + R2 + s^{2} CR1L2 + s^{3} CL1L2 + sL2 = A
 $s^{2} (CL1L2) + s^{2} \cdot (CR2L1 + CR1L2) + s\left(L1 + \frac{1}{s^{2} C} + CR1R2 + L2\right) + (R1 + R2) = A$ 
 $s^{3} (L1L2) + s^{2} \cdot C(R2L1 + R1L2) + s\left(L1 + L2 + CR1R2 + \frac{1}{s^{2} C}\right) + (R1 + R2) = A$ 
 $\frac{1}{sC} = B$ 

$= \frac{(R2 + sL2)}{A - \left(\frac{1}{B}\right)}$
$A - \left(\frac{B}{B}\right)$
$1 + s^{2} \cdot C (R2L1 + R1L2) + s \left( L1 + L2 + CR1R2 + \frac{1}{s^{2}C} \right) + (R1 + R2) = A$
quation above there is (1/s ² C) this is not in the textbook anwer. answer below does not have B term (1/sC) maybe this was negligible to the action because it becomes huge in the denominator, and when it divides rator its small or negligible. Usually C is in microFarad units. This may also be or (1/s ² C) in the A term. Except for this my result is the same.
R2 + sL2
$\frac{R2 + sL2}{(L1L2) + s^2 \cdot C (R2L1 + R1L2) + s \left(L1 + L2 + CR1R2 + \frac{1}{s^2 C}\right) + (R1 + R2) - \left(\frac{1}{s^2 C}\right)}$
g (1/sC) and (1/s^2 C):
$= \frac{R2 + sL2}{s^{3} (L1L2) + s^{2} \cdot C (R2L1 + R1L2) + s (L1 + L2 + CR1R2) + (R1 + R2)}$
$s^{3}$ (L1L2) + $s^{2} \cdot C$ (R2L1 + R1L2) + s (L1 + L2 + CR1R2) + (R1 + R2)
My Answer.You can verify this answer correct it, or presentyour own. Here this is as far as I am going.
Answer:
$s^{3}$ CL1L2 + $s^{2}$ C (R1L2 + L1R2) + s (L1 + L2 + CR1R2) + (R1 + R2)
Transfer function above does look tidy! You solve it for yourself if you see a need.
ort it with your local lecturer/engineer. for any errors and omissions.
s to end the 13 example problems. um's Chapter 8 Solved Problems.

## **RLC Circuits - Part 3C.**

**My Homework.** This is a pre-requisite study for Laplace Transforms in circuit analysis. Source of study material: 1). Electric Circuits 6th Ed., Nahvi & Edminister. 2). Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Resource: 3). Solutions & Problems of Control Systems, 2nd ed - AK Jairath. Karl S. Bogha.





DISCUSSIO	DN. Supplementary Problem 8	3.27 (Mesh RLC circuit	: <u>) :</u>
Switch	5 ohm R1 +		circuit provided, the switch Find i1 and i2 for t>0.
	i2(t) 🔰 🗧	Nhm R1 := 5 R2 := 5	Ohm Ohm
v _i 50V		$C1 := 20 \cdot 10^{-6}$ L1 := 0.1	F H
		$\frac{1}{C1} = 50000$	
_		Vi := 50 V	

## Solution (Errors and Assumptions) :

## What Happened Here?

Over three solution methods attempted. 1 method was creating differential equations and solving them simultaneously, with initial conditions. This did not produce the textbook answer.

There was the question on how to distinguish the time constants which there were two in the solution.

Over/Under/Critical damped conditions considered. Roots, s1 and s2, of equation method did not get to the answers.

That left me with my last option using component initial conditons with voltage and current equations and this was attempted many times until I came to this proposal solution.

My diffculties may have been solved from the following sketches.

Here I tried to break the circuit into its possible operation at different stages of time. I done this several times until I was closer to where I could call it a proposed solition.

I start my solution with these sketches/figures/circuits then base my solution relative to these circuits/figures.

Any errors and omissions apologies in advance. This I call a **proposal solution** which is loose (not firm) and you may certainly have a better approach.



Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.











Capacitor Equation	on:		1 c			
	v _{C1} (t)	=		_c (t) d	t	
	C1•V _C	1 =	∫ i _{c1} (t)	dt <	next the de on both side	rivative
	d	,	J		on both side	es wrt dt.
	C1•	<u></u> =	i _{C1} (t)	=	on both side $i_{C1}(t) - i_{C1}(t)$	))
	d	t	i (+)	: (0)		
		<u>21</u> =	$I_{C}(l) -$	$I_{C}(0)$		
	dt		C	1		
Take the derivati	ve of the volt	age v_c(t)	:			
$v_{c1}(t) =$	-25 e ^{-100 t}	Time co	nstant 1	00 for	end condition	(RC).
$\frac{d_v_{C1}(t)}{dt} =$	-25•100 e ⁻²	100 · t =	-250	00∙e ⁻¹	00 • t	
u						
Note above>	$\frac{uv_{C1}}{1} = \frac{I_C(t)}{1}$	$r_{\rm C} = r_{\rm C}(0)$	Ther	efore	$C1(\frac{uv_{C1}}{}) =$	$i_{C}(t) - i_{C}(0)$
	dt	C1			( dt /	
			iC	C(t=0+	) = iC(t=0) =	$0  i_{C}(0) = 0$
$C1 \cdot \left(\frac{d_V_{C1}}{dt}\right) =$	$20 \cdot 10^{-6} \cdot (-2)$	2500•e ⁻¹⁰⁰	$\left( \cdot \right) =$	-0.0	5 ( $e^{-100 \cdot t}$ )	
$i_{C}(t) - i_{C}(0) =$	C1 =	= -0.05 (	$e^{-100 \cdot t}$	= _(	0.05 (e ^{-100•t} )-	- 0
Lim t to t=0	dt	Lim t to	t=0			
				= _	$0.05 \ (e^{-100 \cdot t})$	
					, ,	
$i_{C1}(t) - 0 =$	$i_{c1}(t) =$	i1(t)	= –	0.05(	$e^{-100 \cdot t}$ A.	
					ady state curre	ent.
Inductor Equatio	n (Approach A	<del>\):</del>			, , , , , , , , , , , , , , , , , , ,	
For time t <infinit< td=""><td>y, capacitor v</td><td>oltage cou</td><td>ld takes</td><td>the sa</td><td>me wave form</td><td>as seen across</td></infinit<>	y, capacitor v	oltage cou	ld takes	the sa	me wave form	as seen across
R2 and L1 brancl	h. I give it a ti	ry, its part	of the c	ircuit's	branch.	Is this right
						equating it to
$vR2 + L1\left(\frac{di2}{dt}\right)$	= 25 + L ²	$1(\frac{d12}{1}) =$	$v_{C1}(t)$	= -	25 e ^{-100 t}	the capacitor
( dt <i>)</i>		( dt /				branch, instead
						of the
$25 + L1\left(\frac{di2}{dt}\right)$	= −25 e ⁻	-100 t				50V voltage
						source and
$v_{L1}(t) = L^{2}$	(di2(t))	= -25 - 25	5 e ^{-100•t}	= _	$25(1+e^{-100 \cdot t})$	resistor R1
	(dt)	20 20	Ŭ			branch?
						Continue on
			100 +		( _100.t)	and update as
$\left(\frac{\text{di2}}{\text{dt}}\right) = \frac{V_{L1}(T)}{L1}$	t)( 1 `	25 (1 + 0	-100·l) _		$(1 \perp \Delta)^{(0)}$	required.







<u>(May NOT b</u>	<u>be su</u>	itable t	hen	see C I	next it	does ra	aise an	odd situ	atior	<u>in B):</u>		
$vR2 + L1\left(-\frac{1}{2}\right)$	di2) dt	=	vR1	+ 50 \	/ Fo	or time	t=infin	ity.				
Since R1 =	R2 c	an I ca	ncel	them (	off bot	h sides	?					
Why Not? E										3		
constant ye Anyway I w											e maybe	
(												
$L1\left(\frac{di2}{dt}\right)$	=	50 V	ŀ	lere cii	rcuit ti	me con	stant t	<infinity< td=""><td>mad</td><td>e -100.</td><td>DC circ</td><td>uit,</td></infinity<>	mad	e -100.	DC circ	uit,
(ut)			e	end cor	ndition	is 100.	Appro	ching ne	ar Ri	HS expr	ession is	s 50V.
$L1\left(\frac{di2}{dt}\right)$	_	50.(1	—e ⁻	$^{-100 \cdot t}$	Volta	ige star	t at 50	stays co	onsta	nt thru	t>>0.	
( dt )		, ,		/						nitial ar	nd final	
								response				
$\left(\frac{di2}{dt}\right)$	=	50•(	1 — e	$^{-100 \cdot t})$	=	50.(1	$-e^{-10}$	0 • t)	=	500.(1	l-e ⁻¹⁰⁰	·ť)
( dt )			L1				0.1					
$\left(\frac{di2(t)}{dt}\right)$	=	500•(	(1 – 6	e ^{-100•t} )	)							
di2(t)	=	500•(	(1-6	e ^{-100•t} )	dt							
				F		t						
Integrating	both	sides:	J	i2(t)	dt =	∫ ₀ 500	•(1—e	^{-100 · t} ) d1	t			
At time t=0	, iL((	)+) = il	_(0)	= 0. T	herefo	re iL1((	)) = 0	= i2(0)				
i2 (t) — i2 (0	) =	i2(t)	-0	=	i2 (t)		t ∫ 50	)0•(1−e	-100 ·	^t ) dt		
							Ő					
i2(t) =												
i2(t) =	(!	500 t —	5 e ⁻	^{100 t} ) —	0	At	time t=	=0, iL(0+	·) = i	L(0) = (	0.	
500t ? How												

The circuits current cannot increase substantially more than the voltage supply can provide, forced and natural combined, so the 500t term is neglected/discarded/dropped. Why at t=2 s for 500t, approximately current thru L1 =  $500 \times 2 = 1000 \text{ A}$ .





					for i2(t	) 010													
				hm		1001			-	<b>•</b>									
			R1	ß			0.05 e		R2 5 ohm	Z		Fc	or the	time	1				
				3			Ģ			ξ.		0	< t <	infin	ity.				
				K			. Ó	)		-0.05 e		Sc	$\sim m$		anat	ion ir	tho		
					+			<b>C</b> 1		.05 e			gure t				i the		
				(+			-	20	uF +	<b>-</b>			,						
		:	50V	Ŀ		2	s I	)		Ê		i1	(t)	=	_	0.05	(e ⁻¹⁰⁰	'' ^t )	
				Į			e -1001		L1	3									
							-0.05 e		0.1H	۲.		i2	(t)	=	_	5 e ⁻¹⁰	001		
							<u> </u>												
se R' so	e's 1 and oon l	equ d R bec	al r 2,. \$ om	esist So, c es st	ance or urrent f ort circ	eith lows uited	er bra into L . This	nch ie 1 -ve t would	V, currer 5 Ohm terminal be forc	each, that									
se R' sc re	e's 1 and oon l	equ d R bec	al r 2,. \$ om	esist So, c es st nditio	ance on urrent f ort circ on with f	eith lows uited the 50	er bra into L . This )V inc	nch ie 1 -ve f would luded	5 Ohm terminal be forc	each, that œd									
se R' sc re	e's o l and spor (t)	equ d R bec	al r 2,. \$ ome co	esist So, c es st nditio	ance on urrent f ort circ on with f	eithe lows uited the 50	er bra into L . This )V inc	nch ie 1 -ve f would luded	e 5 Ohm terminal 1 be forc	each, that œd									
se R' sc re i2	e's o l and spoi (t) (t)	equ d R bec nse	al r 2,. com co	esist So, c es sh nditio	ance on urrent floort circ on with t (-0.05) -5.05	$e^{-1}$ $e^{-1}$	er bra into L . This DV inc 00 · t	nch ie 1 -ve t would luded + (—	e 5 Ohm terminal 1 be forc	each, that œd									
se R' so re i2 i2 My	(t) (t)	equ d R bec nse	al r 2,. 3 omo col = =	esist So, c es sh nditio	ance on urrent floort circ on with $1$ (-0.05)	eithe lows uited the 50 e ⁻¹ e ⁻¹⁰	er bra into L . This DV inc 00 · t 00 t	nch ie 1 -ve t would luded + (—	e 5 Ohm terminal 1 be forc	each, that ed	book	ansv	Wers	stead	ly sta	ate cu	urrent	S:	
i2 My	(t) (t) (t) 5A	equ d R bec nse	al r 2,. 3 omo col = =	esist So, c es sh nditio	ance on urrent floort circ on with t (-0.05) -5.05 -5.05	$e^{-1}$ $e^{-1}$ $e^{-1}$ $e^{-1}$ or i2	$00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$	nch ie 1 -ve t would luded + (—	e 5 Ohm terminal 1 be forc	each, that ed • t) Text		ansv				ate cu	urrent	S:	
i2 My	(t) (t)	equ d R bec nse	al r 2,. 3 omo col = =	esist So, c es sh nditio	ance on urrent fi ort circ on with t (-0.05 -5.05	$e^{-1}$ $e^{-1}$ $e^{-1}$ $e^{-1}$ or i2	$00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$ $00 \cdot t$	nch ie 1 -ve t would luded + (—	e 5 Ohm terminal 1 be forc	each, that ed				stead )5 e ⁻		ate cu	urrent	S:	
i2 My dc	(t) (t) (t) 5A	equ d R bec nse	al r 2,. : com com = = =	esist So, c es sh nditio	ance on urrent floort circ on with t (-0.05) -5.05 -5.05	$e^{-10}$ $e^{-10}$ $e^{-10}$ $e^{-10}$	$(00 \cdot t)$	nch ie 1 -ve would luded + (-	e 5 Ohm terminal 1 be forc	each, that ed • t) Text			-0.0		100 • t		urrent	S:	

				-	
	nt response also ca				
Here I remove t	ne voltage source !	50V. The flov	w of current	is from	
the capacitor, its	fully charged and	discharges	into the circu	uit.	
The time consta	nt for steady state	was 100, wl	here t was		
considered equa	l infinity, next in tr	ansient state	e, the time c	onstant	

will be 9950 where 0<t<infinity.

Since the current here must eventually die out for the natural response, I place the condition for iL(0+) = 0 since iL(0) = 0, and inserting the exponential term. Here time constant for 0 < t < infinity will be -9950t.

Natural response without the 50V in the circuit:

$v_{c1}(t) = -25 e^{-100 t}$	Steady state at 25V, transient the exponential term.
$i_{c1}(t) := -0.05 e^{-100 \cdot t}$	Transient term settles to zero for large t.

Discussion: In either case, our experssion will have the exponential for i1(t) because its the RC side of the circuit. Current passing thru capacitor. So remove the thought that there will be a constant term. Eventually the current would die out with t>infinity, for the transient condition, without the V=50 supply for the capacitor. NOT the inductor that would have a constant 5A passing thru when it is shorted. The inductor will have a exponential term for the 0 < t < infinity, and at infinity it dies out.

Discussion To Force My Solution To The Answer: Capacitor C1 and
Inductor L1 are not operating in sync, one charges, the other energises.
So they impact each other with a net difference result. In Physics two
body collision, momentum is added, here is they are not colliding, one
lending +/- to the other and vice-versa. I gave the phase angle
difference between L and C for the cause early on. My thinking you
probably got better idea.

Joke: I may be in error for creating fake new properties and characteristics for the capacitor and inductor also known as 'fake engineering', don't get left out here either - Karl Bogha.



Sign on i1(t)	= -10.0e(^-9950	t) is -ve, going fro	om + to -ve of	C1.
The sign nee	eds be made posit	ive for 0 <t<inf. td="" w<=""><td>/hy?</td><td></td></t<inf.>	/hy?	
Current is flo	owing out of C1's	ve to +ve into R2	and L1.	
i1 (0 < t < ∞)	) = i _{C1} (0 < t <	$<\infty) = 10$	e ^{-9950 t} A.	< +Ve.
Sign on i1(t)	= -0.05e(^-100t)	) is -ve, decaying	exponential te	rm, from + to -ve of C1.
The sign nee	eds to be made po	sitive for 0 <t<inf.< td=""><td>. Why?</td><td></td></t<inf.<>	. Why?	
	e forced response time constant.	but <u>it is dying dow</u>	n in the natur	ral response too but now
	s no Vin source, so driving source is t		rses direction	in the natural response
i _{C1} (t) =	$C1 \cdot \frac{d_v_{C1}}{dt}$	= -0.05 (e ⁻¹⁰⁰	· ^t ) A.	
; (+)	$C1 \cdot \frac{d_v_{C1}}{dt}$	0 0F (a ⁻⁹⁹⁵⁰ ·	t) <b>A</b>	Changes too

This need now need be added for the natural response.

Discussion: My solution conditon <u>impacted twice in i1(t)</u>; once for dc and the other for transient where the driving source is C1.

This is where my make it fit solution has cause for you to verify and seek a solution from the lecturer or engineer. Dont want fake engineering.

i1 _n (t) =	$= 0.05 \cdot e^{-9950 t} + 10 e^{-9950 t}$	$= 10.05 e^{-9950 \cdot t} A$	Natural response without voltage source.
Continued	next page.		
		arcial I	



2 pages ago in 'Natural Response Without 50V' solution of current i1(t) was found a transient value of ic1(t), exponential term, see figure below. -0.05e^-100t flowing into Vi 50V -ve terminal. Since, vL1 near 0, aprox 0, this current can flow into L1 -ve terminal.



This current going thru the <u>inductor</u> from the -ve to +ve terminal the sign of the current in positive, and the 9950 time constant is the relevant time constant here.

 $i2_n(t) = 0.05 (e^{-9950 \cdot t}) A.$ 

So there is that current flowing from C1, with Vi removed when vL1 is near 0 equal 0, into L1.

Next recap the transient values and plots.



Forced	respo	nse:			
i1 (t)	=	-0.05 e ⁻¹⁰	^{0•t} + 0.05	Α.	< Remove 0.05
i1 _f (t)	=	-0.05 e ⁻¹⁰	00 • t	Α.	
i2 (t)	=	-5.05•e ⁻¹	^{00 t} + 5		<remove 5,="" <u="" and="">then ADD the dc <u>t=infinity 5A</u>. When C is open circuit and L short circuit.</remove>
i2(t)	=	-5.05•e ⁻¹	00 t	Α.	
i2 _f (t)	=	-5.05•e ⁻¹	^{00 t} + 5	A w	ith dc 5A added for t end condition.
Natural	/Tran	sient respons	se:		
i1 _n (t)	=	10.05 e ^{-99!}	50•t	Α.	
i2 _n (t)	=	0.05 (e ⁻⁹⁹⁵	50•t)	Α.	
you ver	ify wi	th your lectu	rer and loc	al eng	n which <u>can be wrong</u> ineer. with my own solution.
i1 (t)	=	i1 _f (t) + i1 _r	n (t)		
i1 (t)	=	-0.05 e ⁻¹⁰	^{0•t} + 10.05	e ⁻⁹⁹⁵⁰	<ul> <li>My Answer.</li> <li>Match the textbook. You verify.</li> </ul>
i2(t)	=	$i2_{f}(t) + i2_{r}$	n (t)		
i2(t)	=	-5.05•e ⁻¹	^{00 t} + 5 + 0.0	)5 (e ⁻	^{9950 • t} ) My Answer. Match the textbook. You verify.
	ok an	swers:	i1 (t)	= -	$-0.05 e^{-100 \cdot t} + 10.05 e^{-9950 \cdot t}$
Textbo					$-5.05 \cdot e^{-100 t} + 5 + 0.05 (e^{-9950 \cdot t})$

