
LECTURE 24: CONTINUOUS FUNCTIONS (II)

Today: We’ll prove some basic properties of continuous functions,
such as f + g is continuous or fg is continuous.

Recall Definition 1:

f is continuous at x0 if, whenever xn is a sequence that converges
to x0, then f(xn) converges to f(x0)

Recall Definition 2:

f is continuous at x0 if for all ε > 0 there is δ > 0 such that for
all x, if |x− x0| < δ, then |f(x)− f(x0)| < ε

Note: Remember our convention that x0, x, and xn are assumed to
be in the domain of f

Note: The book proves everything using sequences, but I will prove
the results both using sequences and using ε− δ. This is not to torture
you, but it is very important to be comfortable with ε − δ proofs, as
they will be crucial in Math 140B. So definitely thoroughly read the
proofs below!

1. f + g is continuous
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Video: f + g is continuous

Fact 1:

If f and g are continuous at x0, then f + g is continuous at x0

Proof using Definition 1: Let xn be a sequence converging to x0.
Then, since f is continuous at x0, we get f(xn) → f(x0) and, since g
is continuous at x0, we have g(xn) → g(x0). But, by the sum law for
limits of sequences (see section 9), we get:

(f + g)(xn) = f(xn) + g(xn)→ f(x0) + g(x0) = (f + g)(x0)X

Hence f + g is continuous at x0 �

Note: Notice how the result about f + g follows from the correspond-
ing result for sequences! This will be pretty much true for all our proofs
involving Definition 1.

Proof using Definition 2: (do not skip!)

Let ε > 0 be given

Then, since f is continuous at x0, there is δ1 > 0 such that if |x− x0| <
δ1, then |f(x)− f(x0)| < ε

2 .

And, since g is continuous at x0, there is δ2 > 0 such that if |x− x0| <
δ2, then |g(x)− g(x0)| < ε

2 .

But then, if δ = min {δ1, δ2} > 0, we get:

https://youtu.be/JUWqSqy9tAw
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|(f + g)(x)− (f + g)(x0)| = |f(x) + g(x)− (f(x0) + g(x0))|
= |f(x)− f(x0) + g(x)− g(x0)|
≤ |f(x)− f(x0)|+ |g(x)− g(x0)|

<
ε

2
+
ε

2
=εX

Hence f + g is continuous at x0 �

2. kf is continuous

As a tribute to kfC, let’s prove that:

Fact 2:

If f is continuous at x0, and k is a real number, then kf is con-
tinuous at x0

Proof using Definition 1: If (xn) is a sequence that converges to x0,
then, since f is continuous at x0, f(xn)→ f(x0), and therefore

(kf)(xn) = k (f(xn))→ k (f(x0)) = (kf)(x0)X

And therefore kf is continuous at x0 �

Proof using Definition 2: First of all, we may assume k 6= 0, be-
cause otherwise kf = 0, which is continuous.

Let ε > 0, then, since f is continuous at x0, there is δ > 0 such that if
|x− x0| < δ, then |f(x)− f(x0)| < ε

|k| (we use absolute values because

k might be negative)
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Then, with the same δ, if |x− x0| < δ, we get:

|(kf)(x)− (kf)(x0)| = |kf(x)− kf(x0)| = |k| |f(x)− f(x0)| < |k|
(
ε

|k|

)
= εX

Therefore kf is continuous at x0 �

Aside: If you’ve taken linear algebra, notice that Fact 1 says that con-
tinuous functions are closed under addition, and Fact 2 says that they
are closed under scalar multiplication. Therefore, the set of continuous
functions forms a vector space!

Note: Using Facts 1 and 2 and the fact that xn is continuous for all
n ≥ 0, we get that polynomials like 4x3 − 5x2 + 4x+ 1 are continuous

Corollary:

If f and g are continuous at x0, then f − g is continuous at x0

Proof: Since g is continuous at x0, using Fact 2 above with k = −1,
we get −g = (−1)g is continuous at x0.

Therefore, since f and −g are continuous at x0, by Fact 1, f − g =
f + (−g) is continuous at x0 �

3. |f | is continuous

In this small interlude, let’s prove the following quick fact:

Fact 3:

If f is continuous at x0, then |f | is continuous at x0
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Proof using Definition 1: Suppose xn → x0, then, since f is con-
tinuous at x0, f(xn)→ f(x0), and therefore |f(xn)| → |f(x0)| X

Hence |f | is continuous at x0 �

Proof using Definition 2: Let ε > 0 be given. Then, since f
is continuous at x0, there is δ > 0 such that if |x− x0| < δ, then
|f(x)− f(x0)| < ε.

With that same δ, if |x− x0| < δ, then by the reverse triangle inequal-
ity, which says |a− b| ≥ ||a| − |b||, we have:

||f(x)| − |f(x0)|| ≤ |f(x)− f(x0)| < εX

Therefore |f | is continuous at x0 �

4. fg is continuous

Video: fg is continuous

Now let’s prove that the product of continuous functions is continuous:

Fact 4:

If f and g are continuous at x0, then fg is continuous at x0

Proof using Definition 1: Suppose xn → x0. Then, since f is
continuous at x0, we have f(xn) → f(x0), and, since g is continuous
at x0, we have g(xn) → g(x0), and therefore, by the product law for
limits (section 9), we have

(fg)(xn) = (f(xn)) (g(xn))→ (f(x0)) (g(x0)) = (fg)(x0)X

https://youtu.be/dfaks-lnbjM
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Therefore fg is continuous at x0 �

Proof using Definition 2:

STEP 1: Scratchwork

We need to estimate:

|f(x)g(x)− f(x0)g(x0)| = |f(x)g(x)−f(x)g(x0) + f(x)g(x0)− f(x0)g(x0)|
= |f(x) (g(x)− g(x0)) + g(x0) (f(x)− f(x0))|
≤ |f(x)| |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|

Now the |f(x)− f(x0)| and |g(x)− g(x0)| terms are good, since f and
g are continuous at x0. Moreover, the |g(x0)| term is good since it is
constant.

The only problematic term is |f(x)| since it depends on x. For this,
use the fact that, since f is continuous, f(x) is close to f(x0) (which
is constant)

Since f is continuous with ε = 1, we get that there is δ1 > 0 such that
if |x− x0| < δ1, then |f(x)− f(x0)| < 1, but then

|f(x)| = |f(x)− f(x0) + f(x0)| ≤ |f(x)− f(x0)|+|f(x0)| < 1+|f(x0)|



LECTURE 24: CONTINUOUS FUNCTIONS (II) 7

(In the picture above, notice that all the f(x) in the red region are
below the constant f(x0) + 1)

Therefore, going back to our original inequality, we get:

|f(x)g(x)− f(x0)g(x0)| ≤|f(x)| |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|
≤(|f(x0)|+ 1) |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|

We are finally ready for our actual proof:

STEP 2: Actual Proof:

Let ε > 0 be given
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Then, since f is continuous at x0, there is δ1 > 0 such that if |x− x0| <
δ1, then |f(x)− f(x0)| < 1, and therefore |f(x)| ≤ |f(x0)| + 1 (as be-
fore)

Now since g is continuous at x0, there is δ2 > 0 such that if |x− x0| <
δ2, then |g(x)− g(x0)| < ε

2(|f(x0)|+1) (the factor 2 is there because we

have 2 terms)

Finally, since f is continuous at x0, there is δ3 > 0 such that if
|x− x0| < δ3, then |f(x)− f(x0)| < ε

2(|g(x0)|+1) (we have to use |g(x0)|+
1 since g(x0) might be 0)

Let δ = min {δ1, δ2, δ3} > 0, then if |x− x0| < δ, then we get:

|(fg)(x)− (fg)(x0)| = |f(x)g(x)− f(x0)g(x0)|
≤ (|f(x0)|+ 1) |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)|

<
(
��

���
��|f(x0)|+ 1
)( ε

2(((((
((((|f(x0)|+ 1)

)
+ |g(x0)|

(
ε

2 (|g(x0)|+ 1)

)
=
ε

2
+

(
|g(x0)|
|g(x0)|+ 1

)
︸ ︷︷ ︸

<1

( ε
2

)

<
ε

2
+
ε

2
=εX

Therefore fg is continuous at x0 �

Note: This is why functions like x sin(x) or ex(x2 + 1) are continuous,
since they are products of continuous functions.
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5.
f
g is continuous

Video: f
g is continuous

In this section, we prove that quotients f
g of continuous functions are

continuous. For this, we need to first show that reciprocals 1
f of con-

tinuous functions are continuous.

Fact 5:

If f 6= 0 and f is continuous at x0, then 1
f is continuous at x0

Proof using Definition 1: If xn is a sequence converging to x0, then,
since f is continuous at x0, f(xn) → f(x). By assumption f(xn) 6= 0
for all n and f(x) 6= 0, so, by the results in section 9, 1

f(xn)
→ 1

f(x0)
X

Therefore 1
f is continuous at x0. �

Proof using Definition 2:

STEP 1: Scratchwork

This time we need to estimate∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ =

∣∣∣∣f(x0)− f(x)

f(x)f(x0)

∣∣∣∣ =
|f(x)− f(x0)|
|f(x)| |f(x0)|

The |f(x)− f(x0)| term is good, and the |f(x0)| term is good as well

(since it is constant)

The only term we need to control is the |f(x)| term.

https://youtu.be/1EhmKFUA4bI
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Note: Since we want 1
|f(x)| < something, we need |f(x)| > something!

Before, for the product law, we used that |f(x)− f(x0)| < 1. This
doesn’t quite work because we may have |f(x0)| − 1 < 0 (see be-
low). That’s why we need a more subtle estimate. For this notice that
|f(x0)|

2 > 0 (the choice for this will be clearer below)

Since f is continuous at x0, with ε = |f(x0)|
2 > 0, there is δ1 such that if

|x− x0| < δ1, then |f(x)− f(x0)| < |f(x0)|
2 . But then, using again the

triangle inequality (since we need |f(x)| ≥ something), we get

|f(x)− f(x0)| ≥ ||f(x)| − |f(x0)|| ≥ − (|f(x)| − |f(x0)|) = |f(x0)|−|f(x)|

(Here we used the fact that |a| ≥ −a for all a)

Therefore, we get

|f(x0)| − |f(x)| ≤ |f(x)− f(x0)| <
|f(x0)|

2

And therefore

|f(x)| > |f(x0)| −
|f(x0)|

2
=
|f(x0)|

2
> 0

Hence

1

|f(x)|
<

2

|f(x0)|
(GOOD)
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(In the picture above, notice that in the red region, f(x) is above f(x0)
2 )

Note: Had you chosen |f(x)− f(x0)| < 1, you would have gotten
|f(x0)| − 1 in the above, which isn’t necessarily positive! That’s why

we had to use |f(x0)|2 instead of 1

Hence, going back to our original identity, we get
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∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ =
|f(x)− f(x0)|
|f(x)| |f(x0)|

≤|f(x)− f(x0)|
|f(x0)|

(
2

|f(x0)|

)
= |f(x)− f(x0)|

(
2

|f(x0)|2

)
?
<ε

Which gives |f(x)− f(x0)| < ε
2 |f(x0)|2

STEP 2: Actual Proof

Let ε > 0 be given

Then, since f is continuous at x0, there is δ1 > 0 such that if |x− x0| <
δ1, then |f(x)− f(x0)| < |f(x0)|

2 , which implies |f(x)| > |f(x0)|
2 , and

therefore 1
|f(x)| <

2
|f(x0)|

Moreover, since f is continuous at x0, there is δ2 > 0 such that if
|x− x0| < δ2, then |f(x)− f(x0)| < ε

2 |f(x0)|2

Let δ = min {δ1, δ2} > 0, then, if |x− x0| < δ, then
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∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ =
|f(x)− f(x0)|
|f(x)| |f(x0)|

≤
(
|f(x)− f(x0)|
|f(x0)|

)(
2

|f(x0)|

)
= |f(x)− f(x0)|

(
2

|f(x0)|2

)
<

(
ε���

��|f(x0)|2

��2

)
�
��

��
��
�(

2

|f(x0)|2

)
=εX

Hence 1
f is continuous at x0 �

Corollary:

If f and g are continuous at x0 with g 6= 0, then then f
g is contin-

uous at x0

Proof: Since g is continuous at x0 and g 6= 0, by the above, 1
g is con-

tinuous at x0, and therefore, by the product law (Fact 4), f
g = f

(
1
g

)
is continuous at x0 �

Note: This is why rational functions like x3−1
x2+4 are continuous, and also

why tan(x) = sin(x)
cos(x) is continuous (whenever it’s defined)

6. Composition is continuous

Video: g ◦ f is continuous

https://youtu.be/W5DyrnbDnD8
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Definition:

If A,B,C are subsets of R and f : A → B and g : B → C are
functions, then the composition g ◦ f : A→ C is defined by

(g ◦ f)(x) = g(f(x))

Analogy: If you think of f as a layover from A to B and g as a layover
from B to C, then g ◦ f is a direct flight from A to C

Let’s show that the composition of two continuous functions is contin-
uous!

Fact 6:

If f is continuous at x0 and g is continuous at f(x0), then g ◦ f
is continuous at x0
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Proof using Definition 1: Suppose (xn) is a sequence that converges
to x0. Then, since f is continuous at x0, we have f(xn) → f(x0),
but now, since g is continuous at f(x0), we have g(xn) → g(x0) and
therefore:

(g ◦ f)(xn) = g(f(xn))→ g(f(x0)) = (g ◦ f)(x0)X

And therefore g ◦ f is continuous at x0 �

Note: It’s because of this fact that, for instance cos(ex) is continuous,
being the composition of cos(x) and ex. Similarly sin

(
1
x

)
is continuous

except at x = 0 where it’s undefined

Proof using Definition 2: Let ε > 0 be given.

Since g is continuous at f(x0), there is δ′ > 0 such that

|x− f(x0)| < δ′ ⇒ |g(x)− g(f(x0))| < ε

Note: Since the above is valid for all x, it is in particular valid with
f(x) instead of x (which is more specific)

Therefore there is δ′ > 0 such that

|f(x)− f(x0)| < δ′ ⇒ |g(f(x))− g(f(x0))| < ε

But now, since f is continuous at x0, by the definition of continuity
(but with δ′ instead of ε), there is δ > 0 such that if |x− x0| < δ, then
|f(x)− f(x0)| < δ′.

Therefore, with δ as above, if |x− x0| < δ, then |f(x)− f(x0)| < δ′

and therefore

|(g ◦ f)(x)− (g ◦ f)(x0)| = |g(f(x))− g(f(x0))| < εX
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Therefore g ◦ f is continuous at x0 �

Note: What is this proof saying intuitively? Our goal is to show that
if x is close to x0 then g(f(x)) is close to g(f(x0)), as in the following
picture. In other words, we need to show that if x is in the threshold
region (in red), then g(f(x)) is in the good region (in blue/green), as
in the following picture:

If x is in the threshold region (in red), then f(x) is in the good region
for f (in purple below).
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Upshot: The good region for f (in purple, on the left) is the threshold
region of g (also in purple, on the right)!

So if x is so close to x0 that the purple region (on the left) is small,
then the same purple region (but on the right) is so small that then
we can guarantee that g(f(x)) is in the good region for g ◦ f (in blue),
which is what we want.

7. max(f, g) is continuous

Video: max(f, g) is continuous

https://youtu.be/SnHD78LAVqQ
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Note: This section is optional, but will be useful for the homework.

Finally, let’s show that the maximum of f and g is continuous.

Definition:

max(f, g)(x) =

{
f(x) if f(x) ≥ g(x)

g(x) if g(x) ≥ f(x)

In other words, at each x, max(f, g) is just the bigger one of f(x) and
g(x)

Fact 7:

If f and g are continuous at x0, then max(f, g) is continuous at
x0

The proof of this relies on the following explicit formula for max(f, g)
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Claim:

max(f, g) =
1

2
(f + g) +

1

2
|f − g|

Proof of Claim:

Case 1: f(x) ≥ g(x)

Then max(f, g) = f(x), but also. since f(x) − g(x) ≥ 0, we have
|f(x)− g(x)| = f(x)− g(x), and so

1

2
(f(x) + g(x)) +

1

2
|f(x)− g(x)| =1

2
(f(x) + g(x)) +

1

2
(f(x)− g(x))

=
1

2
(f(x) + g(x) + f(x)− g(x))

=
1

2
(2f(x))

=f(x)X

Case 2: g(x) ≤ f(x)

Similar, except you use |f(x)− g(x)| = g(x)−f(x) since f(x)−g(x) ≤
0 here X �

Proof of Fact: Since f and g are continuous at x0, f+g is continuous
at x0, and therefore 1

2 (f + g) is continuous at x0.

But also f − g is continuous at x0, and therefore |f − g| is continuous
at x0, and hence 1

2 |f − g| is continuous at x0, and therefore:

max(f, g) =
1

2
(f + g) +

1

2
|f − g|
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is continuous at x0 (as the sum of two continuous functions) �

Note: It then follows that the max of three functions f, g, h is contin-
uous at x0 because

max(f, g, h) = max(max(f, g), h)

And in fact, by induction, you can show that the max of finitely many
continuous functions is continuous.

Remark: Similarly, you can define

Definition:

min(f, g)(x) =

{
f(x) if f(x) ≤ g(x)

g(x) if g(x) ≤ f(x)

And similarly you can show
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Fact:

If f and g are continuous at x0, then min(f, g) is continuous at
x0

Proof: See Homework for details, but you either show (similar to
above) that

min(f, g) =
1

2
(f + g)− 1

2
|f − g|

Or use that

min(f, g) = −max(−f,−g) �

(Compare this to inf(S) = − sup(−S) from Chapter 1)
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