LECTURE 24: CONTINUOUS FUNCTIONS (II)

Today: We'll prove some basic properties of continuous functions, such as $f+g$ is continuous or $f g$ is continuous.

Recall Definition 1:

f is continuous at x_{0} if, whenever x_{n} is a sequence that converges to x_{0}, then $f\left(x_{n}\right)$ converges to $f\left(x_{0}\right)$

Recall Definition 2:

f is continuous at x_{0} if for all $\epsilon>0$ there is $\delta>0$ such that for all x, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$

Note: Remember our convention that x_{0}, x, and x_{n} are assumed to be in the domain of f

Note: The book proves everything using sequences, but I will prove the results both using sequences and using $\epsilon-\delta$. This is not to torture you, but it is very important to be comfortable with $\epsilon-\delta$ proofs, as they will be crucial in Math 140B. So definitely thoroughly read the proofs below!

$$
\text { 1. } f+g \text { IS CONTINUOUS }
$$

Date: Friday, May 22, 2020.

Video: $f+g$ is continuous

Fact 1:

If f and g are continuous at x_{0}, then $f+g$ is continuous at x_{0}

Proof using Definition 1: Let x_{n} be a sequence converging to x_{0}. Then, since f is continuous at x_{0}, we get $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ and, since g is continuous at x_{0}, we have $g\left(x_{n}\right) \rightarrow g\left(x_{0}\right)$. But, by the sum law for limits of sequences (see section 9), we get:

$$
(f+g)\left(x_{n}\right)=f\left(x_{n}\right)+g\left(x_{n}\right) \rightarrow f\left(x_{0}\right)+g\left(x_{0}\right)=(f+g)\left(x_{0}\right) \checkmark
$$

Hence $f+g$ is continuous at x_{0}
Note: Notice how the result about $f+g$ follows from the corresponding result for sequences! This will be pretty much true for all our proofs involving Definition 1.

Proof using Definition 2: (do not skip!)
Let $\epsilon>0$ be given
Then, since f is continuous at x_{0}, there is $\delta_{1}>0$ such that if $\left|x-x_{0}\right|<$ δ_{1}, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2}$.

And, since g is continuous at x_{0}, there is $\delta_{2}>0$ such that if $\left|x-x_{0}\right|<$ δ_{2}, then $\left|g(x)-g\left(x_{0}\right)\right|<\frac{\epsilon}{2}$.

But then, if $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$, we get:

$$
\begin{aligned}
\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right| & =\left|f(x)+g(x)-\left(f\left(x_{0}\right)+g\left(x_{0}\right)\right)\right| \\
& =\left|f(x)-f\left(x_{0}\right)+g(x)-g\left(x_{0}\right)\right| \\
& \leq\left|f(x)-f\left(x_{0}\right)\right|+\left|g(x)-g\left(x_{0}\right)\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon \checkmark
\end{aligned}
$$

Hence $f+g$ is continuous at x_{0}

2. $k f$ IS CONTINUOUS

As a tribute to $k f C$, let's prove that:

Fact 2:

If f is continuous at x_{0}, and k is a real number, then $k f$ is continuous at x_{0}

Proof using Definition 1: If $\left(x_{n}\right)$ is a sequence that converges to x_{0}, then, since f is continuous at $x_{0}, f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, and therefore

$$
(k f)\left(x_{n}\right)=k\left(f\left(x_{n}\right)\right) \rightarrow k\left(f\left(x_{0}\right)\right)=(k f)\left(x_{0}\right) \checkmark
$$

And therefore $k f$ is continuous at x_{0}
Proof using Definition 2: First of all, we may assume $k \neq 0$, because otherwise $k f=0$, which is continuous.

Let $\epsilon>0$, then, since f is continuous at x_{0}, there is $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\epsilon}{|k|}$ (we use absolute values because k might be negative)

Then, with the same δ, if $\left|x-x_{0}\right|<\delta$, we get:

$$
\left|(k f)(x)-(k f)\left(x_{0}\right)\right|=\left|k f(x)-k f\left(x_{0}\right)\right|=|k|\left|f(x)-f\left(x_{0}\right)\right|<|k|\left(\frac{\epsilon}{|k|}\right)=\epsilon \checkmark
$$

Therefore $k f$ is continuous at x_{0}
Aside: If you've taken linear algebra, notice that Fact 1 says that continuous functions are closed under addition, and Fact 2 says that they are closed under scalar multiplication. Therefore, the set of continuous functions forms a vector space!

Note: Using Facts 1 and 2 and the fact that x^{n} is continuous for all $n \geq 0$, we get that polynomials like $4 x^{3}-5 x^{2}+4 x+1$ are continuous

Corollary:

If f and g are continuous at x_{0}, then $f-g$ is continuous at x_{0}
Proof: Since g is continuous at x_{0}, using Fact 2 above with $k=-1$, we get $-g=(-1) g$ is continuous at x_{0}.

Therefore, since f and $-g$ are continuous at x_{0}, by Fact $1, f-g=$ $f+(-g)$ is continuous at x_{0}

3. $|f|$ IS CONTINUOUS

In this small interlude, let's prove the following quick fact:

Fact 3:

If f is continuous at x_{0}, then $|f|$ is continuous at x_{0}

Proof using Definition 1: Suppose $x_{n} \rightarrow x_{0}$, then, since f is continuous at $x_{0}, f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, and therefore $\left|f\left(x_{n}\right)\right| \rightarrow\left|f\left(x_{0}\right)\right| \checkmark$

Hence $|f|$ is continuous at x_{0}
Proof using Definition 2: Let $\epsilon>0$ be given. Then, since f is continuous at x_{0}, there is $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

With that same δ, if $\left|x-x_{0}\right|<\delta$, then by the reverse triangle inequality, which says $|a-b| \geq||a|-|b||$, we have:

$$
\left||f(x)|-\left|f\left(x_{0}\right)\right|\right| \leq\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \checkmark
$$

Therefore $|f|$ is continuous at x_{0}

4. $f g$ IS CONTINUOUS

Video: $f g$ is continuous
Now let's prove that the product of continuous functions is continuous:

Fact 4:

If f and g are continuous at x_{0}, then $f g$ is continuous at x_{0}

Proof using Definition 1: Suppose $x_{n} \rightarrow x_{0}$. Then, since f is continuous at x_{0}, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, and, since g is continuous at x_{0}, we have $g\left(x_{n}\right) \rightarrow g\left(x_{0}\right)$, and therefore, by the product law for limits (section 9), we have

$$
(f g)\left(x_{n}\right)=\left(f\left(x_{n}\right)\right)\left(g\left(x_{n}\right)\right) \rightarrow\left(f\left(x_{0}\right)\right)\left(g\left(x_{0}\right)\right)=(f g)\left(x_{0}\right) \checkmark
$$

Therefore $f g$ is continuous at x_{0}

Proof using Definition 2:

STEP 1: Scratchwork

We need to estimate:

$$
\begin{aligned}
\left|f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right| & =\left|f(x) g(x)-f(x) g\left(x_{0}\right)+f(x) g\left(x_{0}\right)-f\left(x_{0}\right) g\left(x_{0}\right)\right| \\
& =\left|f(x)\left(g(x)-g\left(x_{0}\right)\right)+g\left(x_{0}\right)\left(f(x)-f\left(x_{0}\right)\right)\right| \\
& \leq|f(x)|\left|g(x)-g\left(x_{0}\right)\right|+\left|g\left(x_{0}\right)\right|\left|f(x)-f\left(x_{0}\right)\right|
\end{aligned}
$$

Now the $\left|f(x)-f\left(x_{0}\right)\right|$ and $\left|g(x)-g\left(x_{0}\right)\right|$ terms are good, since f and g are continuous at x_{0}. Moreover, the $\left|g\left(x_{0}\right)\right|$ term is good since it is constant.

The only problematic term is $|f(x)|$ since it depends on x. For this, use the fact that, since f is continuous, $f(x)$ is close to $f\left(x_{0}\right)$ (which is constant)

Since f is continuous with $\epsilon=1$, we get that there is $\delta_{1}>0$ such that if $\left|x-x_{0}\right|<\delta_{1}$, then $\left|f(x)-f\left(x_{0}\right)\right|<1$, but then
$|f(x)|=\left|f(x)-f\left(x_{0}\right)+f\left(x_{0}\right)\right| \leq\left|f(x)-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)\right|<1+\left|f\left(x_{0}\right)\right|$

(In the picture above, notice that all the $f(x)$ in the red region are below the constant $\left.f\left(x_{0}\right)+1\right)$

Therefore, going back to our original inequality, we get:

$$
\begin{aligned}
\left|f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right| & \leq|f(x)|\left|g(x)-g\left(x_{0}\right)\right|+\left|g\left(x_{0}\right)\right|\left|f(x)-f\left(x_{0}\right)\right| \\
& \leq\left(\left|f\left(x_{0}\right)\right|+1\right)\left|g(x)-g\left(x_{0}\right)\right|+\left|g\left(x_{0}\right)\right|\left|f(x)-f\left(x_{0}\right)\right|
\end{aligned}
$$

We are finally ready for our actual proof:

STEP 2: Actual Proof:

Let $\epsilon>0$ be given

Then, since f is continuous at x_{0}, there is $\delta_{1}>0$ such that if $\left|x-x_{0}\right|<$ δ_{1}, then $\left|f(x)-f\left(x_{0}\right)\right|<1$, and therefore $|f(x)| \leq\left|f\left(x_{0}\right)\right|+1$ (as before)

Now since g is continuous at x_{0}, there is $\delta_{2}>0$ such that if $\left|x-x_{0}\right|<$ δ_{2}, then $\left|g(x)-g\left(x_{0}\right)\right|<\frac{\epsilon}{2\left(\left|f\left(x_{0}\right)\right|+1\right)}$ (the factor 2 is there because we have 2 terms)

Finally, since f is continuous at x_{0}, there is $\delta_{3}>0$ such that if $\left|x-x_{0}\right|<\delta_{3}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2\left(\left|g\left(x_{0}\right)\right|+1\right)}$ (we have to use $\left|g\left(x_{0}\right)\right|+$ 1 since $g\left(x_{0}\right)$ might be 0)

Let $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}>0$, then if $\left|x-x_{0}\right|<\delta$, then we get:

$$
\begin{aligned}
\left|(f g)(x)-(f g)\left(x_{0}\right)\right| & =\left|f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right| \\
& \leq\left(\left|f\left(x_{0}\right)\right|+1\right)\left|g(x)-g\left(x_{0}\right)\right|+\left|g\left(x_{0}\right)\right|\left|f(x)-f\left(x_{0}\right)\right| \\
& <\left(\left|f\left(x_{0}\right)\right|+1\right)\left(\frac{\epsilon}{2\left(\left|f\left(x_{0}\right)\right|+1\right)}\right)+\left|g\left(x_{0}\right)\right|\left(\frac{\epsilon}{2\left(\left|g\left(x_{0}\right)\right|+1\right)}\right) \\
& =\frac{\epsilon}{2}+\underbrace{\left(\frac{\left|g\left(x_{0}\right)\right|}{\left|g\left(x_{0}\right)\right|+1}\right)}_{<1}\left(\frac{\epsilon}{2}\right) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon \checkmark
\end{aligned}
$$

Therefore $f g$ is continuous at x_{0}
Note: This is why functions like $x \sin (x)$ or $e^{x}\left(x^{2}+1\right)$ are continuous, since they are products of continuous functions.
5. $\frac{f}{g}$ IS CONTINUOUS

Video: $\frac{f}{g}$ is continuous
In this section, we prove that quotients $\frac{f}{g}$ of continuous functions are continuous. For this, we need to first show that reciprocals $\frac{1}{f}$ of continuous functions are continuous.

Fact 5:

If $f \neq 0$ and f is continuous at x_{0}, then $\frac{1}{f}$ is continuous at x_{0}

Proof using Definition 1: If x_{n} is a sequence converging to x_{0}, then, since f is continuous at $x_{0}, f\left(x_{n}\right) \rightarrow f(x)$. By assumption $f\left(x_{n}\right) \neq 0$ for all n and $f(x) \neq 0$, so, by the results in section $9, \frac{1}{f\left(x_{n}\right)} \rightarrow \frac{1}{f\left(x_{0}\right)} \checkmark$

Therefore $\frac{1}{f}$ is continuous at x_{0}.

Proof using Definition 2:

STEP 1: Scratchwork

This time we need to estimate

$$
\left|\frac{1}{f(x)}-\frac{1}{f\left(x_{0}\right)}\right|=\left|\frac{f\left(x_{0}\right)-f(x)}{f(x) f\left(x_{0}\right)}\right|=\frac{\left|f(x)-f\left(x_{0}\right)\right|}{|f(x)|\left|f\left(x_{0}\right)\right|}
$$

The $\left|f(x)-f\left(x_{0}\right)\right|$ term is good, and the $\left|f\left(x_{0}\right)\right|$ term is good as well (since it is constant)

The only term we need to control is the $|f(x)|$ term.

Note: Since we want $\frac{1}{|f(x)|}<$ something, we need $|f(x)|>$ something!
Before, for the product law, we used that $\left|f(x)-f\left(x_{0}\right)\right|<1$. This doesn't quite work because we may have $\left|f\left(x_{0}\right)\right|-1<0$ (see below). That's why we need a more subtle estimate. For this notice that $\frac{\left|f\left(x_{0}\right)\right|}{2}>0$ (the choice for this will be clearer below)

Since f is continuous at x_{0}, with $\epsilon=\frac{\left|f\left(x_{0}\right)\right|}{2}>0$, there is δ_{1} such that if $\left|x-x_{0}\right|<\delta_{1}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\left|f\left(x_{0}\right)\right|}{2}$. But then, using again the triangle inequality (since we need $|f(x)| \geq$ something), we get
$\left|f(x)-f\left(x_{0}\right)\right| \geq\left||f(x)|-\left|f\left(x_{0}\right)\right|\right| \geq-\left(|f(x)|-\left|f\left(x_{0}\right)\right|\right)=\left|f\left(x_{0}\right)\right|-|f(x)|$
(Here we used the fact that $|a| \geq-a$ for all a)
Therefore, we get

$$
\left|f\left(x_{0}\right)\right|-|f(x)| \leq\left|f(x)-f\left(x_{0}\right)\right|<\frac{\left|f\left(x_{0}\right)\right|}{2}
$$

And therefore

$$
|f(x)|>\left|f\left(x_{0}\right)\right|-\frac{\left|f\left(x_{0}\right)\right|}{2}=\frac{\left|f\left(x_{0}\right)\right|}{2}>0
$$

Hence

$$
\frac{1}{|f(x)|}<\frac{2}{\left|f\left(x_{0}\right)\right|}(\text { GOOD })
$$

(In the picture above, notice that in the red region, $f(x)$ is above $\frac{f\left(x_{0}\right)}{2}$)
Note: Had you chosen $\left|f(x)-f\left(x_{0}\right)\right|<1$, you would have gotten $\left|f\left(x_{0}\right)\right|-1$ in the above, which isn't necessarily positive! That's why we had to use $\frac{\left|f\left(x_{0}\right)\right|}{2}$ instead of 1

Hence, going back to our original identity, we get

$$
\begin{aligned}
\left|\frac{1}{f(x)}-\frac{1}{f\left(x_{0}\right)}\right| & =\frac{\left|f(x)-f\left(x_{0}\right)\right|}{|f(x)|\left|f\left(x_{0}\right)\right|} \\
& \leq \frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|f\left(x_{0}\right)\right|}\left(\frac{2}{\left|f\left(x_{0}\right)\right|}\right) \\
& =\left|f(x)-f\left(x_{0}\right)\right|\left(\frac{2}{\left|f\left(x_{0}\right)\right|^{2}}\right) \\
& \stackrel{?}{<} \epsilon
\end{aligned}
$$

Which gives $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2}\left|f\left(x_{0}\right)\right|^{2}$

STEP 2: Actual Proof

Let $\epsilon>0$ be given
Then, since f is continuous at x_{0}, there is $\delta_{1}>0$ such that if $\left|x-x_{0}\right|<$ δ_{1}, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\left|f\left(x_{0}\right)\right|}{2}$, which implies $|f(x)|>\frac{\left|f\left(x_{0}\right)\right|}{2}$, and therefore $\frac{1}{|f(x)|}<\frac{2}{\left|f\left(x_{0}\right)\right|}$

Moreover, since f is continuous at x_{0}, there is $\delta_{2}>0$ such that if $\left|x-x_{0}\right|<\delta_{2}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2}\left|f\left(x_{0}\right)\right|^{2}$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$, then, if $\left|x-x_{0}\right|<\delta$, then

$$
\begin{aligned}
\left|\frac{1}{f(x)}-\frac{1}{f\left(x_{0}\right)}\right| & =\frac{\left|f(x)-f\left(x_{0}\right)\right|}{|f(x)|\left|f\left(x_{0}\right)\right|} \\
& \leq\left(\frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|f\left(x_{0}\right)\right|}\right)\left(\frac{2}{\left|f\left(x_{0}\right)\right|}\right) \\
& =\left|f(x)-f\left(x_{0}\right)\right|\left(\frac{2}{\left|f\left(x_{0}\right)\right|^{2}}\right) \\
& <\left(\frac{\epsilon\left|f\left(x_{0}\right)\right|^{2}}{2}\right)\left(\frac{2}{\left|f\left(x_{0}\right)\right|^{2}}\right) \\
& =\epsilon \checkmark
\end{aligned}
$$

Hence $\frac{1}{f}$ is continuous at x_{0}

Corollary:

If f and g are continuous at x_{0} with $g \neq 0$, then then $\frac{f}{g}$ is continuous at x_{0}

Proof: Since g is continuous at x_{0} and $g \neq 0$, by the above, $\frac{1}{g}$ is continuous at x_{0}, and therefore, by the product law (Fact 4), $\frac{f}{g}=f\left(\frac{1}{g}\right)$
is continuous at x_{0}

Note: This is why rational functions like $\frac{x^{3}-1}{x^{2}+4}$ are continuous, and also why $\tan (x)=\frac{\sin (x)}{\cos (x)}$ is continuous (whenever it's defined)

6. Composition is continuous

Video: $g \circ f$ is continuous

Definition:

If A, B, C are subsets of \mathbb{R} and $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, then the composition $g \circ f: A \rightarrow C$ is defined by

$$
(g \circ f)(x)=g(f(x))
$$

(Direct Flight)
Analogy: If you think of f as a layover from A to B and g as a layover from B to C, then $g \circ f$ is a direct flight from A to C

Let's show that the composition of two continuous functions is continuous!

Fact 6:

If f is continuous at x_{0} and g is continuous at $f\left(x_{0}\right)$, then $g \circ f$ is continuous at x_{0}

Proof using Definition 1: Suppose $\left(x_{n}\right)$ is a sequence that converges to x_{0}. Then, since f is continuous at x_{0}, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, but now, since g is continuous at $f\left(x_{0}\right)$, we have $g\left(x_{n}\right) \rightarrow g\left(x_{0}\right)$ and therefore:

$$
(g \circ f)\left(x_{n}\right)=g\left(f\left(x_{n}\right)\right) \rightarrow g\left(f\left(x_{0}\right)\right)=(g \circ f)\left(x_{0}\right) \checkmark
$$

And therefore $g \circ f$ is continuous at x_{0}
Note: It's because of this fact that, for instance $\cos \left(e^{x}\right)$ is continuous, being the composition of $\cos (x)$ and e^{x}. Similarly $\sin \left(\frac{1}{x}\right)$ is continuous except at $x=0$ where it's undefined

Proof using Definition 2: Let $\epsilon>0$ be given.
Since g is continuous at $f\left(x_{0}\right)$, there is $\delta^{\prime}>0$ such that

$$
\left|x-f\left(x_{0}\right)\right|<\delta^{\prime} \Rightarrow\left|g(x)-g\left(f\left(x_{0}\right)\right)\right|<\epsilon
$$

Note: Since the above is valid for all x, it is in particular valid with $f(x)$ instead of x (which is more specific)

Therefore there is $\delta^{\prime}>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\delta^{\prime} \Rightarrow\left|g(f(x))-g\left(f\left(x_{0}\right)\right)\right|<\epsilon
$$

But now, since f is continuous at x_{0}, by the definition of continuity (but with δ^{\prime} instead of ϵ), there is $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\delta^{\prime}$.

Therefore, with δ as above, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\delta^{\prime}$ and therefore

$$
\left|(g \circ f)(x)-(g \circ f)\left(x_{0}\right)\right|=\left|g(f(x))-g\left(f\left(x_{0}\right)\right)\right|<\epsilon \checkmark
$$

Therefore $g \circ f$ is continuous at x_{0}
Note: What is this proof saying intuitively? Our goal is to show that if x is close to x_{0} then $g(f(x))$ is close to $g\left(f\left(x_{0}\right)\right)$, as in the following picture. In other words, we need to show that if x is in the threshold region (in red), then $g(f(x))$ is in the good region (in blue/green), as in the following picture:

If x is in the threshold region (in red), then $f(x)$ is in the good region for f (in purple below).

Upshot: The good region for f (in purple, on the left) is the threshold region of g (also in purple, on the right)!

So if x is so close to x_{0} that the purple region (on the left) is small, then the same purple region (but on the right) is so small that then we can guarantee that $g(f(x))$ is in the good region for $g \circ f$ (in blue), which is what we want.

$$
\text { 7. } \max (f, g) \text { IS CONTINUOUS }
$$

Video: $\max (f, g)$ is continuous

Note: This section is optional, but will be useful for the homework.
Finally, let's show that the maximum of f and g is continuous.

Definition:

$$
\max (f, g)(x)=\left\{\begin{array}{l}
f(x) \text { if } f(x) \geq g(x) \\
g(x) \text { if } g(x) \geq f(x)
\end{array}\right.
$$

In other words, at each $x, \max (f, g)$ is just the bigger one of $f(x)$ and $g(x)$

Fact 7:

If f and g are continuous at x_{0}, then $\max (f, g)$ is continuous at x_{0}

The proof of this relies on the following explicit formula for $\max (f, g)$

Claim:

$$
\max (f, g)=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|
$$

Proof of Claim:

Case 1: $f(x) \geq g(x)$
Then $\max (f, g)=f(x)$, but also. since $f(x)-g(x) \geq 0$, we have $|f(x)-g(x)|=f(x)-g(x)$, and so

$$
\begin{aligned}
\frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)-g(x)| & =\frac{1}{2}(f(x)+g(x))+\frac{1}{2}(f(x)-g(x)) \\
& =\frac{1}{2}(f(x)+g(x)+f(x)-g(x)) \\
& =\frac{1}{2}(2 f(x)) \\
& =f(x) \checkmark
\end{aligned}
$$

Case 2: $g(x) \leq f(x)$
Similar, except you use $|f(x)-g(x)|=g(x)-f(x)$ since $f(x)-g(x) \leq$ 0 here \checkmark

Proof of Fact: Since f and g are continuous at $x_{0}, f+g$ is continuous at x_{0}, and therefore $\frac{1}{2}(f+g)$ is continuous at x_{0}.

But also $f-g$ is continuous at x_{0}, and therefore $|f-g|$ is continuous at x_{0}, and hence $\frac{1}{2}|f-g|$ is continuous at x_{0}, and therefore:

$$
\max (f, g)=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|
$$

is continuous at x_{0} (as the sum of two continuous functions)
Note: It then follows that the max of three functions f, g, h is continuous at x_{0} because

$$
\max (f, g, h)=\max (\max (f, g), h)
$$

And in fact, by induction, you can show that the max of finitely many continuous functions is continuous.

Remark: Similarly, you can define

$$
\begin{aligned}
& \text { Definition: } \\
& \qquad \min (f, g)(x)=\left\{\begin{array}{l}
f(x) \text { if } f(x) \leq g(x) \\
g(x) \text { if } g(x) \leq f(x)
\end{array}\right.
\end{aligned}
$$

f

g

And similarly you can show

Fact:

If f and g are continuous at x_{0}, then $\min (f, g)$ is continuous at x_{0}

Proof: See Homework for details, but you either show (similar to above) that

$$
\min (f, g)=\frac{1}{2}(f+g)-\frac{1}{2}|f-g|
$$

Or use that

$$
\min (f, g)=-\max (-f,-g)
$$

(Compare this to $\inf (S)=-\sup (-S)$ from Chapter 1)

