LECTURE 24: CONTINUOUS FUNCTIONS (IT)

Today: We’'ll prove some basic properties of continuous functions,
such as f + g is continuous or fg is continuous.

f is continuous at x if, whenever z,, is a sequence that converges
to xg, then f(z,) converges to f(xo)

f is continuous at z if for all € > 0 there is 6 > 0 such that for
all z, if |x — zo| < 9, then |f(x) — f(z0)| <€

Note: Remember our convention that z(y, x, and x, are assumed to
be in the domain of f

Note: The book proves everything using sequences, but I will prove
the results both using sequences and using € —¢. This is not to torture
you, but it is very important to be comfortable with € — ¢ proofs, as
they will be crucial in Math 140B. So definitely thoroughly read the
proofs below!

1. f+ g IS CONTINUOUS

Date: Friday, May 22, 2020.
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Video: f + g is continuous

If f and g are continuous at z, then f + ¢ is continuous at xg

Proof using Definition 1: Let x, be a sequence converging to x.
Then, since f is continuous at xy, we get f(x,) — f(x¢) and, since g
is continuous at z(, we have g(x,) — g(xg). But, by the sum law for
limits of sequences (see section 9), we get:

(f +9)(n) = f(zn) + g(zn) = f(20) + g(z0) = (f + g)(20)V

Hence f + g is continuous at x [l
Note: Notice how the result about f + g follows from the correspond-
ing result for sequences! This will be pretty much true for all our proofs
involving Definition 1.

Proof using Definition 2: (do not skip!)

Let € > 0 be given

Then, since f is continuous at xg, there is 0; > 0 such that if |z — x¢| <

o1, then | f(z) — f(z0)] < 5.

And, since g is continuous at xg, there is d2 > 0 such that if |z — x¢| <
d2, then |g(x) — g(zg)| < §.

But then, if 6 = min {61, d2} > 0, we get:


https://youtu.be/JUWqSqy9tAw
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Hence f + g is continuous at x [

2. kf IS CONTINUOUS
As a tribute to kfC', let’s prove that:

If f is continuous at z(, and k is a real number, then kf is con-
tinuous at xg

Proof using Definition 1: If (z,,) is a sequence that converges to x,
then, since f is continuous at xg, f(z,) — f(x¢), and therefore

(Ef)(wn) =k (f(zn)) = k (f(20)) = (kf)(x0)v
And therefore kf is continuous at x [

Proof using Definition 2: First of all, we may assume k # 0, be-
cause otherwise kf = 0, which is continuous.

Let € > 0, then, since f is continuous at xg, there is 0 > 0 such that if
|z — x| < 6, then |f(x) — f(xg)] < i (we use absolute values because

k might be negative)
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Then, with the same 9, if |z — x¢| < 9, we get:

€

(k1) (@) — (kf)(0)| = |kf (@) — kf(xo)| = [k 1f(2) - Fao)] < |k <|k|

Therefore kf is continuous at x ]

Aside: If you've taken linear algebra, notice that Fact 1 says that con-
tinuous functions are closed under addition, and Fact 2 says that they
are closed under scalar multiplication. Therefore, the set of continuous
functions forms a vector space!

Note: Using Facts 1 and 2 and the fact that 2" is continuous for all
n > 0, we get that polynomials like 423 — 52 4+ 42 4 1 are continuous

If f and g are continuous at zy, then f — g is continuous at x

Proof: Since g is continuous at x, using Fact 2 above with £ = —1,
we get —g = (—1)g is continuous at x.

Therefore, since f and —g are continuous at zo, by Fact 1, f —g =
f + (—g) is continuous at x =

3. |f| 1S CONTINUOUS

In this small interlude, let’s prove the following quick fact:

If f is continuous at xg, then |f| is continuous at x

) e
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Proof using Definition 1: Suppose x,, — g, then, since f is con-
tinuous at xg, f(x,) = f(x), and therefore |f(z,)] — |f(xo)| v

Hence |f| is continuous at O

Proof using Definition 2: Let ¢ > 0 be given. Then, since f
is continuous at zg, there is 6 > 0 such that if |x — x| < J, then

[f(z) = fl@o)| <e

With that same 9, if |x — x| < §, then by the reverse triangle inequal-
ity, which says |a — b| > ||a| — |||, we have:

Lf (@) = [f (@o)ll < [f(z) = flao)] < ev

Therefore | f| is continuous at x O

4. fg 1S CONTINUOUS

Video: fg is continuous

Now let’s prove that the product of continuous functions is continuous:

If f and g are continuous at x(, then fg is continuous at x

Proof using Definition 1: Suppose x, — x3. Then, since f is
continuous at xg, we have f(z,) — f(z¢), and, since g is continuous
at xg, we have g(z,) — g(x¢), and therefore, by the product law for
limits (section 9), we have

(fg)(xn) = (f(xn)) (9(zn)) = (f(20)) (9(20)) = (f9)(20)v’


https://youtu.be/dfaks-lnbjM
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Therefore fg is continuous at x ]
Proof using Definition 2:

STEP 1: Scratchwork

We need to estimate:

Now the |f(z) — f(xo)| and |g(z) — g(xg)| terms are good, since f and
g are continuous at xg. Moreover, the |g(z()| term is good since it is
constant.

The only problematic term is |f(z)| since it depends on x. For this,
use the fact that, since f is continuous, f(x) is close to f(zy) (which

is constant)

Since f is continuous with € = 1, we get that there is 4; > 0 such that
if |x — x| < 41, then |f(x) — f(x0)| < 1, but then

[f(@)] = |f(x) = f(xo) + [(zo)| < |f(x) = f(zo)|+[f (o) < T+]|f(20)]
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(In the picture above, notice that all the f(x) in the red region are
below the constant f(zg) + 1)

Therefore, going back to our original inequality, we get:

|f(@)g(x) = f(xo)g(zo)| <|f(x)[|g(x) — g(xzo)| + g(zo)| | f(x) = f(x0)]
<(If(zo)l + 1) [g(x) — g(@0)| + |g(zo)| | f(z) — f(z0)]

We are finally ready for our actual proof:

STEP 2: Actual Proof:

Let € > 0 be given
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Then, since f is continuous at xg, there is 6; > 0 such that if |z — z¢| <
01, then |f(x) — f(xo)| < 1, and therefore |f(z)| < |f(zo)| + 1 (as be-
fore)

Now since g is continuous at xg, there is dy > 0 such that if |z — x¢| <
d2, then |g(x) — g(xg)| < TP (the factor 2 is there because we

have 2 terms)

Finally, since f is continuous at z(, there is d3 > 0 such that if
|z — o] < 03, then | f(z) — f(z0)] < sTaoD (we have to use lg(x0)|+
1 since g(x() might be 0)

Let 6 = min {01, d2, 93} > 0, then if |x — x| < §, then we get:

|(F9)(x) = (fg)(@o)| =[f(x)g(x) — f(z0)g(x0)]

< (If (o)l + 1) [g(x) = g(zo)| + [g(zo)| [ f(x) — f(x0)]

€

<t ) (gmgrem) + 0 (375
N ( e 1), (z)

ps]
< n €
2 2
=ev
Therefore fg is continuous at x ]

Note: This is why functions like z sin(z) or e*(z*+ 1) are continuous,
since they are products of continuous functions.

o) + 1)

)
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5. 5 IS CONTINUOUS

Video: £ is continuous

In this section, we prove that quotients % of continuous functions are

continuous. For this, we need to first show that reciprocals % of con-
tinuous functions are continuous.

If f # 0 and f is continuous at x(, then % is continuous at x

Proof using Definition 1: If x,, is a sequence converging to x, then,
since f is continuous at xg, f(z,) — f(x). By assumption f(x,) # 0

for all n and f(x) # 0, so, by the results in section 9, f(glc 7 — f(io) v

Therefore % is continuous at x. L]
Proof using Definition 2:

STEP 1: Scratchwork

This time we need to estimate

‘ L1 :‘f(%‘o)—f(:c) f @) = f(w)]
f@) faol | F@ @) |~ f@)]1F()]

The |f(z) — f(x0)| term is good, and the |f(x)| term is good as well

(since it is constant)

The only term we need to control is the |f(z)| term.


https://youtu.be/1EhmKFUA4bI
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Note: Since we want |f( 7 < something, we need |f(z)| > something!

Before, for the product law, we used that |f(z) — f(xo)] < 1. This
doesn’t quite work because we may have |f(xg)] — 1 < 0 (see be-
low). That’s why we need a more subtle estimate. For this notice that

[f(@o)l (x")‘ > ( (the choice for this will be clearer below)

Since f is continuous at g, with € = PICDIN 0, there is ¢; such that if

2
|z — o] < 61, then |f(z) — f(z0)] < |f(;c ol But then, using again the
triangle inequality (since we need |f(z)| > something), we get

[f(@) = f(@o)| = [ f(@)] = [f(@o)l| = = (1f(@)| = [f(z0)]) = |f (zo)|—[f ()]

(Here we used the fact that |a| > —a for all a)

Therefore, we get

[f(@o)| = |f ()] < [f(2) = flxo)| <

And therefore

Hence
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(In the picture above, notice that in the red region, f(z) is above f(z0) (;UO))

Note: Had you chosen |f(z) — f(x¢)] < 1, you would have gotten

|f(zo)] — 1 in the above, which isn’t necessarily positive! That’s why

we had to use m instead of 1

Hence, going back to our original identity, we get
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Which gives | f(x) — f(z0)| < §|f(z0)[
STEP 2: Actual Proof
Let € > 0 be given

Then, since f is continuous at xg, there is 4; > 0 such that if |z — x¢| <

01, then |f(x) — f(xo)| < LYl which implies |f(z)] > L& and
1

2
therefore 7 (@) < | f (o)

Moreover, since f is continuous at x(, there is do > 0 such that if
& — | < &, then |f(x) — f(0)| < §|f(z0)[’

Let 0 = min {61, d2} > 0, then, if |x — x| < J, then
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| L 1| [f@) — flo)]
7@ fa| T 2
: (lf( \>f(wof)(| O)‘) (If(rvo)\)
1116 = el (=)
Hence % is continuous at z O

If f and g are continuous at xy with g # 0, then then § is contin-
uous at xg

Proof: Since g is continuous at zy and g # 0, by the above, é is con-

tinuous at zg, and therefore, by the product law (Fact 4), § =f (é)

1s continuous at x

Note: This is why rational functions like iz—;ll are continuous, and also
sin(x)
cos(x)

why tan(x) = is continuous (whenever it’s defined)

6. COMPOSITION IS CONTINUOUS

Video: ¢ o f is continuous


https://youtu.be/W5DyrnbDnD8
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If A,B,C are subsets of Rand f: A — B and g : B — C are
functions, then the composition go f : A — C is defined by

(g0 f)(@) = g(f(x))

gof
(Direct Flight)

Analogy: If you think of f as a layover from A to B and ¢ as a layover
from B to C, then g o f is a direct flight from A to C

Let’s show that the composition of two continuous functions is contin-
uous!

If f is continuous at xy and ¢ is continuous at f(zg), then g o f
1S continuous at xg
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Proof using Definition 1: Suppose (z,) is a sequence that converges
to xg. Then, since f is continuous at zy, we have f(z,) — f(xg),
but now, since g is continuous at f(xg), we have g(z,) — g(xy) and
therefore:

(g0 f)(zn) = g(f(2n)) — g(f(20)) = (g0 f)(w0)V

And therefore g o f is continuous at xg [

Note: It’s because of this fact that, for instance cos(e”) is continuous,
being the composition of cos(z) and e*. Similarly sin (1) is continuous
except at © = 0 where it’s undefined

Proof using Definition 2: Let € > 0 be given.

Since g is continuous at f(xg), there is ¢’ > 0 such that

[ = flwo)l < 0" = |g(z) — g(f(x0))] < €

Note: Since the above is valid for all z, it is in particular valid with
f(x) instead of = (which is more specific)

Therefore there is ¢’ > 0 such that

/() = flzo)| < 0" = [g(f(x)) — g(f(w0))] <e

But now, since f is continuous at x(, by the definition of continuity
(but with ¢ instead of €), there is § > 0 such that if |z — 2| < J, then

[f () = f ()] <&

Therefore, with § as above, if |z — xg| < §, then |f(x) — f(xo)| < ¢
and therefore

(g 0 f)(@) = (g0 f)(@o)| = g(f(x)) — g(f(w0))| < ev
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Therefore g o f is continuous at x U

Note: What is this proof saying intuitively? Our goal is to show that
if x is close to zg then g(f(x)) is close to g(f(z¢)), as in the following
picture. In other words, we need to show that if z is in the threshold
region (in red), then g(f(z)) is in the good region (in blue/green), as
in the following picture:

gof/\ —>

e | Do)

st

A\ 4

X Xo X

If x is in the threshold region (in red), then f(x) is in the good region
for f (in purple below).
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f(xo) o) |8 8(f(x0)) g:

f(x) g(f(x))
f(x)

v 7
©X X i)
Upshot: The good region for f (in purple, on the left) is the threshold
region of ¢ (also in purple, on the right)!

So if = is so close to z( that the purple region (on the left) is small,
then the same purple region (but on the right) is so small that then
we can guarantee that g(f(x)) is in the good region for go f (in blue),
which is what we want.

7. max(f,g) 1S CONTINUOUS

Video: max(f,g) is continuous


https://youtu.be/SnHD78LAVqQ
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Note: This section is optional, but will be useful for the homework.

Finally, let’s show that the maximum of f and g is continuous.

f(z) if f(z) > g(=)
g(x) if g(z) = f(x)

max(f,g)(x) = {

In other words, at each x, max(f, g) is just the bigger one of f(x) and
9(x)

max(f,g)

OOQ/\/\/\

If f and g are continuous at g, then max(f, g) is continuous at
Lo

The proof of this relies on the following explicit formula for max(f, g)
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(F+9)+351f g

1
2

Proof of Claim:
Case 1: f(x) > g(x)

, but also. since f(x) — g(z) > 0, we have

Then max(f,g) = f(z)
— g(x), and so

7@) — 9(@)] = £(a)

(@) + 9(a)) + 2 1) — ()| =5 (F(2) +g(2) + 5 (/) — glx)
:% (f(x)+g(z)+ f(z) — g(z))
= (2/(@))
—F(a)

Case 2: g(x) < f(x)

Similar, except you use |f(z) — g(z)| = g(z)— f(z) since f(x)—g(z)
0 here v/

IRVA

Proof of Fact: Since f and g are continuous at xy, f+ g is continuous
at xo, and therefore 1 (f 4 g) is continuous at .

But also f — g is continuous at xy, and therefore |f — g| is continuous
at xo, and hence % |f — g| is continuous at xy, and therefore:

max(f,g) = 5 (F +9)+ 51f o
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is continuous at zy (as the sum of two continuous functions) U

Note: It then follows that the max of three functions f, g, h is contin-
uous at zg because

max(f, g, h) = max(max(f, g),h)

And in fact, by induction, you can show that the max of finitely many
continuous functions is continuous.

Remark: Similarly, you can define

And similarly you can show
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If f and g are continuous at x(, then min(f,g) is continuous at
Lo

Proof: See Homework for details, but you either show (similar to
above) that

i 1 1
min(f, ) =5 (f +9) =51/ — 4l
Or use that

min(f, g) = —max(—f,—g) O
(Compare this to inf(S) = —sup(—S) from Chapter 1)



	1. f+g is continuous
	2. kf is continuous
	3. | f | is continuous
	4. fg is continuous
	5. fg is continuous
	6. Composition is continuous
	7. max(f,g) is continuous

