Real-Time Top-R Topic Detection on Twitter with Topic Hijack Filtering

Kohei Hayashi (NII & ERATO)

August 3, 2015

Joint work with

- Takanori Maehara (Shizuoka Univ)
- Masashi Toyoda (Univ Tokyo)
- Ken-ichi Kawarabayashi (NII & ERATO)

Twitter

SNS with short messages (tweets) Big data 41M users, 1.4B interactions Diversity Covering any topics: news, politics, TV, ... Rapid 1 tweet \leq 140 chars \Rightarrow Low latency

Automatic Trend Detection on Twitter

Automatic Trend Detection on Twitter

A promising data resource for topic detection

- Find word clusters by word co-occurrence
- May discover breaking news and events even faster than news media

Two Challenges

- Topic Detection in Real-time
- Noise Filtering

Topic Detection in Real-time

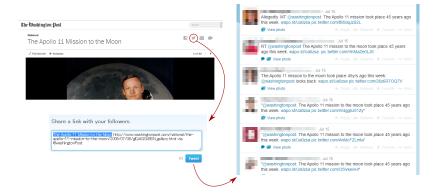
An ultimate goal of topic detection on Twitter

- Have to deal with 0.27M tweets/min
- Words rarely co-occur
 - \Rightarrow Severely degrade the quality of topics

Noise Filtering

Many spam tweets generated by not human

• e.g. "tweet buttons"



Exaggerate co-occurrence and "hijack" important topics

Contributions

A streaming topic detection algorithm based on non-negative matrix factorization (NMF)

- Highly scalable:
 - Able to deal with a 20M $\!\times 1M$ sparse matrix/sec
- Automatic topic hijacking detection & elimination

Contributions

A streaming topic detection algorithm based on *non-negative matrix factorization (NMF)*

- Highly scalable:
 - Able to deal with a 20M $\!\times 1M$ sparse matrix/sec
- Automatic topic hijacking detection & elimination

Technical Points

- Reformulate NMF in a stochastic manner
 - Stochastic gradient descent (SGD) updates with $O({\rm NNZ})$ time
- O Use of statistical testing
 - Assume normal topics follow power law

Streaming NMF

Topic Detection by NMF

Consider to obtain R topics from all past tweets

Tweets User-word co-occurrence

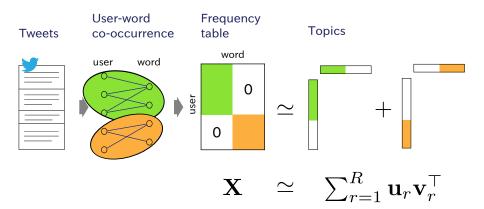
Topic Detection by NMF

Consider to obtain R topics from all past tweets

Tweets User-word co-occurrence

Topic Detection by NMF

Consider to obtain R topics from all past tweets



Problem

$$\min_{\mathbf{U}\in\mathbb{R}_{+}^{I\times R},\mathbf{V}\in\mathbb{R}_{+}^{J\times R}} f_{\lambda}(\mathbf{X};\mathbf{U},\mathbf{V}),$$

$$f_{\lambda}(\mathbf{X};\mathbf{U},\mathbf{V}) = \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} + \frac{\lambda}{2}(\|\mathbf{U}\|_{\mathrm{F}}^{2} + \|\mathbf{V}\|_{\mathrm{F}}^{2})$$

Batch Algorithm

Repeat until convergence:

$$\mathbf{0} \ \mathbf{U} \leftarrow [\mathbf{U} - \eta \nabla_{\mathbf{U}} f_{\lambda}(\mathbf{X}; \mathbf{U}, \mathbf{V})]_{+}$$

2
$$\mathbf{V} \leftarrow [\mathbf{V} - \eta \nabla_{\mathbf{V}} f_{\lambda}(\mathbf{X}; \mathbf{U}, \mathbf{V})]_+$$

Guaranteed converging to stationary points

Stochastic Formulation

- Now we observe $\mathbf{X}^{(t)}$ for each time t
- Keep track to $\bar{\mathbf{X}}^{(t)} = \frac{1}{t} \sum_{s=1}^{t} \mathbf{X}^{(s)}$
 - Efficient updates from $\bar{\mathbf{X}}^{(t)}$ to $\bar{\mathbf{X}}^{(t+1)}$?

Stochastic Formulation

- Now we observe $\mathbf{X}^{(t)}$ for each time t
- Keep track to $\bar{\mathbf{X}}^{(t)} = \frac{1}{t} \sum_{s=1}^{t} \mathbf{X}^{(s)}$
 - Efficient updates from $\bar{\mathbf{X}}^{(t)}$ to $\bar{\mathbf{X}}^{(t+1)}$?

Key idea: decompose f_{λ} for each t

$$\|\bar{\mathbf{X}}^{(t)} - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} = \frac{1}{t}\sum_{s} \|\mathbf{X}^{(s)} - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} + \text{const.}$$

Stochastic Formulation

- Now we observe $\mathbf{X}^{(t)}$ for each time t
- Keep track to $\bar{\mathbf{X}}^{(t)} = \frac{1}{t} \sum_{s=1}^{t} \mathbf{X}^{(s)}$
 - Efficient updates from $ar{\mathbf{X}}^{(t)}$ to $ar{\mathbf{X}}^{(t+1)}$?

Key idea: decompose f_{λ} for each t

$$\begin{split} \|\bar{\mathbf{X}}^{(t)} - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} &= \frac{1}{t} \sum_{s} \|\mathbf{X}^{(s)} - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} + \text{const.} \\ \text{f } \mathbf{X}^{(t)} \text{ is i.i.d. random variable,} \\ \|\mathbb{E}[\mathbf{X}^{(t)}] - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} &= \mathbb{E}\|\mathbf{X}^{(t)} - \mathbf{U}\mathbf{V}^{\top}\|_{\mathrm{F}}^{2} + \text{var}[\mathbf{X}^{(t)}] \end{split}$$

Now we can use stochastic optimization

Streaming Algorithm For t = 1, ..., T: • $\mathbf{A}_U \leftarrow \nabla_{\mathbf{U}} \nabla_{\mathbf{U}} f_{\lambda}$, $\mathbf{A}_V \leftarrow \nabla_{\mathbf{V}} \nabla_{\mathbf{V}} f_{\lambda}$ (metrics) • $\mathbf{U}^{(t)} \leftarrow [\mathbf{U}^{(t-1)} - \eta_t \nabla_{\mathbf{U}} f_{\lambda}(\mathbf{X}^{(t)}; \mathbf{U}, \mathbf{V}^{(t-1)}) \mathbf{A}_U^{-1}]_+$ • $\mathbf{V}^{(t)} \leftarrow [\mathbf{V}^{(t-1)} - \eta_t \nabla_{\mathbf{V}} f_{\lambda}(\mathbf{X}^{(t)}; \mathbf{U}^{(t)}, \mathbf{V}) \mathbf{A}_V^{-1}]_+$

Guaranteed converging to the stationary points of $f_{\lambda}(\bar{\mathbf{X}}^{(t)}; \mathbf{U}, \mathbf{V})$ for some η_n and i.i.d. $\{\mathbf{X}^{(t)}\}$

Comparing with the Batch NMF ... Much faster

• Update cost: depends on NNZ $(\mathbf{X}^{(t)}) \ll \mathsf{NNZ}(ar{\mathbf{X}}^{(t)})$

Memory efficient

• Able to discard $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(t-1)}$

Comparing with the Batch NMF ... Much faster

• Update cost: depends on $\mathsf{NNZ}(\mathbf{X}^{(t)}) \ll \mathsf{NNZ}(ar{\mathbf{X}}^{(t)})$

Memory efficient

• Able to discard $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(t-1)}$

Smoothing effect

$$\mathbf{U}^{(t)} = [(1 - \eta_t)\mathbf{U}^{(t-1)} + \eta_t \mathbf{X}^{(t)}\mathbf{V}^{(t-1)}\mathbf{A}_{\mathbf{U}}^{-1}]_+ \\ = [(1 - \eta_t)\mathbf{U}^{(t-1)} + \eta_t \operatorname*{argmin}_{\mathbf{U}} f_{\lambda}(\mathbf{X}^{(t)}; \mathbf{U}, \mathbf{V}^{(t-1)})]_+$$

- A weighted average of the prev solution and the NMF solution of $\mathbf{X}^{(t)}$
- Mitigates the sparsity of $\mathbf{X}^{(t)}$

Topic Hijacking Detection

Problem Setting

Goal: Find hijacked topics

Idea: Check word distributions

• The word dist of *a hijacked topic* should be different from the word dist of *a normal topic*

Problem Setting

Goal: Find hijacked topics

Idea: Check word distributions

- The word dist of *a hijacked topic* should be different from the word dist of *a normal topic*
- NMF estimates topic-specific word dists as ${\bf V}$

$$X_{ij} \propto p(\text{user}_i, \text{word}_j)$$

$$\propto \sum_r p(\text{topic}_r) p(\text{user}_i | \text{topic}_r) p(\text{word}_j | \text{topic}_r)$$

$$\propto \sum_r u_{ir} v_{jr}$$

Defining Normal/Hijacked Topics

Normal topics:

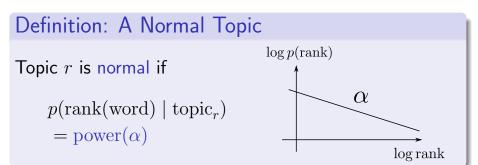
- Many users involve
 - \Rightarrow Mixing many different vocabularies

 \Rightarrow Heavy-tailed (Zipf's law)

Defining Normal/Hijacked Topics

Normal topics:

- Many users involve
 - \Rightarrow Mixing many different vocabularies
 - \Rightarrow Heavy-tailed (Zipf's law)



Defining Normal/Hijacked Topics (Cont'd)

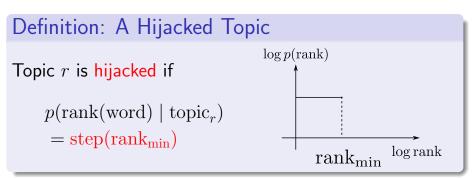
Hijacked topics:

- Few users involve
 - \Rightarrow The same vocabulary is repeatedly used
 - \Rightarrow Uniform probs & (almost) no tail

Defining Normal/Hijacked Topics (Cont'd)

Hijacked topics:

- Few users involve
 - \Rightarrow The same vocabulary is repeatedly used
 - \Rightarrow Uniform probs & (almost) no tail



Log-likelihood Ratio Test

$$\mathcal{L}(\mathrm{rank}_{\min}) = \sum_{j} \log \frac{\mathrm{step}(\mathrm{rank}_{j} \mid \mathrm{rank}_{\min})}{\mathrm{power}(\mathrm{rank}_{j} \mid \hat{\alpha})}$$

Theorem (Asymptotic normality [Vuong'89])

Let N be # of observed words. Then, $\mathcal{L}(rank_{min})/\sqrt{N}$ converges in distribution to $N(0, \sigma^2)$ where

$$\sigma^{2} = \frac{1}{N} \sum_{j=1}^{N} \left(\log \frac{\operatorname{step}(\operatorname{rank}_{j} \mid \operatorname{rank}_{\min})}{\operatorname{power}(\operatorname{rank}_{j} \mid \hat{\alpha})} \right)^{2} - \left(\frac{1}{N} \mathcal{L}(\operatorname{rank}_{\min}) \right)^{2}.$$

Log-likelihood Ratio Test

$$\mathcal{L}(\mathrm{rank}_{\min}) = \sum_{j} \log \frac{\mathrm{step}(\mathrm{rank}_{j} \mid \mathrm{rank}_{\min})}{\mathrm{power}(\mathrm{rank}_{j} \mid \hat{\alpha})}$$

Theorem (Asymptotic normality [Vuong'89])

Let N be # of observed words. Then, $\mathcal{L}(rank_{min})/\sqrt{N}$ converges in distribution to $N(0, \sigma^2)$ where

$$\sigma^{2} = \frac{1}{N} \sum_{j=1}^{N} \left(\log \frac{\operatorname{step}(\operatorname{rank}_{j} \mid \operatorname{rank}_{\min})}{\operatorname{power}(\operatorname{rank}_{j} \mid \hat{\alpha})} \right)^{2} - \left(\frac{1}{N} \mathcal{L}(\operatorname{rank}_{\min}) \right)^{2}.$$

For r = 1, ..., R:

- Estimate $\hat{\alpha} = \operatorname{argmax}_{\alpha} \log \operatorname{power}(\operatorname{rank}(\mathbf{u}_k) \mid \alpha)$
- For $rank_{min} = 1, ..., 140$:
 - Compute $\mathcal{L}(\mathrm{rank}_{\min})$
 - Topic r is hijacked if p-val < 0.05

Experiments

Data

Japanese Twitter stream

- April 15-16, 2013
 - 417K users
 - 1.98M words
 - 15.3M tweets
 - 69.4M co-occurrences

- Generated $\mathbf{X}^{(t)}$ for each 10K co-occurrences

Runtime

	NMF	1%	10%	100%
Batch		27.0m	1.9h	16.4h
Online	[Cao+ 07]	5.6h	9.2h	17.8h
Dynamic	[Saha+ 12]	16.7h	>24h	>24h
Streaming	[proposed]	4.0m	21.7m	3.6h
w/ Filter		5.3m	24.1m	3.8h

Runtime

	NMF	1%	10%	100%
Batch		27.0m	1.9h	16.4h
Online	[Cao+ 07]	5.6h	9.2h	17.8h
Dynamic	[Saha+ 12]	16.7h	>24h	>24h
Streaming	[proposed]	4.0m	21.7m	3.6h
w/ Filter	[proposed]	5.3m	24.1m	3.8h

✓ Streaming NMF: ×5–250 faster!

• 67K tweets/m

 \Rightarrow The real-time speed of all jp tweets!

✔ Filtering cost is ignorable

Perplexity

- Similarity between a topic dist and a target dist
 - Used Y! headlines¹ for the target term dist
- Lower is better

	NMF	1%	10%	100%
Batch		9.01E+09	6.32E+06	4.51E+04
Online	[Cao+ 07]	1.06E+04	3.25E+04	1.83E+04
Dynamic	[Saha+ 12]	6.53E+04	N/A	N/A
Streaming	[proposed]	5.65E+07	3.25E+04	8.71E+03
w/ Filter	[proposed]	5.25E+09	2.40E+04	7.90E+03

¹http://news.yahoo.co.jp/list

Perplexity

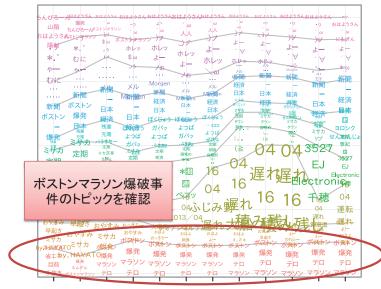
- Similarity between a topic dist and a target dist
 - Used Y! headlines¹ for the target term dist
- Lower is better

	NMF	1%	10%	100%
Batch		9.01E+09	6.32E+06	4.51E+04
Online	[Cao+ 07]	1.06E+04	3.25E+04	1.83E+04
Dynamic	[Saha+ 12]	6.53E+04	N/A	N/A
Streaming	[proposed]	5.65E+07	3.25E+04	8.71E+03
w/ Filter	[proposed]	5.25E+09	2.40E+04	7.90E+03

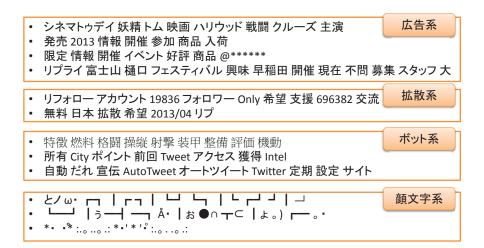
Streaming NMF: best at 100% data
 Topic hijacking filter improves perplexity

¹http://news.yahoo.co.jp/list

Obtained Topics



Detected Hijacking Phrases



Summary

Proposed the streaming algorithm for Twitter topic detection

• Works in real time

(would handle all jp tweets in theory)

• Automatically filters spam topics

Summary

Proposed the streaming algorithm for Twitter topic detection

• Works in real time

(would handle all jp tweets in theory)

• Automatically filters spam topics

Thank you!

Integrated Twitter Topic Detection System

- For t = 1, ..., T:
 - $oldsymbol{0}$ Generate $\mathbf{X}^{(t)}$ from tweets otin Blacklist
 - ${f o}$ Update ${f U}, {f V}$ by SGD
 - **3** With some intervals, Detect Topic Hijacking and update Blacklist O(J)

 $O(N_t)$

 $O(N_t R^2 + R^3)$