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ANNOTATION 

Prlbliaheniye fmlctaiy amoEikh jr vMiWgfaB 
nation of Tunetiona of Several Variables and Bnbedding Bieorema), S. M. Nikol a- 
kiy, Nauka Publishing House« Main Editorial Office of Phyaicomathematical 
Literature« 1969. 

The theory of embeddings of classes of differentiable functions of 
several variables has been intensively expanded during the past two decades, 
nwH a number of its fundamental problems have been resolved. But till now 
these results are to be found in journal articles. This book presents the 
complete theory of embeddings of the main classes (U^, 1/) of 

differentiable functions given for the entire n-dinensional space 

The reader will find in the book the inequalities between partial 
derivatives in the various contexts that have found application in mathematical 
bysics. aphasia is placed on problems of compactness, integral representa¬ 

tions of functions of these classes, aul problems of the isomorphisms of these 
classes. 

In the book the author chiefly employs the method of approximation with 
exponential type integral functions and trigonometric polymonials. The theory 
of approximation suitably adapted for these ends is set forth at the outset of 
the volume. Use of the Bessel-Macdonald integral operator is also essential. 
The reader will even find in the book remarks given without proof on the embed¬ 
ding of classes of differentiable functions specified for the domains G Cl R^. 

The reader must be familiar with the fundamentals of Lesbesgue integral 
theory. The book widely employs the concept of the generalized function, but 
it is clarified with proofs to the extent that this is necessary. 

Bibliography: 206 entries. 



INTRODUCTION 

In the past two decades the theory of embeddings of classes of differen¬ 
tiable functions of several variables, whose foundations were laid back in the 
1930's by S. L. Sobolev, has experienced rapid growth. Presently, the solution 
of several fundamental problems in this theory has come to a head and the need 
to present them in compact form has arisen. I personally arrived at problems of 
embedding theory as part of a field that had long fascinated me, the concepts 
of the classical theory of approximating functions with polynomials, above all 
with trigonometric polynomials and their nonperiodic analogues — exponential 
type integral functions. 

These notions, which I had occasion to suitably ramify, served me as the 
starting-point for constructing a theory of embeddings of H-classes, where already 
in problems of the traces of functions not only did direct theorems emerge, but 
also their wholly inverse counterpart theorems. The latter can even be called 
theorems on the extension of functions into a apace with the manifolds of the 
least number of measures pertaining to it. Here, not only is the isotropic 
case of functions with differential properties that are identical in different 
directions embraced, but also the anisotropic case. 

Later, 0. V. Besov constructed a similar theory of embeddings of the B- 
classea he introduced, also founded on methods of the theory of approximation 
with trigonometric polynomials or with exponential type integral functions. The 
B-classes are remarkable in that they, like the H-classes, are as we have said 
closed in upon themselves with respect to embedding theorems. By this we wish to 
state that the embedding theorems of interest to us (we will not actually foimu- 
late them here) are expressed in terms of B-classes and here possess to some 
extent the properties of transitivity and invertibility in the case of the prob¬ 
lem of traces. 

S. L. Sobolev proved his embedding theorems for the classes = 
P 

of functions that have on a sufficiently broad domainof n—dimensional space 
Rn derivatives up to the order 1 inclusively that are integrable to the p-th 
degree (l ^ p ^•x'). Sobolev classes can be called discrete classes, because the 
parameter 1 expressing the differentiable properties of the functions included 
in it ranges through the discrete sequence 1 = 0, 1, 2, .... In fact, the classes 
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H and 6 are continu«!, in thi. canoe. When »ï® íff“.''11“ 

ä ’i?h îSi’cÂïî.i: u Äirr«. c.«tribut.d ^ V 

^^täiS/Är^rÄ0. i. P.»itt.ô 0, tb. Oi. 

creteneaa of the cl&aaea, tranaitive. 

Aa pertaina to the embedding theorem accompanied only by change of 
meaaure viSout metric change ~ we call theae {;he^°^^r^Cdoi a^ply 
the situation ia more involved. are poaaeaeedby 
an answer to the question as to which deferential prqpjriie» the 
the trace of the function of the class VMU) in the maniioio 
answer is furnished in texma of W to thia question is expreaa- 
apeaking, if we omit the case p - 2, no final answer x,o 4 
ed in terms of the classes V. 

The first conc^ »«It. on 

J^oUo^S^él^fn^Â to 4 po.iti,o, but not 

“ teruTofthe«, cl..».. In th. notation u.» in tbi. book, 1¾ - L2 - BJ. 

fÄ tMfl^aolation°looka Ä 
setting W1 =11). Bot as for now we can only st»1* that tracea of the f 

toTcL^cer Ô/iJTnÂrÂÆÂoïlTof 

respect to w-ciasses, out. ou «o u «nH n 'mis relationship is so close relationship holds between the classes W and B. ms rexa^ionouip 
that at one-time, when not everything about these 
held that B1 classes for fractional l,arc the natural extensions 
Sobolev claises and were denoted by ï. Actually, these natural extensions 
arethe sZcJled Liouville classes P l£. Chapter 9 therefore ÿal» with = 
them, in particular, also with the classés W, because we assume VÇ Lp [ 

0 1 ... ). The reader must recall that in this book the notation W1 is 
used*only when 1 = 0, 1, ... Cf 4.3 on this matter. 

S L Sobolev studied functions of his classes by means of the integral 
representations he introduced; these were greatly developed in the works of representation^ ^ ^ ^ ^ (cf> 6>10 belov). jetions the classes 

T1 L-r defined on the entire space, and in their integral representation it is 
to »00 that tho kernel, of tbo lattor r^ldlr enough d.c»«. to 

zero at infinity. These are the familiar Bessel-Macdonald we 
in fact adopted^as the basis for representing functions of tje classes Lp. 
say as the basis because actually here anisotropic classes L* are what we are 



considering. The kernels of their integral representations constitute certain 
complications of the Macdonald kernels. I note that in writing chapter 9, I 
made heavy use of materials given me by ay colleague, P. I. Kozorkin, who 
quite recently derived a complete system of embedding theorems for general 
anisotropic classes l5, where r = ary positive vectors. His results have thus 
far been published in the form of a brief note. 

In the one-dimensional case (where the problem of traces does not come 
up), theorems of embedding of different measures for the classes Lp »nd for 
nonintegral r for the classes were already obtained in the works of Hardy 
and Littiewood. v 

The I- operators defined by Bessel-Macdonald kernels are universal in 
character. In this book they are investigated and applied in a variety of 
contexts. We quite oxtensivoly use the concept of the generalized function, so 
the book contains a sma.l .1 section presenting with complete proofs only those 
deductions from the theory of the generalized function that the reader must know 
to understand the following treatment. I introduce the concept of a generalized 
function that is regular in the sense of L by employing the Ir operator. For 
regular functions, different proofs associated with multiplication by the gener¬ 
alized functions are greatly simplified. I make wide use of this because the 
generalized functions encountered in the book are regular. 

The Ir operator receives interesting applications also in chapter 8. It 
executes isomorphisms not only of the L-, but also of the B- and H-classes and 
can serve as a means for the integral representations of functions of these 
classes. Those ideas which in the periodic one-dimensional case derive from 
the time of Hardy and Littlewood have quits recently been explored from different 
vantage points in the works of Aronshayn ¿also spelled Aronszajij/ and Smith, 
Cal'deron, Toyblson, Lions, P. I. Lizorkin, the present author, and others. 

Quite naturally, this book also takes up the foundations of the theory 
of approximation of functions of several functions with trigonometric polynometric 
polynomials and exponential type integral functions. These in themselves are of 
interest, but basical-iy they play a subordinate role — as tools of approximation 
theory. Further, theorems of embedding are proved for H- and B-classes and the 
representations of functions of these classes are also in terms of series in 
exponential type integral functions or in trigonometric polynomials. Bearing 
these goals in mind, along with the traditional inequalities, we also introduce 
;inc utilize other inequalities (of aifforent measures and metrics). 

We must note that in this book we furnish complete proofs of embedding 
theorems for the above-cited classes of functions defined on the entire n- 
uimensionai space But these classes can be defined for the domains 
pucz h. These definitions are given in the book. Also formulated (without 
proof) are extremely wide-ranging theorems on the extensions of the functions 
of these classes on all space (with the preservation of class). This permits 
extending the theorems proven for the space to the case of the domains 
.J, C_ Rjj . 

- 4 - 



Finally, we note that recently investigations have been pursued (begun 
by L. D. Kudryavgsev) of more general classes — weight classes. In tnis book, 
we confine ourselves only to some remarks about the relationship of weight 
classes with the nonqeight classes discussed here. 

I note still further that for more than 10 years now a permanent seminar 
on the theory of differentiable functions of several variables has been held 
in the Mathematics Institute imeni V. A. Steklov, headed by V. I. Kondrashov, 
L. D. Kudryavtsev, and myself. Actively participating in it have been 0. V. 
Besov, Ya. S. Bugrov, V. I. Burenkov, A. A. Vasharin, P. I. Lizorkin, S. V. 
Uspenskiy, G. N. Yakovlev, and other mathematicians. Mary results presentea 
in this book belong to the participants of this seminar and were discussed in 
it as they were taken shape. 

In conclusion, I deem it wy happy duty to express ny deep gratitude to 
colleagues 0. V. Besov, who read the book in manuscript, P. I. Lizorkin, who 
read chapters 8 and 9, and S. A. Telyakovskiy, who read several chapters. Ihey 
have made mary valuable observations, which in one way or another I have taken 

cognizance of. 

I am also grateful to T. A. Timan, who pointed out several shortcomings 
of the manuscript. 

Finally, I am very thankful to ny younger colleague V. I. Burenkov, the 
book's editor. Much of his advice pertaining not only to format, but also to 
substance of the exposition was taken into account. 



CHAPTER I PRELIMINARIES 

1.1 Space C(f ) and Lpfc) 

In this book ve will discusa functions that are generally dependent on 
several variables. 

The eynbol will also signify the n-dinensional Euclidean space with 
points X = X ) with real coordinates. The length of the vector will 
be denoted thualy: 

(1) 

on > . 

i* ^ function f ¢= Ci-6) into correspondence with its norm 
(in the sense of C(<f) ) : 

In the case of a restricted (closed) set £ sup can be replaced with max. 

If p is a real number satisfying the inequalities 1 ^ p<c-j and in some 
measurable but not necessarily bounded set ú belonging to R_ a measurable 

!lv“' “if11 1. 

(3) 

lhe variable (j) is called the non of the function f in the sense of i ^ » /y\ . I ~T . luncfcion i in ine sense i 
. ^p^) wiil stand for the set of all functions that have the finite 

norm (3). 

/ 
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V» will not distinguish between the two equivalent functions f1 and 
t0 e‘ Uñ, i‘«*» U»«« differing in the set by the zero neasure. We will 
^  ft- A. _ t   ^ A. - ___ _ _ 1 —-*• a 4 1 Til Jtst T I /*^1 

and write fi = f2- In particular, if the function f<fT 1-(0 equals zéro for 
alaost all X <r' ^ , we will write f = 0, thus identifying this function with 
the function that is identically squ*! to aero on â . In this way, from the 
equality || f-j - fjll Lp(f) = 0 it follows that f-j - fj = 0 nod f^ r f2* 

TV* set ^ can have the measure m, that is smal 1er than n, and then the 
integral appearing in equality (3) is understood in the sense of a natural 
(n dùHaelonal) Lesbegue neasure defined on the set & . We do not need to 
discuss sets f that are structurally coaqjlex. Often ^ will coincide on the 
entire space % or will be some one of its m-diasnsional subspace or a m- 
diasnsional cone or sphere belonging to Rq. Finally, o can be a smooth or 
piecewise-smooth hypersurface, consisting of sufficiently aooth pieces, and 
than the neasure of the measurable subset t , on the basis of which the 
integral appearii« in the right-hand side of (3) is defined, is a generaliza¬ 
tion (extension) of the oust cm ary concept of the area of a hypersurface. 

The definition (3) naturally extends also to the case p -o^. Actually, 
if the function f(x) is measurable and is substantially restricted to the 
bounded set ^ , i.e., for it there exists the quantity supVrai|/(x)| - % 

«•< 

called the essential maximum*) | f(z) | on/, then the following equality obtains: 

This equality is proven thusly. Let//e stand for the measure of e. 
If Mf = 0 or /Tr = 0, equality (4) is obvious. We will assume that 0<'Mf< Jt. 
If ^ is a bounded measurable set, then 

Consequently, 

(5) 
lim II f <jf) < Mf. 

p-¥m ? 

«)M_ is the smallest number among the numbers M possess ing the property that 
a Mt of all X for which / f(x)| >M has the measure zero. It is easy 
to see that it does exist. 

- 7 - 



If Í la an inf ini t o- meaaur^la aet, then the inequality (5), generally speak¬ 
ing« is not satisfied (for example, = Pa and f(x) — l). However, this 
inequality can be proven on the assumption that f(x) L_(r) for all suffi¬ 
ciently large p and that lim II f^ T /tv<^. In this casé 

therefore 

fr. 
from whence derives the inequality (5). 

On the other hand, from the definition of the essential «wvIimhb of 
a function follows the existence of the bounded aet o* with positive measure 
such that for all of its points the inequality 1 

is satisfied, where 0 Mf. Therefore • 

” (-'i/- e) (n^i)1^, 

from whence 

Mm Vk 
p + •» p 

Since f is arbitrary, then 

(6) 

Notice that inequality (6) is valid for ary measurable set . 

(4) follows from (5) and (6). 

Thus, it has been proven that is^he function f(x) is substantially 
confined to the bounded measurable set , the finite limit 

t* 

exists, equal to the essential maximum f(x) on J . 

(7) 



On th® other hand, freo the existence of the liait (7) follows the 
substantial confinement of f(x) on t . Actually, if there wero not so, then 
no matter how large the N a measurable and bounded subset ¿ ' of the set 
with positive measure would exist, on which 

Then for any p^M 

\i(x)\>N. 

« / II, 
from whence 

Since N is as large as we please, the limit (7) cannot be finite and 
we reach a contradiction. 

niese arguments point to the utility of the following notation: 

supplementing the notation of (3) for p =o?. In functional analysis, it is 
also customary to denote the norm (8) thusly: 

IIsup vrai (/(.*) i (9) 

We els© will sometimes use this notation, assuming therefore that 

r¿y (10) 

The symbol M(i) will stand for the set of all functions f that have a finite 
norm in the sense of M(c). 

* If£ is 
c , the value 
|f(x)l on f . 

a bounded closed set and the function f(x) is continuous 
of (8) will be equal to the usual maximum of the function 
In this case 

on 

"C (H) 

1.1.1. For the case when the function f(x) = fix.., ..., xj is 
periodic with a 2jt period with respect to all variables, i.e., i? for it 
the identity 

/(*]. 
x,-,. x, + 2.1, x /+i> xn) = /(x„ Xn) (1) 

- 9 - 



ia aatiafied for all or almost all x and 1 = 1« ..., n, than whan thia func¬ 
tion ia normad ve will conaidar aa the aat 5 the n-diaanaional cube 

A<"'-{0<x/<2a; /-1.„} 

of the apace Rq and va will denote the correaponding norm thualy: 

I'/" 
p 

Si (a'"') C' (2) 

The asterisk vill alvaya indicate the fact that the function f ia period¬ 
ic and that ita norm vaa computed vith respect to the cube defining the period 
of the function. 

Uhen n = 1, aa a rule, ve vill vrite /I f IJ II f ^ and //f// ç* in 

place of, respectively, || t ll II * H ¡¿K and f f // ^ • 

The aet of all 27T-periodic functions vith finite norm j/f/Í ^ defined 

(n) ^ 
on IL vill be denoted by.L-.* . The aet of all continuous 2rr -periodic functions 
defined on Rq vill be denoted by the symbol C¿n). 

Incidentally, ve vill omit the index (n) in theae aymbola vhen possible. 

Quite frequently ve vill consider the measurable aet ^ = * c<-- IW 

vhich ia the topological product of the »-dimensional aubapace % (m <£ n) of 
pointa (x1, ..., Xjj) and the measurable aet g* C72 R^q, where Rb_]|1 ia the 

aubapace of the points (xjg+i« •••« xn). 

Here the function apace consisting of (5- measurable functions f(x), 
die vith a period of 27r vith respect to the variables x , ..., xn and 
ble to the p-th degree in the set x > , vhere 1 

- {0< x, < 2n, * — l, ..., m), 

ve vill denote by L#(£ ). The asterisk vill indicate the existence of period¬ 
icity (vith reapectPto /\n) for the functions fé L*(?) and the fact that the 
norm of the function f <5; L#(¡f) is defined by the p equality 

periodic 
si 

2« 2It 

J ' * ' J J ! ^ (^11 • • • ' 1• • • • i X 

. > I'« 
X dxi ... dxmdxnn ... dxnj . 

o r 
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i 1 2 We will *üie generous use of the fact that for a suamable 
periodic function f, i.o.. bolonglng to û< tho equity 

M-e + aH.-lloMIt.. (1) 
P P 

exists for any * ¢5 » just as aouü Lhe equality 

U ç (jf + a) l|t^ (R(i) -1! Ç (Jf) lit, (*,)* ( 2) 

for the functions (f'{x) 6E. Lp(Rn)‘ 

1.2 Linear Mormed Spaces 

1.2.1. Linear set. The set G of elements x, J, %, ••• is called a 
linear set if by some law, to each two of its elements x and y there cor1-®8" 
ponds the element ■ = x + y belonging to G, called the sum of x and y, and if 
to each real (complex) number (X and to the element x<^GJ'h®fe corresponds 
the element c*x<£G, called the product of the number ^hy the element x, and 
where the operations of addition and multiplication are suoject to the follow¬ 

ing axioms: 

1) Jf + y-y + x. 
2) (* + y) + r-* + (y + r), 

3) from x + y = x + ■ follows y = *, 

4) cur + ay — a (x + y), 
5) ax + px-(a + P)x, 

6) a(ßx)-(aß)x, , and 

7) I -x-x. 

The set G is a real or complox linear set, depending on whether the numbers 
^ and ^ appearing in it are real numbers or complex. 

From the definition of a linear space it follows that in it there 
exists a unique element G, the zero element, such that for all x G, the 
following relationships are valid: , 0 - O-x-6. 

Actually, let elements x and y belong to G. We will set 0 = 0X ~ 0*x 
and Gy = 0-y, then 

and similarly 

- 11 - 



From these equalities, based on the axioms it follows that 

from whence 
*+y + 

fl,-ey-e. 

We postulate further that -l*x = -x, then x + (-x) = 0. If x and y are 
arbitrary elements of G, the equation x + z = y has the solution z = y + (-x) 
that is unique by axiom 3), which is naturally called the difference of y and 
x and so we denote z - y - x. Thus, besides addition, the operation of subtrac¬ 
tion is defined in G. 

Linear set axioms give us the right, by using the operations of addition, 
subtraction, and multiplication by a number, to transform the finite sums of 
the type 

u* Ity + ... + \g, 

just as is done with letter-based algebraic expressions. 

Any set G-jCl G containing along with elements x and y, the element 
x + y, where ¿x and p are real (complex) numbers, obviously is in turn a 
linear set. 

A finite system of elements x«, ..., x- of G is called linearly indepen¬ 
dent, if from the equality 

a,*, + ... +0^-6 

there follows^^ - 0 (k - 1, ..., n). Otherwise, this system is tensed linearly 
dopozidoixt» • 

The set of functions C(iT) defined in section 1.1 is obviously a linear 
set. The zero element in C(£) is a function identical equal to zero on f3. 

The set LpOf) of functions f integrable in the p-th degree in the 
measurable set £ is a^so a linear set with a zero element that is a function 
almost everywhere on equal to zero (equivalent to zero). 

1.2.2. Banach space. Spaces Lp(^) and 0(^). A linear (real or complex) 
space S is termed a normed space if to each element x ^ E there is set in 
correspondence a nonnegative number H x II, called the norm of the element x 
(in the space E or in the sense of the space 2) satisfying the foll^ving condi¬ 
tions i 

1) if |l x it = 0. then x = 0, 
2) Il x + y 1/ <lk l! + Il y II (x, yà£ e), and 
3) |i C*x 1' - h'l |l x II , 

where xér E and & is an arbitrary (real or complex) number, 

From 2) follows the validity of the inequality 

(x, ye£). 

- 12 - 
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Hie normed space E is called complete if from the fact that for the 
sequence xn0^ E (n = 1, 2, ...) the condition (Cauchy) 

lim |!xn - xm II = 0, 
n. w ► 

is satisfied, there follows the existence in E of the element fcr which 
the equality 

lim I'Jfn-Jfoll-O. , V 
n 

is satisfied. 

The fact that property (2) is satisfied can also be written thusly: 

>im xn = .r0l (3) 

which states that xn approaches x0 with respect to the norm of the space E or 
in the sense of the*metric of E. 

A complete linear normed space is also called a Banach space or a 
Banachian space. 

The function set C(£) is obviously a Banach space. It is also well known 
that the set of functions Lp(£)(l defined in the same section is also 
a Banach space. Here C(r~) and !,_(.") are real or complex spaces, depending on 
whether they consist of real or complex functions f. In the fonner case, f can 
be multiplied by real numbers, and in the latter — by complex. 

1.2.3. Finite-measurable space. The setter. E is temed a subspace of 
the Banach space E if it is a closed (relative to the norm [| • || ) linear set. 

Let the elements x-j, ..., x^ belonging to E form a linearly independent 
system. Hie set of elements or the type 

I 

(1) 

where c = (c-j, ..., cn) is an arbitrary system of real (complex) numbers, is 
called an n-dimensional (finite-measurable) space. If 597 is part of E, then 

is s^so called the n-dimensional space E, and the system of elements 
x-|, ..., x_ is its basis. To justify this definition, we must show that 
is a closed linear set. The linearity of ^?n is self-evident, and the closure 
will be established below. 

If along with the element y defined by equality (l), still another 
element 

y 2 c'kxk, 
i 

- i? - 



is given defined by the system c'= (c^, ..., c¿), then, obviously. 

Hence it follows that 

lim P y — y/1| = 0. 
! c-c' i >o (2) 

Property (2) means that the element y depends (with respect to the norm) 
continuously on its defining coefficients c^.By virtue of the inequality 

from (2) it also follows that 
lim II / II =* H y II- 

ii>o 

(3) 

Thus, the norm IIy'l-^(^1.0 = 

is a continuous function of c = (c^, ..., cn). 

The minimum of this function in the (closed and bounded) set defined by 
the equation 

is reached for some system 
to the number 

of coefficients c° 

{ ='l)(c "^O, 

and is equal 

which is necessarily positive because the system ..., xn linearly in¬ 
dependent . 

Let us take an arbitrary system of numbers c - (c^, 
ana set , c 

^-TTT- 

•••, cn)(lc |>0) 

Then by virtue of | c11 r 1, the inequality 

n 

! 
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win obtain, which after multiplication of the left and right sides tyj |c| 
is transformed into the inequality 

|c|o|¿c,*,|. U) 

Now it is no longer hard to prove that the linear set is closed and, 
thus, is a space. 

Actuany, from the fact that 

(5) 

y,= 2c«'>*4 (/-1. 2. ...) 

and 
|y/-yml|->0 (l,m-*oo), 

it fonows by (4) that 

I c(" - c<m) ! < X|| y, - ym II-► 0 (l, m-+ a»). 

where = (clj1), ..., c^1)) (1 = 1, 2, ...). Therefore, the limit 

(6) 

exists, from whence lime“'-*'”, 
l > oo 

lly,-yjl ->o (/-><»), 

(6) 

(7) (7) 

where y.-?.nX,ŒWn. (8) 

(8) 

Let us note yet another important property of tbe finite-measurable 
space stemming directly from inequality (4) • It is that ary bounded 
(normwise) set is compact in 27n, i.e., from ary sequence of elements 

y,<£r iHi (1 = 1, 2, ...) can be distinguished a sequence converging (normwise) 
to some element Wn. Actually, from the fact that elements y defined by 
equalities (5) foim a bounded set, it follows by (4) that the Sectors cu/ 
are also bounded in the set. But then for some subsequence of natural number 
1 equality (6) will be satisfied for some vector c'0' and so will the rela¬ 
tionships (7) and (8). 



Note. In special courses on functional analysis it is proven that, 
conversely, if any bounded set belonging to a given Banach spaceWis compact, 
then')P is a finite-measurable space, i.e., all its elements can be written 
in the form oí a finite sum (l), where the elements jl,, ...» 3½ form a linearly 
independent system. 

t\ck\<n\c\, 

Since 

then 

therefore, if we assumo that 

.M > ||jc»|| (*->.«)• 

then, noting also (4), we get 

i i i 

and wo have proven that for any c^ (k “ 1, ..., n) the inequalities 

n n n 
I I X'1 j,1 - . |l \ |,2 

where ^ and !! are positive numbers dependent on the property of the norm 
definea in Wn> 

If another nom I! • I1 ' is introduced into this n-dimensional set, and 
the new norm thus defines another space * we get the new inequalities 

(10) 

where )1 ana M' are other positive numbers different in general from 
and M. From (9) and (10), it follows that 

' V 
XM'n 

n 

mm 

- 

I (h) 



1.2.4. 
two matbod8, 
constants c-| 

Equivalant norned spaces. IT a linear set is normed by the 
which leads to two normed spaces and E2* and if two positive 
and c2 independent of x £ , £2 exists, such that 

Cl l|x||£| < llxllsj < cj llxBt, (1) 

for all X «=■ , then the spaces and E2 are termed equivalent. 

As a rule, we will not distinguish between equivalent noms, i.e., we 
will use the same notation for equivalent norms. 

It follows from inequality 1.2.3 that any two norminga of an n-diaen- 
sional linear manifold lead to equivalent normed spaces. 

In further discus? Ion, sets of trigonometric or algebraic polynomials of 
one variable of given aegreç, v or of n variables with given degrees , ..., 
^ or simply a ayate* s = ..., of n numbers normed by any given method 
will usually figure as finite-measurable subspaces. 

1.2.5. Real Hilbert spaces. let H be a linear set and bring in corres¬ 
pondence to each two of its elements f, <? a real number (f,^) — the scalar 
product of f and f , exhibiting the following propertiest 

1) U#f),^ from (f,f) = 0 it follows that f = 8, the aero element 
in Hj 

2) (f, f) = (v1, f); and 
3) (ct^ + ) = ci(fi»^ ) + c2^2* ^ whatever be the real 

number c.|, c2 and the elements f, , f1, and f^^- H. 

The norm 
Il/II-(/. l)m 

is introduced in H (it is not difficult to test whether this expression is 
actually is the norm). H is made into a normed space with this non. If H 
is a complete space, H is called a Hilbert space (real). 

Notice that for ary real ? and f, ^ éE. H 

0<(X/ + «p, i/ + «p)-^(/. /) + 21(/, <p) + (<p, <p), 
therefore 

1(/. ¥)!<(/. /)1%. ¢)^-11/11 Nil. 

The space Loi^) of real functions measurable on a and with integrable 
squares on ol with the scalar product 

(/. q>) / f{x)y(x)dx (/, ¢6 4,(0)), 
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serves as an important example of a real Hilbert space, 
other examples (cf, for example, 4.3.1 (4)). 

We also cone across 

We can easily see that for any f and fc-' H the equality 

i; + <r f +11/ -<pl 

nr f0^1^ a truth from geometry: the sum of the squares 
üf a par^-8lo«ram e(lual to 8Ua of the squares of its sides. 

. P0 ^nv-) when p f 2 is not Hilbertian, because functions ti&> can bo 
shown to belong to it for which equality (l) is not satisfied. 

.2.6. Distance from element to a subspace. 
Let >77 be a subspace of a Banach space E, and let y 
y to T/ will be the term for the lover bound 

Best approximation. 
«T- E. The distance from 

£(>)» inf Hy-jrll, 
jrc IV (1) 

extended to all elements x cf T. We will frequently, following the convert 
♦¡i0! afcepted the theory of function approximation, called the number E(y) 
the beet approximation of the element y by means of the elements x^-' 7?. ^ 

i. cai? be tbe caae that in there exists the element x* such that 
for it the lower bound considered here is realized, i.e.. 

£(y)- min \\y-x\ 
MG IN (2) 

, In taf ease the element x* is* called the best element, approximating y 
by means of the elements x^- . ^ ^ J 

5« A.lt ÍB^°fíaíli to note the quite general cases when it can be stated 
aLthlr”06 hi*1 the S®?1 ôlement 1x1 the Probie® (1) does exist. Moreover, 
gi^eS problM8a 18 °f inter08t: whether the be8t element is unique for the 

It is not difficult to see that if W = ia a finite-measurable 
ãl^te ^ "hitraiy normei space E, then for ary element j(f.z the best 
element approximating y by means of xe /¾ will always exist. Actually, let 

£(>)= inf ||y-4r||; 
tu IV. 

th£t there exiatS a (ailüaizin«) sequence of elements x^^d = 1, 2, ...), such 

'y-jr"’!- £(y) tr, (f,>0. f,- ^0)- 
/ ► 
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This sequence is bounded and, therefore, ^"ia not 

fif^br^îLtT2aÏÂ “ approximating y means of 

x^ei 'n. Generally speaking, it is not unique. 
n* 

If yv is an infinite-measuraoxe vnou i . + at all. These 
space E then i n the prebl«. (1) the best element may not exist 
^ . * „_j *_in the anaces Lex 
ipace E, ^nen in i.no pi-uu+wu \,, -- ^ L(P). However, when 
,fleets are found, for in th. »pao^W bMt fuic[ion 

) satisfies the inequalities 1 <• P • »ubanace L^i?)• Moreover, 
»ccurs for ary function f <ri LpC ) a aIV thMe facts Ire proven below 
* this casTthe hart ^.t eî^nt exists, then It 
In 1.3.6. In the spaces Le(^) and L<.b. L/, .. incidentally, cases of 
Ls not always unique (of. 1.2.7, examples i) ano 2)). Incldontai y,^ ^ ^ 

the uniqueness of the best function are . 3Ubapaces ''171 and the appro- 
th.se ca», depend on the special properties of 
timable functions f. These questions are not tauen up in ui 

. 2 7 Example 1. Let the function f(x) = sign x. We will approximate 

-, m lb.'™trS L(-1 1)*) hi means of the constant functions v U) - =* f e'> 
:l íill^seârch1?OT thé1 constant 2 for which the foUowing minimum will be 

attained 

min||/-c Il<-i +i) 
■ min 

i ; 
j IfW- \\dx. 

It is not difficult to see that the minimum is attained for ary constant 

I that satisfies the inequalities t "1* 

From the viewpoint of the notations that figure in the^preceoiníjlection, 

it can bo stated that we approximated the function f 

ar “ “• »V» » » 

Exaranle 2. We will approximate the functions f(x) - sign x now in the 

metric^ 1-1, *1) - M(-1. "D ^ the linear functions 

¢(.1)= Ax + B, 

where A and B = arbitrary real numbers. 

It is not difficult to sec that 

mini1 f (v) — Ax - B 'Ik-i m _ ^'g 
A.B 

max \l(x)-Ax-B\ = 
-1<r<l 

= Il f (.ï) — i-l, +1)> 

*) Lp(a,b) stand for LpC1), where f 
is the segment /a, b/. 

- 19 - 



where can be any number satisfying the inequality 1-JI i. 

Thus, in this example as well the best function is not unique. 

1.2.8. Linear operators. If E and E' are Banach spaces and there 
corresponds to each element x c 3, by means of some law, the specific element 

y = A (x), 

belonging to S', then we say that A is an operator reflecting E and E'. The 
operator A is linear if, whatever be the elements x.. and x„ cz E and the numbers 
ci and c2 (real or complex, depending on whether E and E' are real or complex 
spaces), the following equality holds: 

A (c¡x¡ + c2x2) = c¡A (jr,) + c2A (x2). 

The linear operator is called bounded, if there is a positive constant M 
such that the equality 

for all x <3- E (1) 

obtains.. The smallest constant M for which this inequality is satisfied for 
c' E is calaed the nor® of the operator A and is denoted by the symbol 

¡I A ll. The norm of an operator can also be defined as one of the upper bounds: 

1 Mip 
¿ X • 

A (x)lle. 
sup 
x r.-' 

"/1 (x)\\E, 

v' .The operator A is called wholly continuous if it maps any bounded set 
c E onto a compact set belonging to E'. In other words, whatever be the 
bounded sequence / x^ | of elements E, it is possible to select from it such 
a subsequence j x^j ana such an element yo ^ E' that 

tim A (x, ) = y0. 
k >00 * 

If the space E1 is finite-measurable, any linear bounded operator A 
mapping E onto is a wholly continuous operator, since A maps any bounded 
set of E onto a bounaed set of E', and the latter is compact by virtue of the 
finite-measurability of E'. 

^Let at an example. Let S as before stand for a Banach space âhd 
let -. be its finite-measurable subspace. 

. Further, let there be brought into correspondence with each element 
x ~r-r only one element x* - A(x) that bests approximates x among the elements 
utr / , in other words, let A(x) be the unique element of JV for which the 
equality 

min \\x - u !l£ x - A (jt)||£. 
u e J)l 

is satisfiea. 
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Then A(x) is an operator napping E onto $)1 , This operator, generally 
speaking, is nonlinear (it is linear if E is a Hilbert space), but is wholly 
continuous, as is evident from the following argument. From the inequality 

II >4 (*) ||f - II jr ||£ < I! jf - /1 (X) ||£ < Il X ||£ 
it follows that 

IM (^)11^211^. 

Hence, it follows that the operator A maps a bounded set of element of E onto 
a bounded set of elements of #/. But the latter, by reason of the finite- 
measurability of ^7/, is compact. 

Note. The definition of the wholly continuous operator can be extended 
also to multi-valued operators mapping E onto E', i.e., such that to each 
X tziz E there corresponds, generally speaking, more than one element y = A(x). 
lhe multivalued operator A is called wholly continuous if, from ary bounded 
sequence of elements x^ 6- E a subsequence j ant* suc^ specific values of 

the operator A that the sequence ) A(xi ) ( converges in E' can be separated 
out. ' ^k J 

This example of the operator A(x) of the best approximation of the ele¬ 
ment X by means of elements of a finite-measurable subspace 'Til in the general 
case yields a multivalued operator, which is wholly continuous in the above- 
indicated sense. 

1.3 Properties of the space Lp(f) 

Ve have only formulated and explained a few of the properties of the space 
Lp(t“)* referring the reader for their proof to other sources (cf. notes to 
chapter 1 at the end of the book). 

1.3.1. It was already pointed out in 1.2.2 that LpCF) is a Banach (real 
or complex) space« Ihus, the following properties are satisfied for elements 
of the space Lp(f): 

1) the norm 

of each function f<£z L-C”) is nonnegativ 
function fQ equivalent pto zero (f0 = 0)j 

Lp(~) is nonnegative and equal to zero only for the 
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«hera c is an arbitrary (real or complex) nuabev; 

4) from the fact that fv and * p 

/t - fi'\ >0 (k, l * to), 

there follows the existence of the function f# <" L C1* )* for which P 

.f;' '/• ï ^ (1) 
1 » . r 

Properties l) and 7) »re self-evident. Inequality 2) is called the 
'.inkcwski inequality. It can be converted into an equality if and only if 
the functions f. and ^ are linearly dependent as elements of the space Lp. 
Property 4) is the theorem of the completeness of the space Lp. 

We will write Mr (X) = u0(jc) + w, (jr) + ... (jc e if) 

and state that the series appearing in the right side of this equality converges 
in the senae of Lp(r) to its sum if 

lim 
,v 

iff 

-0. 

The “•Lrlc'.'ski inequality is extended by induction to the case of N func¬ 
tions, and then it takes on the form 

2/. < 2 !l/.»,*• 
¡I I l'lp (J) I p 

From which it is also easy to aerive the inequality 

(2) 

V 
I 

^ (*)> (3) 

corresponding to the case N r c'. It is read thusly: if the functions 
fv , L (:) (k- 1, 2...) and the series (of numbers) in the right side of (3) 

K ' p 

converge, then the series f f_ + ... converges in the sense of io ) sonc 
function (belonging to Lp(_')), which is symbolized by f^ and inequality 
(1) holds. T 

Let us note yet another following fact we need to have. If the series 

'(X) f/..(*)+ ••• 



converges in the ordinary sense almost evervuhArw on P » ,. 
moreover, it conyergee to f, in the eeiue oTLíM then fii^0 f“?»!1“? f i"“ 

ñVñ2^” ?" ‘ ' ActuaUJ- f«* «» conditSi, the^Sn s *) of íLlSÕÍ 

tactiona of . real^varieile, íheíroxíêÂ,^''6 
exes n-,, i^, ... auch that S^ix) converges in the usual sense 

almost everywhere to f.U) on £ and, since S^U) almost eveiywhere also con¬ 

verges to f(x) - f#(x). 

with ÀbJÜS ínft\8Í?Vf ^eqXXalLty (2)i at fLTat an operation of sumuation 
° the index k waa carriQd °ut, and as a result the operation of 

int^to£Ld0rmRT U?edi ^116 111 the aide thoae two operations íere 
s^îOf OÎOr the iOLVOÍ i8 ineqUalit^ whan operaUoO o? 
variable k. th k 1 replac0d ** the operation of integrating over the 

givon on^à^meaourablo^set W«. ?) 

and y - (xm+i, ,.,t x^), the inequality 

ix : 2 : - V where x = (®. y)> u - (xv.. 

f J/í(«, >i)ífy! d« j < ( / J I/f («, y)l'’d«^ dy, 
V ï: I / ï*. W, / 

1 <p< 00, (1) 

rational “ff Tf faf?" ut0°d f9“0 that U its ^ »We ia 
and thfi; 1 ,'i f aT’,t 011 J T ' 2 thor0 »xi*t» «” inner integral in ’ 
“tifT ?íf?0 “ 0f" integral in 2 > then the left aide alfo is 1 
rallona!, the left side does not exceed the right. 

following * situations: ^ W particular, will often be used in the 

K (/ - x)¡(t)<lt T dx\' ” 

Me 

( A (/)/(/ f x)ilt P(lx)' P^. 

< Jl A'(/)1 Í/'/(Z + x)\l’(1x)'Pdt~ 

= J I A'(/) |r//f J I f(u) \p du)' P - K ) ,,, f\lL 

\< P< oc, S ir. / (A*). I œ I r(R i j. 

where 

) Here and in the treatment below { -T / 

- 2? - ß 

(1) 



It* J imctiona K(t) nnu i‘(t) arc periodic functiono with a 2n perio i 
•in . 1:' K c=- L(0, 2ít) unit f Lp(ü, 2tr), thon tho analogous inequality 

K(t~x)f(t)dt 
f \MP 

dxj <||/C!lt (2) 

(2) 

holts, or n sLailur inequality for periodic functions of n variables. 

1. '.4. llolucr's Inequality, if f e-i Lr(&), Lq&) and 

1/u ^ 4/q 1, v'hori 1 p < <.o "), then Holder's inequality 

(«• 
(1) 

ettains. It converts to an equality if ana only if f-j and fg ore linearly 
t:epon:ont. 

not reproducible 

r) V.hcr. , it is assur.ea taat 1/p 0. 
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1.3.5. Clarkaon inequality«»). Unifox* convexity. Let f., 6r Lp(£), 

U é? IJZ), and VP + Vq = V vhAre 1 ^ P than the Holder ^ 

+1V1- C, w< ï " ^ l£'°"+^ ^ ' (d 

c2- -p- 

equality 

If however 1 p ^ 2, 1/p + 1/q = V then 

Khan p = 2, JLnequalitiea (1) and (2) convert to equalitie» (equalities of a 
parallelogram). 

It is said that the Banach space E is uniformly convex, if from the 
fact that 

max (1 -Jor^ + O-00^1) 
)<a<l 

where ( xjn)ll = = 1* 11 follf'w8 that 

’0 1 (uW — m* I 

»*) Cf, for example, the book by S. L. Sobolev ^,4_y 
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I rh frV“ (?i‘rlt»?n (1) md <2), It follow« that the apace 
U < p< O5) ia uniformly convex. Actually, let 

II’l^*)"INI • 

nnrl 

Then, from (l) ana (2) it follows that 

(3) 

where ^ = p in the case of (l) and ^ = q in the case of (2). If now 

oJaax (1 - |a/|»> + (1- a)/<»>0 0, 

then 

BUî,theLthe aide of (3) tends to zero, and with it, the left aide aa 
well. This oeana that 

i/r°- 

1.3.6. Theorem. Let E (in particular, L-ii'’), 1 p <cxj ) be a 
uniformly convex Banach apace, p? be ita aubapace, and y ^ E - ^ . 

r by ^ 11 ^ ^ ^ .pproxihating 

Mm* (1) 

Proof. Let 

inf lly-jrll-d (d>0); 
sa« 

then there exists a minimizing sequence of elementa z fP for which 
n 

\\y-xn\\ = d + in (e„ >0,e„>0). 

elementaÄ8aaBe *' stand for “V el«®anta at ftf . Obviously, the 
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ara unique nona alao for angr a,ß>0,o + ß-1. 

0 < 1 - Il a®. +1». Il - 1 -1 ( ÏTÏT ^ ^ I " 

jlIjl-VIK ->-W 
_ + _ 
«. d + *m 

d + lm J n, ■»-► -*•0, M * 

that ara uniform vlth raapact to the û( and ß conaidarad. 

For this caaoj by the definition of a uniformly convex apace 

But 

^---11-^(7^7-7^)-(7717-7^-)1- 
7^7--3^! + o(>)-7ll-»«--»«i 11+0(1) (n, m-^oo), 

a Inca alanesta x^ are bounded with raapaot to the non* Ve have 
proven that 

II •*» — xm II n.m*-* 

Owing to the eoiqplataneaa of E and the cloaura of 0”. there exiata the 
element +<£ 'Vl auch that 3¾ —^ u and obvioualy, (1) ia aatiafied. 

Mow let yet another eleaent u' exist for which (1) ia aatiafied. For 
0 ^c* •< 1, we have 

d < II on + (1 — a) > I) a II a — y II + 
+ (1 - a)!!«'-y II-oui+ (1 -a)<f-d. 

Consequently j || ^ u + (l -0() m' - y // = d. Thus, 

!?“J0 17£ + (|-o!£7i|"1' 

\\-\\ where 

0<a<l 

u ■ y h i/*' “ y 
= 1. Due to the uniform convexity of the apace 

E(x, 
/n\ m - y u' - y 
1 ) ---, xln) ---), we obtain 

d ¿ d 

i.e., u = u'. 

g-y a'-: 
~T~ ” i 
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1.3.7. Va often even have to retort to uting the following facts per¬ 
taining to the theory of the functions of a real variable. 

Let f, fk<5 Lp(£) (k = 1, 2, ...) and 

Hm 11/-/4 (X)-° (*-oo), (l<p<oo). 

» «. » 

(1) 

lim /^ (jf) ™ f (x\ nnuTu M --_ »_ 
*/*" ‘ 

■•asure, such that f and f^l = 1, 2,...) on g are finite and equality (2) 

is satisfied for all E » whence it easily follows that if along with (l), 
for SOM p# there exists li* || f#-f. ||. = 0, then f« = f, i.e., the 

k— 
functions f and f* are equivalent in c • 

If the oeasurahlo sjÿt = is the topological product of two 
aeasurable sets and £^ eech point can be represented in 

the fora of a pair x = (y, s), where ? £ E “d ■ then we can assoie 
■fen*+, I Ä 

In this case /(*)-/(**), /*(s)-/»(y, f) (*-1,2, 

where 

(3) 

are c ^~su—able (belonging to 1(^)) nonnegative functions. 

From equality (l) it follows that 

and, t 
P = 1 

we must assume 
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. Fren «quality 1.3.7 (i), wh«» th« ■•«•urabl« ««t 
th« topolofleal product of th« ■aaaurable seta 6 1 and 

2» it follows that for uma ribsoquonc« 

alaost all <%y th« «quality 

of natural nuabors kj for 

lim \f(y, *)-/*,(>. (D 

is satisfi«d. 

Proa the prov«n lama the not« at th« beginning of section 1.3.7 
d«riT«s also the following !«■■«. 

1.3.9. Lana. Ut the set = ^ drfiawi» as in th« pr«- 

cediag lena and let th« following «quality b« satisfied forth« seouenc« of 
functions fk£ Lp0 (k = 1, 2, 111) and th« function f(f^ ifl)) 

¿mUZ-M^-O 0<p<oo). (1) 

L«t, noroover, for sen miuhr p’(l^ p'^o^ ), in general distinct 
freu p, and the function f*, the «quality 

be satisfied for alnost all y <5 1 • 

Then f = f#, i.«., functions f(x) and f*(x) are equivalent on & . 

Proof. By virtue of the preceding lean for sen subsequence of natural 
nuBber {l^j and on son set £ y distinct from J 1 on a set of neasure 

(in the sense of ^) tero, equality 1.3.8 (l) holds for all ^^ 

can bp assumed that equality (2) also obtains for all y<£: ^. And so, if 
y^ f then (1) and (2) are satisfied for it simultaneously. 

But then equality f(y, s) = f#(p, s), obtains for almost all s é;¢^,1.9., 
almost everywhere in the measurable set £= ^ x 

Note also the following theorems. 
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1.3.10. 7boor«n (P. Patou)*). If a aaquanea of ■aaaurablo nonnagative 
function« {fn| alaost eveiywhare on tha Maturahle «at R convarga to 
tha function F(x), than ti 

J Prf4f<«Up|J /.rfJfj. 

  

1.3.11. Theorea**). Prca a aaquanea of function« bounded in 
the aanaa of Lp(f) (1 <Tp <<X>)i 1 

Jim J /*<p dx - J fodjc 
* f 

hold« for argr function« f €. L(¿f) (1/p + 1/q = 1). 

1.3.12. Iha function f L_(5) is callad continuou« in tha whole in 

II/(*+.vW(jc)I^(,4)<. 

only whan | y |<^cT. (Here is tha «at of auch z , that z + y 
for any y satisfying the inequality i y I < <3.) 

aeoMiii. Any function f(z)^. L_^, i < p<:oo i, continuou« in the 
whole in LpOf). p 

1.3.13. Ve will widely employ also the following inequalities for 
1 < P oo 5 

(1) 

(2) 

*) Cf, for example, the book by I. P. Natanson ßj. 
**) Cf, for example, the book by V. I. Smirnov ßj- 
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where au and by are arbitrary mabera. They are called, respectively, the 
MlnkowaEl Inequality and the Holder inequality for suns. 

It Is established by (l) that a linear n-dimensional manifold of 
vectors £ = {ç-p •••* Çn? with the norm 

(" \l/p 
2it.r) > i<p<oo, 

Is a norned space. In particular, fron 1.2.4 it follows that for aiy P and 
P' (l ^ P < P'^.00 ) 

ij* (3) 

where c. and c2 are positive constants, independent of ^ . Of course, these 
Inequalities ¿ can be derived directly, by establlshlnf. the exact constants 
Ci and Cr. . 

LÁ AamüJt tf fungtlPM Accordtog Ja AdakgLl 
Let 

o,°l"0' 

stand for a sphere in R = with radius 6 and its center at the zero point. 

Let ÿ (t) be an infinitely differentiable even nonnegative function of 
one variable t (- go < t < oo ) equal to zero for 111 such that 

(1) 

where 'Kn is the area of the unit ( (n-1 )-dimensional) sphere in n-dimensional 
space. 

He can take the function 

¢(0 

as where the constant ¿n is chosen so that condition (1) is ^acisfied. 

*T S. L. Sobolev . 
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The fonction 

<Pe(*)-q>(*)-i|>(l*l). e>0, (2) 

is infinitely differentiable on R (noting the evenness ofU), has its carrier 
/.nositel_7 on Ge , and satisfies the condition 

r J -pr J 1. (3) 

Let g CZ = R be an open set and f ^ Lp(g) (1 ^ p ^ 0-> ). 

Assume f = 0 on R - g. The function 

/.w'/,..(•*)-■? J 
)«» (4) 

is called ¿-averaged according to Sobolev. This is obviously an infinitely 
differontiable function on R. 

Now we direct our attention to the following important property of f : 

117.-/11/-0 (s-*0, Ml,-IMIVP), i<p<oo). (5) 

It shows that for a finite p (i ¿ p ^o^>) a set of functions infinitely 
differentiable on R and evexywhere compact in Lp(g)« i.e., regardless of how 
the open set g is constructedj for each function f 6E3 L (g) a family of 
functions f¿ (its Sobolev averagings) infinitely differentiable on R can 
be specified such that (5) is fulfilled. 

Actually, by (3) 

/. (**)-/(*) = 7 J* t(—^-) f/(u) 
ß 

~ - J ? M U (x - eo) - / (jf)] dv, 

from whence, using the generalised Minkowski inequality and since <f has a 
carrier in cr , we get 

II /. - / IIp< J V WH/ (■* (•») Wpdv < 

< sup ||/(jr-o)-/(jf)||,-*-0 (e -* 0). 
i*i <» 

(6) 
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For th« case p = oo property (5) is not satisfied, 
consider that g = R and f(x) is uniformly continuously on 
can be rewritten as 

However, if we 
R(fec(R)), (6) 

11/,-/11 < »up |/U-o)-/(jr)|-*0 (.-0). 
l*i<* 

Notice also the inequality 

II/* Up < p- J V (t)h /(*» - «) Up - H / % d<p<oo). i (7) 

is 
on 
of 

function*< Let gd R be an open set. The function (x) 
finite in g if it is defined on g and has a compact carrier lying 

N* ^®e carrier of a function is the ten given to the closure of the set 
all points, where it is not equal to zero. 

functions 
(1~ P then there exists a sequence of 

T ^ infloitely differentiable on g for vdiich the properties 

11/79111,-+0 (/-*>00), 

|«p,(x)|<sup vrai|/(a)|. 
••i 

are satisfied. If f simultaneously belongs to Lj, and L_i(l ^ 
sequence Joan be taken the function sought for. ^ 

p, p'^oo), the 

Proof. Suppose 0 and select an open bounded set fid fiez g 8ac^ 

ll/Hi.p(«-a)<'2‘* 

Let d stand for the distance from XI to the bound g (d >0; if g is not 
bounded, then d = 00 ). Let us further introduce the function 

fa (•*) “ 
fix), xeQ, 

0, X&Q. 

I!f/l?Vera*iagA{r . = ^ wh#n f ^ d i* a finite function infinitely differ 
entiable on g, for which the inequalities 

II / \p <«-Q)+ I/o ~ /0. ,|lp (.) < 'î + 'a' " ’i* 

are jatisfied if and only if £ is sufficiently small. 

Further (cf 1.4 (7)) 

I /0. e (*) I < sucrai I /a (a) | < »up vrai j / (x) |. 
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Therefore, If ^ = 0, then essuaiig that <f = and Si =^, we obtain 

the result that the fonctions - fj^ ^ satisfy the requlrenents of 

the lena. Here, If aiaultaneoualy f ^ Lp, Ly then for both p and p' unique 

û J and and therefore, also can be chosen. 

1.4.2. Leona. If f Lo0(g)(a neasurable function substantially 
bounded in the open set g ^ R), then there exists a sequence of finitely 
differentiable functions gg finite In g that satisfies the conditions 

Hm <p, (jf) - f (x) noHTu eciody na g, alnost everywhere in g (1) 

(2) l<P< (Jf)|<supvrai|/(x)|. 

Proof. Let g|| stand for the intersection of g with the sphere |xl<N, 
and let ^ decrease nonotonically to sere (N = 1, 2, ...). Since f ^ L(g„) 

then ve can specify a function f g finite in g^ and therefore in g such that 

and I fs (x) I < sup vrai I/(x) |. 

(4) 

Fron (3) and (4) it follows that fron the sequence ff«} can be separated 
a subsequence subject to the requirenents of the xsssia. 

US fíttrtlVM 

Let us introduce the class S (L. Schwartz/T 7) of fundanental functions 
<P= <P(x). The function <p of class S is defined on R, is complex-valued 
(<? = * #2' iB lnfinit«3y differentiable on R, and 

is such that for any nonnegative number 1 (sufficiently integral 1) and non¬ 
negative integral vector k = (It,, ..., 1¾) 

sup (l +1X f)I (x)| * X(/, *, ç)< oo, 
where 

<P (»), 
dr*' .: d?’ 

1*1-s*/. 
/-1 

(1) 
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A«*»» Lp = Lp(R). Fron (ï), in particular. It follows that 

If^WKjxiO, *, <p)< oo, 

i.sv the function S is bounded (<?(*)& L^). Further, ö?ik)^L 
(1 ), because r r ‘ P 

Jl9«*>(jr)r^<cJ 

< *, <p)J 

(2il 
l + l*l p 

(l+|Jïl)"41 

à* . (n±l . \ 
(1 +|x|)"+1 “C2X \ p • k,V <oo, 

where n = diaensionality of R. Thus, for any 

»««t, *, »). 

Moreover, 

(|jh->oo). (3) 
-- ^ 

If P-, f (F S (m = 1, 2, ...) and for angr nonnegative integral nuaber 1 
and integral vector k 

then we will write <!>«-♦ ¢(5). 

Ue will state the following about the function 1//' infinitely differentiable 
on R: it exhibits polynomial growth if for any nonnegative vector k there exists 
1 5 l(k) such that 

I *<*>(*) KcO+lxl1), 

where c does not depend on x. 

If f ^ S, then YP& S, because 

(M—(k¡, ..., kH), 5-(4), ..., Sn), 

#1(4-1)1 * 
/-1 

- 35 - 



and If a la a natural nunber, then 

1(1|(l+ |jrr)(l+|x|'<,,)«P(*-,|< 
<c,I(l +1r'w)I<c2K(m + /(5), k-8, if). 

Moreover, these inequalities show that if 

¢/11.96.5 and <fm-*v(S), then ^/11-+11)9(5). 

The Fourier transform of the function will be denoted bgr: 

Èvj. 

and tie transform that is inverse to it, as: 

Let us show that if <p ^ S, then Ç , ¢=: S and whatever be the non- 
negative nunber 1 and the integral vector k, 

A 

(1+1^)19^)1^/. * S *(/'.*', 9). (4) 

where C]_^ is a constant dependent on (1, k) and ¿F^k dependent on (1, k) is 

a finite set of pairs (l1, k1 ). . Here it follows that, in particular, if 
then pa —» ^(S) and (S). 

Actually, 

9(*>(Jf)- J 
where 

Obviously, yU) S 

(l+|jr|K(I+|r,|+...+U,|) 

and 

<cÍtítÍf^'x(i*,+',+2, °' 
<c,x(|*| + n + 2, 0, 9). 

(5) 

(6) 
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Farther, for j Xj ) -£=1 

end for ¡x^l^l, aesanlng that Âv la part of R, where IK, and consider- 
N J 

ing that (of (3)) that Y-* 0 when = we get 

t-lui ffmN 

n««) 
+ 

-,Udl. 

i(n«) <0,1X1' *1-: 

(7) 

Since 
k - 1 = 0), therefore 

(when k = 0, it nuet be aasoaed that 

I X]W ^Mx)l<cO;^^^'l+lftl + 2’V)+' 
1 + 1 +x(n + |ik| + 2,^(p))^. 

(8) 

where tj is the unit vector oriented along the xj axis. 

Frosi (5), (6), and (6) it follows that 

(i+i*i)ir'(*)< ii . 

<cn^x(n+ |*| + 2, 0, (p) + + l*l + 2' e)' 

• • 

and we have proven inequality (4) for any k and 1 = 1. For an arbitraiy 1, 
the proof is analogous; it is only necessary that integration by parts 
instead of once, 1 tines be carried out in equality (7). 

AMO» for €-■ S») (Çi 4). J v{x)î(x)dx. 

From the theory of Fourier integrals, it is known that 
(¢, ¢) - (<P. ¢). (¢- ^) " to* ♦)• 

*) He direct the reader's attention to the fact that in the integrandj^is 
taken without the sign of complex conjugation (cf. V. S. Vladimirov ßJ). 
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The functional (f) that ia linear and continuous on S is called 
a generalised function (over S). 

Thus, if <p2»(Pxk’>(f) S* C1 and c2 «“■b*1’® and^>m->^(S), 

^ (,f, c,?, + t2<p¿) - c,(f, q)|) + c2(f, <pj) 

(/. <Pm) >(/. <p) (m->oo). 

The set of all generalized (over S) functions f is sjnbolised by S'. 

The derivative of f ér S' with respect to the variable Xj is defined 
as the linear functional 

If f(x) is an ordinary neasurable function defined on R and such that the 
integral 

(/. q>)= j/(-»WW* (9) 

exists for all Ç ^ S, which proves to be a linear functional over S, then 
the generalized function defined by equality (9) is identical with f(x). For 
example, iff^L(l ^p ^ oo ), then integral (9) is a linear functional 
over S. Actually, *5 

Jif (JC) <P (X) I dJC < ( JI /1' dx)'"> ( JIT r dx)Vq « 

<cX(iL±lio, ¢)(-1 + -1-1), 

and therefore, integral (9) is finite for all <p&S and is continuous in S. 
The linearity of (9) is obvious. 

If f(x) S, a R, and c f 0 is a real number, then f(x + a) and 
f(ex)íES1 are defined, respectively, as the functionals 

(/(x + a), «P (Jf) )-(/U). 1> («*“*))• 

ncx)--çx(H*i »(f))- 

If f is a generalized function, andáis an infinitely differentiable 
functions of polynomial growth, the functional over S defined by the equality 

(N>. <P) - (/. W), 

obviously is also a generalized function,’ denoted by f "^or by ÿt(fÿ =ÿ'f). 

If and V2 are two infinitely differentiable functions with poly¬ 
nomial growth, their product exists the same property; here it is easy to see 
that if f é? S’, then vf ... 
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Clearly 1 if f(x) is an ordinary fonction belonging to L, and\Kx) is an 
infinitely differentiable function with polynomial growth, the ordinary prod¬ 
uct f(x)0p(x) corresponds by the rule of identity to the generalised function 
fy (to the product of the generalised function f and i^). 

Hie Fourier transform (direct and inverse) for f^S' is defined, 
respectively, by the equalities 

f 
Since 0 

<^S*. B 

* (f. ¢)-(/. ¢). (/. ¢)-(/. ¢)(9 eS). 

—+<p (S)' (fB, Ç£S) entails -*<p, -* p(S), therefore 

If f(x) <£r- L (l ^ p — ) is an ordinary functions suamable to 
the p-th degree on ft, then it, as we know, is a generalised function and 
has the Fourier transformation f, which is, generally speaking, a generalised 
function. If f ér L^, then, as we know, Í ¢37 (Plansherel' theorem, cf. the 

book by N. I. Akhiyeser ßj). 

àN 

A/v-{|xy|<Ar; /-1, .... n), 

and the convergence is understood in the L^rsense. Here Jt<P dx =/îf dx 
(for all f S), which shows that in this case the ordinary Fourier trans¬ 
form of the function coincides (identifies) with the generalised function. 

Suppose <p£ S; then 

and 

<ï(k)-(tuŸî(u) («*-«;..«;•). 
Further 

W - -¿5T J ( - to)* ¢ («) da - ( - iu)\(a). 

The analogous equalities 

P-(to)*/. r-(-/B)'f. (10) 

obtain for the generalised functions f ^ S', 

. on _ 



Actually, if f e S' and f e S, then 

(ñ 'f)-(-i)l*'(/, (-/»w-fti«)*/.,) 
_ I 

(/«*'. ¢) = (-1)1 V(/, ¢^) = (-1)^(/, (iu)*¢)=((-/u)*/, ¢). 

Let as before ÿ S and 

^•v — {! -Vy I < A'; / -1. 

Then 

a.¢)-0. 

àN 

" (2,,)B'* dt - (2n)"/s (p (0). 
/-i 

The last equality follows from the ordiwuy Fourier integral theoiy. 

Thus, 
1 =(211)^6(^), 

hÎ'ÎL^Ûy'" °rdlnanr I-, « generalized function d^ined 

(^)-9(0) (ç e Sy 

then6* ^ * ^1' ia a vector with integral nonnegative components. 

Jf*-í*(-/jc)*.l-/*(2a)",ô,*,(jr). 
Further 

(». ¢)-(4. V)-—^ ¡f (1),11, 

i.e., 

8-L_ 
(an)"'* * 

We write for the functions f, f^^. S' (1 = 1,2, 

ft-+f(S'), ecjiH (/,. ¢)-^(/, ¢) 

(11) 

(12) 

(13) 
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for all <p€ St and ve state that tends to f In the S'-sense or even more 
weakly. If f^ and f are ordinary Integrable functions such that almost 
every 

where $ does not depend on 1, then obviously f^, f ^ S' and, by the Lesbesgue 
theorem, f^~> f, weakly. 

From (13) it follows, obviously, that if ^-yfiS'), then 

f,-/. U-+HS'). (14) 
lU-lHS'), (15) 
/«_*/<*) (S'), (16) 

where ^ is an infinitely differentiable function with polynomial growth. 

Let € S,/t= (/^, ...,/in), and t = (t-,, ..., tÄ) be real vectors. 
then 

—L_ f e<M—L_ f y(u)e~lul due,Ml dt- 
(2ji)*/i J (in)"* J Y 

(17) 

If here t<=r S’, then, considering that the function e*^ is infinitely 
differentiable and is bounded together with its derivatives (of polynomial 
growth), we get for 

(¾ q>) - (/, e^?)-(/, + (/U -1»), 9(•*)). 

(18) e^/-/(jr-|i) (/ s S'). 

Further 

(ffl, 9)-(/. 

^-/(Jr + n) (/sS'). 
(19) 

1.5.1. Convolution. Multiplier. Ve will often have to deal with a 
situation in which some measurable function fi(x) is multiplied by ?(x), where 
f ££ L = L (R) (R = Rjj). If f(x) is an ordinary function, we naturally 
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“H (*)/(*). 

However, even in this seemingly simple case difficultii»* 

dBtTÍOn - ^ 
S') «ad thm^u. f.~ tk f k, aa ««nareliaad function (b*Loa*la* to and then we face the prob!«, of idantlfying thaae two d«flnltlonÍ7 

(tf. ?) = (/, fiç). 
(2) 

here é V ^ thi‘ defl^«o" 1* in accord with fomOa (1), .inca 

W, ï) - / [a M 7 MM*) dx - J7 (*) Ik (-C) <p (x)] dx-tf, w). 

ci... ÂuoL^ÆÂÂ^ t ^ t0 ““ 
dMi‘ Mith «“ CM. vh« /3 - K e L. &io^. ^Í5¿n m* ^1011 

tiu)- 
(2ji)b/j J A(«)«' tM.du 

co’nSM oTr“"“"“* 00 B’ ** “t *» arbitrai^ fonction 

.o-S.'ÄÄ'SS; L&.iÄäa.'SÄÄ,“ “ 

If f 
mkfm tën)1"'*' J e,M“duJ K (5) e-'“‘ rfÇ J /(i,) ¢-/., rftl. 

~ Wn)3** ! e‘*u da S ^(5) //(>.-5)/»-'« rfl. 

" (¾)5^. 

" ]2n)',,J /^(5)/(1-5)^5-/( •/. 

S-'/c’“. ÄiÄ“S: =?■!-.; ? • a .—k 
Æ tóÂ ¡„"ÏSS. 

Of X. fcplaciai the oîdef 4 * Ç* î1** ^iûUOQa function ff 
is regular, since K, f^L (by th^PubiM theorîî).1“ ^ 10 tÜÄ fourth 
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The integral in the penultlaate neaber of these relationships is called 
the convolution of X and f; here in the discussion vhere K is fixed, and 
r^Lp î-f “ "bitrajy function, K is called the kernel of the convolution, 
and ve will call the function ^ the Multiplier in Lp. 

, ^ TTh* fight-hand aide of (3) is rational not only for f S, but also for 

coSokio!?“taV#r h* th# ^10°- Land f^LpO their 

J K(x-u)f(u)da- 
J K(a)f(x~u) du> (4) 

is rational, satisfying the sane important inequality (cf. 1.3.3 (l)) 

i- it-ii • ik,,». 
Mlt-l • Ik,»). 

(5) 

fi(IUAi-itJ 0)» valid for the functions f ^ S, serves as the basis for 
assuming fay definition that 

(¡i-K&L, faL,). (¿J 

Si®06* ty (5), K*f ^ Lp d S', then Kef «ir-S', and we thus agree to let 

f stand for this latter generalised function. 

Let us show that for any function f 1^(1 ^ p ^o) there exists a 
seqwi^of infinitely differentUhle finite Suctions tlt not dependent on 
/4 (yu _ L), such that when 1 

Ti-+f(S') and 11/(51 (7) 

(cf- “fftlon 1-4-1) th* "i““0»of 

~ ft ^1/, 0 (/ -> 00 ), 
U(»W)- (A*/,)l^iui'(¿I!/-/, 

consequently, also in the weak sense ^ —f and Æ-^uï. If however, p = oq 
fîïïtrfÎîftîLÎI* ÎÏ* ••‘J0*00? of finitely differentiable functions 
finite functions f,, boundedly converging almost everywhere, as therefore, 
wjldyMnvexting in f. virtue of the fact that ^ L and f - fx¿ LÄ> 

W • O - (m • /,) - -—f J |i (j, _,) (, (() _ h (l)l dt 
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of X is continuous and bounded on R. Based on the Lebeague theorem on the 
limit under the sign of the integral, it boundedly tends to sero for all z, 
therefore, as a generalised function it weakly tends to sero, i.e., (7) holds. 

If/U-K e. L and at the same time u is infinitely differentiable 
with polynomial growth, then we have available two definitions of the product 

(f ér Lp). On the one hand, this is the functional 

9)=-(/. H9) (çeS), 

and on the other, the functional (6). Let us show that these functionals are 
equal. 

Suppose |fA is a sequence of infinitely differentiable finite functions, 
for which is weak. Then, if not only ¿¡el, but even M is infinitely 
differentiable with polynomial growth,*then 

(nf, f)=-Hm(p/,. <p) =■ llm(/|, mp)-(/, H<p). 
(-►OO /->00 

(8) 

and we have proven the equality of functions that is of interest to us. 

Thus, definition (2) for the infinitely differentiable function of 
polynomial growth and definition (6), where ^ é L, do not contradict each 
other, whatever be the function t ¿ ' ; (l < p <©o). 

If A and v are differentiable functions of polynomial growth and 
f S, we know (cf. 1.5) that 

If now À = K1 ér L, L, then both 

f & Lp(l ^ P ^ C-» ) 
A(|i/)-pW) = (X*i)/. 

(9) 

L and for all 

(10) 

Actually, it is easy to verily by ordinaiy analysis methods that under the 
specified conditions the function 

A-A| • Aj- J Kt(x-u)Ki(u)du 
belongs to L and that 

K, *(K,*/) - *2*(K,*/)-(*,**,)•/, (11) 

obtains, which (by (6)) is equivalent to (10). He do not intend to examine 
in all its generality the case when the multiplier is the product \m, where 
A <£ L, and aa is an infinitely differentiable function of polynomial 
growth. We do not need this result in what follows below. But there is ope 
case which we will find necessary, the case the multiplier V~1xV, where V, 
¿ <¿ L, and V is, moreover, a positive infinitely differentiable function 
of polynomial growth. If f é Lp, then the operation 
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i/Vf-r'ínW)) 

ia rational. ActuaUy, Vf oan be undeiatood in the aenae of (l) or (6); thia 
opM.tlon ^(ïf) (over Vf) ou b. 

ond.rrtood in tbn aenn of (6) (Tf é Ip!) ud, fln.Hr, tba laat operation 
- _ 

V”1{AVf) (overolVf) in ary caae can be onderatood in the aenae of (2); 
only requires that we note thatVf) é S', becaoae 

thia 

It ia important that the equality 

(12) 

obtain for all f ^ L . Actually, if f ia a finite function, it reduces to 
the corresponding obvious equality betve« ordinary functions. If however 

Í*LPÍ x11* ft> we kno,|,' w® ^ ««leot the sequence of finitely differentiable 
^ factions fi such that slmltaneoualy mi-> -hi? and — (^v)f 

(^ e L!). But then, considering th§,t v-1 is an infinitely differ- 
!ÎÎîïÎ! fS?ti0n vf Pÿ»*1*1 growth, V-T^vf! — V-1^Vf weakly. Therefore, 
equality (12) can be obtained by the passage to liait when 1 -*-¿*>from the 
already established equality 

(P Vv/j, q))-(fi/(l <p) (ipeS). 

1.5.1.1. General definition of the multiplier in L_(l p ¿.oo ). 
Suppose /6( = /(X (x) is a bounded function Mesurable on R "therefore, a£ S'. 

* that if f é S, then F é S is an infinitely differentiable 
function of polynomial growth, and therefore, the product uï ^ S' is defined: 

(vl, qO-Oi, ;<p), 

which is represented by the Mesurable function 
tf-n(x)r(x). 

d) 

ty definition, the function xx is called the multiplier in LpO^p^.^) 

fíníí "ï1b°und®d (on R) and if for any infinitely differentiable 
(or* ^ —«“t. to the au. thin», for «cr fonction f « S), 

llSll,<c,llft (2) 

satisfied, where the constant Cp does not depend on f. 

. ^.•r* infinitely differentiable finite functions, 
for which Ilf - fj -^0(1-^), then fron (2) it follows that * 

II~ pf/l(, < C,|| /* — // II, -> 0 (k, f-+oo). 
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Consequently, there exists the function F ér Lp to which when 1 tends 

in the Lp-aense• It is naturally denoted tay 

calling the convolution of the function (usually generalised) with f. 
The second aenber in (3) indicates that we have already defined f by the 
equality 

nf - A * f> (4) 

where ¿¡#f is understood by the nethod described above. By this we have 
defined the product dî for the functions f 6 Lp(l ^ p «*: oo ) • When p = 00, 

this definition no longer obtains, because the function bounded on R cannot 
be approxiaated as closely as we would like in the metric Loo ty finite func¬ 
tions. But for our needs the definition of p =*o introduced in the preceding 
section when /0 = K é. L will be wholly adequate for the case p = c». 

tfe will again call the multiplier /j (satisfying the property (2) the 
Marcinkievicz multiplier (cf. further 1.5.3). 

Obviously, 
iiî^<c,na 

(5) 

for all f ér Lp(l < p < oo ), where Cp is the same constant as in the corres¬ 

ponding inequality for f S. 

The function ¿I for which 4? é L obviously is the multiplier in the 
sense of the definition now advanced, because (cf 1.5.1) for infinitely 
differentiable finite functions f 

from whence (2) follows directly, where 

This definition for 4} é L is equivalent to the corresponding definition of the 
multiplier introduced in 1.5.1; this is to say that the function 41 = ^ *f is 
definted (for f e Lp, 1 ^ p 00, and i)éL) as the integral (6) or as 

the limit in the metric L_. of the integral calculated for the infinitely differ¬ 
entiable finite function ^! when |jf - ^IL-^O, which is obviously the same 
thing. 
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But han we generalized the concept of the nultiplier and the convolu¬ 
tion. because jj cannot belong to L and can even be a generalized (not ordi- 
uarjr) function. 

Notice that if f e 1^(1 p < oo ) and ^ are infinitely differentiable 

finite functiona for which 1(^ - f |/p -^0 (1-^), and // ia the nultiplier, then 

fro* whence it follows that 

If -W ia the Marcinkievicz «iltiplier and at the same tine 
tely differentiable function of polynomial growth, then for f é 
sequence {M of infinitely differentiable finite functiona for 
ia satisfied, we will have 

w, <p) - lim q>) - lim (f„ n<p) * (f, n<p). 
/-»» /-M. 

In the first member of (8), jui is understood in the sense — 
the second equality of (8) transferring u beyond the canna ia legitimate, be¬ 
cause U is infinitely differentiable and of polynoaial growth: the last 
equality ia based on the fact that f (s) and ¿t <P S. 

(7) 

ia an infini- 
L and the 
p which (7) 

(8) 

tif {A \ • in 

Equality (8) indicates that if // is the Marcinkievicz multiplier and at 
the sane tine is an infinitely differentiable function of polynoaial growth, 
then the definitions of m£ for f (l < p<oo) corresponding to these 
facts do not contradict each other. * 

Let us show that together with A and xi the product AH is a nultiplier 
in Lp and that the equalities 

l<p<oo). 

obtain. 

Actually, let us begin by providing an assertion that is interesting 
in It. owi right, to th. that If th. fonction (x) i. acamrabl. and 
bounded and the function F not only belongs to Lp, but also to L2, then 

KF-X(x)F(x),' 
(10) 

understood in the sense of (4) is the ordinary production 
of the function \(x) and F(x.l. Actually, since F ér Lo, there exists a 
thatTf ^ differentiable finite functions Fk (k = 1, 2, ...) such 
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I;/•'-Fk.o, 
II Ik ->0. 

The relationship 

kFk~Hx)Fk(x) (11) 

holds for infinitely differentiable finite functions Pfc by definition. On 

the other hand, 

Wk-+\F(LP), 

consequently, in S' this also means that 

\Fk-+ti(S'). (12) 

Due to the boundedness of À and based on the Parseval equality 

n(x)Fk(x)-k(x)F(jc)\\¡^cfFk-F\\2-c\\Fk-F\)t-+0í, 

hence it follows that 

\(x)Fk(x)->k(x)F(x)(St). (13) 

From (11) - (13) it obviously follows that the statement (10) is necessary. 

Let us now assume an arbitraiy finite function Î € S. Suppose 

Since f L2» by virtue of the boundedness of aj we also have ¿tf é L2 and 

F fe Lg. Hence, by (10) 

= \i{x)><(x)l(x) = (>.(x)\x(x))J(x)-(Wl. 

We have by this equality proven (9) also for f é S. Therefore, for f6 S. 
since A and are multipliers. 

i! II, =11 f(rf) it, < c iiíf U, < ce' il f il,, 

and we have proven that XU is also a multiplier. It remains to prove equality 
(9) for the arbitrary function f fe Lp(l ^ p < ^ )• This necessitates that 
we take a sequence of infinitely différentiable finite functions f* converging 
to f in the metric Lq, that we replace f in (14) with fp that we apply to 
all members in (14) the operation ^ , and that we make the passage to the 

limit when 1 in the Lp-sense. 
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1.5.1.2. ‘Lemma. Suppose a IL be a fixed point. Then together 
with M (x) the function (x - a) is a narcinkievlcz multiplier and the 
eqtulity /-, ^_ 

etat\i (t) e'Mf - n (x - «)) (dAM ecex f s Lp), 

(for all f é Lp) (1) 

is satisfied« fron whence it follows that 

/■ 

(2) 

Thus« the constant c_ in this inequality is the same as in the corres¬ 
ponding inequality for (x). 

Proof. Assume 

i,-*'"/«) (ße/?J. (3) 

Then (cf 1.5 (18)) M_ 
Ne-w/,-;,(x+ß). 

Therefore (cf. again 1.5 (18)) 

"—\ /--\ /-\ 
{x- a)-e,u'n(x)(x), 

and by (3) we get (l). 

1.5.2. Periodic functions from L*. The functions 
** r • 

-signsin(2"+l«je) (0<x<l), 

n = 0« 1« 2« ... form an orthogonal and normal (on ¿0, 1 _/) system (Bademacher). 

The inequalities*) 

(SC)’"« //IS<■».»>-W“.(«')f<í9¿9'<(5¡.i,)'“ (D 
0 0 

with constants not dependent on are valid for any double sequence of real 
numbers {amn}and p > 0. 

Actually, if s is a natural number, then, using Newton's polynomial 
formula and the fact that /0^(0.1/ = ^n(0) for odd 1, we get 

*) Here and in the text below we will often write A<< B instead of A ^ cB, 
where c is a constant. 
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I I 

ms—ewef MW- 
0 0 

(2») I 
(2a,) 1 ... (2o„)l “i",«, am'*. • • &•. < -s 

< S «;■"■ au I “ï,1-, • • • - 

" "í^ (S aîw») (al+ ••• +«2i-*)- 

.- * * 

(2) 

Therefore, for ary p>0, if we select natural s such that 2a £p, we will have 
(using the Holder ineaualitv) 

j/p 
(//IS amn<ùm (0) Ö„ (V) f do dvj 

yiu 
< [//120^(0)0,.(001 dQdVj < (J a»^) , 

which proves the second inequality of (1). Further, if p > 2, then 
» - - 

(S al.) - (jj I 2 an,n<äm (0) 0)„ (0') I*dB < 

< (/ / 12 (0) «a (60 f dB dB'Y, 

whi.ch proves the first inequality of (l). It remains to prove it when p<: 2. 
By (2) * it 

// 12 a^m (0) (0014¿0 ¢/07 < 3 (2 

Let s2 = I a2,^, S = £ (Q)ü)n(ö'). And the set of points 

(0, 01) such that ( S ¿9, O')/ > s/2, CA is snpplsaentazy to A in the unit 
square of the set and | A | and |GA I of their measure. Then 

i i 

ÜI i via 

J S'<¡«dV\ < 

«(l+v'rimr)»*. 

This means that 1 <7 + 2/1-41 hah Ii4|>|. 

or 
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So 
i i 
¡¡\S?dQdV>j--FSp>-~is', 
o o 

which proves the first inequality of (1) when p < 2. Thus inequalities of (1) 
have been completely proven. 

The inequalities corresponding to (2) are similarly proven in the nr 
dimensional case: 

os < < (/ - / is-.«. <«>r “e)'"< (s o) 

where k = ..., k^) are all possible integral nonnegative vectors and 

(O*(0)-<D* (0|).(0*^ (0,,). 
(4) 

Let f(t) é- L*p = Lp(0, 2/r) (l < p ^ co ) be a function of the single 

variable t with period 2rr, expanding into a Fourier series of the form 

/(0-Sc*«. 

It is known (cf. Zigaund chapter VII) that when 1 < p this 
series converges to f in the Lp*-senae. 

Let us specify an increasing sequence of natural numbers 

satisfying the condition 

■^>a>l (*-l, 2, ...), 

and we introduce the functions 

ôo(/)*Co, 0*(0- ]£ (k—l 2 \ 

Then the series 

0 
converges to f in the L*p-sense. Suppose further that 

(5) 
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MO-2‘A (/) O (e*- ± 1; A-O, 1, ...), 

where the numbers SK = +1 depend on some fashion on k. Then the following 
inequalities obtain (Littlewood and Paley ¿4_7, of Zigmund ßl. chapters II 
and XV) 

ll/llp<ll/,ll,<ll/l|. (6) 

with constants dependent on « , but not on f and the distributior and 
with nouns taken over the period. These statements are easily exteras to 
functions of several variables 

/(*)- 2c/~-2\(/)eL; 

(v = (v|, ..., vn), kma[k\, ..., kn)), 

(7) 

where ** ^ “ ^*i*i • • • ^ 

and e* - «*, /,-2 (/). 

Here it is assumed that é (s = 1, ..., n) can take on only the values +1. 
For such f and f^, the ainequalities *" 

iifiip<n/i:fi<ufilP (i<p<oo), 
(8) 

also obtain, where the nonos are already taken over the n-dimensional period 
{ 0 < Xj < 2fi; j = 1, ..., n . We will assume that 

Ä* ^ 1 • • (/)• djc' -•* dxt, dx «-i* 

Therefore, if we assume that inequalities (8) are valid for n - 1 and that 
the integrals are taken over the corresponding periods, we get 

\f\rp-ídxn¡\ffdx'<¡dxll¡\^ e,.6r (/) I' dx' - 

-W|2eA.</)|X< 

* \ d* dxn < J dxnJ iff djr'-H/lÇ, 
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(9) 

i.e., (8), if we note that 

Finally, the inequalities 

,,f,,p < <iifnp d <p < ^ 

with constants not dependent on f can be written for the functions (7). 

Actually, setting Q - (0 ^ < 1}, we get 

II / IÇ - / II / II, < JII2 (0) ft* (/) |[ de - 

a 

(10) 

The passage from the second to the third and from the sixth to the seventh 
members is made on the basis of inequality (8) when = av(0) and from 
the fourth to the fifth, and then to the sixth member -- on the basis of 
inequality (3). 

From (9) it follows that if f é Lp* is a function for which the 
Fourier coefficients c^ do not equal zero unless k ^ 0 and g" is an arbitrary 
set of vectors k, then the function 

S ft* (/) - ¢-2 ft* (q>) 
*eg ft 

generates the Fourier series of some function <p é L* for which the inequa¬ 
lities 

are satisfied. Notice that if an arbitrary periodic function of one variable 
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belongs to L* then the function (trigonometrically) conjugate to it (when 
1 < p < oo) 

/.(0- - i 2 sign äc*«'** 

(11) 

(here sign^O^- l),and together with it if# = f+ - f_ also belongs to L * 
(Zigaund ¿1_/, chapter VII, 2.5). Consequently, f+ = + if#) e 1«*^ 
and hf+Jl « Hf /1-.. Hence, by induction it follows that also for the func¬ 
tions p 

/ (•*) — 2 cteltM 

of several variables, if we assume 

/♦ '■S Cte"*' 

then from the fact that f € L # = L follows 
P P 

Let k = (k<|, ..., k ) be an arbitrary (not 
integral vector. Let us set 

p* 

necessarily nonnegative) 

6*(/) = cme imx • 
(12) 

where at the corresponding j-th site + or - is assigned, depending on whether 
kj >0 or kj < 0; and when kj = 0, we must assume _1 +1=0. Based 

on the foregoing, it is obvious that along with inequalities (9), the inequali¬ 
ties 

lia «ii(2ôw/)2Hp« ii/ii. 
(13) 

that are analogous to them also hold for an arbitrary periodic function f(x) 
(not necessarily the same as the function for y which ck f 0 only for k 0). 

It is easy to verify that inequalities (13) are also preserved for 
the functions 

Iñhx 

1 -2m/). 
r - 

jf(u)e ' da, \ = {\xjKl-,j 1. .... n}, 

(14) 

of arbitrary period 21. Here we must of course suitably modify the definition 
(replacing x by tr/1 x in the right side of (12)). 
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It la important to note that the conatanta appearing in inequalities 

(13) do not depend on 1. 

1.5.2.1. Suppoae 

f ■ S Cu?1*1 ■■ 2 + S -" /♦+/. -- *>0 *<0.. 
(1 <p < oo) 

(1) 

be a periodic function of one variable, and the aequence and the functions 
(5k{f)(k = 0, 1, ...) be defined aa in 1.5.2. *• 

Suppoae further that 

ß*(/)-M/) + ô-*(/), *-l. 2. 
M/)-M/)-<v 

(2) 

(3) 

Then from inequalitiea 1.5.2 (6) follow the inequalities analogous to 

them. 

II / lip <i¡/. lip <11/11,, 1 <P < 00, 
(4) 

where 
/. - S **ß* (/) (e* - ± l), (5) 

with constants dependent on and p, but not on f and the distribution^} . 

Actually, 

(2e*ß* (/))+-S«*ô*(/+), 
Œ «*ß* (/)). — 23 e»ô* (/. (—*)), 

moreover, j|f+|jp, l|fjjp «l|f//p, therefore by 1-5.2 (6) 

IIMlp<ISeA(Mlp<ISeA(/)lp. 
II /- II, - II /-( - 0 II, < IS e A (M - 0 )lp « 12 erf* (/)[,, 
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from whence follows the first equality In (4)• 

Further 

12 e A (/) Ip < 12 e A (/♦) I +12 e A (/. ( - 0 ) |p < 

<ll/Jp + ll/-llp<||/||j 

i.e., the second Inequality of (4)> 

From (4) follow the Inequalities 

which Is proven as in 1.5*2 (10) (replace áhy^ ). 

The following statement Is also valid, which In the one-dimensional 
case was proven In the book by Zignund (chapter XV, 2.15) and can be extended 
by Induction to the multidimensional case. 

Suppose f>|, f2, ... é- Lp* (l <-p<eo)bea sequence of functions 

of X - (x-j, ..., xn) with period 2 and with Fourier coefficients c^ not equal 

to zero unless k -¼ 0, and let Sn, 1¾ stand for the Fourier sum fn of order k^. 

Then there exists a constant Ap not dependent on fn and N such that 

(6) 

1.5.3. Theorem on multipliers in the periodic case. Let us introduce 
the difference - ^+1 - A ^ for the numerical sequence f/l^} dependent on 

the single index 1. For a multiple sequence dependent on the nonnegative 

integral vector k = (k^, ..., kp) we will examine 1h e difference ^j A ^ taken 

Theorem (of Marcinkievicz). Assume that a multiple sequence 
subject to the inequalities 
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(1) 

is given for ary collections of natural nombers 

that 1 ^ <: j_ < ... < j ¿1- n, where M is a constant not dependent on k 
\ ¿ m 

and , ..., (when kj = 0, the corresponding sun is extended only to Wj = 0); 

+ or - is assigned, depending on whether > 0 or < 0. 

Let us transform a function with period 2ir of the form (cf 1.5.2 (7)) 

»•*)-!«<**-2 6, (flsV (|<p<00) 
(2) 

by neana of the nunber (Marcinkievicz multipliers): 

(3) 

Then F tc Lp* and there exists a constant c dependent only on p, such that 

II c/ill/II,. (4) 

Proof. Let us limit ourselves to the- case n = 2. Moreover, we will 
assune that in (2) the series are extended only to k ? 0, which does not 
violate generality. 

Setting 

and using the Abel transfoxmation, we get 
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f>kl(F)=i S 
2*~l jl-l 

2*-2 2i-2 

“22 rij l^/. > — ^/. y+1 — ^/+1, / + ^/»l. Hll + 
2*-l 2/-l 

21 -2 

+ 2 v-i./lV-i,/” V-i.y+i] + ji-i 
2»_2 

^ 2 ^.^1^(,2^1-^ + 1.2^11-+ 
2 1 

^^-1,2^1^-1.2^1 ^S^í/Y/y- 

(6) 

Let us use the Buryakovskiy inequality and take (1) into account: 

Therefore, based on 1.5.2 (13) there follows (n^ = 2k): 

< Mp'2 I J J! J Y/y I f j<,/î dx dy. 
0 0 k.l (7) 

The function (cf also (5)) 

ri.j.k.iV\ Y/y I (8) 

appears within the parentheses in the right-hand side of (7) ( is 

a coefficient not dependent on x and y). Obviously, it can be regarded as a 
segment of the Fourier series of the function 

Ò*I (f) V\ Y/jj. (9) 

Consequently, the sum S of the squares of segments of the Fourier 
k, 1 

series of the functions (9) appear within the braces of the right-hand 
side of (7). 
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Based on 1.5«2.1 (6), the Integral (7) is majorized by the same integral, 
where the segments of the Fourier series of the functions are replaced by the 
functions themselves 

/ / I 2Ü ó" (/) jP 2 dx dtj <Mp\\f |g, 

and we get inequality (4). 

It is easy to verily that inequality (4) is preserved for functions 
with arbitrary period 21 with the same constant Cp. 

1.5#4« Theoran on multipliers in the nonperiodic case. Let us assume 
a vector of the form 

The set 

* = (*1.kn) (kj * 0, 1 ; / = 1, ..., a). 

e> " {/.. jm) 

(1) 

of those indexes j for which kj - 1 is called the carrier of the vector k. 

Theorem. Suppose the function À.(x) exhibiting the following proper¬ 
ties be given on R = 1^. 

Whatever be the vector k of the form (l), the derivative*) 

**' . • • dx*n (2) 

exists and is continuous at ary point x = (x1, ..., xn) with ^ 0, where 

i C~ ek and is subject to the inequality 

|xV;.|<Af. (3) 

*) A certain generalization of this theorem in terms of generalized ceriva- 
tives is possible. 
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Then A is the ’^arcinkieviez multiplier. Specifically, there exists the 

(4) 
W XpM II / Up ( 1 < p < oo) 

for all f <r. Lp. 

Notice that since satisfies the property indicated in the theorem for 
k ^ 0, therefore it is bounded on R and is continuous save for the points belong¬ 
ing to tne coordinate planes. Therefore, A is a measurable function on Rjj 
and is at the same time generalized ( A«-- S'). 

Proof. Let us confine ourselves to examining the two-cimensional case. 
Let f(x,y) be a finite, infinitely differentiable function. We will consider 
its carrier as belonging to the square 

AJo = {l*!. \y\<so). (5) 

Ana suppose 

I (x, = 2 (s ^ So), (6) 

where 

= (2?F J J ^ dudv (n, v = 0, ± 1), 

(7) 

is its Fourier series. Let us set 

(8) 

By ('>) (when k 0) 

(9) 

Now lot k > 0, 1 > 0, then 
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(10) 

The continuity of M/ò* with respect to x when x ^ 0 and for any y 
was used in these computations» The resulting inequality is preservód also 
for k = 0 for any 1: 

<2Af. 

Similarly, using the continuity of ¿A/jy with respect to y for y 
and any x, we get 

j'-i 

(k, />0). 

(11) 

Further, while for k, 1 > 0 
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(v + 1)n 41 -ihn 
— /. 

. / (in (v+ l)n 

In(I n) dldr]^M. 
Ox Oy 

(12) 

Here we used the continuity of when x,y ^0. ior k and 1 0 
this equality reduces to the following: 

(13) 

(here we consider inequality (10) valid for ary k, 1 ? 0), and when k 0, 
1 - 0 the sun in the left-hand reduces to a single nenber also not exceeding 41-.. 

We have proven that the left-hana sides of (9) - (12) for ary k, 1?0 
uo not exceeu 4M. Analogous inequalities are proven for the remaining three 
quadrants: l) k >0, 1^0; 2) k íA 0, 1 ? 0; and 3) k, 1^0. 

This proves that the conditions of the Karcinkievicz theorem are 
observed ano therefore, a constant c exists, not dependent on s (cf. Note at 
the end of section 1.5.3), M, and f,psuch that 

(14) 

In this case the transformation of tne function f by means of the multiplier 
V is written as the integral 
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where 

Obvioualy 

ence 

«(*, y) = ¿ J J Ml, T|)f(t r\)el^y^dldr\, 
-OO —00 

I 

f(x. J/(«. v)e-l^dudv (s>s0). 

, n . / *n /n \ 
c« = 2s» ' \ s ’ ï ) ' 

(15) 

Let uo eatinate in an arbitrarUy epecifiel aquare AM{U ?0) the differ- 

Here 

i 
2.n 

u(x, y)-u,(x, ¡/) - r, + r2 + r3. 

[ Mí. n)f(i. ti)í'"1*»'»íís¿h- 

- S M-r. 
1*1. l/|<ov 

J n)e"’r, + s'n'd|dq- 

kn /n > ' j<**+/i/> .1 V V • ( ^ t* \ ! I /.1 l 
1 t) 1 It * y)* 

1*1 l/|<OW 

(16) 

N la a natural number and a ia choaen ao that a/rr la a natural number; 

'2-2ST J Mtr))n|. T,) et ui+vn) ¿|Í/TJ| 
*i-*N 

where the aum X1 Is extended over such palra (k, 1) that either !k;or ¡1! 
ia larger than*N. The function f, being an infiiaitely differentiable finite 
function, belongs to the main class S, therefore f «er S, which means 

If(4. ri)l<(l+4^(1+^)-1 
and 

where ¿ = s/rr > 1, 

(!+1^(1+^^4^-^0 oo). 

a similar estimate exists for r^ 
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^«rMTlTMTÍ']" o (.V -» oo). 

Assigning £ >0, we can indicate such an N >0 that for all s ^ s0 

IM. \ r31 < e. 

For this N we can specify an s^ ^ s0 auc^ £°r 3 ^ ®i an<i ^or 

(X, y)cW( I r, |<e. 

We have proven that for any ¿< ? 0 

lim 1/s (x, ti) = u(x, y) = )] 

is uniform on 4u 

From (14) it ♦'nllowa that u' lís^^ C>M'» 
I r' 

Passing to the limit when s and then when U ^ we obtain inequality 
(4) for the finite functions f e S. 

This proves that \ is a Marcinkievicz multiplier. 

I.5.4.I. If the function u(x) = ufc.,, ..., xj of n variables is 
subject to the conditions of the theorem formulated in 1.5.4, then it obviously 
is also subject to the conditions of this theorem if it is considered as a 
function of k variables x^, ..., (k n) and, therefore, is a multiplier with 

respect to them. 

1.5.5. Examples of ■''•arcinkievicz multipliers (in the Lp-sense, 1 -4 p,<< ^. 

1. sign x = I] sign xi. 
i 

5. jr(l +|4f|*T,/?(|/|<r. r > 0, />0). 

11 
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7. 

(r is an arbitrary real number) 

8. (1 +1 Jf P)'f/2 Ar'(Jf) (r =» r, = ... -rn>0). 

P. (\+\xry°\f(x) (r = r, = ... = r„ > 0). 

10. (1+^)2 A^(JC) (/=|. 

12. 

i>0). 

We let x<t(i = 1, ..., 12) stand for these functions. They will be 
necessary to usin the treatment below. The proof that they are Marcinkievicz 
multipliers is reduced to the preceding theorem 1.5.4. 

Its criterion for XL is trivially satisfied, since is a constant 
(+1 or -1) in each open coordinate junction. 

The functions are continuous together with their partial derivatives 
of ary order on R = 1^, with the exception of the functions xx^ (i = 4, 5, 6, 7) 
which are continuous on R, but their partial derivatives are generally dis¬ 
continuous on the coordinate planes. 

Below is given a proof that the Marcinkievicz criterion is satisfied 
for several functions. The problem reduces to verifying that the functions 

•'Vi*1 (*-(*.K). ¢,-0. i ) 

are bounded on. each coordinate junction of space R. Owing to the symnetry of 
these functions, it suffices for the verification to be made for a positive 
coordinate junction. All the functions considered, save for 4g and xi^» a: d 

the products of the defined functions and By the Leibnitz 

formula jcV*’ = x* 2 
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where the sam is extended over all possible integral nonnegative vectors o( <- k. 
The problem reduces to estimating functions of the form 

on a positive coordinate junction. 

Let us agree to write A B instead of |A| = cB, where c is some 
constant. We have , „ v-i-m 

Jf*X, - +|jfp),/î'l*'a|Jf(r-|,‘ 1 + Sr;) 

i + 2x/ 
(I +IXI3)1*-“1 

< 1 ■ 1 • f<00. 

I + Sx/ 

When r 1 the function ^ is discontinuous^ when one of the coordinates 

where j e& e^ (e^ is the carrier of the vector^) is equal to zero. Then 

by theorem 1.5.4, it suffices that function be continuous for positive 

with j cc e^ and for any remaining Xj, which obviously is satisfied in this 

case. When estimating /u.^avuJ» we will have 

‘ (*)<n (n)W J * («lí17211 w) (1) 

where the sum is extended over all possible vectors W,ft , and ^ with components 
equal to 1 or 0, such that c* + (> + y = k. In estimating the derivative of the 
components of this sum, we will assume (otherwise it will equal zero) that 
e ce,, and $ is a vector whose s-th component equals 1, while the remaining 
a J- 

components are equal to zero. The problem reduces to estimating 

n 

s «i+*>)= 
-I-ItI 

x^l +x*) î\ 2 

IL 1+xí 
20 + x/) 2i 2 

r2* 
X 

I10 + X?) 
¿('+xî)2, 

^<1. 
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Let ua provide an explanation to the estimate of the first multiplier in 
the second member of these relationships. Let 

(11 .vJJ'/ -max(l+*»)'/; 
then ' 

**P+*«) ' 

n LL 
SO^)* I 

'iS*'!, n I/I, 

<0 - 
/-1 

= (l+r*()°-l. 

When lj >1, the estimated product without the multiplier x* is discontinuous, 
when one of the coordinates Xi, where j <£r e„ <S e, equals zero, but by theorem 
1.5.4 it is sufficient that this multiplier be continuous for xj p-0, where 
i <£r and for any remaining Xj, which in this case is obviously satisfied. 

For U, 

**X? ** x***-' 1 + 
-H«| 

2 (•-«) 

(l+l*)»)1*-1 
*' f o+1*1’)'* y 

ht,") ri hth 
< C < oo. 

Here the inequalities 

cl(i + i^j<(i+|jciî)l/2<i+ S^, 

are employed, the second when r >0, and the first when r < 0. 

The function is discontinuous on certain coordinate planes, but its 
limits on them within each coordinate junction do exist, therefore in each 
junction thus closed Xy can be considered as continuous. 

We will argue as follows for /ig. Let 1 be a vector with components 
equal to 1 or 0. Using the taibnitz formula on the differentiation of the 
product of functions of several variables, omitting the constant coefficients 
and considering the vectors x with nonnegative coordinates, we get (ea is the 
carrier of the vector s) 8 
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» s ( 

X 

x'D'[(\+\xn'*A,)< 
l J12\ 

« s ^y -ü +x))’) X 

___ il., r2tf-«> J* 

nti+"î)! S ,,+,,1,1-1 n (i+^x 
>*•» /««f 

.Ji^LküÆ«, 
r ^V41 (i + l*l,),/* 

(yMecTb, mo (2u/)1/0 ^ S«/i o > 0. M/^O)* 

(considering that 

For ¿< ^ 

x'D' {(l +|jfp)"rflA,] « , 
/__ xi\Tr~i*i 

« 2 1 +1JC P),/í■,,",| (S (1 + X/) 2 ) x 
„ IL_I V, .,2«-») ,2* 

x no**!)* s 
/«'» 

n (*+^)2 
/««. 

/•»» 

ülüüí^c, 

(20+*/)2) (20+x*)*) 

For ^10 

4f'D'{(l+x*)'TAr(4f)}< 2^12(1+^) 
rJL 

2\ 2 

-1*1 

*</ /-I 
r/O r¡ 

x n (1+xy'' x,^ (i+*?)t - 
!•*» 

rjo. 

TT (i 2 r‘ 
x2» /M, ^ (l + x*)2 

n (>+^r 
i~'i 

¡-i 

rjd ! I*I 

2 ('+*d 
i-i 

rjO 
2 

IM • 
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The first two fractions in the right-hand side do not exceed the constant, and 
the third fraction also does not exceed the constant because its numerator 

vf' £ o, if j f i exists. 

'(!+V. if 1 - s = 0} 

if the set e^_8 consists only of one index i. 

For 

x'D' Ar' (•»)(S(l+^)2/ 
n \ -I 

4-. n o+*/)2 xi 

«<< n H 
20+'/)2 

il+U-f I Sc+'i) 
r/O l/o-|i| 

X n o+■''/ 
/«*» 

n o+'?)r,2° 
2 /**» ri a-*) 

•<i 
20+'?)' 20+'?)' 

2(1+«?)" x-m 

V, 0.4 II 0 + */) 
20 + '/)- 'Si* 

For // 9, one of the members of the Leibnitz sum (1) is estimated as 
follows: 1¿ 
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V (I + «3 
í_ 

2\ 20 

o-l « I 
V 
ÁU 

I 
('+“!) 

X. 
2\ 20 

0-l»l 

X . 

X So+4 

,,0.+6) i-o-l » I 'I*- 
20 

X II (1 + “/)2a * “/ II (1+w/)" 
le‘t 

n(i+»3M'“,x 
/e*4 

,/(^+6) 
20 

--1 

lee. 

r/A 

S0+“î) 
I 

*20 S (1+“/) 

r/t> 
2\"2Õ~ 

»2* 

i (> + «?) 20 
nc+“D 
/«** 

r#6 

X 
no-2)2" n(,+“^” no-2) 
let, ieet I * e. 

f/(X+«) 
2\ 2J 

iñl 
tO-î)29 

T^ft yr»i f 
(,*.3“j j2(.+.¾ 

r, (>.+*) 
<1. 

20 

(2) 

In the first fraction, if o- is everywhere closed, the order will not be changed 
also if the exponents A, h , and A + ¿ are removed from the sign of the corres¬ 

ponding curved brackets. 

-1 
For the proof in the case of the function u^2 members appear that can 

be written as the right-hand side of (2). Only the reciprocal of its first 
fraction, which nonetheless will obviously be bounded, is changed. 

It is easy to see that the functions ^ ^2 remain Marcinkievicz 

multipliers, if in each of three of its multipliers the parameter <r takas on 
different values ^2, and 6y or if in its first multiplier n is replaced 

by m ^ n. In the last case, in (2) we must assume that the carrier ea consists 
of indexes with numbers not exceeding m, otherwise the corresponding member of 
the Leibnitz sum equals zero. In the last member in (2), n in the first Multi¬ 
plier of the numerator must be replaced by m. 
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1.5.6. Extending inequality 1.5.2 (13) to the nonperiodic case. Our 
aim will be to prove that for any function f ^ Lp(lL) = L (l¿ p<^ co ) the 
inequalities p 

^II/II,<I|{2]ô*(/)2},/2IUc2||/iip. (D 

are satisfied, where and Cg are constants not dependent on ff 

/—\ / ( 1, * e e,\ 

and for k 

A*-A*.k-[2kr'<u / -1.«} (3) 

when k. = 0 is replaced by 0), but for artifarary k of the rectangles 
there is Ja set of points {^sign .. sign }, where u = 

(U1* ..-..1¾- 

Below it will be shown (cf 8.10.12) that if f is regular in the L - 
sense (1 < p ¿ ¢0 ) the generalized function (cf. further 1.5.10), for *which 
the norm appearing in the second member of (1) is finite, therefore f Lp. 

Let us confine ourselves to considering the two-dimensional case. Let 
us specify an infinitely differentiable function' f(x, y) with a carrier belong¬ 
ing to 

lyKso), 
(4) 

and the Fourier series 1.5.4 (6). By virtue of the fact f ^0 outside A 
for s > s0, we will have the inequalities s0 

(5) 

where 
±lli vi ±"i/i 

»-(/)- 2 2 cJ**’""1 

and where we this time assume that n. = n_^ = 0, n, = 1, ^ = = 2, 3, . 
and s > s0 is selected so that ß = s/n > 2 is integral. The sign + or - is 
assigned depending on whether k or 1 is positive or negative. Condition 1.5.2 
(5) is observed 
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^±¡■>2 (*-1.2....). 

therefore the constante appearing In inequalities (5) do not depend on a > s0. 

Suppose f f(u, v)e,i»t*i"'dudo-(\hJk, ■ 
*. i 

where is rectangle (3) (when k1 = k, )C2 = 1, and n = 2). 
kl 

Let 
a - —, ft-M, c-ili, d-M; 

* i ’ * ’ J 1 

A-{(a, AlX[c, d)); b-a, d-c>l; 

We will use the Abel transformation for the sum 

U 
i, 

where 

i, 

-àîÎrl*’ 
*. /. ' 

t) + 

/*w-S 
_ <2. (»♦!)* 
‘7 vjr « ' * -l 

e • --5-—’—• 
v-l 

A*a»i “ fl*i ~ 

‘7* 
» * -1 

(6) 

A further Abel transformation leads to the equality 
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ÔA 
n 

2sJ SS'.W',W4V(-r- t)+ 
, *! /l 

*1 

+S'.,w'-(i')V(^1' f)+ 

(7) 

If ve considex that 

|/*WI<7-ñ-L 
'T* 

(kl<s), 

then from (6) and (7) follow four inequalities 

|Ôa|<cAía|A|{1, \xf\ ll/f1. \xy\-'), Ul. |y|<s, (8) 

where c does not depend on the series of standing multipliers and on a. The 
second inequality, for example, is obtained from (6) by means of the following 
computations: 

|ôa| <¿(/2-/,){(*, - *.) ]77 -T- + ~ (6 - a)} 

(the multiplier b - a 1 is added in the second member within the braces). 
The fourth inequality follows by means of similar computations from (7). 

Let us set ^(x, y) = rain c {1, ¡ x/"1, jy|"1, (xyl"1;'. Obviously, 

^ L (1 < p <oj!) and from (8) it follows that 

Iôa!<MaI M'M-V. !/) ((.V, //)SAJ. 

Based on (9), since 

we get 

ôM/)-ôaí kt 
(nt., + l)n. 

s ■ : Jr§± 
s 

(n/-i + l);i. 
s - 
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Since the functiona f, à f/ à x, and òi/àj decrease at infinity nore 
rapidly than does (l + ¡ x/x + | y /A )“1, where A is as large as we wish, then 
obviously 

2 Af Ajy I d*/ I < A < 00, 

where the constant A does not depend on s. Therefore 

-0(x, y)(=Lp(fin) ((x, y)e\). do) 

Confining ourselves for sake of simplicity to nonnegative k and 1, we 
will have (s is selected so that 0 = s/rr is integral) 

‘P »'-«P 

2 2 'if' T-)*'7-TTÏ* 

**'* t1-* 

■¿T J ¡ f(ú,v)e‘ d« d» - ä,., M (/) 

is unifo» relative to (x, y) for k and 1^2 (2-1 must be replaced by 0), 
whatever be the specified N > 0. If however one of the numbers (still non- 
negative) be less than 2, the doubled sum is converted into a single sum or 
even (for ¿> *0, ¿*0, and ¿ a sum that degenerates into a single member. 

In these cases ^(f ) "*-0 is uniform on since under the integral appears 

a function that is continuous with respect to x, y, u, and v. siwtijir argu¬ 
ments are also valid for the numbers k and 1 of any sign, therefore it has 
been proved that for any k and 1 

» 

is uniform, whatever be N >0. 

on 
N 

From the second inequality (5), it follows for any N, > 0 that 

and after the passage to the limit when 8 -+.00, then N1 -*.00 and then N-»-co, 
we get 1 

i(2M/)ru,ia. 
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From (10) it follows that 

therefore, after the passage to the limit initially when a 
we got 

(S6U(/)’),'’<1>(«, »). 

Finally, 

|l IS(O’)"-1',(V -1 is 6„ (/)>) ' X,,,.) I « 

+ Ë I Ô*/ (/) lit, (A*, + IS' I 0« (/) I Vp (M -/, + ... +/s. 

c-t , then 

where X’ ia the sum over pairs of the numbers k and 1, where at least one of 
these is not smaller than N. 

Here 

where does not depend on s and tends to zero when N 

^ *Ai 0 (N -► oo). 

Thus, N can be taken to be so large that IP, ..., I, ia less than an 
assigned <f >0, and then s0 can be selected so that I-, <£ for all s > s0. 

We have proven that for any infinitely differentiable finite function f 

JílIlS«, 
and then based on (5), where the constants in the inequality do not depend on 
s, we get (1) (still for infinitely differentiable finite functions). 

., N°w then we aelect a sequence of infinitely differentiable 
finite functions fjy(j = 1, 2, ...) such that 
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11/-/,11,-0 (/-*00). , x 
(11) 

This shows that for axy ana A is found such that for i and j 

after passage to the linit when i —*-o° in these inequalities f< is replaced 
with f. But further passage to the liait when N -*-oo leads to the inequality 

l(Sô*,(/,“/),}l/*(p<e (!>),), 

from whence it follows that 

KSíHtfy-flTL-o (/-.»). (12) 

Inequalities (l) are satisfied for the functions f.. But as a consequence of 
(11) and (12) in these inequalities it is legitimate to pass to the limit when 
j —►¿.-va, thereby obtaining inequalities (1). 

1.5.6.1. By wholly analogous arguments^ though simpler because we have 
in mind the one-dimensional case, it is proven that for the functions f(x) 
Lp(- po f no) = Lp(l < p < oo) the inequalities 

ll/ll, < 1(2^(/)^1 <II/IU (13) 

obtain, where 

MO-0)1). 

= X i- 2^, 1 = 0, 1, ...; 2^-1 for 1 = 0 is replaced by zero }, 

and the constants in (13) do not depend on f. In the periodic case, 1.5.2.1 
(4) must be selected as the original inequality. 

1.5.7. Fourier transform of the function sign x. The function 
fl 

sign*-U sign*, 
,-i 7 

is a multiplier when 1 < p (cf section 1.5.5). The functional (explana¬ 
tion below) is 
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(sign X, <p) - (sign x, <p) - -(2^)nn J sign a duj e,u,tf (/) dt - 

(2ji)b 
J du J q, (/) JJ (e,tlui - e-l,Juj) dt * 

/-i 

■ (4) 'Vf. j »(')<" j n "" '/"/““i - 

‘i'-' 
n N 

Jim 
I 

2 \nli 1 I •» -I i 

n/3 

/-10 

1 - COS A//y 

/-1 
(I 

/-1 

Here R+ is the positive coordinate junction 

A.v * (0 ^ ^ W; /-1, .... n}, 

A<p(/)-A,A2 ... An(p(/) ' 

and 

A/Ç (/) = ? (/) ~ <p (/./y-„ 0’ ^/+1* • • • «^n) (/-1. 
•n). 

(1) 

(2) 

(3) 

In the penultimate equality (l), when the product members are multiplied, 
the integrals 

I 
/ -1 

-0. 
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appearj tending to zero when N -»-codue to the sunnabllity of (t) on R+ 
by virtue of a lemma well known in the theory of Fourier series. The integral 
in the last member in (1) is written in the Cauchy sense: 

K* 

where Re is a set of points x é R, located from any coordinate planes by a 
distance greater than £^0. Functional (4) defines the generalized function, 
which is denoted by v. p. 1/t. And so, the equality 

For f €: S 

sign i . / - sIpTà - -¡¿yr J sign « J / (/) e-'" die'“ da - 

'wJ^“duj!U-t)e>«dl-(±)'jtJl^dl, ' (5) 

where the last equality follows fron the already proven equality between the 
third and last members of (1), if there we replace ^(t) by f(x - t). The 
last integral in (5) is understood in the Cauchy sense. 

We will use the dotation 

signx*/-sfgn JZi£ziL¿/ (6) 

for the case when f <£■. Lp(l < p < oo ), understanuing the members of (6) to 
be limits to which the ^corresponding expressions for finite functions f], 
tend in the Lp-sense, where l|f - fjjlp —►O. With respect to the first and 

second members of (6), this was validated above (cf 1.5.1), because sign x 
is a multiplier in Lp for 1 < p < . We have now provided the appropriate 
definition for the Pexpressiojj externally written in integral form. Actual¬ 
ly, it can be proven (M, Ris ¿1_y when n = l) that for f é: Lp(l <. p^-co) 
this is a real integral in the Cauchy sense, existing for almost x, but we 
will not dwell on this matter. 

Let /à- (^, ...,-on), a*(a.,, ..., an) >0 (aj ^0) be two specified 

vectors and 
A.-dx/Ka,; /-1, n), 

A(p, a)-[\x,-\ij\<aj\ /-1.n}, A(0, a)-A«. 

Thus, ^{4á, a)-is the displacement & for the vector ÁÁ . Motive that the 
characteristic function (of one variable t) on the interval (a, b) is 
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M(a, ¢) “ 7 Is'?n (t-a)- sign (t - ft)J. 

Hence it follows that 

Wa to, - JJ 2 [sign (x; -nj + aj) - sign (xj aj)] - 

_ (-1)" y . . , 
—2«— ¿¿ sign a sign (jc - n - a), 

where the sum is extended over all possible vectors W = ( ...ío¿ ) such 
«»t |¿,| = oij, J = i, .... n. 1 n 

Ve know that the function sign x is a multiplier: 

ll¿Í8n^lK«,||/||, (i<p<„), {g) 

where x does not depend on f (cf. 1.5*5)« and sign (x = a) is also a multi¬ 
plier pwith the same constant in the corresponding inequality (cf 1.5.1.2), 
whatever be the vector a R, ^therefore from (7) it follows that 

I <p < 00, (9) 

because the sum is extended over 2a terms. It is remarkable that the cons¬ 
tant Xp in (9) is the same as in (8) and, therefore, does not depend on u and 
a. v 

From (7) it follows (cf 1.4(18)) that 

(^a (,. o) ” S signa e< <M+,)Jr ■ 

/-1 . 
/ n \«Æ 

“(t) e,*MDa(*)' (10) 

where 

O.U).n,in0(r;v.p.i-n^. (10 
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An ordinaiy function is obtained in (ll) whon an ordinary function 

is multiplied by a generalized function. For example, in the one-dimensional 

case this is proven thusly: 

(sinojrv. p.-j, »(■*)) = («. p.i, sinajfip(jt)J- 

0 

(12) 

whore ûF(x) - F(x) - F(-x). The integral in the right side of (12) can now 

bo understood in the Lebesque sense. 

The equality 

(nA-.«)= (Jf-«)/(«) d«, 

obtains for functions f tr S, in particular when M 0 

/ [X) -III f 
'u 

i Í r>„ (x - u)i iu) tiu, (13) 
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where the integrals in the right sides are understood in the 
Lebesque sense. Let us dwell in greater detail on (13). 
Integral (13) is meaninglul also for aqr function fé L_(l é p<oo) because 
Da(x)é Lq(l/p + 1/q = 1) and P 

J \ D,{x-a) f («) I </« O) DJ), U / ||p < oo. 

It is imnediately clear that it is a continuous function of x (even unifoxmly 
continuous): . _ 

IfU)-^(y)l<IID-(x-«)-->0 (x-+y). 

If fi é S. /1 fn - f/J —► 0, and F-, is a result of svxbstituting f-i instead 
of f in (13), then p 

* * ,. 

in.») - f, (*) i < j a. y, __ 0 

is uniform. On the other hand, (1)a is a Marcinkievicz multiplier, because 
IjFjj - F^llp —► 0 (k, 1-0). This mows that F^ tends in the Lp-sense precisely 

to the function F defined by integral (13) and that for f €r. L0 (13) is valid, 
where its right-hand side is a Lebesgue integral, and the left-hand side is 
understood in tenas of the Marcinkievicz multiplier (cf 1.5.1). 

In fact, F(x) is an analytic function, of the integral exponential type 
(cf further 3.6.2). 

1.5.8. Functions ^ and . The function <fe is defined on R = Rn, 
depends on a small positive parameter £ (0 < £ < £ ), and exhibits the 
following properties: <f£ (x) is infinitely differentiable and is nonnegative 
on R, and has a carrier on the cube 

/ -1.„} 

(i.e., <Pf. = 0 outside At ) and, moreover, satisfies the equality 

j%(x)dx-l (0<c<e0). (1) 
A. 
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fanctio^ícf^^^)1, a c0BPact; carrier, i.e., is a finite 

If f is an arbitrary function continuous on R (even locally sunmable 
on R and continuous at the zero-point), then 

Mm J<pf (x)<p(x)dx-<p(0), (2) 

because 

I / <Pt (jf)<p(jf) dx — ¢(0)1 - J ?e(«*)[<p(JC)-q>(0)li/.*< 
Ia« I a, 

< Í <P«U)sup|<p(4f)-<p(0)|d4f- 
A. '• 

™ sup I <p(*) — <p(0) I -► 0 e >0. 
At 

If 4' é' S, then equality (2) can be written thualy 

1¾¾. »)-(«, ¢).,(0,, 

where à = 0{x) is a delta-function. 

Let us suppose ... 

(3) 

Since — 5( ¿ 0) weakly, then yt —(2 J“/2 ¿ = i weakly. 
Moreover, fe (x) as an ordinary function as <* -^0 converges boundedly to 1 
for all x: 

(4) 

(5) 

Below it will be shown that if f ¢-- Lp, g ^ L and í- 0, then 

^*g*f-*g*f, 
8*V-*g*f. 

(6) 

(7) 

(8) 

weakly. 

Further, if f <? g e Lp, and 1/p 

g*f can be defined by means of the integral 
+ Vq = 1 j then the convolution 

‘*P (n ~, j * Jug) 
I /.9 
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Obviously, 
I/I- 

This convolution lies to one side of the generalization of this concept 
introduced in 1.5, where g é? S' was such a function that f é Lp entails 
g*f £- Lp. But in the given case when f ^ Lp, the function g*r belong to 

the class L^- H of bounded (measurable) functions. However, a property 
analogous to (8) 

g*$J-+g*f (e-»<0). (9) 

obtain for this convolution. 

Proof for (6). By the Lebesgue theorem 

(W. <P) - J (t) f (t) <p (t) dt -> jfrdt- (/, <p). 

Proof of (7). 

¢)--JJ^At)gll)Hx-l)<f(x)¡¡ldx-<- 

Since 

¡¡\g{t)f(JC-t)\dt\v(x)\dx<l 

<1 j‘lg(OMJf-OI^|pllqpll,<!!gllill/M<pll, (7 + 7-1)- 

Proof of (8). 

(g * 'Ptf> ¢) 
1 

(2n)"/2 

I 

since f Jl/(0g(^-<)<P(Jf)|í/M4f<¡J/(í)g(4f-0df I 

< ii g I!¿ i «pila¬ 

do) 
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Proof of (9). The same as the proof of (8), but we must take into 
consideration the ineauality 

[J l/(0s (•* — 0<p(** - 01 dx dt ^\}f Upll g lljll <p||¿. 

1.5.9. Operation Ir of the Liouville type, 
number. The function 

d+l«l2)r/î 

Let r be an arbitrary real 

(1) 

is infinitely differentiable on R and has polynomial growth for ary sign of r. 

Let us suppose 

0,(10-0+isi*ra. 
Since 

o,7«)-0+ 10^ 

(2) 

(3) 

is an infinitely differentiable function with polynomial growth, then for 
any generalized function f é S', the convolution 

F G,*i Grf ■0+1« Irf. (4) 

defining the operation Ir mapping f <£? S' onto F «fr S' is meaningful. 

Obviously, 

(5) 

If r and f are arbitrary real oumbers and f é S', then 

W - 0 +11 IT^O +11 |*)-p/* ) - 
/— -\ 

-d+ 1).1^/7-/,/,/. (6) 

In particular, when /°= -r 



(7) 
1,1.,/-IJ-1, 

i.«., the operation Ir and I_r are mutually inverse. 

It is not difficult also to see that the operation I_ maps S onto S 
■rtually single-valuedly and continuously: if <p , S, and ¿p <p(s) 
as m —► o® , then ® ® 

We can even introduce the operation Ir* defined by the formula 

which ve naturally call conjugate to Ir. Obviously, it exhibits all the 
properties established above for Ir, including continuity in the sense of 
convergence in S. 

3he connection between Ir and IP* is manifested in the equalities 

Ur/, ¢)-(/, /*>), 
(l'f, ¢) - (/, /,¢) (/eS', <pe S). 

From these it inediately follows that the operations Ir and Ir* are conti¬ 
nuous on S’ (weakly continuous), i.e., that from fa, f e S’, m = 1, 2, ..., 

it follows that 
/«-/(S'), 

0.-Wl. 
In fact, for example, 

(O,. ¢)-(/., /»-»(/, /».(/y, 

Notice that when r = -2 the remarkable equality 

obtains, where A is a Laplace operator. 

Consequently, for ary natural 1 
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(fe S'). (8) /-2Í/ = U+ IMV) =(i-A)'/ 

1.5.10. Regular generalized functions. Further enlargement of the 
concept of convolution. The operation Ir can serve as a convenient means for 
enlarging the concept of convolution to the class of generalized functions« 
which we call regular. 

By the definition, ve will call the function f ^ S' regular in the 
Lp-sense and write f tr if for some P0 ^ 0 

IJ^FeLp. (1) 

obtains. 

Let be a multiplier in Lp ( L when p = l) (cf 1.5.1, 1.5.1.1). 
Let f further be a function in the Lp-sense for which the property (1) is 
satisfied. 

Let us suppose for P Z P0 that 

¡L-l-l-'ß.lJ). (2) 

This definition does not depend on f3 ?/*£. In fact, let -- along with 
(1) 

/p/ = F,eLp (p'>p). (3) 

Then when - P - r, considering that L,f = F é- Lp, we get 

/-p' (A * /p7) = /-p/-r (A * A/p/) - 
/---^ ^ 

- /.p(l + |Jf|2)r/îp(l +1 JflT^/p/ = /-p|i/7-/-p(A * V) 

(cf 1.5.1 (12) when ^ L and 1.5.1.1 (9) when 1 ^ p< oo). in the third 
equality, we used a fact that will be proven later (cf 8.1) to the effect 
that /  —N 

( 1 H ^ J2) 2 e /. (r > 0), 

and that the function (l + |x|2)A for ary real A is infinitely differentiable 
and of polynomial growth. 

The equality Ijjt = x = x1.. .^ holds for ary real r, showing that the 

function x does not belong to Sf (l <. p < oj ), though it does belong to S’. 
This follows from 1,5 (12) when1* = u> = (l, ..., i): • 
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o +1 * I2)"* - <‘"(2n) *" (1 +1 ^ |2)*7 0«-> {x). 

-in(2n)îb,a)(x)-i. 

It is important to note that for the generalized fonction f that is 
regular in the Lp-senae, the equality 

(4) 

obtains for any À(positive and negative). In fact, for f there exists an 
I® > 0 such that I^f é- Lp. When A^, equality (7) was already proven 
above, while if A< /°, then we assume Io = A + <r( > 0). Then the function 
IAf is regular. Specifically, 1^f é Lp. Iherefore, 

/., (A * IJ) - /.,/.0 (a • /p/) ■ /.p (a • y) - a . /. 

It follows from (4) that for the functions f regular in the Ln-sense 
and for any real r • v 

A (A • /) - /r/-r(A • /f/) - A • Irft (c\ 

i,e., for the regular function f the operation I can be taken under the sign 
of the convolution. r 

It follows from (5) that ifis a Marcinkievicz multiplier and if f is 
a function regular in the Lp-sense, the convolution ù*f is also regular. 
Actually, let 1^ é Lp, then (5) obtains, where the right-hand side belongs 
to V 

Early the equalities 1.5.1.1 (9) were proven, which we wrote in terms 
of convolutions: 

**(A*/) = A*(W) = >.(W, fe=¿p(l <p < og). 

They are valid if A and aà are Marcinkievicz multipliers, whence it follows 
that (Au) is also a Marcinkievicz multiplier. Now let f be a generalized 
function regular in the Lp-sense and let I^f <£ Lp( /^ > o). Then equalities 

(6) will be satisfied, if I^f replaces f in them. But for regular f, the 
operation I* is validly removed from the signs of the convolution in all 
members of (6), but then the function appearing under the sign of are 
equal to each other and we have proven that (6) obtains for any generalized 
function that is regular in the Lp-sense. 
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CHAPTER II TRIGONOMETRIC POLYNOMIALS 

2,1 Theorem on Zeroea. Linear Independence 

ft 

T'n (2) * Y + S ^a*cos kz + P* sin kz), ( 1 ) 
*-l 

where ^ (k = O, 1, ..., n) are arbitraiy complex numbers, and z is a 

complex or real variable, this function is called a trigonometric polynomial 
of n-th order. This definition does not exceed the case *n = #n = 0* 

The trigonometric polynomial is a function with period 2v, and therefore 
in studying it it suffices to confine ourselves to examining variation of the 
independent variable z = x + iy in an arbitraiy vertical strip a<;X <.a+2n 
(or a ' X ^ a + 2 rr), - < y < c<> of the complex plane of width 2 . 

Using the equalities 

+ ,-ikt 
cos kz --■—__ , sinkz- 

<* = 0. 1, 2. ...) 

e,k* - *-'** 

2Ï (2) 

the trigonometric polynomial (l) can be transformed to the more symmetrical 
form 

Tn (2) “ S ckelk*, 
a . k--n 

C-* 

2 

+ 
(*-l, 2,...). 

7* (3) 

It is clear from (3) that if coefficients ¿k and of polynomial (l) 
are real, then coefficients cu and c u for each k are pairwise complexly 
conjugate 

= * = 0,1.n. (A) 
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Conversely, it follows from (4) that the numbers 0(^ and ^ are real. 

The most important property of trigonometric polynomials is expressed 
by the following theorem. 

2.1.1. Theorem. Trigonometric polynomial Tn of order n, in which one 
of the coefficients or ß in (l) is not equal to zero and has in ary strip 
a $x < a + 2T0f the complex plane z = x + iy exactly 2n zeroes, allowing 
for their multiplicity*). 

If we represent them by z-j, ..., z^, then the equality 

Tn(z)-A][s\n^, (1) 
»-i 

obtains, where A jF 0 is some constant. Conversely, equality (1) defines the 
trigonometric polynomial of order n. 

Proof. Let us use the representation Tn in the fora of 2..1 (3). After 
substituting Z = e*®, which transforms the mutually single-valuedly strip of 
the pi»"» z considered here into the entire complex plane Z (except for Z = 0), 
we get 

Tn(Z)- £ cJ-Z-'P^Z), 
where 

PlnW-'-n+ ... + CnZ» 

By the conditions of the theorem cn f 0 and c_n ? 0 because the poly¬ 

nomial PjZixiZ) of degree 2n has in the complex plane Z exactly 2n zeroes (with 
allowance for multiplicity) not equal to zero. 

Hence it follows that the trigonometric polynomial Tn has in the strip 
here considered exactly 2n zeroes (allowing for their multiplicity). Let us 
denote the zeroes of the polynomial PjjnU) by Z^ = e^Mk = 1, •••» 2n)» then 

Tn(z) 

*) Thq niwnhftr is callad the zero of multiplicity m of the function f, if 
f(a) = f'(a) = ... = f(*-1i (a) = 0, fW (a) p 0. 

- 89 - 



where 

< *• 

/4»cn2în(-l)"i2*5 \ 
Thus, the first port of the theorem has been proven. To verify that 

function (l) where the numbers (k = 1, ..., 2n) belong to some vertical 
(closed on one side) strip of the complex plane with width 2 is a trigonometric 
polynomial of order n, it suffices to make this transformation on the opposite 
side, starting from (l). 

2.1.2. Linear independence. If the trigonooetric polynomial Tn(a) 
equals zero at more than 2n points of a vertical strip of width 2 it , then based 
on theorem 2.1.1 all its coefficients must equal aero. In particular, this 
occurs if a trigonometric polynomial of order n is identically or almost every¬ 
where equal to zero at a real axis. 

Hence it follows that the system of functions 

1, cosx, sinx, .... cosnx, sinnx (1) 

is linearly independent in C* and Lp*(cf 1.1.1 and 1.2.1). «s must consider 
that the zero element in Lp* is a function almost everywhere equal to zero. 

The linear independence of system (l) also follows from the orthogonal 
properties of the trigonometric functions (m, n = 0, 1, 2, ...) 

(w, n-0, 1, 2, ...) 
Jl 

-j-j- J sin mx sinnx t/x» 
-n 

cos mx cos nxdx 

J sin mx cos nx t/x - 0. 
-Jl 

1. 

0. 

m-n, 

m + n, 

2.1.3. If Tm and Tn are trigonometric polynomials of, respectively. 

orders m and n and m ^ n, their sum and difference is a trigonometric poly- 
nomial of order not higher than m. 

In fact, their product is a trigonometric polynomial of order not higher 
than m + n, which stems from equalities 

cos mx cos nx = y [cos (m - n) X + cos (m + n) xj, 

sin mx sin nx = j- [cos (m - n) x - cos (m + n) x], 

cos mt sin nx » [sin (m + n)x - sin (m - n)x). 
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2,1.4. It follow* fron the orthogonal properties of the system 2.1.2 
(l)that if the trigonometric polynomial is even (an even function), then 
it contains as its members only the cosines (&= 0), and if it is odd, then 
only the sines ^=0. 

Inspecting the real parts of the equality 

cos nx + i sin nx * (cos x + i sin x)\ 
we get no;,yMHM 

cos nx = cos" * — C* cos"-2* (1 -cos*x) + 

• + CJcos"-4x(l-cossx)2+ .... 

from whence it follows that any even ttigonometric polynomial of n-th order 
can be represented in tji« form of Pn ( cos x), where 

is some algebraic polynomial of n-th decree. 

On the one hand, from the equality 

it follows that 

■^rr[cosnx + qcos(n-2)x+ ... COS X 

(1) 

for an even n, and 

cos"x 

for an odu ir. 

Huís, the function Pn(cos x) where Pn(z) is an algebraic polynomial of 

n-th degree is an even polynomial of n-th order. 

.Importent Examples of Trigonoaetrir 

From the equality 
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1 s 
*-o 

bgr inspecting in it, separately, the real and iaaginaxy parts, we get 

(1) 

(2) 

In particular, equality (l) shows that the polyfecoial D-ix) tends to zero 
at the points 

x* 2/1 + 1 (*■ 1.2n) 

of the interval (0, 2 ), therefore, it can also be written as the product 
in 

DAX)-Ajls{n^, 
km¡ 

where A is a constant. Assuoix« x = 0 in this equality, we get the relation¬ 
ship 

n-f. 
fron which we can determine A. 

The trigonometric polynomial D^x) plays a large role in the theoiy of 
Fourier series. It is called the Dirichlet kernel. 

We note that (explanations below) 



Il A, Il ï* 

n 

Í 
, 2n + l 

sin—s—X 

o 
On+l)n 

s 

. * *1« y 

_ I , ' 2n +1 I 
f s*n 2 * 

dx-2 I J-I-L* + 0(l)- 

-2 J i^ i/« + 0(l)-2j + 

» B * 

= 2SjJ¿rí!-</“+0(,)“2S'¿rJ8Ínw<íu + 0(1)" 
*-IO *-l 0 B-l 

^5¡} + 0(l)-^lnn + 0(l) (n-1.2,...). 

(3) 

The variable IA ||D_||T# i» «sailed the Lebeagu« conetanta of the (n-th order) 
Fourier amu. Here 0(1) denotes sons bounded function of a natural n. 
In the computation_j)reaejjted here we used the boundedr^aa of the function 
x-l-(ainx)“1 on /0, ir/g/ and the fact that for u ¢= ¿0, it/ 

«•I ft—I 

*n + u)^c2'P’ *-i i 

For a finite p > 1 the nona lililí Lp# i* bounded 

2.2.1. Separating the real and the imaginary parta of the equality 

ve get 

I ÜI+I)* 

1 X 
»in (n+ Qx 

O .1. X 
(1) 



(2) 

II 

Y sin+ + 
*-o 1 21 2sin 4: 

sln»i+ix 

slnl 

2.2.2. Using 2.2 (1) and 2.2.1 (2), ve get 

ï + Ê{l^.C0S**-7TTÊZ)*to- 
*-i *-o 

“-^-7 JsinÎÂ + l),- 
2(n + l)»lni*T0 V 2/ 

i sin,iLr-* 

(n + ,) 2sin»| 

(1) 

Let us note that tlie function 

kv(x) 

. \x \ i<> sin — ' 

s¡n-| 
(2) 

wliere A and ¿r are natural numbers, is a trigonometric polynomial of order 
V - cr( A - 1), since it differs from the cr-th degree of the Fejer kernel 
F A_i(x) only by the constant multiplier. 

In the following it will be useful to estimate the exact order of 
variation of the variable 

when V = 1, 2, ... 

If we note that 
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then we will have 

But 

*) 

Obviouslyj thus, for a fixed 

o,,**?0-1 (X-1,2,...). (5) 

Let us further introduce the trigonometric polynomial 

rfv(*) -M*) 
ÛV 

(v — c (X — 1) ), • (6) 

where c > 0 is a specified integral number, A = 1, 2, ... and a y is a 
constant defined by equality (3). 

2.3 Interpolations! Lagrange TrigonoaetrlC PolmWkl 

If two trigonometric polynomials Tn x) and Q^x) coincide at 2n + 1 
different points of the semi closed interval a<-x<a + 2rr, their difference, 
being a polynomial of order n, equals zero at these points, and therefore is 
identically equal to zero, since a polynomial of n-th order not identically 
equal to zero can have no less than 2n zeroes in the period. 

And thus, the trigonometric polynomial Tn(x) of order n is wholly 
defined by its values 

VO’ Unt • • • i Hint 

*) Everywhere in this book we assume that a*~ b,v ( A<£ &), where g is some 
set of numbers A , if there exists two positive constants Ci and C2 auch that 
for all A £ the inequalities c-ja ^ b are satisfied. 
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correspondIng to «uy 2n + 1 different points 

Jt0<x,< ... <jr}ll<x0 + 2» 
of the period. 

It is not difficult to write an effective expression for it. 

In fact# based on 2.1.1 the function 

Q (-)(,). 

•In --g *1... iJn sin ... »In X|^ ~ X|* 

(«"O, 1.2/i) 

is a trigonometric polynomial of order n, obviously exhibiting the property 

k+m (*‘ mm0' 1.2m). 

Therefore, the unknown trigonometric polynomial Tn(x) satisfying the condi¬ 
tions 

(*-0. 1.2r), 

can be written as 

i... sin ,in îa^îati _ -xj!*- 

As case of equidistant interpolation nodes is especially important, 
1.0., when 

'•■arr <*-». i.uy 

A this case we can write a simple expression for q(*)(x) if we note that the 
trigonometric polynomial 

A* (*) ■• y + co* * + + coinx • 
(1) 
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exhibits the properties 

0.(0)-^. D.M-O, 

(*-l, 2.2n). 

Hence it follows that the polynonial 

(m-0, !, 2, ...) 

satisfies the conditions 

Q'"'<x,).j 
k — m, 

Thus, any trigonometric polynomial 

n 

T* (x) -» .Y + 2] (a* cos kx + bk sin kx) 
*-i 

(2) 

can be written as 

*-0 
.u*)' 

__1__ Ä sin *- (x-xk) 
" 2« + ] -^(x*). 

*.0 Sin —-jii 
(3) 

obtain* 
Substituting in this equality the corresponding sum for D^x), we 

in • 

Tn (x) " ãrrr 2 2/cos f - xk) r, (x,) - 
*-0 fmQ 

" 'Sr+T 2 ÍÍ2 cos U*)) COS /X + 
'-o L\*«o / 

+ (SSln/jr*rn(x*,)s|n/xj. 

>) We assume that ¿ u(K =-^ t I ut. 
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Comparing the coefficients for cos ix and sin ix with the 
coefficients Tn(x), ve get 

2n 

ûi = '2iinr £cos 1.«). 
*-0 
2a 

= 1ÍTT S sin (^) (‘“1.2.n). 
k-0 

n n 

*) Mu c'liiraeM, mo ^ - -y- + V ut. 

k-0 k-i 

2t4 M. Riecz'a IntercjlatlonA^. Fnpnii,!) 

If Tn(0) is a trigonometric polynomial 

A 

Tn (0) = + V] (a* cos Ä0 + bk sin fee), 
*-i 

then the identity 

Tn (0) = a„ cos ne + -^n- >¡ ( -1 )* ctg ^ Tn (6*), 
*-i 

is valid for it, where 

d* = ~Wn (^ = 1. 2, ..., 2ft). 

Let us prove it. 

The points are seroes of the polynomial of cos n9 

in 

cos «0 = 4 JJ sin . 

Hence the function 

Q'” cos nd 

„ sin Iziligaj 
t ^ l)”1*1 cos n" 2 

2a 

2.2n) 
>1"-—=- 

corresponding 

(1) 

(2) 

therefore 

(3) 

*) M. Kiecz ¿1J. 



is a trigonometric polynomial or order nf since it is a product of the form 
(3) in which the multiplier sin (6 - 0^)/2 is replaced by the multiplier 

0 - (fr+Qj 
sin -—— . This polynomial obviously equals zero at all points 

with the exception of point where it equals zero. We can verify the 

Hosi 

«”<»*>-{ 0. 

latter by using L1Hospital's rule. Thus. 

'<m)rtu = i l’ m~k' 

m^k (k, w = 1, 2.2n). 

•) M. Phcc |1J. 

Hence it follows that the function 

r;,8). 
*-I Í0») 

is a trigonometric polynomial of order n coinciding with the original poly¬ 
nomial Tn(0) at the zeroes of cos n9. In this case« based on theorem 2.1.1 
on the zeroes of a trigonometric polynomial 

Tn (0) - c cos nO + K (0), (4) 

where c is a constant. 

We still have to prove that 

c-a„. (5) 

In fact« the Fourier coefficient of the trigonometric polynomial 
cos nO ctg (6 - 0^)/2 corresponding to cos n6 is 

J cos2 n0 ctg=.1 j cos2 n{u + 0«) ctg du » 
-n 

n 

" n" J sininu jdu-0, 

since the integrand function in the last integral is odd. In this case the 
polynomial qW(0)« and consequently, also the polynomial T„*(6) do not 
contain members in cos n9. Hence (5) follows from (1) and (4). 

Identity (2) is proved. If we differentiate it and theif set 0=0« 
we get 
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ir 
i-l sin* ■ 

This latter equation is valid for any polynomial of order n; in particular, 
it is valid for the polynomial Tn(u + 0), where u is a variable and 9 is 
arbitrarily specified. Thus, for any 0 

7-,(0) 
2n 

J_Y(_ 
An K 

*-l 

+ 8,). 
sin* 

(6) 

obtains. This then is M. Riecz's formula. 

2.5 Bornahteyn's Inequality 

If we assume in M. Riecz's formula 2.4 (6) that Tn(0) = sin nfl, then 
when 8 = 0 we get 

It 

Therefore, from 2.5 (6) follows the inequality 

(2) 
17, J¿. ^ n (I Tn ||i# (l^p^oo), 

called Bernshteyn's inequality, for ary trigonometric polynomial of order n. 

It is exact in the sense that there exists a trigonometric polynomial 
for which it transforms into an equality. Specifically, this occurs for 
the polynomial 

7-,(0) = ^5)11^0 +a), 

where A and pc are arbitrary real constants. 

2.6 Trigonometric Po.ÍYmW8 ^ Variables 

A function of the forro 
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(D 

where ..., vn natural number a, z^t ..., zn are complex variablea, 

and c^, ...» Jen are conatant coefficienta that, generally speaking, are 

complex and dependent on integral k^, ..., kjj, ia called a trigonometric 

polynomial of ordera v^, ..., vnj reapectively, in the variablea z^, ..., zn. 

Uaing the vector notationa 

v“(vi.vj, A = (*.. 
n 

t “ (Zl* ...» zn), kz ™ 2 ^/Zj» 
I 

we will write further _ 

T-T*(z)- 2 c*e'*' 

/-1.. 

and aaaert that T = Tv ia a trigonometric polynomial in a of order v. 

If the coefficienta satiafy the relationahipa 

c.*-«*, (2) 

i.e., if they vaxy for them the conjugate numbera when the aign ia changed 
for all aubacripta k^, then for the real a = (z-p ..., zn) the polynomial 

Tv ia a real function. In fact if x = (x^ ..., xn) is a real point, then 

by (2) 

7-, 
2 

/<-‘/<v/ 
C-kC rltjt TAX). 

Ve will mainly have to deal with polynomial satisfying condition (2), 
which we naturally call real trigonometric polynomials. 

• • 
For complex a, the real polynomials Tv(a) ar* not in general real, 

but they become real functions if they are considered aa functions of real 

* = (x-j, • • •» 5¾)• 
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We have defined real trifonoaetric polynomiale Tv ae linear combinat lone 
(l) of complex functiona in e1" with complex coefficients satisfying condi¬ 
tions (2) of conjugativity, but they can also be defined as linear combinations 
with real coefficients of real functiona. Such functions all possible products 
of the form 

(3) 

where (1 = 1» .... n) is either a function of sin kx¿ (1 ä k * v^) 
or a function of cos kx^(0 ¿ k £: v¿). 

Conversely! any linear combination of functions of the fora (3) with 
nal coefficients is a sum of the fora (1) with coefficients satisfying the 
conjugativity condition (2), i.e., a real trigonometric polynomial of order 
V - (v^, ..., vn). 

The trigonometric polynomials Ty are continuous functions periodic in 
each variable and, therefore, they enter as elements on the space C'9' and 
all the more so on the space LW (cf 1.1.1). 

P 
Different functions of the fora (3) satisfy the condition of orthogonality 

for the rectangle 

*-l.n) 

and therefore fora a linearly independent system on and on é P&ao). 

As an example, we note that ary real trigonometric polynomial of orders 
xa and y » respectively, in x and y can be written as 

I* V 

2 (a,/cos kx cos ly + 
ft-0 /-0 

+ 6*, cos kx sin ly + c*, sin kx cos ly + dkl sin kx sin ly), 

where a^, b^, c^, and d^ are real coefficients. 

If all variables are specified in the polynomial Tt(s), save one, for 
example, z¿, then we obviously get a trigonometric polynomial in the single 
variable s], of degree v,, and to it are attributed all the properties of 
trigonometric polynomials in a single variable. 

2.7 Trigonometric Respect to Several Variables 

Suppose g = x g1 c. is a cylindrical set of points z = (u, y), 

a = (x1f ..., xB)é y = •••» Xjj) g'i where is a measurable 
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(n - m)-dimsnaional set. Let us separate from g a truncated cylinder 

where 

is an B-dinensional cube , and let us introduce the space L*(£) of functions 
f = f (x) (real or complex), belonging to and that are for almost 

all j (in the sense of (n - m)-dimensional measure) periodic with 
period 2rr in each of the variables x-j, ..., x^ Obviously, L*(£ ) is a 
complete space. 

Let us further denote by 

Ty(x) “ r,(a, y)= 7\f(ri, ...( xm, y) 

functions such that each of them belong to L*(§) and for almost all J £- 

in u = (x , ..., each is a trigonometric polynomial*) of the order 
▼ = (v^ 1.., vn). 

The set of all such functions for a given v is denoted by 
It obviously is linear. 

Each function Tv é. Lp(¿#), therefore (Fubini's theorem) there exists 

a set cl of complete measure such that Tv(m, y) Lp( ^^)) <r L(^^m)) 

in m for all 7 e£ £' is bounded!). At the same time we can consider 
that for all 7 £ there exists the representation 

M«, >)- S Ck(y)eltlt, (1) 

where 0^(7) are certain functions dependent on 7. The equalities 

c*(y)« 

(2) 

*) It wms*- ^1* remembered that a function that is equivalent (relative to 
<5 ) to the function Tv(x) is considered as equal to Ty. 
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are valid, by virtue of the orthogonal properties of e^01, from which it 
follows, in particular, by Fubini's theorem that ck(y) are measurable functions 
on ¿f » because Tv, since it belongs to 1^(^), is in any case locally susmable 

(even if g' was unbounded). From*X2), by using the generalized Minkowski 
inequality, and then Holder's inequality, we get 

(3) 

where is the (m-dimenwlona]) volume and c is a constant. 

Ve have proven that each function Ty é ^*p(^) is representable in 

the form of (l), where cj,(y) satisfy inequalities (3). The converse, obviously, 
is also valid. 

Using this property of the functions 7n*(g) and the fact that the space 
"p'v<?? ' complete, it is easy to see that thexollowing t amwa ¿g valid. 

2.7.1. Leona. The set W»p(£) is a subspace in L*(g). 

If £ = i*®** ia aapty, then is obviously a finite- 

measurable subspace as well. If however^' has a positive (n - m)-dimensional 
measure, then ia not finite-measurable. 

2.7.2. For the functions 

T’v = TV (xu y) e 3K.p (^) = (/?, X 

(which are trigonometric polynomials in x. of degree v) for almost all y^ /?' 
the generalized Bemshteyn inequality G 

I0,2n]x<f'-, jc, [0, 2ji], y i i?'). 

(1) 

is satisfied. 

In fact, Ty(x^, y) is a trigonometric polynomial in for all jes\ 
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I 

Cl g', where ia a set of complete measure in g'. Therefore, based on 

2.5 (2) when 1 < p < co 

(2) 

Integrating both parts of this inequality in y ^ and raising it to 
the 1/p power, we get (l). When p = 00 » inequality (l) obviously derives 
from the corresponding inequality 2.5 (2). 

2.7.3. Cf 3.3 and 3.4 for other inequalities for trigonometric poly¬ 
nomials which we will use extensively. 

I 

- 105 - 



CHAPTER III INTEGRAL FONCTIONS OF THE EXPONENTIAL TIPS, BOUNDED ON Rq 

Itl ElllMflttlll 

In this chapter we will examine several properties of Integral functions 
of the exponential type, bounded on a real space = R. Ve will see that they 
are very analogous to the corresponding properties of trigonoustrie polynomials. 
At the same time, the trigonometric polynomials are a good means for approxi¬ 
mating periodic functions; integral functions of the exponential type can serve 
as a means of approximating*) nonperiodic functions assigned on an n-dimen¬ 
sional space. It may be that the reader uninitiated in these problems should 
begin this chapter by reading 3.1.1, where general informâtion from the theory 
of multiple exponential series are additionally furnished. 

Let us assume n nonnegative numbers v1f ..., v (not necessarily integral) 
or a nonnegative vector v = (v^ ..., vn) 0. n 

The function 

^ " £»,.V, (*p • • • • *„) 

is called an exponential type integral function v if for it the following 
conditions are met: 

1) it is an integral function in all variables, i.e., is expanded in 
the exponential series 

*(*)- 2 a,r*- 2 
>o 

J-f. ...» 1» 

*/> * (D 

*) Incidentally, while a trigonometric polynomial is defined by a finite number 
of numerical parameters (coefficients), the exponential type function, general¬ 
ly speaking, is essentially defined by an infinite (countable) number of para¬ 
meters (for example, the coefficients of its Tsylor series), therefore the 
need of approximating it with a simpler function would appear in practical 
computations. 
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(with con«tart coefficients ak = (ak-j, ... k.), converging absolutely for all 
caoples s = (zp ..., sn). 

2) For any f > 0 there exists a positive ncnber ke each that for all 
complex ** = + iyk (k = 1, n) the inequality 

Ig WI< i4, exp 2 (vy + e)I|. 

We will further assert that this function gy belongs to the class Ey. 

Suppose /°= ( ^, ..., /°n) (/°j >0; j = 1, ..., n) and let 

Ai(p)- SUD |i(s)|. 

Then from property (2) obviously follows the space 

AÍ (P) <4, exp S (v/ + e) py, 

and conversely, because 

I tf (*) l< Ai (I *i I,.I I) < exp 2 (vy + *)| r; J. 

A derivative order k = (k., ..., kg) with respect to g at the point 
« = U-j, ..., zQ) can be written by the Caucby formula 

-=. <. jy| «/-./)*/*' u' 

where Cj is a circle in the plane C with its center at s = 0. Therefore, if 
we^assufte that z = 0 and Cj has theJradius ^j, then we get the Cauchy inequal- 

Suppose 

Then 
Py- vy + t * 

IÛ* I < A, 
e1 *1 (v + «)* 

A* («-(«.e)). 

(4) 
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Ve have proven that it follow* fron (2) that for aw ¿rO. an A, 
auch that (4) ia aatiafied. By Stirling'* fomüa 

ia found 

kj “♦ 00 ), 

therefore from (4) follow* (2) (but generally with another conatant )s 

where Bt ia a aufficiently large number dependent on . 

From the foregoing it follow* that if glA)* E , than any of ita partial 
derivativea gU} t E . The iaaue ia that it follows from Í4) that the module 
of the (k - A)-th coefficient of the exponential series g^' satisfied the 
inequality 

where is sufficiently large. 

From the above it follows that for the case of an integral function 

/(*)- Ha** 

of one variable, the following two conditions, each of which express that f 
is of the exponential type of degree v, are equivalent: 

(5) 

and 

(6) 
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Ut Ufl denote by ^(R) = W ^(l $ p <: oo ) the collection of all 

integral functions of the exponential type v , which as functions of a real 
* € R = R^ belong to Lp = Lp(R). Ut us further suppose that ^Wv = 

i*e., 797,/ consists of all functions of the type v bounded on R. 

Ut us here note what will be proved below, that (cf 3.2.5 or 3.3.5) 
for any p (l p s; e*> ), 771yp c. • Moreover, it will be dear (cf 

3.2.2 (10), ^ = Rjj, n = ■) that for any function there exists a constant 

not dependent on s, such that 

II 

IÍ (*) I < ¿a/-' 1 (*/ - + iyj). (7) 

This inequality is strenger than inequality (2). It follows directly from 
it that g is bounded on RQ. Thus, ???„ can be defined as a class of integral 

functions f(s) for which (7) obtains. 

The functions 

Ita i *lk* ■*.,“<** a . cos *a - -—1£— sinJkr 

where k is a real number, obviously belongs to Vn^ (R1) = ^Ikj * 

The trigonométrie polynomial 

r*W * r*i.% (*».*-) - 2 et*,ta 

1¾¾ 
belongs to (Rp), but not to 7rj^p (l ^ p <oo). 

The function sins/s of a single variable s ^»"g* to 99t1p(R1) 1 < 

P ir oo . In fact, as a function of a real x, it obviously belongs to Lp with 

the stipulated restrictions on p. On the other hand, it is obviously an 
integral function; further, sin > is an integral function, end it is not 
difficult to see that for it some constant c^, the inequality 
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Is satisfied. Therefore* |sinz|<c,el‘'1. 

On the other hand, there exists a positive constant 02 such that 

sin z 
<¿2 (|Z|<1). 

But, since 1 < e*y^, therefore 

I sin 2 Oa*1*'1 (I^KO- 
Thus, 

obtains for all z. 

where 

I sin 2 I . . 

c ** max(c„ c,). 

The function of ez belongs to (Itj), i.e., it is an integral func¬ 

tion of the exponential type, but does not belong to ^pO^) for “V P 

( 1 < p < ^ ) • On the other haixi, the function of e1* obviously belongs to 

7>U "= KM- Th» algebraic polynomial n k 4 v * i 
1' i7 P(*) = £ a^z* is obviously 

0 

a function of the 0 type, not belonging, however, to neither for 

any p (1 < p < ) • From the following (of footnote on text page 137 
¿translation page 125_y, it will be clear that if f ^bsn f is 

a constant (equal toO, if1%: p^rco). 

Obviously, Ml )71 , if 
V P 

If we consider thàt g ^ denotes some function of the class , then obviously 

wbere »* " (P|- • • • • P„). Uy - max (yr vj), 

It is easy to see that il’ g is an integral function of the unity type 

of all variables and j f 0 (j = 1, ..., n), then g(¿^x.,, 
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an InUgral function of tha typa , . Äe converse aeeertion 

is also valid. Perhaps by using the general properties stated above, other 
such functions can be constructed fro» the given integral functions of the 
exponential type. We here use the operations of addition and multiplication 

at a finite number. The process of Integration by parameter (cf 3.o.2; 
is an important —of constructing integral functions of the exponential 

type. 

3.1.1. Multiple power series. It suffices that all considerations 
be presented for the example of double series. The arguments are similar for 
series of higher multiplicity. 

Under the sum of the series 

(1) 

(2) 

(if it exists), when natural numbers m and n increase unboundedly, indepen¬ 
dently of each other. 

The series (1) converges absolutely, then its members are unifontly 
bounded, i.e., there exists a constant K such that 

i«wl<ir (*,/-0.1.1,...). 

However, if series (l) oc verges nonabsolutely, then its members are 
not necessarily unifonúy bounded, as shown by the example of the series 

(3) 

where a^ = It, au = -1!, and a^ = 0 for the remaining natural k and 1. 

It converges to a sum equal to sero, but not absolutely and its members are 
not bounded in the set. 

Let us examine the power series 

/<n. o-S (4) 

in 



where are the complex constante and *1 and Ç are complex variables. Let 

this series absolutely«) converges at point r¡0 and ^ where r?0 f 0 and ¿T0 f 0. 

Then it also converges absolutely and unifoxmQy for any and Ç satisfying 
the inequalities 

inKPilnol. ICI<Pilt»l. o<pi, o. < i. (5) 

In fact, there exists a constant c such that 

leunotíl<e (*,/-o,l.i), • 

therefore for the specified 7/and Ç 

I ‘Ml VI - I <*.*{' 11 J* i £ (1 < ,».I 

and, therefore, the members of the serie* (1) in absolute value thus do not 
exceed the members of the converging series 

'SS«-«-, 

Series (l) can be validly differentiated member by member for the 
indicated 77 and Ç as many times as desired. Actually, after a single differ¬ 
entiation, for example, with respect to r) , the cc«on member of the resulting 
series for the indicated >/and Ç will satisfy ths inequalities 

l^':11 -1 cunS(i 11 T¿7 f| ^ I I u f <rj[ ^ 

Tharafor., the diff.rantl.tad Mclea convarg.a unlfomly In dcaain (5), rtne. 

converges. From the foregoing it follows that 
i ^/(0.0) 

<«- 
*1/1 

This, in particular, shows that the expansion of this function in the power 
series (1) is unique. 

•) If we reject the word "absolutely", then this assertion is in general in¬ 
valid. For example, if in (4) we take the coefficients a^ of series v3) 

c^, then series (4) 
for ary Ç f 0, since 

converges when 7? = C = 1 and diverges when 77 = 0 and 
it degenerates in this case into the divergent series 

ms 

? 
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The function t(ïl,Ç). representable in the form of an absolutely*) 
convergent power series (4) in the complex domain defined by the inequalities 

lni<P„ ICI<p„ 

is called analytic in this domain. 

Let f(7?) be a function that is analytic in the demain (6). Then 
with specified rj(lrjl < and arbitrary Ç ( K / < /^), the function 

is expanded into a series convergent in powers of ç. Therefore, f(>7, Ç) is 
an(MÄlytic^function of ç for IÇ ¡< f2. Similarly, f( >/, ç) for specified 

is an analytic function of rj for ¡rjl < fy Hence follows the representation 

of f in the form of the Cauchy integral 

(7) 

obtained by successive application of this representation in each of the vari¬ 
ables H And Ç . Here and C2 are circles in the complex planes >7 and Ç with 

centers at the sero points and with radii ^ </p1, r2 < and jÇ/«^ and 

l<l<r2. 

converges uniformly relative to u ér v ** 1* and ç satisfying the 

inequalities 

•) Here the word "absolutely" can be omitted, since we can show that from 
the convergibility of series (4) for all OM , ç , and with (>// < ana 
ICI " f'2 follows its absolute convergence for all specified >7 and ^ . 
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its aubatitution In (7) and nanberviaa integration leads to the original equa¬ 
lity (4)« fron when 

c, c. (8) 

If we had started from the arbitrary function f(u, v) continuous on C-j 
and Co, the integral (Cauchy type) appearing in the right-hand side of (7) 
would oe equal to sooe function F(u, v), representable in the form of the 
series 

f<“' 
(9) 

absolutely and uniformly convergent for| kj i < r^ and IÇ/<. r¿, whatever the 

r^ < ^ and r^ < r2. Thus, the function F is analytic if />]y<r1 and /Ç/ < r2. 

From the fact that the function f, analytic in the domain (6), is analy¬ 
tic with respect to each variable, follows ths formula 

(10) 

0<'<P,-||,|. 0<p<p,-|{|, 

which is obtained from the corresponding one-dimensional formula. 

Let us also note the following property: if the sequence of functions 
fg( ^ , £ ) analytic in domain (6) converges as N -»a« uniformly on the set 

lnl<'t<Pi. ICI<'»<P» 

for aiy specified r.j and r2 to the function f(>j , ¢), then the latter is analy¬ 

tic in the domain (6). To be convinced of this, let us substitute fj, in (7) 
instead of f and make the passage to the limit as N —+> £», then for the limit 
f(7,Ç), where |>i/ < r and/Ç/< r2, (7) will be satisfied, which shows that 

it is analytic for /r?/ < r,, IC/< r2 and as a consequence of the arbitrary status 

of ^ f 1, r2 < Z'5 2 is analytic in domain (6). 

Let the set of power series 
U 
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b® specified, absolutely convergent for >]=')1o^0andÇ=Co^0and 8Uch 

n, m-+eo. 

Then It is obvious that ,lm 
II > as m *•' 

where ere carte in numere. Here the eerlee 

A‘">ÍÍ-o'H/ 

converges ebsoloUl, «hen >1= >10 end ?= fp, «"d tor l-lMo «»d l</¿?0 

l/(i). t)-/.(n. t)l<22lew-f« llnu^ltol'-*0 
0 o 
(n •* «o). 

fro« which it is clear that the equality 

lim /« (t|. 5) ml(% 0 

obtains in the do*aln 

In this book we will work only with the integral functions 

(ID 

1..., with those functions for which «He. (11) shsoluUlT converge, for sqr 

complex s. 

scääïrsS; - s , aiy finit« nudier of ti«es. For specified ...» *B» Iunci,J,uw 

f",,.. V,, .... Sn) U •» InUfrel function with respect to .. 

If function f(.) 1. Integrei, then It c« b. «cpenCed (unique) Into 

**« ~rU* 
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in powers of (z - z0)^ = (z^ - ... (zn = z^)^11, absolutely convergent 

for all z. For example, for the case n = 2 this assertion follows from the 
fact that th'j formal identities 

/(*l- 2 
*-0/-0 

00 oo 

' .¾“* S W (¾ -- 
OO oo 

"2 2CWvU.“?,o)‘‘(?1-7io)V, 
M-0 v-o 

are essentially legitimate. The last equality is derived after reducing the 
same number of members with identical powers of (z1 = zl£)) (z2 - ^o^* To 

justify this, it suffices to show that its left-hand side is an absolutely 
convergent multiple series, i.e., that 

OD 00 

2 2i 

(*0-1*1.1. 

a>,12 (* - *0)' 2 c'lti1 (y - vo)1 <00 .-3 /-0 

?/o — I *jo I. *-*o-1*1 - «ici. y -y»-1*»-**# I). 

But this is because all members of this series are nonnegative and its sum 

2 21 “»'i<» 
*-0 /-0 

converges by the given condition. 

3.1.2. Fourier transforms of class 17¡ vp functions. From 3.1 we know 

that an integral function of one variable 

^)-00 + 1^ + 1^+ ••• (1) 

of the type ^>0 can be defined as an integral function possessing one of 
the following properties 

n;ñ^i <0 (2) 
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or 
___ n 

lim 
n+oo (3) 

As a result, it can be asserted that the function F(z) defined by 
series (1) is of the <ftype if and only if the series 

, i! 4- “L 4. il. J. 
T + + 1* + • • ' 

(4) 

converges for ( zj > cf. 

The function f(z) is called the Borel transform of the function F(z). 
Associated with it is the following integral: 

«•(9) 

j fiae-fdt-Hz.ei (5) 

taken along the ray,_(_$ 0 00 ). Namely, it turns out (cf book 
by N. I. Akhiyezer ßJ> section 61) that if the integral function F is of 
the <r type, then for it integral (5) uniformly and absolutely converges on 
any set that is internal with respect to the half-plane ¿u which does contain 

• ^ 

the point z = 0 and whose boundary is a tangent to the circle |zI = c at the 
point e . Here, the identity 

/(2)-/(2,6) (2SA,) 

obtains for any (real) 0. 

Assume that it is known that the function F(s) is not only an integral 
exponential type function, but also belongs to L = L(-o°,e«) as a function 
of a real x, in other words, F éE ^(R.) If we insert 0=0, it , 

and z = x + iy in (5), then we get 
as 

/(* + iy) - / F U) e-i <'♦'»> (x > 0), (6) 

/ (x + iy) - - J> (^) «-I (*♦«*) ¿i (X < 0). (7 ) 

Notice that based on the general considerations advanced above, we can 
state only that the integrals (6) and (7) converge for x > <f and x <. - <r. 
However in this case we are considering function F €: L. It is at once 
clear for it that integrals (6) and (7) converge in broader domains 
(respectively) x ^ 0 and x^O. 
lhe integrals obtained from (6) and (7) by formal differentiation with 
respect to z = x + iy again, obviously, absolutely converge when x ? 0 and 
x éO. This shows that integrals (6) and (7) define analytic functions when 
x > 0 and, x 4 0, respectively. They therefore coincide on these indicated 
domains with thé function FT») — tneBprel transform of the function F. 



From (6) and (7)* it follows for ¿ >0 that 

from whence, on passage to the liait as * 0 we get 

0- (|y|>o), 

l.e., the Fourier transform of the function F i» a function (continuous) 

identically equal to zero outside the segaent /-• 

If ( <5-^ ..., (5-n) is a positive vector and 

?(x) is a function continuous on 1^. Since F(u.,, ..., = F(a) is an integral 

function in u^ of the ^ type, belonging to L(H| ) = L(-oo, 00) for almost all 

a1 = (u2, ..., u^) froa the corresponding (n - l)-diaenalonal space, then for 

such a' 
/ F(«If -0, |x, |>o„ 

but then ?(*) = 0 if > <s . This arguasnt can be pursued for all Xj(j = 

1, ..., n). Ve have thus proved the following assertion. 

3.1.3. Theoraz. If F then ?(x) is a continuous function, equal 

to .ero outside of A._{|x>,<0y( y.,.n). 

3.1.4. It is known, and this consists of ths Palsy-Wiener theorsa»), 
that if F ¢=: w/tf2 and («,, ..., tfn), then ths function 

(1) 

where ths integral is understood in the sense of convergence on the average 

(2) 

Av-{l*y|<JV; /-1.n), 

*) Palsy and wiener ÕJ for n = 1. fog the proof in this case, cf, for 
exanple, ¿hf book by N. I. Aklyeser /V, and the book by Plancherai1 and 
Fourier /1_/ when n 1. 
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not only bolones to 1^(¾), aa follows from (2), but moreover, F(x) = 0 

almost evorvwhero outside &a . Conversely, If f is an arbitrary function 
from Ljí Ag)» then the function 

(3) 

belongs to wLp, and the function Y - f defined by (l) equals a almost every¬ 
where. 

It is easily verified that if it is assumedvthat F(x) a - 
generalised function (F 6=[ S'), then the function F(x) is the transform F 
(in the S-senae) and F = F (cf 1.5) • 

Thus, the Fourier transform of the function F can considered 
as a generalised and ordinary function, and incidentally one belonging to 

From the following it will be clear that if 1 < p 2 and F *7 , 
then F therefore F has a carrier on and F ^ 12( ¿W). But 

if 2 < p <00, then the Fourier transform of the function F can pi*ove 
to be an essentially generalized function. For example, 1 ^ ^ = * 

and 1 = (x) (cf 1.5). Therefore, when p>2, the assertion that F 
has a carrier on ¿¿-can be formulated only in the idiom of generalised func¬ 
tions. 

Ve will assume that the generalised function S’ has a carrier on 
¿ijif for ary fundamental function ( <P & S) is such that <p s 0 on 

where é + £ = +£, <rD then (<f, f>) = 0 obtains. 

3.1.5. Let us prove the following theorem belonging to L. Schwarts. 

Theorem. If g ^ ^. (1 ^ p s^3)» then | has a carrier on ¿y 

Proof. Ue introduce the functions <pe (cf 1.5.8) and «4= (îj)1^2 . 
Since <Pt& S, then S C. (l/p + 1/q = 1), therefore Yeg é: L. More¬ 

over, the function <P¿ is an integral exponential type t function, therefore 
fki is of the exponential type €) and, there¬ 
fore, 1. This means that ^ S and f = u on ¿u-, then 
(cf 3.1.3) S et 

After passage to the limit as £-^0, we get (cf 1.5.8 (6)) (¿, ¢)-0, 
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which was required to be proved. 

As for the inverse of this theorem, for oar purposes it will be suffi¬ 
cient to know that the Fourier transform of the function (ordinary), equal to 
zero outside of ¿¿-and belonging to ¡¿¿(¿j-), is a function of the class 7^2 
based on the Paley-Uiener theorem. 

. Mmak&lfitt ïswùa 
Let (cf Civin 0_j) 6J,(t) be a continuous function with 2 v for each 

of its variables and let a = (a^ ..., a^ be a vector that the Fourier series 

«"'©„(r)» Seje V*(|*,|<v), (1) 

(2) 

Converge absolutely, i.e., 

2k|<». (3) 

Let us show that if, moreover, f, f <£ L (thus, f and f are continuous 
and bounded on R), then 

where the series at the right 
first equality in (4) follows 
as N —+» of the partial sum 

uniformly converges relative to z er R. The 
from the fact that uniform convergence obtains 

S c;. 
\kj¡<N 
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I 

to u., (x). In fact, eonsldoring that f ^ L, we get 

,^_Q,.,(..-x,)fk 
(.V—)• 

the aeconc equality in (4) follows fra fonmla 1.5 (^9). Bis thira la aelf- 
avident. 

3.2.1. Aeora. Ut.Kx) .... xj be an infinitely differen¬ 

tiable function of polynonial growth, eren or odd. If 2(x) la even, then ve 
um aasune that for szqr v > 0 the function 

®VU)-Qijr) (|xy|<v;/-l.n) /.x 

that ia periodic with the period 2v for each of ita variablea la expanded in 
in an abaolntely convergent Fourier aeries (3.2.(1) when a = 0). Ifbow- 

ever 2(x) ia an odd function, then we will aeeoM that the series 3.2(1) when 
a = av = (-/2^, ...» ^/2 0 convergea absolutely. 

Ve will further consider that 

and 
'i (»<».) 

(2) 

(3) 

Further, let g (x) = ^^p- 

Then the equality 

Q(#,f "2 (4) 

obtains (a, = 0 for even and a , = ('/2', ..., '/2.,) for oad 2 )» ^th 
the aeries converges in the Lp sense. 

It ia not difficult to see that if 2 (*) i* •*» fonction identically 
not equal to aero, then the periodic function x,(x) correeponding to it, general 
ly speaking, ia discoctinooua and without being nultlpliea by e^6^ ita Fourier 
series cannot converge absolutely, as we know. 

Proof. Let £,>() and let 0 < <? <^. Ve introduce functions ^ana *t • 

In 3.1.5 it was shown that ^g ^ ^ therefore, i* » contimous 
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function with carrier on Thus, éí L and it ii legitinate to apply 
formula 3.2(4) to ij^g. 

We have 

/—^ x 
A,(x)-Q (/) itg - m 

(5) 

(ã^re = 0 for an even function jZ and a 

for an odd functioniZ). 

Ordinary functions figure everywhere in these relationships; the first 
equality obtains because ¿l=a)^+í on ^ ^ +¿ — the carrier of the function 

g; the second equality is valid by virtue of 3.2(4). 

Since 44g é L, then >44g is a function bounded on R and series (3) 
converges uniformly on R to its sun, which we designated ly At (z). On the 
other hand. 

and under the condition g é L , therefore series (5) converges to A£(x) also 
P 

in the Lg-sense. Let us understand the convergence of series (5) in an 
exactly *this Banner. 

Notice that 

(e-+0), 

therefore 

(6) 

in the Lásense. 
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vh+rt tha atroka In tha aecond aun denotas that tha sun is extended ovar all 
k which did not anter into tha first sun. N can always be taken to be large 

tuet tha second sun will be lass than a preselected ^] > 0t and than 
¿Q can be selected to be so snail that tha first sun will be leue than y] 
for positive £ <£ol which is possible by the Lebesgue theorem. Both aides 
of equality (6) actually do not depend on ¿1 — this is clear fron (5). From 
(6), after the passage to the Unit as £, — 0, it finally follows that 

'¡ir, w-S'!* t-'-0.+-?■)• (?) 

where the series on the right converges in the L_-sense, and the Unit in 
the left-hand side, as noted above, is also understood in the Lp-sense. In 

fact, the norm in Lp-sense of the difference of the right-hand sides of (6) 
and (7) does not exceed 

S i‘r-'îi«*L+ S i'.il* 
!*/!<* ' 

where equalities (2) and (3) are taken into account, in which we must assume 
that V = v + <f° (íi<í°). N can here again be taken large enough so that 

the third sum will be smaller >f, where N of the first and second sums 
will for sufficiently small ¿i also be smaller than V, because a ÿ,£i — a ^ 
and — oj^ ( ^ — 0;(it is taken into account that ¿2 is an infinite¬ 

ly differentiable function, therefore one that is sunable on ). 

Thus, (7) has been proven. 

On the other hand (of (5)), 

and we have proven the interpolation formula (4). 

3.2.2. Interpolation formula for the derivative of an exponential 
type integral function. This formula will be derived as a particular case 
of the general formula 3.2.1 (4). Let gy(x) = g(x) ¢^(11,) = i.e., 

let there be an integral function of one variable of the three )/ bounded on 
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a real axle. The formula (1.5(10)) 

8'W-iïi. (1) 

obtains for its derivative. Ibe function it is infinitely differentiable» 
odd» and has polynomial growth. Let us examine the function 

•‘“it - J]# v * {l*l<v* a"^}» 
« 

that is periodic with period 2 v . It is clear that 

(0<’v<va) 

Therefore function it satisfies all the requirements that were imposed on&(t) 
in 3.2.1. By virtue of 3.2.1(4) the interpolation foxmula 

(2) 

is valid» where the series converges in the Lp-sense. It can be considered as 
the analog of the M. Rless formula for trlgonbmetric polynomials. 

In the following it will be clear that cT = % ***> thus, 

in fact serie s (2) converges not only in the Lp-sense, but also uniformly. 

If we introduce in (2) g(x) = sin x ^ >ri/0n , and then substitute x = 0, 
we get 

(3) 

Therefore, for aiqr function g ér.tf _(l <4 p < po ) the inequality 

(4) 
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obtains, which i« ceiled Bamahtayn' a inequality*). It vaa proven by 
S. N. Bemabteyn (¿1_7, PP 2É»9 - 2^0) when p = ^. 

If z = X + iy is an arbitrarily ooaplex number, then 
m 

g(*) = g(s)(x), whence to ¢(¾). oTKyAi 

(5) 

(6) 

where the nom on the left-hand' aide ia taken over x e R,. 

Since the function g(u + iy) for any fixed y with respect to u is again 
an integral exponential type <r type formula, fro* (5) it follows that if 
g(*) g(u + 5)é^yp «l*o obtains, but then equality (2) ia 

valid if we replace x in it with the arbitrarily cc*plex zt 

where the convergence is understood to occur with rvyctto x (a - * 
in the Lp(l^)-aenae. We have already warned the reader that in the following 

it will be proven (cf 3.3.5) that y p ^ = ^ **<* lt 

directly follows that series (6) converges uniformly with reapoct x(* = 
x + iy)! and by (5) it also easily follows that it convergea unifomly on ary 
atrip {y, < y < y2}. y! and y2 are arbitrary real numere. 

Let g(x) = g(xi, x') be a function defined on a measurable set 

S * R, xÿ' lîié x' ¿ S') »K»*»”« f «1.®* th,t l* ia^nl 

of tb. wponutU. typ. v with roipact to for Jao»t oil (In th. (n-l)- 

dimulowl BMnro mom) x' e g'. By vlrtujof ^ 
asserted that for the specified x' the function g(x^, x ) ^ ^ h 
respect to x^, and because of (4) 

1^1' ,.,(•</-<-). 
,(*l) 

After integrating both parts of this inequality with respect to x' £. g and 
raising it to the power 1/p, we get 

>) iDMullty (4) U «lid «1« Wh« Oi ln foot, fr» (4) «<t ^ ^ 
thitf^^Vw)^, follow, thfct IICII p = 0 «d g U • ooMUnt ttat 1. 

equal to, obviously, aero for finite p. 
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(7) lârl o<p<oo). 
i 

Ve have also aaeifoed the obvioua oaae p =0°• 

IT the function g(x) = g (x^ > th« "V oi* 

ita partial derivativea ia an integra! function of the exponential type 
y (cf 3.1), we eaaily go^, baaed on (7) (E = H^), the inequality 

llgaMltp(R,)<vl|,i,^(V (8) 

It can be generalised further, by aaauning that g(x) = g(u, x') - g 
(x^ .... X,,, x) é? Lp(g), S = «n ^«n ^ » ■»••urable «et, n<n and g 

ia an integral exponential type Vs (v-j, ..., vB) function for alnoat all x' £ 

E' over x^, ..., Xjj. Then, if A= (^-j, ...,^, 0,..., 0) we get 

If it ia aaauned that alnoat for all x' 

g(u + iy, x')-g(g)-g(u + iy)- s^¡^-(iy)1, 

(10) 

than fron (9) we eaaily obtain the result that 

Il g (« + /y. ¿U,,*, <!!*(*) lit,«) 

Fron (2) we can derive the M. Ideas fonmla aa a particular case, proven 
in 2.4. We need only consider that a trigononetric polynomial of order i* « 
integral function bounded on a real axia v(T„ê ^), therefore foxnula (Í) ia 
applicable to it. Ve nuat consider further that Ty ia a periodic function with 
period 2 J. 

3.2.3. Inequality 3.2.2(4) can be extended for nore general noma«^. 
Let E be a Bnaach space of functions f (x, w) defined and measurable on <g - 
R, x , exhibiting the following propertiess 

1) addition of two function E and nultiplicatlon of a function by nunber 
ia defined thualy. Two functions ^ and f2, equal xo each other alnoat everywhere 

») cf note to 3.2.3 at und of book. 
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on g, are aaeaned to be equal (f1 = f2) a® elements of E; 

2) if f = f(x, v) ^ E, then f^ = f(x + x0, w) e E for any real 

value x0 and llf(x, w)J| = ||f(x + x0, v)// ; 

3) from the fact that fné E(n = 1, 2, ...)* * & E, l|fn - 

and fn(x, w) —► »^(x, w)(n oo ) for x e E and for almost all w 

it follows that 1^= f. 

If the function gv (x# v)é= E and for almost all w relative to x it 
is a bounded integral function of the type V, then for it the equality 

(1) 

obtains for almost all w in the sense of ordinaxy convergence. On the other 
hand, as a consequence of property 2) sum of norms of members of series (1) 
does not exceed vilgjl, and, thus, the right-hand side of series (1) converges 
according to the norm ve are considering to some function E. But function 
f in the sense of property 3) must be equal to Jgv/àx. This is substantiated 
by the inequality 

(2) 

3.2.4. A generalised inequality analogous to 3.2.3(2) can be obtained, 
based on 2.7.2, also for trigonometric polynomials. To do this, it is suffi¬ 
cient to assume that E consists of functions f(x, w) with period 2rr in x with 
a norm subject only to properties l) and 2). 

3.2.5. Theorem*) î*t.1 <d< and the integral function 

of the exponential type V= (^, ..., >>n) >0 belong to class 1^(1^). Then 

(1) lim g,(x)-0. 

Hence it follows, in particular, that g (x) is bounded on Rq. 

Proof. It is sufficient to prove the theorem for the case = ••• vn 
= 1, to which we can reduce our function by replacing it with the following 

*) PlanshereT and Polya • 
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S •••» Sij/Vn)* Let ua limit oar selves to the two-dimensional case, 
when n > 2 the proor is analogous. 

And so, let an integral function g(s.,, *2) = g of the type (1,1) be 

assumed, belonging to Lp(R2)» where 1^ p < eo. As always, we will assume 
and *2 to be real. 

The inequality (of 3.1.1) 

in in 
1 m c 

S(X" Xî)"-(2Sjî-oJ j ei'i+W*. xi+Pte^)dBldQt, 

obtains where P, and /9. > 0. Let us multiply both of its sise by Wo ^ 
12 

integrate the results over the rectangle 0 -j, * Then we get 

«(*i. *i)X" 

" 751)1- J J + + + + 
where (^, ^) and ( ^2) Cartesian coordinates and <f is a circle with 

radius S with its center at origin of coordinates. 

Hence 

l£(*i. *i)K 

J Jl£(*i + 6i+it||, r, + 6» + /n*)^,dti,d6id»b< 
0 0 

(j Jin,¿n. J + . 

6+ /1-(61 + /1,. 6*+/*b)- (2) 

Let us prove that the integral 
• • • • 

/(£)- J \d\xd\7 J J|g(6 + /l)r</TI,dn. 
-4 -• — m — m 

is finite, from whence it will follow that the right-hand side of (2) tends 
to zero as jx/ —► 00 , and the theorem will be proved. 
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In faot (cf 3.2.2(10)), 

« • 

/M-J ¡U(l+inKß{*t)dl\tdl*< 
-6 -ê m A • ê 

J {«""''•''"’‘fn,<(%<». 
'' * -* -• 

vfa«n p =oo, thia thaorm is invalid, as shown by tha exanpls of tha function 

sins s Ê ^,(^ )• 

3.2.6. Intsfral functions of the exponential spherical type. Me will 
state of the integral function 

•••» *•) 

that it is an exponential spherical type fowula if for ary 0 we can 
specify a constant 0 euch that 

(1) 

for all s. The collection of all ouch functions of the given types <T^0 will 
be denoted by SE¿.. Since 

The set of functions géSE^ which as functions of a real vector xé 
belong to 1^(¾) = Lp we will denote with S^p. 

Let u= ( ^-, ..., u; ) be an arbltraxy unit of vector (real). We will 
let n 

stand for the derivative with respect to f at point x in the direction u) and 
we will let the notation 

lí'{*) = DJ:-'>(x)~ S /l*»(Jf)Ü)* (/-1, 2, 

be a derivative of order 1 with respect to f at point x at directions. 
Let us introduce the transformation 

*-<*.. 5=^(1..tn)-?. 
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where •••» *** coordinates of z in the new orthogonal «yeten of coordi¬ 

nates (real), which is selected so that the inorsnent in ^ for specified 

€2* **'*£n ^ea<*8 to ^ translation of the point z in the direction o'. The 

transformation of coordinates 

«-I.n) (2) 

is defined by a real orthogonal matrix. This matrix also defines the trans¬ 
formation 

- S a*,», 
#•1 

of the complex systems v = (w1f ..., wn) into the ssretems s = (z^, ..., zQ). 

Here, obvioasly, the equality 

will be satisfied. 

Let us assume g(z)-g(z.*„)-£.(».. tfj-g.íw), 

and let g é S then g« é p as well because g* is obviously an integral 

function and 

(0+t) 

l£.(w)l-l*(*)l<V 

From this inequality it is clear that g* is a function of the type 
with respect to w^ and the inequality 3.2.2(4) is applicable to it. 

Further 

therefore lU'-(^ll^ = ||-~7- <a'i!g.(Ç)üi^ o'¡|ff(z)^ 
L m P 

(3) 
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Srttlaf * = (*,+ ly,, .... ^ + iya), «• (at 

But th«n 

II £ («» + W lt# < Il « U) J . 

-ll«(4f)|^exp^ . 
(4) 

belonging to the •pbgrg ^ R with radluo € and ita contar at the aero 
point (L. Schwartz ¿]j). 

Actually, if g ^ L1, than conaidarlng that in an orthogonal tranafona- 
tion of coordinataa (2) 1 , 

x&l, a^a. 

xn =Jfv and dn - dr obtaina, and conaidarlng that ▼' = (v^, ..., t^) va gat 

^bat g«(^|, Ç') ia of the type <f with raapact to and for alnoat all 

balonga to L(IL), tharafora (cf 3.1.3) |e(S) ontaida the atripKj(<rfor any 
ohoioa of coorainataa ( Ç2* •••* Çn)* but than fU) = 0 outaida the aphara v^.. 

Our aaaartion. If g €S ^ ia provan. If gé S W than va introduce 
the funotiona fe(x) and ^é(x) and argue aa in p 3.1.5. 

If f ia a generallaed function and e c B ia an open aet, than va will 
vrite 

(5) 

if 

a-o: 
(/. a)-o 
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for all S that have a carrier belonging to e. 

Let 0<- A< <f and v be aa before a sphere with its center at the zero 
point and with radius 0. Let us show that if f £ Lp(l < p ) and 

af-o, 

then for the integral function g of spherical power A belonging tc L the 
equality 

(6) 

obtains. 

Let us introduce the functions and ^t= defined in 1.5.8. 
For <p <?: S and such an e that A+ £ < o'# 

•/.«?)- (¾. » - $Ü4>) - 0, (7) 

becar.se g together with its derivatives is a bounded infinitely differentiable 
function, Vf. & S, feg é; S, and ^g é: S, therefore, v^g # & S, and 

it has a carrier belonging to vf. After passage to the liait in equality (7) 
as e —*■ 0 (cf 1.5.8(7)), we get (6). 

3.3. Equalities of Different Metrics for Integral Functions of tte gmOMB- 
tial Tvne 

In this section we will be interested in classes of integral functions 

Here prominence will be given to inequalities of different metrics^hy 
means of which the norm of the function gy(z) in the matrix Ly = Lpl(Rn) is 

estimated in terms of its norm in matrix Lp(lé.p<-p'<:Oo) and the product 

of several powers of ^J ..., v^. This inequality will play a substantial 

role in the following w^en we study differentiable functions of more general 
classes. 

Obviously, ntypÍRfc) is a linear set. It is infinite-measurable. For 

example, the functions sine2 — /x2 (k = 1, 2, ...) belong to in(R.,)» 
2k / p 1 

1 “é p oo, and exhibit a linearly independent system. Therefore, even 
from general considerations of function analysis can be ancluded that the 
unit theorem rfl (¾) is not compact in the metric 1^,(1^) = Lp. However, 
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v« will Me that It ie compact In the weak aenae (ef 3.3.6). 

3.3.1. Theoraai. Let 1 ^ p h >0, = kh (k = 0, ¿1, +2, ...), 

and gy = gy {*) be an integral function of a a ingle variable of the type v and 
u 

/ • \u$ I 

((£v))i,-8up^ <00 

or I) gv(|. < no. Then the inequality 

lgvll^<((iv))^<0+Av)||gJ^. 

obtain. 

(1) 

froof. When p =o«>, the theoran ia trivial. Let 1 é* pc «»and 

— — *» — 

where the uai er aatiafy the inequalltlea ^+1 * general 

ised Beraahteyn1a inequality, the H&Lder inequality, and aleo the inequality 
I llx || - llyll ^ Il X - y ||, ve get 

Therefore 

(4 Y'' 
fv(**)fj - 

- [(a 21 8m (xk) r) " - (/, s i gy (U) rj"]+ 

+(ä Sliver) '<(i+/,v)iigvi^(#i). (2) 
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If V« nota that for aqjr apaciflad a tha fonction g, (x - u), conaidtrod 
aa a function of x, ia an intagral function of tha typa y, than fron tha aqua- 
lity (2), after raplacing g (x) with g (x - u) in it, va gat tha aecond inaqua- 
lityof(l). ^ 

On tha other hand, if ((g )) “ than 

h m 

(3) 

where tha aubatitution of tha ordar of auanation and intagration ia lagitiaata 
by virtue of tha fact that va are dealing with nonnegative fuactiona. Thua we 
have proved tha firat inequality in (1). 

+1, +2, ...), g = g be an intagral function of tha typaV = (*,, ..., vn). 

(1) 

or 

Than 

(2) 

Proof. When p = <*», inaqualitiaa (2) are trivial. Let 1 ^ p«o , then 

S. M. Nikol'akiy 3J- 
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I a I S-'-SiïW;-«,. 

and va have provan tha first inaquality of (2) on the assumption that the 
second member of (2) is finite. Nov let the third member of (2) be finite. 
To prove the second inequality in (2), ve note that g(s - a) - g (z1 > u^ 

..,, zn - un) for any specified u^ is an integral function of the type 

vith respect to s for vhich || g(x - u)||p = |lg(*)llp. Therefore, it suffices 

to prove the inequality 

</y(,+Aivi)Hgt' 

Body has already been proved in the preceding theorem for the case n = 1. 
Let us assume that its validity has been established for m = n - 1. Then by 
virtue of fact that for any specified in the function g is an integral 

function of the type /n, respectively, for Xj, ..., xJ1, ve vill have 

from vhence after integration vith respect to x1 and raising to the power p~] 
ve get 1 
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lhe laet inequality bolds by virtue of the second inequality 3.3.1(1), since 
g is an integral function of the type ^^ with respect to . 

3.3.3. Leiaa*). Foraayak>0 

(¿¡of) 0<p<p,<oo). (1) 

Proof. It is sufficiei* to hold that 

SaS-'. 
then • . 

a*<l. 2aS'<SaS-l. 

from whence follows inequality (l) for 1 é P < P1^ ^ • To get (l) for p1 
it is suffice to pass the limit as p1 -+00, 

3.3.4. Iheorem. Under the conditions of theorem 3.3.2, the inequality 

1 J. 

obtains. 

It follows directly from the definition of ((g) and the preceding 
lemma. 

*) cf Hardy, Littlewood, and Polya ßj. 
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3.3.5. Th*oraa«) If 1 £ p <- p' 5 oo , than for an Integral function 
of tha axponantial typa g = g^Lpd^), v = (^, ..., t/J, tha inaquality 

(of diffarant metric^ 

(d 

obtains. 

For spaeifiad n and arbitrary v. f this inaquality is an axact in tha 
•ansa of ordar. 

ft 
Proof. Basad on 3.3.2(2) and 3.3.4# «ad sattiag “>= i/p - i/p', va 

i * nr (.j < ( w )“; < (fl *.) ( «i ' 

■ n (n •') « « (°< - v<>- 

Function 

♦(«)- i+« 

•long tha aaaiaxis 0 CaL<oo raachas its niniaua aqua! to 

Thus, va can vrita 

vhanoa by (3) follows (l). 

(2) 

(3) 

*J 3. M. Hikol’skly &J» <* notas 3.3 - 3.4.3 at tba and of tha book. 
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tion 
To proTo th* sooond MMrtlon of tho lot us sx-lns ths funo- 

rv >tw,-r 
f’“lL «s * (4) 

which obviously bslonf« to Lp(Rn) for ary p satisfyin* ths insquaUtias 1 $ P 

ao and which is un integral function of ths type V = ( »'v •••# ^n)' It# 

nom is 

(!<P<od), 

where Cp is a positive constant not dependent on v^. Consequently, 
j__ i 

which was what we set out to prove. 

3.3.6. Theoren on eonpaetness*). Free ary sequence of functions 
I(k) ¿?4(Rn)(l ¿ P k = 1, 2, ...) bounded on the metric we 

can separate a subsequence 1^^(1 =5 1# 2, ...) and define such function 

g ^ M (R ) that ths inequality 
*1* n 

Hm g(4l) (*) - i (*) 

obtains, uniformly on ary bound set. 

Proof. By the given condition there exists the constant A1 such that 

!£(*)^^i» 1, 2,... (1) 

Hence, fay 3.3.5(1) 

0 p =-<£ and n = 1, S. H. Berashtsyn ßj, PP 269-270. 
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(2) I *<»)(*) K 2* <A, 

where the oonetant A aleo doea not depend on k. 

Ut ue expand l(k)(>) loto a Taylor aeries: 

where a = (a.j, ..., an) are ajateu of nonintefral intefere and 

c«'--îüiiî! 

By eeana of (2) and Bemshteyn's inequality (3.2.2(8)) 

¡‘PIKA*', A-l, 2,.,.. 

Thus, the coefficients 
specified systen a and 

i 0¾) k 
, it is 

k = 1, 2, ... are unifomly bounded for ary 
possible, by using the diagonal process, to get 

a subsequence of natural nuBbera kj* k^, ... such that 

Hm 

Suppose that 

then 

*(*)i</i y ••• i ».Ia» _ 

(4) 

(5) 

because the ouabers ca satisfy the inequality 

lc'l£Av. (6) 

Consequently, g(s) is an integral function of the exponential type . 

5 n 2 
Further, considering that ¡oír = E ot we get 

J=1 J 
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UK# 

+1 Md^f, 
• • l># 

But by (3) and (6) for jXÍ¡|*yp<* 

°t<2A J l»i«.lV.lvV«^ 
ui># ** 

for aufficianUy larga N, If this sufflclantly larga N la apacifiad, than 
by (4) wa can apacify auch an a0 that | (T, \<£ for all a > a0 and | ají,K. 

Thua, 

(7) 

la uniform for all a aatiafying tha Inequality /a| é Kf \dxara K la ary poai- 
tlve nuabar. 

Finally, If Rq la a aphera with radiua /° and Ita cantar at tha 
origin of coordlnataa, than by (7) and (1) 

from whence after paaaage to tne liait aa f* ■ ■» <x>, va gat 

and g €EW_(R ). 'P n 
3.3.7. Example of tha application of thaoram 3.3.5. Let ua 

tha nuahara 1 é p^ p2, ..., Pn^ oo «nd examine tha apace p ^(1^) 

= LpO^) of R^-maaaurahla functiona f(x) = f(^, ..., ^), for which the norm 
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if finita« where all integral taken fro« - »»to +«o. 

Here, if pni = Pn,^ = ... = pn = o°, then we must assome 

Í/í 
■ .V,.*,. (2) 

for specified arbitraxy ..., 

Suppose initially 1 $p^p ^ p ... éP and g = gi/ . ..., 

= g is an integral function of exponential type y bounded by 1^. Considering 

it as a function only of the variable x^, we write 

where evezywhere we agree to take the integreis within infinite limits (-00,00 

Hence 

(/ (/ Ur-äX'f^dr^j 

2,^7-(//1^..,^^ 

I I . 1 

K2"\y,~'n •J—1 
n 

(^- '•"(//ur.-.'^^p. 

Here the first inequality follows fron theorem 3.3.5 when n = 1 and p = p 
an° P1 = Pn* ••eond inequality of theorem 3.3.5 holds when n = 

p = pn-2 “d P1 = pIi.1. Extending this process to the end, we get the 

inequality*) »(«♦i) i_i_ , , 

'*'Kt.>.) (M <2 . V-Vl X ... 
-—L «iQi-fi) „ i i 

'■x(v-,’)’ ’''‘-h*,-2 ' 

(3) 

#) S. M. Nikol'skly/5, 13, ijj, 
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To get this inequality, eeeentially we need inequality 3.3.5(1) n tinea in 
the correaponding particular caaea. , 

In order to prove inequality (3) in the general caae 1 ^p £ Pi, ..., 
Pn <00, it ia sufficient to note that 

(4) 

where q^, ..., qn ia the penmxtation of the ntufcera p-,, ..., pn in the non- 

descending order. Inequality (4) atoas from the generalized Minkowski inequa¬ 
lity (cf 1.3.2). For example, when n = 2 and p1 ^ p2, we have 

i i 

[/ (/</*,) *</*,]* - 

' p''.' • ^ 

•[/(/l/(*i. h) f'dx^dx^. 

Inequality (3) in the order sense is exact, which can be verified for 
the functions F (cf 3.3.5(4)). 

aalltlea of Different Measures for JaiflMm 
tial Tree 

■flMLfiSMMIfc 

This inequality will also be very significant for the following: 
using them the norm of an integral function of the exponential type computed 
for the subspace (men) ia estimated in terns of its nona computed 

for the entire space Rq. Ve will subsequently see that inequalities of dif¬ 

ferent measures serve as basis of studying stable boundary properties of dif¬ 
ferentiable functions. 

3.4.1. Let “ JV * g1 d. Rn be a cylindrical measurable set of points 
* = («, y). 
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and 

® ™ (^1» • • • » ^m) ® 

i * (*mMt • • • » Xu) ® Cl Rn~m 

V“(V|.vj. 

By tha dafinltion of tha function f(x) fe^p(g). If it balonga to Lp(|), and 

for almost all y <£ g' with raapact to n ia a function of tha exponent ial 
typa V . 

Por tha functions f - f, e « , (ÍT) - K X ¡T) 

tha inequality 

(1) 

la satisfied, where in tha left-hand aide tha Interior norm ia computed with 
raapact to tha variable m <£ IL, and the exterior with raapact to the variable 
y ^ . In fact, baaed on the inequality of different meaaurea (3.3.5(1)), 
which ia used for almost all y é-g' 

from whence, bv raisii« both aldea of the resulting inequality to the power 
1/P, we get (1). 

Let us set p' =*> in formula (1) and consider that for some set 
^ <Cg' of complete measure the following property obtains: for way j 

function g(n, y) is of the type v with respect to n and the norm 

II8 («. y) It, («„,) - *“P vrai I f (*. P) I - 

- lim max |g(«, y)|>|£(«, y)| (• e Rm), . . 
»-►•■•V« vZ; 
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la finit«, vfaara danotaa a aptaare with lia cantar at tha origin of tha 
radios p , balonglag to R . 

Inaquallty (2) tfaua la valid for all 7 £ ^ and a tharafora 
4 1 

and va gat, by taking (1) Into account, tha following inaqulityt 

! (3) 

3.4*2. Thaoran*). If 1 < p^oo and a < n, than for aqr intagral 
function g (a) = gv!,...,^ (*v •••* V ^ ** ^ •xPon“tijl1 *3^ 

y tha inequality (of différant aaaauraa) 

obtalna. 

Per apaclflad u and a and arbitraxy V = (^, ..., v^), thla Inequality 

la exact In the aanea of order. 

Proof. Tha apace Rq can be conaidered aa tha topological product 

R»-m X Rm, 

where (x.,, ..., x^) é (xB^1, ..., xn) <Z R^. If now wa aaauaa In 

Inequality 3.4.1(3) that £ z Rn and = and for oaae with RÖ_Ä, va 

gat tha Inequality va aaak. 

The axactnaas of inequality (l) In tha aenae of aenae of order rela¬ 
tiva to V can be verified for tha functiooa Pv (of 3.3.5(4)), which have 

•J S. M. HikoTakiy ¿3J. 
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alTMctar ••rrtd a aiailar purpoae in 3.3.5. 

Hot«. Setting in 3.3.7(3) p1 = . = Pn = P» p,,^ = ... = Pn =«* 

we gat thn inaqualitj 

1» •••» V Vv : 
sup 11 (U|t • 
.*« 

3.4.3. Inaoualitiaa of diffarant matrice and aaafliiraa for trigonoma- 
tric polynomials. Thara ara analogous to tha eorrasponding liwyalitiaa for 
intagxal functions of tha axponantial typa. 

Lat T = T (x) ^ -¾ (R ), i.«., T is a trigonometric polynomial 
with raspaot to n rar labias, «nd 

(1) 

Than tha inequalities*) 
Iir,r<((r,))*,<n(i + M<)ll7,.l( , I 

I . I 

(2) 

(3) 

•) Sea note 3.3-3.4.3 at the and of tha book. 
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I ri'rfu,... du{ (4) 

obtain. Th«y ara analogous to tha oorraspondlng inaqualitlas provad above 
for integral functions of tha exponential type and are similarly orovan. 
Hare already 1» our proof all tha sum (2T) are extended, as In (1), over a 
finite number of sunands (N^t ..., M^), the Integrals are taken over periods. 

of still other Inequalities presented In 3.3 can be obtained 
for trigonometric polynomials. 

The exactness of these inequalities in the sense of order Is verified 
In this case for the Fejer kernels (cf 2.2.2). 

Theorem. The space = tf„pUW la a -ub,pace of 

the space Lp(g), i.e., a set linearly closed on Lp(g). 

Proof. The linearity of »/„pig) 1« obvious. 

Suppose let the condition 

(1) 

is satisfied for the sequence g^ = g^ = 1» 2, ...). Then the 

exists of function f Lp(gD ouch that 

(2) 
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Obviously, vs osn spscify this sst d g1 of complets Dsasurs Just as for all 

, k = 1, ... such that |k(u, y) will bo integral with respect to u and the 

exponential type y for all y « 1. it the same time we can maintain that 

also exhibits the property 

y)^(Ä(ii)"0 *An Bcex for all y (3) 

where k. is some subsequence of natural numbers that is same for all j ^ 
(this falls foi (2) on the basis of lemma 1.3.8). Further, from (3), by 
virtue of inequality 3.2.2(10) (p =*>) and the inequality of different metrics 
it follows that (y é g* f ) ' ** 

I £*> + /«, y)-gk,,(u + iv, y)|< 
m 

< sup I (u, if)- (s, y) I el-'V; 1 1 < 
m 

< s*jÿ[ V 

This shows that g^ts, y) for any specified y é £' f as s —»-«>0 uniformly on 

any bounded set of complex s tends to some function g(s, y) that obviously is 
integral with respect to s. Suppose . 

Atf-flXyKtf;/-!.n). 

From the foregoing it follows that g^ix) —► g(z)(s -+-o°) almost everywhere 

on and from (2) it then follows that g(x) = f(x) almost everywhere on 

and consequently (by virtue of the arbitrary status of N), also on g. 

Finally, from an inequality analogous to (4), 

passing to it at the limit as a we obtain the same inequality, but now 
for g, which shows that g for any y -j is of the exponential type v with 
respect to a. 
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Ue have provan that the function f appearing in (2) can be modified on 
a set of n-dimanaional measure zero auch that for almoat all j it will be 
integral and of the exponential type y with respect to a, and since f ^ 

then f • The theorem stands proven. 

¿¿jl.sOhOagMnyai Ina 
3.6.1. Lemma. Let 

g(t)-2cut" 

(1) 

be an even integral function of one variable of the exponential type v. Then 
the function 

0 (2) 

is integral and of the spherical type yl. 

Proof. Series (1) converges absolutely for azy t, and the polynomial 

|jr|"-(**+...+**)* 

has positive coefficients. Therefore series (2), after removal of the paren¬ 
theses, is in each of its members a power series in powers of ..., x^ 
converging absolutely for any x = (x., ..., x^. Consequently, g*(z) is an 

integral function. It is an exponential, spherical type V function, because 

I f.fc) I 

3.6.2. Theorem. Suppose g is an integral function of the exponential 
type Vj with respect to Zj (j = 1, ..., n)(or of the spherical type v*), belong¬ 

ing to LqiRfch 1 ^ q ^oo, and f é L^R^O/p + 1/q = l). Then the function 

®(*)- J g(x-u)f(u)d* 

belongs to (respectively,to SMj, i.e., is an integral exponential type 
y. function with respect to z^(correspondingly, of spherical degree v) bounded 
oft R = R^. J 
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^ oo ), than 0)^1^(1.3.3), therefore 

“ e^p'3^P)- 

Proof. The boundedneea of A) on R followa fro* the inequality 

iw(«»)Kiif(4f-«)nfii/(«)ii#-ii£iifii/i^ (i) 

Became « la an integral function, the Taylor eeriea expansion 

(2) 
*>• 

obtains, absolutely convergent for any u ô R and aiy complex s 

We have 

then (i/p + 1/q = 1) , 

= (*]» •••» 

This inequality shows that equality (2) after its multiplication by f (u) can 
be legitimately (based on the Lebesgue theorem) integrated memberwise: 

* 

c, - J g<"(-u)f(a)dB, 
and here the inequality 

« 

ll/H, aí|¥',,/,- 

obtains. 
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If i íã not only of th« type v with respect of each of the variables, 
but also of the spherical type v , then it can be further proven that u> is 
also of the spherical type *. 

In fact, for real z, a, and y 

*>• 

1-0 1*1-/ I-O 

where is a derivative of g of the order 1 in the direction y. Therefore, 

reasoning as in the derivation of (3), we will have 

A j I? (*-■)/<■) äJ 

® («» + ^) - --«-(/I 
/-•■ 

considering the inequalities 

which can be derived based on 3.2.6(3), we get 
ee 

i*(.+Mi<j«MaEiiJ¡fJ!:-»íU/M’'''- 
/-0 

We have thus proven that u) 

3.6.3. Theorem. Let 

tt(f)- f *(|f-s|)/(a)d«. J-J. 

■ t .. 

where 

(1) • 

(2) 

is a natural even number satisfying the inequalities 

0<u/-ft(rl-Y) (3) 

and 
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(*>0). 
(4) 

(M-) 

íl/(«)(i +1 «irT </*»<- 

Ttam (ï) 1« «n InUind function of th* exponential «pherlcal typ* 1. 

Proof. Suppo** 

Uali« HäLdor's in*<|u*lityf w* obtain 

leWK/Wl/WO' 
r* 

(5) 

(6) 

Hotlo* that 

Function* (tin t/A )A and k(t) of th* «la«!* varUbl* t ar* lntH»l 
function* of th* typ* 1, bounded on a r*al axl*# th*r*for* (*ln I*/ A) •»“ 
k (|a( ) ar* Intogral function* of th* aptwrloal typ* 1 bounded on 1^(3.6.1). 
For thi* cas*, consider in« that u ö IL ar* real point* and * = U1 + 
X, >Hy ), and that (3.6.1) and 3.2.6(4) obUln, v* hat* 

(8) 
*(|f-*|) CexplyKexpil, 

(sin iijrif < *xp I > I < exp A. (9) 
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Therefore, by (8) 

l^txpAÍ I (\+\u\rdn)'''<txpA, (10) 
\NI<l / 

^ < “M (.,1-° +1 “ “"‘'T < “p 1*1 + ,M). (11 ) 

where i is an arbitrary ama]1 number, the conetant in the second inequality 
(11) depends on £, and by (7) and (9) (explanations below) 

/, « . / f 0M+m-l \l/, 
expM J rrdp Cexp>4 (p-|tt|). 

(12) 

The function 

•^■•v(p) (p>3^) 

is bounded, because it is positive and its derivative is negative. Consequent¬ 
ly, assuming 

and P- tA, we get the result at the integral appearing in (12) can, with an 
accuracy to constant multiplier, not surpass 

f i f it 

J,.J,^? 
'»'7 

i>J. • 

¡t~*dtc\ (A>1), 
i 

-¿T "1 M < 1). 

i.e., that the second inequality (12) is valid. From the estimate obtained 
it follows that for axy ¿t- 0 there exists a constant c¿ not dependent on 
f, such that 

l®(*)l<fe|/(o)(! +1 * I r1* \L" exp {( 1 + e) ^4). 
(13) 
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It ranalna to provo that (s) la an intofral function« Suppooe fjj - f 
for /ml < H and fN = 0 for fn| > N and 

J k(\z-u\)fN(u)du. 

jj$t us an arbitrarjr number /1 > 0 and lot ¿A bo tho aot of points 
s = (a1# ..., sB) for vhioh l*j/< /V • r°T points 

^Sl^y^mA 

and bgr (13) 

I e (#) - <0/, (#) I < c,m A |0 -fN)(\+\u[)-+l ^0. 
N-**» ' 

i.o., a^(s) ^«)(s) and H -#-«> uniformly on ary ^ , and thoroforo, w(o) is 

an intocnd (3.1.1). Tho asaortion has boon proven (of further 4.2.2). 
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CHAPTER IV FONCTION CLASSES W, H, AND B 

4J-.. PWlVlUYg 

Let ua assign In the space R = R^ the open set g and let g^ stand for 

Its orthogonal projection on the hyperplane x1 = 0. Let the real (com¬ 
plex) measurable function f(x) = f(xv y) be given on g. For a specified y 
it is a function of x-j determined on the corresponding open single-dimensional 
set. This function f• ia absolutely continuous on aay close finite segment 
belonging to this set, then ve will state that it is locally absolutely conti¬ 
nuous with respect to x^ for a specified y. 

By definition, function f has a generalized derivative ¿f/<?x1 (with 
respect to x^), if f is measurable on g and if there exists a function f« 
equivalent to it (relative to g) and locally absolutely continuous for almost 
all admissible y (i. e., y ^ g^. The function f- will have almost everywhere 
on g (in the sense of the n-dimsnsional measure) for ordinary partial derivative 
d*VÁXd\ * tfe will then call any function equivalent to it (in the sense of the 

n-dimensional measure) the generalized derivative of f on g with respect to x«, 
and refer to it with ¿f. 1 

If ^(t) is a function of the single variable t and SI is an open set of 
points t, then the fact that <Ç has on j? the general ized derivative <px (t) can 
be expressed thusly: there exists a function equivalent to f?(with respect 
to a), and locally absolutely continuous on Sr. Then ¢. has, as we know, 
almost everywhere on 12 tne ordinary derivative yi (t). 'Any function equiva¬ 
lent to <f' ^ (t) is therefore by definition the generalized derivative <px (t) on 

In order that there be no confusion, let us explain in greater detail 
why under the specified conditions the ordinary partial derivative 
exists almost everywhere on g. 

(0, 
The projection g. x>f the open set g on the subspace of points y = 

x2> • • •» Xjj) ia obviously also an open set. To each specified point 
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7€g1 thar« corresponda a oaa-dl—Mloaü 
»•t of poluta of tha fom (xj, y) 

opan (in tha ona-dlnanaloml aanaa) 
f. Tha aat g can be regardad aa tha 

thaoretlo-sat aun 
i• u 

ttadar tha condition, tha function f^x,, y) for alnoat all y^ g1 ia 

absolutely continuous on x* for each closed aepMnt of rariaUon of x, belong- 
ing to Oy. Banco it follows -that for alnoat all pointa y e g^, tha function 

^(*1* T) ior alnoat all x^ sy tha ordinary partial derivative ¿fyáx^ 

f1xi* L*t t' for tha aat of all pointa z = (x1, y)<e g for vhioh tha 

partial derivative f1x<| does not exist. The sat g! ia neaaurmble, aince it 

î? ^ “t of ^ pointa X ^ g for which there exista the 
Unit of the relationahlp 

* rr • (*i. ß). 

which ia a naaanrabla function for each h (f ia noaaurahle on g aecordiM to 
tha given condition!). Ve nuat bear in nlnd that tha aat of pointa of tha 
oonverganoa of th^ aaqpanea of naaanrabla funetiona on tha (neaeurabla) aat 

On th* other handy 

. - U >’r 
»•f. 

where for alnoat ally € g in tha aanaa of tha (n - 1 )-dlnanaional naaaure. 
Mo j - 0. Hence (by Pubinl'a thaoren) g' haa the n-dlnanaioml neaaura/zg1 = 0, 

and thua, tha function f- haa alnoat evaxyvhare on g tin ordinaiy partial dori- 
willch .w* ool^od the generalised partial derivative of f with respect to x-j • 

^ction af/^x- (neasurabla on tha open^) sat g) can in turn have a 
generalised partial derivative with respect to x^ i.e., it can be that there 
exiata a function equivalent to it (in tha sense of n-dinensional measure), 

^ Let Fk be a sequence of neaaurable functions given on tha neasurabla 
em = (xt I ~ ylix^ / < V® } for azy k and 1 ^ n; n and n - 

1*.2£ ••• ~ Q ^n. ®ia a »ot of pointa of convergence ( Fv\, 
which is pbvioualy neasurïhle. * 
2) on following page. 
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defined on g, and absolutely continuous with respect to x1 for any closed 
seguent of variation of for alaost all J & iy The ordinary derivative 
with respect to x1 cf f', existing aluce t everywhere, or the function equl- 

' oted by Similarly, á*fx*. = f(k)(Jc = 0, 1, 
i x-j 

valent to it is denoted 

2, ..., f(o) = f) is defined fay induction. It is not difficult to see that 
X1 

if there exists on g the generalised derivative d*f/jx*, then the function 
f can always be brought into correspondence with the function . equivalent 
to it and defined on g such that the derivative Zf/dXy i V/9 , ..., ¿y>ß 

exists in the ordinary sense almost everywhere on g and here à V/Ö x^ (i = 

0, 1, ..., k-1) are absolutely continuous with respect to x1 on any dosed 
segaent of variation of x^ for all y belonging with the samé set g^ c g^» 

distinct from g1 on a set of aero measure. 

The derivatives x^ (i = 2, ..., n) generalised on g are similarly 

defined. Mixed derivatives of the second 
inductively. For example, the derivative 
lity • ' 

*l--**L. 
0X| OXt OX\ 0*1 

higher orders are defined 
/¿xi 5x2 is defined by the equa- 

Obviously, the fact that the function f(x) of one variable has a generalised 
derivative of the order k on (a, b) reduces to the fact that it (after varia¬ 
tion on the zero-measure set) has ordinary derivatives up to the oxger k-1 
inclusively, that are absolutely continuous on any closed segment /c, 
(a, b), which further entail the existence of the derivative f^(x) the order 
of k almost evexyvhere on the interval (a, b). 

2) In the definition ot¿í/¿Xy we can take instead of the set g cs by 
this open on 1^, the measurable set g cl 1^, which is open with respect to 

the variable x^. More precicely, we can take the measurable set R^, 
whose projection 1 on the cubspece of points y = (0, Xj, ..., x^) is 

measurable in the (n - 1)-dimensional sense, such that 

*- U *r 
where a» are open one-dimensional sets of points of the font (x^, y) with 
the variable number x-¡. In particular, the measurable set of the form g = Rj X ¿>1 Rq, where ^ is a set measurable in the sense of the (n - 1)- 

diaenaional measure is such a set. 
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Throufhout this book vo will bo dooliog with gonorolisod dorivativoa 
ond tboroforo vo will ofton coll thoa dorivativoa without adding tho word 
"gonoraliaod". 

Ihoogh tho dofinition of tho gonoraliaod derivativo given above ia 
extroMly general, oven aa it preaently atanda aa it ia quite effective in 
applications for integration by parta, lot function f have on g the gonoraliaod 
derivative . Hero vo will consider f to bo already aodified on tho sot 
of n-dinenaional zero noaauro, as it is required by dofinition. Suppose, noro- 
ov*r*^^at f\x) is a function that ia continuoua on g together with ite doriva- 

alnoat all y = (x2, ..., x^), wnatevor bo the aepnent /a, x y 

belonging to g, integration by parta ia legitimate: 
» 

J/K. >)^(^i. y)dxl-f(b, y)ç(b, y)- 
ë 

* 

y)^. (1) 

Often it becoaea neceaaaxy that thia expreaaion be integrated with reapect to 
y, but for thia the Measurability of f(x) = f(x-i, y) on g ia insufficient, 
since auxiliary conditions on f are necessary. Sanabiiity for local auaaabi- 
lity of f and or of only Jt/jx^ on g can be these effective conditions. 

-Hi tk* concept of the generalised derivative in the works of Beppo 
Levi ¿1_/, who considered generalised derivatives with an integrable square on 
g. Subsequently many aatheaaticlans cane to this concept, often independently 
of their predecessora. 

S. L. Sobolev ¿7, ¿/arrived at the definition of the generalised deriva¬ 
tive from the viewpoint of the concept of the generalised function that he 
introduced. Soboleva definition consista of the folloviiK. Suppose f and A 
y function. looUly »—hi. on th. op.n ..t (. if tori* 
ferentiahle function f finite on g, the equality W 

J Af dx-í-l)1*1 J fffWdJt, 
is fulfilled, then À ia the generalised derivative fof f. 

if the function f is locally aumable on g together with ita derivative 
H/Jx on the aense of the first definition, then for an infinitely 
differentiable function fthat is finite on g we will have (cf (l)) 
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and »• have proven that the second definition followed fron the first defini¬ 
tion of the derivative ¿f/¿x.|. The converse is also true. It is nore conve¬ 
nient for us to present the proof of this assertion later (cf 4.5.2), while 

we will operate from the first definition. Notice that both defini¬ 
tions of a nonnlxed generalised derivative d^f/¿x-f also coincide. But this 
is no longer true for a mixed derivative. Fron the first definition stesMsd 
the second, but net vice versa, as shown by the example of the function 
t(xv x2) =^’(x1) + f (x2), where ^(x^ andf(x2) are continuous nowhere- 

differentiable functions. In the sense of S. L. Sobolev, à fy/òxf x2 = 0, 

but in the sense of the first definition the derivative 3 ^f/íx-j è x2 does not 

exist. 

•(a) = 
.(a) The coincidence of both definitions of fvo/ obtains in any case when 

fisi,...sn)i also [, dm . f' [v dm , 

}f d7;dx- } dy j (*i> y)dxi- 
I h 

~~ j dy ¡ JTt (x" y)<p(iC" “ J ‘Pd*’ and f 
a locally sunmable. This obtains for the function classes V, H, B, and L, 
which we will study in this book (cf for example, 4.4.6). 

Let us present a typical problem that naturally leads to the concept 
of the generalized derivative. 

Let the sequence of continuously differentiable functions fk(x)(k = 1, 
2, ...) and exhibiting the following property be given on gt whatever the 
bounded domain ft Uc g 

I/» ~ 0 (A,/-+00), (2) 

• <*.'-•>). {3) 

It is required to characterize the local properties of the function f to which 
fk tends on the average (locally)t 

These properties consist of the fact that (cf 4.4.5) the function f has the 
generalized derivative ¿fx^ on g and f andJf/iXf are locally sunna ble on g 
in the p-th degree. 

Let us present yet another problem intimately related with our goals, 
leading to the concept of the generalized function. 
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L®t stand for ths sot of points xc J2 situated fron the boundary 
of the open set .ft by the distance greater than h >0, and let 

Afa(/l-sup 
* i*r 

(0<a<l). (5) 

Further, let there be assigned oni2 a sequence of continuously differentiable 
function fjgfx) exhibiting property (5) and such that 

(6) 

It la required to characterise the properties of the function f for which (4) 
obtains. These properties consist in fact that (cf 4.7) f has the generalised 
derivative¿ f/& x1 on J?, and that the value of ( à f/^ x1 ) la finite. 

4>2. Finite Dlfferencaa and font Inn Uv Modulea 

Let g C Bq be an open aet and k = (h,, ..., i^) 6 la an arbitraiy 

vector. We let gu stand for the aet of points x & g such that along with 
X, any point x + th belong to g,' where 0<t ^ 1, l.e., any point of the aecnent 
connecting x and x + h. 

x We wU;L *** a^bo1 *¿>> ¿ >0, and the set of pointa xÄ g 
situated from the boundary of g by a distance greater than <5. The seta g. and 
g¿ can be empty. Obviously, g|h| cZ gh- h 

Let f be a function defined on g. If x ^ gh, then the (first) differ¬ 
ence 

A*f = A*/ (x)-mf(x + h)-f (x) 

of the function f at point x with (vector) pitch h has a meaning. 

^ M induction, we introduce the concept of the k-th difference of func¬ 
tion f at polntj.x >fith pitch, h: 

&-&<*)-4.A.-VW Mf - /. 4i . A.. * . , , , 
In any case, it is defined on the aet gj^. 

Obviously, 

A*/U)-2(-D'+‘ci/(x + /A) 
/“0 

If s is a natural number, then obviously 

(*-0, 1, ...). 
(1) 

i-i 

A,»/(x)-(§A*f(x + /A) 

- 159 - 



and (by induction) 

AÎ»/(*)-S ... S Ai/(jr + /,A+ ... +/„*). 
1,-0 /.-0 (2) 

He turn the module of continuity of order k of function f in the netric 
Lp(g) in the direction h the variable 

<i>* (0)-(■>* (/, ó)- sup I A**/(a)^ . ., (3) 
III <6 pi**») 

(o (Ô) = (nh(/, Ô) - (0¿(/, A). 

(If ^ is an empty set, then ve assume I) < II 0.) For the variable (3) to 

have a meaning, it is necessaxy that the norm under the sign sup be finite 
which will obtain, for example, if f é- L_(g). Below we will dwell on several 
representative properties of the modules ¿o*(¿). 

It is well known (cf 1.3.12) that if the function fé L (g) and 
1 < p < ©o, then 

lim<o (/)-0. 
l-PO (4) 

When p = co this property does not, generally speaking» obtain. How¬ 
ever, it is satisfied trivially, if f is uniformly continuous on g. 

The inequalities 

0< (OcôjC&j). (5) 

obtain. The first of these is obvious. The second can be demonstrated tbusly. 
If and ¿2 Z- 0, then any t with 11 !<<£, + <52 can be represented in the form 

t = t1 + t2, where t1 and t2 are of the same sign with t and |t^| ^ ^ 

$2- 

Therefore, u {0¡ + 6,)-sug^ \\f(x + (f + t")h) - / (x) 

< sup \\Hx+(tf + r)h)-f(x+ni)\iL + 
U'|<N o'w 

‘ ’+ sup Wfix+r^-Kx)^ . < 
11* I <6, plfW 

< sup \\f(x + t'h)-f{x)\\L . , + a(ô2) — ©(ô|) + w(ôj). 
ir I<6. 
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Substituting ¿g - ¿i* ¿2 for ¿2, C31 + ¿2’ r9SP°c^^V9^7t in this inequality, 

we get (5). 

From (4) and (5) it follows that the function (t) (when 1 < p < oo 
and p = if f is uhifornúy continuous on g) is continuous for any t ^ 0. 

Yet another property follows from the second inequality of (5): 

a(/ô)</ô(ô) (Ô>0;/-1, 2,...). 

It can be obtained also, and in a more general form, from equality (2) 
(a = 1): 

Obviously, 

®‘(ô)<(o»(y) (0<ô<y). (7) 

Inequality (6) is generalised for arbitrary, not necessarily integral 
1 >0. To do this, let us select a natural m such that m ^1 < m + 1; then 

ô*(/Ô)<<û*[(m +1)ÔK 
<(m + 1)*u*(6)<(/ + 1)*œ*(Ô) (/>0, *- 1, 2, ...). (g) 

Let us note still further that 

sup 
l<l<» 

and consequently, 

<■)'** (ô)< 2 V(6). 

(9) 

(10) 

L-et 1 ^ m ^ n, X = (u, y), u ^ (x^ ..., x^) e and y = (^, ... 

xn). Ve will also use to stand for this set of points (x^, ..., x^, 0,... 

0) of the space Hjj)* 

Let us introduce the variable 

(11) 
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which we will the nodule of continuity of order k of function f in 
direction (of subapace) R^C Bq. If g la e bounded aet end d ia ita diameter, 

then it ia eaay to aee that for ¿ >d the function 6 ) ia conatant. 
% 

Now let function f have ary derivativea with reapect to u ^ R- of 
order /0. Then the derivative with reapect to the direction of ary unit 
vector h € on g haa meaning for it: 

C-2/"*-' d« 

(*-(/:.hm. 0.0), 
A* - ... Ajj* - /»I1... 0°. . 0°, 0° — l). ' 

Let ua assume 

0)-kluf> <(f?, 6). (13) 

Ve will call this variable the module of continuity of derivativea (all) of 
order f* of function f. 

Since by (8) /0)<0+/)*»* (/Jj*. 

then the upper limita of these variables with reapect to h R^ remain in 
the same relation 

Q*jr, /ô)<o 0). (14) 

Inequalities (8) and (14) show that the finitenesa of the continuity module 
for «nAii s entails their continuity for large 

Since f^) is a finite linear combination of the derivativea f^, 

|a! =/° (in the coordinate directions) with bounded coefficients h® (|hs|<.l) 
not dependent on x. 

{l" 

< sup sup 2 |A(VU,(4f)lt ,- * » i*i-p , prtk) 

-sup 2 «ir. ô)- 2 Qlm(T, t>\ * ifT-p i*I-p * (15) 

obtains, where the sum 2 
of order /° with a = 

is extended over all coordinate derivatives f(8) 
(81í •••* 8m* •••» °)' 
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4.2.1. If g= R, * c «a (x = (xv j)t x1 ^ R^, and y&g is a 

cylindrical naasurable sat and f is a fonction with period 2rr vith respect 
to x1 defined on g t then in this case the nom of the function f in L*(g). 

where = ((0, 2n) xg' . Therefore in this case 

where h is the incrment of x1 (nmber). 
If 

Properties of the contiaiity nodules oj (t) are analogous to the proper¬ 
ties ¿/(t). 

4*2.2. Growth of a function with a bounded difference. Let ¿ = 1½ x /r? 
be a cylindrical set of points x = (», y), « = (x1# ..., xj, y = (x,^^, ..., 

Xq) s » é: and y g £ . For brevity we will write (in this section) 

I'l.v 

Let us assign a natural k and a positive nuaber ¿>0. 

Let a function f(x) satisfying the conditions 

11 (*) || I « I < t < A, 

|Ai/(x)|<Ä 
(1) 

(2) 

be assigned on 5 asy h é and | h I = S. 

Let us assuas that 

ow-lV<|«|<Ar+l, y«*1. 
(3) 

lity 
Me will prove the existence of a constant c = c ^ for which the inequa- 

m-l 

(4) 
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ia satisfied. 

Notice that forf^O, from (4) it follows that 

NmHk*t)p Ni+lt • 

»tor. c, doe. not d.p«id on N = 1, 2, ... «nd i,> 0 d»P»»d. on tf , from wh.no. 
when tlo, taking (l) into account, we get the inequality 

In which w. cannot aHun. Í = 0, a. in «hown by th. .xopl. of th. function 
of a single variable xk (k = 1, 2, ...). 

In the proof., for simplicity we will take ¿ = 1. 

Let us assign an arbitrary unit vector n' e Ra and define 
dimensional cube that ia orthogonal to u' with its center at the aero point 
anüTthat has edges of unit length. On this cube as the base and with the 
vector u' as the height we will construct the unit cube ¿Hi' ^ V 

Let us further specify a natural number N, and let ^ =^Nu, represent 

the unit cube consisting of points of the font Urn' + », where u min through 
o'. 

Notice that for the function (x) locally aunmable in the p-th degree 
(when p = it is locally bounded). 

N-i 
$ (NW + B. ÿ) - >|i (fl. y)+ (/«' + #. y). 

/-o 
A+ (/«' + «. >) - r|) ( 0 + 1) B' + B, J») - Ob' + a, y), 

obtain, from whence 
•V-l 

/-0 ' 
(6) 

Let us prove the inequality 

\sku:sfl <c(A + (A + B)N') 
Nu' 

{c — cp,,; A/-0, 1, ...; s-0, 1.*). -s 

(7) 
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whan a = 0 it diractly follow« from (2) ( á= l). Lot (7) be valid for a, 
and let ua demonstrate its validity for ■ + 1. Ve will assome 

then ♦ (*) -Air'-yfjt). 

Therefore, baaed on (6) 

Ve have proven (7). Inserting e = )c in (7), ve gpt 

S/L <c(A + (A + B) N*). 
N* (8) 

From (8) and (3) follows the existence of the constants 02 such that 
U%u<c2N”'-'(A + (A + B)NkY (V-l, 2, ...) 

ft 

or (4)« The concern here is that the domain 5^ cannbe covered by cubes of the 

form i^j8Uii where s = N - 1, N, and N + 1, whose number is of the order of N®-1. 

daasea W. H. and B 

Let us begin with the definition of the embedding concept widely employ¬ 
ed in this book. 

If £ and E1 are two noxmed bases, £ c £', and here there exists the 
constant c not dependent on x such that 

(1) 

where /1- llE, andlHlg are the noms, respectively, in the £'- and £-senae, 

then ve will assert that the embedding E —► £' obtains. If E —*» £' and 
£' —♦ E, then ve will write £ ¿i £'. 
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If the elemente of the same linear set are normad In the senae of dif¬ 
ferent metrics E and and E , then ve often write: E = E1 and even 

||x|| £ = ||xi|g^, adding in the cases when there can be confusion that this 

inequality obtains with an accuracy to equivalency. 

Let be considered as the direct product = Rg x R^ a of coordinate 

subspaces and Rq-b» 1 < m ^ n. Then the arbitrary point x ^Rq can be 

written in the form x = (m, y), where u ér Rjn and y ér R^.^* In particular, 

X = u when m = n. Further, let g d be an open set and 1 ^ p$¿>o . In 
this section the classes 

* 

» 

Wlp-WlAs) (/-0,1,...; WlAg)-Lp(g)), ■ 

Hap - Hmp{g) (r > 0), 

fl«p6 — ßiipfl(g) (r>0, 1 < 8 < oo; Bupp^Bap). 

are defined. 

When m = n in these notations, we will omit the letter m and then we 
get: w£. H', B^, and (0 = p). In another important case when \ = 

(j = 1, ..., m), we will write W^p, H^p, B^pö* ^ BXjp. 

We will call these classes isotropic with respect to the R^ directions. 

because their differential properties along any R^ directions are identical, 
or simply isotropic, if m = n. For the integral vector 1 = (1^, ..., 1^) ^ 

0 (lj ^ 0) and the vector p = (p^, ..., pa), where we will addi¬ 

tionally define the class (for different 1{ or p , and isotropic) 
J J 

when p = (p, ..., p)) 

as the intersection of the classes (g). The classes 
xjP 

w r-(r.rn)>0 (Hp - Hp, B'pe-B* 

P = (P.P)l 
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are analogously defined, where r - (r^ ..., rn) > 0 

when p = (p, ..., p)). 

The classes (n-diiaensional) W^g) (1 = 0, 1, ...) are called Sobolev 
P 

classes, named after S. L. Sobolev4), who studied their fundamental proper¬ 
ties and was the first to obtain for them the fundamental theorems of embed¬ 
ding as applied to domains g, star-shaped relative to a certain sphere, and 
to finite sums of these domains. These classes consist of functions integrable 
in the p-th degree on g together with their partial derivatives (generalized) 
of order 1. 

or r 

The classes (n-dimensional) h^ig) and Hp(g) are defined for any r > 0 

j > 0. They consist of the functions belonging to Lp(g) and that have on 

g partial derivatives of specific orders satisfying in the L matrix Holder's 
condition (Lipshits' condition when p =0° ) or (for integral*5 r and r.), the 
thusly generalized condition (Zigmund's condition) in which the first ■’differ¬ 
ence is replaced by a higher-order difference. 

H-classes were completely defined in the works of S. M. Nikol'skiy**), 
who obtained embedding theorems for them. It turns out that these theorems 
form close system and, in particular, the embedding theorems of different 
measures (cf below) are completely invertible. 

The classes b£q and Bpg were determined in all completeness by 0. V. 

Besov44*), who obtained a close system of embedding theorems for them. Ihe 
embedding theorems of different measures for these classes are also invertible. 

In the following equivalent definitions in terms of the best approxima¬ 
tions of exponential type functions will be given for the classes H and B. 
As applied to classes B there will be broader, encompassing the case Q =oo. 
Ve will see that it is natural to assume that 

Bupto “ H'mp. 

4^ S. L. Sobolev /3, 4/. cf S. M. Nikol'skiy /10/ for anisotropic Sobolev 
classes V£. ” 

4*) S. M. Nikol'skiy ¿"3, 5, 10/. 
44#) 0. V. Besov /2, ¿/. cf V. P. Il'yin and V. A. Solonnikov /1, 2/ for 
the embedding theorem for classes Bf.. 

P® 
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In the 
general domaine 

following it will be ahovn (of 9.3) that for sufficiently 
is (0 = pW 

BiP -+ (\<p<2), 

Wlp-*B'up (2<p<oo, SU-//'.-) (/-1,2,...). 

(2) 

(3) 

In particular, therefore, 

ßitf-iritf (/-1,2,...). M 

Equality (4) indicates a certain relation between classes B and V, appearing 
when p = 2. But there is also another relation, appearing for ary p. It 
stems from the properties of traces of the functions of these classes (cf 9.1). 

.Historically, the existence of these relations was the occasion to 
call**' classes which are here denoted by Br and Br(0 = p), for cases of 

P P 
fractional (not Integral) r and r by the classes w£ and Vl^, respectively, 

assuming obviously that it is precisely these classes that are the natural 
extensions of the Sobolev (with integral 1, 1) classes IT and U". Of course, 

p P 
the issue does not lie in notation, but even now when all the fundamental 
problems of the interrelations of these classes have been thoroughly clarified, 
it is clear that the natural (if we like, true) extensions of the Sobolev 
classes in the u-dimensional case are the other so-called Liouville classes 
constructed on the basis of the direct generalisation of the concept of the 
fractional derivative in the Liouville sense (or in the Weyl sense for the 
periodic case). We will talk about the n-dimensional case because in the 
one-dimensional case it was always held that the problem of traces does not 
arise • 

And so, we will begin with the following notation. There exists the 
Sobolev classes In defined for integral 1=0, 1, ...; they are "buried" in 

fractional Liouville classes, denoted by L^(l is a real number); thus, 

= L^(l = 0, 1, ...). We see that the classes Lr are merged by the fact 
P P P 

that the functions belonging to them have a unified integral representation 
(in terms of convolutions of the Bessel-Macdonald kernels with the functions 
f êtL , cf 9.1). We also become aware that the classes Lr form a closed system 

P P 

with respect to the embedding theorems of different metrics The closeness is 

*) 0. V. Besov ¿3, ¿/. 
**) L. N. Slobodetskiy /1_/. 
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Banifestad in that the snbeddiDg theorems of different metrics for the classes 
L£ are wholly expressed in texms of these classes and where the theorems 
P 

exhibit the property of transitivity (cf farther 7.1). However the classes 
Lp when p f 2 do not form a closed system with respect to the embeddini theorems 

of different measures, and here there is no difference between integral and 
nonintegral r. 

The exact embedding theorems of different metrics for the classes Lr 
P 

when p f 2 no longer are expressed in terns of these classes. To express them, 
it becomes necessaxy to involve the classes However, an exception is found 

in this case p = 2, studied in the works of Aronssajn ¡_ 1J and L. N. Slobodet- 
skly*). The embedding theorem of different metrics for the classes (in 

the notation of L. N. Slobodetskiy, v|) where p = 2 is not changed, are self- 

closed. The classes b£ of themselves form a closed system with respect to the 

embedding theorems of different metrics and the measures (and several others) 
and have a unified integral representation in terns of Macdonald kernels (cf 
8.9.1), but at the same time these classes pleca service role in the problem 
on traces of functions of the classes L£ (or lr when r = 1, a natural number), 

which is solved fay the embedding theorems of different measures. Here lies the 
relation between the.classes L and Bs another relation, as noted above, is 
the fact that Ljg = (l = 0, 1, ... ). These relationships also obtain for 

the corresponding isotropic classes. 

After the foregoing, it would be sounder either to assume that w£ for 

fractional r denotes a Liouville class, and in general not to use the symbol 
Lp, or else to continue only with the notation L£ for all r, discarding the 

special notation for'the Sobolev classes. But I did not do this in this 

book, because I feared I would be like a person who became aware of the sound¬ 
ness of renaming a street, did so, but did not seek the views of the residents 
living on the street about this change. 

We will see (cf 6.1) that for anyéT-O the embedding 

L. N. Slobodetskiy /1, 7J; cf also V. M. Babich and L. N. Slobodetskiy ßj. 
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(5) 
(/•>0, l<*0), 

(/-1, 2, ... J. 
(6) 

obtain. 

Diese classes are linear normad spaces. Ibis will be lanediately 
eminent from their definitions. As will be clear in the following« they are 
complete« therefore« Banach spaces (of 4*7). 

Ve would see that the norm in the sense V« H« and B is comprised of 
two numbers 

11/11.-11/11,,+11/11,11/11,-11/11^+- (7) .A» • • •, 

where the second term (which we will call the semino») characterises 
purely differential properties of f. Seminorm can be considered the norm in 
the corresponding space w« h, and b where functions distinct from each other 
by polynomials of specific degrees (with respect to x^« ...« xB) are not 

distinguish from each other. 

In the following (of 8.9.2 and 9.2) the specified classes will be 
defined for the case g = Rq and for sero md negative values of r« but they 
will in general consist of generalised funotions (regular in the Lp-sense). 

4.3.1. Class V. Let g é R be an open set« 1 be an integral nonnega¬ 
tive number« 1 < p oo and x = (u, y), a = (x^ ...« *¿) and y = 

(xB+1, ...« xn); Rjj will also refer to the subspaoe of points of the form 

(a, 0). 

By definition f € «Jp(«) («upí«) = «£(•)*) when m = n and wjp(g) = 

Lp(g))« if the norm 

(1) 

— (s\, ..., sm, 0,..., 0), I r I — ^ íyj i • • • » 

(2) 

*) S. L. Sobolev ¿“3| g 
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is finite, where, thus, the sub is extended over all derivatives(generalised), 
mixed and nomixed, of order 1 with respect to m. Thus it is asauaed that 
for f there exist generalized derivatives with respect to u of orders less 
than 1, but a priori it is not assumed that they belong to Lp(g). But we 
will see that in any case they are locally sumnable on g; moreover, they, 
including derivatives of order 1 and do not depend on the order in which the 
differentiation is perfoxmed (cf 4.5.1). 

Ve can consider the space w^_(g) (when m = n v^(g)) of functions f for up p 

which the seminorm (2) is finite, i.e., we can assume that w^p(g) consists of 

measurable functions f that may not belong to Lp(g), but such that for these 

the generalised derivatives on g of order 1 belonging to Lp(g) are meaningful. 

Obviously, vlp(g) is a linear set. It will be a normed space if it is assumed 

that the two functions f^ and f2 é w^p(g), differing by the polynomial of 

degree 1-1, defined the same element of the space v^(g) ; in other words, 

the zero element in v^(g) is the arbitraxy polynomial 

Pi-\(x)~ S akx*, * = (*„ .... 0.0), 

of degree 1-1 with coefficient = ak(y) .dependent on y = (xBf1, ..., xn). 

The norm (1) equivalent to the following normt 

ll'»r>-(J(|/|' + |£j/“T)i*)'*. (3) 

* ■ (i|. •••» 0, ...| 0). 

The advantage of this latter expression is that when p = 2 it is Hilber- 
tian. The scalar product generating this norm when p = 2 is of the form 

(/• 2 Mdx. 
. « V i«i-/ / (4) 

We can also talk about classes _(g) of functions f for which the 
norm Y 

"»'v“II1 n), lp(i) \d¿ I • I \p(g) 
(5) 
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finite and clasaes*) 

WUß(g)«fj (g){wup = Wrup when p = p1 = ••• = Pn)j 

(6) 

r = (r,, .... rn)>0, p^fp,.pj, l^py^oo, 

with the norm 

V+liílJ' (7) 

Let ua further introduce another claaa 1the function f ¢= 'Wup(s)» 

if for it the norm 

(«)’ (8) 

is meaningful, where 

r.- s / 
l»!-P 

<V (“*-(«?••• i«i- o* (9) 

ia the derivative of f of order /° in the direction a. 

In the following it will be ahown (cf 9.2) that 

rj, ^¿(Ä«). • 

If the domain of g ia auch that for it the theorem on extenaion obtaina 
(cf note at end of book to 4*3.6) 

then 

■•••'(*)- tr'-•••'(/?„)- 1P¿(#»)-► IP',(g), 

where the firat embedding ia because the derivative f^ ia at the same time 
J 

a derivative in the direction Xy The inverse embedding IPp(g)-* Vp(g). 
•FsTmT Nikol1 akiy 
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obviously, la also valid, therefor# given the presence of the theorem on exten¬ 
sion 

K(g)*=Z'K(g)- 

as will be seen from the following, for maay quite "good" sets g, it automatical¬ 
ly follows from the fact that f € W'0 (g) all partial derivatives of f with res¬ 

up 

pect to u up to the order /^-1 inclusively belong to Lp(g)> However, this is 

generally invalid for an arbitrary open set g. 

4«3»2. Example. The function f(x) of the one variable x is assigned 
on the set ^ 

g = 2 ^ , which is a theoretic-set sum of the integrals 

^ = (ak <: x < bfc) of length = k2. 

Let 

Then, if 1/2p t, 
—f 

__!_/Yami-hiY^. i (y _ 1 
(p+i)l/p^* J (p + i)i/p 1 “*2|p«'-•»♦nJ <00’ 

when 1 2 

\ 

Here the condition = k-^ shows that the set g can be bounded. 

Thus, f € Wp-) (g) (1^2) but the noim in the first derivative in the 

metric L-(g) is equal to + . 
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4.3.3. Classes H. The notations introduced at the beginning of 
4.3.1 remain in force. Let 1 < p r >0, and the numbers k ***/° *» 
integral nonnegative, satisfying the inequalities k > r -/0 > 0. lie will 
call these pairs (k, /°) admissible. 

By definition the function f <=E. Hjp(g)*), if it belongs to Lp(g) and 

if for it the derivatives f^ of order a = (s^, ..., sB, 0, ..., 0) with 
m 

|s| = £ s. = f are meaningful and if for these the inequalities 
1 J 

are satisfied, where M does not depend on h R^, or the inequalities equi¬ 

valent to it 

Q* ifig>, ft) - sup (o¡ {f(,\ ft) < Mò”. ( 1 ' ) 

Here let us assume 

"vru/i) "L.H) 

where the seminorm 

1 

(2) 

(3) 

is the lower bound of all M for which inequality (l) is satisfied for all hé 

and ary indicated s. 

This definition actually depends on the admissible pair (r, /°), but 
it will be proven (5.5.3) that the norms (2) (but in general not (3)) for 
the measurable set g = x g1 and different admissible pairs are pairwise 

equivalent, and for other sets g the equivalence will depend on the possibi¬ 
lity of extending the functions beyond the limits of g on 1¾ with the preserva¬ 
tion of the corresponding norma (cf notes at the end of the book to 4.3.6). 

*) yhen”p = oo , here we have the situation in which the function f is equi¬ 
valent to some function again denoted by f for which (l) is satisfied. 
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Let r = r + , where r is integral and 0 <oL $ 1. If «¿ < 1, then by 
selecting the numbers P= r and k - 1 as the admissible pair, to get the 
particular fon of inequality (1): 

|A./lr’(jt)|tj(,4)<A(|*r (0<o<l). (4) 

If however «6=1, then this pair is not suitable, but we can take/^= r, k - 2 
as the admissible pair, and then inequality (1) will obtain: 

Ui/w(4f)^(ia)<Af|A|. (5) 

UauaXly définitions*) (4) end (5) or ainply one definition 

0<o< 1, (6) 

suitable for any of the o¿ considered are used. ' 

It is possible that the modification of these definitions consisting in 
the fact that the lower bound of such M for which (l) is satisfied for all 
h é R,,, satisfying the inequality | h| $ where rj = given positive number is 

taken as the seminorm Mf. Thus, the modified nom is also, as we will see, 
equivalent to the above-defined norms in any case for domains of the form 

« = iy * «'• 

Finally, yet another definition is possible: the function f (g), 
if fot it the derivatives f£ of order /° in any direction h and 

where (k, f> ) is an admissible pair and M does not depend on h are meaning¬ 
ful fbr it. This inequality is equivalent to the following: 

Q,(r ä)'Ä i8» 

The nom f is defined analogously to (2). 

If R^im = l) is the coordinate axis Xj, then we will refer to the 

*) S. M. Nikolskiy ßj. 
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corresponding class H^p(g) with H$ p(g) (J - 1j .,., a) and the norm as 

V (9) 

(10) 

Finally, if r = (r,, ..., rm), p = (p^ ..., ^(^>0, 1 ^ Pj^-po ; 

j = 1, ..., a ^n), then we postulate*^ 

H'u,<g) where p = P1 

with the norm 

-ßJ 
(12) 

(13) 

In (13) we can replace raye with ^ , obtaining the equivalent nona. 

4.3.4. Classes B. Let us preserve the notations introduced at the 
beginning of 4.3.1, and introduce an additional parameter 0, where 1^ 0<f0 • 
Let r > 0 and the numbers k and /° (forming the admissible pair) be integral 
nonnegative, satisfying the inequalities k > r - ^ > 0. 

By definition, function f belongs to the class Bup0(g)*/(when m = n, 

simply B^ig)), if f ^Lp(g), there exist generalised partial derivatives 

with respect to uéof f of orders s = (s^, ..., 8^, 0, ..., 0) (ls|^-/? ), 

and one of the following seminorms is finite: 

*) cf. note to text page 189 ^translation page ^ 
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(3) 

(4) 

(cf 4.2 (l2), (13)). Her« ve atipulate that 

(/“1, 2, 3, 4). (5) 

All four of the seminóme (i) - (4) presented still depend on the admis¬ 
sible pairs k,P ; moreover, they can be modified by taking the integrals written 
here over bounded domains (respectively, over 0 ^ t or ), and in 
fact all of the noms detemined by means of these integrals proved to be equi¬ 
valent in any case for domains of the fora g = x g'd Rn (of, further, 5.6) 

and, therefore, for the domains g with which the functions are extensible on 
with preservation of the indicated norms. 

Often these noms are specified in the following situation**). For a 
given r > 0, an integral r is defined such that r = r + and 0 <oL < 1. 
If 1, then it suffices to take the admissible pair /°= F, k = 1; if 
however ¿ = 1, then f- r, k = 2, or else, in order to combine these two classes, 
we can take /° - r, k = 2. 

If g is a bounded set and d is its diameter, then for t>d each of the 
functions 9. in (1) and (2) are equal to some constants c and the residue of 

the / integrals appearing in the right-hand sides of (1) and (2) are finite 
A 

(in fact, 0, r - /°>0). Therefore the finiteness of the seminorms (1) and (2) 
depend exclusively on the properties or the indicated modules for t. 

m) correspond to the case when is replaced 

by the coordinate axis x^. 

**) 0. V. Besov /3, ¿7* ^ norms (l) and (3) are examined in these works. 
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Let ua suppose4) 

S 
/-1 

when m = n). 

Ue note the simplest inequalities between these seminoma (1) - (4) 
(for the same pair k, /® ) ; 

m<m. m<m. m«m. (6) 

lhe last inequality follows from inequality 4.2(15). The first two 
are obtained directly if we introduce the polar coordinates u = (t, <r), t =Jti|, 
and du - tm~1dt dir and taking into account the inequalities 

I AS/** (x) ^ ^ (f, (,>• 

(7) 

(8) 

4.3.5. Periodic classes. The periodic classes wi (?), H* (ê), and 
xjP xjP 

Bj^pgOg) are del,in0d on the flet ã= Rj XS^ ^ V where Rj is real 41x18 

Xj (j - I* •«•j n). These are classes of functions f(xj, y^)y^ =(¾^ ..., 

Xj_i, xj+^, *a) with period 2/r with respect to Xj. There defined 

exactly just as the corresponding classes p(g),... of periodic functions, 
J 

but with the only difference that everywhere the norm l|# II L /-\ nuat be 
mm mm J P 

replaced with the noxro ||-1/L where ^ + ¿0, xg1. The periodic 

classes Cê), H* (g), and B« (g), when £= IL x g’ IL (i < m < n); when 
up up up “ ^ n - - 

m = n, we omit the subscript u. 

*2 Ó._V. Besov /3, 5/, case p1 = ... = Pn; V. P. U'yin and V. A. Solonnikov 
41, 2/, general case. 4 
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4*3.6. Extenaion of functiona with claaa preserved. Let ua yet 
another iaportant remark. Let (g) denote one of the Glasses W(g), H(g), and 
B(g) with given parameters of r, p, ... If the domain g ¿r IL is such that 
ai^r function f €/1 (g) can be brought into correspondence with a function 
f defined on Rq much that ? = f on | and 

where c does not depend on f, then we will state that functiona f of class 
A (g) can be extended from g onto with preservation of class (or norm). 

We will further assert in this case that the embedding 

holds. 
Mg)-+A(Rn). 

Our classes are constructed so that if the function t gAÍIL), its 
values on g form the function f ^ A (g) and 

II fit a (g) ^ II / Ha (#„)• 

Accordingly; it is stated that the embedding 
A (Rn) A (g). 

obtains. Now we would assume that for some demain g the two classes A(g) 
and A' (g) are given and that 

then 
A (g)-> A (/?„)-A'(/?„). 

A(g)-A'(g). 

(1) 

(2) 

In this .book we will place our principal emphasis on the study of these 
classes for the case when g=Raorg = R^xg', where 1 ^ m <" n and g1 is a 

measurable (n - m)-dimensional set. In the notes at the end of the book to 
4.3.6 the reader will find the formulation of several general theormns on 
extension with class preserved. The presence of embeddings (l) automatically 
entails the embedding (2). 

4iAt flwrwnMion of the Intermediate Derivative bv e Hiehar-nr^ 
xive and Functions. Corollerlaa 

In this section several modified Taylor's formulas will be introduced, 
on the basis of which certain inequalities will be derived. 

4.4.1. Let us consider on the finite integral (a, b) the function 
f(x) that has on any segment interior with respect to (a, b) absolutely 
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continuous derivatives_of ¿Oe order (2) inclusively« and« therefore, 
almost everywhere on ¿a, y the derivative of order f- 1. For it there 
exists for almost all x0 the purely formal Taylor's formula 

p-i 
/(*)-2f{1'(xü)+ R(x, xQ) (a<x,x0<b) (i) 

/-0 

because under the specified conditions we can state nothing about the behavior 
of the residual term R(x, Xq). 

Lei us_denote the rectangle (a < x, x.^bj by A . Let us divide the 
segment /a, b/ into 2/° equal partial segments 

Aq, ... ( Ajp-1 

and select for each segment a with an even subscript, respectively, for 
the point x. . Let g stand for tß ^-dimensional cube of points (x-j, ..., )> 

whose x^ coordinates correspondingly belong to the partial segments A 

(ft - 1, ..., p). 

Transferring R(x, xj in (1) to the left side and substituting in place 
of x the numbers x^ ..., x , we obtain a linear system of /» equation 

V /(/' (.tj) = /(xh) - R (x„ .t0) = l.P) . (2) 
i-o 1 

with unknown f^^(x0) and the determinant 

«7- r(x,-x0.*p-r0)- 

1 (X, -Xp) . . . (p_ |)| 

i / \ 1 Up - *o) • • • (p - 1)| 

'm2jaJ^x,~x°.Xf,~Xo)—^ /« ’ 
a.i 

where d.. is the algebraic complement to determinant W corresponding to its 
J " 

element (x^ - xo)f(j!)“1. 

From (2) and (3) it follows that 
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(4) 
l,n (¾) - y ¿ vl/W-Rta. xjl « - O, I,..., p-1). 

k-l 

Function V différa only by the conaUnt Multiplier fron the Vandermonde 
determinant equal to the product of all poaalble Multipliera of the form 
(xk - where k 1, k, and 1 = 1, ..., , *nd aince different x* and xx 

lie at a diatance greater than the poaitive conatant, then the function 1/W 
ia bounded. Functiona o4jk are also bounded, therefore fron (4) followa the 

inequality 

lf(/‘(ro)Kc1(Ílf(r*)| + |/?(x„ Xo)|] 

(x0e[a, b], (x,.x^sg). 
(5) 

Since the left aide of (5) does not depend on x^k = 1, ..., ), there¬ 

fore obvioualy 

IP WI< C, i ( I/(«.)It>ui + II,(,„ xt)^^ < 

< ( II f llLp (0t w + IIÄ (x, x0) ||t^ x (fli „) (y = 0, 1.p - ! ), (6) 

where the sign of L algnifiea that the noxn ia computed with reapect to 

variable x. ^ 

Finally, fron (6) followa 

l^(,,Ht#(«.*)^C.(ll^lll.p(«.*) + ll^ll£#(A)) (/"O' 1...., P-1). (7) 

when p = o® , this ia obvioua, but whan p ia finite thia ia obtained if the 
left and right aidea of (6) are raiaed to the power p, and if to the right 
aide we apply the inequality 

•0<fl *o) + + o 
i 1 

integrating both aidea of the inequality with reapect to xQ and, finally, 
raiaizg then to the power 1/p. 

4.4.2. Let ua note that if llRlI j < o® , then by aubatituting 

•xprualon 4.4.1(4) th» d.rlv»tlv.. f(J)U0) inxmlitf 4.4.1(1) ^ 
grating both ita parta over the cube g of pointa (x0, ..., x^ ) and dividing 
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(1) 

by the value of its volume X, we get the formula« 
) 

f(x)-p (x) + F (*). 

where 

P(x) -W.Í 
1-0 »-I’ i 

gy*(xi-x8,..., xp-x,) 

w ..Xp) . X 

X|/(x*)-/?(x*. x0)l dg 

(2) 

is a polynomial of degree /*- 1 and 

f (*) - -i j R (X, X0) dg. 

I 

(3) 

Formula (l) shows that function f can be represented as the sum of 
some polynomial P(x) of degree 1 and the residue F(x). p 
explicitly expressed only in terms of the natural function f and its resudual 
Taylor1a term R. 

(x>\ 
The residue R is usually given in terms of the derivative f of the 

function f of order 

Thus, no explicit intermediate derivatives f^1), •••> appear 
at ail in the right side of formula (l), which enables uf^ estimate the 
norms of these derivatives in terms of the norms f and f 

4.4.3. Let us consider Important particular cases of formulas 4.4.1 

(6) and (7). 

If function f <2 (a, b), then it is equivalent to the í¡*ter" 
mined continuous funoUoR which we again will denote by f. The Taylor* 
formula 4.4.1(1) with residual term 

M 

R (*> *o) - J (* - Ur f" («) du, (1) 

where f(^) é Lp(a, b) is valid for it. 

•) S. M. Nikol'skiy ßi/• 
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Fron (l) followa the Inequality 

(2) 

And further 

(3) 

where eonetant C2 dependa on b - a, p, and P . In thia caae, fron 4*4>1(6) 
and (7) followa, reapectively, the inequalitiee 

iruo)! < ¢,()1/11,^ w,‘ 

Iu. ^c*II/HrwUi „ (/-0. 1.p). 

(4) 

(5) 

Both inequalitiee derived ajp «Erectly extended to_the oaae of the claaa 
of functlona <5 = Z», Í/ x ^ (* ¿7, 7 

<n Rß) ia the neaaurable aet 

If f e H1* (<$) and r = 1, then f ia written by fornula 4.4.1(1), 
where 

'J-(rhü»)-/T"(v »K • 

Hence 
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Hence 

¡\R\pdxa<c' 

=■ c 

» JE, 

X X 

JE. 

“ C 

r"(“. »)-/r"(v j’)!’''“''*. 

I í ir<».»-ri(v.v>i'<'"‘'*. )- 

ir’(».+*. 

íT i r ’ K - ». « - r1 tv » r ^ <<«. ) - 
JE O ' 

rrir(,+M-r{,..i'^ 

j" i irt«.-*. »-r"(*.. »i'■<*.<<* 
O a 

+ C 

Hence, noting that when h > 0 

»-A 

y. a 

i r^ - 'T"(x»' » r -'«o ‘'»j ’ < A,*‘' 

where 

we get 
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Therefore, froa 4*5.1 (7) follows 

• «i+II ^ l!t# ro) < 

<C4 (11/1^ (l) + Af)<c4„/«^(r (,-. 

(8) 

Inequalities (4) and (5), Just as (8), are Valid also whan a = -00 and 
b = + 0» . This is obrious for the ease (4). But in the case (5) and (8), 
this follows froa 6.1 (2) and (8); in the case when (5) (l<p<«>), it follows 
froa 9.2.2. The oorrespondinf inequality for the interval (a, 00) reduces to 
the preceding by application of the extension theorsa 4.3.6. 

4.4.4. Let us note that in the detexaination of functions of classes 
Hp(2) m* it was assuned that there exists on g generalised partial 

derivatives fj^ _ of orders J = 1, ..., P - 1 (r - 1), but it was not assuned 
that they have a finite noxa in the Lp(<g)-eense. 

Inequalities 4.4.3 (7) and (8) show that the finiteness of the loxas of 
these derivatives ftfas fron the definition of the corresponding class js. But 
then derivatives f^J'(J = 0, 1, 1) are absolutely continuous on the 

closed sepent ¿ã, ¿7 with respect to the variable x for alnost all y e<£ 
Thus, the expansion of f by Taylor's foxaula ' 

/<■.»-S .>•+ 
0 

« 

(1) 
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obtains for almost all 7 In the neighborhood of the endpoint a of segment 

¿&, b/, as does the corresponding expansion In the neighborhood of the other 
endpoint b. Let us note the Inequality 

(**/01*1) (2) 

that can be similarly interpreted: if the right-side of the inequality (2) is 
meaningful, then so is the left, and inequality (2) itself obtains. 

The inversion of inequality (2) when 1 was obtained in 4.8. 

Proof. First let /°= 1j then by virtue of the equality 
* 

aXi.*/w- J£,(*. + '- y)dt’ *-(*,. >)siifti. 
0 

which holds for almost all admissible 7 = (x2, ..., xn) and for all x^ and h 

admissible for any y thus defined, we get (cf 1.3.2) 

Therefore for arbitrary p 

»V'jr.plfti; '•pri.Plftll 

(«X, (P-n I » 1) 
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(3) 

Corollary 1. Inequality*) 
0 

^0ß iS# " 

obtain« for the functiax gy(x) = xn)^ >^Xi ^) = 

X gj (i.e.j belonging to Lp(S) wad of integral degree v with respect to 

of 3.4.l)(cf 3.2.2(7)). We aunt aleo eonaider that= gt eince g 

ia a aet cylindrical in the direction. 

Corollary 2. If r > 0 ia integral, then 

«^<*)-#$<*). {4) 

This follova froa the fact that 

/ 

‘MU i*i) 

4.4.5. Leau. Let the sequence of functions f^(l = 1. 2, ...) belong¬ 
ing to IF (g), where g d IL is an open aet, the given. 

If for the two functiona f and ^éLpCg) 

(1) 

(2) 

then (in the generalised aenee) 

on g (3) 

*7 Inequality (3) ia valid alao for the triaononetric polynomials gy of order 
y with reapeot to x^ if we aubatitute 0) for Lp(¿ ) • 
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Proof. First let g = ¿á, b/. From the fact that f^wj^a, ¿7(1 = 

1, 2, ...) it follows that for it or some function equivalent to it, again 
refer to by f^ there obtains the expansion of fj by Taylor's formula 

f, (*) = s ^rr (x - xo)k + (^TTJT / (* - if' /¡rt «) dt. 
0 *• 

(4) 

for ary x and x0 é ¿ã, ¿7* by 4.4.3(4) and the conditions of the lem&a 

ICM-/!>.)!< 

i.e., the uniform convergence 

(a<x0<b\ ¡"0, ].p-l) 

obtains on the segment ¿a, b/. But then after the passage to the limit in 
(4) as 1 —*• <?o , we get 

r M - 2 nrr-tx - '•>*+t^ttî / <* - * <») dt, 
0 *. 

i.e. 

Mo-m /-0.1. 
¢(0-/^(/) (<!<(< 6J, 

and the lenria stands as proven. 

In the general case the lemma will obviously be proven if the validity 
of equality (3) stands proven for an arbitrary rectangular parallelipiped 

c g. 

We will assert that A= /1, ¿7 x ¿y where x1 6= ¿a, ¿7, y ^ ^. By 

virtue of the conditions posed on function fi and the fact that there they 
are countable, we can take them to the modixications on a set of measure 
zero such that there exists that d of complete measure so that for 

all y é ¿y all functions ^ A-e locally absolutely continuous with respect 

to x. It follows from (l) and (2) that for almost any y for which 
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(dependent on y) the aubeequence of 18 holds (of 1.3.8) 

Bot then for the specified y y). *L{X{) y) 

for aJaost «11 Xj e /», Jj/. This in fact leads to the confirmation of the 

4*4*6. Theorem. Let f <1 be an open set and c<| be another open 

bounded set such that g1 d E, og. Then, if f e w£(g), then 

d*K0. (1) 

vhere Cg^ is a constant dependent on p, 1, and g^, but not f. 

This theorem easUy follows by inductia from inequality 4.4.3(7). 
Considering that g. can be covered with a finite number of cubes c- g with 
edges para]3el to the coordinate axes, it is sufficient that the theorem be 
proven for one of them. 

4*4*7. tapa. Let there be given the sequence of functions 

.*•)-/»(*) (*-1,2,...), 

integrable on g in the p-th degree (l < p $ «>) together with their partial 
derivatives of to order p inclusively appearing below in (1) and, moreover, 
that the functions 

f' f**' .U,...., 

be given (^^ ♦... P $ ~ positive integers, 1 ^ s n) are such 

that 

*—I •' àM? I 
1 %<#> (1) 
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0. ) lim 
ft -> oc 

dV 

d*a; '¡-.It) 

Then (in the generalized sense) 

f =^-./ 
ax“1 ’ a*°> 

da^f 

ax“'ax“* .fa 
ax“'... ax“* 

(2) 

This Is lemma 4.4.5 for the case 8=1. The transition to the general 
case Is made vltbout difficulty by Induction. 

4.4.8. If the functions f^ and their partial derivatives of the corres¬ 
ponding orders considered In 4.4.7 are continuous on g, then these partial 
derivatives do not depend on the order of integration, therefore the generalized 
derivatives 4.4.7(2) also do not depend on the order of integration almost ■ 
everywhere on g. 

4.4.9. Theorem. Let functions f^, f2, ... be continuous together 

with their partial derivatives up to order Inclusively and together with 
the function f satisfies the conditions of lemma 4.4.7 and, where equalities 
( 1 ) are met for any = ( o¿1, ..., <¿ ) with |o¿ | ^: /° . Let, moreover, domain g 

i n 

of variation of the variables x^, ..., be mutually uniquely mapped onto 

domain g of variables t^, ..., tn by means of the functions 

ij-VjVi.4,) (l) 

that are continuous, with partial derivatives that are continuous and bounded 
on £, of orders not exceeding f and such that the Jacobian 

D(t) Dl*\.*„) 
® (4.I») 

>k>0. 

Then the function 
U-ZiVi, .... 9„) 

is integrable in the p-th degree on g together with its partial derivatives 
of order up to Io inclusively, where these partial derivatives are computed 
by classical formulas, just as if function f bad continuous partial derivatives. 

. Proof. Acuually, it follows from the conditions of the lemma that 
f(a) ë Lp(g) for all s with |s| ^ that the following relation 
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Jir(«P,.Tn) \p D (t) dt, 
i 

. . . -— w-n— i-it ive constant, then 

\) i* Bj the ola—leal formula the derivativa of of order 1 = (1^, •••* 
of the fon 

(2) 

where <¿a are functions continuous and bounded on g, defined by transformations 

(1). f^*î—e- f^Uk -•■©•) in the IpifJ-sense, then based on the follow- 

lag 4»)( .... -► f(,)(*V •••. fn) m «“ y«)-«“* tad f«« (2) 

it follows that after pas safe to the Unit as k —» 

(2') 
. 

for almost all t é=*. Generalised derivatives, in the nain, appear in formula 
(2). If the latter are continuous, then (2) is the classical formula. 

In these considerations we assume that p is finite (l <p<£«»). When 
p = oo, nothing novel emerges from the lemma conditions, because then 
f(§)( Is} £ p ) converges unifoxmly to fl"). 

K 

L,5. More on Sobolev Averaging*) 

Let C R = Bjj be an open set, 1 p -¾. oo, the function f €z Lp(g),and 

ftW-jr J(f = 0 ^ R - g) (1) 

*) 3. L. Sobolev ¿J. 
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is its ¿-averaging (ef 1.4)• 

Obviously« f£ (x) is infinitely differentiable on R and 

(2) 

for any integral vector • - (s^f •••» s^) ^ 0. 

4.5.1. Let us« as usual« use g¿ to stand for tbs set of points K 
situated from the boundary of g by a distance greater than £^0. 

Suppose f é. Lp(g) and ¿f/Jx, e-y«). If x e ge , then in the 

equality 
ii 

•i* 

under the integer« which we can assume to be distributed over a sphere of 
radius ê with center at x is included in function f« absolutely continuous 
with respect to u^ for almost all (u^« ..., Uq), therefore this integral 

can be integrated by parts with respect to u^ (when x & g ¿ this generally 
speaking is not so, and f can be essentially discontinuous in this sphere). 

Considering that 

and that f’e 0 outside the indicated sphere, we get 

■ST 

Generally, if we consider the functions f, ¿f/¿x. , à Xj èxi , ..., 
J1 J1 J2 

then, reasoning by induction, we get 

(¿eg,), D*• —j a'« I (1) 

In the definition of class V^(g) it was assumed that any function f 
P 

belonging to it belongs to Lp(g) together with its partial derivatives f 
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of ordor 1. As for tho aubauned derivative« f(a) (/el < l), then they, 
naturally, are aeaaaed to exist (in the generalised sense) on g, but need not 
necessarily be snw—hi ■ in the p-th degree on g. 

In 4>4<6 it was shown that if f é w£(g) and 61 d g is an arbitrary 

n-dinensional sphere, then f(s)e. Lp( <r ) (|sj ^ 1). But then for a suffi¬ 

ciently snail 0, equality (1) obtains on ff*, for which fay 1.4(4) it follows 
that for 1 <■ p < oo (or when p = ¿x>, on the assuaption that D*f is uniformly 

continuous on R^) that 

\d (ft) - D (0) - |(o7), - w-*• 0 (e-*• 0,111</). 

Considering that is an infinitely differentiable function and, 
therefore, for it the result of the operation D8^ does not depend on the 
order of differentiation (with respect to s.j, ..., sn) and that cr o g is an 

arbitrary sphere, we arrive at the following conclusion. 

If f é V^(g), then for the indicated • the derivatives f^s) almost 
P 

everywhere are Independent of the order of differentiation. 

4.5.2. Theoren. Let f and A be functions locally sonable on g. If 
the function A is a derivative with respect to x. on g in the Sobolev sense, 
then it is also the derivative 

tu 
in the sense we enployed (cf beginning of section 4*1)• 

Proof. Let 

ft (*) - J f. (•»-«) / («) dB, (2) 

where £ is the averaging of f; then 

& W - J <P. (* - «) / (s) du - 

" "~Jdïr *•(•*-«)/(«)</«- 

-Jq>«(4f-s)X(«)da (jcegJ. 

(3) 
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The last equality obtain« by virtue of À being a derivative of f with reepect 
to X on g in the Sobolev aenee, and the fact that (z - •) for a fixed 

1 
X ^ g is a finite function of •. 

Since f and A are locally sunzable on gt then frca (2) and (3) it follows 
that (cf 4.5.1(2)) 

Il f» — f Ht (o) —► 0, e -♦ 0, 
If* — i|t (oi-^O, e-*-0, 

on any close sphere a cl gt but then by l«*sa 4.4.5» (l ) obtains. 

to ¡tortiaa 
Let us consider the linear transformation 

*/ - 2 aikth 
k-1 

(/-1. n) (1) 

with a determinant not equal to aero and napping nutualÿ 
X = (x-j, ...» Xj^) é g into points t = (t^ ...» tjj)^ g* satisfies the 

requirements of theoren 4.4.9. If fé «Hg), then we already know that 

4.5.1(2) is satisfied for each sphere <r c. cr c. g, then by theoren 4.4.9, 
the function ?(t) = fU^t), ...» xn(t)) transíomed by means of (l) has on 

any sphere <£ c. g» consequently, on g as well all derivatives ^■Ut) with 
respect to t, where isKl, calculated moreover by the classical roles. 
Clearly, vA(î). 

In order to define the derivative of function f eV^(g) in the direc¬ 
tion of vector h «5 %, let us introduce the orthogonal tranifoxnation Ui 

such tftat change of t1 in the positive direction for fixed t2i ...» tn entails 

change of X in the’direction k. We will assert that the derivative of f in 
the direction of h is defined by the equalities 

à! _ dl y dl 
dH dl, ¿4 dxj 

f-i 
COS (ft, X,), 

*1 
dH’ 

_ d'f 

(s=>is, sj: 

dt\ 1 .1*1-« 
|S|</, ft* 3 

2 fU’A‘ 

a;*. IAI-1). 

(2) 

(3) 
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Obviously, thi* dofinition dooa not dopoad on the ohoioe of the orthogonal 
tr&nsfoxaation (l) sobject to the indicated requirementa. 

The equality 

obtalna, from vhenoe 

(5) 

where k is an arbitrary vector. It ie also easy to derive a more general in¬ 
equality (in particular, one containing the relation 

(6) 

in analogous to 4.4*2(2)). 

4,7. CcnleteMM of Spaces H. and B 

Theorem. Whatever the open «et g C-%, the epaoes 

^(g), h:,(b), h:,(b), Brmßt(g), ¿^(f) 
are complete. 

There are different variants of the definitions of these claasee. 
0*a*r*llyi there are not equivalent for an arbitrary open set g. We will prove 
completeness for one of the variants: (4.3.1(1) for spaoes W^, 4.3.3(5) for 

Hjp. 4.3.4(2) or 4.3.4(4) for Bgp0. The proof for not naterially differ 

for the other variants. 

Proof. We will assert that g., c g-j c g is a bounded open set. Let 

there be specified the sequence of functions (k = 1, 2, ...) 

satisfying the Cauety condition in the matrix wj^(g). 

Then (cf 4.4.6 and 4.4.7) 
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(1) k, ;->oo, s-(s,.sm, 0.0),(51^/, 

there exlete the function f for which 

I/*** — f{,) ^ -> 0 (k~>oo). (2) 

It belongs to because fk é W¿p(g1 ) • Assigning £ >0-, we can specify 

N >0 such that for k, j > N 

<,<*> 
<s (3) 

for any g1. Passage to the Unit in the first term of (3) as j —>o« by 
virtue of (2) leads to the very same expression, where we must substitute 
f for f¿, i.e., the relation 

l,/*'/,l<(«,)<8 (*>W 

obtains for any g , and so for g. Here f belongs (in addition to f^) to 

IfcL (g). In this way the completeness of l^[D(g)> in particular, (g) is 
up up ^jP 

proving, but then it is obvious that V^p(g) is also complete. 

Let us now prove the completeness of B^pg(g) (l ^ 9$ oo, = HJp) 

Me can show (cf remark at the end of the book to section 4.3.6) that functions 
of the classes Br»**,*r(g) = B££g***r(i) 011,1 be «tended from g1 g1 d * to 

R with preservation of the norm (with respect to g), i.e., for each f éE 
gr,...,r(g) ¿ta extension ?(? = f on g^) can be specified, such that 

rW‘ 
(4) 

But further, it will be shown (5.6.2) that 

Br. (5) 

Therefore 
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(6) 

o*-H /* — fy l!ar (4) ^ Il- fj\\Br.r(*,) 

>« - h it-.. >n/* - fj iir «> > If? - fi\f (fl) 
{s * (sj, ..., sm, 0, ..., 0), I s I ^ P, r — ? + d, 

f is an integer, 0 1 ). 

lhe firet inequality is trivial (Br — Br*,***r)j the_eecond_ia valid by 
virtue of the above-noted theorem on extension; here fj and are functions 

extending, by this theorem, functions fk and fj, respectively, from the set 

g. ; the third inequality follows from (5) ; the fourth will be proven later 
(0.2(8)). Notice that in the case H£^p(g)(a = l) the inequality between the 

first and the last taxas in (6) follows inaediately from (4.4-3(8)) without 
bringing in the theorem on extension. 

Obviously, it follows from (6) that when /°= r 

1/5.-/7.1,(,.)-° (*• /-00- ueR"'>’ (7) 

vbmro f^ is a derivative of fk of order /5 in the direction u, whatever be the 

g-l C g-1 C g- 

Now, inspecting the class H^p(g), and for simplicity asserting that 

0 <o¿ < 1, and assigning £ >0, we get (g1 c. g1 c:gu) 

H/*-Mk,(„ + 

(x+.))-(){.(.)-¾W)i , 
+ —---ÎLÎÎli^ 

<ll/*-/yllw^w<e * {k, ¡>N, ueRm), (8) 

where N is sufficiently large. If k is fixed and j -*-00, then at the limit 
the first term in (8) by virtue of (7) is converted into the same expression, 
where fj mast be replaced with f. In this expression let us replace g^ with 
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gtt, which obviously 1« legitimate. Taking the upper bound of the resulting 
expresaIon with respect to u* we get 

(*>n 

and since it follows fren the fact that fk Hjp(g), f ^ Hjp(g), then tic 

completeness of H¿p(g) provided <* < 1 slands proven, «hen oL= 1, the first 

difference*of (8) must be replaced by the second, reasoning analogously. 

But for the class Bjpe(g)(l ¿ 0 < for anr £>0 (g^ «ku^ 

( í i- 
\».< |U |<H 

-m-0a I 

/ ' 
provided oU1 k ^ 1 ), (9) (ji, y> N, u(=Rm, fe>2, 

where 0<A<X are arbitrary numbers. 

Ihe passage to the limit as w—reaches the same inequality where 
f must be replaced by f Í . This follows from the fact that here we oan 
employ the Lebesgue on the limit under the integral sign. The issue is that 
the u-dependent no» under the sign of the integral in (9) boundedly JPPnoac s 
the ff*™* number, where f appears instead of fy (of (6) and (7)). In the re¬ 
sulting inequality valid for any indicated À and X, we can obviously set 
A= 0 and X.= «*> and replace g^ with g^, \Aiich entails 

<«. \i>N. 

Moreover, from the fact that f^ é B¿pg(g) follows f ô Bjpe(g). The coBÇ)lete- 

ness of Bjpgig) is proven. 

1.8. Estiaste of A Derivative by the fflffarOTVV) 

Theorem (inverting inequality 4.4.4(2)). Suppose function f(x) = 
f(x., y) is given on an open set g, is locally atan»ble on it, and satisfies 
the1inequality - 

(iccoo), 
(1) 

where M does not depend on h. 

*> rç» - ifc 
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Than on g there exists the derivative ¿f/J exhibiting the property 

(2) 

Proof. Ut 41S assign two open cubes cz <1. g with faces 

parallel to the coordinate axes and strictly embedded one In the other. Vs 
have 

A«,yt(*) (\,.»/(*)) 
I * 1 * /. 

((•) — e-averaging). 

Therefore frost (1) and 1.4(7) it follows that for sufficiently snail h and ¿ 

Passing to the liait as h — £ , we get 

Vs have 

/I (3) 

I 

f«K.p)-f,(*..p)-J *)<«, 
(4) 

there ve asi 

lepiped 

and 

that y = (¿*2* •••• nu* through the orthogonal paralle- 

.. + /*2, .... n) 

[x,, *í] X A.CA. 

Integrating (4) with respect to 7 we get 

/1'.«. >>]'>-mV«. 
^ Í Ml ‘ 

(5) 
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From (3) it follows that there exists a sequence of nuabers —► 0 

and the function MA) such that *1 weak:Ly 1,1 the 

Lp( A)-sense (cf 1.3.11). On the other hand, from the fact that 11* 

0, we can separate the subsequence fr*» the sequence (6^} such that 

\ f'k{*r y)dy~* ¡ f{xr y)dy, tk->0, 
A. A, 

for all x1 on the same set £ c ¿a, ÿ = nVxA (projection of á on the x1 

axis) of measune (linear) b - a. In this case, if in (5) we set t= then 
at the limit as —► 0 for any x1# x^ é g we get 

t 
*i 

J [f(xr y)-f{*r y)\dy-J dyjtit, y)dt. 
A» A. X, 

If we decompose the two parts of this inequality into hj, ...» hn and pass to 

the limit as h1 0, then 0 and so on, then we get for almost all 

7 - (x2, ..., Xjj) and 

X, s ¿f, x; e ? .((x,, y), (xj, y) e A): 

*i 

f(xr y)-f(xr y)~ j y)dt. 

In fact, this equality is valid for almost all admissible y and almost all 
admissible x-j, x} Ê ¿a, £/, since its right side is continuous with respect 

to x1, . It indicates the existence on A of a (generalised) partial deri¬ 

vative ¿f/¿ X-, = f ^ Lp(4 ) and by virtue of the arbitrariness of A, it 

also indicates the existence of ÙÎ/ ^x^ ^ Lp(-^), whatever the open« 

jl c. Ü <=- 8* 

Since we now already know that the integrand function in (1) tends 
almost everywhere on to \¿f x^ ( P then (Fatou theorem 1.3.10) 

I df dxi 
dx< sup 

h II hi 
h 

dx<M, 
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«ad by virtu* of th* arbitraria**« oí SI c: fi a g, (2) ia valid. 

4.8.1. Tfatoro* 4.8 vhan p - oo and a = 1 i* a familiar thoorem from 
theorv of function* of a r*al variabio: if function f aatiafi** on th* interval 
(a, b) th* Lipahit* condition with constant* M, than it ha* also at *v*x7vh*r* 
on (a« b) « derivativ* •atigffcing th* inequality |f'(x)KM (cf P. S. Alskaan- 
drov and A. I. Kolmogorov ¿yj. 

4.8.2. Th*or*a 4.8 when p = 1, n = 1 change* into th* follovii«) if 
for a function f locally *n—iM « on (a, b) th* inequality 

»-* 

/ \f(x + h)-nx)]dx<Mh (0<h<b-a). 
ë 

ie Mtiflfiadj than it ia equivalent to aca* function that va will again desig¬ 
nate by t, with bounded variation on (a, b) and 

V*r/<M. 
to.») 

In fact« reasoning as in the beginning of the proof of theorem 4.8, 
ve get 

¡\rt\dxKM, 

where A is an arbitrary integral such that c: Aj c. d (a, b). 

« V 

Therefore 

(1) 

Since f éL(A^), than /|f¿ - f )dx -a- 0 and by virtue of the arbi- 

trarineas of A, C Ä1 d (a, b), there exist* the aequanoe k — 0 such that 

ftk(x)-*l(x) (2) 

aiWft everywhere on (a, b). But by the Hally theorem (of I. P. Natanson 
Z1_/)i from condition (l) and the faot that (2) i* satisfied even if at only 
one point of the interval (a, b), it follow* that there exist* a subsequence 
f<Jk dose the ^ of sequence (tk\ such that f¿k tends everywhere on 

(a, b) to sene function *f/ bounded on (a, b) and 

to.fti 

But then ^ anû f are equivalent on (a, b). 
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CHAPTER V DIRECT AND INVERSE THEOREMS OF THE THEORT OF APPROXIMATIONS. 
EQUIVALENT NOMS 

StU. MwdftgUm 
Everywhere In thie peregreph ve will aaouae that • = (x1# ..., x ) 

y = ..., xn) end ve will consider the cylindrical measurable 

set ^ = xof pointa x = (», j) = (x1# ..., x,^) where a ^ 1^, y . 

We will let Rjj also stand for the aubapaoe Rq of pointa (a, 0) = (x^, ..., 

x., 0, ..., 0). Whan a = n,£= R , the caae m = 0 would be of little intereet. 
n 

Thia chapter will be devoted to atuchrlng approxlaationa of functions 
from the H, W, and B classes (of Chapter IV) given on the indicated cylindrical 
aet £ . Functions of classes H and V will be approximated by integral func- 

p P 

tiona of the exponential type (with respect to a) in the metric L , while 
P 

periodic functions of the classes H* and W£ will be approximated by trigono¬ 

métrie polynomials (in a) in the metric L£. 

The direct theorems of the theory of approxlaation(Jackson type) will 
be proven for the classes H and V, showing that the numbers r or systems of 
numbers (r., ..., r ) determining the class also define the order of appro- 

i m 

ximation of the functions belonging to it. 

We will also prove the inverse theorems of the theory of approximations 
(Bemshteyn type), shoving that the order of approximation of a given function 
f by means of functions of a finite qratem for trigncmetric polynomials fre¬ 
quently completely defines the class H (but not W) to which function f belongs. 
In several cases of analytic interest, necessary and sufficient conditions 
will be obtained in the language of orders of approximation for the membership 
of function f to a given H-class. The concept of the best approximation, which 

- 202 - 



can be placed to P. L. Chebgrshev considered as an important artifice in the 
expression of these theorems. 

Classes Bf« will also be examined from this point of view. The func- 
P® 

tiens belonging to them are also completely characterised by the behavior 
of their best approximations in terms of integral functions of the exponen¬ 
tial type or (in the periodic case) by trigonometric polynomials. Namely, 
for the function to belong to a given B class it is necessary and sufficient 
that a certain series composed of its best approximations converges. Ve will 
see that the definition of classes B^ in the language of the best approxima- 

P® 

tion naturally is extended to the case 0 =0° and leads to the equivalency: 
B(r) = Ht“ 
Ptfo p 

In the chapter, based on periodic approximations, we will obtain 
many different equivalent definitions of norma in the R and B classes. The 
actual fact of equivalency will be reduced to certain inequalities, in parti¬ 
cular, inequalities between partial derivatives of the same function. 

Let us consider the functions gy (x) = gw (n, y), •••» ^m)* 

defined on = x , where the functions are for almost all y inte¬ 

gral and exponential type v in the variables m = (x^, ..., x^. The correc¬ 

tion of all such functions g^é Lp(g) for a given v forma the aubspace 

* vp(£) ^V<g)(cf 3.5). 

Let the function f é Lp(g)(l ^ p < oo ) be given. The quantity 

£,(/)-£ (/)t (ï) - inf 
.X <*)" V10 

(1) 

will be called the best approximation of f by means of functions £^^(£), 

where v= ( i', ..., ^m) is a given system of numbers. When m = n, the lower 
bound of (l)'i8 reached for some (best) function. Actually, from (1) it 
follows that the sequence of functions g uB & ^^^)(8 = 1, 2, ...) exists 

for which the inequalit es 

IIf - lp (*,) < £. Ml, (*„)+ d + e. (e. - °)- 

are satisfied. From this sequence, we can by 3.3.6 separate a subsequence, 
which we will again denote by {gKSj such that it uniformly converges to some 
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function g £=• tf^pÍRn) on aqr bounded domain g R^. But then 

11 ' " *• k « ' IL,«., <'lull f -1.. -1. 
Consequently, 

Since Myp(&) is a subapace of the space Lp(SD« then providing the 

condition 1c p cc>o is net, the lover bound of (1) is attained for the unique 
(best) function Sometimes, it is convenient to examine functions 

that we will designate by guv(x)(^>0). These are functions defined on ^ and 
for almost all y = (x^, ..., Xq) are integral functions of the exponential 

type in u = (x^, ..., xm) of spherical degree . 

We will call the quantity 

Euy(f)-Euy(f)Lp{1) inf |lf-g «V lltp(*)’ (2) 

the best approximation of function f ^ Lp( g) by means of functions gav (for 

given u>0) where the lover bound is extended over all gUv/ é 1(¾) for given 
V . p 

A particular case of these concepts is the quantity 

(») 
(3) 

where £= Rj (j = 1, ..., n), Rj is the axis of x^ coordinates, and 

gx v are functions from Lp(g ) of the exponential type ✓ in xj. 
J 

1,2, Theorem on Approximation 

5.2.1. Direct theorem on approximation by integral functions of the 
exponential type. Let g(£) be a nonnegative even function of one variable 
of exponential type 1, satisfying the condition 

(1) 
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where Kj = 2 and x ^ when a > 1 ia the area of a unit sphere with radius 1 

in the m-diaenaional apace and let <£ = \ • 

The equality 

(- l)'+lAÁq)(jr)- 
I , 

~j§l~ 1)1 (* + y'A)- S d/f,(X + jh) — <p(Jt), 

(2) 

ia valid for an arbitrary function f(x) defined on g, vector h ^ and 

natural number 1, where ; 

S*''-'- (3) 

Let us assign the function f 6 Lp(<£); then for alnost all function 

f(n, y) of a belongs to Lp^) and the function 

eM-1,(.,,). Ixinh-o'-'CM + Mj«- 
*M 

(4) 

is meaningful where 

By (1) 

gv(4f) f g(l/l)A¡/vf(x)dt. 

(5) 

(6) 
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Let as now asiUBe that function f baa on ¿ with raapeot to u daxiva- 
tivoa of ordar ^ balonginc toLJg) andk=l-/0. Than fron (6) it 
follova that (axplanationa balow; 

£«v(/)^(f) ^ II/ —ÍV Jí(|í l)AÍ/y/(4P)dí| < 

<^r/«(KDKroí.f''’-T1)1«« 

(7) 

If tha riebt «ida ia finita. 

In particular, it follows from (7) that if f ^ Hr (g), than 
up 

£.v (/)<-£• (8) 

We have uaed generalized Minkowski inequality 1.3.2 and inequality 4.6 
(6); fi is tha derivative of f of order /° in direction t,J2* (f^ , £ ) ia the 

% 
nodule of the continuity of f with reapect to all derivatives of order /3. 
Property 4.2(14) was applied to it. Finally, we assert that function g is 
chosen so that the integral 

J g(t)rk*m-'dt 
is finite. We can select a function of the form 

(9) 
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aervrí aa g, where A^^’+k+m + 2iaan even integer and /a La a constant 
for which (1) holda. 

Since g(4) ia an integral function of one variable of exponential 
type 1, then by (5) function gy (x) ia in term an integral function of 

type y with reapect to u = (x-,, ..., xj(cf 3.6.2), belonging to 

3>2.1.1. Let ua assume that about function f we only know that the 
continuity module 

(1) 

for it ia finite for scale <5>0. Then, reasoning aa above (from right to left), 
we can obtain for 1/y ^6 the entire chain of relations 5.2.1( 7), exdudiig 
for the meanwhile the first inequality. The difference f - g. will stand for 
the formal notation of the function appearing under the integral in the third 
term in 5.2.1(7). However, if we know that function f is locally integrable 
in the p-th degree on £ (or even somewhat less: cf below), then it can be 
concluded that f is integral in the p-th degree on £ with a certain weight, 
and g given the choice of the suitable kernel g is an integral function of 
spherical type y(integral integrable with the same weight). In fact, from 
(1) for ary h é with | hi ^ 5 it follows that: 

®^ ^ l,(ï) <*) 6PQ*" (/P, 4) 

and by 4.2.2(5) (replace k with 1) 

where 
1/WO 

!*-•“• + / + » («>0). 

(2) 

(3) 

But then for almost all y 1 

l/(«. 30(1 +<oo. 

and by 3.6.2, kernel g(t) of form 5.2.1(9) can be selected so that (taking 
A sufficiently large) that the function 

fv(x)- J y) dt ,.v 

(cf 5.2.1 (4), (5)) will clewly be of the spherical type for almost all y. 
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Now the fir et tem of fomula 5.2.1(7), W^Lpig)» b«c(*ee 

meaningful. It can be conaldered as the beet approximation In Betrie Lp(5) 

of the functicn f under consideration by means of integral functions of spheri¬ 
cal type V (generally not belonging to Lp(5)). Ife have shown that if module 

(1) is meaningful for the function f locally Burnable in the p-th degree, then 
it makes sense to approach it in the matrix Lp(&) by fractions of the spherical 
type y with respect to m. * 

In fact (cf 4.2.2(4)), instead of local summability of )f/P (when p = 
00 » local boundedness and measurability of f), it is sufficient to assume the 
existence of |j fl/^y X(gt), where v ={| ul<rá(l + m)} . 

5.2.2. Other approximation estimates. Below are presented other esti¬ 
mates based on formula 5.2.1(6). If f has generalised derivatives in u = 
(u1* •••» 1½) “P to order inclusively, then from 5.2.1(6) it follows that 

in any case the equality 

Jí(m)AÍA/w(jr)* 

and the equality 

(î)< / * iin)K/'>(x)k ir.dt 

obtain formally for any integral nonnegative vector • = (a.,, ..., 0, ...,0). 

If for any s with lal^r, the integral in the right side of (2) is finite, then 
alreacfy the nonformal equality (1) and inequality (2) hold. 

Ve will use as well the inequality 

(1) 

(2) 

hUw|^(ÿ)<f|A''ç(x)^(ï) (0 </'</), (3) 

where c “ 21-1', h^I^. 

Then(from explanation below) when k = l-/°, |sj^^ 
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«7^77 -If)*« 

* ^R*T / f (I* 1)1 +1* l**1*1)^]^0*« (^1 ^) 
*m 

m , 

<>!F7T i«(')ll + « S “«« {<*■ 7) < 

«T^r S “i.hv) 
l*l-P 

« 

(4) 

lhe first inequality is obtained on the basis of 4*6(6); here (¿p |8|)/Cs>tf ,81) 

denotes the derivative of order/0- |s/ In direction t. The second Inequali^r 
is derived by vlrtvie of the fact that this derivative is a linear coablnatlon 
of ordlnaiy derivatives (in coordinate direction) of the same order with 
bounded coefficients not dependent on x; here the some J™?. *4.. , 
the derivatives f'^T of "order F. The third inequality stems from the defini 
tion 4.2(13). The fourth, by 4*2(14), when t°= 0 (where «cessaïy f^j can 
be replaced with f) and the last equality, we must assume that g is selected 
so that 5.2.1(1) is satisfied. 

tf>\ 
Let us note further that any derivative gv 1 with respect to u <=- 

of order ^ can be written (cf 5.2.1(4)) as 

«?’ (*) 

from whence 

hUi 

/-1 ' 

*m /-( ' ' V/Itp(t) 
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or 
fl)f 

(5) 

where c does not depend on w and f. 

This shows that the differential properties of f are transferred on 
g y unifomly relative to V. 

5.2.3. Let us turn again to kernel 5.2.1(5)« which we are interested 
in this tine when m = 1. Ve will, thus, assune that S ~ x S' ^ ^n* 

Let us suppose 

(1) 

By 5.2.1(7) 

(2) 

on the assumption, of course, that the right side of (2) is meaningful. Natural¬ 
ly, we will assume as in 5.2.1 that the integral positive even function g(t) of 
one variable of exponential type 1 is chosen so that conditions 5.2.1(1) are 
satisfied when m = 1, ensuring estimate (2). Ve stress that from these, and 
the case, it follows that 

(3) 
J*v./(0<«-1, 

OS 

Jl^v./(OI^<C/<oo (v > 0), 
(4) 

Now let g = Bß X g' d Rjj, g(x) is a function which for almost all 

y «i is an integral function of exponential type v= ( V-j, ..., respect 
to (x-|, ...,xm)j we will as always denote it by 

- 210 - 



This definition is meaningful when y¿(i = 1« ..., m) are positive finite 

numbers. Let us extend this definition to the case whence certain y^(not 

all) are equal to a« . Specifically, if VL = e*> (i£ n), we will assume that 

with respect'to the variable function g need not necessarily be integral. 

Por exntple, g >/2,V1 finite denotes that this 

function for almost all (x^, ..., x^) in the sense of the (n - 2)-dimensional 

measure is with respect to x^ and x^ and integral function of exponential 

type, respectively, and v^. 

5.2.4. Theorem. Let /°j, kj(j = 1, ..., m) be natural numbers, lj = 

/0^ + kj, f(at) ~f(», y)^ I^(£), and that the system of functions 

m 

K -.»(•*)“ J /, (u)f(xi + xM; y)du, 

ÍV,. V,, m •> (•*) ™ I 

,m m 

™ J Í *v,. /, (ui) XVfc (U|) X 
-•§ -es 

Xfix.+i/,, xj + a,, X,.X«; »d«,//«,. (*|) 

••••••••eee • 

» ee 

fyl *m W " J • * • J ^vi. (“l) • • • 
-» -M 

••• '«(O/tXj + u,.Xm + i/m; y)du,.dB(11, 

«de \j > 0. 

be given where >0. 
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Then each of function* g ^ (obviouaJy) balón* to 

Lp(&) and is an intafral function of exponential type ..., respective- 

ly, for x-j, •.., ( 1 Ä1 < «). Moreover, the inequalities 

are satisfied. 

(3) 

(4) 

From (1), in particular, when p = p1 = ... = p obviously it follows 
that: ' m 

(5) 

Proof. Let us present the proof of the theorem for the case m = 3; 
it is analogous for m >3. 

The first inequality in (2) is obtained on the basis of 5.2.3(2): 

The second inequality in (2) is derived by means of the following 
manipulations : 
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(6) 

m 

“I í KvtjÁui)h'{xi+ui< x2< xv y)du 11 * 

where 

htiXi, x2, x¡, y)~ 

xr r3; y)- J r2 + u2, x,; y)du2 

and by 5.2.3(2, 

,.11:(¾1. 

Then, applying to (6)tta *enBraltodMinlcov,.kl InequUlty, ve get (of 

further 5.2.3(4)) 

I f V,, «•, • “ iv,. V,. 00 (I) ^ 

m 

^ J I /,(“i) II Ai (xi + “j* xr xv y)\ih(V) " 

-IH* jKa“,)!““, < 

Finally, the third inequality in (2) ia obtained by 
oonsiderationa: 

(e,t.,hm-e„.vb^(xv XV XV y)m 
m m 

• — J J KVl /t^«|)KV| ,(«2)^2 (^1 +Ul* 

■ahm of the 

where 

^2(^1» X2’ Xi’ y) ™ •• 
-/(X,. *j. ^3» y)- j ^v,. »,(“)/(*.• X2' *j+«; y)äu. 
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5.2.3(2) and (4)« ve get 
Therefore, using the generalised Minkowski inequality and relatione 

Inequalities (2) stand proven. Inequality (3) (when m = 3) is quickly 
derived if ve apply the generalised Minkowski inequality 

to the integral appearing in right side of the last equality (1). Finally, 
if ve differentiate the last equality (l) P. tines with respect to x1 and 
use the operation of the k^-th difference 1 with respect to x-j, then by the 

Minkowski inequality ve get 

from whence follows (4). When i = 2, 3 the proof is analogous. 

5il.- Periodic Classes 

Theorems in section 5.2 are preserved with certain modifications in the 
proof if in their formulations the functions considered there are assumed to be 
periodic with period 2 , and the approxinating integral functions g are 
replaced fay the trigonometric polynomial T . As always, in this case ve must 

replace the norms II* Hr (g) (6= X^1 R„) by the norms ||* = 

where = (o ^ Xj ^ 2 ïï j J = 1, ..., mj . The first of the 

simplest direct theorems of approximation were obtained in the periodic case. 
Namely, Jackson shoved that a periodic function, with period 2 n, of a single 
variable that has a continuous derivative of the order r can be approximated 
by trigonometric polynomials Tn(x) (n = 1, 2, ...) such that the deviation 
(in a uniform metric C) satisfies the inequality 

- 214 - 



l/to-r.WKc, (n-l, 2, ...). 

of approximation of pwrlodlo function with trifonoaatrlo poOynoniala, which 
will bo oonaldorod bolow. la a nodemlaed Jaokaon not hod. In tho alnpleat 
case« (of further 5.3.1(b), (B) 1 = 1,c= 2, and n = l) it oolnoidoa with 
Jaokaon1a nothod. On tho other hand, it la an analog of tho above oonaldorod 
nethod 5.2.1(4) of tho approximation with integral funetiona of exponential 
typo. 

5.3.1. Tho firat two equalitiea 5.2.1(4) whan n = 1,-00 X < oo can 
further bo written aa 

fv (*. V) - J Vi (»0 {(- l)M 6?x ,1 (x, y) +1 (*, J,)] it. 

(1) - J Ví (V/) 2 Of + kt, y)rdt, 

whore 
(*-i./) 

(2) 

7v (/) - vg (vt) 

nonnogativo funetiona of exponential tjrpe , aatlafying (of 
tho following condition: 

an integral 
.1(1),(2)) 

ia an 
5.2.11 

(3) 

Lot ua introduce into ecnaideration, by analogy, trigonometric poly- 
neníala ^(t) (w = 0, 1, 2, ...) of order not higher than v , exhibiting the 
following proportion: 

|~tv (/) ¿/-i. 

c, (v • 1, 2, 

(4) 

tn 

• • •h (5) 
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where c is a conatant independent of v . 

Obviously, 9 
T, (0-4- Jl 

when y >0, polynomials r^(t) are defined nonuniquely. 

These polynomials can be obtained, for example (cf 2.2.2(2)) by 
of the formula 

(6) 

where ^ > 0 is an integral number not dependent on A and A is the natural 
number such that 

2(i-I)a< v<2Jlo; (7) 

the constant a, been selected so as to satisfy equality (4). In an - 
(6) polynomial (t) are nonnegative, therefore property (5) automatically 
follows property (4). 

Let us define by analogy with (1) the function 

M«. *)-J MO ((-I)“1 

2n / 

" J Tv (0 2] d»f (Jt + kl, y) dt, 
o i.I 

where this time f(x) = f(x, y) is a function defined on g = x g' 

(x er Rj, y & g) with period 2ïï with respect to x and integrable 

p-th degree on g* = /0, 2*/ x g . 

Let us note that 

j» i 
T°(Xl » J dkf [x + kt, y)dt-' 

ç I 2n 

“ J / ^ ,c* - J / (H, 3,) du m T {y) 
0 *-i 5 
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Uma, for fixed j9 function Tp(x, j) ia a constant (a function of y), and 
the aean value of f (x, 7) with period 2 . 

By virtue of the periodicity of f, ve can write further: 

where 

i 

T* ■ 2 if' J tv (t) ,lx+u'y) du “ 
k-\ U 

I h — J 

-SfS J + 
t-1 1-0 UK 

I *-l ** 

t-i *—0 * 

- J/Cv (/) /(* + <, y) dt, 
0 

(9) 

*v(0 
-2 f *-l ,-0 ' * ' 

(10) 

Let us show that function Ky (t) is a trigonometric polynomial of order 
not higher than v. from whence it follows that Tv (x, y) with respect to x 
(for almost all 7) is also a trigonometric polynomial of order not higher than 
v . 

Actually, the trifonoMtric polynomial t, can be written as a certain 
linear combination 

Mo-iy“ ft-v) 

with constant coefficients aA . 

But 
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whan A/k -k Integral 

t"1 n ‘*i,n Ht k-t , ki,x 

2* * 
1-0 t—0 

kl 

*• * - te'“' 

0 
when A/k sm nonintegral 

and, therefore, the eon 

*-i V »-I !♦>,» 

•-i -V t-U 

la a trlgononetrlo polynoBlal of order v. But then K v is aleo a trlgononetrlc 
polynomial of order v. 

From (8) It follova that 

j Tv«)&'x l,(Xi y)dt% 
(11) 

from whence by employing the generalised Minkowaki inequality, we get the funda¬ 
mental inequality 

ta 

,rv'fK(»j(,)y)i ** 
0 '■P (f J 
ÍV-0, I, ...). 

(12) 

The following theorem, reducing to an inequality analogous to 5.2.1(7), 
obtains. 

5.3.2. Theorem. Let 1 p s ©o and £ = x ^ c R^, and function 

f = f(x* y) (x é y é be defined on g, have the period 2ir with respect 

to X for almost all y^ and belong to class Lp(£*), <g# =/0, 2¾} x^;. 
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Moreover, let f have on g the generalised derivative t(ß> - /t/ à of order 

P(t[o)= f). Finally, let even nonnegative trigonometric polynomials r^(t) 

of order t' satisfy, along vith conditlcn 5.3>1(4), also the auxiliary condi¬ 
tion 

(1) 

where constant a^ does not depend onV= 0, 1, 2, ... (this polynomial can 
be obtained fay formula 5.3.1(6) with the appropriate seleetion of «fand A.) 

Dien function Tv (x, y) defined by equality 5.3.1(0) (trigonometric 
polynomial of order v with respect to x) approaches f in the e matrix Lp(£*) 
with the following estimate: 

(2) 

(v-0, I, ...) 

where is a constant dependent on f>. 

Proof, ue already know that trigonometric polynomial d (t) defined 
by relations 5.3.1(6) and 5.3.1 (7) satisfy conditions 5.3.1 (4). Let us 
show that they, provided y/ ^ 1, also satisfy inequality (1) for seme constant 
ap+i on the assumption that 2 s- P -^3. By this we will establish the existence 

of polynomial satisfying the conditions of the theorem. In fact. 

where the last inequality follows from 5.3.1(7). 

Ve note that the inequality 

(3) 
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obtains, whore 

®* (Ö) - ®î (/ A) 
*. Lp (f) V* 

Let us note further that the inequality 

(4) 

is valid, which is proven analogously to the proof for inequality 4.2(8). 

Let us use inequality 5.3.1(12) when 1 =/°+ k, taking (3) and (4) into 
account: 

JV 

r 11 < J Tv(0Ulp»f(|/|)rf/-2 

v+T „ 

- 2 f tv (i)/V (/) rf/ + 2 f tv (/) /0«» (/) <// < 
u » * 

(7Tt)P+4(v+|)‘ Jtv(/)^*(//L 

(r V*i J 

—) f—)pf- ap+*L ) 
v+i/iu+i; n (v+l,pJ"I7TF"^vT^J• 

where 

*p-2(a* 

Thus the theorem is proven. 

Note 1. Equality 5.3.1(11) is satisfied for the trigonometric poly¬ 
nomial T y under consideration, therefore 

and we get an equality analogous to the equality 5.2.2(1). Arguing as in 
5.2.2 when 1 = ^ + k, it is easy to obtain an inequality analogous to 5.2.2(5): 
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(5) <i)(^ *)<<•; ^(/",4), 

vfaar* constant c doas not dspsnd on tba serias of tbs at and inf sultipliar. 

Nota 2. If periodic function f(x, j) is such that its naan for the 
period equals saro, i.e., 

than T0 = 0(ef 5.3.1(8)), therefore inequality (2) when v = 0 reduces to the 

follovix* inequality: 

(6) 

5.3.3. Just as in 5.2.3, we can define (analogous to g (x)) ... 
functions T (xi# ..., x) given on the asasurable set ^ = IL xg c 

V1,... »/a 1 » 1 
R^, which are trlgoncaetrio polynomials for almost all y = (x^, ..., 

with respect to variable x^, ..., xB, respectively, of orders v^, ..., t/B. 

Ve will, as in 5.2.3, assume that individual v/^k = 1, ..., m) can equal c*. 

Let r = (r1v ..., rB) > 0. Let us define even nonnegative trigonometric 

polynomials r (t) of order satisfying the conditions of theorem 5.3.2, 
'j ' 

respectively, for f- ..., ^ = rB. For these, and thus, the following 

conditions are satisfied: 

M 

(0S/< 
(v + Ip (/-1. .. •. v-i, 2,...). 

(1) 

(2) 

Let us, further, define trigonometric polynomial K (kernels) of 
orders v by the formulas j 
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(cf 5.3.1), where Ij ^ r t k. 
(*- 1, .... m) 

Let us further assume 

(cm. 5.3.1), rae lj>r + k. 

in 

O O 

For the indicated family T of functions f, we can on analogy 

formulate and improve a theorem (generalization of Jackson's theorem) analogous 

to theorem 5.Ü.4- 

In particular, from it it follows that if f H# (<g), then 

(3) 

where c does not depend on the series of the standing multiplier. 

5.1. Inverse Theorems of the Theory of Approximatif 

In this section we will elucidate a scheme by which J“v®ra® theorems 
of theory of approximation can be obtained that indicate to which class a func¬ 
tion belongs if its approximation estimates are known. 

The general theorem whose basis is the inverse tneorem of the theory 
of approximation (for trigonometric polynomials and integral functions of 
the exponential type), originating with S. N. Bernshteyn*> is to be proven. 

5.4.1, Theorem. Let Rjj be an n-dimensional space of points x = (a, y). 

) and = (u, 0) be its m-dimensional u - (x-|, ..., Xflj)» y (^Sn+I 

subspace (i é n). Further, let r > 0, k be a natural number, 1 < p«^, 
and wly be linear, dependent on parameter y 5:1, sets of functions defined on 

*) S. N. Bernshteyn /T_J, pages 11- 104- 
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the open space g C where 

SRy cr SKy (v^v^). (1) 

Let us assume that each function r, Ê ^ exhibits the following property; 
TV has on g derivatives with respect to u of orders less than r + k and that 
the inequalities 

<CVl'llx I 
' ''%<*)’ . 

0.°). Isl<r+k, 
(2) 

obtain, where constant c does not depend on y . 

Let, moreover, there exists for given function f é L (g) a family of 
functions c„ ^ dependent on w , such that F 

('»i). (3) 

where K does not depend on V . 

Then f é Hjp(g) (cf 4.3.3) and the inequality 

+ , (4) 
,., t 

are satisfied for all derivatives f^ of f of orda- and 

' + (5) 

where A does not depend on the series of the standing multiplier. 

Note 1. Functions tv can even be considered periodic with respect to 
X., with period 2n, defined on g = <5 = R. x , and then in (l) - (5) L_(g) 
and Hjp(g) must be replaced by Lp*(g ) and H£p*(g). 

Note 2. It can be assumed that runs through the values ^(a), 
dependent on s = 0, 1, ..., and satisfying the conditions: 
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1) 
v(s)^ 1, 

2) v(s)-*oo (s -> oo), 
v(s+ 1) ^ . 
~Tür<A<oo (î-0, if ...)( 

3) 

where A does not depend on a. In particular, it can be assumed that i/(s) = 
a8, a > 1. 

Actually, let 

11/ - ty (,) 11^) < (s - 0, 1,...) 

and = min y (a), a = 0, 1, ... 

If 1 <^0, then ve assume ^ = o and then ||f -ry\\ = ||f l|$ 
(IlfHi/^)/^, but if v>^0, then we select a auch that 

v0sXv<v(s+ 1). 

Siace Cy(aj we can a88unô ri/(s) 

K 
v>l. 

and therefore. 

Thus, 

ll/-TvlX-^.i v>i, 

where 

A, ■ II / II yj +/fA, 

and inequality (3) is satisfied for all as required by the theorem. 
The conclusion of the theorem (cf (4) and (5)) does not change when K is replaced 
by K-p because /If// + (|fl/ + K. 

Proof of theorem 5.4.1. By (3) function f can be represented aa the 
aeries 

where 

Q = t. ~ ‘0 -, V1 ?/= V ~ V*1 (/-1. 2, ...), 

(6) 
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oonraitMt in th» L (i)-miim. 
P 

»«• (II(l) = 11-1/), 

ll«.ll-llt.K/t + 
[«,|<|V-/|+|/-V-j< 

^ ^ -i K C\K 
* W-b' "“oF IF + ^7=1)7 "-¿r (/-1.2,.,.). 

(7) 

Let via take any derivative of f of order /0 nixed or umlxedt 

(8) 

Since the aeta yfí . are linear and 7f7 . ^ CZ >r7 , (J = 1* 2j •••), 
2J 2J-1 '2J 

then Qj ér ?r? , and baaed on eatlnate (2) the Inequalitlea 
J 2J 

lQPI<ellQoll<c,(llfll+/c)t 
lQri<c2^||Q/K^ 

2/( (9) 

hold, ahoving that the formal iienbervlae differentiation (8) of aeriea (6) 
when /^c r ia legitimate and aeriea (8) convergea in the Lp(g)-aenae to fv) 

(cf lemma 4.4.7). Here f W^p(g) and inequalitlea (4) are aatiafied. 

Let ua aaaign the vector h = (h^ ..., hjj, 0, ..., 0) and chooae 

a natural N auch that 
* • m 

■^7r<l*i<^i-, iap-JJa). , (1°) 
/-i 

Let ua conaider the k-th difference of the function foorreaponding 
to the shift h. Conaidering the equality / 

\*>(x) = ihlf (x + tk) dt* 

we get 
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(11) 

AÎ/W(i)- 
N I I 

~SlA|*J ... + + ••• +«*))d«|...du* + 
o 0 0 

+ Il ÙQT(x), 
W + l ' 

where z ér gj^. Obviouaiy, 

(12) 

Conalderlag that the derivative h* ia a finite linear combination 
of ordinary derivativea with reapect to coordinatea x., ..., xm and taking 
the inequalities (2), (9), and (10) into account, ve ¿at 

/i<|A|^(ll/ll+/0|2i‘-<r-«li< 

<^i*i*(imi+/c)2,^w<cl(ii/ii+^)|Ar. (13) 

It ia important to know that we have assumed that k >r -/5 . If we had 
held that k = r - /° , then the sum 

22^^-^ + 1 
0 , 

would not be of order = 1. 

Further 
as 

/j ^2 -pin- <C$XI* r. (14) 

From (12) - (14) and (4), when /°= 0, follows (5). 



I 

5.4.2. Th«or«¡». (Inveras of 5.2.1 (8)*). Let r > 0, P 
1 <n<n, g1 = l^x(g',andf^r Lpté). 

If for the beat approximation of f in metric Lpfé) by means of integral 

fonctions of exponential spherical type v the inequality 

(v>l). ' (1) 

is satisfied, where K does not depend on y ( y can run through the values 
V = v'(s) satisfying the conditions of note 2 in 5.4.1» ■ = 0* 1, ...), then 
f Hj-(g), and 

(2) (114,,,,+/(). 
^ +^)( npi»o, 1,...,^) /3) 

where A does not depend on the series of the standing multiplier. 

Proof. From the condition there follows the existence of a family of 
functions g^ (», y) (u ^ y of exponential spherical type ✓ with 

respect to u (for almost all y <§1 ) such that 

But then the confirmation of the theorem directly stems from theorem 5.4.1 
Lf we consider that g w are also functions of exponential type y with respect 
to each of the variable x^, ..., Xgj and therefore the inequality (cf 3.2.2(9)) 

/«>■ 

is satisfied for them, whatever the derivative of order k = (k1, ..., ^,0,..., 

0). Ihe case when ^ = ^(s) runs through values described in 2 in 5.4.1, con¬ 
verges, according to this same note, to the case of a continuously varying . 

*) m = 1, p = <*> — S. M. Bernshteyn /7J, pages 421-432; m - n = 1, jp 
$ oo— N. I. Akiyezer /1 J\ m = 1, 1<p^c,° — S. M. Nikol'skiy ¡J>J. 
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5.A.3' Theoron (Inverse of 5.3.3(3)*). Let r >0, 1 ^ p <- oo, JÇ = 
xg' czn^, and function f(x) = fix^ j) (x^I^, ye¿') with respect to 

the variable x1 (for almost all g') is periodically with period 2rr and 

belongs to L*(^). 

If for the best approximation f in metric L*()S) by means of functions 

T y (x , y), which are (for almost all y ë g') trigonometric polynomials of 
1 \ 

order )J , the inequality 

’(f). < ^ 
^=*0, 1,...), 

(1) 

is satisfied, then f ^ Hr * /Illegible, text page 242 and text page 24¿/ 
1P 

*) Cf note to 5.4 at the end of the book. 
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Using the Abel truxsicreation, ve get 

f -Jn ^n-i («) + ~T~ (21 - 2) FH.t («), 
n n 

where Fj^u) are Fejer kernels (of 2.2.2(1)), and - 2/^k+1 +^k+2* 

(6) the generalised Minkowski inequality, we get 

WV.) 1,,.,, IJ14'1 («)!<<«< 
0 

from whence follow (3) and (4)- Inequality (5) ^ Î0ot that 
¿p n( f>t g) is a trigonometric polynomial with respect to Q of order n. 

s.s. Direct and Inverse 

In this section the above-proven direct end inverse theorem on best 
approximations are compared, lie will see that functions of classes H are 
completely characterised by the behevior of their best approximaticns. As 
everywhere in this chapter, £ = \ *¿5' cz Rjj. 

The best approximation of a function f measurable on £ by means of 
integral functions of the exponential spherical type v with respect to u, by 
5.2.1(7), satisfies the inequality 

fv(/)-£Ux (f)L 

(1) 

if, of course, its right side is meaningful. Thus 

£v(fl ■■ OÍV-O) (v -* 00) 
(2) 
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P 

for f éE l^p (£ ) when p la finite (l ^ p <<?° ) and when p = <», if derivativea 

f(«)(|a/ =/o) uniformly continuoua on g in direction % which Mana that 

for any 6 we can find a á > 0 auch that 

ir(x+A;-r(x)|<e> .(,AI<0> Ae/?J> 

i_ „ . ^ ^ «““Pie (5.5.5) given above, eatlMte (l) when /«>0 
ia not becoming inverted, i.e., from the fact that for f e (2) ia 

satisfied it does not follow that f ^ 

(Kal.r.X«.1? Sid“" ^ = °' U dM* • "“^r* ttomu 

5.5.1. Theorem. Let 1 < p< oo . for the function f ^ it la 
necessary and sufficient that there exista a family of functions g^ ¿ (£) 

that are integrable and of exponential spherical type v/ with respect to n such 

->o (v -► oo). 

(1) 

trivial^8 neoeS,ity followa from 5*5(1) when 0, and the sufficiency is 

nuoua oo'5/ia STdSLrtL B°r * ^11011 f *» “d ualfonú, oontl- 
vcln . f..n. -T* .. U l* “««“»y «d «ifriolmt that than 

f81. f®“^ Of functions gw that are integral and of the exponential 
spherical type u with respect to a bounded in a set on £, sucíthÍt 

Mm *v (*)-/(*) (1) 

uniformly on g . 

Proof. Again the necessity follows from 5.5 uImh P- r\ r_a. 

ratÄ i» s 
.J 

Therefore for h l^(x + A)-gv(*)l<l*lsupj^így(x)J< 

*1 S. N. Bernahteyn ¿U, page 371, when n = 1. <lA,v,“p,^vU)KAv|*|f 
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£•••• iy (for giroa y) ar* onlformly eontlnaoaa eng In dimotion IL. and 
momm f is alto uniformly oontinuouj on ^ in imetion * 

5.5.3. Lot no oonaidor tho norm 

and tho olaoooo % and 4 oormaponding to thorn, whom 

Vli-'Af, (/-1,2,3,4) 

oro tho naUoot oonotaato M for which, mopoctively, inoqualitioo givon 
bolow (of 4.3.3) am satiofiod: 

(D 

(2) 

(3) 

(4) 

(P^O, k > r - P >0) and h V« furthor introducá tho norm (of claaooo) 

Vt-supv'f m 
V > 0 V (5) 

whom E (f) = (f) i* tho boat approximation of function f in matrix Lp(£) 

by integral funotiona of anherical y with roapect to «. Horn V can also 
run through tho Yaloeayfa) = a», a>l (a = 0, 1, 2, ...). 

Moreover, 

(6) 

whom it ia aaaumed that function f ia mpmaontahlo in the form of tho aeriea 
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(7) /-2e..w, 
#•0 

convergent In it in metric !*_(<£), whose terns are integral functions of spheri¬ 
cal type a0 with respect to p a, where non (6) is finite. Let us note that 
the non of f does not explicitly appear in (6). 

When j = 1, 2, 3, 4» we can further examine modified constants kf, 

which we will denote by — these are the maallest constants in the corres¬ 

ponding inequalities (l) - (4)« when áé >7 or I h| ¿ , where r? is a given 
arbitrary positive number. The corresponding classes will be symboliied by 
Jh and Jh1 and the none by 

Our aim will be proved that all the classes % and (but in general« 
not Jh and ) are equivalent to each other; here each of them can be taken 
with any independent system of admissible parameters P t r\ , and a. Inci¬ 
dentally« the constants of the corresponding «beddings depend on these para¬ 
meters (along with r, n, and m). 

The foregoing lay» the foundation for employing« in the following 
treatment« the single notation II f for all noxms J||* /f and ¿II’I/h'« omit¬ 

ting the j end the stroke; as for the noms ^(1*11^ and then this nota¬ 

tion generally speaking is essential to them. In passing we will obtain certain 
embeddings for the classes h that are interesting in themselves. 

It directly follows from the definition of the continuity modules appear^ 
ing in (l) and (2) that the equivalency 

holds« if the classes compared are taken over the same pairs k« /°. This in 
fact does hold if in (8) we replace H with h« 1' or with h' (upon comparison 
with the identical ). Below it will be shown that 1H % ií''H 
and that here these classes can be taken independently with any admissible k«. 
f « and also with any >7 > 0. Then by (8) ¿illegible text pages 248 and 242/ 
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«nri we have proven that 

i.e. 

The resulte obtrined, in partioular, contain the following theorem. 

5.5.4. Theorem. Por a fonction f defined on = % x<£' ^«loog 

to one of the classes (j = 1, 2, 3, and 4) or = 1i 2* 3» 

and 4), it is necessary and sufficient that its best approximation by means 
of integral functions of the exponential and spherical type with respect to 
a satisfiesthe inequality 

where c does not depend onV>0 or ^ = a* (s = 0, 1* ...jv>0, a> l). 

5.5.5. Exampia 1. It is well known that if a real-valued function f(x) 
with period 2 belongsto Lj, then it can be expanded in the Fourier series 

/ (x) - + 2 (a* CO» kx + bk tin kx), 
(1) 

converging to it in the sense of L£ = 12(0, 2n), where 

(2) 

Here 

(3) 

In contrast, if a series of ary real number ak and b^ appearing in 
the right side of three converge, then series (l) converges in the Lj-sense 

to some function f € LJ and equalities (2) hold. 
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a8 & consequence of familiar orthogonal properties of trigonometric 
functions, the square of the best approximation by means of trigonometric 
polynomials of order n - 1 (in the Lj-senae) of function f <s L#, defined by 

series (l), is 

£- <n‘; 'A / f' '•»-1 - S (*. »■ *'+«. .i» ^I’i,. 
ter ° 1 -« 1 • mj dxm 

- j 2(»*co»*x + i4.ln*it)L,-«y(^ + j«) 

. ° " .J - (4) 

If function f belongs to V«, i.e., is absolutely convergent and its 
2 

(existing almost everywhere) derivative f'^ then its Fourier coefficients 

ak anc* hk can integrating by parts) be represented as 

9* a, 
ak — X- **"T <*-». 2>. (5) 

where and are Fourier coefficients of the derivative f1 for which the 
series 

(6) 

converges. Conversely, function f belongs to V« if it is representable as 
1 2 

series (l) (convergent in WÜ in the L*-sense), where 
2 2 

< ». 

The best approximation of the function f tlj by means of trigonometric 
2 

polynomials of (n - l)-th order is subjected to the inequality 

-►oo. (7) 
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which agree» with the general theoiy (the periodic analog of formula 5.5(1)) 

In order to see that, conversely, the membership of f in cia»» W» 

does not stem from (7), let us examine the function 

on 

, . coikx 

Obviously, 

-"SpTT7<"-nnrS-F*0,"'’) 
n n 

On the other hand, f <£ Vj, aince the series 

Sttïï*' 
i 

corresponding to series (6) diverges. 

Example 2. The function with period 2 

/ (*). y •!£*£ 
,y) Vink’ 

ÏÂTh““ÄVÄZw 
n 

At the same time the memberwise differentiated series 

^cosfct /rtN 
(ß) 

by virtue of the monotonie diminishing to zero of 
formerly converges on¿<£, 2n-£J for any 

its coefficients in 
(cf Zigmund(jJ,2.6). 

the 
Thus, 

its sum 
tive f'(x) 

i8 continuous on the integral (0, 2n) and is equal to the 
. Here series (3) is a Fourier series for f'(x), since 

deriva- 

: iL < 00 
In this case f is discontinuous at the point x - 0, 
continuous everywhere, then its n-th Fejer sum at x 

because if f were 
= 0 would tend to f'(0). 
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Evan so, the Fajar sua as the arithaetic mean of the first n + 1 Fajar soas 
at X = 0 tends to oo together with the sobs. 

5.5.6. Anisotropic case. Va will begin fren the estlaate 

\f~sJL 
<*> 

^ Ä 'IV'I * v;)t| 

/-i 

(D 

(Í“R, X r. V; > 0). 

proven in 5.2.4(5). From it, for the best approxiaation f €V£p(<5) by aeanr 

of integral functions gv of exponential type v - ( ..., yB) with respect 

to a = (x.|, ..., x^) follows the inequality 

¿V (/)» (J) “ 2 —7^ (Vy -+0) ( 2) 
' /-i V 

provided 1 ^p¿:coorp=£>°, if the partial derivatives f(rj) 
j 

pondingly uniformly continuous on ^ in the direction Xj. 

are corres- 

If f ^ Hr(5)» then from (1) it follows that 
P 

(3) 

In particular, if in this inequality we replace V ^ accordingly by 

v/Vrj (»/>o), then ve get (omitting 1^(^)) 

V£v'fr I.vl/r* (/) < «I II / ll*r " (V > 0). 
(4) 

Let us assume a >1 and introduce the norms 

^11-11//-11-11+^1-111 (/-1. 2, 3). Ml-M^ (5) 

where 
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1/11, -;upt »£,,»,. 

1/11. »up a‘£ .„ (I), 
t~0. I, ••• • •••••.• 

(6) 

(7) 

(8) 

Additionally, let oa auppoao 

4l!flU- «up aH QJ, 
*•0 I, ••• 

(9) 

wharo tho la* nom (not explieitly containing II f II ) bo undorrtood in 
the aoMoe that f ia roproaontablo in thn fox* of tha aariaa 

m 

- JQ, 
do) 

cuu«,^ to it loth. «tri. Ug >. h. t«» Of 
gnd and of typa a«/rj with raapKct to (j - 1, ...* *) auon inaT; nom 

/illegible text page 25/7 

gml 
is finite. 
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Therefore f ^ Hr(<5 ) = 1H and 
P 

Ve have proven that 
'//-+ 

i.e., these claaaes are equivalent. 

The resulta contain, in particular, the following theorem. 

5.5.7. Theorem*) . For a function f ^ Hp(<£), it ia noceaaaxy and 

sufficient that the inequalities 

£v(/KcV_L 
f v;/ (v,>0). (1) 

be satisfied. 

Inequality (l) must follow from 5-5.6(3). Conversely, if it ia satisfied 
for any independent > 0, than atill more ao for of the form 

Vj = ^ = m)» 8111,1 tll0n ^16 ^P®1, 13001^ 5.5.6(7) ia finite. 

/illegible test on page 25.2/ 

*) S. N. Bemahteyn ¿2J, pages 421-426, p = 00 ; S. M. Nikol' skiy /TJ, 
1 ¿V < 00 • 
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D^inltlon of B-ClAMai Qf Bflrt 

&2B 
Let ^ X ^ ' d R , r > 0, k and /° be adnleelble integere 

The principal goal will be prove that the norme 

Î||/II-^«)";||/IU"II/.II + /,I/I1* 1.6)-’ 

where (Ml = 

(1) 

(2) 

(3) 

(4) 

(5) 

are equivalent; in addition, they are equivalent to the nona (not explicitly 

containing Ilf II) 

which must be underetood in the eenee that f can be repreeented aa the eeriee 

(7) 

the norm °t|flU ia finite. 
S Spin^T P^nS Wp. “ with respect to . g *“h th,t 
i °llfllB i» finite. 
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Here danotea an apbitrary darlvative of f of order • = («-, .... a.)- 
I •! = /° , with reepeot to the variahlee uv ..., i^, and fu le a derlietive 

in the direction « e of order P, 
“■r. i)-oî.(r. 4,,. . 

Ve further introduce the noma 

11/11,--11/1 + 11/11,, (/-1,2,3,4). 

Th... an th. um non. u, nqxotlra]/, J// //B md J|| l|b, but lnt^(n- 

tion in them by definition ia performed with respect to t é- /0, >]7 or with 
reapect to u with | n/ < >j . 

It will be proven that theee noma are equivalent to the precedió 
(with strokes) but with constants dependent on >7. He aust richer that 
each of the classes listed dependa further on the pair (k,/° ). it 
will be shown that any two of these oleases corresponding to different pairs 
are also equivalent (with constant dependent on these pairs). 

Let us note that the equivalency of nom (5) with one of the resutining 
noma for the classes B£pQ(g) corresponds to oonfimation of theorem 5.5.4, 

which yields in terns of best approximations the neoesssxy and sufficient 
conditions for the function f belongs to the class Hjp(g). Prom (5) it follows 

tt»tBSpe.(£) =H£p(g). 

ui V lheJ®iA>-*s corresponding to these norms are multiples of the series, 
which we will denote byJB and Jb (J = 1, ..., 6) and Jfi' and V (J = 1, ..., 4). 

It mist be bora in aiaf that of themselves seminorms ^b and^b', general¬ 
ly speaking, are not equivalent, while their sums with || f II = l|f |j are 

equivalent, i.e., the. noma ^B and . ^ 

Below we will prove several embeddings, from which will follow the 
confirmation of equivalence stated above. These embeddings are of interest 
in themselves. Several of them are valid not only for admissible pairs k 
i.e., those satisfying inequalities k > r - /* > 0. 

Ve have thus far for the same, but not necessarily admissible, pair of 
natural k, p 
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r 

'b (8) 

9m first and MooBd «beddings «re obvio as 4 and the third follow« fron the 
relations 

lAXwl-kSr^'k SUri- 
* l»l-P I I l¡mp 

aiailarly, also for the same, and not necessarily admissible« pair k, /° i 

Row let f for several« not neoessarily admissible k,/° pair. 

For each v > 0 there exists an ioteggal function gu at spherical type 

with respect to m 61^« such that (3.2.1(6)) 

iv-M- 1)M J g(\u\)^f(x)du, (10) 

awri then I 

I 
£.í(/X|f.'-/| -I f 

-£|f I «(«O«' 
lo lll-l 

/(jr)r-'dÇdH. 

Therefore (explanation« given below) 
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[/-o 
I a'^iiDii 

-I. 

1« 

«( J“"*1/^1 f(')4.‘3„/W<""l<iS<«p/jW 

•° Ai 

J ! »^‘IC/wfxuc 
0 III-I 

(//< 

0 ll-l<H ‘ 1 
“ ]l* (id 

The generallaed Minkovaki inequality vaa applies1 to the fourth relation 
(inequality): first the nom I/*Il with respect to x ia brought under the wign 
of the integral with reapeot to j, and then the norm with reapect to j — 
under the sign of integral with reapect to t. In the fifth relation, j and 
the integral waa replaced with v by means of the substitution a"Jt = v. 

If y¡ -0° , then 

• 0 • £ 
^*«11 a. (12) 

4B' ~*SB, 

*b -**b. 

(13) 

(14) 

In the following we use only embedding (13), but embedding (14) is of interest 
for its own sake. 

Now let f é ^B. Ve will let gftl stand for a function that ia integral 

and of spherical degree with respect to u such that 

|/-<V|<2£/(/) (/-0. 1. ...), 

and set 

Then in the 1^(,^ )-sense 

because from the finiteness of 5|l • ||. it follows that E ^f) 
Further b a 

0 (1 —*>C*)). 
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Therefore 

Il Q«* ll<N fil+ 2£«» (/), 

therefore ^(f) does not Inoreeee with increasing X. 

lift« {(ll/ll + 2£,(/))*+lj (/)•}'*< 

we have proven that 

(15) 

Nov let f and let f be representable as (7). We will assign 
arbitrary a&dssible natural k, ^ . For any » e R*, integral vector s - 

(s^ ...»s., 0, ..., 0) with I «I and natural N 

Airw-SAiQïw+i/Qïu). 
/-0 

! Air i < i « i* ^ o' i q.' i+2* |/p i q.' i- 

From lienee 

o*r. «•*)- ~p uirwi« 

Ja' 

Let ai o at leste . We heve 

0-JV 

# 0-N 

J S'".- 
I+/V • 

0 

J»“I- 

V 

(16) 
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whore (explanations given below) 

h “ Jo09 ^ ^ (;?/'" I ^ |)B< I I Q,< p. 

(17) 

(18) 

Inequalitie« 4; are Juatlfied thualy. If a> 1# 0<á<^# and 0 (1 = 0* 
^ j • • • ) # then 

m N ' 

< S a'84*' 2 a(4^,8/A8» V -(6-HiH/tH vi Af-o its ¿ a'4-» wa« y q-^n^- 
i-o ffZi 

(19) 

,5.°*" (l/.J -„Ia*' 

"u ‘"'Af /-0 AT. I 

/•0 

(20) 

where A^B oust be understood in the sense of A ^ cB, where c is a constant 
dependent on and $ , but not on b^. 

Inequality (17) is derived from (l9) if we set k - r +/^0) and 
b1 = a1^ * H Qgl IJ, but inequality (l8) is derived frosi (20) we set 

P-r-p, ¿»/-a,p|Q4<|. 
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Th» um of these two ineqoalitiea requires the aeataption of the ataiaslbi- 
lity of the pair k, P , i.e. that the conditions k>r > 0 be aatlafied. 

We hare proven that 

¡j/'’~v(r. <21) 

Further, assunlng 1/Ô + 1/0' = 1, we get 

ell/11*. 

I 
(22) 

therefore from (21 ) and (22) it follows that (for arar admissible pair k, ) 

*B -*■ lB\ (23) 

Finally, by using (7) it follows that ( / a I - /° < r) 

H/w U< 2 fl/p| qA . 2 J Qt/|< 

«(I 
(24) 

and «lace the function )-1 la integrable on (i,») and ( |a| =/°) 

0*(r. <)<|/“|. 
then 

J H 

from whence obtains the embedding 

(¿5) 
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which Is stronger than (23) and develop for ary admissible k, f pair. 

Now let k,f be an admissible pair. Combining (8), (9)« (13), (15), 
and (25), we get 

\¡b' -► ly/ 

Since here b can be replaced everywhere with B (because this signifies merely 
that the corresponding inequality remains unchanged if to both of its parts 
we add II f ll ), then 

On the other hand, it is obvious that (chains (8) and (9) are valid if the 
strokes everywhere in them are omitted) 

This shows that all classes appearing in both chains are equivalent. We again 
achieve the equivalency of these classes for another adnissible pair k', /°1 
and since class $13, just as is independent of (admissible ) k, ^ pairs, 
then obviously all the indicated classes (JB(j = 1, ..., 6), JB'(j = 1, ..., 
4) are equivalent to each other independently of by vhioh k, /° or parameter 
>1 > 0 they are defined. Of course, the embedding constants emerging here 
depend generally speaking on k, tf , and a. Let us note further that the 
classes 5b and '’B remain equivalent given the variation a > 1. This follows 
from the fact that, for example, they are equivalent,(but with constants 
dependent on a) to the classes IB not dependent on a. 

Note. Let f éz 1B. Let us define for f functions gby means of 
equality (10). It is easy to see that g^ is obtained from f by means of 
the linear operation g, = A^(f) (cf 5.2.1(4)). From the chain of inequalities 
(11) that we must read starting with the third tem and from the subsequent 
estimates (cf (12)) follows the inequality 

Therefore, if we set 

» • • • 

- 246 - 



asá cocaidsr that 

le.,l<lí.'-/|+|/-í.M|. 

than it is o&ay to obtain the inequality 

Thia of reaaoning vaa advanced in order to enqshaaise that if we 
introduce a norm of the form from ° II • 1/ B for functiona f é- B^(g), then 

we can alvaya aaaume that here functiona Qg are obtained from f by meana of 

wholly determined linear operationa (5 «2.1 (4))* It ia important to note at ill 
further that for a given r0 > 0 for all r < r0 theae operationa for each a 

can be taken aa the aame. 

5.6.1. Aniaotropic caae. Let ua aaaign a function f é B^(^) where 

P~(p.. 0".9-). r-(r¡,..., rj, 

!<py. 0y<oo, r,>0. a>l, 

Let ua define for it a family of functiona i ***** are integral and 

of exponential type yj with reapect to xj by formulaa 5.2.4(1)« where 0 

£ oo and let ua introduce the conatant a >> 0. lie will ahow that there axiat 
inequalitiea generaliaing inquality 5.2.4(2) for the oaae of finite 0: 
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When 0j ~ 00 , the corresponding J-th inequality is of the fox® 

a .- 8¿l'l.4 
‘ti¬ 

lt follows directly from 5-2.4(2). However 0j is finite, and (rj -/°j > 0, 

/0^ ^0, cf 5.2.4(2); 5.6) 

00 

S/'V.'/'.. ... .-g,»/', V'y r 
*-® • '•••••• ' /.-......I. 

V •/-£!/» #y 

<.V “*;iC’“-"f, « 
■ 

•tt 

0 

and we have proven (l). 

Now let p - p-j = • 

norm (|lf ll = ll f Hl (^)); 

0 = 01 = ... _ Ojj. Let us introduce the 

^ / H* - h / h+y i/ it, (/-1,2,3). (2) 

We assume that 1b - b^ig), i.e., this is already the familiar class 

(3) 

and 
. 

(4) 

where it is assumed that f is representable as the series 

/-2q„ *•0 

(5) 
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convergent the Lp( <5 )-een*ef and whose teres Q# are functions that are 
integral and of the type a-^rJ, respectively, in x (J = 1, 

J 

Noms (2)(of class B), but not are equivalent. 

Actually, let f ^ 1B = Bfoig ) 
P® 

(6) 

(the middle part of (6) does not exceed the sum of the left sides of inequa¬ 
lities (1) given equal pj and equal Oj). 

On the other hand, 

11/«, -«/lit,,,, + (| a-E.^Vfj" > U/H , 
V" (7J 

where the second quality is valid by virtue of the equivalency of the noms 
corresponding to sssvinoms 5.6(l) and 5.6(5). 

From (6) and (7) it follows that ^ = ¾. 

Let us proceed to the proof of the equivalency 1B = ^B. Suppose 
f & 'B. Let us define for f a family of integral functions g = g 

- %B/T^ 
g/r (a > 1, ■ = 0, 1, ...) for which (6) obtains: 

a ' m 

< 'll/ll,. (8) 

Hence, in particular, it follows that 

Let 

Qo-io. («-I. 2....), (9) 
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It follows from the convergence of the aeries appearing In (8) that the func¬ 
tion is representable in the fox® of aeries (5) convergent in it in the Lp(Sí¬ 
sense . 

Further, 

Finally, if f ^B, then f is representable as series (5) with finite norm (4). 
But is for each j integral and the type a8'rj with respect to Xj, therefore 

I ¢= b£ p(£)(cf 5.b(6), replace ar with a, and set m = 1* = R* ) and 

Thus, f é Br(^) and 
P 

He have proven that ^=¾. 

In conclusion let us emphasize that the noms of classes ^B = B^(£) are 

expressed in (4.3.4) by means of norma B1^ (¿f ) (j = 1, ...» m) which can be Xjp 

conceived in ary equivalent norma described in 5.6 (when m = 1, = ). 
J 

We observed that everywhere here we have assumed that 9 and 9 can be 
J 

equal to infinity, therefore, in particular, it has been proven that = ½ 
obtained in the notations of section 5.5.6. 

5.6.2. Let us show the equivalency of the classes 

B'* ■'{*)-B'Mif) (I < 0< oo). 

We denote first of these by B¿ and the second by B'. Let us choose a number a 
such that a1/*:^ V^m, then^ a*/*’ ^ aa+1/r (s = 0, 1, ..., m). We observed 

that the integral function Q of type a8^r with respect to each 
a*/r, ..., a*/r 

variable x^ (J = 1, ..., m) is of the same time spherical of the type a*/r 
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the spherical type with respect with respect to U« and so more so of 
to a: 

Q>,.... «»fr " Qm'»*»** 

Now let f ö B. Ulen 

and 

•• — 

^",?0 ®a,lr.‘,/r 

/- \m 
1 II f Hi ~ a9* J Qma(t*r)lr [J j " 

'i«0 1 'i-0 ' 

-7 »/II,-. 

where we set Q _ = Q ^ 0. 
UÛ^ ul 

And thus, it has been proven that if the function f eB, then it is 

represented as the series ^ 

0 

of integral functions of spherical type a«/* with respect to a such that 

!l/l!r«ll/l|r 

i.e., it is proven that B —B1. The inverse embedding is trivial, and 

we have proven (l)• 

5.6.3. Theorem*). Let f <£ B^(g) and 1 = (1^ •••# 1») be an 

integral on negative that is nonnegative vector (lj ^ 0) such that 

/-i 

(D 

and 

Then there exists the derivative 

r^Bzan 

#) of note at cad of book to sections 5.6.2 - 5*6.3. 
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where c does not depend on f. 

The theorem ceases to be valid when f> = 7^r is replaced by /° + £ » 
where £ >0(cf 7.5). Additionally, generally speaking it is invalid for*- 0 
(cf note to 5.6.3). 

Proof. By the condition of the theorem 

where the terns of the series «re integral functions of the exponential type 
a8/rJ with respect to Xj (j = 1, ..., m), where 

o>l). 

Ve have for the present,formally, 

r -1 ««. (4) 

where k is axy of the vectors (1-., 0, ..., 0), (1-j, 12» 0, ..., 0), ..., 1 = 
(1-1, ..., Iq) . Let us note that 

Iq14’I<o (i. 

Therefore 

From (5) it follows that series (4) converges in thcLp-sense, therefore mmaber- 

wise differentiation in (4) (in the generalised sense) is legitlaate based 
on leona 4.4.7. 

Let us note that just as (^, is an integral function of the type 

a*/rJ with respect to x. (J s 1, ..., m). If we set a* s b (b I) then 
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equality(5)for k = 1 will be written aa 

where is an integral function of the type b8^rJ* with reapect to xj. 

In this case f^1^ ^ B** (g) and inequality (3) is satisfied. 
P® 

Let us a&ke also the following addition. Let us assus that we wished 
to differentiate the derivative fW aentioned in the theoraa another 1' = 
(1^, ..., l'm)”tines". This is possible by this theoxen, if the quantity 

Hence 
/-i 

XX x_ yii. 
Ur ° 
/-1 1 

Vili 
rj /-i J 

X, > 0. 

But the quantity X _ in term is the constant X appearing in our theoren if 
in it 1 is replaced by 1 + 1'. 

In this sense the theoren is transitive character. 

5.6.4. Example. Below is presented an example showing tnat seminoma 
3b and ^b', generally speaking, are not equivalent (cf 5.6(3), (4)). Let us 
confine ourselves to the 1-dimensional case 

m-l, r-l-^cl, p-0, *-l, 0-p. 

Let fj|(x) be an even function, equal to 

Ín(x) 
jf. 0<x</V, 

1. N<x. 

Then 

VatIC- 

- 2 J'<« / j ^ \’dx>2j'äiJ«. _ 

jllMC-Já/i j J + ) + /)*-/, + /,+ 

because 
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W-l I N IN-* 

<i dJt Jw+ Í w+ ¡ 
® o N-1 O N-* 

dh 

i u 

/,-Jj* f 
o -/1 

* ->■* Jt 
Ai + V 

-oOv'-'). 

djc - 0 (^'*0. 

From this -t ia clear that it doea not exist a constant c such that 
for all N > 0 the inequality 3flfNl/b < c^ ||fNllb, la satisfied. 

5.6.5. Tranalatlonwiae continuity. Iheoraii. When h —► 0 

*• • 

;/(X + A)-/-»0 (^er-ri(/?„), Kp<oo,/>o). (1) 

,/(Jf+ *)“/(•»)Us -0 (/efl-(/?„), 1 <p,0<oo,r>|). 

(2) 

The confimation of (l) when p = ^ doea not obtain, just as (2) when 0=^° 

(Bp cf. further 7.4.1); when p =c» , 1 Í Q<oo (2) remains valid. 

Proof. In the case 1 = 0 (w£ = LpU^))» property (1) is a well-known 

fact (invalid, however, when p =<*> ). The general case actually reduces to 
it because Ilf ll^ ia the sun of noma f and ^f/^ x^J in 1^(1^)0 = 1, ..., n). 

The representation 

/-Sq» 

where Qfl are integral functions of the type 2*/rJ with respect to xj obtains 

for the function f^ B. Therefore 
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i:/(jc+*)-/(x)iif< S2,,||Q<(jc + *)-Q1U)|çJU,+ 

+ 2(12^110,15^. + ^-2., 

if v« taka N aufficiantly larga and than chooae a aufficiantly mall . 

Note. Va can replace p in (1) and (2) with p = (p<]j • • •# PnHl ** Pj 

^00)t because these relations are valid, in particular, for the classes 

11 rl 
D ^ = **** n* 

J J B XJ*PJ n 
5.6.6. Under the condition that 1 < 0, p ¿0°, and g is an open 

••t, gN = gifijj - VN), where Vjj is a sphere with center at the aero point and 

of radius N, and f é fi^o(g) = B(g), 

II f II« (,#) -♦ 0 (N-+00). (1) 

holds. This is evident fron the definition of the norm II «IL, for exanple, 
in the form 4.3-4(2) (P-0, k ? 2): 

(fJv) 
% (N -+ 00). 

In fact f (g), thereforeß« (f, t)L (-Nx 
P \ p 

is finite for aqr t and tends 

to aero, aonotonically diminishing as N —** «», and we can use the Lebesgue 
theorem on the limit passage under the slfn of the integral. 
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CHAPTER VI THEOREMS OF IMBEDDING OF DIFFÉRÂT METRICS AND MEASURES 

¿jIj—Introduction 

+ Ü0«^ty»^i*>theS.USol#L3y embedding theorem ßj with letter «upple- 
mente due to V. I. Kondrashov and V. P. II'yin ¿2J*). As anolied to^ 
apace and to its coordinate subapace I^(l ^ m< n), this theorea reads: 

If a function f and 

\<p<p'<oo, 
(1) 

then**) 

(2) 

of n<MlM that the trace of the func- 
tion f belonging to the class WVil^) exists. 

!<PllriPi 

p 

<C 

and that the Inequality 

(3) 

is met where c does not depend on f**). 

TI»1« conc.pt of ttw trac, of f will b. axpOatud In th. follow In. hot 

iz «cSTí :: :!? * *■» ' " co^tî^^'tSi 
ron r onV ,lT“ 10 th* ^10° f = *&• 

*) Cf note to 6.1 and the book. 

**) The general S. L. Sobolev theorem can be written in the form of formula 
(2), where we must replace ** and R* by g and = and a.It g^ 

a atar-shape! domain relative to acme n-dinenaioual sphere. 
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In particular, whan ■ = n, fro« (2) follow« the "pura" aabadding of 
different metric«*. 

(4) 

«••artlng that if f than f «p^(¾) and 

(5) 

provided the condition that (1) 1« satisfied (when ■ = n). 

The S. L. Sobolev embedding thaereo« will be proven in Chapter II. 

But in this chapter we will set out to disousa these attestions for the 
classes in particular, when 0 = 00, the classes HMRp) • Incidentally, 

fro« the theore« obtained in this chapter, in particular, there will follow 
the above-formulated theorems for the case when f>0 is noointegral, and then, 
as we will see, they are valid under «ore sweeping ooaditloms: 1 ^ p < p!^ ^ . 

Let us present even at this stage the oharaoteristio theorem of the 
eabeddii^E of different netrics, which in particular will be obtAlned in this 
chapter: 

if 
(7) 

Thus, if function f belongs to the left class of (6), than it belongs also 
to the right class and, «oreover, the inequality 

< (8) 

is satisfied where c does not depend on f. 

The characteristic (direct) theorem of embedding of different «assures 
which will be proven in this chapter, is written thualy: 

B'po(Rn)~»ß^ (Rm), 
(9) 

where 
» • 

l<P. \<m<n, p-r_JlZÍL>0 (lO) 
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It aasorta that provided the conditions (lO), if a function f of claaa 
BJqÎRjj) ia given on then it has the trace ? on belonging to the claas 

Bp^iV and the inequality 

W.)* (11) 

ia satiafied« where c does not depend on f. 

Inequality (11) is ijçortant for applications; it indicates a certain 
(stable) dependence of the noma of traces of functions f on the noms of f. 

Theorems of embedding of different Measures for the oleases 
characterised by the fact that they are wholly invertible. Let us 
by way of exanple the theorem that is the inverse of theorem (9)• 
described thualy: 

Æp« (Rm)-+ B'pt (/?,) 

•re 
present 

It is 

(12) 

(provided condition (10)) and reads: to each function <p defined on and 

belonging to the class 8^( 1^) there can be brought in correspondence its 

extension on Rq — the function f B^gtR^) — euch that f and 

'»•(%) 
<cHf i. (13) 

where c does not depend on cf . 

More general theorems of embeddings of different mss wires that the reader 
can find in this chapter are correspondingly also wholly invertible. This 
indicates, in particular, the uninprovability of these theorems.^ As far as 
theorems of embedding of different metrics are concerned, they also are mtarprcnmhla 
(in the terms in which they are stated); this is proven in the next chapter. 
There the reader can find out about certain interesting so-called transitive 
properties of embedding theorems. 

Ue will coBBenoe this chapter by establishing the simplest relationships 
between the classes II, H, and B expressible by means of «ibeddings. 

Here we note only the following relationships: 

«r -♦ 1%-♦ /y', («>0, r - 0. ...). 

the second of which is already known to us. 
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Fr« (14), (6),and (9) foU». (<° = 1 - n/p * a/p' > 
0 la nonintegral): 

i.a.» (5). 

Theorema of «bedding of different métrica and aeaanrea, J“*1 
tha inverae theorema of «bedding of different métrica, were Pr°^e^_for ^88 
h|(R ) by S. M. Hikol'akiy ¿3J uaing methoda of approximation by integral 

functi 
fox 

tlon. of «poMiàUl typo- Ttay «» *.nor4Lla.d by 0. V. 
tho dasoes BjgOgOÇ = B^) h. Introducod. 0. V. Bmov 

Beaov ¿2, ¿/ 
aleo founded 

hia anoroech on the method of approximation with integral function«, of exponen- 

tial type. Certain embedding theorema of different ^riJf 
claaaeaHj were found by Hardy and Littlewood OJ • fhe theorem of embedding 

of different meaaurea waa alao proven for more general claaaea (Pj, 

generally .peaking, are different) by S. M Nikol'akiy /Tfi/ by the “thoda 
of apprwcimation. Then it waa generalised for the claaaea by V. P. II yin 

and V. A. Solonnikov /1, ¿, but then by different methoda. 

Below everywhere in our proof we will operate with methoda ^ »pproxi- 
«tion, includli^ our examination of this theorem for the general class 

Bp0*)• 

Hi UAM 

We will consider the functions of theae claaaea on a cylindrical raeasura 
ble space £=£« xg- (l^m^n, u = (x^ ..., xj, w = ..., xn)). 

We will auoooae for sake of brevity that 

b:m*)-b+ r.,(in-r^ 
-l/l r>0, !<0<oo. 

Th. foUcwlng embeddings (r ‘ï +*, 0 é 1. r le en integer) obtain: 

(l <e<e'<oo), 
K-+H', (/--1,2,...), 

(1) 

(2) 

*) Cf T. I. Amanov /3../• 
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(3) 

(4) 

(5) 

H?-+B*-+H', (e > 0), 

H',-+rP (p-0, f)t 
Br^-+B0 («>0). 

Onbeddlngs (1) show that classas expand with increment in 0. The 

proof of (1) directly follows from the fact that (cf 5.6(6), (7)) function 
f ^ can be defined as the sum of the series 

(6) 

convergent in it in the lysense, the members of whose function Qfl are integral 

and of the spherical type a1 (a >1) with respect to m such that 

Il I- (S a'« Il Q, if) (a> 1). 

In fact, the right side of (7) diminishes with increment in 0 (cf 3.3.3). It 
is also clear from the chain (l) that for fixed r and p, the "worst" class is 
class and the "best" is Bj^. 

Embedding (3), from which it follows that 

r 
for ary 1 é.0', 0, 0"^oo, however small thef>0, show that the class B^ 

depends more strongly on r than on 0. The second embedding in (3) was already 
proved in (l). Suppose f c ; then 

II f Lr« - sup a* ''♦*> Il Q, II - Af < 00, 
ß $ 

therefore 

where c does not depend on 11, from whence follows the first embedding of (3). 
Embedding (5) follows from the fact that the right side of (7) increases 
together with r. We must bear in mind that for a given r0^ 0, functions Qg 
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for *11 r < r c&n bo Aisunod 'to bo tho mubo (cf noto at ond of Motion 5*b) • 
o 

Bábodding (2) follova fron tho inoquaiitieo (h 1^) : 

i Air (4Í<s*-,i/w"wks,-ii* i|-¿.rw|< 
<l»l2lrl V-r-llt 

whsra the sub Is sxtsnAsd ovsr all dsrlvatlvss frcB t of order r. 

Fron (l) and (4) it foJLLowa that 

(P“0, 1, .... t). (8) 

For tho aniaotropic claaaea 

BlMW-B'*, KAm-K 

the following embedding (p = (p^ .*•» pn)) obtain: 

Bh-tBÍé-tB^-tBlm-H',, l<8<e'<oof ^ 

(/0 ia an integral vector) (10) 

(e>0, i.o., ^ 0) (H) 

(r>0), (1¾) 

B*~*Np-**7 (/0< r, p ia an integral vector) (13) 

They are analogoua to embeddinga (1)- (5) and (8) and directly follow fron 
thaai. If p = p1 = ... = pn, then p can everywhere be replaced by p. 

Mr of Different Mtrica 

«.«J-iÄWj. d) 

obtains*) if the following conditions are met: 

*) £"*) on following pagf/ 
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(2) 
l<p<p'<oo, ( 1<0<OO, 

«—(W)Ê^>». 
r'-xr. 

(3) 

(4) 

( We aasume that r > 0.) 

In particular, if-we conaider that = Bp,,**,r(Rh)(cf 5.6.2), 

B*(Rn)-+BU(Rn) 

obtains provided the conditions 

K-|-(|-7)7>». • 
r'm. xr. 

(r) 

(2’) 

O’) 

(41) 

For example, when p' -oo and 

flie (Ä«) Bi. 8 (Rn) 

and, therefore, if the function fé then it is continuous and bounded 

on together with its partial derivatives of order less than r1. Additional¬ 

ly, if, for example, r1 = fi +o(., is an integer, and 0<T <. 1, then the deri¬ 
vative f^) of order/' satisfies on the Lipshits condition' of degree oC. 

Let us prove (l). Suppose B and B', respectively, stand for the first 
T Let us assign the function and second classes (l) and |f ^ = ((./( 

f é B and the number a > 1. It can be represented as the series 

•) S. M. Nikol'skiy ¿3_/, case H^) = Bpeo(Rn)i 0. V. Besov ¿2, ¿7, case 

1 < 6 < oo ; Hardy and Littlewood for certain one-dimensional classes 

"î- 
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(5) '-.I«- 
whose tema Qa are Integral functions of type aa/rJ with respect to 

(j = 1, ..., n), and where 

The inequality of different jostrics (3.3.5(1)) 

1 <»•«"-* *ll9,ig. 

is satisfied for the functions Q,, therefore 

But if ve set a^ = b(b >l), then ve get the Inequality 

(|oM<>.yf«n. (7) 

s/r1 < 
where Qg are integral functions of the type b J with respect to Xy From 

this it follows that series (5) converges in the metric ly and here to f, 

because it already converges to f in the metric Lp (cf (1.3.7)). Moreover, 

from (7) it follows that f £ B1 and the left side of (7) is Ijfjlg,. Ve have 

proven that 

and embedding (l) stands proven. 

In this case conditions (2*) - (41) are equivalent to the following: 

r.r'X), l<p<p,<oo> r —— — r7— A. 
P w 

The quantity r - n/p appears in them, which must be invariant in order to 
insure embedding. In the general case cf 7.1 on this issue. 
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Let us note that Rq cannot be replaced g in (l), since in 

this case there would be no inequality similar to (7). In fact, this never 
occurs, and can be easily seen in examples. 

kAx Place of Function 

The function f belonging to a given class B(fl,) and V(%) is defined 

on fi^ only with accuracy up to the set of n-dimensional measure zero or, as 

we will additionally state, with an accuracy up to equivalence relative to 
Rn or in the R^-senae. Therefore the trace of function f 

.-jtj (1) 

for any subspace C. Rn(m < n) is not meaningful, if it is understood 

literally. 

Below we give the definition of the trace of function f on leading 

to the unique function f> with an accuracy up to equivalence relative to 

We will denote each point z ^ Rn as the pair z = (u, v), where n = 

(x^, ..., Xgj), v = (Xfli+ii ..., xn), and let RqCv) be the m-dimensional subspace 

of points (u, v) where v is fixed, and let u runs through all possible values. 
In particular, let 1^(0) = 1^. 

Suppose f(z) is a function measurable on Rq. 

We will state that the function 

(«WI% (2) 

is the trace of f on if f can be modified on a set of m-dimensional 

measure zero such that after this, for a certain p, 1¿ p <op, the following 
properties will be satisfied: " 

1) 

2) 

3) 
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where <$ ia sufficiently small. 

Ut us show that the trace of f on \ defined in this way is unique 

with an accuracy up to equivalence in the I^-sense. 

Actually( assume that we will be able to find the two modifications 
f1 and f2 of function f on the set of n-dimenalonal measure zero and such 

numbers p1 and p2 (1^ P-j é ^ fop p1* f2* ^2* p2* 

relations 1) - 3) are individually fulfilled, and suppose gd is not 

arbitrarily bounded open set. Then 

II q>j («) - q>i («) llt^(,, < II f! («) - /1 (s, ») It^ w+ 

+ IlU (s. W) - ft(«, w)||t#(+ c||/2(s, w) - «p,(«) 1^^(3) 

where c is a constant dependent on the measure of g. Functions f1and Î2 are 

equivalent in the R^-sense, therefore J J ¡f,- ftf' dudw-0 

and by Fubini's theorem, for almost all v 

/ Ifl-ftPdMmO. 
*m** 

But from the Set of points ¥ for which this equality holds, we can always 
select this sequence v.,, w2, ... withlw^l —>0. The riftt side of (3), 

when w runs through this sequence, tends to zero, but then the left side equals 
zero, and since g <1. R arbitrarily, then f. = f2 on R^. 

m 

It is not difficult to see that if function f not only ia measurable 
on Rn, but also is continuous in the n-dimensional neighborhood Rg, then its 

trace f coincides with the trace of f on with accuracy up to equivalence 

in the RB~sense in the ordinary meaning of this word. Denote further that if 

for the two measurable functions f., and f2, for some p the above-described 

operation of removal of trace (2), which we will further denote as: 
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is possible, then it is possible also for ary linear combination 

where and are arbitrary real numbers and where the equality 

obtains. 

Thus, the set of all measurable functions f for which operation (4) is 
possible for some p is linear and (4) is the linear operation (operator) de¬ 
fined in it. As will be clear from the following, functions of classes 

and Up, with the corresponding values of parameters p and r, have traces on 

R in the above-indicated sense, 
m 

Suppose the demain g c ^ and g'd g such that, in particular, g' can 

the boundary of g. Further assume that the class of function 7)2 is defined 
on g*. Let us assign function f on ß and assume that on g' it has the trace: 

9-/^,, 

oelonging to 7^. Then we will not only write: f Ig.é; « but also i&TTl. 

6.5t aatoddfaMM Mtfforent 

There obtains*) 
I 

ß;e(/?„)-*ßä(/?m) , 

given the conditions 

0<m<{- Kp, e<oo, 

-'-¿,2 ^>o. 
r'm(ri.r'm)> r/,-xrr 

(1) 

(2) 

(3) 

(4) 

Here R stands for the m-dimensional subspace of points 
m 

a - (x^ ..., xj, y -= (xn+T, ..., xn), where y is fixed. Let B and B', 

*) S. M. Nikol'skiy ¿5J, case = Bj^j 0. V. Besov /2, j/, case 1<:0< oo. 
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respectively, be the first and second classes in (1) and /(•/I® 

FfrhoHrUnfl (1) states that ary function f ér B has the trace 

and that the inequality*) 
hl<ellflls, 

is satisfied by where c does not depend on f. 

For the case when a = 0, it is assumed that 
« 

Il-II y\)* 

Thus, in ease vs are talkim about eabedding in different metrics (from 
p to p1 = co), and it has already been proven in 6.2. 

If we consider that = B^-*'»r(Rn), and Bj(l^) = Bj'** 

then from (1), in particular, it follows that 

Bjetf.)-*/&(**) (V) 

providing the conditions - 

0<m<n, l<p, 8<oo, 

K» I - >0. 

r'-rx 

(2* ) 

(3*) 

(4*) 

Let us now turn to the proof when 1 ^ m < n. 
f é? B^) as the series 

/-|q. 

We represent the function 

(5) 

which are integral functions of the type a§/rj(a >1) with respect to Xj 
(j = 1, ..., n) with the nom 

(6> 

*) The more exact inequality ||f|)b, ^ c||f||b obtains given certain reserva¬ 

tions (cf 7.2(10) and (11)). 
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Let us use estimate (3j4*2(l) 

iQX^-v^iiQjr, 
for Q_, from whence 

(I ( il Q, lr)•)", « (i <■■•( « «• in’) - #/ il,; 

Setting a^'= b (b >1), we get 

[b'-amnf<m («-«.a;..(7) 

This inequality, in particular, shows that series (5) 
y and the L (rJ-sense with respect to u - (x^ ...» 3¾) to some functio 

f^x) = f^tt, y) Lp( 1^) • But then f1 = f almost everywhere in the sense 

of the n-dimensional measure (cf 1.3.9)« 

By virtue of inequality (7), f^u, y) ^ B' for ary y 

HM«. >)llr < Il/)(,. (8) 

The constant in this inequality does not depend on y. 

If it will be proven that f^a, y) i« the trace of f on Ra for ary y, 

then together with inequality (7) this leads to the required embedding (1). 

Since (cf 6.1(14)) 

then 
8-Bie (#«)-*//;(#„), 

il Q, r < «•*. 
(9) 
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The incrAmant in (x) in turn la an integral function of the typo 

as/rj with respect to xj (J = 1, ..., n), therefore based on 3.4>2(1), 

3.2.2(7), and 4.4.4(2) 

^ i 

The inequality 

iv-r«** 

i. «iid, vfa.» «l'iAv^r. <-?iv*r 

Let us assign the nuaber h with j-h[ ^ 1 and choose an integral ¿I ouch 
that 

a*1'I < IAI < (10) 

Then (cf (9)) 

al < 2*_m j fl,(1~K )|| Q, IP I A| ClAlT-X, (iD 
... • • a 

whdre , , 
»-«.a.. 

If &<. 0, in other words, if r1 ^ = r^y < 1* then 

<< daß 
and if ¿>0, i.e., if 1 < r'j, then 

<<ÍA|. 

When 6=0, i.e., r’j = 1 

0¿«|A|u<|A||ln|A||. 

On the other hand. 
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From the estimate obtained It obviouaiy follows that*) 

IV «r- 
0(|A|r'), 
0(1 AII In |A (I), 

0 (I A I), 

0<r;<l. 

(13) 

The right aides of (13) tend to zero together with h, therefore f4(tt, t) 
has the trace f(u, y) for ax^ y. 1' w/ 

Let us emphasize that the desired function f(x) = f(u, y) vas known to 
an accuracy up to a set of n-dimenaional measure zero, therefore it was not 
meaningful to consider it as a function of a for fixed y. The method of obtain¬ 
ing the trace oí function f ^ B was given above. This requires that f be 
expanded in series (5) with finite norm (6) and that y be fixed in its ten 
Qg. Then the resulting series of functions of a converges in the ^(¾)-sense 

namely, to the trace f^u, y) of function f. 

Ordinarily, in inequalities of the type (13), it amounts to the aama 
to write f instead of f^ understanding this in the sense that f can be modified 

on a set of n-dimensional measure such that after this (ï3) will obtain for 
y and in this case with a constant independent y. 

6.5.1. Note. Embedding 6.5(1) remains valid f:r the same condition 
6.5(2)-(4) if in it and are replaced, respectively, with the measurable 

cylindrical aets^ = x^p1 and^ = \ xg', where as before, and 

z '* (*» w)i * Nn* and w . In fact, an inequality corresponding to 

6.5(1) where constant c does not depend not only on y, but also does not depend 
on w is valid for almost ary w given a finite p. Let' us raise both its sides 

*) L. D. Kudryavtsev ¿2_7, part 1. 



to Um power p, intégrete with reepect to w and Ihen raiee the reeult to the 
power 1/p. We finally get the neoesaaxy inequality. When p -oo, thia 
etatenent is trivial. 

6 5.2. Ine<iuaUass6.5(l3) are of interest in thenaelves. Thy Uuii- 
oat. íor^Uo-TSTdai. HjtR.) th. av«M. ord« of th. t~d of 

their traces. This order is unimprovable (of 7.6). 

It is not difficult to show that the inequality 

iv^r-o^» ('i-i. *>i) o) 

obtain. («« without 1«), «uptO-Mitlo* th. Hoond ln.quality 6.5(13)- 

Since 

K(Rn)-+Hr,(R*) (r - integral vector), 

then estimate 6.5(13) are applicable also to wjjU^)*). I» tW-» case as well 

they are Improvable in the sense that the powers of |h/ shown ^ «“Jr 
riSt sidescannot be replaced by larger values. However, for each individual 
function f Wr(Rh) the folloviif estimates obtain: 

|Ay/(jr)f- 
o(|Af/)(|A|-*0). 

o(| A||ln|A|D(|A|-+0), 
0(|A|)(|A|<l), 

o<r;<i. 
r;-i. 
r;>l. 

(2) 

improving, provided r'j^l, the estimates 6.5(13). 

In fact (cf 5.6.1(9) and 5.2.4(5)), in this case 

<iQ,ir<|g^l.,./,„-/1+ 

+ |/“ ,(.-1)/,.( "0(fl"*) (s -+ 00), 

and then ine<fialiUes 6.5(11), (12) are replaced by these: 

•) These estimates fog ¿ha class W*(l = 1, 2, ...) were obtained directly 
by V. I. Kondrashov ¿V. p 
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a;<o(|/,|r') (r;< I), o;< 

<o(|A||ln|A||) (r;-l), o;<o(|A|r/) 

In fact tbe estimate 0(|h|) cannot be improved. This is easily veri¬ 
fied for the example f = g(x)g(y)# where g(x) e ia io^H^al func¬ 

tion of type 1 such that g'(0) ? 0 and = • 

6.6. Simplest Inverse Theorem of Ekbeddlflg of Different HMg«M 

Let l<:m<nandRBbea coordinate subspace of Rr. For definiteness, 

we will assert that it consists of the points (a, 0) = (x-j, ..., xm, 0, ..., 0). 

In section b.5 the following theorem is proven: 

B'MRJ-ïB'MRm) Í1) 

provided the condition that 

r' -rxmr - >Q. (2) 

Below it will be proven that a theorem that is its complete inverse 

exists*) : 

B'i*(Rm)-*B*(Rñ) (3) 

provided condition (ü). For explanation, cf 6.1(12). 

Let B' and B stand, respectively, for the first ana second classes in 
(1). Let us assign the arbitrary function B'. It can be represented as 
the series 

convergent in it in the Lp(l^)-sense, where Q 8^r are integral functions of 
£1 

spherical type aa^r(a >l) and 

*) S. M. Nikol'skiy case Hr = Br ; 0. V. Besov ¿2, 2/, case 1 
P p 
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(4) 

Suppose 

(v>0). 

This la an integral function of one variable t of type V aucn that 

Let ua introduce a new function of x defined by the aeries 

(5) 

where 

Çgtfr (X) - Qa,/r (S) fl F^/r (Xj). ^ 

Obviously (cf (2)), 

11+'* l'-l O,,/, I" a-«-") 

In this case 

- c’t ? «-(i«.» n*) - ci * Up- (7) 
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Since function« q are Integral of the (exponential) type a8/r with reapect 
a8/r 

to each variable x-j« ...» xn, then by 3>6.1 (4)« (5) the left aide of (7) la 

the norm of f in the aenae of b£¿-* ^(¾). But = B* 

and we will prove that f ^ B,||f||g . 

The function f ia defined by aeriea (5) convergent in it in the aenae 
Lp(R^). But the aeriea for ary y = (x^, ..., Xjj) converted alao in the 

aenae of to some function f^x), which can differ from f(x) only fay 

a aet of n-dimenaional meaaure zero (1.3.9). Obvioualy, 

M«. 0)-ç(«) 

in the R aenae, i.e., for a.lmoat all a and the aenae of the m-dinenaional 
m 

meaaure. Further, conaidering that Fw(0) = 1, Fv(t) are bounded with reapect 
to \j and t and that ¿>0 

21 IIQ a/J|n< ¿>0 » «8t 
0 aa'r 

JO-/,(«. 0)||m<2 n FsAxJ-l 
m +1 

|Qai/rf-0 

^»)~*0). 

This reasoning shows that is the trace of f (6.3). In this way the 
statement (3) is previously completely proven. 

Let ua note that the class B = 8^(1^) ia a Banach apace. If 

then, by (1), the operation of obtaining the trace 

(8) 

holds for the function« f B on d 1^(1 m < n). This operation ia 

linear; moreover, by (1), it boundedly mapa B into B', where owing to the 
invertibility of embedding (1), it does this already not into B', but on B1. 
,.bove we proved that in turn B1 can map on some portion of B by means of some 
bounded linear operator. This latter ia not unique, because an infinite aet 
of such operator can be specified. 

In the language of functional analysis the linear bounded operator A 
mapping Banach space B onto Banach apace B' ia called continuoualy inverti¬ 
ble*) . 

*) ¿*) on following page7 
- 274 - 



ln ihn last Motions w« will prove en anbedding aore generad than 
in which we will •peak about the boundary property not only of the 

function f itself on the aubspaoe but also of soee of its partial 

derivatives. Ms will then ooepletely invert this theoree. 

ft 7 Omani Htmnã aL ItoddiMi aL Jtttíiaak Umimm 

Theorem**). Suppose f n, and for acme vector 

À * ...j An) with nonnegative integral ooordiMtes inequalities 

are satisfied. Furtherj let 

end let cenote the a-dimensional subspaoe obtained when vector y - 

•••» *n) end/‘'(A) - /^nA) ) ere specified. 

Then 

an.i the inequality 

with constant o not deponcent on f and y is satisfied. 

Proof. From (l) it follows that • . 

S %<'• 
/-»-i 

*5 V. Hausdorf ¿ 1_7* Addition. 
**) 3. M. Nikol*skiy ¿5J, com hJ - 0. V. Besov /2, case 1 - ». 
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Therefore baaed on theorem 3.6.3 

¢6=^,,), 

'-w.o.(i-S <-i. 
' *-«+! / 

n, 

and the inequality 

ia aatiafied. 

In order to see to which claaa the trace if on belonga, let us employ 

embedding theorem 6.3(1). It ia applicable becauae 

X - I - — ^ 1 

m-l 

_ V ^ 1 V 1 
~ p & ri 

__2L+i___m+l ’ 

m+l 

>0, 

and thus we have confirmation of the theorem. 

6.8. General Inverse atbeddiM ItoStOB 

Theorem*). Let there be given the vector t ~ (ri# •••» ^ an(^ 
all poaaible vectora 

.K) (1) 

with nonnegative integral coordinatea for which vectora /°(A ) = (/°•••» 
(>(£) defined by formula 6.7(l) are poaitive. 

Suppose, in addition, that the function 

(X.O S B'JÎ* (^m)- (2) 

r r 
«) S. M. Nikol'skiy /5_/, caae H = B ; 0. V. Besov ¿2, ¿/, case 1 £ 

P p Co 
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is brought into corrospondanca with aaoh vaetor ( A ). Than va can conatruet 
on function f €: auch that 

(3) 

vhora e doaa not dapand on 
oatad vactora A, and >\ 

4>(A), tha aun ia extended ovar all poaaibla indi- 
ara tracas of partial darivativaa of function ft 

•••I 

<7Í' :41. (4) 

Proof. Let 

(5) 

(6) 

Than it ia obvioua 

pW-rJUnd). 

Let ^ = Bix). Than 

(7) 

*«• 

where Q^Ä) ara integral functions of tha type 21^1^ with raapact to xL 

(i = 1« ..., n) and 

M.«-(f’*a"d«.r)f. (8) 
.. w 

Let us introduce trigonanatric polynoniala Ty (x) ( v - 0, 1, ..., 1) 
where 1 denotes the largest of the nuahera Aj encountered in the different 

vectors A= (AB+1, .,., \n) considered. Suppose these pclynonials exhibit 
the following ptopertiea: the function 

- 277 - 



is integral and, moreover. 

a>vW.iï^ 

(*-0. v-1, 

-1. 
o 
V+l, 

0^(0)-0 

• • • * 0. 

(9) 

Ve would not be concerned about the magnitude of the power of the 
trigonometric polynomial, because the conditions indicated above do not uni¬ 
quely define it. Ve will assume that we have chosen wholly determined poly¬ 
nomials that are of power/4( y ). Then (x) is an integral function of the 

k 
type /U ( y ) and (- x) is an integral function of the type k. Obviously, 

4a(v) 
further 

ml/ I Ml'du ¿V 
kMP • 

(10) 

where Ay depends only on v. 

Let us define functions f^jix^ ..., xß) corresponding to different 

2 vectors by means of the series 

.... *„)« 

(W. 

(11) 

where, obviously, Rg(^) are integral functions of the type with 

respect to (i = 1, ..., n). 
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CoMiderlag (5)-(8) «ad (10), v bave 

l^wfC-r. IIQ^C -■ "y‘nr iKUirr« 

or 
fi(U 

2 f< iiÄ.wir<iiQ.«ir2-,<M. 

Ihoroforo by (8), conaidorlz« furthor that 

dooa not in faet dopond on i, we gat tho inequality 

Lat ua nota furthar that by virtua of tha propartiaa of tho function 
¿P V # tha aquality 

To, 

Kir "Ãf " »w(*.. • • •• *„)• 
(12) 

la aatiafiad for tha function f^j, if tha vactor \ ia actaiaaibla, i.a., 

aatiafiaa oonditiona 6.7(1). 

In fact, if aariaa (ll) ia fomally diffarantiatad nanbarwiaa with 
raapaot to ..., raapactivaJy, ..., Kn tl»a, than va gat 
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Prom the eatimtea derived for Rg(X) it followa that et aqr »tage of 

differentiation aeriea convergent in the LpO^-eenae are obtained, therefore 

equality (13) actually obtained in the aenae of the convergence of 

(cf leona 4.4.7). Further, by virtue of the boundedneaa of the deriva- 

tivea d>^ are alao bounded, therefore 

Aj 

(14) 

Let ua now aaaign ¿ > 0 and chooee N aufficlently large 80 
second tem in the right aide of (14) ia amaller thant, ^ we 
(cf (9)) 6 to be aufficlently mall that for Jxjk ó (j - » + 1* •••> 

with first term is small than ¿. 

If however {A'} 1® another admissible vector (A^f •••* A¿)# then 

by similar arguments we get 

Ml) 

K 
dx.H 

Cr 

dx «♦I /!♦! 

In this case the function 
i 

where summation is extended over all possible admissible vectors A and 
satisfies all requirements of the theorem. 
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6.9. Qinrallattlon nf tha Thaorm of Bidding of Different Métrica 

Balov la glvan the genandlzetlon of «nbeddlog theorem 6.3(1 ) for the 
cam of olasaea 

Theorem*). Suppoae that for the nunbera considered below the inequa¬ 
lity (rj > 0) 

(1) 

(2) 

(3) 

are aatiafied and that 

(4) 

Pttrther, let r = (^, ..., rn),/°= (^, ..., /°n), and p = (p^ ..., pn). 

Then the embedding 

(5) 

obtaina. 

Prom (5), when p.- p-i = ... = p follow 6.3(l), P= r". Let us further 

note that from the feet that jt1 > 0 it follows that Xj^ > 0 for all i, since 

P* ^ Pi- 

Proof. Let us introduce a family of funotiona £ = a 
y *yV,‘,,,,/n 

(0 <Vj^oo j J = 1, ..., n) that are integral and of the exponential type 

S. M. Nikol1 skiy case = Bp^; V. P. U'yin and V. A. Solonnikov 

O» ¿J» case 9< eo (using the T. I. Amanov approximation theory ßj). 
**) In this theorem we can proceed from the condition that all > 0, since 

for such an ir for which pi takes on the smallest value, > 0, then also 

X.1 > 0, and so do the remaining > o. 
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y j with respect to xj, defined by the last equality in 5*2.4(1) when m ^ n. 

Let us suppose 

(*-l, .... s; s-0, 1,'..., and s =*>) 

and 

Qo“?*«))> (s“l» 2,...). (6) 

Obviously, 

where 

We have 

of-2«™ (i-I, 2....), 

HI.V| I«. vJt| (.-1). V. <»-J) 

-6 
vl '*).v/_l U)' vi <*“».V, («-!)• 

|Q^<S|Qi% (5-1.2,...) 

(7) 

(8) 

(9) 

Let us apply to each i-th tena of this sum inequality of different 
metrics (3.3.5) 

Let us 

unity: 

now select numbers P such that the expressions in the brackets equal 

(11) 
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Dividing all «qualitlM by rlt and replacing 1 with 1 and 

reapaot to 1, we get 

up with 

(12) 

Cancelling out the nun fron (11) and (12), we obtain 

9imriu¡ (/"1. (i3) 

Therefore eanation (10) with reepect to 1 bringe ue (of (7)) fron which it 
follow« that (explanation« below) 

^11 J 2*^JQÍ0I • 
«•i J 

V « 

fron which it follow« that (explanation« below) 

The second inequality (u) follow« fron the fact that if vv .... yn and v¿ 

are arbitraiy naher« Md ^ then by 5.2.4(2) 
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Further, »ince f € , therefore we also have Qj, ^ L_ (cf integral 
i i 

representation 5.2.4(1))* ®o more ao Qq ^ L^, since pj, ^ p' and 

<ll/v 
> (%)• 

(15) 

From (14) and (15), in particular, it follows that the series 

(16) 

converges in the Lp,-sense. It clearly converges in the L^-sense to f 

because 

C 

(N -*■ do), 

r r ri snnce —*■ H . 
P* P X^P^ 
And thus, series (l6) converges to f¡ inequalities (14) and (15) are 

valid, Qg are integral functions of the type 2a' ^ with respect to x^U = 

1, ..., n), therefore f 8^,(1^), and embedding (5) obtains. 

6.9.1. Suppose instead of the number p'(cf 6.9) the vector p' = 
(p^j •••! P¿) i® given such that p^ Pj(i, j = 1, •..* n). He will assume 
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and 

(2) 

where are defined as in 6.9(3). 

Then, it cornea by theorem 6.9 

b>.)«- » • • • * 
(3) 

and« therefore. 

BßV (Rn) -+ BfV (/?„). 
(4) 

âafit. ââMMsnl Mumtosa 
6.10.1. Theoreme derived in this chapter are automatically transferable 

to the periodic case* Their formulations remain valid if in them the symbole 
V, H, and B are replaced, respectively, by V«, He, and Be. 

In presenting the proof for the periodic case, the role of integral 
functions of the exponential type is now played, of course, by a trigonometric 
polynomial. It will be central to our exposition that integral functions of 
the exponential type exhibit following properties* for them the inequalities 
l) for derivatives (Bernshteyn type inequalities), 2) inequalities of different 
metrics, and 3) inequalities of different measures are valid. Trigonometric 
polynomials exhibit such properties. Additionally, we can for periodic and 
nonperiodic functions, as we know (ccqpare 5.2.1(6) and 5.3.1(11)), construct 
analogous methods for their approximation with trigonometric polynomials and, 
accordingly, with functions of the exponential type. He in fact used these 
methods in presenting the theory in the nonperiodic phase. 

6.10.2. He can indicate the method of obtaining general systems of 
functions that are not analytic, but such that inequalities very similar to 
the inequalities discussed above for derivatives are valid for them, as are 
the inequalities of different metrics and different measures. 

Suppose (0. V. Besov) 

(1) 
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where function X(y) is infinitely differentiable on and ie concentrated 

(has a carrier) within the first coordinate junction« and 

[md’‘U (2) 

We call function ^(x) the mean function for f’(x) with vector pitch 

h • (h1 « •. • « hjj). 

The inequality 

(3) 

is valid for mean functions. 

Inequality (3) is to some extent*) analogous to the corresponding 
estimates for integral functions of finite degrees = 1/1^, which enables 

the theorem expounded here to be transferred without essential changes to 
the case of approximation with mean functions (or with secondary mean 

functions ~ ad°pting in 5.2.1(5) in place of 

a smooth finite function Ç (t). 

In this way, for example, we can arrive at the integral representation 
(obtained from other considerations) by V. P. U'yin ¿bj for the function 
in terms of its difference. Let us note that only values of the function 
f (x + y) for the points y from the portion of the vicinity of point v = 0 
lying in the first coordinate junction participate in construction (l) of 
mean function <p (x). Thus we have made it possible to construct the corres¬ 

ponding "local" k theory. 

*) There is some difference in that < and not <f>^ appears in the right side 

of (3) under the sign of the norm. A way out of this predictment can be 
found in the fact that inequality (3) is used for and then instead of 

■^h* ^hh 1®^ side. 
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Let ua prove inequality (3). It can be obvioualy aeeerted that <<- 0. 
Heine Holder'a inequality for the three functiona 

, •xl1'*. I f ( *» + » I * . Ixf I <p(jr+ >)!*■ (e>0) 

p pq 
with the exponento = — , \ =- , and A- = q, we have*) 

P - 1 2 q - P J 

t-ß 

h)y(x-ry)dy 

Xllçlt *)r,lf(jr + y)rdy 
i. 

r-j 
whence 

(ß*‘) ’*<1* 
X supvrai I J lx(y: ( lUx+tifdx, ...dxidyl"'^ 

..'-k i 

«'(ft ^)(ñ 

6.10.3. It ia uaeful to bear in sind the follovinf 

Lema. Suppoae on = x B (x = (a, w), a e- R^, w <=. Vm* 

two functiona f é Lp(Rn)(l^, p^oo) and f« be given, along with the aequence 

of functiona f^ík = 1, 2, ...) continuoua on auch that the following pro- 

pertiea are aatiafiedt 

II / ll¿^ (nj -*>0 (*-*. oo); 

2) IIM‘'«H,,..)-*0 (*-.«). 

.) IteXatlon. 1 ¿X. <oo A.^ + A,1 + = 1 folfiliwl for the 
exponento A1, K2, and A3* 
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uniformly relative to w (|v| < a); 

3) !M". »)-/*(«, w'ji ' _>o 
tp 

(Iw-tü'l->0, \w'\<a) 

uniformly relative to k - 1, 2f ... 

Then f* for ary fixed v(|v| < a) is the trace of function f on the 
corresponding m-dimensional subspace ^(v). 

Proof. From properties l) and 2) it follows, by lemma 1.3.9, that 
f and f# are equivalent on R^: f = f* almost everywhere on R^. Further, 

for the indicated v and v* 

1/.(.. »)-/.(.. <.)-?,(«l0,)|[>(0+ 

+1/.(.. >»>-/,(«, ^)) +|/,(., «+)_/.(., 
hp (jtm) ^ 

< e + e + e = 3e (* > *0, I w - W'| < a) 

for sufficientlv small S and large enough kQ. This is possible owing 
to properties l), 2) and 3). 

In order to be clear as to the significance of this lemma, let us 
turn to the theorem of embedding of different measures, for simplicity confine 
ourselves to the isotropic case. Etapluying this lemma we can easily conclude 
that it is sufficient to prove the theorem on traces only for continuous or 
even infinitely differentiable functions, of the corresponding class, as it 
will automatically be valid for all functions of this class. Let us explain 
this reasoning. 

n - m 
Suppose B = Bj0(Rh), B1 = 3^(^))(^= r->0, 1 ^ m < n) 

andtf^B is a set of continuous functions dence in B (in tho metric B)*). 
Further let the inequalities 

II/V 
i:/(«. w)-f(U, w')\\L 

Zcllfll,, 

(M6) *0, ä-*.()), 

(1) 

(2) 

#) in this reasoning B can be replaced with V^(Rn)(l = 1, 2, ...). 
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b» proved, where c doea not depend on v and indicated f, Juat aa function Afe) 
doea not depend on f and w and v'. Then these inequalities with the «w»» 
constant o and function A(<5 ) obtained for all f e B. In fact, let fk 

(k - 1, 2, ...) and ((f^ - f||g —0 (k —►oo). Then 

/*iii . III...,,. (3) 

(4) 

where the constant K doea not depend on k. Frca (3) it further follows that 

from (l) owing to the cuiplotane«B of B' for ugr « th.re exUt. the function 
f«(z) = f«(m, v) auch that 

HÎ*“f*lit,(*„)Il,-<cII/*- /.», 0, k-+ oo, 

ll/.(a, »)-/,(«, ®/)lli,(%)</fM|ia-«K|), 
II/. 11,. <c II/1(,. 

(5) 

Thus, conditions 1) - 3) of the lema are satisfied for f, f*, and fk, and 

therefore, f« for any w is the trace of f on ^(w). By this we have proven 

inequalities (l) and (2) for arbitraxy function f« B (we oust bear in mind 
that constant K in (4) can for sufficiently large k and 1 be taken as little 
differing from || f(fB as desired). 

This argumentation can be pursued for the case of the inverse theorem 
of «bedding, äxppose VW cZ B1 is a set of continuous functions, denes in 
B1, and let to each continuous function defined on ÎL - RJO) there 
be brought into correspondence the continuous function A« = f(x) 
& B, defined on R^, such that the trace f on is <f, and the inequality*) 

« / », <f II? 11,., (A) 

is satisfied, where c does not depend on f • Let us assign the arbitraxy 
function <?<£■ B', and let”^ ^ W, |( 4)- f»k|/B, 0 (k 00 ), Afk = fk, 

— II /* // II, C ¡I Q), — m. H —^ A Ik i \ 

*T ft) on following pagg/ B' 1 
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and there existe f é B(B is complete) such that ||f - tjjlß —*• 0» Obviously, 

inequality (6) (with the sane constant c) is satisfied for functions f>and f. 

Let us note that for finite 0 the set 7# of integral functions 
f & LpÍR^Ml ^ p oo ) of exponential spherical types (all) is compacted 

in any B = Bjjgil^Kin metric B). Actually, it is compacted in ary B 

(1^ Q<oo) because if f ^ B, then (cf 6.2(6)) 

and 
Qi> 

(* -*■ <»). 

where 
k 

When ¡KoOfTTlL* «l^o compact in 1^(1^)(1 =0, 1, 2, ...), which 

follows fron estiastes 5.2.2(4)• 

Of course, from the foregoing it follows that a set of all infinitely 
differentiable functions of the class 8^(1^)(1 0<fcx>) or ^(¾) 1« com¬ 

pact in the corresponding class, because it includes the set of functions 
of exponential types belonging to Lp(R^). 

*) Here again B can be replaced with «pUOU = 1, 2, ...). The correspond¬ 

ing theorem on extension from to Rg is proven in 9.5.2. 
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CHAPTER HI TRANSITIV ITT AND UNIMPHOVABILITÏ OP B6EDDINO THEOREMS. 
XNPACBUBS 

L»t ua aaslcn qratau of oMbors 

r"(r'.r*)>0’ .P») (l<P,<08) 

and tha nonbara p* and pN aatlafyiai tha inaqualltiaa 

It tha condition 

(1) 

(2) 

(3) 

(4) 

(5) 

ara aatiafiad, than wbaddinf thaoxan (6.8) / BUiUn)-* BU(R») 
i 

obtalna, that pexmita paaaing fron qratan of nonbara (l) to ajrataai of nonbara 

p;). 

*) S. M. Nikoi'akly Õ» 1fl7- 
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Ve must bear ln «Ind that also because inequality (5) le a 

consequence of Inequality (4)« 

But now the clase Bp.gO^) can be taken as the starting class and given 

the existence of the Inequality 

we can conclude that the further embedding of classes 

obtains, where 
BU(Rn) >B(&(Rn), 

e"-(pr.P?)-*'*'. 

Thus, we have transformed the system (r, P) 
which In turn was converted into the qystem Ip", p ). J““* 
p • is defined by »»ans of r, p and p', and ^ - tenes of /»', p', and p . 
It Is remarkable that these transformations are transitive in character* 
the passage from the first qrstam to the second, and thenfromthe seoœd 
to the third can be replaced by the single passage from the first sptem to 
the third. 

In fact, 

P*' 
rk**' 

(*- 1, .... n), 

where it 1s assumed that 

*. X', x,:>0 (*-I.n). 

On the other hand, suppose Pk ^P" (k = 1» ..., n) and let the inequalities 

(6) 

obtain, where 
x", x*>0 (^ = 1, .... n), 

i-i * 

(7) 

Then the embedding 
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holds« i.s., th» pasaag» fron (r, p) dir»ctly to Q>||« p"), vhor» 

P. (P.i» • • •. 
and 

* r*H" 
P*A (^™lt •••# »)• 

But it Is oasgr to conput» that 

X* «idíVv . 
thorafore „ _ 

P. "P • • « 
• • 

Moreover, by virtue of th» inequality p* < p" it is obvious thatX' >X"> 
1.».« K1 > 0. But then as a consequence of (8)>C>0 and the transitivity 
stands proven. 

The transitivity of the theorems of embedding of different measures 

where 
(1 <mj < mi.< n). 

rí-r/ (Í-Í. •••, «,), 

m,+ l ' 

rl-ry (/-1.m), 

p A rl 

follows from the easily verified equality 

X"1-P Ê T'-xV'. 
«1+1 ' 

7t2. Inenuslitles With Parameter € . Multlnlloati™ Tpenfiiti«« 

Let us assign the function f(s) é H^ÍR^) = and the positive vector 

•••< ^n). Let us assume F(x) = ..., = fi (x). 

Obviously (kj > r^ - /°j > 0), 
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.v.)| 
^ (yjr5? 1 

r«//^ (‘“"‘f •••«:)■ 

Taking the upper bound of both parte of the inequality in h, we get 

1/.(¾ U/h 
"r.» A/. 

(1) 

whatever the £ > 0. 

rj r1 
Let us further consider the seminorm b J = b J (lL), 1^0 oo ; 

Xip XjpB » 

(2) 

The function f¿ can also appear in it and a change of variables can be made 
in the integral under the sign Q . As a result, we get an equality analogous 
to (l)s 

V * V 
(3) 

Thus it is valid for any 0 (l ^ Ö í: ©o ). 

Obviously, further. 

(4) 

therefore 
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(5) 

Aaauaing t¿ (z) = t(¿ z) for funotiona f baloaglm to iaotroplc olaaaoa, 
vharo now ¿ la a poaltive acalar, and raaaoning aa abora, wa gat 

% 

* 'p 

hr' 
"p 

(6) 

Lot ua proaant an oxamplo of the application of fonmlaa (3)-(6). 

The inoauality 

(7) 

it attocimttd with tha Mrfwddlng B£ —+ B_(0 < and fro this Inaqulity 
br (4) foUov. tha inaqualitj P P ' ' 

"/^'(r'l/i+a'+l/y (71) 

with arbitrary parameter 8 a 

Oonvoraaly, from (71) whan £= 1 follows (7). Inequality (71) la used 
in applications whan it is desired that a certain tern of ita right aide be 
sufficiently anall. Minimising the right aide of (71) with respect to ve 
get the inequality 

ii'»,<^r+(^n»/»"'(»/kr' (7,) 
which la called a multiplicative inequality# Conversely, from (7") obviously 
follow (71). 

Let us also consider the inequalities 
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associated with embeddings of different measures and \^ a 
subspace of points (x^ .... xn, » •••» xn) with arbitrary fixe y 

(x . .... x_) and where c does not depend on f and f. If f is replaced 
' n+1 “ 
by ft in these inequalities, and then is removed from the norms by means 
of (6), then we get, respectively. 

<c(r' ||f N 
V lp 

+ 
P(*n) * 

(P„)+"' "» 
-P («<.)} 

Passing to the limit as f- .00 , we get the inequalities 

,<c| 
<c| 

fcP (*m) 

»P'(*«) 

»p(*n)' 
(10) 

rui 

refiniM inequalities (8) and (9), ior the same constant c appears in them, 
but they no longer contains the term llf/l^^)» 'Mch was finite. However, 

if ||f||L ( . = 0, then inequalities (10) and (ll) generally speaking are 

valid. Thus, when r -/°£ 1, the polynomial 

S atx*, 
i*i<< 

where 1 - r, if r is a noninteger, and 1 = r + 1 if r is an intei®r, the^ 
right side of inequality (lO) approaches aero, while at the same time its 
left side in general does not equal aero. When r - 1, inequalities (10) 
can be satisfied without the norm being finite (cf note 7.2). 

We can in the spirit of foxinulas (lO)-(ll) attain a refinement of 
the theorem on estimating mixed derivatives. For example, the inequality 
(cf 9.2.2) 
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obtain* for 1(^(1 < p < ßo ), whence 

and after passage to the liait as £ —*- 0, ve get the inequality 

which is valid providing the conditions |juff < oo. 

Such refinsnents do not always obtain. For exanple, in inequality (7) 
the first texu of its right side cannot be dropped, as evident fron the inequa- 
lity (71) equivalent to it. If the first tenu were absent in the latter, then 
after passage to liait as ♦ 0 we will obtain the result at the left side 
equal sero, which is possible only if f were a polynomial. 

Let us further consider an example applying to the anisotropic case. 

In the inequality of different measures 

(12) 

(13) 

the first tena of the right side is superfluous. In fact, taking for conve¬ 
nience j = 1 and substituting in (12) based on (3>, we get 
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Let us cancel out (¿ .... ¿m)"1/P and pasa to the liait as 

j -- 2j ..., m, and let us set ¢. = £rVrj when j = m + 1, 
J 1 

fj —► 0 only when 

..., n. Then 

The passage to the liait as ^ 0 leads to inequality (12), but no longer 

without the first term in the right side for j = 1. But this can ^e done 
for ary j = 1, ..., m. Suaning up with respect to j, we get (if llrll^^oo) 

the inequality 
<C|II fll 

revising the corresponding theorem on embedding of different measures. 

>7 7 i" h*- Jnlamaaahilliy aL a»badd1iig Thnnma 

Let us write Í Ur. -, ia) “ f°r f j * 0 mn U 

one of the component. ¿1 7 0. We wUl cell function f the ertrecml function 
J «r+í- 

in the class if it belongs to Hjj but does not belong to HJ, , whatever 

the vector 0. 

We will consider the class where r = (r^, ..., rn) > 0, p - 

(P1, ..., pn), 1 ^ Pj $oo, and J - 1, ..., n. As always, if p = p., = ... 

- p , then in place of the vector p we will talk about the number p and 

instead of H^, write H^. Let us impose the condition 

‘^-'-t(7,-~)7;>o (/-i.»). (D 

on vector p. In particular, 

Mp)-1 (/-1.n), 
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\ 

and la th* eaa* of th* cIasm* hJ(]^) conolltlon (1) la automatically aatlafied. 

Lot ua not* that 

Suppo** 

and 

F(t)> 
Unj'’ 
T 
2 

t(jT) 

~JN 
(a>U HjmXjlp)). 

(2) 

(3) 

In particular. 

^ / Ä ft'(-''J 

"ÄF (4) 

Lot ua ahow that ^Pir(a, *) ^ 1^(¾). In fact, suppose Qfl is the 

a-th t*xn of s*riea (30 • Sino* F la an integral function of the type 1 of 
a single variable, then Q_ ia an integral function of the type V<(a) = 
aX/rj ^ 

a J with respect to Xj and here 

i«.ik VM-«'"' (»-0,1,...,, (5) 
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because 

(6) 

Consequently*), 

1 (5 = 0,1,...). 

(7) 

Buis, the left side of (7) is bounded for i/j(s) running through an ascending 

ri 
progression. This shows (cf 5.5.3(6)) that U^érB (IL) for any i = 1j •«.» 

xipi 

n, i.e., o» é HÍ*(R ). T pu 
But it will be proven below (cf 7.4) that in any case, for sufficieitly 

large a > 1 function ÿp r not only belongs to H^R^), but is extremal in 

this class, though for the presònt we will draw several conclusions that 
follow from this. 

Let us assign the number p' ^ Pj(j - 1, •••* n), which in particular 
can bo equal to 00, such that 

X- 1 W-W>° 
(then automatically}^ > 0, j -1, ..., n), and let us define, as in the 

theorem of embedding of different metrics the numbers 

r/M 

If we set 
('->.«). 

ft-a*, a* (»-1.n), 
(8) 

then we get 

\ 

*) By definition a -v b (s tíre) if there exists positive constant c-j and c2 
not dependent on S8fee? such that c-|aa 45 e)- 
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Equalities (3) and (9) point to the fact that beside if' ta at the sane Une functions 
iPp,/4' x' ^ V,p(b* where b and a a« associated by equality (8). 

But if a is sufficiently large, then V r & Hr(R ) and ^ , H , (1^), 

which is in agreement with the embedding theorem. But , - is the extremal 
P *r 

function in the class Hp,(ig. It does not belong to aiy such class ^¿{\), 

where ¿>0. This shows that the embedding ^(1^) —^ Hp^£ (1^) (é >0) is 

invalid. But then the embedding B^Og (¾) is also invalid, because 

if we assume that it is valid, then we would have 

which, as we have proven, is iaçossible. 
(y pír(aí *)(cf (3)), and assume 

We will now proceed from the function 

(1 (10) 

U* wtu assart that the vsctor f-- (f>..., pm)> hare already m-dlneMlonal, 

is defined, aa In the theorem of embedding of different measures, by the aqua- 
J»jLXi68. 

p'"r/x (/-1.m). 
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and we will assume x = (tt, y), u “ (x^ •••» xm)» T ' ^+1* ^ 

'f' (x) - f (a, y). Let stand for the coordinate subspace of points (u, 0) 

The trace of Y on R is the function (F(0) = l) 

because 

x ■ x-iY-i 
p rt 

n 

From (11) ve see that the trace of >fp(r^ Rni iS ^P»/“ H>” 

t r(x) e and ^^(n) ë «»ich is in agreement with the 

theorem of embedding of different measures. But is an extremal function 

in Hp(Rm) and does not belong to (¾) ( f 7 0). fterefore the «»bedding 

¡¡ra^j _ h£'‘(R ) is invalid. Reasoning as above, we arrive at the conclu¬ 

sion that thl embedding — 8^(¾) 1. also invalid. By this w. 

r.sÄ -kä.“ 
^,3(^.0 = Hp of functions f, which, for example, provided n - 1, r < 1, 

are defined thusly: f ^ Hp,s, il* f ^ Lp, and 

I7U +/»)-/(<)!!< Afl/rrlln,-^!'. 
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iMd. tü*t.^V*°f «« of thi. oBboddloí 

function not bolonglng to Bp# (¾). It would b. tóown ln 7.6 thatluch o 

function doas exist. 

Uät More on Extrwyÿ, fy^ctiona ln fff 

Ut u. procood to the proof that iy= *) (7.3(3)) given eufficlently 

iargo a is an extremal function in Hr(Rn). 

each naííaíVwe'o^Ín^al.10*^11 tha propertiea: for 
1) the Í?ÍÍ?*r h mÉbera c and é, dependent on 1, that 
1( the derivative F(l)(t) preserves its sign at (0. ¿); 
2) at (0, ¿) the following inequality is satisfied: 

f/(/' (0i>ci. (1) 

from ^ ^ « *■ -oond at«, 

F (0 =■ Oq + Qj/i a H , 
f ' * * • » 

where a^ f 0 for any i - 0, 1, ... 

Suppose 

and note that 

- Y- 

(2) 

0) 

Let us assign the sequence 

A L ^-0, 1, ...), 

where ¿ is the number specified above, selected for 1 
r1 i« an integer, 0<oc ^ 1). 

(4) 

= h + 2(r, - ri + 
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Our function can be written as 

♦-fe„ 

Our goal is an estimate from below of the norm ^ ^ (x) in the metric 

Lp (R^), where denotes the derivative of Ÿ with respect to of order 

Ve have 

Ue usedthe estimate 7.3(5) in the second inequality^ while in the last equality 
the substitution h = by formula (4) was made. We computed the constant for 
hP*- not in vain — here it is clear that it approaches sero as a -~*co . 

On the other hand (explanations below) 

II5 W I't. (<?„) “ 
l‘ / xi / *1 \ 

- 5] a''' r' fî,42)(û* fl (*I + 6Ä)/ x 

xTI^0 f/x^| ^11 * 1^,((0,WXÄ,,.|]^ 
/-î 

ha X ^ 

xU‘»(1i'7f(jtl+9«)ftf(a‘^*J I 
I /-* |ip,[(0.«XÄB.,] 

>c,(4)‘. 1 '\jh ''J«*,) « • 

. c, (if U“*r * ( (ip** *•. 

i * “i 

(7) 
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In the second relation (inequality), ths domain of integration of R_ 
is replaced by its portion (0, h) x consisting of points x, where 

® ^ X1 < k* - oo< for j = 2, ..., n. In this case when s<^, by 

virtue of (4) a 1(x^ + 0h) ^ ë^^r^2h ^<5 also because functions 

p(ri + 2)(as^|/ri(Xi + Qh)) retain their sign and, since further F ,> 0, then 

the norm to which we have arrived can only decrease, if one tem corresponding 

+° ^ remalna in the aum* 11118 explains the passage from the third term 
to the fourth. The passage from the fourth term to the fifth is executed by 
U; and inequalities (l) when 1 = ?1 + 2; for integration with respect to R^, 

we must consider that 

(JimvjlVv)1'’^ Ar/r(j !/-W l!ii)'P 

The passage from the fifth term to the sixth is based on application of (3). 
Finally, we apply (4) to the last inequality. It is essential to observe that 
the constants c, c-j, and Cj in (7) did not depend not only on h and/^, but 

neither on a. On the other hand, as has already denoted above, the constant 
for hf* in inequality (6) can be made as small as desired, given a sufficiently 
large a. Consequently, from (5), (6), and (7) it follows that for a sufficient¬ 
ly large a the inequality 

M*»)! 
I* (A) II. 

(*„) 
I® (A) II. !c(a)A# (8) 

is satisfied, where h runs through the sequence (4) diminishing to zero. But 
then function jp cannot belong to the class )(¿ > 0). In fact, let 

r +£ P-l n 
us assume that ((/ ér Hp^ (R^ and let 0 < >/<- min {¢, ij. Then also 

rl+>/ 
^ HP1 ^ V and 1161,0 r1 + ^_r1 = o<+>7<2 = k, therefore the in¬ 

equality 

must be satisfied for all h, which contradicts (8). Similarly, it is proven 

that ^ Hp^ (Rh) for ary i = 1, ..., n, if ¿>0. 
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We have proven that the function ^^(a, x) given sufficiently large 

a, does not belong to ary such class 

Up (Rn), where <?: ;> 0. 

7.4.1. For the function-ythat is extremal in Hp(Rn) = H(r > 0), the ^ 

norm j| 4 (x + h) - f(x)l| does not tend to zero as h —0. In fact, let 
H 

r > 0 and r = r +o<.(r is an integer, 0 <°<.< l). By 7.4(8), for real 
1 11 1 

h >0 running through some sequence ( ||'IIl (j^) = ^ *Hp) converging to zero: 

\- '.'I' 1' > sup - 
t 0 

i * » i II'» 

h" 
> in > 0. (1) 

When = 1, the second difference with respect to k (instead of the 
first) would figure in (l), which will lead to the need to prove inequality 
7.4(8) for the third difference (instead of the second). This is done analo¬ 

gously. 

7.¾. Onimprovabilitv of Inequalities for Mixed ÜerivaUïflfl 

The inequality 

(1) 

was proven in provided the condition that 

n 

P ~ xr, x =* 1 - 2 A > o. (2) 

It ceases to be valid if £ in it is replaced with /° + £ ( ;> °) • 
This can also be proven by considering the extremal function 
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its derivative 

W) 
.ft'<''>(»*%) 

2j~7r i ^r*Tr (ax = 6) 

even though not a particular case of the families of extremal functions we 
have considered, nevertheless is extremal in the class ^(1^), and this is 

proven quite analogously to the procedure in 7.4 where we had to assert 
P = = ••• “ Pn* The fact that now different functions F'^j'appears under 

the sign f[ is not significant. 

Biis proves our assertion for H-classes*), but now also for B-classes. 

lÁt—Another Proof of the Unimprovab^ty ^nheddin^ 

Let us consider a problem relating to the general theoiy of functional 
spaces. Let and be Banach (i.e., linear normed complete) spaces. The 

following are valid: 

Theorem 1**). If a linear bounded operator A mutually uniquely maps 
E.| onto Eg, then the operator A-1 inverse to it, which is obviously linear 

and maps Eg onto E^, is in turn bounded. 

Let Banach spaces E^ and have the nonempty intersection E^E2. We 

will write for the elements x ¢=5- E„E_ the norm 
1 2 

+ (1) 

with it is a normed space. 

Theorem 2. If E^Eg is a complete space, i.e., a Banach apace, and if 

the constants c >0 such that II*<c[|x|l 

for all x tc~ E^Eg do not exist, then there does exist in E an element 
not belonging to E^. 1 

*) S. M. Nikol*skiy ¿2_/,_t¿e case when p =&>. 
**)Cf book by Hausdorff /1_/, Addendum. 

- 307 - 



Proof. Actually, lot us assume this is not so, i.e., d Eg* 

Each element x of Banach space E^ can be assumed to be mapi*d (uniquely) 

in x, but still belonging to E1. This operation is linear and bounded: 

IIx I'f, ^ I!x Hf, + II * llEl =* II llf 

and maps E^g onto . But then, based on theorem 1, the constant c must 

exist such that 

or 
!^II£i + I|4í||£i<c||x||£i 

1^,^11^,. 4fe£,£2, 

and we have reached a contradiction with the condition for the theorem. 

Use of theorem 2 requires that the completeness of E^ be collaborated. 

If E1 = Bp(Kn) ^ E2 = Bp' ^1101,0 BP = BP®^ thôn the comPleteneS3 

of E1 Eg does obtain, because in this case from the fact that || fjç - fjjl e1 E2 

0, k, 1 —►£», owing to the completeness of E1 and there follows the 

existence f ^ E.) and F Ê Eg such that (|f - fkflEl °> l|F " 

but then also 

(i'1.")- 

Hence (cf 1.3.9) f = F almost evexywhere, and we have proven the existence 

f EiEg, such that 

11/ ll^g, -♦ 0. 

Let r = (r^, ..., rn) > 0, p = (p^ *•., Pn)i 1 Pj ^00, Kj "Xj 

(r, p) >0 (cf 7.3(1)). 

Let us introduce the function F(t) of one variable, finite and infinite¬ 

ly differentiable. 

Its norms in the metric ^(R1)(0< D are positive, otherwise it 

would be zero. 
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Let us construct a family of functions (cf 7.4(2), 

(2) 

dependent on parameter N >0. 

Based on formulas 7.2(1) and (6) 

i y X/ 
-77 2jT:-y 

P' ,J -N'*' 
rri 

— .V r' .V x' == .Vo- I 0 * 
x,pi 

(A^ > 0), 

0 = 1./;) 

(3) 

Let us direct our attention at a specific i and assign the numbers p* ? p^ 
and r* fj, where even one of these inequalities is rigorous. Let us 

compute for comparison the norms 

p* 1 '! -A'''*/'1), 

1^.,., I!,. - A'-< Vf> a/"7^ = N[ü~ ') ^ 
xi*. 

(e>0, A' > 0). 

It is essential to know that here <£ is a positive number, therefore 

-+00 (N-> 00). 

V. (4) 
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And thua, to each pair of vectora p, r aatiafying the above Indicated 
conditiona ve have brought it into correapondence the family of functiona 
<P (N, p, r), whose norma 

II®(Af. p, r)W r <C<00 (yv>0) 
(¾) 

are bounded, or at the same time for ary i property (4) is satisfied if and 
only if r* ^ r^ , p* and one of these inequalities is rigorous. 

Ve will "«n the family (N, p, r) the boundary family of functions 
in the class . 

Let us show that (proven in 6.9) the embedding 

given the conditions 1 ^ Pj 6. p'Í!«i X>0 (there: OTo also ^ 

7.1(4), (5)) 

n) (5) 

ceases to be valid if in it even one of the components P, or the number p' 
is increased, or both are increased. In fact, if we takS = Nx, then 
(explanations below) 

* (6) 

Here 
II 

Y.-l-yS-^-YiP. PO. 
i 1 

because 
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further 

This provea equality (6). 

IhuSj the fanily of functions is simultaneously a boundaiy family 

in the classes Bp and B^, ana the norm in the metrics of these classes 

are uniformly bounded with respect to N. However, the normst, i the metric 
/>>t N 

“p'+rç are no^ bounded. But then constant c not dependent on N and such that 
l 

does not exist, and we have proven our assertion. 

7 n \wLrtxxe ^^eorem 2, in this case it follows that for ary f ^0, 
0, where one of the inequalities is rigorous, there exists in the class 

p rr a function no-t belonging to In particular, a function not 

uelonging to B^(Rn) exists in the class (¾). 

Tlie embedding (proven in 6.$) 

Brp(Rn)^B'p(Pm), 

l<m<n, Pj^xrj, /-1. 
n 

m-fl 1 

m, 

(7) 

ceases to be valid if in it we replace p and p with c* p 
one of the inequalities is rigorous. ^ 

V* Pi where 

Actually, there exists the function <p & B^(R ), but not belonging to 

Bp+^ ^m^‘ BaSed °n the th0oreTn on extension, can be extended from to 

such that the extended function f Bjd^). Since f/^ then f is 

an example of the function f & B^J^) whose trace on does not belong to 

B^+pj (¾). 
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Incidentally, from the foregoing it follows that the theorem on 
extension 

can also not been improved in terms of the classes considered. However, 
this does not signify that this theorem cannot be improved in other terms. 
For example, it will be shown in Chapter IX that given the same relationship 
between r and f, and between n and m, the mutually inverse embeddings 

hola, where the class Lr when p f 2 is not equivalent to 

Let us further assign the family (boundary in Bp(Rn)) 

/-i 

«Mr). I 

0 ^ I.h). 

Lot us further assume tnat F(t), in addition to being finite and infinite¬ 
ly differentiable, as the Taylor expansion 

HO-I + 0,/ + ... +fl,y + Ri*\ 

with coefficients not equal to zero appearing at the odd positions or even. 
Then, as we can easily see, we can specify a positive number ¿ and constant 
B such that 

l^’(0|>fl/ (k 1.I, |/|<0). 

Let be a subspace of points (x^ ..., xm, 0,...., 0) = (u, 0), tt = 

(x^, ..., Xjj) • Then 

where 

fW",)-®»,.,., (*,-n 
1 /-i 
« 

m 

Y i Y i O». P) ~ 1 - 7 S P Pi 
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I 

(considering that V ~ ). 

Let h >0 and i-m + 1, ..., n. Let us consider the increment 

0)" "ív: H f f(0)J- 

Function F does not identically equal to zero, therefore we can find such a 
« > that I F( <5) - F(0) | - K >0. We will consider the values of h and 
N1 associated by the equality £ = N]/^i h. By virtue of the first estimate 

(3), we have (in our case l) 

V/'M«, 0)! «I» 

This estimate from below shows that the first inequality (6.4) (13) (/^ - r!) 

derived earlier is reached and in this case not only for the class HjJÍR^), 

but also for B^R). 

Theorems on nomoactness 

'.rteii.rv.iidwa efJ- n moil ,(f yjieqoiq 0J aniwo inx, ,. ti ri .>0; wr* ji' 
.„ >1**W***'*ß (assigae<J a seqUeáge. írfífuflotions if-, ( .exhilpitiag 

of the following properties: ^ 1 1 T 
’■ \ix * ' V oon^,?BfÍM^ ‘n,J 0-ir.1r.qn3 nr., ov oonsi'ooa a .a.t 

aj 1 WitW ^ \a u t u ^ 1 ' 

one of 

•t-.'-y"! ’ni* yiianUnoCr .nl eo&MW (.. \ r 
(1) 

i nr nL. 

V/011 

X (* riiii :,/.1 

^ JoJ n S.a; -,vnoo .'f .,- (2} ,v 

’¿liir.Kpivu ;>i(l < p, B^roofc. n-} 1.3 :r-tro:: Y'1 

> 1 17.! ' 

Yirmn 0311-1 \XJhoioiTl»/B :» nc-ooxe fyn ,t », x .r. •. ., -, 
Then we can separate the subsequence /ft and such a function f satisfying«), 

.<>; t y... f « J.i Zi ,\> tJc ■ ■ \ :. * 
respectively, conditions (l) and (2) that whatever the numbers r1 for which 

%^»Unu -‘s. '1; ti .'•¡¡j-.l-cnori «..mw- •• 1, / - s ,,.--. .,. j y : 

0- ®J1, MU ,: eCi.-.- :-,i> Õ; : ‘ . . 

r\*. '> . , v: ..-i.. » - 
J on following page. 
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(3) 

obtains for aagr bounded domain f d Rjj. 

Hie proof of thia theorem will be baaed on the following lenaa from 
functional analyaia. 

Lenaa. Suppose that the same linear set of elementa z is nomad by 
two noms II • /) and II • fi #, where the normad spaoea E and E» obtained are 
complete and j) xj|« < c||x/|, where the constant c does not depend on x. 

Let there be assigned in E a bounded set F and a sequence of operator 
AgU) (n = 1, 2, ...) mapping E onto E» defined by the equalities 

AJx) - x- UJje) 
and satisfying the conditions: 

1) operator y - U (x) (x ^ E, y E») are wholly continuous (the 
linearity of Un is not required); 

2) 8U|>M,(jr)||-Ti,.-*Ö (n -*■ oo). 

Then the set F ia compact in Ea. 

Proof. Let us assign an arbitrary sequence of elements ... 

belonging to F. It is bounded and owing to property l), from it the subsequence 
x^i, j^i), ... for which U^x^lMk = 1, 2, ...) converges in E* ean be separated. 

In turn, from this sequence we can separate the subsequence xC,^) ... 

for which U2(x£2))(k = 1, 2, ...) converges in E«. Continuing this process 

without limit, and taking the diagonal sequence ■1 = ¿j1), s2 = xjfK ••• 

we find that U^a^) converges in E« as k oo and for axy n. Let us now 

assign ¿ >0. By condition (2), for some n - N the inequality 

Mv(jr)!L<cMiV(jr)||<a 

is satisfied for all x F. If p and q exceed a sufficieribly large number, 
then 

II IKII (z,) IL+II (zp)-UN (z,) II.+IIAN (if) IL<3.( 

•) Function f satisfies (l) or (2) with the same constant N if we understand 
thennom in the same sense; in the case b) the proof will be given below for 
the variants of the nom P = ^ (cf 5.6). 
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and the compactness of F in E* is proven. 

Proof of theorem. Let K = M + N. Let us now first consider the case 
b) when 0 = 0° , i.e., the case of class h£ = ^(¾). 

Let 77? be a set of all functions f for which any quality (2) (when 0 = 
oo ) is satisfied. The expansion (5.5.3(6), (7)) 

/=2q,. 
5-0 

obtains for each of these, where 
0, ^ Q sir J sir (rt > 1) 

«i .. ., a 

are integral functions of exponential type a8/rJ, respectively, with respect 
to Xj(j - 1, ...j n) and 

J sup a* H Q, Up = (I f II . < cK- 
* » 

Let us assign a number y satisfying the inequality 0 < v< ^ anc^ 30^ 

T’m (/) =* T1« = 2q„ ay*~b. 

Then ( ll • II n - IÍ • ÍI V\)' 
'-Tn II Vr= SUp itMQ ^ 

p i>m I v, Vr- I 
P 6 » "Op 

Moreover, 
! sup av* Il Q, 11,, < sup a* || Qs ||p < -7^ 
*>m a s a 

\HV<c\\f\\Hr^cK 
P P 

(cf 6.2(3)). 

Ve will consider the function ffrom the space 

£ =* Hy = Hp' (Rn) 

also as elements of the space 

E.-HÏ(g) (gczRn). 

where, obviously. 

Il/Ils. <11/Ils. 
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We have f=Tm(f) + (f-Tm(f)), 

where for f 

(m -> oo). 

Further 

I Tm (/) lip ^ || Tm (/) ||wvr ^ I! / ||£ + m-, 

Ihererore, the image of ary sphere E in the transformation T_ is a set of 
functions Tm(f) of exponential type am/rj with respect to Xj bounded in the 

sense - Lp(R^). In this case, this set is compact on ary bounded set 

g c: Rn in the sense of the metric c1(g) (cf 3.3.6*)), and therefore for ary 

natural 1 it is also compact in the sense E# - H r(g). We have proven that 
P 

a whony continuous operator ( generally speaking, nonlinear). 

As a conae<luenco of the above proven lemma, 7?l is a set compact in 
Hp (g) • Since this argumentation applies to ary V with 0 C ^<1, then 

'7^ is compact in the H^-sense for ary specified V • bet us take a speci¬ 

fic sequence of numbers monotone-approaching 1, and let us specify an 

arbitrary sequence of functions from F(d M) • By virtue of the proven 
completeness of as well (cf 4.7), from it we can separate a subsequence 

Vi X* 
{ ! convergent in the metric H^1r to some function f Hp . In turn, 

from the resulting subsequonce we can separate a subsequence /f-,21 convergent 

V2r Vpr 
in the metric to the function f €£ Hp , which is obviously the same. 

Continuing this process without limit and taking the diagonal sequence that 
we denote by {fil , we find that f-, —► f in the Sense of the metric 
y r * k 

HpS » whatever the s, but then by (6.2(3)), this is true also in the sense 

of tho metric hJ', where rj c r^j - 1, ..., n). 

*)FVon the boundedness (in the Lp-sense) of functions 1^(^)(k = 1, 2, ...) 

follows the boundeuness of their derivatives of any given order. The appli¬ 
cation of 3.3.6 not only to functions, but also to their derivativesup to order 
1 inclusively and tho diagonal process leads to compactness not only in the 
c(g)~sense, but also in the <r>(g)-8enae. 
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.V ^ 3*0® proven (3) in the case b) for Q =** ; the remaining case a) and 
b) when 8<po reduce to the sane case, because Wj¡, bJq Hj. But it 

¡ÍÍÍSÍ!*aain,^f a nor? aubtl® f»ct, that the liait function f 
belongs, specifically, to VÇ and Bpo and that the inequalities hold, respec- 

MU II/11,. KN. 

Inequality ||f 1/ 4 M follows from (1), (2), and (3). 

As always, we will assert that rj = rj + where rj is an integer and 

0 <aii < 1* stand for th® partial derivative of f of order with 

respect to < ^ < r^). 

Then (6.2(3)) 

; k-'l' 
(4) 

fore 
In the case b) the functions ore subject to inequality (2), there- 

(f1“1"*' P./h(jr){<<«j 

hxy^ú*j ('I ^ m/W Iu I*1 
where , 

%mP<N (/-1.«;* 

(i<e<oo)t 

(8-00), 

— I* 2, ,..). 

Passing (5) to the liait as k —►■oo, based on (4) we get 

J ! 
i » * 0<e<oo). 
' S" Vy ^ ,in I u fl (8 - 00), 

(5) 
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therefor* (f é L ) f 
P 

In the cese a) the functions f^ are subject to inequalities 

A f 1 (6) 

where 

S '«)*> < 

Passing to the limit in (6) as k —*~0O, ve get 

and since further f L , then (cf 4*8) f^V** and 
P P 

Note. In the theorem proven and b£q can be replaced« respectively« 

by Wj and B^g« and then in (3) ve can replace r' with r', 0 < r' < r. The 

case and similar cases that can be proven on analogy find application in 

the theory of variational methods. It is very essential to application^that 
the inequality of type (1) entails the same inequality for the limit function 
with the same constant. In the theorem« the classes involved can be replaced 
by the corresponding periodic classes. 

7.7.1. Theorem. In order that the set yfl are functions f «=? s Lp(g) 

where g d IL is an arbitrary domain« be compact, it is necessary and suffi¬ 
cient that "it be: 1) bounded in L « and 2) equicontinuous translation- 
vise in Lp! p 

A W - sup (d (Ô, /), -*0 (Ô-* 0), 

«0(ô. Ïïp"(SUII/(4f + A)-/(x)II, (/-0 Ha RH-g), 
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3) find that the functione f éirfl diainiah uniformly with respect to 
the norm in Lp at infinity 

(N -♦ oo ). 

Thia theorem was oroven in the book by S. L. Sobolev ¿J+J, Chapter I, 
section 4.3. Property 3), obviously, drops out for a boundeu domain g. When 
p -oo, the theorem generally ceases to be valid. In thia case the tranalation- 
wiae norm of an individual function in general will not tend to zero as h —*• 0. 

7.7.2. Theorem. For the set 7?? of functions f e=rW ^ P 
< ¿>o, 1 ^-0) bounded in Lp - Lp(Rn) to be compacted W, it is P necessary 

and sufficient that Tfl be equicontinuous translationwise: 

A (6) ■■ 
+ (ft -*0) (1) 

anu that the functions f e£ uniformly aiminish normwise at infinity: 

f« » ' Lß < I» I > Af) ® (N-*oo). (2) 

In this femulation W can be replaced by D - <- P» t ^ 0). 

Proof. We will consider the space W, but W can everywhere be replaced 
by B. But Ml be compact in W. Then it is compact also in L , because (cf 2-2-1) 
satisfies property (2). By the general compactness criteriSn (Hauadorff 21_/). 
for a given ¿7-0, we can specify a finite system of functions fi (f = 1, ...,N) 
such that for ary function f we can find a j (dependent on Jf) for which 

We can also specify ¿ana N such that the inequality (cf 5.6.5) 

¡ f(x + h)-f(x)l) <e, j)f if < 

will be satisfied for all f,(J = 1, ..., N). But then for ary ïéztf, given 
suitable j, J 

" / (jf A) - / (X) ¡V < !7 (jr A) - (jr + A) V + 
" //(Jf + W-fjW'gr + f¿(x) - f(x) 'r<3e ( ! A I < ft), 
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if <5 is sufficiently small, and must be proven in (1). The necessity of the 
conditions in the theorem is proven. 

Suppose, conversely, that 7TÎ is a set bounded in Lp and satisfying 

conditions (l) and (2). Then based on 7.7.1, it is compacted in L ( IN| u ^ 

II • Lat, us introduce a new concept — the module of continuity of W: 

* (0 = 0)(/, /)= 81)^)1/(4+^)-/(^)1^. 

It satisfies the conditions 

0 < u>(A.) - w (A,) <'o(A¿ -6,) (0 < A, <^), 

w(/ô)<(/ +l)u(ô) (/, A>0). ’ (3) 

This is proven precisely as for the module of continuity of f in Lp(cf 4.2). 

From (3) it follows that for the function A(S)(cf (l)). the inequality 

A (/A) < (/ + ! ) ,\ (¿J (/t ¿ > g) (4) 

is also satisfied. Let us further introduce a function of one variable 

A'»(0*=(*>l) 

that is integral and of the exponential type k À , where A > n -M is an 
even natural number ana the constant ak defined from tho equality 

1 * Ja'*(!“I)í/«I 
0 

0 

(^n is il10 nrea of a unit fielo in R^, and c does not depend on k and a^). 

Hence it follows that 

‘Oik''1) (/r>|). 

Let us supposo 

t/»/- J A’,(!«l)/(4f + «)</«, 
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from whence n . mi II 11/, < Il/C* 
. /1.-1 h /e 

¡-Ukf-j K,(\u\)[l(x)-I(x \ ,i)]du, (5) 

For £<£>11 

therefore 
■ w 

17-Uknv,^j Kk(\u\)\\f(x)-f(x + u) \Jt WdU^ 
• m 

K*(|«|)A(|B|)rfH< I Kk(\u\)\(\u\)du + 
I « r< é 

+ J ^*(I«I)a(-^ ô) du < 
i»i>« 

<A(Ô) + A(Ò) J Kk(\u\)(\ +^-\du< 
i«i>» 

<efe=*2e (k>h(j). 

(6) 

where k0 is sufficiently large, because by (l) we can specify such a 6 that 
A(.$)<.i and consequently ¿— the second member of the penultimate tern in 
(fe) — can be made also smaller than £ for sufficiently large k: 

We have proven that 
sup 11/-(7,/IV -0 (*-ac). 

(7) 

Nov let a sequence of functions f^ A// be given. If it is compact 
in Lp, therefore from it we cun separate u subsequence that we will again 

denote by convergent to some function f L . For any fixed k (cf (t)) 
• é 

(7,/|-*(7,/ (/ -* oc ) 
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in Lp, but then also in W, because for fixed k the functions(1-1, 2, 

...) are integral and the exponential spherical type kZ (of 3.6.2 and lema 
7.7.3 below). 

By (7), for any ¿>0 we can select a k such that 

(for all 1 = 1, 2, ...) 

Consequently, the sequence {fi\ exhibits the property that for any ¿vO we 

can »[»clíy a k «ach that 

where the first terra converges as 1 —+-0O in the W-sense, and the second, 
with respect to the norm W, does not exceed ¿ for any 1 = 1, 2,... But then 
by virtue of the completeness of VI 

f,-f (Í-*®) 

in W. The theorem is proven. 

7.7.3. Lemma. The inequality 

is obtained in the notation of theorem 7.7.2, where c is a constant not dependent 
on the series of the standing multiplier and g is an integro! function of 
exponential type V - (v ..., yn)^ 0. In (2) B can be replaced with H - 

Wpf««»- 
Thus, if the sequence g1 of integral fui>ctions of the same type tends 

to sorae function gy (cf 3.5) in the Lp-sense, then it also does so in the 

sense of U, 11, and 0. 

Proof. Inequality (l) borrows directly from the definition of «I and 
Bernshteyn’s inequality 3.2.2(9). The function g = gy i® integral and 
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the type Vj with respect to and consequently, is also of the type 
J J 

2s > 1 where s is the smallest natural number for which inequality is 
J 

satisfied. Let us set == = ... ,r , . n , _ „ 
s2 ’ s> 

then (cf 5.6.6(6) 

« 

8 ^ 82o + S (ij/ ~ Sjj-fy 

. IlilU +v/)^l|<|<c(, 
Xjl* 

i] - I.ffl), 

from whence it follows (2). Obviously, in those considerations we can replace 
B with H. 

7.7.4. Iheorem 7.7.2 remains valió find is proven precisely just as 
when W in it is replaced by H - (r > 0, l^pce*5), but it is presupposed 

that for each function Î €: Vfl the reaction 

\\l{x + h)~f (jr) Hfl -* 0 (|A|-0) (1) 

obtains (which in general does not hold). 

In the case p - ¢=0, it is valid. 

7.7.5. Thooron. Let there be givon a sot WfcH (K^ir ^ 0) of 
functions f, each of which belongs further to the class 6 £(¾) functions 

continuous on Rjj and with a finite limit at the point x e>rj. Then for each 

function 7.7.4(1) obviously holds. Lot, moreover, bo boundoa in 
C. 

ForTK to be compact in H, it is necessary and sufficient that the 
conditions 

•'l6,*?.1P, ,4-.0) 

bn satisfied and that for nry i > 0 we can also fina 0 such that 
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(1) 

whatever the x and x' satisfying inequalities |xj , ¡x'l^ N for all fÊ" 

The proof of this theorem is also exactly the same as the proof of 
7.7.2, if wo take note of the fact that the following assertion holds here: 
For the set tfldC of functions to be compact in C, it is necessary and 
sufficient that it be: 1) bounded, 2) equicontinuous (on 1^), and that 3) 
for any ¿ 0 a N be found such that property (l) holds. 

This latter assertion can be easily obtained by starting from Arzela's 
thooren: satisfying for TT? conditio: s l) and 2) for an arbitrary sphere 

I x|<N is necessary and sufficient for the compactness of on this sphere. 
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CHAPTER VIII INTEGRAL REPRESENTATIONS AND ISOMORPHISM OF ISOTROPIC CLASSES 

§tlt. 

Tho Fourier transform of the function (l + |x|^)"r^ for sufficiently 
large r > 0 can be obtained effectively; since it is a function of | x j , then 
to it the familiar formula*) 

where I is the Bessel function of order , is applied. 

This integral (Hankel type) is computed, for example, in the book by 
Titchnarsh**), where we must take xl ♦ 1 ~ r/2, V + 1 " n/2, which yiolus 

(1) 

(2) 

*) Bochner L^Jx. ih®oren ^*6, page 263. _ 
*■) Titchnarsh /1_/, 7.11.6, page 26£,_seo further Watson ¿1_/, section 
13.6(2), page 476 and N. Ya. Sonin ¿1_/• 
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Function X (z) is called the Macdonald function of order ¿'or the modified 
Bessel function of order . 

Asymptotic estimates are familiar or the kernel K (x) is a function 
of the single variable Here we will give them without proof, referring 
to the book by Watson ¿1J (below these references will be denoted by the 
letter B). The following asymptotic equalities hold: 

K,M-(i)V(l+0(i-)) <l<„) 

(B 7.2.3(1), page 226), 

Ko(*)" In -j- + 0(1) (0 < jc < 1) 

(B 3.7.1 (14), pege 95) 

V / »\ J (« - 1)1 .^1 I X 

] 2 j-j-Jf)" +0'?=r/ (0 <X < 1, n ^ 0 is an integer) 

(B 3.7.1(15), page 95) 

m 
K(r\- n / 1 r,v| 

v' ' äTinlvInlN-lvi + iylT*) +0(ji*i*I) 

(x —0, y is a noninteger) 

(B 3.7(6), page 92j 3.1 (8), pege 51) 

For our purposes, it would be quite sufficient to bear in mind that 
from these estimates it follows that 

l*v(*)l<-^r (•<*). (3) 

l*o(*)l<e(ln!+l) (0<x< I), 

l^¥U)Í<-¡TT I 1 
(0 < x ¿1, " ^ 0 is aiqr number), 

where c depends on but not on x. 
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Incidentally, inequalities (3) can easily be obtained directly, by 
estimating the integral 

(4) 

Parsneter V = A. + Lu can be assumed complex in integral (4) • If we consider 
that 

(5) 

then estimtes (3) remain valid when y in them is replaced by À and for complex 
V . Let us note tbit the integral has only two sii«ularltiea £ = and ^ - 0, 

and the integrand is continuous with respect to (Ç, x,V )(¿f>0) for ary real 

X and complex V j moreover, the integral unifoxmly converges relative to the 
indicated x,V in a fairly small neighborhood of any indicated point x0, vo. 

This shows that ¢( v , x) is continuous relative to V, x. These facte also 

obtain for the integral formally differentiated with respect to V . This shows 

that the function * x) has the derivative <P (v » x) with respect 

to y and thi« derivative is continuous with respect to ( y, x). Thus, 4>(y , x) 
is analytic with respect to y. 

In equality (l) its left side, if it is considered as a generalised func¬ 
tion, is msaniiyful for any '»t1*'* r* The right side, expressible by means of 
integral (2), is meaniigful as an ordinary function of (r, x), whatever 
he the complex number r(Rsr > 0) and points x ^ 1^, x ^ 0. Additionally, 
Gr( I x / ) is continuous relative to the indicated (r, x), Just as its deri 

vative in r. Thus, it is analytic in r. 

It follows from estimates (3) and equality (l) that 

( j x| > 1, n, r are any numbors) 

IG,(|jH)Kc, + 1 (UKI. n-r-0). 

77P (UK'. "-'>«>• 
1 * (|jr|<l, n-r<0), 
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where c > 0 is a continuous function of r. r 

We took r as real in the inequalities. Itay are valid also by virtue 
of (5) if in their left members we take r as complex, but in their right 
substitute everywhere X for r =1+ iU . 

It is easy to see from (6) that Gr( | xf = L. From the fore¬ 

going it follows that equality (1) is actually valid for any complex r if 
Her = A > 0. Actually, let S, then the function 

\ 

(d+Upr1. <iW(l fljrlV*. 

is, as easily verified, an analytic function in r. On the other hand, using 
estimates (6) it can be directly established that function G_( | x / ) with 
respect to module loes not exceed the sumable function*) relative to r and 
satisfying the inequality | r - r0| ¿ ( AQ > <S > 0), and since Gr( | x | ) <p(x) 

is continuous from (r, x), x ^ 0 and <p is bounded, then by the Weierstrass 
cnaracteristic, the function 

*1(0-(0,(1*I). J 0,(1*')?(*)</* 

is a finite continuous function in r( A>0). By means of estimates (3) and 
(6), an analogous fact**) is established for the derivative 

d 

This shows that ^(r) is analytic forA>0. Moreover, it is equal to ^(r) 

for sufficiently large real r, therefore, also for any complex r with A > 0, 
whatever be the S. This is entailed by equality (1). Let us show that 
the following estimates 

¡Í)'G,(|*|)¡< 
1 

(|*|> I, n, r, s-.uo6bie), 

HI 

|i|-MeTHOC)2 
In ¡yí + I (|*<1. n-r+|«|-Ot 

(7) 

+ 1*1-0, a ! * I - HCHCTHoe), 3 
I ( I * I < I, ?i - r + I * I < 0). 

LaGaJD for (7) : 
1. s is any number 
2. s is an even number 

3. s is on odd number 

* ana ** and ** on following pagg/ 
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where c (continuously) depends on n, r, and a, but does not depend on x, 
obtain for derivatives of Gr( |x| ) of order ■ = (s^ ..., sn). 

Notice that it is easily verified by induction that 

JH . 
D*t H -t 

1*1' 
u V 

IÀ 
A»,!** 

V (2/ -1 * K| s I; I * K/<l * I (8) 

where D8 Is the operator of differentiation of order • = (a.. .... sj, xk = 
k1 k 1 n 

x-]i ••• Xjj , k " (k^ ..., kn) are integral nonnegative vectors, are 

constants, and the sun is extended over the pairs k, 1 satisfying the inequality 
indicated in the brackets. 

Therefore 

0'0,(|jr|)|. 

« 2 •** K 

O'J ! H dl 

J e *'• dl < jf di. 
(9) 

where the sume are extemied over the pairs k, 1 specified in (8) 

If lx/ >1, then by virtue of the first assumption (6) 

|o‘G,(:jri)|« V t**1*'1*' - 

|X| I 

c* 

n-. ♦ I <' 
n-r*l * 

i A I m 

because 1 - / kl -5- 0. We have proven the first inequality in (7). 

Now suppose Ixi <. 1. If, additionally, n - r + 21 ;> 0,then by virtue 
of the third estimates (6) 

*) Constants cr in inequality (6) are bounded for tho specified r. 
**) The analogous anisotropic case is examined in detail in 9«4> 
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(10) 

uucause 21 - j k|¿ ( af . 

Further, ifn-r + 21<0, then by the fourth estimate (6) 

! ( ! <* , ) I < I jf* I < I. (11) 

If however for some 1 (one) n - r + 21 - 0, then by the second esti¬ 
mates (6) 

(|*|) («¡je»I|n-1-. 
¡XI (12) 

htirthar, if n - r + (■( > 0, the right member of (10) is larger than the right 
siaosof (11) and (12)( j k| £ 0). We have proven the third estimate for n - r 
+ ( s j 0. If however n - r + I s( - 0 and |s| is an odd number, then there 
is no natural 1 which n - r + 21 " 0 and in this case estimate (12) does not 
emerge, while estimates (10) and (ll) yield 1. By this means, the third 
estimate (7) is completely proven. If however n-r + /s| - 0 ( | s ) is an 
even number), then estimate (12) also arises. By this we have proven the 
second inequality in (7). 

Finally, if n - r + | sKO, then the right sides of (10) and (11) and 
when I k Í 0 are estimated by unity. It remains only to explore the case 
(12) when k = 0, but it is not possible, because from n - r +i«|<0 - n - 
r r 21 follows inequality |s|<21, which contradicts the fact that in addi¬ 
tion to this inequality 21 - /k| ^|S|, i.e., 21^ | s j, must be satisfied 
when Ik ( - 0. Thus we have proven the last inequality in (7). 

From inequality (7) it is easily seen that Gr( ! xj ) for any r >0 
and any natural n belong to 1(^) - L, therefore for the functioi s 
f ¢= Lpifijj) - 1^(1 < p < co ) the convolution 

(13) /•(*)=- 

is meaningful. Here, obviously, F ^Lp. In fact, function F exhibits, as 
we will see, considerably better properties. 
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8*2.—Isomorphlam of the fiases 

We will state that Banachspaoea ü, and E2 are isomorphic if there exists 

a linear operator A mapping onto E2 mutually uniquely, and two positive 

constants c-, and C2 not dependent on x E.|, such that 

c¡\\* ll£i OM (x) ||£j < c21, jr fl£( (1) 

for all x <fí E1. 

We will state about operator A-^ that it executes the isomorphism E< 
and E2: 1 

(2) 

Ihen the inverse operator A-1 obviously does exist, is linear, and in turn 
executes the isomorphism 

A '(£2) = £,, 

We will prove that the operation for natural 1 executes the isomorphism 

(l</?<oo; W'p 

11 (Lp) = Wp 

K(Rn), Lp =» /,0. 1, ...), 

(3) 

Suppose Fé W1. Then 

/-\ 
(iUjY F d‘F 

d¿¡^Lp 

and by virtue of the fact that (i3 sign uj)1 is a Marcinkievicz multiplier 
(cf 15.5, example 1, and I.5.4.I), 

/—\ 
d'F J 

**', I/ 

Therefore, considering further that F er L 
P* 

we get 
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But function -/ 

d+i«!r(i+si«yi 

is a Marcinkievicz multiplier (1.5.5, example 7), therefore 

/■ 

and 
/ = (] +1 u l')1*? <= L, 

'p ^ II ^ II^ . 
(4) 

Now suppose f €r Lpj then F - - 0 + /Aj^) ^ ^ and, by (1.5(10)), 

= (I + j X |*)~^/. 

But when |k| - 1, the function 

(/*)*(! + )11^ 

is a Marcinkievicz multiplier (cf 1.5.5, example 5). Therefore 

(5) 

But also (8.1(13)) l|F||n < c5l|f||p, therefore F ^ wj and 

H^/<cII/lip. 
P 

Me have proveí! that the operation executes isomorphism (3). 

In the following it will be shown that it can serve as an artifice for 
defining an executing isomorphism of other classes of differentiable functions. 

8.3. Properties of Bessel-Macdonald Kernels 

Below it is proven for the Bessel-Macdonald kernel Gr( ) x | ) when 

r > 0 that the estimate (s is a natural number, -cxj< h <1 co ) 

obtains. 

(1) 

*'G,(|Jt|) 

(/-t.n; s = r, r^-ria, 

</Jt < M, I A f 

r is an integer, 0<o/ < 1) 
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» 

Since G ( ( x| ) ér L -= L(R ) when r >0 then from (l) it follows 
r n 

(of definition of the classes H* and 1).6.2). tnat 
P 

(2) 
Or(\x\)e H'-■ 

' (3) 

where is the least constant for which inequalities (1) are satisfied. 

L.t U4 ..t «-(.„ V), .. .. 
S*' (r) ” 'JÍ - A*. (/) — ¢(/ + A) - 2.(() ++(/- h). 

QXI 

We will employ the four estimates 8.1(7)(we will denote them by, respectively, 
1), 2), 3), and 4)). 

By 1) - 3) 

. A < 4 JI £<•> (s) I du < 

because n - (r - s) - n < n. Therefore, for lh|^1 

(4) 

We will proceed to the case j hf< 1. For definiteness we will assume 
that 0 < h < 1. We have 

A-A, + A„ 

where is the same as the A $ but now taken not over the entire space, but 

ovor the sphere | u/ < 4h. Then 
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IM I < 2 A 
A, <4 J \g^(u)\d»C 

u 

« J T-^T« ip-'<<P</i‘ 
l«| < Ik ** 0 

(6) 

by virtue of estimate (3). 

However, there remains the case 

n-r + £-0, s is an even number. 

Since 0 < r - s £ 1, then this can obtain if and only if n - 1, a = r - 1 
is an even number, i.e., = r - s - 1. 

The required estimate then is obtained thusly (the integrals are one¬ 
dimensional) : 

A,< J + + 
i«i<«k 

+ } \B^(u)-g^(u-h)\du< 
l«i<«k 

<2 J I g(,) (m + A) — g1*’ (u) I du « 
litXtk 

-k # M . 
»2 f Ig(,,(a + A)-g<*)(i0láu+2 [+2 J -A^+Af+Ai 

- -k o 

where 

s* K+k JH u4-k 

A,,ï,-2 J du\ J g<**'>(0d/| <J du J 
0 « 0 « 

Sk % 

~ f ln(l = A|ln(l +/)d/ <Ä, 
Ü 0 

and analogously 
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and (considering that Gr(|u/) is an even function, and because v/hen s 

is even, function g(3)(u) is also even) 

u 

\'f' = 2 JI g(,) (« + /»)- g{,) (u) I du - 
-A 

0 

=*2 J|g(**(« 
-h 

k h u 

>2 l\gw(u)-gM(h-u)\du-2 jdu\J g,I + "(0^| 

° li A 0 A-ii 

-/“'“I J TI " ^ JI *n J ■ 2A J J In 1 -r d/ < A. 

r-1 

By this way we fully proved (6). Let us proceed to the estimate 

Aj= j \Ah,xJg{,)\dU'- 

' A h 

f \j j ^A-{uj+v + t, u^dvdtldu** 
I >4A 0 0 °XI 

J + J + J .Ai“ + A?> + A?, 

im>4A 

I »I > 4A I u| > 4A I a |’> 4 A 
Uj>0 -2h<uj<0 Ay<-2A 

whore by virtue of 3) (considering that n- + s - r + 2 n -e< * 2 ;> n -■ 1 ;> 0) 

Ai”*^,./<Mlir^TTi 

U/>0 2Jk 

(7) 

ami noting that for f a/ > 4h, -2h< u- < 0( )ttj| >JU| - | u |>,4h - 2h - 2h, 
we get J J 

Í du1 

»M>2A I U11 n*t-r*2 
</,3 r_p!^p 

2A 
777 < 

//1 
-A 

(/() « /J°. 

(B) 
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From (4), (6), (7), and (8) follows (l). 

; 

8.L. Estimate of Best ^gpr^lmatlon for IJ* 

Let tne function f ^ Lp - r>0 and (8.1(13)) 

f = /'/ = ^W °r(\u\)Hx-u)du. (1) 

Furthor, let u^L, Lp be arbitrary functions of the exponential 

sphericul type v*. Thus, é=. S ST^ly. We set 

F (X)-9., (X)- 

“ Í l0, {U) ~ (a)1 \f(x-u)-K(x-«)] du. 

Obviously, QyC- Sin^ (cf 3.6.2) and 

Thereforo, considering that the function Gr(|x| ) ^ H^(cf 8.3) ana that, 

consequently, its best approximation in the metric L by means of the integral 
functions of spherical degroo ^ or of the order Q( V )(cf 5.5.4), we will 

have 

£v {F)p < —¡7F f V (G, ( IXI ) U £v (/), - £v (/),. (?) 

• hero 15 (•/>) , F.Äf) denoto the best approximations of «p by means of integral 
V p * L 

functions of tho spherical typev, respectively, in the metrics Lp and L, where 
the constant br does not depend on the series of the standing multiplier. 

Now again let f and, additionally, let the Fourier transformation 

f (usually a generalized function) be equal to zero on the sphere v, with its 
center at the origin of coordinates, with radius y (cf 3.2.6(5)): 

f 0 on V »y (3) 
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Then (cf 3.2.6(6)), If 0<A< W, then the convolution of any function 
with f equals zero: 

^ '* (¿l7'7/ / - U) du m 0, 

therefore 

and 
(2n)nn JI0,(|«|)- ®x(“))/U-«)</« 

But then, taking the lower bound with respect to <üA, we get the inequality 

mi,« 
(2*)1 

which is valid for any A< V, therefore 

(,>0. ^.0,. (4) 

where br is the constant entering into inequality (2). It does not depend on 
V > 0 and on the f considered. 

MttBllMtar fimal tn M^y ftn a Itoain 
By definitiai the generalised function f S' is equal to unity on 

the open set g ¿1 if for any function <P finite in g, the relation 

(/. ¢)-0. 

obtains. If here f does not only belong to S', but also is a function locally 
suma ble on g, then almost everywhere 

f(x) - 0 on g. 

Actually, suppose ¢¢: g is an arbitrary sphere. There exists (cf 1.4.2) 
a set of functions finite in S’ for which the bounded convergence 

lim ?M(x) = sign f(x) almost everywhere on 
N n 

cf 

obtains. Therefore, by virtue, of the Lebeague theorem 
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0-(/. <P.v) - J / (Jf) <P^ (X)dx-+j\f (x) I dx (N -+ oo), 
a a 

i.«., f(x) = 0 on <f almost everywhere, and consequently, also on g. 

If f-|, f2 S' and f1 - f2 = 0 on the open set g, then we can natural¬ 

ly say that f1 = f2 on g. 

8.5.1. Lema. Suppose /(lis a multiplicator in Lp(l p L 

when p - oo • cf 1.5.1, 1.5.1.1) equal to unity on the open set g d.Rn* Then 

for f é Lp and the general for the function f that is regular in the L -sense, 

£f = f = f on g (K =¿). (i) 

Proof. For S that has a carrier in g, and for the infinitely 
differentiable finite function f 

W.?)-(uJf)-(I, (2) 

Here we must consider that (by the definition of a multiplicator) is an ordi¬ 
nary measurable function by the condition of the lemma, equal to unity on g, 
therefore the second term in (2) is a Lebesgue integral; moreover, by the 
condition of the lemma ¡u(x) = 1 on g, and ?<? has a carrier in g, which proves 
the second equality. 

If f & Lp, then we can find a set of infinitely differentiable finite 
functions fj ^ such that f^ —» f, weakly. Substituting f^ 

instead of f in (2) and passing to the limit as l—^m, we again get (2), 
but now for f 

If now f is a function that is regular in the Lp-sense, then for Ç & S 

with a carrier in g, for sufficiently large f> we get 

(/¾. V) - ¢) - (£37, (i+m*)*f)- 
-(y.o+mVNMr, f), ' 

i.e• (l ) • 

8.5.2. Lema. Suppose the multiplicator M= - 1 on ^ ={|Xj|<N; 

j = 1, ..., nj . Then if M' C N and the functionp(integral and of 

the exponential type N' with respect to all variables, and belonging to Lj, then 
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(K =* M)- (1) K ' W\ • |tW ; — 0).;' 

Proof. Suppose¿>0 and N1 + <f < N. Since is of exponential 
type £, Veu']i' ^ f p • Moreover, ^Ni ^ S, because and 

fct'jj, together with any of its derivatives is bounded (is of polynomial 

group). Therefore ~ ~ ^ __ 
¢) = (M, t|)e<û v ¢)-(1, ^t0).v <p) - (ÿeü)*., q,), 

where the second equality obtains because the carrier belongs to 

Consequently, 

M^rtû.v' — ifleCÛ*'. (2) 

Passing to the limit in (2) in the weak sense as £-•- 0, we get (l). 
This follows from 1.5.8(6) for right side of (l). As far as left side is 
concerned, then we must consider that 

II fco)*' - (Oat IÇ * J I (te (*) - 1 ) ö.v' (Jf) \°dx-+0 (e -♦ 0) 

by the Lebesgue theorem, from whence by virtue of the fact that ^ is a multi- 
plicator, the left side of (2) tends to the left side of (l) not only weakly, 
but even in the Lp-sense. 

8.6. de la MJafeEaMlla Süaa of ^ RftttOftr Function 

In the theory of Fourier integrals, the kernel 

V 
sin Nt f 
-t " I cos nt dn /. \ 

for integral N corresponds to the trigonometric polynomial 

,v 
^v(/)- 4-^cos nt = 

»1-1 

(.V - 0, 1, ...), V) 

is called a Ldrichlet kernel of order N. 
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The arithmetic mean 

DN*í+ • • • + ^2N 

N 
N 2N 

Ÿ + cos /t/ + -i- (2iV + 1 - *) cos kt - 
N*l 

œ cos (y + 1) / - cos (2N + 1)< 

AN sin*-g- 

(3) 

ia called the de la Valleè-Pouasin kernel«). We will state that it is of order 
N. 

Important properties of the de la Valleè-Poussin kernel are as follows: 

1*) is an even trigonometric polynomial of order 2N; 

2«) The Fourier coefficients with indexes k - 0, 1, ..., N are 
equal to unity; 

n 

3- ) i J.;,(/)<«-1; 
-Jl 

4- ) i Í¡vjU)\di-£ f"älc 
-n o sin* ■=■ 

fl 
1sin y / sin 1 

(f-) H 
J 
0 

! 

2 

i I . N t . 3.V , 
^ it i |slnT,sm—1 
^ N J ? 

dl it I . N r \ sin 

< IX 

v.t I . u . 3 
,• J sin y sin -j u 

u1 du + -y<A<oo, 

where A does not depend on N . 

* ) de "'a Valleè-Poussin /1_/. 
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B#low v« will consider the correspendinc analog of the de Ia Valleè- 
Poassin kernel for the ease of Fourier integral in the n-diaensional case. 

Let us begin with considering an ordinary measurable function g(x) 
bounded on R = such that its Fourier transfon g in turn in an ordinary 

bounded function. Suppose further X = ( A-,, ...t An) is a vector parameter 

that will vary on the rectangleßa = £a < Aj < 2aj J = 1, ..., nj# where 

a >0. The equality 

Í •••i “ J g•••< Kixn) 
oa o. '4) 

obtains. In fact, if <p&S, then 

IJ f(M.fJ *= / ^^ / g .. ç (X) dJC - 

- I g(K*.Kxn)dij <P (Jf) dx - 

^ J g(^>|^|. •••. Ktxn)d^, 

All the ineouallties here are obvious, and explanation is required only for 
the fact that ¡É(A1x1, ..., A-xj is when XéJca.anordinary bounded function. 
But this follows 'fron the equality 

." (to)*/* i .. Kiin)e~‘*“du- 

H MM, 

i f , -'¿“Ü7 --J B(u)e I’1 1 dn 
I J W* 

and the assumptions that g is an ordinary bounded measurable function. 

The analog of the de la Valleè-Poussin kernel is defined by neans of 
an equality analogous to (3): 
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(5) 

V/v (O- in 
O/v /•' 

linXyty 
dl- 

cos Ntj-cotTNtj 

? 

The kernel VN satisfies properties analogous to properties 

1) Vjj(z) is an integral function of the exponential type of degree 2N 

with respect to each of the variables Zj (j = 1» •••* n), and is bounded and 
summable on R; 

/ 9 \»/* ~ 1 f on N» 2) (I) 
Ayy / “1, •••( S}, 

3) -¿r J VN(t)dt-l, (7) 

4) J ! VyviO \dt ^ Af (N>\). 

(8) 

Property 1) is established without difficulty. Property 3) follows 
from the equality 

i f sin V/ ., , .. 
ïïj —dt-l (v > 0), 

where the improper Riomann integral converges uniformly relative to 2N_/» 
owing to which the integration of this integral with respect to parameter 
can be validly carried out under the sign of the integral 
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Property 4) ia obvioua: 

1 f |cosM-cos2M| 
V J -?-dt 

— m 

ao I , N , ■ 3 sm-j NI 

no 

Í 
lu 3 1 sinjsln ju| 

dt 

du <oo. 

Let us consider the function 
n 

am-JJ 
/-i 

s'mXjlj 

which ia an analog of the Dirichlet kernel in the n-dimensional case. Its 
Fourier transform (cf 1.5.7(10)) is 

säö-n^-(/fR. 
/-i 

where (l)^ is a function equal to unity on^A={/Xj I < AjJ J - •••» nj and 

equal to zero outside of . Thus, it is bounded together with its Fourier 
transform, so equality (4) when a = N can be applied to it, consequently, 
noting that 

where (l)^ is a function of the single variable x^. equal to unity on the 

J 
interval ( xj l< A^ and equal to zero for the remaining x^, we get 

¿ JII 
U,V /-1 

sin*;/; ■(i/l)'/ (IK (Jc)dX. 

n _1H 

IT A ) ‘2 J -J[|l(v ), (9) 

where 
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(10) Mtt)-/ y 

1 

jf(2N-\) 

0 

(IlKAO, 

(N<\l\<2N), 

(2N <|x I). 

tfc have obtained an effective formula for % From it (6) followa 

directly. 

Suppose f e LpO < P )• 

o.v(/. VN(x-*)f(a)du (h) 

1. . function belonging to Lp, dlff.rlng onl, by It. conrtwt «ItlpU« from 

the eoiwolutlon Vgrt. Thl. function la an analog of th. parlodlc do ]a V^a - 

Pouaaln of ondan b. Sine. V* é ^ (l»Ug~l '^lon «f ^ 

» with roapoct to all *j belonging to L), thartfor. <r»(f. *)£ Wa,p (of 

3.6.2) for all fé l. Moieov.r, If than tha identity 

P (12) 
<T;v(©,v. X) * ®)V («*)• 

obtains. 

in fact, VM e L; tbarafora. V,, la a nultlpUcator. Additionally, by 

virtue of (9) and (10) î„ = (r'/2)n on llK¡ tbarrfora, by I*— 8.5.2, 

(qn, x) - <ÙN (X) (N < JVo). 

(12) follows from this equality as N 
the limit can easily be established 

Ä N. The validity of the passase.to 
Sy considering the effective formula (5) 

for Vjj. 

If f Lp and ^ Lp is an integral function of the exponential 

type N, then by (12) 0v(/( x)-f(x)-o.v(f-wv. x)+ <ûv(•»)“/(•*)• 
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fro* vhanc« 

Il ®V (/. JC) - f (x) II,, < ( 1 + .Vf) ^v (f)pi (13) 

i.«., th* approxiattion of f by Mana of <rH(f) it of tho order of the beet 

approximation of f by meant of functlona of exponential type N. 

If p It finite, then the rlglt tide of (13) tende to aero at N — 
(of $.5.1); whence it followt that 

®Af (/) “* / (N oo) 
weakly (14) 

Mien p = the quantity ^(f) no lonfar tenda to aero, but property (14) 

■till obtalna. In fact, baaed on 8.3(1)(0 l) 

/|A*,>0,(|a|)|(/t<Af|Ar. 
Therefore 

|a5v/ 
-JK,C('«)/(Jr-.),f«|<||/|^W|A|. ... 

H/IL -»upvr«i|"(jr)l. 
• am* 

He aeek that the function F(x) = I (f) aatlaflea the condition 

''V(jr)|<c|Ar (/-I.n), 

and alnee it, moreover, la bounded, then it beloi« to !l^.(R) and, therefore, 
it unlfomly contlnuoua on R, i.e., belonfa to C. 

-f,(Ft-0 W -, oo). 

Thla ahowa that 

<fj((F) F weakly 

therefore 
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(Mn. <ï> ç). 

~ k 't.'.• / 0^)-^(/0/, /-a<p) =• (/, <p), .V->Oo, (15) 

and we have proven (14) also for the caae p =oa . 

Thus, (14) does obtain for any f Lp and any p (l ^ ^-8 

important to note that this property is preserved for any function f regular 
in tne Lp-senoe. In order to be convinced of this, it is sufficient to 

perform the manipulation described above (15) on f. 

Finally, let us note the following inequalities (f ê Lp) that are 

important to us: 

1 lr !<r,v (/) - CT, V (/)1 K < yrN~r I! <7.v (/) - <T2V (/) 11^ 

^.(/)11,^,1^(/)11,, 

(16) 

(17) 

where r is any real number and Vr does not depend on N and f. 

When r > 0, inequality (17) follows from the fact that operation Ir as 
a kernel belonging to L(cf 8.1(13) and 1.5-1(5)), and inequality (l6) 
from the fact that (cf 8.5.1 and 8.6(6)) 

<rN(f) - ^(^) " ® on ^N’ 

But when r is negative, inequality (l6) and (17) derive from the inequa¬ 
lity which will be shown in the next section, if we consider that 

CTv (/)-*2.v(/)eM,Vi#. 

It will be proven in 8.8 that inequalities (l6) and (17) remain in 
effect for ary (generalized) function regular in the Lp-sense. 

8.7. Inequality for the Operation 1-..(r > 0) on Functions of the Exponential 

Type 

Let g --- g v vp, i.e., g is a function of the exponential 
type V with respect to each variable Xj belonging to Lp = L (fO . Let us 
apply to it the operation (cf 1.5.9) 
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(1) 

/- \ 
1 d l -UF/ V 

The main goal of this section is to show that the inequality 

11-'8 \Vp (#,) ^ *f ( 1 + V)f II g 1^ ¡RJ 

(r, v>0, 1 <p < oo), 

(2) 

where jt-r is a constant not dependent on w, obtains. 

Let us set to(x) - (l + |x|2)r/2 and for ary v >0 let us introduce 
the function u-\ (x) with period 2 V (with respect to each variable xj) defined 
by the equality 

‘OvW-d+I.rp)"’ {|jryKv, /-1. 

Suppose 

is its Fourier series. We show that for r > r0, where 
large the inequality 

SkiKMi+v’)'*, 

(4) 

r0 is sufficiently 

(5) 

obtains, where yi does not depend on V, from whence by theorem 3.2.1 follows 
the validity of rthe interpolation formula 

(, + £), (6) 

from which directly follows inequality (2): 

II1-'8 ll/> “ 2 KIII £ (I, < X, ( I + ¡I g (7) 

and the fact that I.pg is an integral function of the exponential type v (cf 
3.5). 
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For —«v» r, th® conJidarations associated with the estimate of the 

gum JT I Cj^ I become more involved. From the fact that inequality (2) is valid 

for large r, we derive from general consideration that it is valid with the 
corresponding constant Xr for anör r > 0. 

Ut us limit ourselves to considering the two-dimensional case. When 
n £ 2, the argument is more complex, but is analogous. 

We have , v' v \ 
_i ■■ I 

—/# + /( +/i + /*, 
V V 

;#.J_ J J(1 +M*+ v,)''*rfM</t><(l+2V,),/,<f|(l+v,),/*. 

v Jk.„ 11 I/I 

<maxc2 V < 
• IT -v 

i/i 

<maxc4 N J (1 <cs(l+v»)"* (r>2). 
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Here ve employ integration by parts and 
variable u. Similarly 

'1 r V / 

Parseval'a inequality in the 

finally, application of integration by parts and Parseval' 
variables u and v yields s equality for both 

j j 
* I -V -V 

V V 

da(i> (*u+/v) 

dudo 6 du dv 

In <C»)S S J J ¿fe-« v ikM*l9)dudv 
-V -V 

2 \ 1/2 

V’jf UJC»*(1 +uJ+ v7Y~*dudv 

(r>4). 

i/i 

<c.(l+v»),/* 

We have proven (5) when r > 4. 

Now let r be an arbitraiy positive number and as before g- 77? 
Let us select the natural s such that * vp 

2,''< 1 + v<2,( 

and let us represent g in the fora (of 8.6(11), (lid)) 

where 

Vo-a.(£, *), x)-otj.l (g, X) (y-1.s). 

/-. ^PP0!? íhe ^01, ^ r is sufficiently large that for it inequality 
12) is satisfied. Ihen we have 4 * 

I-'8 " 2 Jp-rJ-pQj 

and (explanations below) 
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(8) 

Il/-,Klip« 

« ^2r> < 2’1 < (!+*)'• 
1-0 

The first relation in this chain obtains on the basis of the already 
established inequalities 8.6(16), (17) (/*- r >0). The second relation follows 
from the fact that /° is such a number that inequality (2) is valid for it when 
r 

By this, inequality (2) is proven for ary r. Of course, these considera¬ 
tions give a crude constantXr* But cases are known when its exact (least) 
value can be obtained. Thus it is considered as an example the case n - 1. 

Owing to the evenness of ¿d(t) - (i+<î)r/* 
V 

rWï ” 7 f <*>(') «s-£m/“ 

V'îT *-l > “ 

IJ J (Û (0 cosd/- 
/-0 g V 

•r» 
V 

2Ï 
‘-l I* 

\J [«>(0; + 0-<0(0;-/)]Sin f -1dt. 

(9) 

If r 1, then cony stations show that 

tu"(t) > 0 

and therefore the difference appearing in the square brackets under the integral 
in the right side of (9) monotone-increases with j. Hence it follows that the 
terms in the sum in the right side of (9) increase in absolute magnitude, 
successively changing sign, and the sign of c^ coincides with the sign of the 
last term in the sum corresponding to j - k - 1. By this we have proven that 
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(-I)*^>0 (*- O, ±1, ±2, ..r> 1). (10) 

Fron the evenness of tt)u(t) it follows that 

wv(0“tu + 2 c¡¡ cos 
i 

therefore by (10) the r^rarkable equality*) holds. 
’ * eo 

(1 +v*),,*=io>v(v)-Co + 2 S(”1)*cï- §|c;|. 

So we have proven that for r ^.1 and n - 1, we can take yCr - 1 in inequality 
(7). This constant is unimprovable*) in this fora, but we will not dwell here 
on proving this. 

8.8. Exoansltm flf * ItiWar ^°tl0n in Series by de la Vall97-£pug^ guas 

If f is a generalised function regulai in the Lp-sense, then naturally 
we assume (cf 1.5.10) 

on(/)-("If Wx'ïï-(t) n/-o{VN */pf)’ ( 1 ) 

where f > 0 is sufficiently large that 
VH*fyf belongs to Lp, and by virtue of 

Lef €~ Ln. But V« ér L, therefbre 
tne factp that the function VN is of 

»cpoMiitUl typ. 2N (cf 3.6.2), V^f Applying opwatlon I. (cf 

8.7) to this last function does not remove it from the class 'W2N,p* 

Thus, 
°X (/) e ®JV,p> 

(2) 

whatever be the function f that is regular (in the Lp-sense). 

Further, for any veal 

(/) - orv (/J) (3) 

*) P. I. Uaoikin¿ßj. 
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(cf 1.5.10(5)). Since for the regular function f, ^(f)^. ^2N,p* then when 

r>0 obviously inequalities 8.6(16) and (17) hold for it. When r< 0, these 
inequalities also obtain for ary regular function f, because for it 0 - 

^(f) Lp and d-N(f) - = 0 on ^cf 8-5,1 and 8-6(6^‘ 

It is convenient for us to associate with each regular function the 

following series: 
eo 

/-<v (/)+2(^(/)-^-1(/)]. (4) 

weakly convergent, as we will explain, to f. We will further call this series 
the expansion of the regular function f in sums of the dela Valleè-Poussin type. 

For aiy real r, it is legitimate to apply to it, memberwise, the opera¬ 

tion 

/,/ - /,<V (/) + 2 /, [a2k (/) - o^., (/)] - 

- «V (/,/) + 2 [°2* (/,/) - ®a*-i (/,/)]. 
(5) 

because if f is a regular function, then lyf also is, and therefore can be 

expanded in the form of its de la Valleè-Poussin series weakly convergent to it 
— the second series in (5). 'toe terms of the first and second series are 
correspondingly equal by virtue of (3). 

8.9. Representation of Functions of the 03^8898 B^n ta foflW 
Poussin Series. Sm QñP888 Tl $ 

We have assumed that r > 0, 1 ^ p ^00, 1 0 £ o0* and 6^(1^) - 

(gr r Hr). Let us proceed from the following definition of the class BpQ 

(5.6(5)): the function f belongs to if for it the norm 

^/11-11/11,-11/11,+ (1) 
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is finite. Another definition (5.6(6)) equivalent to it is as follows: f 
BpQ, if is possible to represent f in the form of the following series, conver¬ 

gent to f in the Lp-sense: 

of functions that are integral and of the exponential type of spherical degree 
28 (on R^) such that the norm 

(2) 

is finite. 

Let us show that the following is also equivalent 

Function f érB^@ if f is a (generalized) function 

sense and if to it the corresponding de la Valleè-Poussin 
it weakiy) corresponding to it 

q0 a2. (/). q, * (/) — CT2,_I ^) (s * 1, 2, ... ). 

is such that 

In fact, let f be a regular function in the Lp-sense for which (3) - 
(5) hold. Then qfl is an integral function of the exponential type 2a+1 in 

all variables, but then of the exponential spherical typo /n2a+^ (cf 3.2.6) 
and, consequently, of the type 2^1, where we have assumed tnat 1 is a natural 

number such that 2 /5 £ 21. Setting q* = 0 (s = 0, 1, ..., 1) and q*+1 = q3 

(s = 0, 1, ...), we find that f = Z q*, q* is of the spherical type 2s and 

to these definitions: 

regular in the L - 
P 

series (convergent to 

(3) 

(4) 
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i.a., kj|f|j< oo and f ér Bf-. 
P® 

Now let ^/|f, then Lp (c^ 8*6(13)) 

<2At^-,(/)p (s-1.2, ...)• (6) 

hl J< MW fl- 

Therefore ^||f |j ^ ^llfll, and we have proven the equivalence of the 
norna (5) with the noraa (l) and (2). 

Note. The equivalency ia preaerved if the de la Valleè-Pouaain suma 
5 2a(f) are replaced, correapondingly, by the Dirichlet suma 828(f)(cf further 

Ö.lO),howBver,gi'ven the conditioithat 1 < p <00. When p = 1, £>» j the coiatant 
M in the inequality (6) dependa on a and thereby ia not bounded aa s —*■ 00 . 

Let ua introduce the zero claaa of, uaually, generalized functiona. 

By the definition f ^ B^, if f ia regular in the Lp-aenae and if its 

de laVnlleè-Poussin series (3) ia auch that 

»'".•„-d»«-«:) <»• 

In particular 

II/11^0 -sup II q,Hp<oo. 

The definition (7) and (8) of zero claaaea given here have the advan¬ 
tage that they do not depend on the definitions of the corresponding classes 
for positiver values. But the following definition of is also possible: 

this is a class of functions f of the form I_r ^, where <f €2 b£q, and r 0 is 

any number. Let us note further that the apparatus by means of which the 
original definitions of the H- and B-claaaes will be given for positive r 

(7) 

(8) 
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evidaataUy is not adapted for inmediato generalizations to the case r é¡ 0. 

8.9.1. Isomorphism of the classes for different r. Theorem. 

The operation Ir(r > 0) executes the isomorphism 

0<oo, (1) 

Equality (l) gives the representation of functions of the class bIq in term 
of the convolution of the Bessel-Macdonald kernel Gr with functions 

of the class B^ that are, generally speaking, generalized. 

Proof. Suppose f <=- B^, then f is a function regular in the Lp-sense 

and expandable in the series 

¢,-^(/). 9,-^(/)-^-.(/) (5=-1.2. ...), 
where 

II/Lo -ci-^r <00. 
(1) 

(2) 

But 
F = 1/ 

is also a regular function that can be expanded in the series 

Qo - <V (V. Q, - o,, (F) - 0^., (F) (s - 1, 2. ...). 

Here 
Il Q, \\p - Il tfq, II, < C • 2~rl II q, 11,. 

(3) 

Therefore, 

■° • Op» 
(4) 
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Conversely4 if F ér b£q, then the expansion (3) 

obtains for F, and expansion (1) and (cf 8.6(16)) 

lkJ,-l|/-,QJ,<c-2"||QJ (i-0, 1,...), 

for f - I.jJ, therefore 

»'“.v «dH,;,. 

(5) 

The theorem is proven. 

8.9.2. Classes B£q when r -4 0. The concept of a regular function and 

its expansion in the de 3a Valleé-Pousain aeries yields the possibility of 
enlarging the classes Bjg to negative r. It is natural to assume that the 

function f <£: BrÄ, where r is an arbitrary real number if f is regular (in 
pQ* 

the Lp-sense) and if its expansion in the de la Valleè-Pouaain series 

urn 

C/(/)+S[<V (/)-0,,.,(/)] 

is such that 

(1) 

(2) 

It is eaqy to see, by reasoning as in the previous section, that for ary 
real r and r1 the operation Iri-r performs the isomorphism 

Ir.-riBti-BÏ (\<p, 0<oo; ß;.-//;). 
(3) 

8.10. Series in Dlrlchlet Sum (l < P<Qgl 
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If p satisfies the inequalities 1 < p< co, then the above-performed 
theorem can be developed based on Dirichlet kernels 

(,) 
/-i ' 

which are analogs of the periodic Dirichlet sum. 

The kernels %(s) exhibit the following properties: 

1) Djj(z) is an integral function of the exponential type N in the 

each variable Zj(j = 1, ..., n) belonging to where 1 < p íc** 

on ^ Ni* 
outside Ajj 

(2) 

(cf 1.5.7(10)). 

(,V > 0). (3) 

4) The convolution % 

,S a {l X) “ D ' ’ f J (* -<) 11/) dt 
for f^-L^(l < p< oo) is an integral function of the exponential type N with 

respect to each variable (cf 3.6.2) belonging to Lp(cf 1.5.7(9), (13); 3.6.2; 

Sty(f) Here 

(4) 

where Xp depends only on p. When p - 1, co this fact ceases to bo valid. 

5) If é: ?y?Np, then 

S.v (®.v) ==• «y. 

lhe fact that 
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D v" * “v - (¿- J D»> (*-*) «A (O - W.v U) (A/ < ^), (6) 

follows from 8.5.2. Further 

sin A/0// 
<pOj)! 

N{ I//KI. 
, (A/ < A'o< A^,), 

w 'lj'' 
therefore 

n 
I D.\, (x -t) w.v (*) I < q> (•* - 0 “.V (0 ' i- (Rn), T (0 =■ I! <p (tj) 

(a>.vs¿,(/U <p e Lq(Rn), y H- = l). 

/-i 

Moreover, 1½ (x - t) —^ Djx- t)(N0 N) for all t. Consequently, 

by the Lebesgue theorem, in (6) we can replace N0 with N. 

6) Djj#f f on (cf (2) and 8.5.1). 

From (4) and (5) it follows that if f ér Lp(l •<- ^ ^-8 ^8 

best approximating function of the class T^jjp ln the Lp-sense, then (l <p^t-4 

II / - S,v <i) <\\f-w.v 11,, + IISN (w v) - f \\p < 
^ ( 1 + Hp) £ v (/» 0 (N —* ao). (7) 

In particular, thus 

Sjjif) f(N —►(po) weakly (8) 

Arguing as in the proof of 8.6(14) (cf 8.6(15)), where Vjj must be replaced 

with Djj, we get the result that property (8) remains in effect for any func¬ 

tion that is regular in the Lp-sense. 

In this case the function f regular in the Lp-sense can be expanded in 
the series 
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(9) 

converging weakly to it (analog of 8.8(4)). Application of the operation 
where f ia any real number, memberwise to this series is legitimate. 

It is important to note that the k-th term of series (9) is an ordinary 
function of tbÄ «■>— *»" moreover, it is important that 

on (k = 1, 2 > j • • • 

and the inequalities 

(10) Il U (f)-S2N (/)) (I, < W' H SN(f)-SiN (/) I),, 

II (/) K A, I) 5,(/) I), 
(11) 

Arguing as 8.9 - 8.9.2, where it is necessary everywhere to replace 
¿(f) with S¿(f), we can obtain based on the theorem set forth above 

8.10.1. Theorem. Suppose 1 < p<cx>, 1 é 6 and r is an arbitrary 

real number. Then f ^ (bJ = Hj) if and only if f is regular in the Lp- 

sense and its series (convergent to it weakly) 

(1) 

Po - Sj* (/). ß, - S3s (/) - S,.-, (/) (s - 1, 2, 
» • • •/» 

is such that 

(2) 

(3) 

(of note to 8.9). 
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Lat us prove the leant supplementing the results of 1.5>6 (in the 
seme notation). 

8.10.2. Leona. Suppose f is a generalised function regular in the 
Lp-sense (l < p< <?o ), for which 

(1) 

then f ^Lp. 

Proof. Suppose N is a natural number, then 

and 

(2) 

i.e., Fn is a Dirichlet sum of order for the function f. It belongs to 
Lp. We”have further (cf 1.5.1.1) for N <N' 

Mf). Ã* c A*- - Av, 

0. À* n (A#- — A#) — 0, 

where is the open kernel And therefore, applying equality 1.5.6(1) 

to Fjj, we get 

i If»- -I, «![ v 2 ^ Í. -.0 (N, N'~y oo), 

But Fjj —f weakly, consequently Fjj f in the matrix Lp and f ¢3 Lp. 

The following theorem is analogously proven (notations found in 1.5.6.1). 

8.10.3. Theorem. If the function f(x) of one variable is a generalized 
function regular in the Lp-sense co ) l<rp¿oo« for which 

(1) 
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f 

then it belongs to Lp. 

8.10.4. Example. Belov ve present an example of the function g(x) 
Lp(- ootco) = Lp(2 <p< 00 ) that is integral and the exponential type 1, whose 

Fourier transform is a generalized function not sumnable on any interval (afh) 
cT (-1, +1). 

Suppose 

°(for remaining k) 

where the numbers at ^ > 0 are such that 

(k 1, 2, ••»)» 
(1) 

SaJ-oo. 2“* < “ (2 <p < 00). 
i i 

(2) 

N 
Let us further set ^ ^k and 

/ W-2 ♦*(*)• 
i 

(3) 

Series (3) obviously converges in the sense of Lp - Lp(-<?o, «r»), and conse¬ 

quently, also in the sense of S', and îCZ. L cC. S' and||fl| " (2 
c*> . Suppose further p p 

_ 
’■•«-./I J (.-1.2..,.). 

•*4 
It is eafly to verify (cf 1.5.7(10)) that 

(*) " 2a, ~ cos 2*x 

h (x). 

Let us further suppose 
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u). 

Then 

■< Il / lip IXI « . 

(4) 

where the constants appearing in these inequalities do not depend on N, l| flip* 
and X. Therefoie 

(5) 

and Fjjiy) —♦ F(x) uniformly on ary finite segment. But then F(x) is a conti¬ 

nuous function. It easily also follows from (4) and (5) that F ^ S' and 

Fn — F(S'). 

In this case 

whore all operations (differentiation, summation, and Fourier transformation) 
are understood in the S'-sense. 

We can prove (see the book by Zigmund /,2 7. part II, Chapter XV, at end 
of section 3.14 for proof), that the function F(x) (understood as an ordinary 
function) almost everywhere has no derivative. But then the generalized deri¬ 
vativo F' on any interval (a, b) is not a suumable function, in other words, 
whatever be the interval (a, b ), there does not exist a function «/.(x) summable on 

(a, b) such that 
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(F', ç)- J u(i)n lx)d* (6) 

for ali functions V&S that have a carrier on (a, b). In fact, if the func¬ 
tion 4 did exist, then, integrating the right side of (6) by parts, we will 
obtain the equality 

i.e •» 

» /. « 

J F (x) e' (x) dx •- J j '» "I '"V i*) 
a u h 

b X 

J ♦(»)»'(.v)</x-'I. *<', I‘‘I -) a(<)dt, 

a “ 

not REPRODUCIBLE 

whatever be the function <péS with carrier on (a, b). But then ^(x) sC is 
a constant F would be differentiable almost everywhere on (a, b). The fact 
that f = constant can be proven thusly. If it would not be so, then we could 
select such a constant c^ that the function A,(x) ^(x) + c^ would take on 

values of different signs at some two points. Suppose for definiteness a<x^ 

<x2< b and A (x^ ) < 0 < A (x2). It is obvious for the functions <p considered, 

» 

J Mx)q>'(x)rfx-0, 
a 

,b 
because j (x) dx - 0. Let us choose ¿ >0 sufficiently small that A(x)<0 

a 
on (x^ -á, x1 +¿) and A(x) >0 on (x2 -<5, x2 + S), and suppose that a;(x) 

is a function continuous on (a, b), equal to zero, for x <x1 - á/2 and 

x > x2 + á/2 and such that aj'(x) -1 on (x-| - á/2, x1 + á/2), L*i (x) 0 on 

+ h/2, x2 - á/2) and ^(x) : 1 on (x2 - á/2, x2 + á/2). Its ¿-averaging 

(x) obviously belong to the class of the function considered here, also 
because . 

f / * 
0 - J X (x) w' (x) dx -> j X (x) (o' (x) <fx > 0 (e -> 0), 

• a 

and we have reached a contradiction. 

i-Ct ¿S S'.t «(x)-oD-7 J t>Ax-t)f{t)dt, a-{|x|<1). 
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Since f<rr L , then the function g 
P 

type 1. Its Fourier transform 

€ir Lp is integral and of the exponentiel 

is a generalized function equal to f on A. This means that 

<i. ¢)-(/, f) 

for all<? é S with carrier around A . But then f, consequently, g, can now 
be represented in ary single interval (a, b) by a summable function. 

I 
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CHAPTER IX LIOUVILLE CLASSES L 

lili Introduction 

We denote the Liouville classes by ^(R^) (r ^0, Lp(R ) = 

the isotropic case and by LpiR^) in the anisotropic. For integral r, r, they 

coincide with the Sobolev classes W: 

natJ-L'piR') (r-0, I....). 
w;(Rn)-Lrp(Rn) (r¡ = 0, 1. 2. /-1.n). 

Generalizations are possible for the case when p is vectorial. 

The classes Lr, Lr for fractional r, r are the most natural extensions 
of the classes \>r, ti*. 

For orientation, even at this stage we will note their fundamental proper¬ 
ties. 

The functions F are defined in the form of the integrals 

F(x)^lrf^-l-r2jGr(\x-u\)f(u)du, feLp{Rn), (l) 

already familiar to the reader, where (cf 8.l) G_ is a Bessel-Macdonald kernel. 
If r is a natural number, then (cf 8.2) F runs through the class W^ÍRjj), when 

f rnns through LpiRJ, where the isomorphism 1^(¾) -- w£(Rn) obtains. For 

fractional r, equality (l) becomes the definition of class l£(R ) (at least 

in this book, cf 9.2.3.), i.e., we assume that F l£(R ), if and only if 
F - I f, where fL (R ) and we set n r p n 
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For any r > 0 Lr cl h£, moreover "with an accuracy up to ary small 

t ", the class l£, just as Bj, coincide with Hj, namely 

From these embeddings it follows that in ary case, "with an accuracy up to 
¿ " the earae embedding theorems are valid for the class L£ as for the class 

HJ*, since, for example, , 

The embeddings (cf 9.3, - Bpp) 

(!</)< 2), 1/,-+8, (2<p<oo). 

are valid. Tho coincidence of classes B in L obtains only when p - 2 (B£ 

1^)• When p f 2, they differ essentially from each other. 

The classes Lr are united by the same integral representation in terms 
P 

of functions f e Lp. The classes Bp are united by the same representation, 

but now in terms of the function f ¢= B°, where B° is a class essentially dis¬ 

tinct from Lp; when p >• 2 it includes generalized functions (cf 8.9.1). 

The family of classes Lr is also remarkable by being closed with respect 
P 

to such embedding theorems where passage from one metric to another occurs. 
Thus, the embedding of different metrics 

p,-.r 
"(i 1)>0, 1 <P<<!<00)- 

(3) 

obtains. Another, more general class is the embedding 
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Lp(Rn)^L’(Rm) 
(p.r_£+ l<p<ÿ<oo) 

(4) 

where In addition to change of moaeure, there ia the passage from one metric 
to another. Thus far as the embedding theorem is concerned where the number 
of measures changes without metric change, then the corresponding direct 
theorem reads thusiy 

n - d 
(l £m < n, 1 < p<oo,/° = r->0) : 

P 

and the inverse thusly: 
L'p(Rn)^Bi(Rm), 

BpiRm)-* LpiR,,). 

(5) 

(6) 

Based on the foregoing, B can be replaced with L when p = 2 in (5) and 
(6); moreover, this can be done in (5), if 1 < p < 2, and in (6), if 2 < p 
^ £*> . This substitution is invalid in the remaining cases. Thus, the embed¬ 
ding theorem of different measures is in general not closed with respect to the 
classes L. 

The following situation obtains: 

B'p (Rn) L'ß (Rn) - fl? (Rm) - B'p (/?„) (1 <p<2). 

Lp<.Rn)-+Br,(RH)-+Bl(Rm)-+LrP(Rn) (2<p < oo), 1 

showing that the two distinct classes Bpil^) and 1^(¾) of functions defined 

in Rjj yields the same set of traces on \ (class Bp (¾)). 

We must note that the embeddings 

Brp(Rn)ï*Bpp(Rn) 

for indicated m, n, p, r, and Pt can be obtained as a consequence of embeddings 
(5) and (6). In fact. 
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The facte that we present here are representative. In the anisotropic 
case similar facts obtain. They will also be proven in this chapter. 

X1 f 
9.2. Definitions and Fundamental Prw«UM M&K 

Suppose 1 ^ m n, * = (u, y)# û " (xv •••• ^ _ ^%+V 

3¾) RftHtt- For the functions 4» (x) =?(®, j) of the fundamental class S, 

we will denote their Fourier transform (direct and inverse) in the variable 
ï with I2; ^tt (I5 = ft *U =# when m = n). For example. 

•P- («. JO“ '¿SÃ J <P(i. y)e-,"dt. (1) 

The ooerations a>u, map S into S and are weakly continuous (cf further 
9.2.1!! therefore for arbitrary generaliaedfunctions f é S Refined on 
Rj, the corresponding Fourier transforms ï and Î are correctly de 

by the functionals 
<7‘. »)-(?.;■). 
(7*. ¢)-(/. ?). 

If ¡1(a) 1* an Infinitely diffarantlabla funetlon of polynooUl «roup 

dependent only on a, then for fé S' 

i?" -a7. *1" -»}, 
which follows directly from tne validity of these qualities for <f&S. 

Let us introduce the operation 

/--/-’■—\ (2¾ 
F - turf = ( I + I « ITT' - d + I « prnj 

(jttl2 - £ U^, = Ir, when m = n, f 6= S'), corresponding to the real 

1 ^ 
number r mapping S' onto S', mutually uniquely. When m = 1, when % = V 
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is the axis of coordinates x., we will denote it further vith Ix r. 
3 j 

For the function f = L (R )(l< this operation when r>0 
P P n 

reduces to the convolution 

'"I- ( I « - < u / «.,) rf/ (| ( È,, j, 

(3) 

where Gr is a Bessel-Macdonald kernel, which is proven thusly. 

For f eS S’ the equalities , „ /—\ 
f(x)=f(-x) = f(-x), 

obtain, which follow by means of ordinary "changeovers" ¿prebroski/ from the 
fact that they obviously are valid for ary «ffeS. Further, if A ^ ^ anc* 
f €^. Lp, then 

= Af(- «)(-j x~ 0)1(- u)df. 

/S /A 

In particular, if Â(tt) - A (-u) thenAf -A?*. Therefore, for f ^Lp, <p^S, 

considering that Gr (lu|m) " Gr( ^ we get 

(turf, <t)~{j,xi+\urr%)- . 

“ (/, ( I +1 « l2)',/J?) - (/, (Í+1 « ?)-'*$) - 

“ J/(“. y)dUdyjGr(\u-t\in)v(t,y)dt- 

JJ G,(\t-u\m)f{u, y)du (dx = dtdy), 

which in fact proves (3). 

r r / * 
Let us introduce the functional classes I^p - 

t-xp — LxffRn), Lup = L„p(Rn), r = (r|, rn). 

By definition, the function F^-S1 belongs to I^p - ^up^^* p(Rn^» 
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1 P •C-C'O, - CO < T < aO , 
if it is representable, respectively, in the form 

i - ■ I itrf I 1' ~ I x^rf, 

where f<=L . Here we introduce the norms f|F||Lr - l|f//p, in particular, 
p up 

fj F¡¡Lr IlfII , trivially indicating the isomorphisms 

xip hr (LP) = ¿up, rXir(Lp) = LrXiP, 

performing operatic ^ The class = ^(R„) oorrespondihg 

to an arbitrary real vector r is defined as the intersection 

with the norm 
m 

By virtue of the foregoing, the class can be defined farther as a 

class of function representable (for almost all y) as the integral (3), «hare 

f(x) f(tt, y) VV* 

Given the condition 1 < p 

Lap =* Lup"'r (r ^ 0), 

Lup~WruP~WrJp -r (r-1, 2, ...), 

Lup = Wup (r ** (r¡i •••if«)» 

(4) 

(5) 

(6) 

where r. are nonnegativo integers). 

Equalities (5) and (6) show that the classes and Lup can be considered 

as distributions on any real r, r of the Sobolev classes l/p and v£p. But 

wo must bear in mind that the functions of classes and l£p were defined 

by us for the entire space V while the functions of the Sobolev classes can 
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r 

be assigned on arbitraxy open domain 

The first equality (5), when m = n, is proven in 8.2. If however m< n, 
then suppose for the time being that f £ S (class of fundamental functions). 
Then f ^ WJ(Rm) for any y, is also obvious f for any y if function 

7) in u belongs to S = SÍR^) and if the operation Ir (in u) maps it into 

the function of the class 3(1^), and thus into Lp(R^). Therefore by the virtue 

of the relation already proven in 8.2 

C| 11 f k(*m) ^11 lu'',)f ll^(*m)< 111 (*m)’ (7) 

whore c-j and C2 do net depend on f and y. 

Raising these equalities to the power p, applying the elementaxy inequa¬ 
lity*), integration with respect to y, and application of another elementary 
inequality*) leads to the inequalities 

c'll/IU <|IWH¿ <c"||/|| (8) 
p p wUp 

even for just functions f ^3. 

If now f (Sr w£(Rn) then 

f^(l - 1, 2, ...) such that || f 

we define the sequence of finite functions 

From (8) it follows that 

II(k, l-too) (<pt-/„<_/*), 

*) We must bear in mind the inequalities 

v;here numbers > 0 and c, c1 depend only on p and on the number (finite) of 
tenns under the sign £. . 1 
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and by virtue of the completeness of wjp and the fact that (cf (3)) 

y)“ f 0^l““íU)<P/(í, y)d/, 

whore Gr( (a|m) ^ Lpi\)» the second inequality (8) obtains where 

II Wll¿ -11/1,, . 
P Lmp 

r 
If however f ¢= Lup and Iu(_r)f ‘f’, then we can select a sequence of finite 

(belonging to S') functions such that (1^ -*► 0, therefore by virtue 
p _ 

of the first inequality of (8) and the completeness of W^p, we arrive at the 

first inequality of (8). By this we have proven the first equality of (5). 

From the first equality of (5) applied to each axis IL (j " 1, ..., n) 
j 

obviously follows (6). 

Let us proceed to tne proof of (4). Suppose F e (r ^0), then 

/-y 

*~2U+ui)rnFeLp, l!H<||F|U.. 
/“I ^HP 

and, since the function 

(i+iapr^îd+u?)"5) 

is j ::.nrcinkiovicz multiplier (cf 1Ó.Í), example 9 provided r 

also consider and below the note 1.5.4.1), then 

Tj, ff - 1; here 

/«(-,)F-(1 + \u\i),nFGLp, 

■p 

from whence it follows that ► Ljp. Conversely, if F*= Ljp, then 
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/-(1+11» p)"*feZ.„ 11/11,-iiF^ 

and, since the function M 
(1+|«pr/’(l+«*)r/i (r>0) 

is a .‘iarcinkievicz muitipller (cf 1 .r;.5,ezaaplc 3), then 

therefore L^p —► * ana (6) is proven. 

From the foregoing it follows that 

Wup Lup ¿up "• r±t Wup"'r (r =» 0, 1,...), 

which optails the second equality of (5). Its nontrivial part is the embedding 
wu£>“'* W¡ip ( 1 < P < oo ), expressing that if tho function f Lp docs 

have nonmixed derivatives of the order r with respect to the variables x-,, ..., 

Xjjj taken separately, belonging to L , then it also has any mixed derivatives p 
of the order r with respect to these variables belonging also to L . Acamóles 

P 
are existed showing that this embedding provided p - 1 and p -&> does not obtain 
(B. S. Mityagin ¿1_/). 

9.2.1. The weak continuity of the operation £u(S) follows from the 
following considerations. We will write instead of fu. Let us assign a 
natural number 1 and an integral nonnegative vector k - • + /°, where s - (k.,,..., 
kjjj, 0, 0), p - (0, ...,0, kflj+i, ..., kp). Then, obviously, the derivative 

VJo have (explanations below) 
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V 

(1 +1X (»)'I D% k (1 + hM»)'(! + i « I*)'I D*q>WI < 

- c ( Í + IjM2)' S ( I +1 «o P)'' I D™? («o, » I < 
< c 2 ( 1 +13> P + I «o fi” I («o. y) I < 

<c2^(2/. s' + P, <p). 
(1) 

The second inequality follows from 1*5(4); in the third term the constant c 
depends on 1 and kj but not on ^ and y; the sum of the third and successive 
terms is extended over some (dependent on 1 and P) finite set &2.t 

(l1, •') and natural numbers 1' and nonnegative . In the fourth term, 
tto ^ ^m doe8 111 deP®nd on th® corresponding term and also on y; this 

Uq is the maximum point (with respect to u) of the corresponding tenu for 

fixed y. The weak continuity of follows from the derived inequalities (l). 

9*2.2. Theorem on derivatives. Suppose 1 <p<*°, Fé:Lr - Lr(R), 

R = r = (r1# .... rn) >0 (r^ >0) and 1 = (1.,, 

vector (lj 0 are integers) for which 

P P 
..., ln) ^ 0 is an integral 

(1) 

Further suppose 

P»xr. (2) 

Then the derivative 

F^-VxÏFeL; 

» lp 

(3) 

and 

(4) 

Proof. By the condition F 6= L^, therefore 
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(5) i|>-AFs¿p, A-SO+jc^, 
/'-i 

HIKciifiu. 
Lp 

To prove (3) and (4), we must establiah that for any s = 1, ..., n, and 

but this follows from (5) if we notice that the functions 

,_V ,(*■/> + I). 

are Marcinkievicz multipliers (cf 1.5.5, example 6). 

4 on'1'1? Proof ^ theorem 9.2.2 is in a certain sense analogous to the theorem 
5.0.3 B-classes. However, theorem 9.2.2 is valid when 1 < p <¿*> and >t£0, 
while theorem 5.6.3 is valid for 1 < p <but when >£>0. 

Example. Suppose f is a function defined on the circle <r= If2 - x2 + 
< 1( by the equalities ^ 

f=*xy\np3 (p>0), /-0 (p-0) 
(1) 

and is extended over the entire plane R such that it together with its partial 
derivatives up to the second order inclusively are bounded and continuous on 
the domain p > g (cf theorem 3 in notes to 4.3.6). 

while d 
^/^S2eafl^ ver^ <>f/¿x, and ¿ f/^y are continuous and bounded, 
i/dx and are bounded on R; at the same time á¿f/á&y i8 conti¬ 

nuous for P> 0, but is unbounded in the neighborhood of the zero point. 

This example shows that when p -oo, theorem 9.2.2 is in general invalid. 

9.2.3. Note on derivatives of fractional order, 
deal with expressions of the form 

In this book we will 

(lxY).fV (fe S') 
(1) 

only for the case of integral vectors oc. If «!>0, then f(°0 is a derivative 
oi f ^ S of order ei. The function (ixf for integral is infinitely 
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differentiable and of polynomial growth, therefore expreeaion (l) correctly 

defines fv*) S'. 

If the real number o¿ is nonintegral, then the function (it)* (-<*>< 
< ¿tc ) is multivalued, but we can agree to understand this expression to 

refer to the unique branch of this function 

t 

(//)“ =-1/1° exp 1nia sign Í |, 

then vhenot is natural 

(«)“ = (it). . . (it). 
a pi. 

If further, oi. and (i are real numbers, then 

If now 

X - (x^j, ..., 

(i()a** - (itf (itf. 

U-- (-,, .and &= (P,, ...,Pn) a« real vectors and 

X ) is a real vectorial variable, then we set 
n' 

(ix)m = Ux^ ...(ixn)\ 

then, obviously, the equality will be satisfied 

(ixY (ix)* - (/je)"*'. 

Now it is natural to define the derivative of order e¿ íor “V, 

not necessarily, integral vector - by means H™6^’ 
u« face the difficulty that for fractional the function vix| xs nox, 
infinitely differentiable; it also is not a Marckikievioz multiplxer and, 
thus is inapplicable in the sense of the definition considered in this book, thus, is inappiicaote ^ ^ ^ ^ ^ foand ^ the faot that 
even if f 

“p- 

of S, we will consider another class 2 of fundamental functi^s consisting 
of functions that are orthogonal polynomials (P. I. Lizorlcln 

A class of f! 
The concept { 

onals (generalized functions) ÍZ1 is defined over 
r for fractional vector is meaningful in the terms 

of /11 • Here we have proven that the class where r > 0 is generally 

fractional, can be defined as consisting of the functions f for which the 

norm 
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/— 

is finite. This norm is equivalent to our introduced norm fll 
Lr * 

XjP 

9.3. Interrelationships of LiouvUle and .Other ¢^¾¾¾¾ 

We will assume that R Rjj, L = L(R), H - H(R), ••• and 

Bpp = B'p, Bpp = Bp. 

The following embeddings (r >0, r ^ 0) are valid: 

Lp->Hp, 

Bp -► Lp, 

Lp~* Bp 

Lp~* Hp (1 <p<oo), 

Brp-*Lrp (l<p<2)*). 

(2<p<oo, = = //;)•). 

(1) 

(2) 

(3) 

From (2) and (3) it follows that 

H'j -- /.0, B' - /.2r (4) 

and, in particular. 

Bi-W',, BÎ-WÏ (r, r/ = 0, 1, ...). 
(5) 

Thus, the value of parameter p r 2 is exclusive ~~ for it the corres¬ 
ponding classes B and L, and for natural r, r, and W coincide. 

Let us present the proof to (l) - (3) for n r 1, for the time 
In this case the embeddings appearing in each of tha pairs (1), 12), and (3) 

correspondingly coincide. 

Let function f €= L = Lp(R1) and <TN(f) be its de la Valleò-Poussin sum. 

Then P 

*) o. V. Besov zU — integral r, r, 1 < p <T Co; P. I. Lizorkin ¿£>J 
general case, 1 < p C o3- Cf further note to 9.3. 
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|<V(/)|,<Aí «/II,, 
K‘(/)-V-.(/)t<2Af|/|^ . 

and this shows that (ci 8.9.1(1)) 

||/||„o-sup (10,.(/)1,. |o,*(/)-o,.-,(/)(,} <2^«/|,. 

i.e., Lp —* H°, but since the operation Ir perfoms the isomorphisms! 

then 

Let us prove (3). The case p -o° was already considered. Suppose 
2 £ p<*o and function f Lp = Lp(-o«», 0°) ia, consequently,regular in 

the Lp-aense. 

Then, considering that ßk(f) has the same meaning as in 8.10.1, we get 
(explanations below) 

II/III 

mm m 

-JS|P*^iPrfJr-2iiP*(/)Hl-«/ii¡;o. 
-« o j 

The first inequality follows from 1.5.6.1, the secondofrom 3.3.3, and finally 
the last from theorem 8.10.1. Consequently, Lp —*■ Bp. 

Now suppose for the same notation f é B^, 1 < p ^ 2. Then (explana'* 
tions below) 

as ee 

ii/iÇo-£iip*m- jZiwnrdo 
>¡{^k(f),}pndx>ut 

The first equality follows from 8.10.1, the next to the last from 3.3,3, 
and the last from 1.5-6.1. Consequently, Bp Lp* 
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When p = 1, let ua reason In a different fashion. Suppose the function 
^ ^ B-j » then it is regular in the L-sense and is represented as the de la 

Valleè-Poussin series 8.9(3) 

weakly convergent in the S'-sense, where ^ || q- /1 < . But tlxen, obviously, 
f €=: L and o L 

11/lit 
■i 

Ve have proven (l) - (3) for n = 1. But then the following embeddings 
are also valid 

BrXfP (Rn) -> L'X/I> (Rn) (I < p < 2), 

L*p(Rn)—BX/,(RH) (2<p<oo). 

(6) 

(7) 

(8) 

In fact, it is ianediately clear from the definition of the H- and 
B-dasses that if the function F(x) = F(x , y), y = (x2, ..., x ), belongs 

to pfRfc)» piRn), then for almost all y it as a function of x1 belongs, 

respectively, to HfiRjj ) and to ) where Rj. is the x-j axis; analogously, 
F 1 p 1 1 

if F(x) Ê Lx p(Rn), then for almost all y it belongs to L^I^ )(this follows 

from the integral representation 9.2(3) of the functions of the class Lr (Rv )), 
X-,P 

The equalities 

(9) 

(10) 

are valid here with an accuracy up to equivalency, where instead of A we can 
substitute H or B, and in (l0) F and f are related by equality 9.2(3). The 
inequalities defining embedding (6) - (8) then follow the corresponding 
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inequalities between the nom under the integrals in (9) and (10) that were 
already proven for the one-dinensional case. 

Fron (6) - (8), where x, can be further replaced by x^i ^ 1, •••»“)» 
embeddings (l) - (3) îollov trivially, if we consider (in the proof of the 
first embeddings (l) - (3)), that 

(\Kp<">), fl;-ßp "'r (i<P<»). 
.(i<p<«>). 

Q.A. Integral Repraaantatioq of Anisotronlr TilaBMa 

In this section we will be concerned with studying the operations 

f-Q-I'I. 

A-A,-|¿(l+*i)'/M| " 

(o>0, r-(r.r«) > 0), 

(1) 

(2) 

however, they do have analogous properties,which, for example, is evident 
from the fact that the function 

(1 +\x\rYIÍ\r(X) (3) 

and the quantity that is inverse to it for ary <T>0 is a Marcinkievicz multi¬ 
plier (when 1 < p^oo, cf 1.5.5, examples 8 and 9). 

We will further write 

(4) 
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Since the multiplier Af is an infinitely differentiable function of polynomial 

growth, just as the quantity tnat is its inverse, then Ir transforms mutually 
uniquely S' onto S'. 

The operation Ir is remarkable in that it performs the isomorphism 

Lp~[,(Lp) (1 <p<oo). 
(5) 

In fact, if f ê L , then 
P 

which follows from the fact that the functions 

(I+x^A^jc) (/-1.n) (6) 

are Marcinkievicz multipliers (cf 1.5.5, example 10). Therefore F Lr and 
P 

*•» p 

Conversely, if F 1^, then 

II / Up < Il F \lLf. 

This follows from the fact that the function (cf 1.5.5, example 11) 

(7) 

is a Marcinkievicz multiplier. 

Suppose r >0, A, ¿ 0, then, as we have proven, the isomorphism 

o < p < o©,. (8) 

obtains. Remarkably, even though the operation , , 
' ).r/br 
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is generally distinct from the operation I(A+¿)r* ^ey are equivalent in 

the sense that in addition to (8) isomorphism 

!>rhr (Lp) =» ¿p +Ä), (1 < p < oo). 

obtains. This follows from the fact that the functions considered 
in the example (l.5.5j example 12) are Marcinkievicz multipliers. 

9.4.I. Kstimates of anisotropic kernels. Let us assign r r (r^, ...» 
rn) >0 and 1 - (1^, ..., ln), and suppose is so large that the inequa¬ 

lities 

are satisfied. Our moat immediate aim will be shown that in this case the 
Fourier transform (cf 9-4(2)) 

Â =* A,(x) =» Gr(jf) (1) 

is an ordinary function exhibiting the "derivative"*) 

1-,0, - n (í+Tjy^A 

(an ordinary function), subject to the inequalities 

/-,G,(jr)Kc 

ln(j7r + l) 
1 (x<0), 

(I Jf I > 1), 

(2) 

(3) 

where c- > 0 is sufficiently small andrr appears only in constant c, from 
whence it follows that Gr L. This, in particular, shows that 

*) We can show that this assertion is preserved if in it the operation 
for integral 1 is replaced by the operation of the derivative 
LrGr - (îx)^.(P. I. Lizorkin ¿10/). 
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/,/=- I Gr{x - u)f(u) du (4) 

ï 

is an ordinary convolution for f Lp(l P ^ v°)• 

9.4.2. Let ¿I stand for the complex plane with the excision 
- <*>< X ^ 0 and P-' A + i/W is a complex number. We will in the following 
assume without explanation that z ^ is a single-valued branch, defined on 
£ , of the multi-valued function zf, equal to x^ = xA e^111 x on the ray 
0 C X < ¢0 . In other words, if z = x + iy, then it is always assumed that 

z^ = jz ¡^eil>argzt where | arg z| < n* 

Lemma 1. Suppose 0 <T ^ 1 • Then 

(z° —>40|<Ai|z —/l|° (zeQ, 

where M does not depend on z and A. 

Proof. Let us first consider the single-valued analytic function 

/(«) *a-l 

(2-1)° 
(2) 

on the domain fl* of the complex plane with two excisions - o* < x ^ 0, 

x <. po, equal to 

on the upper edge of the excision 1 ^ x < oa . 

In order to construct this function, we assume that the functiog z 
appearing in the numerator of (l) is defined by the formula z r P*6 
(z “-/oe®, p > 0, -tt< 0 < rr ) j i.e., that zo¿ (in the numerator) is under¬ 

stood as the single-valued branch of z* , defined on Sit equal to x* for 
0 < x -c ; as far as the function (z - l) in the dem>rainator_is concerned, 
then it is understood in the sense of (z - I)* - x^e ^ (z - 1 - re , r >0, 

0<<f^ 2¡r). 

The function f(z) defined this way has the limit lim f(z) - 1j more- 

over, it is bounded on all edges of both excisions. Thus, it is bounded over 
the entire boundary of Jl* and, by the principle of the maximum, is bounded 

on II*i 
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and we have proven inequality (1) when A = 1 and for all z ¢=- Ö* » but then 
also for z €.9., because for real z = x 1, the inequality 

Ua-lkU-l|# (0<a<l) 

ie well known. 

If now A is an arbitraiy positive nunber, then for zé SI 

|2Q - 4° I - 4° I (-J-)0 - 11 < Af I i. - 1 (“ - Af I *,4 C, 

and we have proven (l). 

i.«ni>A 2. Supposeo< VI» then for z é£J2 and ary A >0, 

lza-/lak Al| z-/41(4^+1¾^). 

obtains, where M does not depend on z and A. 

Proof. In fact, let ue connect points A and z with the segment c: 

t-A+t(z-A) (0</<l), 

obviously belonging to Q. . Then 
i 

2#->a-o Jr-'dz-aJ [A + t(z-A)\*-'(2-A)dU 
e 0 

from whence aleo follow» (3) ((a + b)P ¿ c{aP + ). ? > 0, and c doe« not 
depend on a and b). 

9.4.3. Let us introduce the notation 

" ri° n JJ_ 
^-2(1+^) *, ¿/ = 2(1+«^« (r/>0) K ) 

and take note of the inequality 
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r 

vr‘‘n<cv. 
(2) 

where c does not depend on V 

N'^o ‘•“«y -o "i)2'1' <u. 

Here (2) follows from the fact that, for ß > 0 and ary xj > 0 

(3) 

n \ie « 

?X/J 

and C£ does not depend on x 

wn “ un + ivns 

y 
Let us Introduce the curve i in the plane of the complex variable 

un +ikU (0 < k < \, - oo < un < oo), (4) 

dependent on the constant k and the vectorial parameter u1 - (u^, ..., un_-j) 

Let us moreover introduce the curve L*,. Suppose 

B = k (5) 

where k is a constant. If B $ 1, then we will assert that L*, Lu,, but 

if B >1, then when lies above point i, then suppose 

4«- " 4U, + lu., 

where lui is the twice-transversed segment ¿i, iB/. More exactly, we assert 

that the oriented curve L*, is obtained by the following motion: first the 

point LJi transverses the left piece of Lu. corresponding to an increment 

in Ujj over the interval (-oo , 0), then it descends along the segment down¬ 

ward to i, envelopes i, ascends up to Lu,, and departs to + £» along the 
right piece of . 

- 385 - 



We let E^i stand for the set point wn filling part of the complex 

plane vn between the real axis un and the curve L*t. 

Sin co A = V"1/,r is an infinitely differentiable function of polynomial 
growth, then Aé-S' is meaningful. For small r^. the integral 

even in ary case cannot converge absolutely, because study of the function 
A will proceed by the circuitous route of introducing the auxiliary function 

V °=“\ptr,a (p = Ä + 41, X. > 0, Ai r. 0 = Ar =* A) 

with complex parameter P . For sufficiently large A « the direct notation 
in terms of the Lebesgue (absolutely convergent) integral*) 

/A , —' _!__ 
* p. '•0 (2n)nn J vpla 

n(1+.gv.'v. 

" Ti<r J J — vm-iu. 

•••• ^n-l)» =»(U|, ..,, tfB.|)). 
(7) 

is meaningful. Along with (7), we will further consider when xr> 0 the 
function 

J e'* “' du' J _j_■_ 
ypio ~ du . n' (8) 

If < < 0, then (x) is determined analogously, but the curve in the 
n r 

complex plane synmetrical to it relative to the real axis would be taken as 
L*i. The consideration of the second integral, which we will also denote 
with ¿JÏT(x), is analogous and leads to analogous results. 

*) on following page. 
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When X > 0 for real f>Pn, where f is sufficiently large, the inner 
n * u o 

integrals (7) and (8) are equal to each other. In fact, in (8) the complex 
term 

'it0 rna 'n0 
(1+22) * =[!+(* + ii/)2]~ = d + In)“ (2 e £„-). 

& = i + X* -1/2, n = 2*i/. 

appears in V. 

The number £ + i>f can belong to the excision if and only 
if X = 0, y2^. 1, i.e., if 

z-iy, y2>\. (9) 

But points of the formula (9) do not belong to Eyi, which shows that V a 
single-valued analytic function of wR on E^i• In the following (cf 9.4*6(7)) 

it will be shown that here, for sufficiently small k 

-n<argl/<n 

(if we assume a priori that | arg V | ^ tt )> which shows that when wn transverses 
R ,, the point V belongs to ß (a plane with the excision -c»< x ^ 0), but 
then is also (for real <r and complex p ) a single-valued analytic function. 

Thus, a single-valued function, analytic in the domain , appears under the 

sign of the interrals of (7) and (8). Iheir equality follows from the fact 
that the integral over the segment c^ of points % + irj (0^ kU) tends 
to zero as |Ç I — to s 

f /i îV«^2 ,xiiu* 
(i+‘'»r g . ^ i 

y PIO “Un < J 
0 

l+({ + /tl)»| 

I 

(líl-l) 
— 0 

*) In fjonaidaring the operation in (7) and (8), the products 
is replaced with (ix)^. 

fl (l - X2) 
1 
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Ue can similarly prove the equality of the inner integrals in (7) and 
in an expression corresponding to (8), when < 0. This shows that 

1 P. r, a K’6«. p>p„), 
di) 

if >0 is sufficiently large. 

Estimates for the function00 will be obtained in 9.4.6. 
A 

Based on these estimates and the analytic properties of I -.A _ 
--1 trf 

and we succeed in showing (cf 9.4.7) that equality (ll) actually does 
obtain for all complex f - A + i/l , in particular for r= 1. .Thus, the general¬ 
ized function ^ is the ordinary function A (x) =4l^(x) - summable 

(1), X cn Estimates that will be obtained for (x) are directly trans erred 

to I. iA^)(x), which in fact leads to the inequality 9.4-lO)j (2). 

9.4.4. Let us begin with estimation of the n-th integral (rjt s > 0, 
1 - (1^, ..., Ijj) ^ 0, explanations below) 

if 
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(2) ¿ V • 

In the third relation the estimate of the integral on ¿|u|>lj is reduced 
to the estimate on f| tt Í > 1, Uj > 0; j 1, ..., n J owing to tne syranetrical 

r. 
properties of the function V. In the fourth, the cnanga of variables u J <f 

J J 

with the Jacobian appearing in the numerator under the integral and the fifth 
tena is introduced; here, we further make use of the inequality 

( S C )I/T » 2 f,. (.r > o); 
, J ! J 

hereß > 0 is a sufficiently small number that the sphere Jtt|< 1 and closes 
the sphere |Ç|< ß. In tho fifth wo introduce the conversion to polar coordi¬ 
nates. From (l) and (2) it follows that when p A t- i/U, 1 0 and 

*>Í7T 0> 
I ’ 

integral 9.4.3(7) converges absolutely and can be written as 

[ - J d«'J 
R R" 

where the inner integral (with respect to un) converges absolutely for ary 

u'dvO - I \ |A> , Arn > 1, cf (3)). 

9.4.5. Other show that whatever the the function 

^ ÍP) " (f-i\ ,.,. <P) ip =» ?. + iß, >. >0), 

is analytic on >0}. We obviously have 

. 

The derivative of is formally of the form 

(2) 

(3) 

- 339 - 



Continuous functions(V 
moreover, 

^ l) are found under the integrals in (2) and (3) and. 

I'M«)! 
y lia L, 

I LnI'iíí?l. 
J" ' Vr.a " 

Mil V${u)\ 
yr, 

where the right sides do not 
is legitimate and that <P' (?) 
when A > 

depend onp. This proves that differentiation 
is continuous, and consequently, is analytic 

(3) 

9.4.6. Below it will bo proven that if the parameter <T is sufficiently 

-- A*)), then the integral 
large (more exactly. 

r ) < 1, >6- 2 
n 1 

n 1 + 1 

r. 

(cf 9.4.3(6)) 

yfila du. 

(p" A.+ /(1, A. > 0, Kpowe Toro**), |(i|< 1) 

(1) 

(P- i/x, A > 0, moreover**), {^jc l) 

is a function continuous with respect to (P, x) on the set •( A> 0, |a<K 
/0}, analytic with respect to ^ and the estimates 

"n ' 

IV I (H>0), 

Mn|xJ|+| (x*0), (|xj< I), 

• (x < 0). 

(f > 0, I I > I). 

(2) 

(3) 

arc valid. 

«) Here H K(l), butXil) approaches the value X considered in 9-4.1(2). 
a*)The restriction /+</< 1 is actually not essential. 
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Let us use V* to stand for the result of replacing un in V with the 

complex variable + iï]n E^,, where is the domain between Lui and 

the axis u = 0. Obviously 

U / vi ^ V. =-1/ + (0, 
where ( *1n ~ ) 

rn° rn° 

“ ■ o+("»+"i)1)-5’ - o+“ü)"5" ■■ 

Let us estimate to from above. If 0 < then by 9*4»2(l) (expla¬ 
nations below) 

rm0 

<(\un\kU) * 

(4) 

Use of inequality 9-4-2(1) is legitimate because as explained in 9-4-3, 
the complex point in the first brackets defining a' belongs to Q. (plane with 
the excision - < un ^ 0) • 

We assume that the constants appearing in the inequality « do not 
depend on k. The third inequality follows from (x + y)a<< xa + ya (x, y ,>0); 
the next to last from the fact that |un| < U (cf 9-4-3(3)), and the last 

from 9-4-3(2). 

But if r„<y ;* 2, then (cf 9-4-2(3)) n 

r la! 1 
I <o| < — q*| [(1 + u*) 2 1+ |2m1|tj/-ii,| **']< 

< kV'*0 < kV, 

(5) 

because cf (9-4-3(2)) + 
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and (cf 9.4.3(3) , 1 ^ U) 

If follows from (4) and (5) that for sufficiently small k we can attain 
the result that for all Ujj + i ^ 

l®|< (v<-f), 
(6) 

when V can be as small as we wish, hence 

(I-yH^I^KO i-Y)y. (7) 

Inequalities (6) and (7), in particular, are satisfied °J *h® 
L*, (upper bound of E^, ). The following estimate obtains for the differential 

of the length of the arc L*(: 

H3 ¿11' ¡ dim' “ 1 + duñ “ 

- y í+M O + ^r1 duH < V2 du,. (8) 

on lu« î dLJ, = jd>i/. 

Argument V# (i.e., V on E^) for sufficiently »»«11 k designated thusly 
(assuming a priori, that |argV«|<. ri ): 

(9) 

By this we have proven inequality 9.4.3(10), which we needed to in order to 
show that V ^ is a single-valued analytic function of the complex variable 
wn ér Eu.. From (9) and (7) it also follows that 
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in-lo F. ¡e,t,tV‘) 0 '\Vt\0e~'°t"V'> 
* k (10) 

W.\°>cV' (IjiXl), 

where, thus, c does not depend on À> 0 and ¡/A / < 1 

We have 

(11) 

where V# is understood here as V on Lui. The second integral develops if and 

only if 

/"-i ¿i . \ 
*^1(1 +■ "j)2'* + lj > 1. 

The modulo of the integrand in does not exceed 

no^wv' 
f i 
c~ ^rs--r„B), 
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where c does not depend ona,Xj ^5-A+l/U(A>0, The integral 
n 

with respect to a ^ of (12) wo will then eatimate. We would see that it 

is finite for ary 1 ^ 0, ^ > 0, A > 0. If we assume that<<(/\* u) 

increases with decrease in and À (V ^ l)f then we have 

0, xn^x°it> 0). 

Moreover, the integrand is continuous with respect to ( /° , x, u). In 

this case, based on the Weierstrass characteristic l!j^ - 1^(^ » x) is a 

continuous function of (^ , x). If the integrand in 1^ is differentiated 

with respect to (complex) p , then the module of the resulting derivative will 
be equal to, with an accuracy up to the constant coefficient. 

I V»'° I ITr-*1 tt) 
V 0 

(*>Ao-y>A, —e>0; |,i|< |t r, > ^ > o) 

(13) 

and, since the right side of (13) with respect to a belongs to L, then owing 
to the Weierstrass characteristic of uniform convergence of the integral we 
can state that for specified p and x there exists the derivative d&f l}1/. 

continues with respect to (^, x). This shows that the function ij ^(^f x) 

is analytic with respect to ^(1 ^0, A > 0, |i(| ^ 1, Xjj >0). 

Let us note that the constants in inequalities (12) and (13) (just as 
in the preceding equality in the estimate of !£*■') depend continuously on f*. 

For small xn (explanations are the same of those in 9.4-4) 

- 394 - 



du< 
, fl o 

I/Í’l«!-1-P5Ï— 

J + J - T. \¡M 
du < 

I H I < I I »I > > 
{W 

«1 + 

-u -»'.Sv * 

f ‘ -«5« 

'U^v* 
iSvF 

• — ? I 

« i + f ¿P « I + J e''v'’"'1,17? 
i ». * 

X * 
(I 

'I*, 

•* (x > 0), 

1 (X < 0), (0 < X,, < O- 

I ln x, I + 1 (x-0) 

Ue oust bear In mind that the integral in the next to the last of the 
taken over (l,co) converges, but over (V *n» l) it does not exceed 

J* 2'«x'1 dz < 

1 

Mu 1 

(x > 0), 

<«<<»• (o <*„<{). 

(x = 0) 

But for large x^ > 1 

(14) 

relations. 

(15) 
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I? 
h -kx Vm'ltr» r . r »2a ¡ I < J e~u* da + J (l + u*)2 e 1 du<L 

\>\ )» I < i 
uj>0 

< e'kX/t + 
ts.\,P-'JL-i -»«„S1/ j n('+s7'/1,'' « ■ «t< 

XU1" ■ . , • 

OB 

<*-“*+ 19'n^-'e-e'Sdp < 

6 

< e + J e~? v < C1'«*- (c, > 0). 

(16) 

Let ua proceed to the eatinate of . Here the Inner integral ia 

taken along the aection (i, IB), where 

B 
fn-\ J_ \ 

The number B dependa on u'j when u' = 0 it ia minimum and equal to kn. ^ 
kn > 1, then in computir* ijp the outer integration ia performed with reapect 

to all u' <£: Rjj.!, however if kn<1 then integration with reapect to tt' proceeda 

along the external of some bounded neighborhood of the Doint u' = 0. We havo 
n = iy d ^ y -è B) on (i, iB); here the term (l + »ÿrn*/2 along one margin 

y rjr/2 irnî!«vr 
of L . appearing in V muat be underatood aa (yZ - l) a , and on 

^ rnv/2 -iTn^'T/Z 
the other margin, aa (y2 - l) « . The correaponding V value on 

different margina 1^ are complexly adjoint to each other; conaequently, their 

product ia equal to the square of their modulea, and the inner integral in 
iu) ia equal to 
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X 
1 i 

f VI 
U + Kv2-!)«-"'] 8 r i VI 

U + I(y2-1)«"1] 2 

p/O 
dy. 

(p = X + ip, X > 0). 

(17) 

'flie module of the expression in the braces does not exceed (explanations 

below) 

« a r"Y sin r„an 
< a 

where the constants in the inequality in ary case can be assumed to be locally 

independent of f - A + iM ; here 

t 

T =» a’1 Vy* - 1 , a-A'*a, 
(18) 

and since 1 < y < B, then 



O < i < a"11 fl2-l < a''fl — 

/1-1 

ï I 
-, < cfe - Ü) < I, 

I n -1 

i¥"!*a' 

- IV 
(19) 

where W can be aeeumed to be emaUer than unity, e1™" 
On this ground, we drop the denominator in the second term, restricting fro 
below the^lûve constant. The function under the el«noftho nodule^ 
the numerator is analytic on the interval 1*1 <1, eqjf1 ^“^in 1^) 0‘ 
îhe theorem on the mean can be applied to it. Thus, tho in g 2 
aces not exceed, based on the module. 

c y "<? ■'»VA'-8. (20) 

where c does not depend on tt1, y. 

He will show that function 
definition of the integral I 

X > 0 and in ary case locally on À > 0. 
n 

(20) is sunmable over the domain (a1 y) of 
for ary specified x, f> ; moreover, it is 

immediately clear that increases with decrease in xn and \ . This leads 

the fact that , *) is continuous with respect to the specified (/*, x) 

and is a real derivative (with respect to x) of order 1 of Finally, if 

we differentiate the integrand in (17) with respect to ^, we get 
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( laif0 
ln 1/1 + [(^-I)/"] » ) 

rno \P/0 

If the expression in the braces is reduced to a comnon denominator, its 
module taken, and A is everywhere removed from within the braces, then, as we 
know, in estimating (from above) the denominator can be dropped as a positive 
constant bounded from below; as for the numerator, it obviously can be estimated 
from above by the following means: 

(In a'"0 + l)Tr»° « aY«° (e >0, a > 1). 

The constant in the rigtt side depends on (arbitrary small)£ ; but we can assume 
that it does not depend on f from soma small neighborhood of /°0. As a result, 

we find that that integrand continues with respect to (u1, y, /° , xn), xn > 0, 

A > 0), differentiated with respect to p , does not exceed as to module the 
function analogous to (20), 

(20') 
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This shows that function ( P, x) 

And thus (explantions below) 

is analytic with respect to (>. 

I /2 * ! < J JJ (l + K/)^* J {/»e'**Tr»'dy C 
• i r 

«jno+^Wrf.'jo+^x 

x^.vnwtVi(t<|+ J Y[{i + i}}f : 
ll|>P>0 I 
1/ >0 

x I/' r/ç J (1 + a V)'";V'«' "a:':xr"°dT 

2 '7~ -I 
» I ' 

• - 

C1 +/tV¿T/ P T 1 
* * « 

-1 + / tv* r p'.»-.,-. < 

* • 

c 1 + /«'•‘-«i J (OO). 

(21) 

In the first relation we enploy the estimate of (20); in the second we replace 
y with r from formula (18) in the inr r integral; we also took inequality (19) 
into account; in the third relation, the integral witn respect to a* was de¬ 
composed into two: with respect to | u'j. 1 and with respect to la'I > 1; of 
which the first, obviously, is bounded; moreover, ve consider the symmetric 
properties with respect to a1 of the integrand; the problem was reduced to 
integration with respect to > 0. Here the substitution of variable 

^î-i 
t, « dl, (/-1.n- 1) 
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waa nada; In the fourth relation, we change the order of Integration; the 
polar coordinates ( I Ç J = f ) was Introduced into the space £ ; we use the 
fact that the variables a and f have the sane order: 

1/2 
and we employ the Inequality (i +^*^) 4C />^n(P>S,0<r<co).i 

( 2 2 2 
Finally, In the last relation we use the ineuqality + c /* r >c/°r 

and introduce the change xnpt =Ç, x^ràf*- àÇ . 

Let X>0 and let the parameter <r be chosen so that rn(X-tf) < 1i then 
the Integral in Ç in the right side of (21) is finite with respect to the 
interval (0,do ), just as the integral with respect to r is finite; therefore 

i 

If A = 0, than intagral In Ç 1», for xn, of tho ordtr (xnr ) ; thorofore when 
<r>0, we will have 

l^klln 

rn* 
Finally, when X< 0 the integral in X, for snail ^ is of the order xß ; so 

when (T> 0 
l/fki. 

Ve have proven that (for the appropriate <T ) 

l/PIc 

*7'*, k>o, 

l' K<0' (0<rB< 1). 
In-i-.x-O , 

* 

Finally, to get the estimate of for large Xq, let us decompose the integral 

iP-' into two integrals: with respect to | u'/ < 1 and with respect to | u'| >1. 
4 -X 

The first integral (cf third member in formula (21)) is of the order e n(xn> 1). 

Estimating the second, let us use the next to last integral (21 ). Then we get 
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I I < e'** + J xr"0dx J 

(rn (H-cr) < 1; c1, c2, Ö- > 0). 

For the case x < 0, the curve of L*, (cf (1)) if the complex plane 
n u' 

un is taken as synoetrical with respect to the axis r 0j the proof in this 

caso is analogous. 

Thus, wo have proven inequalities (2) and (3); here we already noted 
that the constant in these expressions depends continuously on ^ . 

9.4.7. In defining the function = by formula 9-4.3(8), 
the role of the variable u^ was emphasized. Bearing this in mind, let us 

set /Af> (x) = 4^n(*)- Wo can with equal success introduce the function 

¿í^jU) (j - •••> n), where the role of un is played by Uj. If x - (x^ . 

a ) is a point of which x, ^ 0, x- ^ 0, then n i j 

(<*) =■ hpy (x), 

because this equality obtains in any case for large real f , then also for 
arçr complex f> + iM(À > 0), owing to the analyticity of both functions 
with respect to p for fixed x For a given j, function 4^>j(x) is defined 

ana the continuous (with respect to x) at any point x that has the coordinate 
x. /t 0. Fron the foregoing it is clear that /^(x) can be extended by conti 

J 

nuity to ary point x /■ 09 and then 

(D Mp(Jf) = Mp,(x)- ... =ppa(jf) (jt*0). 

Here, there exists for the vector 1^0 such a <r0 > 0 that for 
<?><S0 the function K^(x) is continuous and 
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(2) 
\x¡\‘,,X (x > 0), 

lln|*y||+l (x-0), 

1 (x<0> 

l*yl<l. p.^ + i(1 ^>0 

Ufl'(4f)ke-el*yl (|xy|>l, c>0). 

Hence the estimates 

Mnk||+ I 
I 

(x > 0), 

(* = 0), (|JC|<1), 
(x < 0), 

(l*l>I, c>0), 

(3) 

(4) 

follow at once, where the constants c and c' appearing in the inequalities 
depend continuously on f . 

When 1 = 0, it follows from the estimates that 

(•*) = nT (*)e¿ « L (Rn). 

In fact, when Jí is obvious; but if K>0, then by the fact 
that ^ > 0 , 

and consequently (explanations as in 9*4>4)} 
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o 

Nov let fér S, then the expression ( é L) 

Ù*p. 9) - J lip (■*) 9 (Jf) d* (X > 0). (5) 

is meaningful. 

Let 4 Qiix) stand for the right side of (3) without multiplier c - c(/°) 
It can easily oo seen by virtue of the monotone properties of the function 
yC (with respect to À ) and the continuity of ç(f)(vlth respect to f>), that 
for ary fQ •= A0 + LU0 (A0> 0, |g0í< l) a 0 can be found such that if 

I P r A + 1>u» A> 0,|ii| < 1), then 

I c (x) I < (x)eL (I JT I < 1), 

||iíf’(-»)|<ce-^'ie¿(|Uf|>l)t (6) 

where c and c1 do not depend on the specified f . Therefrre the Weierstrass 
characteristic of uniform convergence (locally with respect to P) of integral 
(5) is satisfied and (jUpt *>) depends continuously on the complex P (A > 0). 
The derivative with respect to fM, over p is also continuous over 
(P. x), and the same estimates as in (6) obtain for it (cf 9*4.6 (13) and 
(20)). This shows that the function iá differentiable, and so analytic 
with respect to p. 

9.4.8. For any complex P= A + i>U (A > 0) and consequently for P= 1, 
given sufficiently large <r(rn (yC-<s) < l) the equality 

A(i, r. .i ■■ Pp (Jf). (1) 

obtains. Actually, the functions 

(A,, ,.,, <p) h (pp, <p) (qpeS) 
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of analytic with raapect to f(A > 0) and coincida for real and sufficiently 
large P; therefore they coincide any P , but also for any which entails 

(1). 

9.4.9. Other estimates of anisotropic kernels. In the lemma below the 
differences of the kernel Gr in the metric are estimated. The estimate 

will be used in proving embedding theorem. Let us introduce the notation: 

W» 

Lemma*) Let r = (r^ ..., rn) > 0, 1< p < <?o, and let a nonintegral 

positive number L be given such that for a certain j, j -1, •••» n-1, the 
inequalities 

1 -7<-|;<inin 
r* r) i 

are fulfilled. Then 

^G,(n. C)|dti<c|/»|t|C| 
^«-1 

(1) 

where s is the integral part of L, i.e., L = s+1, 0<1<1, sisan integar. 

Without violating generality, we will take h > 0, j = 1, Gr - G and 
introduce the kernel 

/CvW-d + f*)''"2 (-oo</<oo). 

We will write 
G 0)-0(/, r,.xn), 

We will understand the s-th difference with pitch h of the function <&(Ú in 
the sense ..«1 

Amp » <p (C + A) — q> (Ç), A* q> s AkAj^Ç. 

From the following estimates it will be dear that <p is a summable function 
of t in asy case for almost all X2, •••, xn+<]* 

We have 

») P. I. Lizorkin ¿IQ/. 
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0(0-J *,♦/(/-S) ¢(6) ¿5, . 
I <+(j+I) h , 

¿ï'G(t)-l / + J + • 

J 
< + (*+l)Â 

tâ'Kt+t (/ - 6) \|, (6) rfj - /i + /2 + /j, 

oo 

J|/,|d/< Jl(6)IJI AÎ+l/(i+/ (/ - 6) I <// < 
— i 

00 

1/. J I A* '/Ci+î (Oldt, I.**L(—oo, oo). 

(3) 

But (explanations below) 

JlAr'Mok/- 

In the second relation (inequality), we used the (third) estimate 8.1(7); in 
the third relation, polar coordinates were introduced into the space t-j, ..., 
ts+^ and we consider that 

s+1 s+1 
r tk 2 (2 
i i 

of integration was changed. 

The integral is estimated analogously: 

J I(/-1,3). 

t^)^; in the fourth, the order 

Further 
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/+(*+1) h _ — • T i i / n 

J|/2|d/- jdt I tf'K„,(t-D)(i)dt 
~m -« i 

< JiMM / lAr^iz-üU/- 
-• 1-U+DÄ 

0 

-Hlli J Ur'/r^wlrf/- 
Ä -(1+1) A 
o 1 A A 

-Iiviii J rfMJ • •• J 
-U+DA |o o 

~ Kt*i ^ + X 4 j 
(*+ O A A h S t <2^11, J a/> (<+y^ 

-<i+i>a o o \ i y 
(*+l) A eh ' 

^+S'»+*j- C,\ 

dt,\< 

dt, ... dttc 

-(*+1) A 0 

t±li ch p 1 hlhf p^-'dp J du 
. Il+ul'-1 

<"»} 
‘-I1»' 

< 

^2(((1)1^ f ps*i-i(fp f 
0 »H 

r/i 

Il * ' ' ^ 

(5) 

From (3) - (5) it follows after the additional integration of the inequa¬ 
lity with respect to (x^ ..., that 

J 14:,.0,(.,. £)|¿n 
"«-I Jf _ 

(5-0, 1, /-1.n- 1). 

1 + s + 1^ n 1 
Using estimates 9.4.1(2) ( considering that X= » 1 + ^_^o) 

we get r g r, 
1 

. j 
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Jl/*i f -< 
Vi 

I 

The first inequality follows from the first inequality 9.4.1(2) ( > 0) and 
from the aysnetry of its right part; the substitution r J£ 

= A j was made 

in the second inequality; polar coordinates are introduced in the third; and 
in the last must be considered that 

«-i 

~ 1 >0. 

9.5.1. Theorem of different measures. The embedding 

L'p(Rn)-+BURm), 
P " (Pi, .... Pn,), P; — (/-1, ..., rn), 

l<p<oo, Bm-Hm, l<m<n, 

(1) 

(2) 

is valid. 

Given the condition 2 ^ p <oo, ^ obtains (cf 9.3(3)) and the 

theorem follows from the corresponding theorem for the B—classes (cf 6.5). 



Therefore , it is essential to prove it for 1 ^ p < 2. However, the proof 
presented below is suitable for ary finite p. 

Proof. It is sufficient to conduct the proof for the case m ~ n - 1, 
because if m<n - 1, then we can proceed from n to n-1 by using embedding (1), 
and the transition from nrl to m can be made by using the corresponding theorem 
for the B-claases (cf 6.5). This is possible owing to the transitivity of 
relations (2)(cf 7.1). 

And thus, we need only prove the embedding 

¿P (/?„)-Bp 
P-(Pl.Pn-l)» Pi-'i*. 

(3) 

(4) 

(5) 

Three relations (cf 9.3(1)) 

Lp (Jin) -*> Hp (R„) -+ Hi (Rn.t) Lp (/?„.,). ' 

obtain. This shows that the arbitrary function f ^(R^) has the trace 

g(x) = f| on belonging to L (^1-1 )* 30(1 ^hö inequality 

llgl1, (6) 

is satisfied. We will assume that y - (x^, ..., ^ Bß-i* z “ and 

let (as always) f * be the largest integer less than P, and let f^L£(R ) 
by theorem 9.2.2 1 P n 

£l<=L'p(Xn), . 
dx*' 

where 

(in fact, Pj < < ^) and 

m. (*«) 
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Therefore the repreaentation 

J Gr>(y-% r-;)u(n, t)di\dt(vGL,(Rn)) (7) 

and 
II »It 

(8) 

obtains. Let us suppose 

»0»)-f 0,.(y-n, t)»(n. 
* dtf 

*4-. 
(9) 

(considering the evenness of 0r,). The explanation of the fact that the formal 

change z = 0 and (7) leads to the trace —-.- on will be nade at the end 
¿xfi 

of the proof. 

Let 
A(J. z)-AÎ|AG,'(>, z) 

be the second difference G , with pitch h in the direction of the x. axis. 
Then ' 

AÎ,**- ¡( ¡ 
—\V. 

A(>-n. C)»(n. OrfnjdÇ- 

“ J A(«i, ;)»(y-n. OdnjrfC. 

from whence, by using the Minkowski inequality twice 

aí,*®L, <«_,)< 
m 

<\\\dv JA(n. C)»(y-n. 
“** I *»-i *«-i 1 

<|¿t J IA(n 0M>|( JI.(► - n, 01'4>)'"- 
« 

- J /(A. C)ll»(n. C)llt,(Vl)¿C. 

* 

(10) 
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(11) C) JlA*Äg,.(t|, {)(</!,. 

Let us set 
ai-p,-pi 

and let us note that 

1 . a -L + £l_ I / i -.-- + .21. 
r*' ri +7r)*T"'7¿->l (p>l), 

r‘ P'n + rt 

therefore we can define 1 satisfying the inequality 0 < 1.. < * and such 
that 1 ’'ll 

-T +4->l. 
rn r| 

In this case, by virtue of estimates 9-4-9(2), for the kernel G , 

7(A. 

/(A. n) «riAf'/ji« 
(12) 

(13) 

(the absolute magnitude of the second difference was replaced by the sum of 
the absolute magnitudes of the first differences exceeding it), where 

Let us further introduce the numbers 

a! 

r' 
“«Tj-PÍ/, 

ptfi-0| + 1)-1 > - 1, a' « a + ~ P. 

The numbers oí,«*', ßf and are associated by the following relations: 
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Belov we use Harty'e inequality: 

a +p +pfi--\-J!JL+r'p__ 
+ r*P ('-r)- 

--l+r.i(l-l + -J-).o. 
o'+p+rtr-o. 

It* proof, t»u, reduce* to th» change of imrUhl* Ç = tu *nd then to th* 
UM of Mlnkoudd'a Inequality»). The inequality 

*.L(lf{i“ri"’di) ““"‘i /»«fitr <«)'*, 
i “• 

C“/7n±ï<®* ecj,H a<-l. 1<P<00. 
0 M » 

is aimilarly proven. 
ri/rn 

Nov ve have (setting t = h 1 in the third relation) 

jW I <p(:k) jWicr'd;, 
0 \lt|>< / 

(o>-i. ></><«>). 
I .. p 

*) Cf book by Hardy, Littlevood, and Polya ßj. 
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o 

-/‘■'''•'"if Í + 1 lx 

X /(»i, c)i|o(ti, « 

< J ( J a'1,h t> (n. o iitp rf;+ 
0 \iti<fcr'/r« 

+ J A*1 ÇP||o(il, 0 Hl " 

-[<■<«( J 
o Vltl<< / 

+ J OIL.,,.,)4« 
0 VltlX / 

< J II -(i. 01£,,,,.,) ¢-11- IE,,,., • 
— OO 

Since in the inequality obtained x. 
proven (cf also (8)) that 

can be replaced with x 
j' 

then we have 

„Pi . <ll»l 
XjP^n) •/.(«») (/ =» I, .... « - 1), 

from whence (cf further (6)) for z = 0, we have 

l!/(y. 
(14) 

It obviously is valid for any z not necessarily equal to zero, which is 
similarly proven. By this we have proved (3). 

The function f Li*(R ) can be written as 
P n 

Hy, 2)-/0,(^-1). 2-&)i(ti. C)dqd;, 
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Therefore 

f(y, z + h)-f(y, z)- 

-/ Or(y-ii. C + A)-X(n, C))if»itfC 

end by (14) 

I/O». z + Ä)-f(y, r)l| < 
S (*.-.) 

<\\f(y, z + fi)-f(y, 2)|la,(Vi)< 

-lix(n, C + A)-Mn.(h^O) (i<p<«>). 

Thie ahowa that if ve specify z in ^ f(y# *)» then we get a function of 
ÔX| ' 

R^_^, which is the trace of — =- on the subspace xn=z. 

9.5.2. Inverse theorem of different measures. Suppose 1 ^ p 00 

md suppose that the positive numbers r^ (i = ..., n) and possible vector 
with nonnegative integral coordinates 

for which 

P\K) 

be given. 

Further let the function 

.2m) s Bf* (^J. 

be brought into correspondence with each vector 

Then we can construct the function f(x) = f(x^, ..., of n variables 
exhibiting the following properties: 
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(2) 

H/IU* . 
Lp(Rn) 

t^LpiRn), 

(*«) 

(3) 

(4) 

Proof. Let us show that we can take the function 

(X)' 
(5) 

aOready defined in 6.8, «here tue sun is extended over all possible admissible 

vectors À and 

(X) (6) 

as f. 

If it is essential to note that the function 

?,-<P<x>-* . , (s»0, 1, ...) 
r,x r_x 

b 1 ..b m 

8/r1Jt _ \ 
are integral and of exponential type b with respect to x^j - 1, • • •» 1») 

and that 

h-J m ,(X) 

nP {*m) 

-'(Sb-'lk.if ,. J*. 
\i-u Ll<\Rm)l 

< 00. 

As for the functions <p . (t), they can be assumed to be equal to 

‘lb. (0 = 
hj ( -1//) 

/1 » 
(7) 
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where are aultably chosen trigonometric polynomials and Aj are numbers. 
j 

Here 4>^ are integral functions of the exponential type 1. In contrast to 

6.8, t3 (instead of t2) is inserted in the denominator of (7), which is not 
essential; on the other hand, here the functions ^ together with their 

J 
first-order derivatives belong to 1< = L(-oo,co). 

The fact that f é E^ÍR^) and that the boundary conditions (4) are 

satisfied is proven in theorem 6.8. It remains to prove the properties (2) 
and (3). 

Let ^ stand for the subspace of points (x^, ..., xn^). The inequa¬ 

lity (explanations below) 

I7*, ^ 

./ » X. i »“* i 

$ r * ™ * 

-Sm*" 1^(^)1. 

7I ♦,(*•)!- 
(8) 

where 

"11 q> \p (*,) a - ft ^ (c > 1 ), 

¢,(/)-0(0¾) when i = 1, ..., n-1 

¢,(0 * a * /-,,0(0¾) when i = n, <P = <PÁ . 
n 

is valid. 

The norm in the metric ^(^.^) of each member of series (6) is equal 

to the product of Lp norms of the cofactors of which it is constituted (in 

the corresponding subspaces of the variable on which these cofactors depend). 
Here we must consider that 

(9) 

(10) 
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(/=> 1. .... m; s-0, I, ...) 

(cf 8.7) 

I /-,(-A (o , 

«-«+1..-o. 

where IL is the x. axis and c, does not depend on s = 0, 1j 2, ... 

*l 
From (8) it follows (explanations below) that 

(. m \ I/P 

which proves (2) and (3). But in these relations we must validate the second 
inequality. 

Let us note the inequalities 

U>,(0l<7T7r <«'m>i). 

(12) 

(13) 

a1 

(14) 

where the constant A does not depend on the series of the standing multipliers. 
In the case (10) these inequalities follow at once from the fact that 4*(t/ 
is an integral function representable in the form (7). But in the case (11), 
this requires an explanation. The function f(t) is integral and of the expo¬ 
nential type 1 and belongs to L together with its derivatives; therefore its 
Fourier transform /2rr/l(x) has a continuous derivative and a compact carrier 

on (-1, +1). 
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(15) 

» 

Thua, >a(l) =/^(-1) = 0 and, conaequantly (r = rn). 

+i 

«►(0- J 
-i 

41 

«»(a'O- J’ ji(X) «*•*'</* 
-I 

a“* n(a-»J)e'K (¾. 

a 

f (i+ 

7- 1^(0^)^(1+1^ + 
-Í' 

+ r(l+^^(0-¾]^^^ 

ttt'1 “irr* 

We have proven (13) (ef (11)). Further, U « ie coneldered that4>(a*t) 
is integral and of tha exponential type a8, we get 

I (01 < o‘vav max I® (a*/)\<A, 

Il^(OI*<a-VaV J|®(a'0|d/Oia- 

i.e., (12) and (14). 

Now ve have 

where 
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f 
A, 

Aj 

A, 

« m 

2 J 
" 00 

S / 2 
<n-0 a-»i-i i-m+l 

/ .Î] 

rfy. 

I 1-0 
dy. 

But (cf (12), 1/p + 1/q - 1) 

“ /"« «(i-t) ir \p 

<1-1— 

- S 2 a’m« 2 X?a,,|-*V(e-,) -Sx? 
*7<> m—i i—O o 

(when p - 1, the third member in this chain can be omitted). 

Further (cf (14) , explanations below) 

A,<S f¡ "j 2 S 
m-0 j-m-f I smm+1 

OD 00 ■ 00 S Û 

S Í Í \^dym 
m-0 s-m+l a~m~i m-0 a"m~* 

00 I «0 

,-0 0 1-0 

because (cf (13)) 
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(17) 

Finally (cf (14)) 

OB OB 

A3<J 
I l-O 

dy< 

00 00 

<S««’j <S*i- 
«.o i * 

because 

" — 

21^(^)1 = 1^(1/)1+SlS>i(ÿ)l< 1 (l<y< oo) 

(cf (l2) and (17) when m - 0). 

We have proven that integral (l6) does not exceed £ Ag* This fact is 

analogously proven also for the integral extended over {**cx> <" y 0 3 * 

9.5.3. If it is considered« as we have stipulated, that = , 
then theorem 9.5.2 when p -00 ceases to be valid. In fact,the arbitrary 
function 

f (X, y) e WL ' m = ¿li1 (Ri) c Hi1 (R2) c Hia (R2), 
0<a< 1, 

is uniformly continuous (after suitable modification by the multiplier of 
planar measures zero). It satisfies on therefore also on the R| axis, 

the Lipshits condition of degree 1. However, the function <P{.*) 

not satisfying tne Lipshits condition (it is even nowhere-differentiable, 
cf note to 5.6.2-5.6.3) can be defined on the R axis. So there does not 
exist tnc function fix^ x ) ^(¾) which nwould extend <f> from R1 onto Rg. 
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\ 

9.5.4*) From theorem 9.5.1 and 9.5.Ü, as a consequence, we can get the 
embedding theorems: 

where P = X r, 1C 
below), 

BURn)^BURm), 

n 1 
" 1/P £. — > 0, 1 < p c 00. 

m+1 rj 

(1) 

In fact (explanations 

where 

.; . 

-B'p(Rm), 

X.-l 
m 

pl pm rm+i rn 
* It. • •••»"w“ * ' 

prn+i 

Bp(Rm)-*L^. • *' 

P ** rj pr«*., 
m+l 

-x,x; 

(Æn+|) Bp (Rit). 

(2) 

(3) 

The first embedding in (2), just as in (3), follows from theorem 9-5.2, and 
the second in (2) and (j) — from theorem 9-5.1. 

^-.anbedding Theorem With Limiting llæonent 

9.6.1. Lemma. Suppose g ^.1^.(^), f £= LpiHjj), 

1 <p<ÿ<oo, j + 

Xam(x.xn)eRnt , xy>0, 

5 ™ (5|l • • • i S*), i — -p7 ^ Xy + — Xy. 

' ’ ' (D 

*) This remark is owed to V. I. Burenkov. 
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Thon the inequality*) 

1dx í g (X) I (y) dy 
rx(x-y) C|1 11 il,V (*«.)’ (2) 

where c does not depend on f, g, end (^+-1 » •••* xn) 6=" valid; from 
which it follows that 

T Hy)dy 

J 'Kix-y) <c 

^ (««) 
M**r 

(3) 

Proof. In the one-dimensional case (n -- m - 1, ~ 1) (2) is the 
Hardy-Littlewood inequality 

J J g (S) f (n) ^ 
ll-t||7+7 (4) 

We would not provo it here**)._ J¡he fact that (3) follows from (2) is the 
F. Riecz theorem (cf Banach ßj ), stating that if a function F measurable 
on is such that the Lebesgue integral 

J Fgdx 
'm 

exists for ary g then 

ana 
Hi 

sup 

V(*m) 
<1 

J Fg'dx. 

M Hardy and Littlewood /1 _/, case n - m 1; V. I. Il'yin /B_/, general 

case. — — 
**)The proof is found in the book by Hardy, Littlewood, and Polya /1_/, 
page 346. 
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Let us write the integral estimated as 

¡twxfdyí jiyq 
(5) 

where y1 * (y^ ..., yj, y«' - (yn+1, ..., yn). Holder's inequality 

\[-]\<l Jl/(y)r^"V7 j f,T -- P (/) Q (/)• 
\ Rn-m ) ' ^n-m J 

can be applied to the integral appearing in the brackets. But (explanations 
below) 

Above we used the following notation: 
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«-V- 2¡h,-|¡x,+¿|¡x,>0. 

Tho substitution 

m+l . I 

yt 
Ur*H*j i/“1- •••. W-l); 

was introduced into the second equalityj tho integral in the third tenu was 
denoted with c; its finiteness on the unit sphere is obvious; but outside 

it, if we set u2^ - £., confining ourselves to positive u. and introducing 
J J " 

polar coordinates for ^ - (^m+1i • • then the corresponding integral 

is estimated thusly: 

*1 
II»/ / „ V e 

I* 'Lrñ—; f e ) < f () 1 2 </p < 00 

I V V., 'Ch j J r-r- ii.- «/j 
l + l / 

(e>0). 

The last inequality is obtained from the obvious inequalities (Çj 

X3 
2 K, 

1/ “ 
’ n \*lP 

(/-1, .... m), 

which rem/iin to be multiplied and raised to the power p'il/p1 + Vq)* 

Consequently, 

1/1« J 
-oo -90 I _ ,/ . O' + a 

from whence follows (2) by successive n-fold application of the one-dimen¬ 
sional inequality (4)• 

09 09 

J J 
igwiPty) 

i, i dxmdy, m* 
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9.6.2. Generalization of Sobolev embedding theorem*). 

Theorem. Given the condition 1<p<Tq<«?oi1^m$ n. 

■(f.. p +d rj 
*+l 7 

(1) 

the embedding 

Lp(Rn)~* L*t(Rm), (2) 

P-(Pi. .... P«). Pj-Mf (/-1, ..., m). 

obtains. 

Proof. We will let I_r stand for the operation that is the inverse of 

Ir (r ^ 0, I0 is the unit operator) and we will consider that operations Ir, 

Iri, I_r, and I_ri are commutative. Let f 1^(¾)^ > 0), then 

'-Irg (/?„)) 

and consequently, 

where 
f “ htr d-X)A, 

“ t-J-r Il h 11/./( CH ? H/.^ 

because the function 

is a Marcinkievicz multiplier (cf 1.5-5, example 12 and note at end of 1.5-5). 
And so 

u~ j Gu-*)r(x-y)h(y)dy 

(3) 

(4) 

*) Cf note to 6.1 and 9.6.2. 
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and for »ufficiently large parameter the inequalltlee 

!0(i.x„(4f)|< 

(5) 

are satisfied. Here vie must bear in mind that >£< 1 and 

(6) 

and we can use the estimate (first) 9.4.1(2). In the last inequality we em¬ 
ployed the ordinary estimate 

( 2f g * )V®^ c ^ , where c = cn is a constant). 

From (4), (5), and (6) by virtue of lemma 9.6.1 (cf formula 9.6.1(3), 
where we must assume Xj = V^j)* w# 

"L< (»mi 
C\\h\ 

'(*,)• 

But from (3) it follows that f é LqO^) for ary fixed %+1, ..., xn and 

11 f (*m) "11 M ^* (**) ^ C*11 Ä K (*') ^ 

< C311 
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and the theorem is proven. 

9.6.3*) From theorem 9.6.2, if we take note of the theorem 9.5.1 and 
9.5.2 we can as a consequence obtain an analogous theorem with the spaces B: 

Brp(Rn)-*Bpq(Rn) (1) 

¡iven the conditions 1< p<q<cxj,1 m<;n, r>0, f>= jir , yC>0 
jC cf 9.6.2(1)). In fact (explanations below). 

»! • r*+r rmi , 

__ K* 

/ «I1. X, r» V/i+l/n \ 

*!*lr 

B>’.. b; (*„). 

(2) 

where rn+1, rn+2 > 0 are selected sufficiently large that 

Eïnbeddings (2) follow successively from 9.5.2, 9.6.2, and 9.5.1. 

9.7. Nonequivalence of the Classes and 

*) This note belongs to V. I. Burenkov. 

- 427 - 



In conclusion lot us show that tho classes Bj and Lj for 1 ^ p< 0¾ 

p ^ 2, are not equivalent (are essentially distinct). I*t us confine ourselves 
to considering the one-dimensional ease. 

First let 1 < p <00. Let us look at the sequence of functions 

®Ar(0-E**M-K2cos[(2*+l)/]-S!^- (V-l,2, ...), 
0 0 

[1 (2*<m<2‘+2), 
0 for remaining t 

(cf 1.5.7 (10). 

Let us note that provided 1 < p c 00 

JlMOfd/C J|Hair<oof 
-ee Jm 

ñ 

r 7 
J ri*(Or^> JI cos (2* + \)tf dt> B>0 
-• H 

7 

(1) 

(2) 

(on (n/3, rr/2), the function ( f1 sin t J is restricted from below by the 
positive constant)t where B does not depend on k. 

Obviously (cf 1.5>6.1)j 

M°#)-0)a -f*& A, - (2*<| / « 2*41) 

and 

o) 

obtains, where the constants appearing in the inequalities here and below 
do not depend on N. 
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From the first inequality in (3) it follows that 

(4) 

Further, from the second inequality (3), when 2 ^p< «a (cf 3.3.3), it follows 
that 

I /AT vl/P| / m N kUP 

(2i4>»n : 

> (NB)'lp > Nl" 

(5) 

and provided 1 < p è 2, bnr means of the generalised Minkowski inequality 
1.3.2 (1), with the exponent <* - 2/p 1 

N \ Pß t N \ ^ 

>(S(ii^|p<| >(Sß j 
(6) 

On 

From (4), (5), and (6) it follows that 

N'll<\\<t>N\\p<Nm (l<p<«>). 

the other hand (cf 8.9(5)), by virtue of (1) and (2) the quantity 

(8) 

i.e., has the rigorous order N1/P. 
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We have seen that the orders of the quantities (7) and (8) provided 
p f 2 are different. This shows that the aero classes L° = L and B° and. 

P P P 
consequently, the classes l/ and B* for ary r are not equivalent. 

Using functions ve similarly prove that even for ary 0^2, the 

class B^q is not equivalent to Lp (cf 0. V. Besov /5^/, to whom belongs the 

above argumentation). When 0 ~ 2, p f 2, nonequivalency a¿so obtains, however 
it is proven in a different fashion (cf K. K. Golovkin ßj). 

Let us proceed to the case p = 1. Die one-dimensional de la Valleè- 
Poussin kernel (cf 8.6(5), (lO), and (ll)) 

MO 
! cos Nt -cos 2Nt 

N ' t* 

has the Fourier transform Vjj where 

1 (\x\<N), 

^(2iV-Jc) (N<\x\<2N), 

0 (2tf<|*l). 

If k and N are natural numbers and k ^ N, then 

(0 ¿v (/) (0- 

Therefore the k-th de la Valleè-Poussin sum of the function VjN is equal to 

V ( V ^) - 4 (IV -M - I ^ ^ w 

and, consequently, the expansion of V „ in a series in de la Valleè-Poussin 
sums is of the form 2" 

From whence 
vV-tV + SOV-i'^i)- 

(N-+00) 

because (after change of variable u = 2^“H) 
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Jl cos 2u - cos 4u cos u - cos 2u 
2u* 

du**c>0, 

where c does not depend on k = 1, 2, ... On the other hand, the norm of V^N 
in the metric L 

III/ « f I cos u - cos 2« I J . r^l¿“ J -P-Ld«~c,<°0 

is bounded. This shows that the embedding B° L is irreversible. 
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NOTES 

tq ChMttftg ï 

1.1-1.4* Familiar facta are presented, often without proof, from the 
theoxy of functions of a real variable and the theory of Banach spaces in order 
that reference can later be made then and that the reader familiarise himself 
with the notation adopted. Thgag facts can be found in the books: P.^Sj, Alek- 
sandrov and A. N. Kolmogorov /1_/f A. N. Kfllflogorov and S. V. fogin Z.1_/, Banach 
/1 /. L. A. Lyusternik and ï- I- Sobolev I. P. Natanson¿1_/, V. I. SÉairnov 
¿yji and S. L. Sobolev /3J. 

1.5. We presented with proof elementary background information (only 
that which is essential for this bode) from the theory of generalized functions 
for the class S, as this class ¿s defined by L. Schwartz ¿1_7- Let us note 
the articles fay S. L. Sobolev ¿1 & where the concept of the generalized 
function is introduced, and the I^sgian-language books og ¿he theory of general¬ 
ized functions of ga^perin ¿1_/, V. S. Vladimirov ¿1_/, and fay I. M. Gel'- 
fand and G. E. Shilov /1J. 

Let us also mention the book fay Hormander ¿1_/,where far-ranging results 
on multiplicators are derived. The multiplier S' could not early be de¬ 
fined as a bounded measurable function, but it was assumed that ré S' and 
displays the property that 

< c Ijfff for all f Ê S. Hormander showed 

that such a generalized /X function must be a bounded measurable function M (*) • 

_ 1.5.2. Inequalities (6) are proven in the works by Littlewood and Paley 
/1 _y. The theorems presented for the pe£iodic one-dimensional case are found 
in Chapter XV of the bgog by Zigmund ¿2J t and cf Marcinkievicz for the 
two-dimensional case /.1./. 

1.5.3. The Marcinkievicz theorem in the periodic two-dimensional case 
was proven in his artic¿e_cited /1J. The transition to the periodic case was 
made ty_S. G. Mikhlin /.1 J. Further development is to be found in P. I. Lizor- 
kin /5J. The condition introduced in 1.5.4 that 19e A in each coordinate closed 
juncture be continuous at any point x with f 0, i É e^, is used, for example. 
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in example 1.5.5(5), which is employed in subsequent theory. 

1.5.9. Operation j;r was 8tudied_lj} a number of works, whi£h_include 
those by Lj, Schgartz OJ, Calderon /1./, Aronszajjj ¿nd anith /2_7, P._I. 
Lizorkin /1 & 8/, Nikol'skiy. Lions, and Lizorkin /1_y, and Taibleson ßj- 

1.5.10. Hie concept of a generalized fjjnction.that is regular in the 
Lp-sense is to be found in S. M. Nikol'skiy /17 & 18/. 

To Chanter II 

The information presented in 2.1-2.5 is familiar and is auxiliary in_ 
purpose. In parti£u¿ar, of, for example, the books by V. L. Goncharov /1_/ 
and A. F. Timan /1_/ about_ interpolât ion. We also.ngte the books by N. I. 
Akhiezer /1./, A. Zigmund /2_/, and I. P. Natanaon/2_/, where, just as in 
the above-cited books, detailed background of trigonometric polynomials of 
one variable is given. 

To Chapter III 

3.1. Cf the book by N. I. Akhiezer /1 _/ on integral functions of a single 
variable of the exponential type, bounded on a real axis. In particular, this 
book derives the criteria 3.1 (5), (6) for integral functions of the exponential 
type and a complete proof of the facts pertaining to the theory of Borel integrals, 
which we omitted in our exposition. 

3.2. In deriving interpolation formula (4) for functions of the exponen¬ 
tial type, we followed the approach presented in the article by Civin /1 V. But 
the line of reasoning (cf 3.2.1) proceeds_with the involvement of generalized 
functions as was done by P. I. Lizorkin /ly. We have somewhat irarpoved them. 

3.2.2. Interpolation formula (2) for an arbitrary function f(z) of the 
exponential type* bounded on a real axis, is to be found in the problem book of 
Polya and Sege /1./, on the assumption that it is already known that 

Ae x + iy). A complete derivation is to be found in the book 
by N. I. Akhiezer/1./, section 84. 

3.2.3. The approach used to obtain inequalities of the Bernshteyn inequa¬ 
lity lype for the case of general norms is indicated in the book by N. I. Akhie- 
zer /1./(section 81, theorem 3). We add to the conditions l) and 2) listed 
there condition 3). 

3.3-3.5. S. M. Nikol'skiy ßj obtained the inequalities 3.4.3(2), (}), 
ana (4) ior trigonometric polynomials, along with the analogous inequalities 

fun?tion® the exponential type (3.3.2(2), 3.3.5(1), and 3.4.2 
Vl;y. The case 3.4.3(31 ¿¿hen n - 1, p' = 00 for trigonometric polynomials was 
known even to Jackson y2_y. Inequalities 3.4.3(2) for trigonometric polynomials 
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in the caee n = p ~ 1 derive from the results of S. M. Lozinskiy 

The constants of the inequalities presented are exact in the sense of 
order, but they are not exact absolutely. In some cases more exact or absolutely 
exact values of thesfi.constants are known. Accordingly, we point to the book 
by I. I. Ibragimov /J/; see further N. K. Bari ¿1J. 

Inequality 3.4.1(1) on the assumption that gv(x) = g y(u, y) is an integral 
function of the exponential type y* with respect to all x^, ..., xß is to be 

found in the work by S. 11. Nikol'skiy /3J • Here the more general case when g 
is an integral function only with respect to a is considered. 

3.3.7. V. I. Burenkov directed ny attention to the inequality 
flflij -¿IlflL , where q., ..., q_ is the permutation 

L(pv .. , Pn) " L(qi.qn) 1 
of the numbers p^, ..., pn placed in nondescending order. 

la .CtotaT IV 
4.1. In addition to the work by Beppo Levi ¿1_/_ai}d S. L. Sfibolfiv ¿1-¿/, 

ggngralized derivatives hav§ been studied by Tonelli /1 /. iîvans ¿1,2/, Nikodyra 
¿1_¿, Calkin ¿1 _/, Morrey ¿1_/, S. M. Nikol'skiy ¿3» ¿/t and DoiV and Lions 

¿1, 2/i where a further bibliography on this topic are to be found. 

4.2. Cf S. B. Stechkin ¿7J for formula (2) and inequality (6) for perio¬ 
dic functions of a single variable. 

4.3. Fractional classes ^(2) = Br(2 ) (r is a fraction) emerged in a 
natural fashion as classes of ^traces ^ of functions of integral classes 

vAg) on the manifold 2 g or the boundary of g of measure m less than the 
p 

mo/jsure of domain g._ First this problem on traces was solved ¿or p = 2 in the 
works by Aronszajn /1 _/,_VA M. Babich and L. N. ¿Iflbodetskiy /1^/, and then for 
m * n - 1 by Gagii^rdo ¿1J, L. N. sloboletskiy ¿1 _/, and for arbitrary m and 1 
by 0. V. Besov /2_/. In the latter case not only aro fractional B classes, but 
also integral B classes required. 

Zigmund ¿1J directed attention to the fact that from several stand¬ 
points, for example, from the viewpoint of the problem of the oroer of the best 
approximations of functions using trigonometric polynomials, the class of period¬ 
ic, with period 27f, measurable functions of one variable satisfying the condi¬ 
tion 

(JWw I' <A<in d) 
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where k > 1 more naturally supplements classes of functions of x with period 
2jr satisfying the condition 

+ /l)-f(x) I'dx 
I/p 

(0 < a < 1), 
(2) 

then the class of functions for which (2) is satisfied when ot“ 1. 

The theory of embeddings of H- and B-classes yields a number of new 
examples confirming this finding. 

4.3.4. At present a good many equivalent methods of defining spaces 

are known._ Many are collected in section 2 of the review by V. I. 
Burenkov ¿3J • 

4.3.6. Let us introduce the concept of the open set g cz with Lipshits 

boundary. If the set g is bounded, then its boundary H is called a Lipshits 
boundary if, whatever be the point x° /-7, an orthogonal system of coordinates 

= (Ç1i •••> 4n) can be found with origin at x° and a cubo 

A=-{|?/I<n;/-1.«). (1) 

excising from p the portion V - P& described by the equation 

l, - y (X), x - (1,. 
Xe V■»{I!/1<tj; /-1.n — 1), 

(2) 

can be found, where'/'(A) satisfies on A' the Lipshits condition, i.e., that 
there exists such a constant M that 

hMX') —*(X)|<A1|X'-X|, (3) 
X, X' e A'. 

If the sot g is not bounded, then its boundary p is called a Lipshits 
boundary if there exist positive numbers YJ and M, not dependent on x°é P » 
and a finite set e of orthogonal coordinate system obtained by rotation of 
the given orthogonal system (x^, ..., xn), such that whatever be the point 

x°G Pt an orthogonal system of coordinates Ç - ( , ..., €n) with origin 

at Xo can be found, parallel to one of the systems in the set e, and cube (l) 
can be found, excising from f the portion ^ "/"71 described by equation (2), 
where A) satisfies the Lipshits conditijn (3) on A1 • 
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Theorem 1. Suppose the open set has a Lipshits boundaxy. Ary 

of the classes vA(J2) (1 is an integer, 1 < p < cxj ), H^(X2)(r >0, 1 ^p<.co), 

b£q(JZ) (r>0, 1<. p <. ¿X) , 0<do ) can be extended in linear fashion 

beyond the limits of on with norm preserved. 

Domains £1 beyond whose limits the extension of functions of anisotropic 
classes is_possible depends essentially on the defining class of vectors 
¿illegibly/, more exactly, on the proportion in which its components are found. 

Let us assign the positive vector r > 0 (r^ >0; j = 1, ..., n),¿> ^-0, 

and further the positive vector a>0. Let P(r) ~ P(r, P, a, ó) stand for the 
set (of horns with apex at the zero point) of points x = (x^, ..., xn)^ 

subject to the conditions 

Cjh < x\l <(a, + t>)h (i->.»)• (4) 

0< A<p 

or any set obtained from (4'/ by mirror mappings (possibly, several times) with 
respect to (n - l)-dimensional coordinate planes. Thus, an arbitrary horn 
P(r) can be further described by the inequalities 

< I X < ifij !■ 6) h. si'in M . const, 
0 < /» < p. 

(5) 

Let the symbol «i+ííj 

stand for the vector sum of the set g^ and gg £1 i*e*» the set of all 

possible sura x + y, where x <£: g.,, j e± €2* 

We will state that the opon set i2 éS A (r) (fc J> 0),if : 1) it can be 
represented in the form of the two sums 

I I 

where is the set of points x Ê Uk located at a distance from the boundary 
¡2 - uk greater than <i. , and 2) Ihere exist a, and <5 such that the horn 
P* - P^(r, p, a, é) can be brought into correspondence with each k, such that 
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U* + PkcQ 1 (*- ... N). (7) 

relation (7) expresses the situation that whatever the point x ^ if 
the horn is translated parallel to itself in order that its apex coincide 
with x, then the horn thus shifted belongs to J2. 

Let us note that for the case when = ... = rn = r, the horn P is a 

cone resting on some polyhedron with its apex at the zero point. It can be 
proved that in this case concepts of a domain with a Lipshits boundary and 
a domain of the class A¿ (r, ..., r) coincide. 

Theorem 2. Suppose that the domain ]2 é A. (r) and the classes with 
norms c 

,nK» 
'11/11 

i.p(0) 
+ 

n 1 11 
V d 'f 

(lj are integers, 1 < p < ¿v>). 

II/11 dh 
iy8 

(*/ > rj ~ ?j> o, u: e < », i<p<oo), 
/,l+e(rpy) (9) 

A 
n 

■S' 

( I p oo). 

Ppk/h) 

hrrpj 
(10) 

(8) 

(9) 

(10) 

are given. Any of the classes can be extended beyond (7 on IL linearly with 
norm preserved. “ 

This theorem was proven for ) when 1. = ... ^1 - 1 by Smith 
OJ, who amplified the result of p Calderon ¿2J, whonhad proven it for 
the stronger norm 

11+2 il r li -1 
i a |< I w'w' 

Here the embeddings 
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(11) 
Wp (0) -> v'¿ •••• ' (Q) -> v'¿ •••• ' (/?„) v'p(Rn)-+ 

obtain, where the first and the two last are trivial, the second has already 
been the results of â&ith noted above, and the third is proven in 9>2. Theorem 
1 follows from (ll) for the space WJ(J2L). 

Given dissimilar natural 1., this theorem was proven simultaneously and 
independently for Wj(J2) by 0. V.JBesov /9, Ifi/ and by V. P. Il'yin ¿6J. 

(l < 0 $«») by 0. V. Besov /9, Ifi/, cf also 0. V. Besov and V. P. Il'yin ßj. 

V. I. Burenkov /4, showed that a domain not belonging to A*, (r) for 
which theorem 2 on extension no longer satisfied can be specified for each 
r >0. For example, any horn P(k), where k f cr, is such a domain. 

In this work cited it is also pioven that if theorem 2 does obtain for 
the spaces V£(i2 ) and Bp(j2 ) for classes of domains of the form Ae (r), then 

this is true if and only if instead of the horn P(r) the horn P(r, p) = P(r, p, 
r»*, é ) defined as the set of points x subject to the inequalities 

ath < X?1 < (a, + b)h (/-1.„), 0 < A < p, 

where 

is under consideration. 

Let us note yet another theorem stenming from theorems 1 and 2. 

Theorem 3. If g <s. Rn is an arbitraiy open set and g ia 

another bounded open set, then functions of any class cited in theorems 1 and 
2, which we represent by A(g), can be extended from g1 onto linearly with 

nona (with respect to g) preserved. This must be understood in the sense that 
to each function f A (g) its extension f <= A (Rj with g. (not with g) can 
be brought into correspondence, such that 1 
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where c does not depend on f and the dependence of f on f is linear. 

In fact, let us assign the orthogonal grid dividing R into cubelets, 
and let J2. be a set consisting of the cubelets of the grid containing the 
points g1. The boundary of SI, obviously, satisfies the condition A ¿ (r) 

for ary r and if the grid sufficiently dense, then g^cZSZcig- Functions 

f & (g) ¢: ACftJcan be extended by employing the theorem given above, with 
preservation of the norm from SZ onto R: for the corresponding extensions of 
f the following relation obtains: 

Il f Ha (#„) Il I Ha (O) ^ H / Ha <*»• 

This theorem 3 can be proven by a simpler approach, setting Î t<p, where 
<p is the "cap", i.e., a function infinitely differentiable on R^ equal to 
ußity on g and to zero outside of g (for the class H£(g), cf S. M. Nikol'skiy 

¿5-7) - 1 P 

Particular cases of theorems 1 and 2 pertaining to the extnesion beyond 
the domain with sufficiently smooth boundaiy and beyond thfi limits of a segment 
hayg been considered in_earlier work by S. M. Nikol1 skiy ¿4, 2/i K* ûsyadyk 
tyj, and 0. V. Besov ¿4_/; cf further V. M. Babich /,1./. 

4.4.I-4.4.3. Cf S. M. Nikol'skiy /TjJ for investigationg fif this kind. 
Inequality 4.4.3(4) is discussed in the book by S. L. Sobolev ¡J+J . 

4.4.5. If the derivative ~0 f/^x. is understood in the Sobolev sense, 
then this lemma is at once proven. In 'fact, let there be assigned on g two 
sequences of functions f^ and \ & Lp(g) such that 

J/* Jkrtdx (fc-i, 2,...) (1) 

for all continuously differentiable functions <f that are finite on g. If 
here fw —f, A. —► A in the L_(g)-sense, then it obviously follows from 
(1) that K p 

u *eLp(i) 

for all specified , i.e.,A is a derivative of f with respect to x on g 
in the Sobolev sense. S. L. Sobolev /4-/ “ads extensive use 1of this 
lemma. Here it is proven, starting from the fundamental definition of the 
generalized derivative adopted in this book (cf beginning of section 4.1). 
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4.4.9. Cf S. M. Nikol'akiy Ie)J on this theorem. 

_4_18. This theorem was proven in the periodic case by flardy and Little- 
wood ßj\ it was formulated without proof by A. A. Dejijj /1_/; the proof for 
p = 2 is presented in the dissertation of A. S. Fokht ¿1_/. 

To 

5.2. S. N. Bemahtoyn ¡2J, pages 421-432 studied the method of appro¬ 
ximation 5.2^,1^4); he proved theorem 5.2.1(7) for p - m - 1. Cf S. M. 
Nikol'skiy ßJ for the case m = 1, 1 p <- co. Here we consider the more 
general case m <. n of approximation by integral functions of the spherical 
exponential typo. 

Inequality 5.2.1(7) in itself whefi m = n - 1, 1 ¢- p < oo was obtained 
by another method by N. I. Akhiyezer /1_/. 

The periodic inequalities 5.3.2(2) were first_d£rived (n : k = 1, p r 
f^_) by Jackson /.1 J. Cf investigations by Quade /1^/ and N. I. Akhiyezer 
¿U for the case n 1, 1 <6 p ^ ^. The represfiniations 5.3.1(11) (analogous 
of 5.2.1(4)) are to be found in S. B. Stechkin /1_/. Inequality 5.3.2(5) in 
the case of functions satiafvlpg Lipshits condition for Fejer sums (p = ^° ) 
is to be found in A. Ziamind /3 /. section 4.7.9, and in the general case 
(p - ««j in S. B. Stechkin /,1./. 

The theorem on approximation 5.2.4 and its periodic analog presenting 
in 5.3.3 for the case p - p^ = ... = Pn is to be found in S. N. Bemshteyn 

¿2_7, pages 421-432, and if the numbers p^ ..., Pn “*« generally different 

— in S. M. Nikol'skiy /Tfi/. Cf Nikol'skiy ßj for inequality 5.3.2(6) for 
exponential continuity modules. 

5.4. The inverse theorem of S. N. Bernshteyn on approximation with 
aj.ggbraic and trigonometric polynomials (p r 00 , n - l) was proven in his work 
J t pages II-IO4. It ¿s.refined in thejpfiriodic case (for nonintegral r) 

by dela Valleè-Poussin /1J and Zigmund /1J (for integral r). 

5.4.4. Ya. S. Bugrov /3, Q also obtained similar inequalities for 
polyharmonic functions in a circle and somiplane and applied them in studying 
ciifferontial properties of these functions all the way to the boundary. 

5.5.3. The equivalence of the norms |j •((„ lor different admissible 
pairs (k,f ) can be proveí* directly, without ß ^sorting to approximation 
methods (cf Marchoud /1_/. Cf K. K. Golovkin /1,^ for more general investi¬ 
gations in this area. Equivalence was proven_in the periodic one-dimensional 
case by the approximation method by Zigmund l^J. He emphasized equivalence 
for integral r of norms of the fora 1 f| .jlH# with the norm 5||.|fH#, e::pressed 



in terms of the best approximations. Cf S. N. Bernshteyn /2_/J pages 421- 
432 in the aperiodic case. Here this problem is explored for approximations 
with integral functions of the exponential spherical type. 

5.5.4. In the periodic one-dimensional case when p this is the 
classical_theorem proven in the works_of S. N. Bernshteyn /1_/> pages II-104, 
Jackson /1J. dela Valleè-PfiUflsin ßj, and Zigmund /1 /. When p< 00 , 
cf Quade an^ Zigmund ¿1_/. Cf N. I. Akhiyezer JJ\J for the aperiodic 
one-dimensional case when 1 ^ p i'co. Here generalization to the case of 
approximation with integral functions of the exponential spherical type is 
given. 

5.5.8. Mary results pertaining to this problem are available in the 
periodic case. 

5.6-5.6.1,. _In presenting the sections, we made heavy use of the work 
of 2« V. Besov 15 J * and in the case of 5.6.1, even the work of T. I. Amanov 
15J. 0. V. Besov made available to a now (presented in the text) variant 
of the proof of the embedding ^B' —^B. This procedure has its advantage 
that it is freely transferable to more general cases of theorems of this kind 
(cf K. K. Golovkin ¿2j). 

Among different equivalent norms ll'/jg (in particular, lMiH), we intro¬ 

duced the norms g and expressed in terras of directionwiso derivatives 

In the isotropic case there have an advantage, and in ary case, a technical 
advantage — instead of the sun of integrals corresponding to all possible parti 
cular derivatives of orders s with | s| = a single integral is taken. In 
the case /° = 0, these norms are used infrequently in the literature. 

The equivalence of the classes an(* ^8^( R^Hl i'> G< was 

proven by 0. V. Besov ¿3, ^7; and by A. A. Koryoshkov /1_7 and P* L. Ul'yanov 

¿5J in the periodic one-dimensional case. The equivalence of "*0^(1^) and 

^B^Q(Rn) was proven in the same works of 0. V. Besov, and when 0 = p, r^ are 

integers, in the work by S. V. Uspenskiy ¿3J . 

In particular case, 0 ~ p = 2 (for the admissible pairs (r, l), (P, 2)), 
the nom J • were introduced and was studied in_the earlier works of Aron- 
shain 15 J » V. M. Babich and_L¿ I. Slobodetskiy ¿1_/, and for p - 0 f 2 for 
nonintegral r by Gagliardo /1J and L. I. Slobodetskiy ¿1J. 

Expansions of functions f in the form of series 5.6(7) with norm 
are to be found in 0. V. Besov ¿3_/; the norms °lhllß were used expli¬ 

citly in the work by T. I. Amanov /3_/. 
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5.6.2-5.6.3. Suppose function f(x) has the derivatives 

(j r 1, ..., n), satisfying with respect to xj on the bounded domain Si the 

Lipshits condition of degree j(0 <°< ^ rj=rj+<*j^ un^,orn^y 

respect to the remaining variables, and let ... j ^n) be a vector 
n p. _ _ 

(integral) for which 2! --^-<1. S. N. Bernshteyn cf J_ 1^/, 
1 

pages 96-104) when r - r = ... = r and Montel (l9l8rT, cf for any 
1 n 

r.> 0 shows that in this case a mixed continuous derivative f^’) bound on 
J 

any domain Sl^C. ÇL^C- SL exists on SI . S. N. Bernshteyn showed further 

that the derivatives f^^( IP I = T - r r = r^) satisfy the Lipshits 

condition of degree <4 '< •< on • 

Theorem 5.6.3 amplifies these results, specifying exactly the class to 
which f^ belongs and extending (when £1= H^) the result to the case of the 

metric Lp(l < p <?o ) of the B-classes as well. This theorem was proven 

by S. N. Bernshteyn for the H-classes when p = 00 and r “ r^ :* ... - r^ (¿2_/, 

pages 426-432) and simultaneously independently for arbitraiy r^(j “1, ...,n) 

by S. M. Nikol'skiy ¿2_/, who even 8£oi¿ed its unimprovability in terms of 
H-classes, and by this same au^hfir /5J in the metric Lp. It was proven for 
the B-classes by 0. V. Besov /5_/. 

The question of the extension of theorem 5.6.3 to the case of the domains 
jTZ is solved by employing theorems on extension (cf 4-3.6). In the Montel 

works cited above, a square with sides parallel to the coordinate axes was 
actually considered as the J2 : 9 is not necessarily an integral, vector, and 
then f(/°) is a mixed particular derivative in the Liouville sense. 

Theorem 5*6.2 on equivalence 

ß'pe ,r 

for nonintegral r follows from theorem 5.6.3. Is the general case its proof 
is given(by other methods) by V. A._Solonnikov /1_/; cf further S. M. Nikol'- 
skiy, G. Lions and P. I. Lizorkin JAJ for the H-class. When in (l) is 
replaced with Si, property 5.6.2(1) is finitely preserved for the domain 
.TZ c Rjj for which the theorem on the extension of functions of the classes 



Bpo*'*,r ^ is valid ^cf 4'3,6 ^ the note to 4•3•6^* V> 1' Burenkov 

¿7.J investigated domains for which the equivalence 5.6.2(1) does not hold. 

Suppose Bp = BjLlRp), Hp -• Bj„ (Rn), Lp = I. (¾). The condition for 

(l) 
theorem 5.6.3 when Ji = 0 and 1 ^ p ^ 2 (0 = p) entails f éE Lp* This 

follows from 9.2.2 and 9.,3(2). When 2 ^ p < «>, this no longer is the case: 
if, for example, f ^ B^(R|), then hence it in general does not follow that 

f^ exists and belongs to Lp (cf 9.7). 

Theorem 5.6.3 for the class Hr = Br in the case 0 is also invalid. 
P P00 

In fact, the function 
oo 

/0)-2 ^cos fr*0 (* > o 
s-l 

nowhere has a derivative (Weierstrass, Hardy, and cf Zigmund ¡7J* Chapter II, 
sections 4.8-4.11), while at the same time it belongs to the periodic class 
H¿. Ihe last assertion is proven thusly. It is easy to verify that 
P 

IIcos^!l¿. -Ileos- 

where K does not depend on s = 1, 2, ... Let us assign h>0 (0< h<l) and 
select a natural N such that 

6-(W+1) < A < 
then 

Ia’4. + 
V ,-1 pN 

N—l 

^ 2 b~*b^s + h7bN + ^ 
s-l 

where inequality 4^4.4(3) is used for trigonometric polynomials (cf reference 
on text page 202 /latter half of section 4«V* 

5.6.4. The example is given by Yu. S. Nikol'skiy /1_/. 

5.6.5. Properties 5.6f5(l), (2) 
corresponding spaces and B^. P. I. 

this property in the case of B-classes. 

expressed normwise continuity in the 
Lizorkin directed my attention to 
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To Chapter VI 

6.1. The addition of V. P. II'yin ¡2J to the embedding theorem (l) 
applies to the case of the limiting exponent (when 1, 2, ...) for m<n. 
This assertion in individual cases of a limiting exponent was known to V. I. 
Kondrashov £ 1J ; he also investigated several cases when m < n and when /° is 
nonintegral. 

S. L. Sobolev also proved that in theorem (l) when m = n, we can assert 
that p - 1. 

In the one-dimensional case, the problem of traces does not arise and 
we can spealc only about thej'pure" theorem of different measures. It was proven 
by Hardy and Littlewood ßj\ see further the book by Hardy, Littlewood, and 
Polya ¿ij. 

6.4. Suppose Pd is a sufficiently smooth surface of measure m < n. 

The trace fL of the function f é=. Hr(R ) is correctly defined for it in ary 
1 n-m ? n 

case given the condition r - - ... ^ 0. Provided this condition holds, the 
P r- n~ *** 

direct embedding and the inverse embedding to it H£(Pn) p ÍT7) 

obtain (cf S. M. Nikol'skiy £>J). Cf 0. V. Besov ßjj for the corresponding 
generalization to the B-classes. 

6.7. Ya. S. Bugrov ß_/ showed that the embedding 

< (A,). r'-r-±^L, 

is valid not only when r' ^>0, but also when r' r 0, if 1^) in its left 

member is replaced with • 

Different amplifications of the theorem on extension can be obtained if 
we require that the extending theorem satisfies additional properties. 

L. D. Kudryavtsev ßß showed that in theorem 6.6 the function f ¿í 

extending on tte function 
n-m . 

yeH p (Rm) < «</!./• 

can be constructed so that it is infinitely differentiable on Rjj - and that 
the properties 
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P J pp <*-«)« 

dx\' ... dx** ¿Ru < ». 
n 

e > 0, 2**-r + î (l<p<oo), 
ï 

(1) 

are satisfied. These inequalities ceased to be valid when £ 0. A similar 
result was obtained by him for p = . These facts point to a certain rela¬ 
tionship of the classes considered here with the so-called weighting classes 
of function whose derivatives (or their differences) are integrable in the 
p-th degree with weight. If we proceed not from H-, but the B-classes _ 
(9 < eo ), then similar findings obtain even when £ = 0 (S. V. Uspenskiy ¿3_/). 

Systematic study of weighting classes was begun in the_w<2rk by L. D. 
Kudras¿oy ¿2J referred to aboyg; cf further A. A^ ^asharin , S. V. Uajgen- 
skiy ¿3Jt I. A. Kipriyanov /1_/, A. Kufner ¿yj. Cf V. ¿.„Burenkov ¿3J, 
L. D. Kudryavtsev ¿3J, I. Ñecas ¿yj, and S. M. Nikol'skiy ¿12/ for Bibliog¬ 
raphies on this topic. 

Ya. S. Bugrov ¿1__/ proved for the unit circle & on the plane in terns 
of the classes H the limiting exact theorem. 

Suppose functions with period 27T 

ç4(0)eW,^,'*■, (*-o. 1./-1. '>0). 

Then the polyharmonic function u ( Z3, 0) of polar coordinates (0 ^ f < 1, 
0 ¿ 0 ^ 2n) solving in unit circle <y the boundary-value problem 

A'U(p.0,-°. ^-ç,(e) (*-o. I./-i) 

(A is the Laplace operator) belong to the class H 
r+l+ ^ 

(<*). 

A similar result was obtained_fpr the semiplajje_(Ya. S. Bugrov ¿3J). 
The exact results of N. M. tyunter ¿1J and Kellog ¿1^ for tho three-dimen¬ 
sional domain with smooth boundary vhgn_p - oo and when r is nonintegral 
precede these theorems; 0. V. Besov ¿1J for the semispace when 1 ^ p 
and for nonintegral r; N. I. Mozzherova ¿1„/ for the three-dimensional domain 
w¿th smooth botaidary when 1 < p < <°o and nonintegral r; S. M. Nikol1 skiy 
¿4» 2/ f°r a circle with p - 2 and ary r. Cf, further, T. I. Amanov ¿2_/. 
At the present time there are many results of this kind with estimates of 
solutions of different boundaxy-value problems in terms of tho classes 
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examined 1¾¾ (cf, for example, V. A. Solonnikov Nachas ßt TJt 
N. Vekua ^1_/). 

and I. 

6.9. Suppose k = (k1# ..., 1¾) ^ 0 (i.e., 0 for all j) is an 

integral vector and h = (^, ..., hn) is an arbitraxy vector (h f 0, j = 1, ..., 
J 

n). By definition 

aIz-aÎ1 ... ûy. 
% 1 

j 
where ^ x h f is the difference of f of order k. with pitch h. in the direc- 

J j J J 

tion Xj h£sf )• Let us assign the vector r = (r^ ..., rn) ^ 0 and assume 
J J 

that e is ary sub-set of the set of natural numbers en ~ { 1» ..., n } , and 

r0 " ..., r^) is a vector whose complnents are governed by the condition 

Let us set 

'j- 
o. 

ye». 
y'i*». 

.¢). 

..J), 

where, if r® >0, then r® is the largest integer less than r®, and if r? = 0, 
— “ J J * 

then re “ 0. 
J 

„ ,. Leí.u® further introduce the vector cu = (l, ..., 1). fly definition the 
function f(x) - fix., ..., x ) belongs to the class 3¾ ~ Sr if the norm 

• n P P 

is finite, where the sum is extended over all sub-sets e, h!^ ... h*11 and 
(r®) - “In 

f is a partial derivative of order r®. This sum contains the term 
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Ilf (R j corresponding to the empty set e. 

^ Theorem on representation. Suppose r > 0. For f(x) ér S^(H), it is 

necessary and sufficient that the representation 

/(*) Q* (*). (1) 

obtain, where Q^(x) = Q^r 

rj 
rn 

(x) are integral functions of the expo¬ 

nential type J, respectively, with respect to for which 

and c does not depend on k. 

The embeddings 

('.-I1."k ><»<* 
y-m +1, 

(3) 

(4) 

obtain. In fact, if f é then ^ are Valiá' 

iQkh, 

and f ^ Sji(Rn). Further 

-*,+7 2 *// 

and if we set in (1) x .„ - ... - x - 0, then we obtain for the trace of 
®+i n 

f on the representation 
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Ç Ui.*«) - / (*I.*mi o,.... 0) - 2 « 
•m * 
* >• 

where the sum is extended to m-dimensional vectors ^ 0 and 

¢ - 2 .*m' 
**" *;>0 

m + l </<» 

where (r - 1/p ,> 0) 
j 

"SVy " S kj(rrj) ~2 yir 
19. |<2 ' S 2 m+l ' <2 * , I /"I *J>o 

m+l </<n 

which entails (4) by virtue of the inverse theorem on representation. 

Let us introduce the space 

..-¾1.'“-iW 
with the norm 

"V. 
/-i si 

for vectors ..., r1'1. the theorem on interpolation is valid: _N 

^*>0, 2x*<ij. 
(5) 

If N n and r* - (0, ..., 0, r^, 0, ...,0), then 

sr'.,JV - srl.,v// » //!'• •••• 
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These results were proven by S. M. Nikol'skiy /15« 16/. 

Let us note the work of N. S. Bakhvalov /1 where he independently 
proved one aspect (the necessity) of the theorem of representation of func¬ 
tions of the periodic class S| H: if f éS{ H, then (l) and (2) obtain, where 

P P 
Qa are trigonometric polynomials. _Retensions of these theorems from H- to 
B-classes belong to T. I. Amanov p>J and (by other methods) to A. D. Dzhabrai- 
lov ttJ' 

6.10.2. This note on mean functions was communicated to mo by 0. V. 
Besov. 

iQ-SMtSC HI 

7.2. Inequalities between the norms of partial derivatives with para- 
meter ¿ and multiplicative inequalities are found in the work of V._Pj. 11'yin 
ßj and in his later works, V. A.JSolonnikov /1,./, K. K. Golovkin /1_/, V. 
P. 11'yin and V. A. Solonnikov /1_/, and others. 

Inequalities containing £. are employed in the theory of differential 
equations when it is desired that one of the terms of the form 

be smaller than a pre-specified number. 

It follows from the results of S. M. Nikol'skiy /11/ pertaining to more 
general embedding theorems that the inequalities between the semi-norms 

11/11, <c|/l , . 
V<f> •»<«> 

n/n, <e\\n , 
V »p(*) 

(1) 

(2) 

obtain for the arbitrary domain g c: without the pre-assumption that 

11% (g) is finite, if and only if r < r (in the case of (l)) and 

r < 1 < r' < r (in the case of (2)). 

The inequality 

I/I , i <fl/l / (i <p< oo) 
,_T.. . •#(*») 

follows from the work of L. D. Kudryavtsev /4_/ and Yu. S. Nikol'skiy /l_/ on 
weighting spaces, along with confirmation of the possibility of extending 
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1-4- 

functions ^^r-Wp ‘ (Rp_^ ) onto so that for their extending functions, 

the following relation 

’•pl*n) /-1 
WP («n-l) 

(1 < p < oo) 

obtains without the presumption that the norms Ilf//, / . \ and l\4>l¡ , 
P' n' ^p'^-v 

are finite. In these two theorems, just as above, 0 < 1 - 1/p < 1. 

7.3. i£xirenum_functions are introduced and studied in the works of 
S. M. Nikol1 skiy I. Amanov £\_/, and P. Pilika /1^/. The accuracy 
(unimprovability) of the inequalitiîs presented here between H-norras was 
established by means of these works. 

7j.7j. Many investigations, baginning with the works of Ascoli jJJ and 
Araelá /1_y, deal with prob]era of the compactness of classes of functions. 
The fundamental ArzelA theorem on the compactness pertains to thg ¿lass of 
continuous functions. In the Lp metric the Kfilsogorov theorem /1J (for p >1) 
corresponds to it, and the Tulaykov theorem /1_/(for p = 1). Investigations 
on the problem of the ¿ompactness of classes of differentiable X^ctions include 
the works_oX Rellich /1 /. I. G. Petrovskiy and K. N. Smirnov /1V. I. Kon- 
drashov /1_/, Pi¿one ¿1_/, Pucci ¿1^/, L. D. Kudiyavtsev /1_ÿ, 0. V. Besov /12/, 
V. P. 11’yin ¿9_/, and others. 

The theorem presented here for the classes and Wr can be found in 
P p 

detail in S. M. Nikol1skiy /8_/. In essence, here we are concerned with weak 
compactness: from a sequence bounded in the metric or Wr, we can separate 

a subsequence convergent in the Hr" sense \t ?-0) to some function f^ Hr. W1". 
P p* p 

The theorems 7.7.1-7.7.5 are already concerned with the compactness of 
a set in the metric of the space to which it belongs. In particular, it encom¬ 
passes the theorem on compactness in L (cf S. L. Sobolev /4 7, Chapter I. 
section 4.3). P 

Theorems 7.7.2-7.7.5 were proven by P. I. Lizorkin and S. M. Nikol'skiy. 

0. V. Besov jj\7j studied problems of the compactness of sets of func¬ 
tions f in the H-classes by imposing additional conditions on f. For example, 
in the case Hp (r l) it is assumed that 

11/(X H- A)-/(x)||<a(A) \h\r 
(a(A) -»0, |A|->0). 
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To ÇfaPÏM.Vm 
8.1. Operation corresponds to some extent to the Weyl operation 

(cf Zigmund Chapter XII, page 8) 

JV 

/(,)-/;,-1. J K,(x 
-il 

Kl (I) = (/>0), 

J <i 0) di - 0, ç e 

—A 

(D 

It is intimately involved with the (aperiodic) operation 

X 

'W-7Ï5) 
41 

of Liouville. Kernels I* have for t the same singularity U Io1"1 (we have 

in mind the one-dimensional case, compare 8.1 (6), (13) and Zigmund L!\J» 
Chapter V, section 2.1). Hie Liouville kernel (x - t)*"1 when t = x has the 
same singularity. 

Estimates of the form S^lX?) for partial derivatives of Gr (|x|) are 
found in Aronszajn and Smith /1_/. 

8.2. The theorem on the isomorphism of the classes (Rn) is proven 

in the works of Calderon £>J and Lions and Magenes /1_/. 

8.3. Estimates of differences of derivatives of Gr( 1 x | ) are to be 

found in Aronszajn and Smith /Ï_/, Nikol1skiy. Lions, and Lizorkin_/1_7, Chap¬ 
ter I, and S. M. Nikol'skiy (with an addition by Ye. Nosilovskiy ¿18_/, lemna 6. 

8.4. Inequality (£)^ cf. Nikol'skiy. Lions, and Liz or kin /T_7, Chapter 
I, and S. M. Nikol'skiy /1^/, lemma 6. 

- 451 - 



In the periodic case when n = 1f p =<*> ,it was known to I. P. Natanson 
zU, pp 119 - 120, if it is assumed that (f is the best approximation 
of the function f using trigonometric polynomials w¿th a period-based mean 
equal to zero, and it was known to S. B._Stechkin /2J in the ordinary meaning 
of E» (f)^ j see also Sung Yung-sheng ¿1.7• 

Inequality (4) is an analog of the corresponding one-dimensional Favard 
inequality /1_/ in the periodic case. It is used in deriving inequality 8.6(16) 
(r > 0) and here the counsel of my colleague S. A. Telyakovskiy proved use¬ 
ful to me. 

8.6. N. I. Akhiyezer and 6. M. Levitan studied kernels more general 
than Vjj(t) for other purposes; these kernels corresponded to the. more general 

1 
trigonometric delà V«lle6-Poussin sums ■■■ ■ (M + ... + Eft), where Eft are 
Dirichlet kernels. p + 1 N”P " * 

Cf S. M. Nikol1skiy /12/ on expansion of functions regular in the Lp- 

senso in dola Valleè-Poussin sums. 

8.8-8.92. The findings presanted here, based on the understanding of 
a generalized function regular in the Lp (l< p <eo)-senae, and its expansion 

ifl weakjy convergent delà Valleè-Poussin series can be found in S. M. Nikol'skiy 
/17, 18/. In themselves, the concepts of the zero classes B^, the isomorphism 

X» ~ 
for different r, and the integral representations in terms of zero 

classes and negativo classes b£q where established from different considerations 

irj thfl works of Calderon /3_/, Aronszajn, Mulla and ¿zaptycki /1 _/, Taibleson 
/1* 2/t S. I!. Nikol'skiy, Lions, and P. I. Lizorkin /1_/. 

8.9. The collection (R^) of all generalized functions regular 

in the sense of Lp(l^. p <e*>)(cf 1.5.10) can be further defined as the sum 

(1) 

(Hp - (lO), where { r^ ^ is an arbitrary sequence of real numbers tending 

to -to. In fact, if f S^, then for some ? ? 0,I^f é= Ln obtains (cf 1.5.10), 

threefore (cf 8.2) If+1f €: W1 C. H1, but then f ¢= H 
P P p P 

-f k 
r H , if k is such 

P 
that r, < 

k Conversely, if f H K for some k, then I ,, _,f Hr<riL . 
P "rkT1 p p 

- 452 - 



Clearly, in (1) H can be replaced by B or L (cf 6.1). 

Let us agree to state that the function f e has a spectrum in the 

domain 0 Rn if its Fourier transform f as a carrier on G, i.e., f r 0 outside 

G. 

From the foregoing it follows that if the function f S^, then f also 

belongs to hJ for certain r and can be expanded in the series 

(2) 
0 

with the following properties: l) qg Lp and has a spectrum in - Ag_1 

(s -= 1, 2, ...), A0 (when s = 0), where Ag = {|x.| < a8 , a?1; b) the in¬ 

equalities 

(I (j-0,1,...), 
(3) 

are satisfied where M does not depend on s. 

In fact, we can take the corresponding dela Valleè-Poussin sums of the 
function f as the q (cf 8.9). In the case 1 < p < c?o property a) can be 

replaced by ihe following: a) q8 <e= Lp and it has a spectrum in Ag ~ 

(s = 1, 2, ...), Aq (when s = 0) (cf 8.10.1). 

If the function f is represented in the form of the series (2) weakly 
convergent to it with indicated properties a) and b) for some real r, then we 
can state that the series is the regular expansion of f. 

Lemma. An arbitrary fomally constructed series 

whose members satisfy the properties: a*) ufl g? Lp and which has a spectrum 

outside A (na ->£s,X 7*0, is a constant not dependent on s) and b) 
ns 8 

1-,1^ < a“*' (i-0, I, ...) (0) 
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weakly converges to some function f <£r S^. The functions us per se, thus« form 

n set convergent weakly to zero. 

In particular« the series In the right side of (2) with properties a) and 
b) converges weakly to some function f S^, more exactly, f ¿ H*. 

Proof. Let then (cf 8.4(4)) HV^Lp^ a”30, and because 

the series 

converges in the L^-sense, and consequently, weakly to some F <é Lp, but then 

series (l) converges weakly to f éî ^ ^ ^p* 

Let us note that when r > 0 series (1) converges to Lp on the assumption 

that condition b) is satisfied (without a*)). 

The embeddings 

(I <p<p'<oo), 

!<0<oo, 

(6) 

(7) 

where r is an arbitrary real number are valid. 

In fact, both denotes one of the classes appearing in the left members 

of (1) and (2), and let k be such number that k + /9 > 0, then (cf 8.2, 8.7, 
9.62, and 6.2) 

from whence 

and we have proven (6) and (7). 

The situation is more involved with theorems of embeddings of different 
measures, as will be clear below. 
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Loti us sot X - (ttj t), tt - (x^ j •••t ^ — * * •* ^) 

and lot I^(v0) = denote the linear sub-set of points (u, v°), where v° is 

fixed and u is arbitrary. 

Definition. Suppose the function f ér =S^ (R^), 1 ^ p < oo and 

"» (8) 
/1«, = ^ <?j («, ¢) 

*-o 

is its regular expansion, displaying the property that for any s, spectrum qfl 
belongs to the spectrum of f. (We rnte that the terms in the dela Valleè- 
Poussin series are governed by this property). 

If, whatever be the regular expansion of f defined above, the series 

Hu. V») - % q, (u. *) ‘ (9) 
t-0 

converges weakly with respect to a (in the sense of StRß)) to some function 
f(u, V®), not dependent on the expansion of f, then this function (of a) is 
called the trace of f on R^. 

Let us note that if the function f(u, v) is integral and the exponential 
type, then any regular expansion of it is a finite sum (8) and, obviously, its 
trace on is f (u, v°). 

Below we present several confirmations without proof. 

Theorem. Traces of the function f(u, v) on Rm in the sense of the defini¬ 

tion given above and in the sense of the definition in 6.3 coincide. 

Let 7flA stand for any set of points x = (a, v) of the form 

Wx-¿ + {|*|<|«lx} <X>0). 

where A is a bounded set in R^ belonging to the cube A ^ = {Íxj/< a ^ 1)* 

Theorem. If the function f(tt, v) S'(R )(1< p< c*o) has a spectrum 
P n 

belonging to the set then it has the trace f(a, v°) S'(R ). A pm 
More exactly, embeddings with constants dependent on M and X obtain 

for classes of the functions Hi (R^) that have a spectrum in WlA: 
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»'pi*«) 
»;'(*.) (,-iii.o. i>i). 

w» ' '(#«/ <^A^1 except for the 

i-M-l). 

(10) 

case 

r — ■ 
n -1 

Inverse theorem. The function 

/ & (w - m> \ 
p (0^ X<|) 

^/DeZ/V ^ I (Rm) W>1) 

cun be extended on R such that the extended function f (a. v) Hr(R ) has 
n p n 

a spectrum belonging to the set of the fom mAt and its trace is f(tt, 0) = 
f (u)• Here the embeddings (with the corresponding inequalities, cf 6.0(13)) 

(,-iÜU2>A 

») p ’ (a>d. 

(id 

(12) 

n - m 
obtain, embedding (ll), when A. ^ 1 and --> 0, is already familiar 

p 
to us (cf 6.i>), but here It is given a stronger formulation, including the 
\ssertion on the nature of these spectra of the standing function. When A > 1 

n - m 
xd r - 0, the (inverse) emboduing (l2) and the corresponding (diroct) 

p 
or.beduing (10) are no longer mutually inverse. 
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Lot us emphasize that in relations (ll) and (12), no restrictions were 
imposed whatever on the spectrum of functions of the original (embedded) classes. 

For the cases 0 1, an ascending function f(tt, v) satisfying the 
condition of the theorem can be defined in the form of the weakly convergent 
series 

where 

/(«. ®) - S Qi («. *). 
M * 

Qt (a. •) -♦«(■) J[ F (2<*'*) kvj), F (/) - 4 

tO-§»,(•). 

(cf 8.9). 

But in the case À > 1* the e; tending function f(tt, v) is uefined by the 
weakly convergent series 

/(■. •)- 
*-o * 

M 
qH («. •)-»,(«) fl o, (f A o, (i) - cot 3 • 2**” * JF (2**” 'l). 

1 /-«♦! 

where nQ (s :: 0, 1, ...) is an ascending sequence of natural numoers such that 

^s 
— —♦ 1 (s —♦* o-o), and functions aro meaningful in their former sense. 
3 S 

Function V- (x, y) of two variables, with the Fourier transíom 

♦-{•T' >n 
for tho ret aining (u, v) 

belong to K^R^) and ut the sane timo do not havo a trace on the axis v 0. 

Proof. Let us adopt the series 
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where S»* 
«-I 

I* f* 

as its reguiar expansion and í a’**“! 
J-i * 

therefore tf Further 

swu)- 

The function Sjj (x) does not converge weakly, because for example, the func- 

^ ..2 
tion f is such that f - e“'" ^ S’ obtains! 

t* 

(s.v f)“(V *)“fV J W-+-)- 

t 

It is possible to construct an example showing that in (lO) £ >0 cannot 
be replaced by £ - 0. 

The assertions statod above can bo extended fron the classes to “pQ* 

8.10 - 8.10.1. The fact presented here, pertaining to the expansion 
of functions of the classes Bjjg in series in Dirichlet sums for the case 

1 ^ p < c*> are closg £o the results of P. I. Liaorkin ¿7J, and also to those 
of :. D. ftanazanov /1_/, who investigated classes of functions somewhat dis¬ 
tinct from from this point of view. 

To Chapter IX 

9.1. Suppose 
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(1) I < p < q < öd, 

I ^ n ^ n, p r — — + — ^ 0 
P P 

(2) 

and r is an integer. Thon fron 9.1(4) follows the embedding 

rp (*n) - (^,) - ¿J (ä„) -* rW 

(S. L. Sobolev with addition by V. I. Kondraahov and V. I. ll'vin cf 6 il 

(ï)" 6^2(4)“ ÍÜÂ?v))f P ‘ ^ the ombedding is valid (cl'%3 

natural^°q P 00 i8 here it was proven for a 
zf/rtLn P " Pn,^C^(^ ?• ; wh.n ,. , „ ,md by E. Ooglu™ 

—/ n < n) that embedding (3) also I*ei.iain3 valid. 

ua; p^r; for„thi“« p =2 -1.-2 and by L. N. Sobobfskiy /3J N. Bernshtoyn page 98, for 1. 
1 ~l 

in the general caso; when 1 < p < *o and for integral 1- 1-- ... . i 
1 n* 

Sbitr^^h for aiv 1>0 - by P. I. ¿Loikin Jÿ, and for 
arbitrary 1 in the periodic case, by Yu. L. Bessonov ¿1,2/. * 

Lr, h-W- gênèrallv S'plt? T? f0ï.h"Ti r***^-’* to anisotropic classes p' ^ generally to P. I. Usorkin, who published then without proof in 

^e naao available to ne soné nonuscript natoriols that were used 
a. the basis of sy exposition. Evetyw»»™ I r«iu«d the i«« « ti^"r 0^n 

c^™idii'oL^(rf1t,2a?f1,i!h* ”P“«" ^ouvill. derivatives in th. 
)7yzapz”Tia* p»8®3 vcf 9.2.3). The main goal of these invest ira uiona ua« +„ 
obUin int^rU represenution. for (function.) of ^ot»”o^L1 i? 

tteo^fÍ these^clasaos ? '?,Plot• W,t«n °f onbeddln* e ,.: , ,80 ^8888. Integral ropresentationsof this kind were obtAin- 
for Uotropio ol^M ^ the preceding ctepter. The necesw^e^t^f 

B.ieol-Macdonald^ernel.* "tatS ÍÍSo^J“4' 10 tho tbMtr °f Zezzz %?%■ ct S SÃS STÄ ïri-on e obtained froo the corresponding anisotropic theory if we sot r. -: ... - r 

, r* J'ff, inta*f®1 r» »t we obtained corresponding results for tho V-classes 

diaenslonal^h.ory WsUr^ll^.0' S' L‘ Sob°lev “lth nulti- 
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9.4.1. Estimates (2) and (3) for I_]Gr(*) «re equivalent in the case 

= ... * rn = r to the isotropic estimates 8.1(7). 

9.^.1 _ 9.5.2. Theorems_9.5.1 and 9.5.2 ignore their completeness where 
obtained by P. I. Lizorkin ¿ÎO/. Tiiey include a number of antecedent results 
pertaining to the case of integral r(W* = L*) and arbitraiy r when p = 2 of 

Aronszajn /1 7. L. N. Slobodetskiy ßj (cf further* V. M. Babich and N. 
Slobodetskiy /1J), Gagliardo /1Jt 0. V. Besov /2^/, P. I. Liaorkin /9_/, and 

S. V. Uspenskiy ßj (cf review by S. M. Nikol'skiy /í¿/)for more details. 
Here we also include the corj expending results for the isotropic chajaes 

Lr = Lr»•••>r belonging to Stein » Aronszajn, Mulle, and Szeptycki /1_y, 
P P 

and to P. I. Lizorkin ßj (cf V. I. Burenkov ßj for a more detailed treat¬ 
ment) . 

These results were obtained by different methods. 

In this book, when a function was extended from to R^, the method of 

expanding it in a series in integral functions of the exponential type and ¿he 
successive increment of its ter® with special functions (S. M. Nikol'skiy /5_y) 
was employed. Other authors also used another technique forjtfceae purposes, 
basgd on Steklov averaging of the function (cf A. A. Dezin /1_/ and Galeyado 

/1-/- 

Let us note if a very simple direct proof of the theorem for the embed¬ 
ding of different measures in the anisotropic case for integral classes Lj - W£, 

bolor^ing to V. A. Solonnikov ßj. 

9.6.2. Tho S. L. Sobolev embedding theorem (with additions by V. I. 
Kondrashov and V. P. II'yin) (cf 6.1 and denote 6.1) are part of theorem 
9.6.2 as a particular case and are maximally accurate in terns of (integral) 
classes W_. 

P 
In the isotropic cage of fractional 1, theorem 2*¿*2 w«® proven by Stein 

ßj and P. I. Lizorkin tf j, and by P. I. Lizorkin /12/ in the anisotropic 
case (presented in the text). 

ln_p£oofreading, we became acquaintod with an article by Sadosky and 
Cotlnr /1./, which define for rational vectors r > 0 classes equivalent to 
tho classes Lr, and for which several embedding theorems are proven. 

P 
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