army materiel command

U.S. ARMY

TD FOREIGN SCIENCE AND TECHNOLOGY CENTER

approximation of functions of several variables and embedding theoreqs
bergey Mikhaylovich Nikol'skiy

Subject country: USSR
This doownent is a rendition of the original foreign text without any analytioal or editorial comment.

Approved for public release; distribution unlimited.

NOTICE TO USERS

- Portions of this document have been judged by the NTIS to be of poor reproduction quality and not fully legible. However, in an effort to make as much information as possibie available to the public, the NTIS sells this docurient with the understanding that if the user is not satisfied, the document may be returned for refund.

If you return this document, please include this notice together with the IBM order card (label) to:

National Technical Information Service
U.S. Department of Commerce

Attn: 952.12
Springfield, Virginia 22151

:

DOCUMENT COMTROL DATA.RED

Foreign Science and Technology Center
US Army Materiel Commend
Department of the Arey
D meotor tithe
Approximation of Functions of Several Variables and Embedding Theorems

Translation

Sergey Mikhaylovich Nikol'skiy

-arpontoart August 1971	$\begin{aligned} & \text { 7a. ROTAL Mo. OPDAGEB } \\ & 477 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ph. wo. or nefe } \\ & N / A \end{aligned}$
c. COMTAACTOACMANTMO	momatimatemb miment muneemal	
- onojectro.	FSTC-HT-23-473-71	
e. 77023012301		
- Requester Frankford Arsenal	OACSI No. J.9365	

io otermi Uufiem ofatememp
Approved for public release; distribution unlimited.

11 Sumplementant motes	US Army Foreign Science and Technology Center

The theory of embeddings of classes of differentiable functions of several variables has been intensively expanded during the past two decades, and a number of its fundamental problems have been resolved. But till now these results are to he found in journal articles. This book presents the complete theory of embeddings of the main classes ($W_{p}^{r}, H_{p}^{r}, B_{p}^{r}, L_{p}^{r}$) of differentiable functions given for the entire n dumensional space $\boldsymbol{R}_{\boldsymbol{n}}$.

The reader will find in the book the inequalities letween partial derivatives in the various contexts that have found application in mathematical physics. Emphasis is placed on problems of compactness, integral representations of functions of these classes, and problems of the isomorphisms of these classes.

In the book the author chiefly employs the method of approximation with exponential type integral functions and trigonometric polymonials. The theory of approximation suitably adapted for these ends is set furth at the outset of the volume. Use of the Bessel-Macdonald integral operator is also essential. The reader will even find in the book remarks given without proof on the embedding of classes of differenti, ble functions specified for the domains $G \subset R_{n}$.

The reader must be familiar with the fundamentals of Lesbesgue integral theory. The book widely employs the concept of the generalized function, but it is clarified with proofs to the extent that this is

TECHNICAL TRANSLATION

PSTC-ITT-23-473-71

ENGLISH TITLE: Approximation of Functions of Several Variables and Lmbedding Theorems

POREIGN TITLE: Priblizheniye funktsiy mnogikh peremennykh i teoremy vlozheniya

AUTHOR: Sergey Mikhaylovich Nikol'skiy

SOURCE: Nauka, Physicomathematical Literature, Moscow, 196ヶ, 480 pp

Tranelated for FSTC by OACSI

NOTICE

The contents of this publication have been translated as presented in the original text. No attempt has been made to verify the accuracy of any statement contained herein. This translation is published with a minimum of copy editing and graphics preparation in order to expedite the dissemination of information. Requests for additional copies of this document should be addressed to Department A, National Technical Information Service. Springfield, Virginia 22151. Approved for public release; distribution unlimited.

aPPFOXIMATION OF FUNCTIONS OF SEVERAL VAKLABLES AND bMBEUUING THEOREMS
by Sergey Mikhaylovich Nikol'skiy, Nauka Publiohing House, : fain Eaitorial
Office of Physicomathematical Literature, Moscow, 1969, 480 pp.
CONTLNTS Page
ANWOLLTION 1
INTROLUCTION 2
CHAPTER I PRELDMINARIES 6
1.1 Space $C(\varepsilon)$ and $L_{p}(\varepsilon)$ 6
1.2 Linear Norned Spaces 11
1.3 Propertios of the spaco $L_{p}(5)$ 21
1.4 Averaging of Functions According to Sobolev 31
1.5 Ceneralizec Functions 34
CHAPTER II TRLCONOMETRIC POLNOMIALS
88
88
2.1 Theorem on Zeroes. Linear Independence 88
2.2 Inportant Examples of Trigonomotric Polynomials 91
2.3 Irterpolational Lagrange Trigonometric Polynomial
9
9
2.4. M. iliecz's Interpolational Formula
98
98
2.5 Bernshtoyn's Inequality
100
100
2.6 Trigonometric Polynomials in Several Variables 100
2.7 Trigonometric Polynomials With Respect to Several Varizoles 102
CHRPTER III INTEGRAL FUNCTIONS OF THE EXPONENTIAL TYPE, BOUNDEJ ON K_{n}
3.1 Preliminaries 106
106
106
3.2 Interpolation Formula 120
3.3 Fqualities of Different Metrics for Integral Functions of the exponential Type 132
3.4 Inequalities of Dicferent Measures for Integral Functions of the Exponertial Type 142
3.5 Subspaces of Functions of a Given Exponential Type 146
3.6 Convolutions With Integral Functions of the Exponential Type 148
CONTENTS
Page
CHAPTBIH IV FUNCTION CLASSES W, H, AND B 154
4. 1 Conoralized Derivative 154
4.2 Finite Differences and Continuity Mocules 159
4.3 Classes W, H, and B 16')
4.4 Fepresentation of the Intermediate Derivative by a Higher-Order Derivative and runctions. Corollaries 179
4. 5 , Hore on Sobolev Averaging 191
4.6 istimates of Incremont in Direction 194
4.7 Corpleteness of Spaces W, H, and B 195
4.8 istimate of a Derivative by the Difforence Relation 198
CHAPTER V DIRECT AND INVEHSE THDDITMS OF THE THDORI OF APPROXDMETIONS. RRUIVALENT NORESS 202
5.1 Intronuction 202
5. 2 Theoran on Approximation 204
5.3 Pe:iodic Classes 214
5.4 Invorse Thoorens of the Theory of Approximations 222
(.t) Dirost and Inverse Theorems on the Bost Approximations. Equiva- lent $\mathrm{H}-\mathrm{Norms}$ 229
!. 6 Definltion of B-Classos by Keans of Best Approximations. Equiv- alent Norm 239
 256
6. 1 Introuction 2;6
K. 2 Rol:tionships ?atween Classes B, K , and I 29
6.3 imbeading of ilieferent :ietrics 261
0.1. Pl co of function 264
n. ' wioenting ot dirferent ieazures 266
6.0 Sinulast Inverzo Theoron of Babeaing of Different Moasures 272
$\dot{0} \cdot 1$ General Theorest: of embedding of Different licnsures 215
6.8 Coneral Inverse sivodiding Thenre:: 276
0.9 Generalization of the Theorem of imberding of ilifferent :ictrics 281
6.10 ide:tionil Infomation 28
 C(:PPCTHESC 291
 291
7.? Inequatities dith Purinotore , iulitiplicative Inequilitios 293
 298 303
\%.\% :'ore or. aterel eunctions in lis
\%.\% :'ore or. aterel eunctions in lis
7. Unimprci:bility of Tnequalitios :or :il:od vorivatives 306
(i, mothor Prof o: the Unimerowillity of mbedding Theorens 307
7.7 'hocre:s on Comactnoss 313
 (は) jeses 2
$\because 1$:osscl-:"nnenalc ñornels
325
325
$\therefore 2$!scmorphise of the classes 331

CONT.NTS

E.3 Propertios of Bessel-iacdonild Kernels 332
8.4 Estimato of Best ip ro:imation for $I_{r} f$ 336
8.r : ilultiplicntor iqual to Unity on a jomain $\because 7$
8.6 de la Valled-Youssin Sums of a Rogular Function 39
8.7 Inequality for the Operation $1-r(r>0)$ on lunctions or the ixponential Typo
316
316
8.8 E:pansion of a Regular Function in Series by do lis Vellet-Youssin Sums
251
251
8.9 Popresentation of Functions of Lno Classos n^{r} in in Toms of de la inllce-Poussin Sorios. Lern Clnsses ($1 \leqslant \mathrm{p} \leqslant \infty$) :2
8.10 Series in Dirichlet Sum ($1<p<n$) $3 \cdot 6$
CHin?TEM IX LIOUY:ILLE CLASSES L $36 r$ 26
$\therefore 1$ Introcuction
$\therefore 1$ Introcuction
9.2 Jofinitions and Fundamental propertics of the Classes $L_{!}^{r}$ anc L_{p}^{r} 362 77
7.4. Intugral Represontation of inisotropic Classes SO
9. Bmbedding Thooram 408
9.6 Babeciding Theore: With Limitirg Exponent 421
9.7 Nonequi:idence of the Classes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ and $\mathrm{L}_{\mathrm{p}}^{r}$ 427
HOT_S $4: 2$
FIBLIOGEA:YFY
FIBLIOGEA:YFY 461
517.2

N 21
UDC 517.5

ANOTATION

Pribliabanive funitisiv mopith peremennvich i teoremy viozheniye (Approx-mation of Functions of Several Variables and Embedding Theorems), S. M. Nikol'skiy, Nauka Publishing House, Main Editorial Office of Physicomathematical Literature, 1969.

The theory of embeddings of classes of dirferentiable functions of several variables has been intensively expanded juring the past two decades, and a number of its fundamental problems have been resolved. But till now these results are to be found in journal articles. This book presents the complete theory of embeddings of the main classes ($\mathrm{K}_{\mathrm{p}}^{\mathrm{N}}, \mathrm{H}_{\mathrm{p}}^{r}, \mathrm{~B}_{\mathrm{p}}^{\mathrm{r}}, \mathrm{L}_{\mathrm{p}}^{5}$) of differentiable functions given for the entire n-dimensional space R_{n}.

The reader will find in the book the inequalities between partial derivatives in the various contexts that have found application in mathematical hosics. Emphasis is placed on probleas of compactness, integral representations of functions of these clases, and problems of the isomorphiams of these classes.

In the book the author chiefly employs the method of approximation with exponential type integral functions and trigonometric polymonials. The theory of approximation suitably adapted for these ends is set forth at the outset of the volume. Use of the Bessel-Macdonald integral operator is also essential. The reader will even find in the book remarks given without proof on the emberiding of classes of differentiable functions specified for the domains $G \subset R_{n}$.

The reader must be familiar with the fundamentals of Lesbesgue integral theory. The book widely employs the concopt of the generalized function, but it is clarified with proofs to the extent that this is necessary.

Bibliography: 206 entries.

INTRODUCTION

In the past two decades the theory of embeddings of classes of differentiable functions of several variables, whose foundations were laid back in the 1930's by S. L. Sobolev, has experienced rapid growth. Presently, the solution of several fundamental problems in thia theory has come to a head and the need to present thom in compact form has arisen. I personally arrived at problems of embedding theory as part of a field that had long faacinated me, the concepts of the classical theory of approximating functions with polynomials, above all with trigonometric polynomials and their nonperiodic analogues -- exponential type integral functions.

These notions, which I had occasion to suitably ramify, served me as the starting-point for constructing a theory of ambeddings of H-classes, where already in problems of the traces of functions not only did direct theorems emerge, but also their wholly inverse counterpart theorams. The latter can even be called theorems on the extension of functions into a apace with the manifolds of the least number of measures pertaining to it. Here, not only is the isotropic case of functions with differential properties that are identical in different directions embraced, but also the anisotropic case.

Later, 0. V. Resov constructed a similar theory of embeddings of the Bclasses he introduced, also founded on methods of the theory of approximation with trigonometric polynomials or with exponential type integral functions. The B-classes are remarkable in that they, like the H-classes, are as we have said closed in upon themselves with respect to embedding theorems. By this we wish to state that the embedding theorems of interest to us (we will not actually formulate them here) are expressed in terms of B-classes and here possess to some extent the properties of transitivity and invertibility in the case of the problem of traces.
S. L. Sobolev proved his embedding theorems for the classes $w_{p}^{l}=\psi_{p}^{l}(2)$ of functions that have on a sufficiently broad domain Ω of n-dimensional space R_{n} derivatives up to the order 1 inclusively that are integrable to the p-th degree $(1 \leqslant \mathrm{p} \leqslant x)$. Sobolev classes can be called diacrete classes, because the parameter 1 expressing the differentiable properties of the functions inciuded in it ranges through the discrete sequence $1=0,1,2, \ldots$ In fact, the classes
H and B are contimuous in this sense. When the reader acquaints himself with chapter 9 of this book, he will become aware that those theorems of S. L. Sobolev uiti the corollaries to them that were contributed by V. I. Kondrashov and V. Y. Il'in, which are accompanied by a change of the metric, are in a certain sense are terminal, and even, as far as this is permitted by the discreteness of the classes, transitive.

As pertains to the embedding theorem accompanied only by change of measure witiout metric change - we call these the theorems of traces, here the situation is more involved. Of course, S. L. Sobolev theorems do supply an answer to the questicn as to which differential properties are possessed by the trace of the function of the class $W_{0}^{(}(\Omega)$ in the manifold $\Gamma<\Omega$, but the answer is furnished in terms of W classel. But now we know that generally speaking, if we omit the case $p=2$, no final answer to this question is expressed in terms of the classes W .

The first conclusive reaults on the problems of traces of W-classes were fractional classes $W_{2}(\Omega)$ and $W_{2}^{\frac{1}{2}}(\Gamma)$ corresponding to ans positive, but not
necessarily integral parameter 1 , were introduced, and direct theorems of ambedding and the inverse theoreme wholly correspanding to them yere pbtained in terms of these ciasses. In the notation used in this book, $w_{2}=L \frac{1}{2}=B_{2}^{1}$.
Further investigations of Gal'yardo $\angle \overline{1} \bar{\jmath}, 0$. V. Besov $L \overline{1}, \overline{3}, P$. I. Lizorkin L9-. , and S. V. Uspensiciy L1, $2 /$ led to the complete solutions of the problem of traces of the functions of classes W_{p} for ang finite $p>1$. The reader will find what this solution looks like in the same chapter 9 we referred to (by setting $W_{p}^{1}=L_{p}^{1}$). But as for now we can only state that traces of the functions f of the class W_{p}^{l} when $p \neq 2$, generally speaking, belong not to W - but to B-classes. This indicates, on the one hand, the fact that the theorems of embedding of different measures (theorems of traces) cease to be closed with respect to W-classes; but on the other hand, this indicates that an intimate relationship holds between the classes W and B. This relationship is so close that at one, time, when not everything about these problems was clear, it was held that B_{p}^{1} classes for fractional 1 are the natural extensions of integral Sobolev classes and were denoted by WP. Actually, these natural extensions are the so-called Liouville classes $P L P$. Chapter 9 therefore dpals yith them, in particular, also with the classes W, because we assume $H_{p}=I_{p}^{I}(1=$ $0,1, \ldots$). The reader must recall that in this book the notation W_{p}^{p} is used only when $1=0,1, \ldots$ Cf 4.3 on this matter.
S. L. Sobolev studied functions of his classes by means of the integral representations he introduced; these were greatly developed in the works of V_{1} P. Il'in, and later 0.V. Besov (cf. 6.10 below). Functions of the classes L_{p} arc defined on the entire space, and in their integral representation it is zero at infinity. These are the familiar Bessel liacdonald enough decrease to in fact adopted as the basis for representing functions of the classes In. were say as the basis because actually here anisotropic classes L_{p}^{L} are what we are
considering. The kernols of their integral representations constitute certain complications of the Macdonald kernels. I note that in writing chapter 9, I made heavy use of materials given me by 险colleague, P. I. Kozorkin, who quite recently derived a complete system of ambedding theorems for general anisotropic classes L^{r}, where $r=$ any positive vectors. His results have thus far been published in the form of a brief note.

In the one-dimensional case, (where the problem of traces does not come up), theorems of embedding of different measures for the classes if and for nonintegral r for the classes $H f$ were already obtained in the works of Hardy and Littlewood.

The If operators defined by Bessel-Macdonald kernels are universal in character. In this book they are investigated and applied in a variety of contexts. We quite extensivoly use the concept of the generalized function, so the book contains a small section presenting with complete proofs only those deductions from the theory of the generalized function that the reader must know to understand the following treatment. I introduce the concept of a generalized function that is regular in the sense of L by employing the I_{f} operator. For rogular functions, different proofs associpted with multiplication by the generalized functions are greatiy simplified. I make wide use of this because the generalized functions encountered in the book are regular.

The I_{r} operator receives interesting applications also in chapter 8. It executes isomorphisms not only of the L-, but also of the B- and H-classes and can serve as a means for the integral representations of functions of these classes. These ideas which in the periodic one-dimensional case derive from the time of Hardy and Littlewood have quite recently been explored from different vantage points in the works of Aronshayn Lalso spelled Aronszajn/ and Smith, Cal'deron, Toyblson, Lions, P. I. Lizorkin, the present author, and others.

Quite naturally, this book also takes up the foundations of the theory of approximation of functions of several functions with trigonometric polynometric polynomials and exponential type integral functions. These in themselves are of interest, but basicaly they play a subordinate role -- as tools of approximation theory. Further, theorems of embedding are proved for $H-$ and B-classes and the representations of functions of these classes are also in torms of series in exponential type integral functions or in trigonometric polynomials. Bearing these goals in mind, along with the tracitional inequalities, we also introduce and utilize other inequalities (of difforent measures and metrics).
L.e must note that in this book we furnish complete proofs of embedding theorens :cr the above-cited classes of fun tions defined on the entire n dimensionil space R_{n}. But these classes can be defined for the domilins $\Omega \subset H_{n}$. These definitions are given in the book. Also forraulated (without proof) are extremely wide-ranging theorems on the extensions of the functions of these classes on all space (with the preservation of class). This permits e:tencing the theorems proven for the R_{n} space to the caso of the domains $\Omega \subset K_{n}$ 。

Finally, we note that recently investigations have been pursuod (bogun by L. D. Kudryavgsev) of more general classes -- weight classes. In tais book, we confine ourselves only to some remarks about the relstionship of weight classes with the nonqeight classes discussed here.

I note still further that for more than 10 years now a permanent seminar on the theory of differentiable functions of several variables has been held in the Mathematics Institute imeni V. A. Steklov, headed by V. I. Kondrashov, L. D. Kudryavtsev, and ryself. Actively participating in it have been O. V. Besov, Ya. S. Bugrov, V. I. Burenkov, A. A. Vasharin, P. I. Lizorkin, S. V. Uspenskiy, G. N. Yakuvlev, and other mathematicians. Many results presented in this book belong to the participants of this seminar and were discussed in it as they were taken shape.

In conclusion, I deem it my happy duty to express my deep gratitude to colleagues O. V. Besov, who read the book in manuscript, P. I. Lizorkin, who read chapters 8 and 9, and S. A. Telyakovakiy, who read several chapters. They have made mary valuable observations, which in one way or another I have taken cognizance of.

I am also grateful to T. A. Timan, who pointed out several shortcomings of the manuscript.

Finally, I am very thankful to my younger colleague V. I. Burenkov, the book's editor. Much of his advice pertaining not only to format, but also to substance of the exposition was taken into account.

CHAPTER I PRELIMINARIES

1.1 Space $C(\varepsilon)$ and $L_{p}(E)$

In this book we will discuse functions that are generaliy dependent on several variables.

The aymbol will also signify the p-dimensional Duclidean apace with pointa $x=\left(x_{1}, \ldots, x_{n}\right)$ with real coordinates. The longth of the vector will be denoted thualy:

$$
\begin{equation*}
|x|=\sqrt{\sum_{1}^{n} x_{n}^{2}} . \tag{1}
\end{equation*}
$$

If ξ is a closed set bolonging to $R_{n}\left(\subsetneq \subset R_{n}\right), C(\xi)$ will stand for the set of all (real or complex-valued) functions $f=f(x)$ uniformy continuous 0 O ?.

We will sot each function $f \in C(5)$ into correapondence with its norm (in the sense of $C(\xi)$):

$$
\begin{equation*}
\|f\|_{c}(y)=\sup _{x \in f}|f(x)| \text {. } \tag{2}
\end{equation*}
$$

In the case of a restricted (closed) set ξ sup can be replaced with max.
If p is a real number satisfying the inequalities $1 \leq p<a$ and in some measurable but not necessarily bounded sot $F C R_{n}$ belonging to R_{n} a measurablo real or complex-valued function f is given, such that the function $f f(p$ is integrable (sumable) in the Lesbescue sense on E, then we assume

$$
\begin{equation*}
f_{L p} f_{\left.p^{\prime}\right)}=\left(\int_{\delta} \mid \|^{p} d \delta^{\delta}\right)^{1 / p} . \tag{3}
\end{equation*}
$$

The variable (3) is called the norm of the function f in the sense of $L_{p}(f)$ ($L_{p}(\ell)$ will stand for the set of all functions that have the finite

Wo will not diatinguiah between the two ennivilent functions f_{1} and $I_{2} \in I_{p}(\varepsilon)$, i.e., those differing in the set by the zero meesure. Wo vill cosoun them to be equal to the same olement of the functional apace $I_{p}(\mathcal{C})$ and write $f_{1}=I_{2}$. In particular, if the function $f \in I_{p}(E)$ equals zero for almost all $x \mathrm{C}^{\circ} \mathrm{E}^{\circ}$, we will write $\mathrm{f}=0$, thes idemtifying this function with the function that is identically equal to $s e 50$ on E. In this way, from the equality $\left\|f_{1}-I_{2}\right\| I_{p}(\xi)=0$ it follows that $I_{1}-f_{2}=0$ and $f_{1}=f_{2}$.

The set ξ can have the moasure m, that is mailior than n, and then the integral appearing in equality (3) is underatood in the sense of a natural (m-dimensional) Lesbegue meacure defined on the sot \& . We do not noed to di scuse sets ξ that are atructorally complex. Orten \mathcal{Y} will coincide on the ontire apace B_{p} or will be acme one of its E-dimonaional subapace or a m dimasional cube or sphere belongeng to R_{n}. Finaliy, \mathcal{E} can be a mooth or plecoulec-mooth bypersurface, conaisting of sufficientiy mooth pieces, and then the meacure of the measurable aubset ε, on the basis of which the intecral appearing in the right-hand aide of (3) is defined, is a generalization (extension) of the curtomary concept of the area of a hyperaurface.

The definition (3) maturalis extends also to the case $p=\infty$. Actually, if the function $f(x)$ is meagurable and is substantialif restricted to the bounded eet \mathcal{F}, i.e., for it there exinte the quantity

$$
\sup _{x \in x} \operatorname{rrai}_{x}|/(x)|=M_{1}
$$

called the essential maximun* $|f(x)|$ onci, then the following equality obtains:

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\|f\|_{L_{p}(y)}=M_{l} . \tag{4}
\end{equation*}
$$

This equality is proven theusly. Let μe stand for the meagare of e. If $M_{f}=0$ or $\mu E^{\prime}=0$, equality (4) is obvious. We will assume that $0<M_{f} \times x$. If \mathcal{C}^{2} is a bounded measurable set, then

$$
\left(\int_{x}|f(x)|^{p} d x\right)^{1 / p}<M_{f}(\mu x)^{1 / p} .
$$

Coneoquantly,

$$
\begin{equation*}
\overline{\lim }_{p \rightarrow \infty}\|f\|_{L_{p}(\varepsilon)}<M_{1} . \tag{5}
\end{equation*}
$$

[^0]If $\dot{\xi}$ is an infinite-measurable set, then the inequality (5), cenerally speaking, is not satisfied (for example, $\xi=\mathrm{P}_{\mathrm{n}}$ and $\mathrm{f}(\mathrm{x})=1$). However, this inequality can be proven on the assumption that $f(x) \in L_{p}(\xi)$ for all sufficientiy large p and that $l_{p \rightarrow \infty}\|f\|_{L_{p}}(\xi)^{<\infty}$. In this case

$$
\left(\int_{\delta}\left|\int(x)\right|^{p} d x\right)^{1 / p} \leqslant M_{\|^{1 / 2}}\left(\int_{g} \mid f(x) P^{p / 2} d x\right)^{1 / p}
$$

therefore

$$
\lim _{p \rightarrow \infty}\left(\int_{\gamma}|f(x)|^{p} d x\right)^{1 / p} \leqslant M_{\mid}^{1 / 2}\left[\lim _{p \rightarrow \infty}\left(\int_{x}|I(x)|^{p} d x\right)^{1 / p}\right]^{1 / 2}
$$

fram whence derives the inequality (5).
On the other hand, from the definition of the gssential maximum of a function follows the existence of the bounded set ξ_{1} with positive measure
such that for all of its points the inequality such that for all of its points the inequality

$$
|f(x)|>M_{i}-\varepsilon
$$

is satisfied, where $0<\varepsilon \leqslant M_{f}$. Therefore

$$
\|f\|_{L_{p}(\varepsilon)} \geqslant\left(\int_{\dot{y}_{1}}\left(M_{l}-\varepsilon\right)^{p} d{q_{1}}_{1}\right)^{1 / p}=\left(M M_{l}-e\right)\left(\mu \psi_{1}\right)^{1 / p} \text {. }
$$

from whence

$$
\lim _{p \rightarrow \infty} \| / M_{L_{p}}(\varepsilon) \geqslant M_{f}-e .
$$

Since ε is arbitrary, then

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty} \| f_{L_{p}(y)} \geqslant M_{f} . \tag{6}
\end{equation*}
$$

Notice that inequality (6) is valid for any measurable set है.
(4) follows from (5) and (6).

Thus, it has been proven that is the function $f(x)$ is substantially confined to the bounded measurable set (the finite limit

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\| \|_{L_{p}}(y) \tag{7}
\end{equation*}
$$

exists, equal to the essential maximum $f(x)$ on

On the other hand, from the existence of the limit (7) follows the subatantial confinement of $f(x)$ on ε. Actually, if there wero not so, then no matter how large the N a measurable and bounded subset c^{\prime} of the set ह' with positive measure would exist, on which

$$
\|(x)\|>N .
$$

Then for and $p \geqslant 1$
from whence

$$
\|f\|_{L_{p}}(y) \geqslant N\left(\mu y^{\prime}\right)^{1 / p} .
$$

$$
\lim _{p \rightarrow \infty}\|f\|_{L_{p}(y)} \geqslant N .
$$

Since N is as large as we please, the limit (7) cannot be finite and we reach a contradiction.

These argments point to the utility of the following notation:

$$
\begin{equation*}
\|f\|_{L_{\infty}(\delta)}=\sup _{x \in y} \operatorname{vrai}_{x} \mid f(x) \|_{1} \tag{8}
\end{equation*}
$$

supplementing the notation of (3) for $p=0$. In functional analysis, it is also customary to denote the norm (8) thusiy:

$$
\begin{equation*}
\|f\|_{M(y)}=\sup _{x \in \gamma} \operatorname{vrai}|f(x)| . \tag{9}
\end{equation*}
$$

We also will sometimes use this notation, assuming therefore that

$$
\begin{equation*}
\|f\|_{M(z)}=\|f\|_{L_{x}}(6) \tag{10}
\end{equation*}
$$

The symbol $M(\xi)$ will stand for the set of all functions f that have a finite noril in the sense of $M\left(E^{*}\right)$.

If ${ }^{E}$ is a bounded closed set and the function $f(x)$ is continuous on If is a bounded closed set and the function $f(x)$ is continuous
$\left|f^{\prime}(x)\right|$ on ${ }^{6}$. In this case

$$
\begin{equation*}
f_{L_{\infty}(X)}=\|f\|_{C(y)} . \tag{11}
\end{equation*}
$$

1.1.1. For the case when the function $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ is periodic with a 2π period with respect to all variables, i.e., if for it
the identity

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{1-1}, x_{1}+2 \pi, x_{1+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

is satiafied for all or almost all x and $l \overline{\bar{y}} 1, \ldots, n$, then whon this function is normed we will consider as the set ε the a-dimonsional cube

$$
\Delta^{(n)}=\left\{0 \leqslant x_{1} \leqslant 2 \pi ; i=1, \ldots, n\right\}
$$

of the space R_{n} and we will denote the corresponding norm thusir:

$$
\begin{equation*}
\|f\|_{L_{p}\left(\Delta^{(n)}\right)}=\|f\|_{L_{i}}^{(n)},\|f\|_{M\left(s^{(n)}\right)}=\|f\|_{M 0^{(n)}}^{(n)}\|f\|_{C\left(\Delta^{(n)}\right)}=\|f\|_{C_{0}}^{(n)} . \tag{2}
\end{equation*}
$$

The asteriak will always indicate the fact that the function f is periodic and that its norm was computed with respect to the cube dofining the period of the function.

When $n=1$, as a rule, we will write $\|f\|_{L_{p},} \| f M_{M *}$ and $\|f\|_{\text {C* }}$ in place of, reapectively, $\|f\|_{L_{p}^{*}}^{(1)},\|f\|_{M^{*}}^{(1)}$, and $\|f\|_{C^{*}}^{(1)}$.

The set of all 2π-periodic functions with finite norm $\| f| | \int_{p}^{(n)}$ definod on R_{n} will be denoted by. (n). The set of alf continuous 2π-periodic functions defined on R_{n} will be denoted by the eymbol $c(n)$.

Incidenteily, we will omit the index (n) in these symbols when possible.
Quite frequently wo will consider the measurable set $\xi=R_{m} \times \mathcal{V}^{\sigma} \sigma_{n}$, which is the topological product of the m-dimensional subspace $R_{n}(m<n)$ of pointe $\left(x_{1}, \ldots, x_{m}\right)$ and the measurable set $\xi^{\circ}<R_{n-m}$, whore R_{n-m} is the aubspace of the points $\left(x_{m+1}, \ldots, x_{n}\right)$.

Here the function space consiating of \mathcal{E} - measurable functions $f(x)$, periodic with a period of 2π with reapect to the variables x_{1}, \ldots, x_{m} and sumbable to the p-th degree in the set $\Lambda_{\mathrm{m}} \times$, where

$$
\Delta_{m}=\left\{0 \leqslant x_{n} \leqslant 2 \pi, k=1, \ldots, m\right\},
$$

we will denote by $L(\xi)$. The asteriak will indicate the exiatence of periodicity (with respect ${ }^{\text {to }} \Delta_{m}$) for the functions $f \in L_{p}^{*}(\xi)$ and the fact that the norm of the function $f \in L_{p}^{\prime \prime}(E)$ is defined by the p equality

$$
\begin{array}{r}
\|f\|_{L ;(x)}=\left(\int_{0}^{2 \pi} \ldots \int_{0}^{2 \pi} \int_{\gamma^{\prime}}\left|f\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}\right)\right|^{p} \times\right. \\
\left.\quad \times d x_{1} \ldots d x_{m} d x_{m+1} \ldots d x_{n}\right)^{1 / p} .
\end{array}
$$

1.1.2. We will make generous use of the fact that for a surmable periodic function $4,1 . e .$, belonging to $I n$, the fact that for

$$
\begin{equation*}
\|\varphi(x+a)\|_{L_{p}}=\|\varphi(x)\|_{L_{p}} . \tag{1}
\end{equation*}
$$

exiots for ans a $\in R_{n}$, just as couj the equality

$$
\begin{equation*}
\|\varphi(x+a)\|_{L_{p}\left(R_{n}\right)}=\|\varphi(x)\|_{L_{p}\left(R_{n}\right)}^{0} \tag{2}
\end{equation*}
$$

for the functions $\psi^{\prime}(x) \in L_{p}\left(R_{n}\right)$.

1.2 Hnoar Normed Spaces

1.2.1. Linear set. The set G of elements x, y, s, \ldots is called a linear set if by some law, to each two of its eloments x and y there corresponds the olement $s=x+y$ belonging to G, callod the sum of x and y, and if to each real (complex) number α and to the olament $x \in G$ there correaponde the element $a x \in G$, called the product of the number α hy the element x, and where the operations of addition and multiplication are suoject to the following axioms:

1) $x+y=y+x$,
2) $(x+y)+z=x+(y+z)$,
3) from $x+y=x+8$ follows $y=8$,
4) $a x+a y=a(x+y)$.
5) $a x+\beta x=(a+\beta) x$.
6) $a(\beta x)=(a \beta) x, \quad$, and
7) $1 \cdot x=x$.

The set G is a real or complax linear set, depending on whether the numbers α and β appearing in it are real numbers or complex.

From the definition of a linear space it follows that in it there oxists a unique element θ, the zero element, such that for all $x \in G$, the following relationshipa are valid:

$$
x+\theta=x, \quad 0 \cdot x=\theta .
$$

Actually, let elements x and y belong to G. We will set $\theta=\theta_{x}=0 \cdot x$ and $Q_{y}=0 . y$, then
and aimilarly

$$
x+\theta_{x}-1 \cdot x+0 \cdot x=1 \cdot x=x
$$

$$
y+\theta_{y}=y .
$$

From these equalities, based on the axioms it follows that
from whonce

$$
x+y+\theta_{z}-x+y+\theta_{y}
$$

$$
A_{x}=\theta_{y}=\theta .
$$

We postulate further that $-1 \cdot x=-x$, then $x+(-x)=0$. If x and y are arbitrary elements of G, the squation $x+z=y$ has the solution $z=y+(-x)$ that is unique by axiom 3), which is naturally called the difference of y and x and so we denote $z=y-x$. Thus, besides addition, the operation of subtraction is defined in G.

Linear set axioms give us the right, by using the operations of addition, subtraction, and multiplication oy a number, to transform the finite sums of the type

$$
u x+\beta y+\ldots+1 z
$$

just as is done with letter-based algebraic expressions.
Any sot $G_{1} \subset G$ containing along with elements x and y, the elament $x+y$, where a and β are real (complex) numbers, obviously is in turn a innear set.

A finite system of elements x_{1}, \ldots, x_{n} of G is called linearly independent, if from the equality

$$
\dot{\alpha}_{1} x_{1}+\ldots+a_{n} x_{n}=\theta
$$

there follows $\alpha_{k}=0(k=1, \ldots, n)$. Otherwise, this system is termed linearly
dependent. dependent.

The set of functions $C(\mathcal{E})$ defined in section 1.1 is obviously a linear set. The zero element in $C(\mathcal{E})$ is a function identical equal to zero on \mathcal{Y}.

The set $L_{p}(\xi)$ of functions f integrable in the p-th degree in the measurable set ξ^{p} is aliso a linear set with a zero element that is a function almost everywhere on equal to zero (equivalent to zero).
1.2.2. Banach space. Spaces $L_{p}(\xi)$ and $C(\mathcal{E})$. A linear (real or complex) space Σ is termed a normed space if to each element $x \in E$ there is set in correspondence a nonnegative number $\|x\|$, called the norm of the element x (in the space E or in the sense of the space E) satisfying the follning conditions:

1) if $\|x\|=0$, then $x=0$,
2) $\|x+j\| \leq|x|\|+\| y \|(x, y \in E)$, and
j) $\|a x\|=|i r|\|x\|$,
where $x \in E$ and a is an arbitrary (real or complex) number.
From 2) follows the validity of the inequality

$$
\begin{align*}
\|x\|-\|y\| & \|x-y\|(x, y \in E) \tag{1}\\
- & 12-
\end{align*}
$$

The normed space E is called complete if from the fact that for the sequence $x_{n} \xlongequal{£}(n=1,2, \ldots)$ the condition (Cauchy)

$$
\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{1 n}\right\|=0
$$

is satisfied, there follows the existence in E of the element x_{0} for which the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=0 \tag{2}
\end{equation*}
$$

is satisfied.
The fact that property (2) is satisfied can also be written thusly:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} x_{n}=x_{0} \tag{3}
\end{equation*}
$$

which states that x_{n} approaches x_{0} with respect to the norm of the space E or in the sense of the metric of E.

A complete linear normed space is also called a Banach space or a Banachian space.

The function set C(C) is obviously a Banach space. It is also well known that the set of functions $\mathrm{L}_{\mathrm{p}}\left({ }^{(}\right)(1 \leq \mathrm{p} \leqslant \omega)$ defined in the same section is also a Banach space. Here $C\left(E^{\prime}\right)$ and $L_{p}\left({ }^{\prime}\right)$ are real or complex spaces, depending on whether they consist of real or complex functions f. In the former case, f can be multiplied by real numbers, and in the latter -- by complex.
1.2.3. Finite-measurable space. The set $M_{\subset} E$ is termed a subspace of the Banach space E if it is a closed (relative to the norm || $\|$) linear set.

Let the elements x_{1}, \ldots, x_{n} belonging to E form a linearly independent system. The set $\mathscr{P} l_{n}$ of elements of the type

$$
\begin{equation*}
y=\sum_{i}^{n} c_{k} x_{k} \tag{1}
\end{equation*}
$$

where $c=\left(c_{1}, \ldots, c_{n}\right)$ is an arbitrary system of real (complex) numbers, is called an n-dimensional (finite-measurable) space. If m_{n} is part of E, then $\geqslant \eta_{n}$ is also called the n-dimensional space E, and the system of elements x_{1}, \ldots, x_{n} is its basis. To justify this definition, we must show that η_{n} is a closed linear set. The linearity of M_{n} is self-evident, and the closure will be established below.

If along with the element 5 defined by equality (1), still another element

$$
y^{\prime}=\sum_{1}^{n} c_{k}^{\prime} x_{k}
$$

is given defined by the system $c^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$, then, obviously,

Hence it follows that

$$
\left\|\boldsymbol{y}-\boldsymbol{y}^{\prime}\left|\leqslant \sum_{1}^{n}\right| c_{k}-c_{k}^{\prime}\right\| \boldsymbol{x}_{k} \mid
$$

$$
\begin{equation*}
\lim _{\left|c-c^{\prime}\right| \rightarrow 0}\left\|y-y^{\prime}\right\|=0 . \tag{2}
\end{equation*}
$$

Property (2) means that the element y depends (with respect to the norm) continuously on its defining coefficients c_{4}. By virtue of the inequality

$$
\|y\|-\left\|y^{\prime}\right\| \mid \leqslant\left\|y-y^{\prime}\right\|
$$

from (2) it also follows that

$$
\begin{equation*}
\lim _{1: \rightarrow r^{\prime} \mid \rightarrow 0}\left\|y^{\prime}\right\|=\|y\| \tag{3}
\end{equation*}
$$

Thus, the norm

$$
\|y\|=\Phi\left(c_{1}, \ldots, c_{n}\right)=\Phi(c)
$$

is a continuous function of $c=\left(c_{1}, \ldots, c_{n}\right)$.
The minimum of this function in the (closed and bounded) set defined by the equation

$$
|c|=\sqrt{\sum_{1}^{n} c_{k}^{2}}=1
$$

is reached for some system of coefficients $c^{0}=(c(0), \ldots, c(0))$ and is equal to the number

$$
\frac{1}{\lambda}=4\left(c^{(t)}\right)>0
$$

which is necessarily positive because the system x_{1}, \ldots, x_{n} is linearly indepencent.

Let us take an arbitrary system of numbers $c=\left(c_{1}, \ldots, c_{n}\right)(|c|>0)$ and set

$$
c^{\prime}=\frac{c}{|c|}
$$

Then by virtue of $\left|c^{\prime}\right|=1$, the inequality

$$
\frac{1}{\lambda} \leqslant\left\|\sum_{1}^{n} c_{k}^{\prime} x_{k}\right\|_{\|}
$$

will obtain, which after multiplication of the left and right sides by. $1|c|$ is transformed into the inequality

$$
\begin{equation*}
|c| \leqslant \lambda\left|\sum_{1}^{n} c_{n} x_{2}\right| . \tag{4}
\end{equation*}
$$

Now it is no longer hard to prove that the linear set \mathcal{H}_{n} is closed and, thus, is a space.

Actually, from the fact that

$$
\begin{equation*}
y_{1}=\sum_{1}^{n} c_{k}^{(l)} x_{k} \quad(l=1,2, \ldots) \tag{5}
\end{equation*}
$$

and

$$
\left\|y_{l}-y_{m}\right\| \rightarrow 0 \quad(l, m \rightarrow \infty)
$$

it follows by (4) that

$$
\left|c^{(l)}-c^{(m)}\right| \leqslant \lambda\left\|y_{l}-y_{m}\right\| \rightarrow 0 \quad(l, m \rightarrow \infty),
$$

where $c^{(\therefore)}=\left(c\left\{^{(1)}, \ldots, c_{n}^{(1)}\right)(1=1,2, \ldots)\right.$. Therefore, the limit
exists, from whence $\quad \lim _{l \rightarrow \infty} c^{(l)}=c^{(0)}$,

$$
\begin{equation*}
\left\|y_{t}-y_{0}\right\| \rightarrow 0(l \rightarrow \infty) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{0}=\sum_{i}^{n} c_{k}^{\prime \prime} x_{k}=\mathbb{R}_{n} . \tag{7}
\end{equation*}
$$

Let us note yet another important property of the finite-measurable space π_{1} stemming directiy from inequality (4). It is that any bounded (normwise) set $\Omega \subset \Pi_{n}$ is compact in π_{n}, i.e., from ans sequance of elements $J_{1} \in \mathscr{\omega}(1=1,2, \ldots)$ can be distinguished a sequence converging (normwise) to some element $n^{\prime \prime}$. Actually, from the fact that elements J defined (by equalities (5) form a bounded set, it follows by (4) that the fectors $\mathrm{c}^{(1)}$ are also bounded in the set. But then for some subsequence of natural number 1 equality (6) will be satisfied for some vector $c^{(0)}$ and so will the relationships (7) and (8).

Note. In special courses on functional analysis it is proven that, conversely, if any bounded set belonging to a given Banach space \mathbb{M} is compact, then T / T is a finite-measurable space, i.e., all its slements can be writton in the form of a finite sum (1), where the elements x_{1}, \ldots, x_{n} form a linearly independent system.

Since

$$
\left|c_{k}\right| \leqslant \sqrt{\sum_{1}^{n} c_{k}^{2}}
$$

then

$$
\sum_{1}^{n}\left|c_{k}\right| \leqslant n|c|
$$

therefore, if we assumes that

$$
M \geqslant\left\|x_{k}\right\| \quad(k=1, \ldots, n),
$$

thon, noting also (4), we get

$$
{\underset{T}{n}}_{n} c_{k} r_{k}\|\leqslant\| \sum_{1}^{n} c_{k} \mid \leqslant M n i \leqslant M n ; \sum_{1}^{n} c_{k} x_{k} l .
$$

and wo have proven that for any $c_{k}(k=1, \ldots, n)$ the inequalities

$$
\begin{equation*}
\frac{1}{2}\left({\underset{1}{n}}_{n}^{n}\right)^{\prime} \leqslant{\underset{1}{n}}_{n} x_{h} \leqslant \| n\left(\sum_{1}^{n} r_{k}^{n}\right)^{1,2} \tag{9}
\end{equation*}
$$

where λ and 11 are positive numbers dependent on the property of the norm definea in in $_{n}$.

If another nom $\|\cdot\|$ is introduced into this n-dimensional set, and the new norm thus defines another space $M /_{n}^{\prime}$, we get the new inequalities
where !' and :A' are other positive numbers different in general from and :1. From (9) and (10), it follows that

$$
\begin{equation*}
\frac{1}{\lambda \|^{\prime} n} \sum_{1}^{n} c_{k} x_{k}\left\|^{\prime \prime} \leqslant \sum_{1}^{n} c_{k} x_{k}\right\| \leqslant x^{\prime}\|n \underbrace{n}_{1} c_{k} x_{k}\|^{\prime} . \tag{11}
\end{equation*}
$$

1.2.4. Equivalont normed epaces. If a linear set is normed by the two mothods, which leads to two normed spaces E_{1} and E_{2}, and if two positive conatants c_{1} and c_{2} indepondent of $\pm E E_{1}, E_{2}$ exists, such that

$$
\begin{equation*}
c_{1}\|x\|_{E_{1}} \leqslant\|x\|_{E_{2}} \leqslant c_{2}\|x\|_{E_{3}} \tag{1}
\end{equation*}
$$

for all $x \doteq E_{1}, E_{2}$, then the apaces E_{1} and E_{2} are termed equivalent.
As a rule, we will not distinguish between equivalent norms, i.e., we will use the same notation for equivalent norme.

It followe from inequality 1.2 .3 that any two normings of an n-dimansional linear manifold lead to equivaleat normed apeces.

In furtber discuasion, sets of trifononotric or algebraic polynomials of one variable of given degrges ν or of q variables with given degrees $2, \ldots, \ldots$, ν or aimply $\&$ aystes $\}=\left\{\zeta_{1}, \ldots, \xi_{n}\right\}$ of a numbers normed by ang given mothod whl usuily fifure as finito-meacurablo subspaces.
1.2.5. Real Hilbort spaces. Let H be a innear sot and bring in correspondence to each two of its aloments f, ϕ a real number (f, φ) -- the scalar product of f and F, ochibiting the following properties:

1) $(f, f) \geqslant 0 ; \operatorname{from}(f, f)=0$ it followa that $f=0$, the zero eloment in H ;
2) $(f, \phi)=(\dot{\psi}, f)$; and
3) $\left(c_{1} f_{1}+c_{2} f_{2}, 母\right)=c_{1}\left(f_{1}, \&\right)+c_{2}\left(f_{2}, \&\right)$, whatever be the real number c_{1}, c_{2} and the olements $f, ¢, f_{1}$, and $f_{2} C H$.

The norm

$$
\|f\|=(f, f)^{1 / 2}
$$

is introduced in H (it is not difficult to test whether this expression is actualif is the norm). H is made into a normed apace with this nom. If H is a complote apece, H is called a filbert space (real).

Notice that for ans real λ and $f, \ddot{\psi} \models \mathrm{H}$

$$
0 \leqslant(\lambda f+\varphi, \lambda f+\varphi)=\lambda^{2}(f, f)+2 \lambda \cdot(f, \varphi)+(\varphi, \varphi) .
$$

tborefore

$$
|(f, \Phi)| \leqslant(f, f)^{1 / 2}(\varphi, \Phi)^{1 / 2}=\|f\|\|\Phi\| .
$$

The space $L_{2}(\hat{\mu})$ of real functions measurable on Ω and with integrable squares on 2 with the scalar product

$$
(f, \varphi)=\int_{0} f(x) \varphi(x) d x \quad\left(f, \varphi \in L_{2}(\Omega)\right),
$$

serves as an important axample of a real Hilbert apace. We also cone acrose other examples (cf, for example, 4.3.1 (4)).

We can easily see that for any f and $y=-H$ the equality

$$
\begin{equation*}
\|f+\Phi\|^{2}+\|f-\Phi\|^{2}=2\left(\|f\|^{2}+\|\Phi\|^{2}\right) . \tag{1}
\end{equation*}
$$

is satisfied, recalled a familiar truth from geometry: the oum of the squares of the diagonals of a parallelogram equal to sum of the squares of its sides. The space $L_{p}(\Omega)$ when $p \neq 2$ is not Hilbertian, because functions f, φ can be shown to belong to it for which equality (1) is not satisfied.
1.2.6. Distance from element to a subspace. Best approximation. Let It be a subspace of a Banach space E, and lot $\overline{\mathrm{H}} \mathrm{E}$. The distance from I to T_{7} will be the term for the lower bound

$$
\begin{equation*}
E(y)=\inf _{x \in \mathbb{N}}\|y-x\| . \tag{1}
\end{equation*}
$$

oxtended to all elements $x=.7$. We will frequently, following the canventions accopted in the theory of function approximation, called the number $E(J)$ the best approximation of the eloment \bar{J} by moans of the elements $x_{i} \cdot{ }^{-7}$.

It can be the case that in $\gamma^{\prime \prime}$ there existe the eloment x_{n} auch that for it the lower bound considered here is realized, i.e.,

$$
\begin{equation*}
E(y)=\min _{x \in \#}\|y-x\|=\left\|y-x_{0}\right\| . \tag{2}
\end{equation*}
$$

In this case the element x_{n} is called the best element, approximating y by means of the elements $x<i$ 兴.

It is important to note the quite general cases when it can be stated in advance that the best element in the problem (1) does exist. Horeover, another problem is of interest: whether the best element is unique for the given problem.

It is not difficuit to see that if $Y=Y_{n}$ is a finite-measurable subapace of an arbitrary normed space E, then for any element $J \in E$ the best element approximating \bar{J} by means of $x \in \Pi_{i}$ will always exist. Actually, let

$$
E(y)=\inf _{x \in: \#_{n}}\|y-x\| ;
$$

then there exists a (mindmizing) sequence of elements $x^{(1)}(1=1,2, \ldots)$, such

$$
\left.{ }^{\prime} y-x^{\prime \prime \prime}\right]=E(y)+e_{1} \quad\left(\varepsilon_{l} \geqslant 0, \varepsilon_{1} \rightarrow 0\right) .
$$

This sequence is bounded and, therefore, compact, and thus, some one of its subsequences converges normise to some element $x_{*} \in \Pi_{n}$. It is not difficult to soe that x_{n} is the best element approximating \bar{J} by means of x_{n} E" ${ }^{\prime \prime}{ }_{n}$. Conerally speaking, it is not unique.

If "th is an infinite-measurable (not finite-measurable) subspace of the space E, then in the problem (1) the best element may not exist at all. These effects are found, for example, in the spaces $L \times x(k)$ and $L_{1}(\xi)$. However, when p satisfies the inequalities $1<{ }^{\prime}\left(\mathcal{D}^{\prime} \times \cdots\right.$, the existence of the best function occurs for any function $f \in L_{p}(\xi)$ and and subspace $\left.N\right)^{\prime} \in L_{p}(\varepsilon)$. Moreover, in this case the best function 15 always unique; these facts are proven below in 1.3.6. In the spaces $L_{j}(\xi)$ and $L_{w}(\xi)$, if the best element exists, then it is not always unique (cf. 1.2 .7 , examples 1) and 2)). Incidentally, cases of the uniqueness of the best function are found in the spaces $L, L_{i x}$ and C; but these cases depend on the special properties of the subspaces ity and the approximable functions f. These questions are not taken up in this book.
1.2.7. Example 1 . Let the function $f(x)=\operatorname{sign} x$. We will approximate it in the metric $\left.L(-1,1)^{*}\right)$ by means of the constant functions $\bar{\psi}(x)=c$, i.e., we will search for the constant λ for which the following minimum will be attaineà

$$
\min _{c}\|f-c\|_{L(-1+1)}=\min _{c} \int_{-1}^{1}|f(x)-c| d x=\int_{-1}^{1}|f(x)-\lambda| d x .
$$

It is not difficult to see that the minimum is attained for any constant ? that satisfies the inequalities $-1, ?<1$.

From the viewpoint of the notations that figure in the preceding section, it can be stated that we approximated the function $f(L), ~(-1,+1)$ by means of the constants at $(-1,+1)$ of the functions $\ell(x)=c$ forming a one-dimensional subspace of the space $L(-1,+1)$. The best function did not prove to be unique.

Example 2. We will approximate the functions $f(x)=s i g n x$ now in the metric $L_{C^{2}}(-1,+1)=M(-1,+1)$ by using the linear functions

$$
\Phi(x)=A x+B,
$$

where A and $B=$ arbitrary real numbers.
It is not difficult to sec that

$$
\begin{array}{r}
\min _{A, B}\left|f(x)-A x-B\left\|_{W(-1+1)}=\min _{A, B-1 \leqslant x<1} \max _{x(x)-A x-B \mid=} \mid f(x)-\lambda x\right\|_{M(-1,+1)}\right.
\end{array}
$$

\#) $L_{p}(a, b)$ stand for $\dot{L}_{p}(\hat{b})$, where ξ is the segent $[\bar{a}, \underline{b}]$.
where? can be any number satisfying the inequality $|\lambda|$-: 1 .
Thus, in this example as well the best fenction is not unique.
1.2.8. Linear operators. If E and E^{\prime} are Banach spaces and there corresponds to each element x, E, by means of some law, the specific element

$$
y=A(x),
$$

belonging to E, then we say that A is an operator reflecting E and E^{\prime}. The operator A is linear if, whatever be the elements x_{1} and $x_{2} E E$ and the numbers c_{1} and c_{2} (real or complex, depending on whether E and E^{\prime} are real or complex spaces), the following equality holds:

$$
A\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} A\left(x_{1}\right)+c_{2} A\left(x_{2}\right) .
$$

The linear operator is called bounded, if there is a positive constant M such that the equality

$$
\begin{equation*}
\|.1(x)\|_{E} \leqslant M\|x\|_{E} \quad \text { for all } x \in E \tag{1}
\end{equation*}
$$

obtains. The smallest constant M for which this inequality is satisfied for all $\times<=E$ is calced the norm of the operator A and is denoted by the symbol $\|A\|$. The norm of an operator can also be defined as one of the upper bounds:

$$
A^{\prime \prime}=\sup _{\| x \in E} \frac{" A(x) \|_{E}}{x_{E}}=\sup _{x_{[}, 1} A(\boldsymbol{x}) \|_{E^{\prime}}
$$

f- The operator A is called wholly continuous if it maps any bounded set bounded sequence compact set belonging to E^{\prime}. In other words, whatever be the bounded sequence $\left\{x_{1}\right\}$ of elements E, it is possible to select from it such a subsequence $\left\{x_{l_{k}}\right\}^{\text {and }}$ such an element $J_{0} \in E^{\prime}$ that

$$
\lim _{k \rightarrow \infty} A\left(x_{k}\right)=y_{0} .
$$

If the space E^{\prime} is f inite-measurable, any linear bounded operator A mapping E onto i is a wholly continuous operator, since A maps any bounded set of E onto a bounded set of E^{\prime}, and the latter is compact by virtue of the finite-measurability of E^{\prime}.

Let us look at an example. Let E as before stand for a Banach space and let \because be its finite-measurable subspace.

Further, let there be brought into correspondence with oach element $x E E$ oniy one element $x_{k}=A(x)$ that bests approximates x among the elements $u \in \boldsymbol{J}^{2}$, in other words, let $A(x)$ be the unique element of among for which the equality

$$
\min _{u \in \|} \boldsymbol{x}-\boldsymbol{u}\left\|_{E}=\right\| x-A(x) \|_{E}
$$

is satisfied.

Then $A(x)$ is an operator mapping E onto 加. This operator, generally speaking, is nonilinear (it is linoar if E is a Hilbert space), but is wholly contimous, as is evident from the following argument. From the inequality

$$
\|A(x)\|_{E}-\|x\|_{E} \leqslant\|x-A(x)\|_{E} \leqslant\|x\|_{E}
$$

it follows that

$$
\|A(x)\|_{E} \leqslant 2\|x\|_{E} .
$$

Hence, it follows that the operator A maps a bounded set of element of E onto a bounded set of elements of 97 . But the latter, by reason of the finitemeasurability of 97%, is compact.

Note. The definition of the wholly continuous operator can be oxtended also to multi-valued operators mapping E onto E, 1.e., such that to each $x \in E$ there corresponds, genoraily speaking, more than one element $y=A(x)$. The multivalued operator A is called wholly contimous if, from any bounded sequence of elements $x_{1} \in E$ a subsequence $\left\{x_{I_{k}}\right\}$ and such specific values of the operator A that the sequence $\left\{A\left(x_{I_{k}}\right)\right\}$ converges in E^{\prime} can be separated
out.

This example of the operator $A(x)$ of the best approximation of the elemont x by means of elements of a finite-measurable subspace $\pi /$ in the general case yialds a maltivalued operator, which is wholly continuous in the aboveindicated sense.

1.3 Properties of the space $L_{p}(\xi)$

We have only formulated and explained a fow of the propertios of the space $I_{p}(\xi)$, reforring the reader for their proof to other sources (cf. notes to chapter 1 at the end of the book).
1.3.1. It was already pointed out in 1.2.2 that $I_{p}(F)$ is a Banach (real or complex) space. Thus, the following properties are shtiaried for elements of the space $L_{p}(\varepsilon)$:

1) the norm

$$
\|f\|_{L_{p}(\xi)}=\left(\int_{\delta}|\dot{f}|^{p} d \boldsymbol{\delta}\right)^{1 / p}
$$

of each function $f \in L_{p}(\xi)$ is nonnegative and equal to zero only for the function f_{0} equivalent to zero ($f_{0}=0$);
2)

$$
\begin{aligned}
& \left\|f_{1}+f_{2}\right\|_{L_{p}(y)} \leqslant\left\|f_{1}\right\|_{L_{p}(y)}+\left\|f_{2}\right\|_{L_{p}(y)} ; \\
& \|c\|_{L_{p}(y)}=|c|\|f\|_{L_{p}(z)}
\end{aligned}
$$

where c is an arbitrary (real or complex) numbe:;
4) from the fact that $f_{k}=L_{p}(F)$ and

$$
f_{k}-f_{1} \prime_{1}, \rightarrow 0 \quad(k, 1 \rightarrow \infty)
$$

there follows the existence of the function $f_{*}\left(L_{p}(\xi)\right.$, for which

$$
\begin{equation*}
\therefore f_{k}-f_{L_{\mu}}=1 \tag{1}
\end{equation*}
$$

Properties 1) and 3 are solf-evident. Inequality 2) is called the .inkewski inequality. It can be converted into an equality if and only if the functions f_{1} and f_{2} are linearly dopendent as olements of the apace L_{p}. Property 4) is the theorem of the completaness of the space L_{p}.

We will write

$$
\Psi(x)=u_{0}(x)+u_{1}(x)+\ldots(x \in \mathscr{E})
$$

and state that the series appearing in the right side of this equality converges in the $\operatorname{sen}^{3} e$ of $L_{p}(\ddot{)}$) to its sum $f(x)$, if

$$
\lim _{x \rightarrow \infty}\left|\Psi-\sum_{0}^{N} u_{k}\right|_{L_{D}(x)}=0
$$

The ":rfenski inequality is extended by induction to the case of N functions, and then it takes on the form

$$
\begin{equation*}
\dot{\Sigma}_{1}^{v} f_{k}\left\|{\dot{l_{L}}(y)}_{N}^{\sum_{1}} f_{k}\right\|_{L_{p}(y)} \tag{2}
\end{equation*}
$$

From which it is also easy to derive the inequality

$$
\begin{equation*}
\sum_{1}^{\infty} f_{k}\left\|_{L_{p}(z)} \leqslant \sum_{1}^{\infty}\right\| f_{k} \|_{L_{p}(y)} \tag{3}
\end{equation*}
$$

corresponding to the case $N=\cdots$. It is read thusly: if the functions $f_{k} \quad L_{p}(=)(k=1,2 \ldots)$ and the series (of numbers) in the right side of (3) converge, then the series $f+f_{2}+\ldots$ converges in the sense of $L_{p}(f)$ to some cunverge, then the \sum_{1} function (belonging to $L_{p}(\xi)$, ${ }^{2}$ which is symbolized by f_{k} and inequality
(3) holds.

Let us note yet another following fact we need to have. If the series

$$
f(x)=f_{1}(x)+f_{2}(x)+\ldots
$$

converges in the ordinary sense almost everywhere on ζ_{0}^{5} to the function f and, moreover, it converges to f_{*} in the sense of $L_{p}\left(l^{6}\right)$, then $f(x)=f_{*}(x)$ almost everywhere on \mathcal{E}^{k}. Actually, from the condition, the sum $S_{n}(x)$ of the first n numbers of our series converges in the metric $L_{p}(\xi)$ to f_{*}. But then, as we know from the theory of functions of a real variable, there exists the subsequence of indexes n_{1}, n_{2}, \ldots such that $S_{n_{k}}(x)$ converges in the usual sense almost everywhere to $f_{*}(x)$ on ξ and, since $S_{n_{k}}(x)$ almost everywhere also converges to $f(x)=f_{n}(x)$.

In the left side of inequality (2), at first an operation of surauation with respect to the index k was carried out, and as a result the operation of taking the norm was used, while in the right side these two operations were interchanged. Below is derived a similar inequality, when the operation of suming over the index k is replaced by the operation of integrating over the
variable k.
1.3.2. Ceneralized Minkowski given on a measurable set $E=y$ inequality. For the function $k(u, y)$ $2 \quad h$, where $x=(a, y), a=\left(x_{1}, \ldots\right.$, $\left.x_{m}\right)$, and $J=\left(x_{m+1}, \ldots, x_{n}\right)$, the inequality

$$
\begin{equation*}
\left(\int_{y^{\prime}}\left|\int_{i_{2}} k(u, y) d y\right|^{p} d u\right)^{1 p} \leqslant \int_{y_{i}}\left(\int_{y_{1}}|k(u, y)|^{p} d u\right)^{1 / p} d y, \tag{1}
\end{equation*}
$$

obtains, which must be understood in the sense that if its right side is rational, i.e., for almost all y there exists an inner integral in and there exists an outer integral in ${ }^{2}$, then the left side also is rational; the left side does not exceed the right.
1.3.3. Inequality $1.3 .2(1)$, in particular, will often be used in the foliowing situations:

$$
\begin{align*}
& \left(\int\left|\int \kappa^{\prime}(t-x) f(t) d t\right|^{p} d x\right)^{1 p}= \\
& =\left(\int\left|\int \kappa(t) f(t+x) d t\right|^{p} d x\right)^{1 / p} \leqslant \\
& \leqslant \int|\mathcal{K}(t)|\left(\int|f(t+x)|^{p} d x\right)^{1 p} d t= \\
& \left.=\int|K(\boldsymbol{t}): \| \boldsymbol{t}| \int|f(\boldsymbol{u})|^{p} d \boldsymbol{u}\right)^{\mathbf{D}}=K_{\left.L(t,)^{\prime}\right)}\| \|_{L_{p}(R)}, \tag{1}
\end{align*}
$$

where

$$
\text { *) Here and in the treatment below } \begin{aligned}
&=\int_{R} \\
&-2 ?-R
\end{aligned}, R=R_{n} .
$$

1 !' sunctions $k(t)$ and $l^{\prime}(t)$ are periodic functions with a 2π perioi :n. $:: 1: \in L(0,2 \pi): n u!\in L_{p}(0,2 \pi)$, then the anilogous inequality

$$
\begin{equation*}
\cdot\left(\int_{0}^{2 \pi}\left|\int_{0}^{2 \pi} K(t-x) f(t) d t\right|^{p} d x\right)^{1 / p} \leqslant\|K\|_{L(0,2 \pi)}\|f\|_{L,(0,2 \pi)} \tag{2}
\end{equation*}
$$

holas, or a sinilis inequatity for periodic sunctions of n variables.
1.3.4. HOLGr's inequality. I: $\because \in L_{n}\left(\xi_{n}\right), f_{2} \in L_{q}\left(E_{0}\right)$ and

$$
\begin{equation*}
\int_{\varepsilon}\left|f_{1} f_{2}\right| d \xi \leqslant\left\|f_{1}\right\|_{L_{p}(y)}\left\|f_{2}\right\|_{L_{q}(\eta)} \tag{1}
\end{equation*}
$$

 (enonient.

NOT REPRODUCIBLE

[^1]1.3.5. Clarkson inequality**). Uniform convexity. Let $f_{1} \in L_{p}(\xi)$, $\mathrm{f}_{2} \in \mathrm{~L}_{\mathrm{p}}(\varepsilon)$, and $1 / p+1 / q=1$, where $1 \leqslant p \leqslant \infty$), then the Hölder inequality
\[

$$
\begin{equation*}
\left|\frac{f_{1}+l_{2}}{2}\right|_{L_{p}(y)}+\left|\frac{h_{1}-f_{2}}{2}\right|_{L_{p}(y)}^{p} \leqslant \frac{p}{2}\left\|f_{1}\right\|_{L_{p}(y)}^{p}+\frac{1}{2}\left\|f_{2}\right\|_{L_{p}(x)} \tag{1}
\end{equation*}
$$

\]

If however $1<p \leqslant 2,1 / p+1 / q=1$, then

$$
\begin{equation*}
\left|\frac{L_{1}+l_{1}}{2}\right|_{L_{p}(n)}+\left|\frac{\mu_{1}-f_{2}}{2}\right|_{L_{p}(\theta)} \leqslant\left(\frac{1}{2}\left\|f_{1}\right\|_{L_{p}(y)}^{p}+\frac{1}{2}\left\|f_{2}\right\|_{L_{p}(n)}\right)^{\frac{1}{p-1}} . \tag{2}
\end{equation*}
$$

man $p=2$, inequalities (1) and (2) convert to equalities (equalities of a paraliologram).

It is esid that the Banach space E is uniformily convex, if from the fact that

$$
\max _{1<\alpha<1}\left(1-\left\|a x_{1}^{(n)}+(1-a) x_{0}^{(n)}\right\|\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

where $\left\|x_{1}^{(n)}\right\|=\left\|x_{2}^{(n)}\right\|=1$, it follows that

$$
0<\frac{\omega+u}{u}\left|(v)^{2} x-(u) x\right|
$$

**) Cr, for example, the book by S. I. Sobolev [4].
(乡) From the Clarkson inequalities (1) and (2), it follows that the apace From the Clarkson inequalities (1) and (2), it polo
$(1<p<\infty)$ is uniformly convex. Actually, let

$$
\begin{gathered}
\|\cdot\|_{L_{2}(y)}=\|\cdot\| . \\
\text { nne } \\
\| f_{1}^{(n)}\left|=\left|f_{8}^{(n)}\right|=1 .\right.
\end{gathered}
$$

Then, from (1) and (2) it follows that

$$
\begin{equation*}
\left|\frac{f_{1}^{(n)}-f_{2}^{(n)}}{2}\right|^{2} \leqslant 1-\left|\frac{f_{1}^{(n)}+f_{3}^{(n)}}{2}\right|^{n}, \tag{3}
\end{equation*}
$$

where $\lambda=\mathrm{p}$ in the case of (1) and $\lambda=\mathrm{q}$ in the case of (2). If now
then

$$
\max _{0<a \leq 1}\left(1-\| a f_{1}^{(n)}+(1-a) f_{2}^{(n)} D \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0\right.
$$

$$
1-\left|\frac{f_{1}^{(n)}+f_{2}^{(n)}}{2}\right| \rightarrow 0
$$

But then the right side of (3) tends to zero, and with it, the left aide as well. This means that

$$
\left|f_{1}^{(n)}-f_{2}^{(n)}\right| \xrightarrow[n \rightarrow \infty]{ } 0
$$

1.3.6. Theorem. Lat E (in particular, $b_{p}(\xi), 1<p<\infty$) bo a uniformly convex Banach apace, tip be its arapapace, and $\bar{j} \in E-M$.

Then there exist e an element, that is unique, $n \in A 7$ best approximating Σ by moans of elements from $\bar{\eta} 7$:

$$
\begin{equation*}
\|y-u\|=\inf _{x \in \infty}\|y-x\| . \tag{1}
\end{equation*}
$$

Proof. Let

$$
\inf _{x \in \mathbb{R}}\|y-x\|=d \quad(d>0) ;
$$

then there exists a minimizing sequence of elements $x_{n} \in \mathbb{T}$ for which

$$
\left\|y-x_{n}\right\|=d+e_{n} \quad\left(e_{n}>0, e_{n} \geqslant 0\right) .
$$

$$
w_{n}=\frac{y-x_{n}}{d+z_{n}}
$$

are unique norms also for any $a, \beta>0, \alpha+\beta=1$,

$$
\begin{aligned}
0 & \left.\leqslant 1-\left\|a w_{n}+\beta w_{m}\right\|-1-\|\left(\frac{a}{d+\varepsilon_{n}}+\frac{\beta}{d+\theta_{m}}\right) y-x \right\rvert\,= \\
\quad & 1-\left(\frac{a}{d+\varepsilon_{n}}+\frac{\beta}{d+\varepsilon_{m}}\right)\left\|y-x^{2}\right\|< \\
& \leqslant 1-\left(\frac{a}{d+a_{n}}+\frac{\beta}{d+\varepsilon_{m}}\right) d=\eta_{n m} \xrightarrow[n, m \rightarrow \infty]{ } 0,
\end{aligned}
$$

that are uniform with reapect to the α and β considered.
For this case, by the dofinition of a oniforms convex apace

$$
\left\|w_{n}-w_{m}\right\| \xrightarrow[n, m \rightarrow \infty]{ } 0,
$$

But

$$
\begin{aligned}
& \left\|w_{n}-w_{m}\right\|-\left|y\left(\frac{1}{d+\varepsilon_{n}}-\frac{1}{d+\varepsilon_{m}}\right)-\left(\frac{x_{n}}{d+\varepsilon_{n}}-\frac{x_{m}}{d+\varepsilon_{m}}\right)\right|= \\
& =\left|\frac{x_{n}}{d+\varepsilon_{n}}-\frac{x_{m}}{d+\varepsilon_{m}}\right|+o(1)=\frac{1}{d}\left\|x_{n}-x_{m}\right\|+o(1)(n, m \rightarrow \infty),
\end{aligned}
$$

since elemente x_{n} and x_{n} are bounded with reapect to the norm. We have proven that

$$
\left\|\ddot{x_{n}}-x_{m}\right\| \xrightarrow[n, m \rightarrow \infty]{ } 0 .
$$

Owing to the comploteness of E and the closure of $M 1$, there exists the elcmant $a \in 17$ such that $x_{n} \rightarrow n$ and obviousiv, (1) is catiafied.

Now. let yot another alemont a^{\prime} exiet for which (1) is eatiafied. For $0 \leqslant \alpha \leq 1$, we have

$$
\begin{aligned}
& d \leqslant\left\|\alpha u+(1-a) u^{\prime}-y\right\| \leqslant a\|u-y\|+ \\
&+(1-a)\left\|u^{\prime}-y\right\|=a d+(1-a) d=d .
\end{aligned}
$$

Consequentiv, $\left\|a_{u}+(1-\alpha) m^{\prime}-y\right\|=d$. Thus,

$$
\max _{0<a \leq 1}\left|a \frac{a-y}{d}+(1-a) \frac{u^{\prime}-y}{d}\right|=1 \text {. }
$$

wherv $\left\|\frac{a-j}{d}\right\|=\left\|\frac{m^{\prime}-\bar{d}}{d}\right\|=1$. Doe to the uniform convexity of the space $E\left(x_{1}^{\left({ }^{n}\right)}=\frac{n-y}{d}, x_{2}^{(n)}=\frac{n^{\prime}-\boldsymbol{J}}{d}\right)$, we obtain
1.0., $\mathbf{a}=\mathbf{a}^{\prime}$.

$$
\frac{a-y}{d}=\frac{z^{\prime}-y}{d},
$$

1.3.7. We often even have to resort to using the followine facts pertaining to the theory of the functions of a real variable.

Lot $f, f_{k} \in L_{p}(\xi)(k=1,2, \ldots)$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|f-f_{k}\right\|_{L_{p}(n)}=0 \quad(k \rightarrow \infty), \quad(1 \leqslant p \leqslant \infty) . \tag{1}
\end{equation*}
$$

Then there exists a subsequence $\left\{k_{1}\right\}$ of natural numbers such that $\lim _{x_{1} \rightarrow \infty} f_{\lambda_{1}}(x)=f(x)$ почти длп всех $x \in \boldsymbol{\gamma}$. for almost all $\geq \in \mathcal{F}$

Thus, there exists a sot $\xi^{\prime} \subset \varepsilon$, dietinot from ε, on a set of zero mensure, such that f and $f_{k_{1}}(1=1,2, \ldots)$ on \mathcal{E} are finito and equality (2) 1a antiafied for all $x \in \mathcal{E}^{\prime}$, whence it oasily followe that if along with (1), for some p_{*} there axists $\lim _{k-}\left\|f_{*}-f_{k}\right\|_{L_{p}(\varepsilon)}=0$, then $f_{*}=f, 1.0$. , the functions f and f_{*} are equivalent in ε.

If the meagurable $\operatorname{agt} \xi_{1}=\xi_{1} \times \xi_{2}$ is the topological product of two
 the form of a pair $x=(y, s)$, whare $y \in \xi_{1}$ and $s \in \xi_{2}$, then we can acsume

In this case,

$$
f(x)=f(y, z), \quad f_{k}(x)=f_{k}(y, z) \quad(k=1,2, \ldots) .
$$

В этом случае

$$
\left\|f-f_{k}\right\|_{L_{p}(y)}=\left(\int_{x_{1}} \Psi_{n}(y) d y\right)^{1 / n} \quad(k=1,2, \ldots)
$$

where

$$
\begin{align*}
& \text { rдe } \\
& \Psi_{k}(y)=\int_{\gamma_{1}} \mid f(y, z)-f_{k}(y, z) p d z=\left\|f(y, z)-f_{k}(y, z)\right\|_{\varepsilon_{p}\left(z_{z}\right)^{\prime}}, \tag{3}
\end{align*}
$$

are ξ_{1}-sumabio (belonging to $\left.L\left(\xi_{q}\right)\right)$ nonnogative functions.
From equality (1) it follows that

$$
\lim _{n \rightarrow \infty} \int_{y_{1}} \Psi_{n}(y) d y=0,
$$

and, thus, applying to Ψ the above-noted property (where we must assume $p=1$ and replace ξ by ξ_{1}^{\prime}), we arrive at the following lema.
 \wp_{2}, it follows that for some rubsequence $\left\{k_{1}\right\}$ of mitural nembers k_{y} for alnont all $\% \in \mathcal{E}_{1}$, the equality

$$
\begin{equation*}
\lim _{k_{1} \rightarrow \infty}\left|f(y, z)-f_{k_{l}}(y, z)\right|_{L_{p}\left(y_{2}\right)}=0 \tag{1}
\end{equation*}
$$

is aatisfied.

From the proven lemen and the note at the begiming of section 1.3.7 derives also the following lame.
1.3.9. Lema. Let the eot $\mathscr{\mathscr { S }}=\mathscr{E}_{1} \times \mathscr{E}_{2}$ be defined, as in the procoding lema and lot the fallowing equality be satiafied for the sequence of functions $I_{k} \in L_{p}(\xi)(\underline{z}=1,2,111)$ and the function $f\left(f \in L_{p}(E)\right)$

$$
\begin{equation*}
\lim _{h \rightarrow \infty}\left\|f-f_{a}\right\|_{2}(x)=0 \quad(1 \leqslant p<\infty) . \tag{1}
\end{equation*}
$$

Let, moreover, for acme number $p^{\prime}\left(1 \leqslant p^{\prime} \leqslant \infty\right)$, in general diatinot from p, and the funotion f_{n}, the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{0}(y, z)-f_{k}(y, z)\right\|_{2,\left(y_{s}\right)}=0 \tag{2}
\end{equation*}
$$

be antiafiod for almont all y $\in \mathcal{C}_{1}$.
Then $f=f_{n}, 1.0$. , functions $f(x)$ and $f_{*}(x)$ are equivalont on E^{\prime}.
Proof; By virtue of the preceding lomen for some gubsequence of natural nuber $\left\{k_{1}\right\}$ and on somet $\left\{\xi^{\prime} \subset \xi_{1}^{\prime}\right.$, distinct from \mathcal{E}_{1} on a set of measure (in the sense of ξ_{1}) sero, equality 1.3 .8 (1) bolds for all $\gamma \in \xi_{1}:$ It can be assumed that equality (2) also obtains for all $\mathcal{J} \in \mathcal{Y}^{\prime} 1$. And so, if $y \in \mathcal{E} \quad 1$, then (1) and (2) are eatiafiod for it similaneousif.

But thon equality $f(y, s)=f_{n}(y, s)$, obtains for almost all $s \in \mathcal{E}_{2}, i . e .$, almost everywhere in the miossurable set $\mathcal{\xi}=\varepsilon_{1} \times \xi_{2}$.

Note also the following theorema.
1.3.10. Theorem (P. Fatou)"). If a sequance of mapeureblo nonnegative

$$
\int_{8} F d x \leqslant \sup \left\{\int_{\delta} f_{n} d x\right\}
$$

1.3.11. Thooren*). From a sequence of function $\left\{f_{k}\right\}$ bounded in the sense of $L_{p}(\mathcal{E})(1<p<\infty)$:

$$
\left\|f_{A}\right\|_{2,},(x) M
$$

ve can separate the subsequence $\left\{f_{\mathbf{k}_{1}}\right\}$ veakly convergent to seme function $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}\left(f^{\prime}\right) w i \operatorname{th}\|f\|_{L_{p}}(\xi) \leq M$. This means that the equality

$$
\lim _{h \rightarrow \infty} \int_{\gamma} \ln \varphi d x=\int_{\delta} \operatorname{lp} d x
$$

holds for and functions $\phi \in L_{p}(C)(1 / p+1 / q=1)$.
1.3.12. The function $f \in L_{p}(\xi)$ is called contimuous in the whole in
$L_{p}(\varepsilon)$ if for $\varepsilon>0$ a $f(\varepsilon)>$ can $^{(z)}$ found auch that

$$
\|f(x+y)-f(x)\|_{\varepsilon_{p},\left(y_{0}\right)}<\varepsilon
$$

 for any \bar{y} atiaryine the inequality $|\mathrm{J}|<\delta$.)

Theoran. Ans function $f(x) \Subset L_{p}(x), 1 \leqslant p<\infty$ is continuous in the whole in L_{p} (8).
1.3.13. We will widely employ also the following inequalitiea for
$\leqslant \infty$ $1 \leqslant p \leqslant \infty$:

$$
\begin{gather*}
\quad\left(\sum_{1}^{\infty}\left|a_{n}+b_{n}\right| p\right)^{1 / p}<\left(\sum_{1}^{\infty} \mid a_{n} p\right)^{1 / p}+\left(\sum_{1}^{\infty} \mid b_{n} p\right)^{1 / p}, \tag{1}\\
\sum_{1}^{\infty}\left|a_{n} b_{n}\right|<\left(\sum_{1}^{\infty} \mid a_{n} p\right)^{1 / p}\left(\sum_{1}^{\infty} \mid b_{n} p\right)^{p}, \text { if } 1 / p+1 / q=1 \tag{2}
\end{gather*}
$$

\#) Cf, for example, the book by I. P. Natanson $\angle \overline{1} \bar{J} \cdot \overline{L \overline{1}} \overline{\text {. }}$.
where a_{k} and b_{k} are arbitreny numbers. They are callod, reapectively, the Minkowald lnoquality and the Holdor inequality for ame.

It is eqtabliabod by (1) that a linear n-dimensional mandfold of vectora $\xi=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ with the norm

$$
|\xi|_{n}^{n}=\left(\sum_{1}^{n}\left|\xi_{n}\right| p\right)^{1 / p}, \quad 1 \leqslant p<\infty,
$$

is a normod apace. In particular, from 1.2 .4 it follows that for and p and $p^{\prime}\left(1 \leqslant p<p^{\prime} \leqslant \infty\right)$

$$
\begin{equation*}
c_{1}\|\xi\|_{l_{n}^{n}} \leqslant\|\xi\|_{i_{\eta}^{n}} \leqslant c_{2}\|\xi\|_{i_{p}}^{n_{0}} \tag{3}
\end{equation*}
$$

where c_{1} and c_{2} are positive constants, independent of ξ. of course, these inequalities can be derived directly, by establishing, the exact constants c_{1} and c_{7}.

$$
x_{n} \int \psi(t) d t=1 \text {, }
$$

1.h Arexaling of Punctiom According to Soboley")

Let

$$
\sigma_{z}=\{|x|<8\}, \quad \sigma_{1}=\sigma_{1}
$$

stand for a sphore in $R=R_{n}$ with radius 6 and its center at the zero point.
Let $\psi(t)$ be an infinitely differentiable even nonnogative function of one variable $t(-\infty<t<\infty)$ equal to zero for $|t| \geqslant 1$ such that
where K_{n} is the area of the unit ($(n-1)$-dimensional) sphore in n-dimensional space.

We can take the function

$$
\Psi(t)=\left\{\begin{array}{cc}
\frac{1}{\lambda_{n}} e^{\frac{p}{p-1}}, & 0 \leqslant|t|<1, \\
0, & 1 \leqslant|t|,
\end{array}\right.
$$

as Ψ where the constant λ_{n} is cbosen so that condition (1) is sacisiined. *) S. L. Sobolev [ム̄.

The function

$$
\begin{equation*}
\varphi_{e}(x)=\frac{1}{e^{\pi}} \varphi\left(\frac{x}{\varepsilon}\right), \quad \varphi(x)=\varphi(|x|), \quad \varepsilon>0 \tag{2}
\end{equation*}
$$

1s infinitely differentiable on R (noting the evenness of ψ), has its carrier Lnositel'/ on σ_{E}, and satisfies the condition

$$
\begin{equation*}
\int \varphi_{t}(x) d x=\frac{1}{e^{n}} \int \varphi\left(\frac{x}{t}\right) d x=1 \tag{3}
\end{equation*}
$$

Let $\& C R_{n}=R$ be an open set and $f \in L_{p}(g)(1 \leqslant p \leqslant \infty)$.
Asaum $f=0$ on $R-g$. The function

$$
\begin{align*}
& f_{\varepsilon}(x)-f_{8 \cdot e}(x)=\frac{1}{e^{n}} \int \varphi\left(\frac{x-u}{\varepsilon}\right) f(u) d u= \\
&=\frac{1}{\varepsilon^{n}} \int \varphi\left(\frac{u}{e}\right) f(x-u) d u \tag{4}
\end{align*}
$$

is called ε-averaged according to Sobolev. This is obviousiy an infinitely differantiable function on R.

Now we direct our attention to the following important property of $f:$

$$
\begin{equation*}
\left\|f_{\varepsilon}-f\right\|_{p}^{\prime s} \rightarrow 0\left(\varepsilon \rightarrow 0,\|\cdot\|_{p}=\|\cdot\|_{L_{p}(R)}, \quad 1 \leqslant p<\infty\right) \tag{5}
\end{equation*}
$$

It show that for a finite $p(1 \leq p<\infty)$ a set of functions infinitely differentiable on R and everywhore compact in $L_{p}(g), 1 . \theta .$, regardiags of how the open set g is constructed, for each function $f \in L_{p}(g)$ a family of functions f_{E} (its Sobolev averagings) infinitely differefitiable on R can be specified such that (5) is fulfilled.

Actually, by (3)

$$
\begin{aligned}
f_{e}(x)-f(x)=\frac{1}{e^{n}} \int \Phi\left(\frac{x-u}{e}\right) & \| f(u)-f(x)] d u= \\
& =-\int \varphi(v)[f(x-e v)-f(x)] d v,
\end{aligned}
$$

from whonce, using the generalised Minkowski inequality and since φ has a carrier in σ, we get

$$
\begin{align*}
\left\|f_{\varepsilon}-f\right\|_{p} & \leqslant \int_{0} \varphi(\theta)\|f(x-\varepsilon \theta)-f(x)\|_{p} d \theta \leqslant \\
& \leqslant \sup _{\mid=1<\varepsilon}\|f(x-\theta)-f(x)\|_{p} \rightarrow 0 \quad(\varepsilon \rightarrow 0) . \tag{6}
\end{align*}
$$

For the case $p=\infty$ property (5) is not satiafied. Howover, if we consider that $g=R$ and $f(x)$ is uniformily continuously on $R(f \in C(R))$, (6) can be rewritton as

$$
\left\|f_{\varepsilon}-f\right\|_{\infty} \leqslant \sup _{|0|<\varepsilon}|f(x-0)-f(x)| \rightarrow 0 \quad(\varepsilon \rightarrow 0) .
$$

Notice also the inequality

$$
\begin{equation*}
\left\|f_{\theta}\right\|_{p} \leqslant \frac{1}{\varepsilon^{x}} \int \Phi\left(\frac{\varepsilon}{\theta}\right)\|f(x-u)\|_{p} d u=\|f\|_{p}(1 \leqslant p \leqslant \infty) . \quad 1 \tag{7}
\end{equation*}
$$

1.4.1. Finite functions. Let $G \subset R$ be an open set. The function (x) is callod finite in g if it is defined on g and has a compect carrier lying on g. Tho carrier of a function is the torm given to the closure of the eet of all points, where it is not equal to zero.

Lema. If $f \in I_{p}(g)(l \leq p<\infty)$, then there exists a sequence of functions q, infinitely differentiable on g for which the propertien

$$
\begin{aligned}
& \left\|f-\varphi_{l}\right\|_{p} \rightarrow 0 \quad(l \rightarrow \infty), \\
& \left|\dot{\varphi_{l}}(x)\right| \leqslant \sup _{x \in g} \operatorname{vrai}^{2}|f(x)| .
\end{aligned}
$$

are satiefiod. If f simaltanoovaly belongs to L_{p} and $h_{p \prime}\left(1 \leqslant p, p^{\prime}<\infty\right)$, the
cequonoe $\left\{\varphi_{1}\right\}$ can be taken the function sought fol.
Proof. Suppose $\eta>0$ and eelect an open bounded set $\Omega \subset \bar{\Omega} \subset$ g such that

$$
\|f\|_{L_{p}(\varepsilon-\Omega)}<\frac{\eta}{2} .
$$

Let d atand for the distance from Ω to the bound g ($d>0$; if g is not bounded, then $\mathrm{d}=\infty$). Let us further introduce the function

$$
f_{Q}(x)=\left\{\begin{array}{cc}
f(x), & x \in Q, \\
0, & x \notin Q .
\end{array}\right.
$$

Its ε-averaging $f_{a, \varepsilon}=\varphi$ when $\varepsilon<d$ is a finite function infinitely difforontiable on g , for which the inequalities

$$
\begin{aligned}
\mid \ddot{f}-f_{Q, e} \|_{L_{p}(8)} & \leqslant\left|f-f_{Q}\right|_{L_{p}(8)}+\mid f_{Q}-f_{Q, e} \|_{L_{p}(8)}= \\
& =\|F\|_{L_{p}(\varepsilon-\Omega)}+\left\lvert\, f_{Q}-f_{Q, e} l_{p,(0)}<\frac{\eta}{2}+\frac{\eta}{2}=\eta_{1}\right.
\end{aligned}
$$

are datisfied if and only if ε is sufficientiy amall.
Furthor (of 1.4 (7))

$$
\left|f_{R, i}(x)\right| \leqslant \sup _{\mathcal{R} \in \mathcal{R}} \operatorname{vrai}\left|f_{g}(x)\right| \leqslant \sup _{\mathcal{R} \in R} \operatorname{vrai}|f(x)| .
$$

Therefore, if $\eta=\eta_{1} \rightarrow 0$, then assuming that $\varepsilon=\varepsilon_{1}$ and $\Omega=\lambda_{1}$, we obtain the recult that the fanction $\phi_{1}=I_{\Omega_{1}}, \varepsilon_{1}$ eatiary the requiremente of the leman. Hore, if airoltanoousity $f \in L_{p}, L_{p}$, then for both p and p^{\prime} unique Ω_{1} and ε_{1}, and therefore, also φ_{1} can be chosen.
1.4.2. Lomma. If $f \in L_{\infty}(g)$ (a moacurable function aubstantiajify bounded in the open set $g \subset R$), then there exiats a eequence of finitely differentiable functions E_{N} finite in f that atiafies the conditions

$$
\begin{align*}
& \lim _{l \rightarrow \infty} \varphi_{1}(x)=f(x) \text { почти осюдy ка } g, \quad \text { almost overywhere in } g \tag{1}\\
& \left|\varphi_{1}(x)\right|<\sup _{s \in \Omega} \operatorname{vrai}|f(x)| . \tag{2}
\end{align*}
$$

Proof. Let f atand for the intereection of E with the aphere $|x|<N$, and let η_{N} decrease Monotonically to sero $(N=1,2, \ldots)$. Since $f \in L\left(B_{N}\right)$ then wo can apecify a function f_{N} finite in g_{N} and therefore in auch that

$$
\begin{equation*}
\left\|f-f_{N}\right\|_{L\left(a_{N}\right)}<\eta_{N} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{N}(x)\right| \leqslant \sup _{x \in\{ } \operatorname{vrai}|f(x)| . \tag{4}
\end{equation*}
$$

From (3) and (4) it follow that from the sequonce $\left\{f_{Y}\right\}$ can be soparated a subsequence $\left\{P_{1}\right\}$ subject to the requilremente of the Hame.

15 Gampelired Punction

Lot us introduce the clase S (L. Schwartz $[\overline{1} \overline{\mathcal{J}}$) of fundemental functions $\phi=\phi(x)$. The function ϕ of clans S is defined on $A_{\text {, }} i_{s}$ complex-valued ($\varphi=\varphi_{1}+1 \Phi_{2}, \varphi_{1}$ and φ_{2} ase real), is infinitely differentiable on R, and is such that for any nomegative nuber 1 (sufficiontiy integral i) and nonnegative integral vector $k=\left(k_{1}, \ldots, k_{n}\right)$
where

$$
\sup _{x}\left(1+|x|^{\prime}\right)\left|\Phi^{(n)}(x)\right|=x(l, k, \varphi)<\infty,
$$

$$
\begin{equation*}
\varphi^{(n)}=\frac{\partial^{(n)} \varphi}{\partial x_{1}^{k}{ }^{n} \cdots \partial x_{n}^{k_{n}^{n}}}, \quad|k|=\sum_{i=1}^{n} k_{j} . \tag{1}
\end{equation*}
$$

deoum $L_{p}=L_{p}(R)$. From (1), in particular, it follows that

$$
\left|\Phi^{(n)}(x)\right| \leqslant \frac{1}{2} \times(0, k, \varphi)<\infty,
$$

${ }_{(1 \leqslant \mathrm{p}}^{\text {1.e., the function } \phi^{(k)}} \in \mathrm{S}$, because bounded $\left(\varphi^{(k)} \in \mathrm{L}_{\infty}\right)$. Purther, $\phi^{(k)} \in \mathrm{L}_{\mathrm{p}}$

$$
\begin{aligned}
& \int\left|\Phi^{(k)}(x)\right|^{p} d x \leqslant c_{1} \int \frac{\left|\varphi^{(n)}(x)\left(1+|x|^{\frac{n+1}{p}}\right)\right|^{p} d x}{(1+|x|)^{n+1}}< \\
& \leqslant c_{1} x^{p}\left(\frac{n+1}{p}, k, \varphi\right) \int \frac{d x}{(1+|x|)^{n+1}=c_{2} x^{p}}\left(\frac{n+1}{p}, k, \varphi\right)<\infty
\end{aligned}
$$

where $a=$ dimenaionality of R. Thus, for ang

$$
\begin{equation*}
\Phi^{(n)} \Xi L_{p} n\left\|\Phi^{(n)}\right\|_{L} \leqslant c x\left(\frac{n+1}{p}, k, \Phi\right) . \tag{2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|\Phi^{(n)}(x)\right| \leqslant \frac{x\left(1, h_{1}, \varphi\right)}{1+|x|} \rightarrow 0^{0} \quad(|x| \rightarrow \infty) . \tag{3}
\end{equation*}
$$

If $\varphi_{n}, \ddot{\psi} \in S(m=1,2, \ldots)$ and for and nonnogative integral namber 1 and intogrel vector \mathbf{k}
then we will urite

$$
\varphi_{m} \rightarrow \varphi(S) .
$$

We will atate the following about the function ψ infinitely differentiable on R : it exhibite polynomial erowth if for any nonnogative vector $i z$ there exista $1=1(k)$ such that

$$
\left|\psi^{(1)}(x)\right|<c\left(1+|x|^{l}\right)
$$

where c does not depend on x.
If $\varphi \in s$, then $\psi \varphi \in s$, because

$$
\begin{gathered}
(\psi \Phi)^{(k)}=\sum_{10 \mid<1(1) 1} C_{n}^{n} \psi^{(s)} \Phi^{(k-n)} \\
\left(k=\left(k_{1}, \ldots, k_{n}\right), s=\left(s_{1}, \ldots, s_{n}\right),\right. \\
\left.C_{i}^{\prime}=\frac{n 1}{s!(k-s) \mid}, \quad k \mid=\prod_{1=1}^{n} k_{1} l\right),
\end{gathered}
$$

and if in is a natural number, then

$$
\begin{aligned}
& \left|\left(1+|x|^{m}\right) \Psi^{(0)} \Phi^{(m-1)}\right| \leqslant c_{1}\left|\left(1+|x|^{m}\right)\left(1+|x|^{(0)}\right) \Phi^{(m-n)}\right| \leqslant \\
& \leqslant c_{2}\left|\left(1+|x|^{m+l(0)}\right) \Phi^{(m-0)}\right| \leqslant c_{2} x(m+l(s), k-s, \varphi) .
\end{aligned}
$$

Moreover, these inequalities show that if

$$
\varphi_{m}, \varphi \in S \quad \text { and } \quad \varphi_{m} \rightarrow \varphi(S), \quad \text { then } \psi \varphi_{m} \rightarrow \psi \varphi(S) .
$$

The Fourier transform of the function φ will be denoted by:

$$
\tilde{\Phi}(x)=\frac{1}{(2 \pi)^{n / 2}} \int \varphi(\lambda) e^{-1 x} d \lambda, \quad \lambda x=\sum_{1}^{5} \lambda_{1} x_{j}
$$

and the transform that is inverse to it, as:

$$
\phi(x)=\frac{1}{(2 \pi)^{n / 2}} \int \varphi(\lambda) e^{i N} d \lambda .
$$

Let us ahow that if $\phi \in S$, then $\tilde{\varphi}, \hat{\phi} \in S$ and whatever be the nonnogative number 1 and the integral vector k,

$$
\begin{equation*}
\left(1+|x|^{l}\right)\left|\Phi^{(n)}(x)\right| \leqslant c_{1}, \sum_{\left(l^{\prime}, x^{\prime}, 1 \in y_{l}\right.} x\left(l^{\prime}, k^{\prime}, \varphi\right) \tag{4}
\end{equation*}
$$

where $c_{1, k}$ is a constant dependent on ($1, k$) and $\xi_{1 k}$ dopendent on $(1, k)$ is a finite set of pairs (1 ', \mathbf{k}^{\prime}). . Here it followa that, in particuiar, if $\phi_{m}, \varphi \in S, \varphi_{m} \rightarrow \phi(s)$, thon $\tilde{\varphi}_{m} \rightarrow \phi(s)$ and $\hat{\phi}_{m} \rightarrow \hat{\phi}(s)$.

Actually,
where

$$
\dot{\Phi}^{(t)}(x)=\int \psi(\lambda) e^{-1 x x} d \lambda,
$$

$$
\psi(\lambda)=\frac{(-\lambda)^{n}}{(2 \pi)^{n / 2}} \varphi(\lambda) \quad\left(\lambda^{A}=\lambda_{1}^{A_{1}} \ldots \lambda_{n}^{n_{n}}\right) .
$$

Obviousiy, $\psi(\lambda) \in s$

$$
\begin{equation*}
(1+|x|) \leqslant\left(1+\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
&\left|\Phi^{(n)}(x)\right| \leqslant c \int|\lambda|^{|\lambda|}|\Phi(\lambda)| d \lambda< \\
& \leqslant c \int \frac{|\lambda|^{|\alpha|} \mid d \lambda}{1+|\lambda|^{|k|+n+2}} \times(|k|+n+2,0, \varphi)< \tag{6}\\
& \cdots c_{1} x(|k|+n+2,0, \varphi) .
\end{align*}
$$

Turthor, for $\left|x_{j}\right| \leqslant 1$
and for $\left|x_{j}\right| \geqslant 1$, ascuming that Δ_{N} is part of R, where $\left|\lambda_{j}\right|<N$, and considering that (of (3)) that $\psi \rightarrow 0$ whon $\lambda_{j}= \pm \mathbb{N} \rightarrow \infty_{3}$ wo get

$$
\begin{align*}
& \Phi^{(m)}(x)=\lim _{N \rightarrow \infty}\left\{\left.\psi(\lambda) \frac{e^{-i \lambda \mu}}{-i x_{j}}\right|_{\lambda j=-N} ^{\lambda_{j}-N}+\frac{1}{i x j} \int_{\Delta_{N}} \frac{\partial \psi}{\partial \lambda_{j}} e^{-i \Omega x} d \lambda\right\}= \\
& =\frac{1}{L_{j}} \int \frac{\partial \psi}{\partial \lambda_{j}} e^{-i \lambda x} d \lambda=\frac{c}{x_{j}} \int\left(\frac{\partial}{\partial \lambda_{j}}\left(\prod_{j=1}^{n} \lambda_{j}^{n_{j}}\right) \varphi(\lambda)+\right. \\
& \left.+\prod_{s=1}^{n} \lambda_{s}^{k} \frac{\partial \varphi}{\partial \lambda_{j}}\right) e^{-1 \lambda} d \lambda . \tag{7}
\end{align*}
$$

$$
\left.\left|\frac{\partial}{\partial \lambda_{j}}\left(\prod_{s=1}^{n} \lambda_{s}^{k_{s}}\right)\right|<c_{1} \right\rvert\, \lambda^{|n|-i}
$$

SLnce $=0$, therefore

$$
\begin{gather*}
\left|x_{j} \bar{\varphi}^{(n)}(x)\right| \leqslant c_{2} \int \frac{|\lambda|^{n \mid-1}+|\lambda|^{|n|}}{1+|\lambda|^{n+|n|+2}}(x(n+|k|+2,0, \varphi)+' \tag{8}\\
\left.+x\left(n+|k|+2, e_{j}, \varphi\right)\right) d \lambda .
\end{gather*}
$$

where \bullet_{j} is the unit vector oriented along the x_{j} axis.
Froa (5), (6), and (8) it follows that

$$
\begin{aligned}
& (1+|x|) \mid \dot{\Phi}^{(n)}(x) \leqslant \\
& \quad \leqslant c_{1 n}\left(x(n+|k|+2,0, p)+\sum_{i=1}^{n} x\left(n+|k|+2, e_{i}, \varphi\right)\right),
\end{aligned}
$$

and we have provon inqquality (4) for any k and $1=1$. For an arbitrary 1 , the proof is analogous; it is onily necescery that integration by parts instead of once, i times be carried out in equality (7).

$$
\text { Ansum for } \left.\varphi, \psi \in S^{*}\right) \quad(\varphi, \psi)=\int \varphi(x) \psi(x) d x
$$

From the theory of Fourier integrals, it is known that

$$
(\bar{\phi}, \psi)=(\varphi, \psi), \quad(\phi, \psi)=(\varphi, \psi) .
$$

[^2]The functional (f, ϕ) that is linear and continnous on S is called a generalised function (over S).

Thus, if $\varphi_{1}, \varphi_{2}, \varphi_{m}, \varphi \quad S, c_{1}$ and c_{2} are complex numbers and $\varphi_{m} \rightarrow \varnothing(s)$,

$$
\begin{gathered}
\left(f, c_{1} \varphi_{1}+c_{2} \varphi_{2}\right)=c_{1}\left(f, \varphi_{1}\right)+c_{2}\left(f, \varphi_{2}\right) \\
\left(f, \varphi_{m}\right) \rightarrow(f, \varphi) .(m \rightarrow \infty) .
\end{gathered}
$$

The set of all generalized (over S) functions I is symbolized by S^{\prime}.
The derivative of $f \in S^{\prime}$ with respect to the variable x_{j} is defined as the linear functional

$$
\left(P_{x,}, P\right)=-\left(f, q_{x,}^{\prime}\right) .
$$

If $f(x)$ is an ordinary moasurable function defined on R and such that the integral

$$
\begin{equation*}
(f, \varphi)=\int f(x) \varphi(x) d x \tag{9}
\end{equation*}
$$

exists for all $\rho \in S$, which proves to be a linear functional over S, then the genoralized function dofined by equality (9) is identical with $f(x)$. For example, if $\mathrm{f} \rightleftharpoons \mathrm{L}_{\mathrm{p}}(1 \leqslant \mathrm{p} \leqslant \infty)$, then integral (9) is a linear functional
over S. Actually,

$$
\begin{aligned}
& \int i_{f}^{f}(x) \Phi(x) \mid d x \leqslant\left(\int|f|^{p} d x\right)^{1 / p}\left(\int|\Phi|^{q} d x\right)^{1 / q} \leqslant \\
& \leqslant c x\left(\frac{n+1}{q}, 0, \varphi\right)\left(\frac{1}{p}+\frac{1}{q}=1\right),
\end{aligned}
$$

and therefore, intogral (9) is finite for all $\varphi \in S$ and is contimous in S. The linearity of (9) is obvioun.

If $f(x) \in S, a \in R$, and $c \neq 0$ is a roal number, then $f(x+a)$ and $f(c x) \in S^{\prime}$ are defined, respectively, as the functionals

$$
\begin{gathered}
(f(x+a), \varphi(x))=(f(x), \varphi(x-a)), \\
f(c x)=\frac{1}{|c|}\left(f(x), \Phi\left(\frac{x}{c}\right)\right) .
\end{gathered}
$$

If f is a generalized function, and \downarrow is an infinitely differentiable functions of polynomial growth, the functional over S definod by the equality

$$
(f \psi, \varphi)=(f, \downarrow \varphi),
$$

obviously is also a generalized function; denoted by $f \psi$ or by $\psi f(f \psi=\psi f)$.
If ψ_{1} and ψ_{2} are two infinitely differentiable functions with polynomial growth, their product oxists the same property; bere it is easy to see that if $f \in S^{\prime}$, then

$$
\left(\psi_{1}, \psi_{2}\right) f=\psi_{1}\left(\psi_{2}\right) .
$$

Clearly, if $f(x)$ is an ordinary function bolonging to L, and $\psi(x)$ is an infinituly difforentiable function with polynomial growth, the ordinary product $f(x) \mathcal{F}(x)$ correaponds by the rule of identity to the generalized function $f \psi$ (to the product of the generalised function f and ψ).

The Fourier transform (direct and inverse) for $f \in S^{\prime}$ is defined, reapectively, by the equalities

$$
\therefore(\eta, \varphi)=(f, \tilde{\Phi}),(\eta, \varphi)=(f, \hat{\Phi})(\varphi \in S)
$$

$\tilde{\mathrm{f}}_{\mathrm{s}} \hat{\mathrm{f}} \in \mathrm{S}^{\prime}$.
If $f(x) \in L_{p}(1 \leqslant p \leqslant \infty)$ is an ordinary functions sumable to the p-th degree on h, then it, as we know, is a generalized function and has the Fourior tranaformation f, which ia, generally apeaking, a goneralised function. If $\mathrm{f} \in \mathrm{L}_{2}$, then, at we know, $\hat{\mathrm{I}} \in \mathrm{I}_{2}$ (Plansherel' thoorem, of. the book by N. I. Achijeser ($\overline{\text { (1] }}$),

$$
\begin{aligned}
f(x) & =\frac{1}{(2 \pi)^{1 / 2 / 2}} \lim _{N \rightarrow \infty} \int_{\Delta_{N}} f(t) e^{-i x t} d t, \\
\Delta_{N} & =\{|x,|<N ; j=1, \ldots, n\},
\end{aligned}
$$

and the converfence is underatood in the L_{2}-sense. Here $\int \hat{f} \varphi d x=\int f \tilde{\varphi} d x$ (for all $\phi \in S$), which abows that in this case the ordinary Fourier transform of the function coincides (identifies) with the genesalized function.

Suppose $\Phi \in S$; then
and

$$
\Phi^{(n)}(x)=\frac{1}{(2 \pi)^{n / 2}} \int(i u)^{n} \dot{\Phi}(u) e^{i z u} d x
$$

$$
\overbrace{\Phi^{(i)}}^{(m)}=(i m)^{n} \bar{\Phi}(a) \quad\left(a^{n}=u_{1}^{n_{1}}, \ldots, u_{n}^{A_{n}}\right)
$$

Further

$$
\tilde{\Phi}^{(u)}(x)=\frac{1}{(2 \pi)^{n / 2}} \int(-i u)^{n} \varphi(u) e^{-i x u} d u=\overline{(-i u)^{n} \varphi(u)} .
$$

The analogous equalities

$$
\begin{equation*}
\widetilde{f^{(i)}}=(i u)^{n} \mid, \quad f^{(n)}=\widetilde{(-i v)^{a}} \tilde{f} \tag{10}
\end{equation*}
$$

obtain for the gonerelised functions $f \in S$.

Actually, if $\mathrm{f} \in \mathrm{S}^{\prime}$ and $\phi \in \mathrm{S}$, then

$$
\begin{aligned}
& \left(f^{(i n)}, \varphi\right)=(-1)^{|n|}\left(f, \tilde{\Phi}^{(n)}\right)=(-1)^{|n|}\left(f,(-i u)^{n} \varphi\right)=\left((i u)^{n} f, \varphi\right), \\
& \left.f^{(n)}, \varphi\right)=(-1)^{\mid n!}\left(f, \widetilde{\varphi}^{(n)}\right)=(-1)^{|n|}\left(f,(i u)^{n} \tilde{\varphi}\right)=\left((-i u)^{n} f, \varphi\right) .
\end{aligned}
$$

Let as before $\phi \in S$ and

$$
\Delta_{v}=\left\{\left|x_{j}\right|<N ; j=1, \ldots, n\right\} \subset R .
$$

Then

$$
\begin{aligned}
(i, \varphi)=(1, \bar{\varphi}) & =\frac{1}{(2 \pi)^{n / 2}} \int d x \int \varphi(t) e^{-t x t} d t= \\
& =\frac{1}{(2 \pi)^{n / 2}} \lim _{N \rightarrow \infty} \int \varphi(t) d t \int_{\Delta_{N}} e^{-1 x t} d x= \\
& =(2 \pi)^{n / 2} \lim _{N \rightarrow \infty} \frac{1}{\pi^{n}} \int \varphi(t) \prod_{l=1}^{n} \frac{\sin N t \jmath}{1 /} d t=(2 \pi)^{n / 2} \varphi(0) .
\end{aligned}
$$

The last equality follows from the ordinary Fourier integral theory. Thus,

$$
i=(2 \pi)^{n / 2} \delta(x)
$$

where $\delta(x)$ is the ordinary delta-function, i.e., a generalized function defined by the equality

$$
(\delta, \varphi)=\varphi(0) \quad(\varphi \in S)
$$

Honce, if $k=\left(k_{1}, \ldots, k_{n}\right)$ is a vector with integral nonnogative components,
thon

Further

$$
\begin{equation*}
\overline{x^{k}}=i^{k}\left(\overparen{-i x)^{k} \cdot 1}=i^{k}(2 \pi)^{n} \delta^{(n)}(x)\right. \tag{11}
\end{equation*}
$$

$$
(\delta, \varphi)=(\delta, \tilde{\Phi})=\frac{1}{(2 \pi)^{n / 2}} \int \varphi(t) d t
$$

1.0.,

$$
\begin{equation*}
\delta=\frac{1}{(2 \pi)^{n / 2}} \tag{12}
\end{equation*}
$$

We write for the functions $f, f_{1} \in S^{\prime}(l=1,2, \ldots)$

$$
\begin{equation*}
f_{1} \rightarrow f\left(S^{\prime}\right), \text { если } \quad\left(f_{1}, \Phi\right) \rightarrow(f, \Phi) \tag{13}
\end{equation*}
$$

for all $\varphi \in S$, and we atate that f_{1} tends to f in the S^{\prime}-sense or even more weally. If f_{1} and I are ordinary Integrable functions such that almost - very
and

$$
f_{1}(x) \rightarrow f(x) \quad(l \rightarrow \infty)
$$

$$
\left|f_{1}(x)\right| \leqslant \Phi(x) \in L \quad(l=1,2, \ldots)
$$

where ϕ does not depend on I, then obviously $f_{1}, f \in S$ and, by the Lesbesgue theorem, $\mathrm{I}_{1} \rightarrow \mathrm{I}$, weakly.

From (13) it follow, obviously, that if $f_{1} \rightarrow f^{\prime}\left(S^{\prime}\right)$, then

$$
\begin{align*}
& f_{1} \rightarrow f_{1}, f_{1} \rightarrow f\left(S^{\prime}\right), \tag{14}\\
& \lambda f_{1} \rightarrow \lambda\left(S^{\prime}\right), \tag{15}\\
& f_{l}^{(0)} \rightarrow f^{(0)}\left(S^{\prime}\right), \tag{16}
\end{align*}
$$

where λ is an infinitely differentiable function with polynomial growth.
Let $\varphi \in s, \mu=\left(\mu, \ldots, \mu_{n}\right)$, and $t=\left(t_{1}, \ldots, t_{n}\right)$ be real vectors, then

$$
\begin{align*}
e^{\ln t \bar{\Phi}} & =\frac{1}{(2 \pi)^{n / 2}} \int e^{i \mu \mu} \frac{1}{(2 \pi)^{n / 2}} \int \varphi(x) e^{-t u t} d \mu e^{i \Delta t} d t= \\
& =\frac{1}{(2 \pi)^{r^{2}}} \int e^{i n t} d t \int \varphi(\mu+\theta) e^{-t v t} d \theta=\varphi(\mu+x) . \tag{17}
\end{align*}
$$

If here $\mathrm{f} \in \mathrm{S}^{\prime}$, then, considering that the function $\mathrm{e}^{i \mu t}$ is infinitely differentiable and is bounded together with its derivatives (of polynomial Erowth), we get for $\phi \in S$

$$
\left(e^{\operatorname{mof}} f, \varphi\right)=\left(f, e^{\left.\frac{1 \pi}{\operatorname{mon}} \bar{\Phi}\right)}=(f, \varphi(\mu+x))=(f(x-\mu), \varphi(x)) .\right.
$$

1.0.,

$$
\begin{equation*}
\overline{e^{[\mu f f}}-f(x-\mu) \quad\left(f \in S^{\prime}\right) . \tag{18}
\end{equation*}
$$

Further
1.0.

$$
\left(e^{[n]}, \varphi\right)=\left(f, e^{\underline{\ln (} \Phi}\right)=(f(x), \varphi(x-\mu)) .
$$

$$
\begin{equation*}
e^{\prime m f}=f(x+\mu) \quad\left(f \in S^{\prime}\right) . \tag{19}
\end{equation*}
$$

1.5.1. Convolution. Multiplier. We will ofton have to deal with a aituation in which some meenurable function $\mu(x)$ is maltiplied by $\bar{P}(x)$, where $f \sum_{\text {aesom }} L_{p_{\text {that }}}=I^{p}(R)\left(R=R_{n}\right)$. If $Y(x)$ is an ordinary function, we naturaily

$$
\begin{equation*}
\mu \prime=\mu(x) f(x) . \tag{1}
\end{equation*}
$$

However, even in this seemingly simple case difficultios can arise: along with the definition by equality (1), there can be another definition of $\mu \tilde{f}$ as some generalized function (belonging to S^{\prime}), and then we face the problem of identifying these two definitions.

In the case when $\vec{f} \in S '$ is a generalised function, we still have available a unique definition of $\mu \vec{f}$ on the assumption that μ ia an infinitely differentiable function of polynomial arowth. Specifically, $\mu \hat{\mathrm{f}}$ is defined
as the functional

$$
\begin{equation*}
(\mu \prime, \varphi)=(\eta, \mu \varphi) . \tag{2}
\end{equation*}
$$

here
If $\hat{f} \in L_{p}$, then this definition is in accord with formula (1), since

$$
(\mu /, \varphi)=\int[\mu(x) /(x)] \varphi(x) d x=\int f(x)[\mu(x) \varphi(x)] d x=(\eta, \mu \varphi) .
$$

Below wo will introduce other definitions of $\mu \tilde{f}$, where μ belongs to aome class of functions measurable and bounded on $R=R_{n}$, and $f \in \mathcal{L}_{p}$. This section deals with the important case whon $\hat{\mu}=\mathbb{K} \in \mathbb{L}$. Hore the function

$$
\mu(x)=\frac{1}{(2 \pi)^{n / 2}} \int \hat{\mu}(u) e^{-1 x u} d u
$$

is bounded and meaaurable on R, but naturaily, it is not an arbitrary function continuous on R.

If $\mathrm{f} \in S$, the functions $\tilde{\mathrm{f}}, \mu \widetilde{\mathrm{f}}$, and $\widehat{\mu \mathrm{f}} \in \mathrm{S}$. But they also can be calculated by moans of ordinary analysis (explanations given below):

$$
\begin{aligned}
& \widehat{\mu^{j}}=\hat{k j}=\frac{1}{(2 \pi)^{3 \pi / 2}} \int e^{(x u} d u \int K(\xi) e^{-i(u)} d \xi \int f(\eta) e^{-i \pi u} d \eta= \\
& -\frac{1}{(2 \pi)^{3 n / 2}} \int e^{1 x u} d u \int K(\xi) d \xi \int f(\lambda-\xi) e^{-i m \lambda} d \lambda= \\
& =\frac{1}{(2 \pi)^{3 n / 2}} \int e^{1 x u} d u \int e^{-1 u x} d \lambda \int K(\xi) f(\lambda-\xi) d \xi=\text {. } \\
& =\frac{1}{(2 \pi)^{n / 2}} \int K(\xi) f(\lambda-\xi) d \xi=K * f .
\end{aligned}
$$

Since $f \in S$, the integrel in the third member in η is a function of a bolonging to $S \subset L$; it is multiplied on the integral by ξ, which is a contimuous bounded function; the product belonga to I, and therefore aftor its multinilcation by $e^{i \times k}$ and its intogration in u, we got the continuous function ifi of x. Replacing the order of integration in ξ and in λ in the fourth equality is regular, since $K, f \in I$ (by the Fabini theorem).

The integrel in the pemilimate namber of these relationahips is callod the convolution of X and f; here in the diacuasion whore X is $f i x e d$, and $f \in I_{p}$ is an arbitrany function, I is called the kernol of the convolution, and wo will call the function μ the moltiplier in I_{p}.

The right-hand nide of (3) is rational not only for $f \in s$, but aleo for

$$
\begin{align*}
& K * f=\frac{1}{(2 x)^{n / 2}} \int K(x-u) f(u) d u= \\
&=\frac{1}{(2 x)^{n / 2}} \int K(u) f(x-u) d u, \tag{4}
\end{align*}
$$

is rational, eatiafyine the ane important inequality (cf. 1.3.3 (1))

$$
\begin{align*}
&\|K \cdot f\|_{p} \leqslant \frac{1}{(2 x)^{n / 2}}\|K\|_{L}\|f\|_{p}\left(\|\cdot\|_{p}=\|\cdot\|_{L}(R)\right. \\
&\|\cdot\|_{L}=\|\cdot\|_{L}(R) \tag{5}
\end{align*} .
$$

Equality (3), valid for the functions $I \in S$, serves as the basis for asauing by dofinition that

$$
\begin{equation*}
\mu^{\prime}=\widehat{K * f}\left(\hat{\mu}=K \in L, f \in L_{\rho}\right) . \tag{6}
\end{equation*}
$$

Since, by (5), XHf $\in L_{p} \subset S^{\prime}$, then $\widetilde{\operatorname{Linf}} \in S^{\prime}$, and we thene acree to lot f stand for this latter cenaralised function.

Let us ahow that for any function $f \in L_{p}(1 \leq p \leq \infty)$ there exiets a sequopee of infinitely differentiable finite finction f_{1}, not dopendent on $\mu(\dot{\mu} \leq L)$, auch that whon $1 \rightarrow \infty$

$$
\begin{equation*}
f_{1} \rightarrow i\left(S^{\prime}\right) \quad \text { and } \quad \mu f_{1} \rightarrow \mu^{\prime}\left(S^{\prime}\right) \tag{7}
\end{equation*}
$$

If p is flaite, then we dofine (of. section 1.4.1) the sequance of finite functions f_{f} euch that

$$
\begin{gathered}
\left\|f-f_{l}\right\|_{l} \rightarrow 0 \quad(l \rightarrow \infty), \\
\left\|(\hat{\mu}+f)-\left(\hat{\mu} * f_{l}\right)\right\|_{\rho} \leqslant\left\|_{i}\right\|_{L}\left\|f-f_{l}\right\|_{D} \rightarrow 0,
\end{gathered}
$$

coneoquantiy, aso in the weak sonse $f_{1} \rightarrow f$ and $\mu \tilde{f}_{1} \rightarrow \mu \tilde{f}$. If howover, $p=\infty$ than wo dafin (of. 1.4.2) the sequance of infinitelif differentiable functions finite functions f_{1}, boundediy convereing alnont overywhere, as therefore, weakly converying In f. By virtue of the fact that $\mu \in L$ and $f-f_{1} \in I_{\infty}$,

$$
(\hat{\mu} \cdot f)-\left(\hat{\mu} \cdot f_{1}\right)=\frac{1}{(2 \pi)^{n / 2}} \int \hat{\mu}(x-t)\left[f(t)-f_{1}(t)\right] d t
$$

of x is continuous and bounded on R. Based on the Lebeague theorem on the limit under the sign of the integral, it boundedly tende to zero for all x, therefore, as a generalized function it weakly tends to zero, 1.e., (7) holds.

If $\hat{\mu}=K \in L$ and at the aame time μ is infinitely differentiable with polynomial growth, then we have available two definitions of the product $\mu \widetilde{f}\left(f \in L_{p}\right)$. On the one hand, this is the functional

$$
\left(\mu^{\prime}, \varphi\right)=(f, \mu \varphi)(\varphi \in S)
$$

and on the other, the functional (6). Let us show that these functionals are equal.

Suppose $\left\{f_{\}}\right\}$is a sequence of infinitely differentiable finite functions, for which $\mu \hat{\mu}_{l} \rightarrow \mu \hat{f}$ is weak. Then, if not only $\hat{\mu} \in I$, but oven μ is infinitely differentiable with polynomial growth, then

$$
\begin{equation*}
(\mu /, \varphi)=\lim _{l \rightarrow \infty}(\mu /, \varphi)=\lim _{l \rightarrow \infty}\left(l_{1}, \mu \varphi\right)=(\eta, \mu \varphi) \tag{8}
\end{equation*}
$$

and we have proven the equality of functions that is of interest to us.
Thus, definition (2) for the infinitely differentiable function of polynomial growth and definition (6), whore $\mathcal{A} \in L$, do not contradict each other, whatever be the function $f \in L_{p}(1 \leq p \leq \infty)$.

If λ and μ are differentiable functions of polynomial growth and $f \in S$, we know (cf. 1.5) that

$$
\begin{equation*}
\lambda(\mu f)=\mu(\lambda f)=(\lambda \mu) f . \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \text { If now } \hat{\lambda}=K_{1} \in L, \hat{\mu}=K_{2} \in L \text {, then both } \hat{\lambda \mu} \in L \text { and for all } \\
& f \in L_{p}(1 \leqslant p \leq \infty) \\
& \lambda \cdot(1 / \prime)=\mu(\lambda)=(\lambda \mu) f . \tag{10}
\end{align*}
$$

Actually, it is easy to verify by ordinary analysis mothods that under the specified conditions the function
belongs to L and that

$$
K=K_{1} * K_{2}=\int K_{1}(x-u) K_{2}(u) d u
$$

$$
\begin{equation*}
K_{1} *\left(K_{2} * f\right)=K_{2} *\left(K_{1} * f\right)=\left(K_{1} * K_{2}\right) * \rho . \tag{11}
\end{equation*}
$$

obtains, whlch (by (6)) is equivalent to (10). We do not intend to examine in all its generality the case whon the multiplier is the product $\lambda \mu$, where $\hat{\lambda} \in L$, and μ is an infinitely differentiable function of polynomial growth. We do not need this reault in what follows below. But there is ope case which we will find necessary, the case the multiplior $V^{-1} \mu V$, where \hat{V}, $\hat{\mu} \in \mathrm{L}$, and V is, moreover, a poaitive infinitely differentiable function of polynomial growth. If $f \in L_{p}$, then the operation

$$
V^{-1} \mu V I=V^{-1}(\mu(V I))
$$

is rational. Actuaily, $V \hat{f}$ oan be underatood in the conse of (1) or (6); this leads to the same ontcons; in arp case, the operation $\mu(V \bar{f})$ (over $V \bar{f}$) can be understood in the sence of (6) ($\overline{\mathrm{V}} \in \mathrm{L}_{p}!$) and, finaliy, the last operation $V-1$ ($\mu V \tilde{f}$) (over $\mu V \tilde{f})$ in and cace can be underatood in the genne of (2); this only requires that we note that $\mu(V \tilde{I}) \in S^{\prime}$, because $\mu(\hat{Y} \tilde{Y}) \in L_{p}$.

It is important that the equality

$$
\begin{equation*}
V^{-1} \mu V I=\left(V^{-1} \mu V\right) I=\mu^{\prime} \tag{12}
\end{equation*}
$$

obtain for ali $f \in L$. . Actually, if f is a finite function, it reduces to the corresponding obvlous equality betwon ordinary functions. If however $f \in L_{p}$ than, as wo know, we can salect the sequance of finitely difforentiable finite ${ }^{\text {functions }} f_{f}$ such that aimilaneously $\mu \hat{I}_{1} \rightarrow u \hat{f}$ and $(\mu V) \tilde{I}_{7} \rightarrow(\mu V) \tilde{f}$ weakly ($\bar{u} \in L!$). But thon, considering that $v-1$ is an infinitely difforentiable function of polyomini erouth, $V^{-1} \mu V \tilde{f}_{1} \rightarrow V^{-1} \mu V \hat{f}$ weakly. Therefore, equallty (12) can be obtained by the pasage to limit whon $1 \rightarrow \infty$ from the alreads establiabed equality

$$
\left(V^{-1} \mu V I_{l}, \varphi\right)=\left(\mu I_{l}, \varphi\right)(\varphi \in S) .
$$

1.5.1.1. Goneral dofinition of the multiplier in $\mathcal{l}_{p}(1 \leq p \leq \infty)$. Suppose $\mu=\mu(x)$ is a bounded function measurable on $R=D_{n}$, therefore, $u \in S^{\prime}$.

Wo emphaise that if $f \in S$, then $I \in S$ is an infinitely difforentiable function of polynomial growth, and therefore, the product $\mu^{f} \in S^{\prime}$ is dofinod:

$$
\begin{equation*}
(\mu /, \varphi)=(\mu, \mid \varphi) \tag{1}
\end{equation*}
$$

which is represented by the measurable function

$$
\mu=\mu(x) f(x) .
$$

By dofinition, the function μ is callad the maltipior in $L_{p}(1 \leqslant p<\infty)$ If it is moasurable and bounded (on R) and if for and infinitely difforentiable finite function (or, which amounts to the sam thing, for and function $f e S$),

$$
\begin{equation*}
\|\widehat{\mu j}\|_{p} \leqslant c_{p}\|f\|_{0} \tag{2}
\end{equation*}
$$

Is satiafled, whare the constant c_{p} does not depend on f.
Now if $f \in L_{p}$ and f_{1} are infinitely differentiable inite functions, for which $\left\|f-f_{1}\right\| \rightarrow 0(1 \rightarrow \infty)$, than from (2) it follows that

$$
\left\|\hat{\mu}_{h}-\hat{\mu} \dot{\|}_{1}\right\|_{p} \leqslant c_{p}\left\|f_{h}-f_{1}\right\|_{p} \rightarrow 0 \quad(k, l \rightarrow \infty)
$$

Consequentiy, there exists the function $F \in L_{p}$ to which when $1 \rightarrow \infty, \widehat{\hat{f}_{1}}$ tends in the I_{p}-sense. It is naturally denoted by

$$
\begin{equation*}
F=\widehat{\mu}-\hat{\mu}+\hat{f} \tag{3}
\end{equation*}
$$

calling $\hat{u} * f$ the convolution of the function (osually generalised) with f. The second member in (3) indicates that we have already defined f by the equality

$$
\begin{equation*}
\mu l=\bar{\mu}=\bar{f}, \tag{4}
\end{equation*}
$$

where $\hat{\mu} * f$ is underatood by the mothod described above. By this we have defined the product $\mu \tilde{f}$ for the functions $f \in I_{p}(1 \leqslant p<\infty)$. When $p=\infty$,
this definition no longer obtains, because the function bounded on R cannot be approximated as closely as we would like in the metric L_{∞} by finite functions. But for our needs the definition of $\mathrm{p}=\infty$ introduced in the preceding section when $\hat{\mu}=\mathbb{X} \in \mathrm{L}$ will be wholly adequate for the case $\mathrm{p}=\infty$.

We will again call. the maltiplior μ (aatiafying the property (2) the Marcinkievicz multipiser (of. further 1.5.3).

Obviously,

$$
\begin{equation*}
\|\hat{\mu}\|_{\|_{s}} \leqslant c_{p}\|f\|_{b} \tag{5}
\end{equation*}
$$

for all $f \in I_{p}(1 \leq p<\infty)$, where c_{p} is the same constant as in the correaponding inequality for $f \in S$.

The function μ for which $\hat{\mu} \in \mathrm{L}$ obviousiy is the multiplier in the sense of the definition now advanced, because (of 1.5.1) for infinitely differentiable finite functions f

$$
\begin{equation*}
\widehat{\mu j}=\frac{1}{(2 \pi)^{n / 2}} \int \hat{\mu}(x-u) f(u) d u \tag{6}
\end{equation*}
$$

from whence (2) follows directiy, where

$$
c_{p}=\frac{1}{(2 \pi)^{n / 2}}\|\hat{\mu}\|_{L} .
$$

This definition for $\hat{\mu} \in L$ is equivalent to the corresponding definition of the moltiplier introduced in 1.5 .1 ; this is to say that the function $\widehat{\mu f}=\hat{\mu} * f$ is definted (for $f \in L_{p}, 1 \leqslant p<\infty$, and $\hat{\mathcal{H}} \in L$) as the integral (6) or as the linit in the motric L_{p} of the integral calculated for the infinitely differentiable finite function \mathcal{I}_{1} when $l i f-f_{l} \|_{p} \rightarrow 0$, which is obviously the same thing.

But here we generalised the concept of the multiplior and the convolution, because $\hat{\mu}$ cannot belons to L and can oven be a generalized (not ordinasy) function.

Notice that if $f \in L_{p}(1 \leqslant p<\infty)$ and f_{1} are infinitely differentiable finite functions for which $\left\|f_{1}-f\right\|_{p} \rightarrow 0(1 \rightarrow \infty)$, and μ is the multiplier, then $\left\|\mu j-i i_{l}\right\|_{p} \leqslant c_{p}\left\|f-l_{l}\right\|_{p} \rightarrow 0$,
from whence it follows that

$$
\begin{equation*}
\mu I_{1} \rightarrow \mu \mu^{\prime}\left(S^{\prime}\right) . \tag{7}
\end{equation*}
$$

If μ is tho Marcinkievicz mitiplier and at the same time is an infinitely difforentiable function of polynomial growth, then for $f \in L_{p}$ and the sequance $\left\{f_{7}\right\}$ of infinitely differentiable finite functions for phich (7) is satiafied, we will have

$$
\begin{equation*}
(\mu l, \varphi)=\lim _{l \rightarrow \infty}(\mu /, \varphi)=\lim _{l \rightarrow \infty}\left(I_{l}, \mu \varphi\right)=(f, \mu \varphi) . \tag{8}
\end{equation*}
$$

In the firat momber of (8), $\mu \tilde{f}$ is understood in the sense of (4); in the second equality of (8) transferring μ beyond the comea is lagitimate, because u is infinitely differentiable and of polynomial erowth; the last equality is based on the fact that $f_{1} \rightarrow f(S)$ and $\mu \varphi \in S$.

Equality (8) indicates that if μ is the Marcincievicz multiplior and at the same tire is an infinitely differentiable function of polynomial erouth, then tho definitions of $\mu \tilde{\mathrm{f}}$ for $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}(1 \leq \mathrm{p}<\infty)$ corresponding to these facte do not contradict each other.

Let us ahow that togothar with λ and μ the product $\lambda \mu$ is a multiplier in L_{p} and that the equalitios

$$
\begin{equation*}
\lambda_{\mu} f=\mu \lambda f=\left(\lambda_{\mu}\right) \eta\left(f \in L_{\rho}, 1 \leqslant p<\infty\right) . \tag{9}
\end{equation*}
$$

obtain.
Actually, let us begin by providing an ascertion that is interesting in its own right, to the offect that if the function (x) is measurable and bounded and the function F not only belonge to L_{p}, but also to L_{2}, then

$$
\begin{equation*}
\lambda \tilde{F}=\lambda(x) \tilde{F}(x))^{\bullet} \tag{10}
\end{equation*}
$$

i.e., the product $\lambda \tilde{F}$ undoratood in the sense of (4) is the ordinary production of the function $\lambda(x)$ and $\tilde{F}(x)$. Actually, since $F \in L_{2}$, there exists a sequence of infinitoly difforentiable finite functions $F_{k}(k=1,2, \ldots)$ such that (cf. section 1.4.1)

$$
\begin{aligned}
& \left\|F-F_{k}\right\|_{n}>0, \\
& \left\|F-F_{A}\right\|_{b} \rightarrow 0 .
\end{aligned}
$$

The relationship

$$
\begin{equation*}
\lambda \tilde{F}_{k}=\lambda(x) \tilde{F}_{k}(x) \tag{11}
\end{equation*}
$$

holds for infinitely differentiable finite functions F_{k} by definition. on the other hand,

$$
\widehat{\lambda \bar{F}}_{k} \rightarrow \widehat{\hat{\lambda}}\left(L_{p}\right)
$$

consequently, in S this also means that

$$
\begin{equation*}
\lambda \tilde{F}_{k} \rightarrow \lambda \tilde{F}\left(S^{\prime}\right) . \tag{12}
\end{equation*}
$$

Due to the boundedness of λ and based on the Parseval equality

$$
\left\|\lambda(x) \tilde{F}_{k}(x)-\lambda(x) \tilde{F}(x)\right\|_{2} \leqslant c\left\|\bar{F}_{h}-\tilde{F}\right\|_{2}=c\left\|F_{h}-F\right\|_{2} \rightarrow 0_{4}
$$

hence it follows that

$$
\begin{equation*}
\lambda(\boldsymbol{x}) \tilde{F}_{k}(\boldsymbol{x}) \rightarrow \lambda(\boldsymbol{x}) \tilde{F}(\boldsymbol{x})\left(\boldsymbol{S}^{\prime}\right) . \tag{13}
\end{equation*}
$$

From (11) - (13) it obviously follows that the statement (10) is necessary.
Let us now assume an arbitrary finite function $f \in S$. Suppose

$$
F=\widehat{\mu}
$$

Since $\tilde{\mathrm{f}} \in L_{2}$, by virtue of the boundedness of μ we also have $\mu \tilde{\mathrm{f}} \in \mathrm{I}_{2}$ and $F \in L_{2}$. Hence, by (10)

$$
\begin{align*}
& \lambda \mu \eta=\lambda(x)(\mu \eta)(x)=\lambda .(x) \mu(x) F(x)= \\
& =\mu(x) \lambda(x) f(x)=(\lambda(x) \mu(x)) f(x)=(\lambda \mu) F . \tag{14}
\end{align*}
$$

We have by this equality proven (9) also for $f \in S$. Therefore, for $f \in S$. since λ and μ are multipliers.

$$
\left.\|\left(\overline{\lambda_{\mu}}\right)\right\rangle\left\|_{p}=\right\| \overline{\lambda_{2}(\bar{\mu})}\left\|_{p} \leqslant c\right\| \widehat{\mu}\left\|_{p} \leqslant c c^{\prime}\right\| f \|_{p}
$$

and we have proven that $\lambda \mu$ is also a multiplier. It remains to prove equality (9) for the arbitrary function $f \in L_{p}(1 \leq p<\infty)$. This necessitates that we take a sequence of infinitely differentiable finite functions f_{l} converging to f in the metric I_{p}, that we replace f in (14) with f_{1}, that we apply to adl members in (14) the operation \uparrow, and that we make the passage to the limit when $1 \rightarrow \infty$ in the I_{p}-senee.
1.5.1.2. Lemma. Suppose a A_{n} be a fixed point. Then together with $\mu(x)$ the function $\mu(x-a)$ is a Marcinkievicz multiplisr and the equality

$$
\left.\overline{e^{e e^{\prime} \mu(t)}} \overrightarrow{e^{-i a t} f}=\overline{\mu(x-a)}\right) \quad\left(\partial_{\Lambda \Omega} \text { ocex } f \in L_{\rho}\right),
$$

$$
\begin{equation*}
\text { (for all } f \in L_{p} \text {) } \tag{1}
\end{equation*}
$$

is satisfied, from whence it follows that

$$
\begin{equation*}
\|\mu(x-a) f\|_{p}=\left\|\mu e^{-\operatorname{tat} f}\right\|_{p}<c_{p}\left\|e^{-t s t} f\right\|_{p}=c_{p}\|f\|_{b} . \tag{2}
\end{equation*}
$$

Thus, the constant c_{p} in this inequality is the same as in the corresponding inequality for (x)?

Proof. Assume

$$
\begin{equation*}
f_{B}=e^{\operatorname{lr} f} f(t) \quad\left(\beta \in R_{n}\right) . \tag{3}
\end{equation*}
$$

Then (of 1.5 (18))

$$
f=e_{-\overline{-1 \beta} f_{1}}^{\theta}=F_{1}(x+\beta) .
$$

Therefore (cf. again 1.5 (18))

$$
\overline{\mu(x-a)})=\overline{\mu(x-a) \eta_{-a}(x-a)}=e^{d a f_{\mu}(x) \xi_{-a}(x)}
$$

and by (3) we get (1).
1.5.2. Periodic functions from $L_{p}{ }^{*}$. The functions

$$
\omega_{n}(x)=\operatorname{sign} \sin \left(2^{n+1} \pi x\right) \quad(0 \leqslant x \leqslant 1),
$$

$n=0,1,2, \ldots$ form an orthogonal and normal (on $\angle \overline{0}, 1 \bar{\jmath}$) system (Rademacher). The inequalities*)

$$
\begin{equation*}
\left(\sum a_{m n}^{2}\right)^{p / 2} \ll \int_{0}^{1} \int_{0}^{1}\left|\sum a_{m n} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{p} d \theta d \theta^{\prime}<\left(\sum a_{m n}^{2}\right)^{p / 2} \tag{1}
\end{equation*}
$$

with constants not dependent on $a_{m n}$ are valid for any double sequence of real numbers $\left\{a_{m n}\right\}$ and $p>0$.
actually, if s is a natural number, then, using Newton's polynomial formula and the fact that $\left[\omega_{n}(\theta)\right]^{1}=\omega_{n}(\theta)$ for odd 1 , we get
*) Here and in the text below we will often write $A \ll B$ instead of $A \leqslant c B$, whore c is a constant.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left|\sum a_{1 n_{n}} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{2} d \theta d \theta^{\prime}=
\end{aligned}
$$

$$
\begin{align*}
& <\frac{(2 s)!}{s \mid 2^{T}} \sum \frac{s!}{a_{1}\left|\ldots a_{2 j}\right|} a_{m_{1} a_{1}}^{m_{1}} \ldots a_{m_{20} n_{10}}^{m_{2 j}}= \\
& =\frac{(2 s)!}{b 12^{j}}\left(\sum a_{m n}^{2}\right)^{2} \quad\left(a_{1}+\ldots+a_{2 s}=s\right) \text {. } \tag{2}
\end{align*}
$$

Therefore, for any $p>0$, if we select natural s such that $2 s \geqslant p$, we will have (using the Holder inequality)

$$
\begin{aligned}
& \left(\int_{0}^{1} \int_{0}^{1}\left|\sum a_{m n} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{\phi} d \theta d \theta^{\prime}\right)^{1 / n} \leqslant \\
& \quad \leqslant\left(\int_{0}^{1} \int_{0}^{1}\left|\sum a_{m n} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{20} d \theta d \theta^{\prime}\right)^{1 / 20}<\left(\sum a_{m n}^{2}\right)^{1 / 2}
\end{aligned}
$$

which proves the second inequality of (1). Further, if $p \geqslant 2$, then

$$
\begin{aligned}
\left(\sum a_{m n}^{2}\right)^{1 / 2} & =\left(\int_{0}^{1} \int_{0}^{1}\left|\sum a_{m n} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{2} d \theta d \theta^{\prime}\right)^{1 / 2} \ll \\
& <\left(\int_{0}^{1} \int_{0}^{1}\left|\sum a_{m n} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{p} d \theta d \theta^{\prime}\right)^{1 / n}
\end{aligned}
$$

which proves the first inequality of (1). It remains to prove it when $\mathrm{p}<2$. By (2)

$$
\int_{0}^{1} \int_{0}^{1}\left|\sum a_{m n} \omega_{m}(\theta) \omega_{n}\left(\theta^{\prime}\right)\right|^{4} d \theta d \theta^{\prime} \leqslant 3\left(\sum a_{m n}^{2}\right)^{2}
$$

$$
\text { Let } a^{2}=\sum a_{m n}^{2}, s=\sum a_{m n} \omega_{m}(0) \omega_{n}\left(\theta^{\prime}\right) \text {. And the set of points }
$$

$\left(0, \theta^{\prime}\right)$ such that $\left|S\left(0, \theta^{\prime}\right)\right|>8 / 2, C A$ is muppiemontany to A in the unit square of the set and $|A|$ and $|C A|$ of their measure. Thon

$$
\begin{aligned}
& s^{2}=\int_{0}^{1} \int_{0}^{1} S^{2} d \theta d \theta^{\prime}=\iint_{A}+\iint_{C A}< \\
& \leqslant \frac{1}{4} s^{2}|C A|+\sqrt{|A|}\left(\int_{0}^{1} \int_{0}^{1} S^{4} d \theta d \theta^{\prime}\right)^{1 / n} \leqslant \\
&<\left(\left.\frac{1}{4}+\sqrt{3} \right\rvert\, \sqrt{|A|}\right)
\end{aligned}
$$

This means that

$$
1<\frac{1}{4}+2 \sqrt{|A|} \text { нли }|A|>\frac{1}{8} .
$$

So

$$
\int_{0}^{1} \int_{0}^{1} \left\lvert\, S_{1}^{p} d \theta d \theta^{\prime} \geqslant \frac{1}{8} \cdot \frac{1}{2^{p}} s^{p} \geqslant \frac{1}{32} s^{p} .\right.
$$

which proves the first inequality of (1) when $p<2$. Thus inequalities of (1) have been completely proven.

The inequalities corresponding to (2) are similarly proven in the $n-$ dimonaional case:

$$
\begin{equation*}
\left(\sum a_{i}^{2}\right)^{1 / 2}<\left(\int_{0}^{1} \ldots \int_{0}^{1}\left|\sum a_{n} \omega_{\Delta}(\theta)\right|^{p} d \theta\right)^{1 / p}<\left(\sum a_{k}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

where $k=\left(k_{1}, \ldots, k_{n}\right)$ are all possible integral nonnegative vectors and

$$
\begin{equation*}
\omega_{n}(\theta)=\omega_{n_{1}}\left(\theta_{1}\right), \ldots, \omega_{k_{n}}\left(\theta_{n}\right) . \tag{4}
\end{equation*}
$$

Let $f(t) \in L_{p}^{*}=I_{p}(0,2 \pi)(1<p<\infty)$ be a function of the single variable t with period 2π, expanding into a Fourier series of the form

$$
f(t)=\sum_{0}^{\infty} c_{n} e^{\prime m}
$$

It is known (of. Ziemund $\overline{1 \overline{1}}$, chapter VII) that whon $1<\mathrm{p}<\infty$ this series converges to f in the $\mathrm{L}_{\mathrm{p}}{ }^{*}-$ sense.

Let us specify an increasing sequence of natural mumbers

$$
0=n_{0}<1=n_{1}<n_{2}<\ldots,
$$

satisfying the condition

$$
\begin{equation*}
\frac{n_{k+1}}{n_{k}}>a>1 \quad(k=1,2, \ldots), \tag{5}
\end{equation*}
$$

and we introduce the functions

$$
\delta_{0}(f)=\dot{c}_{0}, \delta_{k}(f)=\sum_{n_{A-1}+1}^{n_{k}} c_{v} e^{w t} \quad(k=1,2, \ldots) .
$$

Then the series

$$
f(t)=\sum_{0}^{\infty} \delta_{h}(f)
$$

converges to f in the L_{p}-sense. Suppose further that

$$
f_{1}(t)=\sum_{0}^{\infty} e_{k} \delta_{k}(f) \quad\left(e_{k}= \pm 1 ; k=0,1, \ldots\right)
$$

where the numbers $\varepsilon_{k}= \pm 1$ depend on some fashion on k. Then the following inequalities obtain (Líttiovood and Paley $44 \ldots$, of Zigmund $\angle \overline{1} \ldots$, chapters II and XV)

$$
\begin{equation*}
\|f\|_{p}<\left\|_{i}\right\|_{p}<\|f\|_{0} \tag{6}
\end{equation*}
$$

with constants dependent on α, but not on f and the distributior $\left\{\varepsilon_{,}\right\}$and with norms taken over the period. These statements are easily extends to functions of several variables

$$
\begin{align*}
& f(x)=\sum_{v>0} c_{v} e^{l v x}=\sum_{n} \delta_{n}(f) \in L_{;} \\
& \left(v=\left(v_{1}, \ldots, v_{n}\right) ; k=\left(k_{1}, \ldots, k_{n}\right)\right), \tag{7}
\end{align*}
$$

where

$$
\delta_{k}(f)=\delta_{k_{1} x_{1}} \ldots \delta_{k_{n} x_{n}}(f)
$$

and

$$
\varepsilon_{k}=\varepsilon_{k_{1}} \cdots \varepsilon_{k_{n}} \quad f_{1}=\sum e_{,} \delta_{k}(f) .
$$

Here it is assumad that $\varepsilon_{s}(s=1, \ldots, n)$ can take on only the values ± 1.
For such f and f_{1}, the

$$
\begin{equation*}
\|f\|_{p} \ll\left\|_{1} i_{p} \ll\right\| f \|_{D} \quad(l<p<\infty) \text {. } \tag{8}
\end{equation*}
$$

also obtain, where the norms are already taken over the n-dimensional period $\left\{0<x_{j}<2 \pi ; j=1, \ldots, n\right.$. We will aesume that

$$
\begin{gathered}
\delta_{k}(f)=\delta_{k_{1} x_{1}} \ldots \delta_{k_{n-1} x_{n-1}}(f), d x^{\prime}=d x_{1}, \ldots, d x_{n-1} \\
e_{k^{\prime}}=\varepsilon_{k_{1}} \ldots \varepsilon_{k_{n-1}} .
\end{gathered}
$$

Therefore, if we assume that inequalities (8) are valid for $n-1$ and that the integrals are taken over the corresponding periode, we get

$$
\begin{aligned}
\|f\|_{p}^{p}= & \left.\int d x_{n} \int\left|f p^{p} d x^{\prime} \ll d x_{n} \int\right| \sum e_{1} \delta_{n}(f)\right|^{p} d x^{\prime}= \\
& =\int d x^{\prime} \int\left|\sum e_{k^{\prime}} \delta_{n^{\prime}}(f)\right|^{p} d x_{n} \ll \\
& <\int d x^{\prime} \int\left|\sum e_{n} \delta_{n}(f)\right|^{p} d x_{n} \ll \int d x_{n} \int \mid f p^{p} d x^{\prime}=\|f\|_{p}^{p}
\end{aligned}
$$

1.e., (8), if we note that

$$
\Sigma \varepsilon_{k_{n}} \delta_{k_{n} x_{n}} \Sigma \varepsilon_{\varepsilon_{2}, \delta_{k^{\prime}}}(f)=\Sigma \varepsilon_{s_{A}} \delta_{A}(f) .
$$

Finaliy, the inequalities

$$
\begin{equation*}
\|f\|_{p}<\|\left(\sum \delta_{h}^{2}(f)^{1 / 2}\left\|_{p}<\right\| f \|_{p} \quad(1<p<\infty)\right. \tag{9}
\end{equation*}
$$

with constants not dependent on f can be written for the functions (7). Actually, setting $\Omega=\left\{0 \leqslant 0_{1} \leqslant 1\right\}$, we get

$$
\begin{align*}
& \|f\|_{p}^{p}=\int_{Q}\|f\|_{p}^{p} d \theta \ll \int_{Q}\left\|\sum \omega_{k}(\theta) \delta_{k}(f)\right\|_{p}^{p} d \theta= \\
& \quad=\left\|\int_{0}\left|\sum \omega_{k}(\theta) \delta_{k}(f)\right|^{p} d \theta\right\|_{p}^{p}<\left\|\left(\sum \delta_{L}^{2}(f)\right)^{1 / 2}\right\|_{p}^{p} \ll \\
& <\left\|\int_{Q}\left|\sum \omega_{k}(\theta) \delta_{k}(f)\right|^{p} d \theta\right\|_{p}^{p}=\int_{Q}^{p}\left\|\sum \omega_{k}(\theta) \delta_{k}(f)\right\|_{p}^{p} d \theta \ll \\
& <\int_{Q}\|f\|_{p}^{p} d \theta=\|f\|_{p}^{p} \tag{10}
\end{align*}
$$

The passage from the second to the third and from the sixth to the seventh members is made on the basis of inequality (8) when $\varepsilon_{k}=\omega_{k}(\theta)$ and from the fourth to the fifth, and then to the sixth mamber - on the basis of inequality (3).

From (9) it follows that if $f \in L_{p}{ }^{*}$ is a function for which the Fourier coofficients c_{k} do not equal zero unless $k \geqslant 0$ and \mathcal{E} is an arbitrary set of vectors k, then the function

$$
\sum_{k}{ }_{k} \delta_{k}(f)=\varphi=\sum_{k} \delta_{k}(\varphi)
$$

genorates the Fourier series of some function $\varphi \in L_{p}{ }^{*}$ for which the inequa-
lities

$$
\|\Phi\|_{p}<\left\|\left(\sum_{\Delta=\gamma} \delta_{i}^{2}(f)\right)^{1 / 2}\right\|_{p} \leqslant\left\|\left(\sum_{i} \delta_{i}^{2}(f)\right)^{1 / 2}\right\|_{p} \ll\|f\|_{p} .
$$

are satiafied. Notice that if an arbitrary periodic function of one variable

$$
f(t)=\sum_{-\infty}^{\infty} c_{n} e^{i k t}=\sum_{k>0}+\sum_{k<0}=t_{+}+f
$$

belongs to L^{*} then the function (trigonometricaliy) conjugate to it (when
$1<\mathrm{p}<\infty)^{\mathrm{p}}$

$$
\begin{equation*}
f_{0}(t)=-i \sum_{-\infty}^{\infty} \operatorname{sign} k c_{n} e^{t h t} \tag{11}
\end{equation*}
$$

(here sign_ $0_{-}=1$), and together with it if $f_{*}=f_{+} f_{-}$also belongs to I_{*} (Zigmund $\angle 1-\bar{J}$, chapter VII, 2.5). Consequently, $f_{+}=f\left(f+i f_{*}\right) \in I_{p}{ }^{*} p$ and $\left\|\mathrm{f}_{+} \ll\right\| \mathrm{f} \|_{\mathrm{p}}$. Hence, by induction it follows that also for the func-

$$
f(x)=\sum c_{x} e^{1 / x}
$$

of several variables, if we assume

$$
f_{+}=\sum_{n>0} c_{n} e^{A_{x}}
$$

then from the fact that $f \in L_{p}^{*}=L_{p}{ }^{(n)}$, follows $\left\|f_{+}\right\|_{p} \ll f_{p}$.
Lat $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ be an arbitrary (not necessarily nonnegative) integral vector. Let us set

$$
\begin{equation*}
\delta_{n}(f)=\sum_{ \pm n_{\left|k_{1}\right|-1+1}}^{ \pm n\left|k_{1}\right|} \cdots \sum_{ \pm n_{\left|k_{n}\right|-1+1}^{ \pm n_{\left|k_{n}\right|} \mid} c_{m} e^{i m x} ; .} \tag{12}
\end{equation*}
$$

where at the corresponding j-th aite + or - is assigned, depending on whether $k_{j}>0$ or $k_{j}<0$; and when $k_{j}=0$, we must assume $n_{\left|k_{j}\right|-1}+1=0$. Based on the foregoing, it is obvious that along with inequalities (9), the inequali-
ties

$$
\begin{equation*}
\|f\|_{p} \ll\left\|\left(\Sigma \delta_{k}(f)^{2}\right)^{1 / 2}\right\|_{D} \ll\|f\|_{p} \tag{13}
\end{equation*}
$$

that are analogous to them also hold for an arbitrary periodic function $f(x)$ (not necessarily the same as the function for y which $c_{k} \neq 0$ only for $k \geqslant 0$).

It is eacy to verify that inequalities (13) are also preserved for the functions

$$
\begin{gather*}
f(x)=\sum c_{n} e^{\frac{l i n k x}{l}}=\sum \delta_{h}(f), \\
c_{n}=\frac{1}{l^{n}} \int_{\Delta_{l}} f(u) e^{-\frac{1 \pi n k t}{l}} d u, \quad \Delta_{l}=\left\{\left|x_{j}\right| \leqslant l ; j=1, \ldots, n\right\}, \tag{14}
\end{gather*}
$$

of arbitrary period 21. Here we must of course suitably modify the definition of δ_{k} (replacing x by $\pi / L x$ in the right side of (12)).

It is important to note that the constants appearing in inequalities (13) do not depend on 1.
1.5.2.1. Suppose

$$
\begin{equation*}
f=\sum_{-\infty}^{\infty} c_{n} e^{i n t}=\sum_{k>0}+\sum_{k<0}=f_{+}+f_{-} \in L_{p^{*}} \quad(1<p<\infty) \tag{1}
\end{equation*}
$$

be a periodic function of one variable, and the sequence $\left\{n_{k}\right\}$ and the functions $\delta_{k}(f)(k=0,1, \ldots)$ be defined as in 1.5.2.

Suppose furthor that

$$
\begin{gather*}
\delta_{-k}(f)=\sum_{n_{k-1}+1}^{n_{k}} c_{-v} e^{-(w n}, \tag{2}\\
\beta_{k}(f)=\delta_{k}(f)+\delta_{-k}(f), \quad k=1,2, \ldots \\
\beta_{0}(f)=\delta_{0}(f)=c_{0} . \tag{3}
\end{gather*}
$$

Then from inequalities 1.5.2 (6) follow the inequalities analogous to them.

$$
\begin{equation*}
\|f\|_{p} \ll\left\|f_{0}\right\|_{p} \ll\|f\|_{p}, \quad 1<p<\infty, \tag{4}
\end{equation*}
$$

whore

$$
\begin{equation*}
f_{0}=\sum_{0}^{\infty} e_{k} \beta_{k}(f) \quad\left(e_{k}= \pm 1\right) \tag{5}
\end{equation*}
$$

with constants dependent on α and p, but not on f and the distribution $\left\{\varepsilon_{k}\right\}$. Actually,

$$
\begin{aligned}
& \left(\sum e_{k} \beta_{k}(f)\right)_{+}=\sum e_{k} \delta_{k}\left(f_{+}\right), \\
& \left(\sum e_{k} \beta_{k}(f)\right)_{-}=\sum e_{k} \delta_{k}\left(f_{-}(-t)\right),
\end{aligned}
$$

moreover, $\left\|f_{+}+\right\|_{p},\left\|f_{-}\right\|_{p} \ll\|f\|_{p}$, therefore by 1.5 .2 (6)

$$
\begin{aligned}
& \left\|f_{+}\right\|_{p} \ll\left|\sum e_{k} \delta_{k}\left(f_{+}\right)\left\|_{p}<\right\| \sum e_{k} \beta_{k}(f)\right|_{p} \\
& \left\|f_{-}\right\|_{p}=\left\|f_{-}(-t)\right\|_{p}<\left|\sum e_{k} \delta_{k}\left(f_{-}(-t)\right) \|_{p}<\left|\sum e_{k} \beta_{k}(f)\right|_{0}\right.
\end{aligned}
$$

from whence follows the first equality in (4).
Further

$$
\begin{aligned}
\left\|\Sigma e_{k} \beta_{k}(f)\right\|_{p} \leqslant\left\|\Sigma e_{k} \delta_{k}\left(f_{+}\right)\right\|_{p}+\left\|\Sigma e_{k} \delta_{k}\left(f_{-}(-t)\right)\right\|_{p} & \ll\left\|f_{+}\right\|_{p}+\left\|f_{-}\right\|_{p}
\end{aligned}<\|f\|_{p,}
$$

1.e., the second inequality of (4).

From (4) follow the inequalities

$$
\|f\|_{0} \ll\left\|\left(\Sigma \beta_{k}^{2}(f)\right)^{1 / 2}\right\|_{\rho} \ll\|f\|_{b}
$$

which is proven as in 1.5 .2 (10) (replace δ by β).
The following statement is also valid, which in the ono-dimensional
case was proven in the book by Zigmund (chapter XV, 2.15) and can be extended by induction to the multidimensional case.

Suppose $f_{1}, f_{2}, \ldots \in I_{p} *(1<p<\infty)$ be a sequence of functions of $x=\left(x_{1}, \ldots, x_{n}\right)$ with period 2 and with Fourier coefficients c_{k} not equal to zero unless $\mathbf{k} \geqslant 0$, and let S_{n}, k_{n} stand for the Fourier sum f_{n} of order k_{n}. Then there exists a constant A_{p} not dependent on f_{n} and N such that

$$
\begin{align*}
& \int_{0}^{2 \pi} \ldots \int_{0}^{2 \pi}\left(\sum_{n=1}^{N}\left|S_{n, *_{n}}\right|^{2}\right)^{p / 2} d x_{1} \ldots d x_{n} \leqslant \\
& \leqslant A_{p}^{p} \int_{0}^{2 \pi} \ldots \int_{i}^{2 \pi}\left(\left.\sum_{1}^{N} 1 f_{n}\right|^{p / 2} d x_{1} \ldots d x_{n} .\right. \tag{6}
\end{align*}
$$

1.5.3. Theorem on multipliers in the periodic case. Let us introduce the difference $\Delta \lambda_{1}=\lambda_{1+1}-\lambda_{1}$ for the numerical sequence $\left\{\lambda_{1}\right\}$ dependent on the single index 1 . For a multiple sequence $\left\{\lambda_{k}\right\}$ dependent on the nonnegative integral vector $k=\left(k_{1}, \ldots, k_{n}\right)$ we will examine the difference $\Delta_{j} \lambda_{k}$ taken for each component k_{j} and the multiple differences $\left.\Delta_{j_{1}} \ldots \Delta_{j_{m}} \lambda_{k(m)} n\right)$.

Theorem (of Marcinkievicz). Assume that a maltiple sequence $\left\{\lambda_{k}\right\}$ subject to the inequalities
is given for ary collections of natural nambers j_{1}, \ldots. that $1 \leqslant j_{1}<j_{2}<\ldots<j_{m} \leqslant n$, where M is a constant not dependent on \boldsymbol{z} and j_{1}, \ldots, j_{m} (when $k_{j}=0$, the corresponding aum is extended only to $v_{j}=0$); + or - is assigned, depending on whether $k_{j}>0$ or <0.

Let us transform a function with period 2π of the form (cf 1.5 .2 (7))

$$
\begin{equation*}
f(x)=\sum_{n} c_{n} e^{i n x}=\sum \delta_{n}(f) \in L_{p^{*}} \quad(1<p<\infty) \tag{2}
\end{equation*}
$$

by means of the number λ_{k} (Marcinkievicz multipliers):

$$
\begin{equation*}
F(x)=\sum \lambda_{k} c_{k} e^{i n x}=\sum \delta_{k}(F) \tag{3}
\end{equation*}
$$

Then $F \in \mathrm{~L}_{\mathrm{p}}{ }^{*}$ and there exists a constant c_{p} dependent only on p , such that

$$
\begin{equation*}
\|F\|_{p} \leqslant c_{p} M\|f\|_{p} . \tag{4}
\end{equation*}
$$

Proof. Let us limit ourselves to the case $n=2$. Moreover, we will assume that in (2) the series are extended only to $k \geqslant 0$, which does not violate generality.

Setting

$$
\begin{equation*}
\sum_{\mu=2^{k-1}}^{s} \sum_{v=2^{l-1}}^{1} c_{\mu v} e^{i(1(x+v y)}=r_{.1}=r_{s, 1, k}! \tag{5}
\end{equation*}
$$

and using the Abel tranaformation, we get

$$
\begin{aligned}
& \delta_{k l}(F)=\sum_{2^{k-1}}^{2^{k}-1} \sum_{2^{l-1}}^{2^{l}-1} \lambda_{\mu 11} c_{\mu v} e^{l(\mu x+(v))}= \\
& =\sum_{2^{k-1}}^{2^{k}-2^{l} 2^{l}-2} \sum_{2^{l-1}} r_{i j}\left[\lambda_{l, j}-\lambda_{l, j+1}-\lambda_{l+1, j}+\lambda_{l+1, j+1}\right]+ \\
& \quad+\sum_{2^{l-1}}^{2^{l}-2} r_{2^{k}-1,1}\left[\lambda_{2^{k}-1,1}-\lambda_{2^{k}-1,1+1}\right]+ \\
& +\sum_{2^{k-1}}^{2^{k}-2} r_{l, 2^{l}, 1}\left[\lambda_{i, 2^{l}-1}-\lambda_{1+1,2^{l}-1}\right]+ \\
& \quad+r_{2^{k}-1,2^{l}-1} \lambda_{2^{k}-1,2^{l}-1}=\sum r_{1, \nu i j}
\end{aligned}
$$

Let us use the Bungakovskiy inequality and take (1) into account:

Therefore, based on 1.5 .2 (13) there follows ($n_{k}=2^{k}$):

$$
\begin{align*}
& \left\|F_{p}\right\|^{p} \ll\left\|\left(\sum_{k, l} \delta_{k l}^{2}(F)\right)^{1 / 2 p}\right\|_{0} \ll \\
& \ll M^{p, 2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\{\sum_{n, 1}^{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}\left(r_{i j} \sqrt{\left|\gamma_{i j}\right|}\right)^{2 / 2} d x d y .\right. \tag{7}
\end{align*}
$$

The function (of also (5))

$$
\begin{equation*}
r_{1 ., \ldots, 1} \sqrt{\left|\gamma_{11}\right|} \tag{8}
\end{equation*}
$$

appears within the parentheses in the right-hand side of (7) $\left(\sqrt{\left|\gamma_{i j}\right|}\right.$ is a coefficient not dependent on x and y). Obviously, it can be regarded as a segment of the Fourier series of the function

$$
\begin{equation*}
\delta_{k l}(f) \sqrt{\left|y_{l j}\right|} \tag{9}
\end{equation*}
$$

Consequently, the sum $\sum_{k, 1} \sum$ of the squares of segments of the Fourier serics of the functions (9) appear within the braces of the right-hand side of (7).

Based on 1.5.2.1 (6), the integral (7) is majorized by the same integral, where the segments of the Fourier series of the functions are replaced by the functions themselves

$$
\begin{aligned}
& \left\|F_{D}\right\|^{p} \ll M^{n} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\{\sum_{k, l}^{2 \pi} \delta_{k l}^{2}(j) \boldsymbol{\Sigma} V_{i j} \|^{p^{\prime \prime 2}} d x d y \ll\right. \\
& \ll M^{p} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\{\frac{\sum_{k}}{\sum_{1}} \delta_{k l}^{2}(f)\right\}^{p^{\prime} / 2} d x d y \ll M^{p}\|f\|_{D}^{p}
\end{aligned}
$$

and we get inequality (4).
It is easy to verify that inequality (4) is preserved for functions with arbitrary period 21 with the same constant c_{p}.
1.5.4. Theorem on multipliers in the nonperiodic case. Let us assume a vector of the form

$$
\begin{equation*}
k=\left(k_{1}, \ldots, k_{n}\right) \quad\left(k_{j}=0,1 ; j=1, \ldots, n\right) . \tag{1}
\end{equation*}
$$

The set

$$
e_{m}=\left\{j_{1}, \ldots, j_{m}\right\}
$$

of those indexes j for which $k_{j}=1$ is calied the carrier of the vector k.
Theorem. Suppose the function $\lambda(x)$ exhibiting the following properties be given on $R=R_{n}$.

Whatever be the vector \mathbf{k} of the form (1), the derivative*)

$$
\begin{equation*}
D^{n} \lambda=\frac{\partial^{|n|} \lambda}{\partial x_{1}^{k} 1 \ldots \partial x_{n}^{k}} \tag{2}
\end{equation*}
$$

exists and is continuous at any point $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \neq 0$, where i $\in e_{k}$ and is subject to the inequality

$$
\begin{equation*}
\left|x^{*} D^{*} \lambda_{1}\right| \leqslant M . \tag{3}
\end{equation*}
$$

*) A certain generalization of this theorem in terms of generalized ceriva-
tives is possible.

Then λ is the Narcinkievice multiplier. Specifically, there exists the constant x_{p} not dependent on M and f, such that

$$
\begin{equation*}
\|\widehat{\lambda}\|_{p} \leqslant x_{p} M\|f\|_{p} \quad(1<p<\infty) \tag{4}
\end{equation*}
$$

for all $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}$.
Notice that since satisfies the property indicated in the theorem for $\mathbf{k}=0$, therefore it is bounded on R and is continuous save for the points belonging to the coordinate planes. Therefore, λ is a measurable function on R_{n} and is at the same time generalized ($\lambda \in S^{\prime}$).

Proof. Let us confine ourselves to examining the two-cimensional case. Let $:(x, y)$ be a finite, infinitely differentiable function. we will consider its carrier as belonging to the square

$$
\begin{equation*}
\Delta_{s_{0}}=\left\{|x|,|y|<s_{0}\right\} . \tag{5}
\end{equation*}
$$

And suppose

$$
\begin{equation*}
f(x, y)=\sum_{\mu, v} c_{\mu v e}^{s} e^{\left(\frac{\pi}{3}(\mu x+v y)\right.} \quad\left(s \geqslant s_{0}\right), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\mu}^{s}=\frac{1}{(2 s)^{2}} \int_{\Delta_{s}} \int_{0} f(u, v) e^{-i \frac{\pi}{s}(\mu u+v v)} d u d v \quad(\mu, v=0, \pm 1) \tag{7}
\end{equation*}
$$

is its rourier series. Let us set

$$
\begin{equation*}
u_{s}(x, y)=\sum_{\mu, v} \lambda\left(\frac{\mu \pi}{s}, \frac{v \pi}{s}\right) c_{\mu v} e^{i \frac{\pi}{s}(\mu x+v v)} . \tag{8}
\end{equation*}
$$

By (i) (when $\mathbf{k}=0$)

$$
\begin{equation*}
\left|\lambda\left(\frac{\mu \pi}{s}, \frac{v \pi}{s}\right)\right| \leqslant M . \tag{9}
\end{equation*}
$$

Now let $k>0,1 \geqslant 0$, then

$$
\begin{aligned}
& \sum_{\mu=2^{k-1}}^{2^{k}-1}\left|\lambda\left(\frac{(\mu+1) \pi}{s}, \frac{l \pi}{s}\right)-\lambda\left(\frac{\mu \pi}{s}, \frac{l \pi}{s}\right)\right|= \\
& -\sum\left|\int_{\frac{\mu \pi}{s}}^{\frac{(\mu+1) \pi}{2}} \frac{\partial \lambda}{\partial x}\left(\xi, \frac{l \pi}{s}\right) d \xi\right| \leqslant
\end{aligned}
$$

The continuity of cu/ δx with respect to x when $x>0$ and for any y was used in these computations. The resulting inequality is preserved also for $k=0$ for and 1 :

$$
\left|\lambda\left(\frac{\pi}{s}, \frac{1 \pi}{s}\right)-\lambda\left(0, \frac{1 \pi}{s}\right)\right| \leqslant\left|\lambda\left(\frac{\pi}{s}, \frac{1 \pi}{s}\right)\right|+\left|\lambda\left(0, \frac{l \pi}{s}\right)\right| \leqslant 2 M .
$$

Similarly, using the continuity of $\dot{d} / \mathrm{j} y$ with respect to y for $\mathrm{y}>0$ and any x, we get

$$
\begin{equation*}
\sum_{v=2^{l-1}}^{2^{l}-1}\left|\lambda\left(\frac{k \pi}{s}, \frac{(v+1) \pi}{s}\right)-\lambda\left(\frac{k \pi}{s}, \frac{v \pi}{s}\right)\right| \leqslant 2 M \quad(k, l \geqslant 0) \tag{11}
\end{equation*}
$$

Further, while for $k, l>0$

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{l=1}^{l} \sum_{1}^{l} \lambda\left(\frac{(\mu+1) \pi}{s}, \frac{(v+1) \pi}{s}\right)-i\left(\frac{\mu \pi}{s}, \frac{(v+1) \pi}{s}\right)- \\
& \left.-\lambda\left(\frac{(\mu+1) \pi}{s}, \frac{v \pi}{s}\right)+\lambda\left(\frac{\mu \pi}{s}, \frac{v \pi}{s}\right) \right\rvert\,= \\
& \left.=\mathbf{\Sigma} \int_{\frac{\mu \pi}{s}}^{\frac{(\mu+11 \tau}{}} \int_{\frac{v \pi}{s}}^{\frac{(v+1) \pi}{s}} \frac{\partial^{2} \lambda}{\partial x d y}(\xi, \eta) d \xi d \eta \right\rvert\, \leqslant
\end{aligned}
$$

Here we used the continuity of $d^{2} \lambda / d x d y$ when $x, y>0$. For $k>0$ and $1=0$ this equality reduces to the following:

$$
\begin{array}{r}
\sum_{i_{k-1}^{2 k}}^{2^{k}-1} \left\lvert\, \lambda\left(\frac{(\mu+1) \pi}{s}, \frac{\pi}{s}\right)-\lambda\left(\frac{u \pi}{s}, \frac{\pi}{s}\right)-\lambda\left(\frac{(\mu+1) \pi}{s}, 0\right)+\right. \\
\left.+i \cdot\left(\frac{\mu \pi}{s}, 0\right) \right\rvert\, \leqslant 4.11 \tag{13}
\end{array}
$$

(here we consider inequality (10) valid for any $k, \perp \geqslant 0$), and when $k=0$, $1=0$ the sum in the left-hand reduces to a single member also not exceeding 4.

We have proven that the left-hand sides of (9) - (12) for any $k, 1 \geqslant 0$ do not exceed 4 . inalogous inequalities are proven for the remaining three quadrants: 1) $\mathrm{k} \geqslant 0,1=0$; 2) $\mathrm{k} \leqslant 0,1 \geqslant 0$; and 3$) \mathrm{k}, 1=0$.

This proves that the conditions of the larcinkievicz theorem are observed ana therefore, a constant c_{p} exists, not dependent on s (cf. Note at the end of section 1.5 .3), M, and $f,{ }^{p}$ such that

$$
\begin{equation*}
u_{s} L_{p}\left(\dot{s}_{s}\right) \leqslant c_{p} M f_{L_{p}\left(\Delta_{s}\right)}^{\prime}=c_{p} M\|f\|_{0} . \quad 1<p<\infty . \tag{14}
\end{equation*}
$$

In this case the transionmation of the function f by means of the multiplier (is written as the integral

$$
u(x, y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \lambda(\xi, \eta) f(\xi, \eta) e^{l(x l+\mu \eta)} d \xi d \eta,
$$

where

$$
f(x, y)=\frac{1}{2 \pi} \int_{\Delta_{s}}^{0} f(u, v) e^{-i(x u+y v)} d u d v \quad\left(s \geqslant s_{0}\right) .
$$

Obviously

$$
\begin{equation*}
c_{k l}^{s}=\frac{\pi}{2 s^{2}} l\left(\frac{k \pi}{s}, \frac{l \pi}{s}\right) . \tag{15}
\end{equation*}
$$

Let us estimate in an arbitrarily specified square $\Delta_{\mu}(\mu>0)$ the difference

Here

$$
u(x, y)-u_{s}(x, y)=r_{1}+r_{2}+r_{3} .
$$

$$
\begin{aligned}
& r_{1}=\frac{1}{2 \pi} \int_{S_{N}} \lambda(\xi, \eta) \eta(\xi, \eta) e^{i(x i+\nu \eta)} d \xi d \eta- \\
& -\sum_{|k| 1 \mid} \lambda \left\lvert\,<\operatorname{laN}\left(\frac{k \pi}{s}, \frac{\mid \pi}{s}\right) c_{k l}^{k} e^{i \frac{\pi}{8}(k x+1 y)}=\right. \\
& =\frac{1}{2 \pi} \int_{\Delta_{N}} \lambda(\xi, \eta) /(\xi, \eta) e^{i(r i+y \eta)} d \xi d \eta-
\end{aligned}
$$

N is a natural number and s is chosen so that $\alpha=s / \pi$ is a natural number;

$$
\begin{aligned}
& r_{2}=\frac{1}{2 \pi} \int_{R_{2}-\Delta_{N}} \lambda(\xi, \eta) /(\xi, \eta) e^{i(x i+\nu \eta)} d \xi d \eta \\
& r_{3}=-\frac{\pi}{2 s^{2}} \sum^{\prime} \lambda \cdot\left(\frac{k \pi}{s}, \frac{\mid \pi}{s}\right) \gamma\left(\frac{k \pi}{s}, \frac{k \pi}{s}\right) e^{i \frac{\pi}{s}(k x+(\nu)},
\end{aligned}
$$

where the sum Σ^{\prime} is extended over such pairs ($k, 1$) that either $|k|$ or $|1|$ is larger than αN. The function f, being an infinitely differentiable finite function, belongs to the main class S, therefore $\overline{\mathrm{f}} \leftleftarrows S$, which means

$$
|f(\xi, \eta)| \leqslant\left(1+\xi^{2}\right)^{-1}\left(1+\eta^{2}\right)^{-1}
$$

and

$$
\left|r_{2}\right| \ll \int_{R_{2}-\Delta_{N}}\left(1+\xi^{2}\right)^{-1}\left(1+\eta^{2}\right)^{-1} d \xi d \eta \rightarrow 0 \quad(N \rightarrow \infty) .
$$

where $\alpha=s / \bar{\pi}>1$, a similar estimate exists for r_{3} :

$$
\left|r_{3}\right| \ll \Sigma^{\prime}\left[1+\left(\frac{k \pi}{s}\right)^{2}\right]^{1}\left[1+\left(\frac{l \pi}{s}\right)^{2}\right]^{-1}>0 \quad(N \rightarrow \infty) .
$$

Assigning $\varepsilon>0$, we can indicate such an $N>0$ that for all $s>s_{0}$

$$
\left|r_{2}\right|,\left|r_{3}\right|<\varepsilon
$$

For this N we can specify an $s_{1}>s_{0}$ such that for all $s>s_{1}$ and for all $(x, y)<1$

$$
\left|r_{1}\right|<e .
$$

We have proven that for any $\mu>0$

$$
\lim _{s \rightarrow \infty} u_{r}(x, y)=u(x, y)=\widehat{\eta_{f}}
$$

is uniform on Siu
From (14) it fnllows that $\left\|u_{s}^{\prime} L_{p}\left(\prime_{\mu}\right) \leqslant c_{p} \mid\right\|_{p} \quad(\mu \leqslant s)$.

Passing to the limit when $s \rightarrow \infty$, and then when $\mu \rightarrow \infty$ we obtain inequality (1) for the finite functions $f \in S$.

This proves that λ is a Marcinkievicz multiplier.
1.5.4.1. If the function $u(x)=u\left(x_{1}, \ldots, x_{n}\right)$ of n variables is subject to the conditions of the theorem formulated in 1.5.4, then it obviously is also subject to the conditions of this theorem if it is considered as a function of k variables $x_{1}, \ldots, x_{k}(k n)$ and, therefore, is a multiplier with respect to them.
1.5.5. Examples of :arcinkievicz multipliers (in the L_{p}-sense, $1<p<(\cdot$.$) .$

1. $\operatorname{sign} x=I_{1}^{n} \operatorname{sign} x_{j}$.
2. $\left(1+|x|^{2}\right)^{-\lambda}(\lambda>0)$.
3. $\left(1+x_{i}^{2}\right)^{\prime 2}\left(1+\mid x^{2}\right)^{-r / 2}(r>0 ; j=1, \ldots, n)$.
4. $\left(1+|\boldsymbol{x}|^{2}\right)^{\prime 2}\left(1+\sum_{1}^{n}\left|x_{j}\right|^{\prime-1}\right)^{-1}(r>0)$.
5. $x^{\prime}\left(1+|x|^{2}\right)^{-r / 2}(|l| \leqslant r, r>0, l \geqslant 0)$.
6. $\boldsymbol{x}^{\prime}\left(1+x_{s}^{2}\right)^{\frac{x_{s}}{2}}\left\{\underset{1}{\sum_{1}^{\prime}}\left(1+x_{i}^{2}\right)^{\frac{2}{2}}\right\}^{-1}$ $\left(r>0, l \geqslant 0, x=1-\sum_{1}^{n} \frac{l_{1}}{r_{l}} \geqslant 0\right)$.
7. $\left(1+|\boldsymbol{x}|^{2}\right)^{2-2}\left(1+\sum_{1}^{n}|x,|\right)^{-1}$
8.

(r is an arbitrary real number)
8. $\left(1+|x|^{2}\right)^{-r / 2} \Lambda_{r}^{-1}(x) \quad\left(r=r_{1}=\ldots=r_{n}>0\right)$.
2. $\left(1+|x|^{2}\right)^{\prime 2} \Lambda_{r}(x) \quad\left(r=r_{1}=\ldots=r_{n}>0\right)$.
10. $\left(1+x_{i}^{2}\right)^{\frac{r_{i}}{2}} \Lambda_{r}(x) \quad(i=1, \ldots, n)$.
11. $\left\{\sum_{i=1}^{n}\left(1+x_{i}\right)^{\frac{\prime}{2}}\right\}^{-1} \lambda_{i}^{\prime}(x)$.
12. $\left.\left\{\sum_{1}^{n}\left(1+x_{i}^{2}\right)^{\frac{r}{2}}\right\}^{0}\right\}^{0}\left\{\sum_{1}^{n}\left(1+x_{i}^{2}\right)^{\frac{r}{2}}\right\}^{0} \times$
$\times\left\{\sum_{1}^{n}\left(1+x_{i}^{2}\right)^{\frac{r^{(0)+\Delta 1}}{2 n}}\right\}^{-0} \quad\left(r_{j}>0 ; \sigma, \delta, \lambda>0\right)$.
$\Lambda_{r}(x)=\left\{\sum_{i=1}^{n}\left(1+x_{i}^{2}\right)^{\frac{r_{i}}{2}}\right\}^{-\frac{1}{\theta}}$.

We let $\mu_{i}(i=1, \ldots, 12)$ stand for these functions. Thesy will be necessary to us in the treatment below. The proof that they are Marcinkievicz multipliers is reduced to the preceding theorem 1.5.4.

Its criterion for μ_{1} is trivially satisfied, since μ_{1} is a constant (+1 or -1) in each open coordinate junction.

The functions μ_{i} are continuous together with their partial derivatives of any order on $R=R_{n}$, with the exception of the functions $\mu_{i}(i=4,5,6,7)$ which are continuous on R, but their partial derivatives are generally discontinuous on the coordinate planes.

Below is given a proof that the Marcinkievicz criterion is satisfied for several u_{i} functions. The problem reduces to verifying that the functions

$$
x^{k} \mu_{l}^{(n)} \quad\left(k=\left(k_{1}, \ldots, k_{n}\right), k_{1}=0,1\right)
$$

are bounded on each coordinate junction of space R. Owing to the symmetry of these functions, it suffices for the verification to be made for a positive coordinate junction. All the functions considered, save for u_{6} and μ_{12}, aws the products $\mu_{i}=\lambda_{i} \psi_{i}$ of the defined functions λ_{i} and ψ_{i}. By the Leibnitz formula

$$
\begin{aligned}
x^{*} \mu_{i}^{(k)}=x^{n} & \sum_{i=i} C_{i} \lambda_{i}^{(k-0)} \psi_{i}^{(k)}, \\
& -6 \zeta-
\end{aligned}
$$

where the sum is extended over all possible integral nonnegative vectors $\alpha \leqslant \mathbf{k}$. The problem reduces to estimating functions of the form

$$
x^{n} x_{1}^{(n)} \psi_{i}^{(n)}=x^{\wedge} x_{1}
$$

on a positive coordinate junction.
Let us agree to write $A \approx B$ instead of $|A|=c B$, where c is same constant. We have

$$
\begin{aligned}
x^{n} x_{1} & \approx x^{n} x^{n-1}\left(1+|x|^{2}\right)^{(2-|n-a|} x^{(r-1)} \cdot\left(1+\sum_{1}^{n} x_{1}^{r}\right)^{-1-|z|}= \\
& =\frac{x^{n}}{\left(1+\sum_{1}^{n} x_{1}^{r}\right)^{1+1}} \frac{x^{2(n-a)}}{\left(1+|x|^{2}\right)^{|n-a|}} \frac{\left.(1+|x|)^{2}\right)^{n}}{1+\sum_{1}^{n} x_{1}^{\prime}} \leqslant 1 \cdot 1 \cdot c<\infty .
\end{aligned}
$$

When r - 1 the function χ_{4} is discontinuous, winen one of the coordinates x_{j}, where $j \Leftarrow \theta_{a}-\theta_{\mathbf{k}}$ (θ_{k} is the carrier of the vector k) is equal to zero. Then by theorem 1.5 .4 , it suffices that function X_{4} be continuous for positive x_{j} with $j=e_{k}$ and for ang remaining x_{j}, which obviously is satisfied in this case. When estimating $\mu_{t}=u v \omega$, we will have

$$
\begin{equation*}
\left.{ }^{\prime}(\mu)_{(w)} n_{(n)} n\right\}{ }^{n} x={ }_{n}(m \cap n){ }^{n} x \tag{1}
\end{equation*}
$$

where the sum is extended over all possible vectors ' α, f, and V with components equal to 1 or 0 , such that $\alpha+\beta+\nu=\mathbf{k}$. In estimating the derivative of the components of this sum, we will assume (otherwise it will equal zero) that $\theta_{a}<\theta_{j}$, and β is a vector whose s-th component equald 1 , while the remaining components are equal to zero. The problem reduces to estimating

$$
\begin{aligned}
& x^{4} x^{t-1}\left(1+x_{s}^{2}\right)^{\frac{x_{s}}{2}-1} x_{s} x^{y} \prod_{e_{r}}^{-}\left(1+x_{i}^{2}\right)^{\frac{i_{f}}{2}-1} \times \\
& \times\left\{\sum_{1}^{n}\left(1+x_{i}^{2}\right)^{\frac{1}{2}}\right\}^{-1-1|y|}=\frac{x^{1}\left(1+x_{s}^{2}\right)^{\frac{x r_{s}}{2}}}{\sum_{1}^{n}\left(1+x_{j}^{2}\right)^{\frac{1}{2}}} \frac{x_{s}^{2}}{1+x_{s}^{2}} \times \\
& \times \frac{x^{2 v}}{\prod_{\rho_{V}}\left(1+x_{l}^{2}\right)} \frac{\prod_{e_{i}}\left(1+x_{j}^{2}\right)^{\frac{\prime}{2}}}{\left\{\sum_{1}^{n}\left(1+x_{i}^{2}\right)^{\frac{\prime}{2}}\right\}^{\mid v 1}} \leqslant 1 .
\end{aligned}
$$

Let ue provide an explanation to the estimate of the first multiplier in the second momber of these relationships. Let
then

$$
\left(1+x_{i_{0}}^{2}\right)^{\prime \prime}=\max _{1}\left(1+x_{i}^{2}\right)^{\prime \prime}
$$

$$
\begin{aligned}
\frac{x^{1}\left(1+x_{s}^{2}\right)^{\frac{x r_{s}}{2}}}{\sum_{1}^{n}\left(1+x_{i}^{2}\right)^{\frac{r_{1}}{2}}} \leqslant\left(1+x_{l_{0}}^{2}\right)^{-\frac{r_{1}+x r_{1}}{2}} \prod_{i=1}^{n}\left(1+x_{l_{0}}^{2}\right)^{\frac{l_{1} r_{0}}{2 l_{l}}} & = \\
& =\left(1+x_{l_{0}}^{2}\right)^{0}=1
\end{aligned}
$$

When $I_{j}>1$, the estimated product withont the multiplier x^{k} is discontimuous, when one of the coordinates x_{j}, where $j \in e_{a} \subset \theta_{k}$ equals zero, but by theorem 1.5 .4 it is sufficient that this multiplier be continuous for $x_{j}>0$, where $j \in \theta_{k}$ and for and remaining x_{j}, which in this case is obviously satisfied.

For ll_{7}

$$
\begin{aligned}
x^{h} x_{7} & \approx x^{h} x^{h-3}\left(1+|x|^{2}\right)^{/ 2-|h-1|}\left(1+\sum_{1}^{n} x_{j}\right)^{-r-101}= \\
& =\frac{x^{2(1--n)}}{\left(1+|x|^{2}\right)^{n-a \mid}} \frac{x^{2}}{\left(1+\sum_{j=1}^{n} x_{j}\right)^{101}\left(\frac{\left(1+|x|^{2}\right)^{1 / 2}}{1+\sum_{j=1}^{n} x_{j}}\right)^{\prime}<c<\infty .} .
\end{aligned}
$$

Here the inequalities

$$
c_{1}\left(1+\sum_{1}^{n} x_{j}\right) \leqslant\left(1+|x|^{2}\right)^{1 / 2}<1+\sum x_{j}
$$

are employed, the second when $r>0$, and the first when $r<0$.
The function χ_{7} is discontinuous on certain coordinate planes, but its limits on them within each coordinate junction do exist, therefore in each junction thus closed χ_{7} can be considered as continuous.

We will argue as follows for μ_{8}. Let l be a vector with components equal to 1 or 0 . Uaing the Leibnitz formula on the differentiation of the product of functions of several variables, omitting the constant coefficients and considering the vectors x with nonnegative coordinates, we get (e_{s} is the carrier of the vector e)

$$
\left(\text { учесть, что }\left(\sum u_{i}^{\sigma}\right)^{1 / \sigma} \ll u_{i}, \sigma>0, u_{l}>0\right)
$$

(considering that
For μ_{9}

For μ_{10}

$$
\begin{aligned}
& x^{\prime} D^{\prime}\left\{\left(1+x_{i}^{2}\right)^{\frac{r_{l}}{2}} \Lambda_{r}(x)\right\} \ll \sum_{s<1} x^{\prime}\left\{\sum_{j=1}^{n}\left(1+x_{j}^{2}\right)^{\frac{10}{2}}\right\}^{-\frac{1}{0}-|a|} \times \\
& \times \prod_{i=c_{s}}\left(1+x_{i}^{2}\right)^{\frac{f^{0}}{2}-1} x_{1} D^{(1-\alpha)}\left(1+x_{i}^{2}\right)^{\frac{l_{1}}{2}}=
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime} D^{i}\left\{\left(1+\left.\dot{p} x\right|^{2}\right)^{-r / 2} \Lambda_{r}\right\} \ll \\
& \ll \sum x^{\prime} x^{i-3}\left(1+|x|^{2}\right)^{r-1-|1-8|}\left(\sum\left(1+x_{j}^{2}\right)^{\frac{r \sigma}{2}}\right)^{\frac{1}{\sigma}-|a|} \times \\
& \times \prod_{j \in f_{s}}\left(1+x_{j}^{2}\right)^{\frac{r 0}{2}-1} x^{f}=\sum_{s \leqslant 1} \frac{x^{2(1-8)}}{\left(1+|x|^{2}\right)^{\mid 1+8}} \frac{x^{28}}{\prod_{j=0_{s}}\left(1+x_{j}^{2}\right)^{101}} \times \\
& \times \frac{\prod_{1 a_{f}}\left(1+x_{i}^{2}\right)^{\frac{r 0}{2}}}{\left(\sum\left(1+x_{i}^{2}\right)^{\frac{r 0}{2}}\right)^{181}} \frac{\left(1+|x|^{2}\right)^{r / 2}}{\left(\sum\left(1+x_{i}^{2}\right)^{\frac{r 0}{2}}\right)^{\frac{1}{\sigma}}}<1 .
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime} D^{\prime}\left\{\left(1+|x|^{2}\right)^{-r / 2} \Lambda_{r}\right\} \ll \\
& \ll \sum_{i=1} x^{1} x^{1-9}\left(1+|x|^{2}\right)^{-1 / 2-1 /-s \mid}\left(\sum\left(1+x_{1}^{2}\right)^{\frac{r 0}{2}}\right)^{1 / \sigma-101} \times \\
& \times \prod_{l=e_{s}}\left(1+x_{j}^{2}\right)^{\frac{10}{2}-1} x_{i}=\sum_{i<1} \frac{x^{2(1-8)}}{\left(1+|x|^{2}\right)^{|l-\theta|}} \frac{x^{28}}{\prod_{i \in e_{s}}\left(1+x_{j}^{2}\right)} \times \\
& \times \frac{\prod_{1=f_{s}}\left(1+x_{i}^{2}\right)^{\frac{r o}{2}}}{\left\{\sum\left(1+x_{j}^{2}\right)^{\frac{r q}{2}}\right\}^{1 / \sigma 1}} \frac{\left(\sum\left(1+x_{j}^{2}\right)^{\frac{r a}{2}}\right)^{1 / \sigma}}{\left(1+|x|^{2}\right)^{r / 2}} \ll 1
\end{aligned}
$$

The first two fractions in the right-hand side do not exceed the constant, and the third fraction also does not exceed the constant because its numerator $\psi \equiv 0$, if $\mathcal{j} F i$ exists,

$$
j \in e_{l-s} ; \psi=\left(1+x_{i}^{2}\right)^{\frac{l}{2}}, \quad \text { if } 1-\mathbf{s}=0 ; \psi=2 x_{i}^{2}\left(1+x_{i}^{2}\right)^{\frac{r_{1}}{2}-1}
$$

if the set $e_{\text {I-s }}$ consists only of one index 1.
For μ_{11}

$$
\begin{aligned}
& x^{\prime} D^{t}\left\{\Lambda_{r}^{-1}(x)\left(\sum_{1}^{n}\left(1+x_{j}^{2}\right)^{\frac{\prime}{2}}\right)^{-1}\right\} \ll
\end{aligned}
$$

$$
\begin{aligned}
& \times \prod_{j \in f_{f}}\left(1+x_{j}^{2}\right)^{\frac{f_{0}^{0}}{2}-1} x_{j}=
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{\left\{\sum_{i}^{n}\left(1+x_{i}^{2}\right)^{\frac{1 / 0}{2}}\right\}^{1 / 0}}{\sum_{i}^{n}\left(1+x_{i}^{2}\right)^{\frac{1}{2}}} \frac{x^{2 s}}{\prod_{i \in e_{j}}\left(1+x_{i}^{2}\right)} \ll 1 .
\end{aligned}
$$

For μ_{12}, one of the members of the Leibnitz sum (1) is estimated as follows:

$$
\begin{aligned}
& \times\left\{\sum_{1}^{n}\left(1+u_{i}^{2}\right)^{\frac{r_{j}^{(\alpha+\alpha)}}{2 \sigma}}\right\}^{-\sigma-1 \nu 1} \prod_{1 \in e_{i}}\left(1+u_{i}^{2}\right)^{\frac{r^{\lambda}}{2 \sigma}-1} u_{j} x \\
& \times \prod_{i \in e_{\rho}}\left(1+u_{i}^{2}\right)^{\frac{r \phi}{2 \sigma}-1} u_{i} \prod_{i \in e_{\gamma}}\left(1+u_{i}^{2}\right)^{\frac{r_{l}^{(\lambda+\delta)}}{20}-1} u_{i}= \\
& =\frac{\left\{\sum_{i}^{n}\left(1+u_{j}^{2}\right)^{\frac{r}{2} \lambda}\right\}^{\sigma}\left\{\sum_{1}^{n}\left(1+u_{l}^{2}\right)^{\frac{r}{2 \sigma}}\right\}^{0}}{\left\{\sum_{1}^{n}\left(1+u_{j}^{2}\right)^{\frac{r l^{(\lambda+\delta)}}{2 \sigma}}\right\}^{0}} \frac{u^{2 n}}{\prod_{i \in e_{n}}\left(1+u_{j}^{2}\right)} \times
\end{aligned}
$$

In the first fraction, if σ is everywhere closed, the order will not be changed also if the exponents λ, δ, and $\lambda+\delta$ are removed from the sign of the corresponding curved brackets.

For the proof in the case of the function μ_{12}^{-1} members appear that can be written as the right-hand side of (2). Only the reciprocal of its first fraction, which nonetheless will obviously be bounded, is changed.

It is easy to see that the functions u_{12} and u_{12}^{-1} remain Marcinkievicz multipliers, if in each of three of its multipliers the parameter σ takes on different values σ_{1}, σ_{2}, and σ_{3}, or if in its first multiplier n is replaced by m - n. In the last case, in (2) we must assume that the carrier e_{a} consists of indexes with numbers not exceeding m, otherwise the corresponding member of the Leibnitz sum equals zero. In the last member in (2), n in the first multiplier of the numerator must be replaced by m.
1.5.6. Extending inequality 1.5 .2 (13) to the nonperiodic case. Our aim will be to prove that for and function $f \in I_{p}\left(R_{n}\right)=L_{p}(1<p<0)$ the inequalities

$$
\begin{equation*}
c_{1}\|f\|_{p} \leqslant\left\|\left(\Sigma \delta_{k}(f)^{2}\right)^{1 / 2}\right\|_{p} \leqslant c_{2}\|f\|_{p} \tag{1}
\end{equation*}
$$

are satisfied, where c_{1} and c_{2} are constants not dependent on f,

$$
\begin{equation*}
\left.\delta_{k}(f)=(1)_{\Delta_{k}}\right)\left((1)_{c}=\binom{1, x \in e_{1}}{0, x \notin e}\right. \tag{2}
\end{equation*}
$$

and for $\mathbf{k} \geqslant 0$

$$
\begin{equation*}
\Delta_{k}=\Delta_{k_{1}, \ldots, k_{n}}=\left\{2^{k_{j}-1} \leqslant u_{1} \leqslant 2^{k_{j}} ; j=1, \ldots, n\right\} \tag{3}
\end{equation*}
$$

($2^{k_{j}-1}$ when $k_{j}=0$ is replaced by 0), but for artibrary k of the rectangles j_{k} there is j_{a} set of points $\left\{u_{1} \operatorname{sign} k_{1}, \ldots \ldots, u_{n}\right.$ sign $\left.k_{n}\right\}$, where $n=$ $\left(u_{1}, \ldots, u_{n}\right) \in \Delta\left|k_{1}\right|, \ldots,\left|k_{n}\right|$.

Below it will be shown (cf 8.10.12) that if f is regular in the $L_{p}-$ sense ($1<p<\infty$) the generalized function (cf. further 1.5.10), for which the norm appearing in the second meinber of (1) is finite, therefore $f \in L_{p}$.

Let us confine ourselves to considering the two-dimensional case. Let us specify an infinitely differentiable function $f(x, y)$ with a carrier belonging to

$$
\begin{equation*}
\Delta_{s_{0}}=\left\{|x|,|y|<s_{0}\right\} \tag{4}
\end{equation*}
$$

and the Fourier series 1.5 .4 (6). By virtue of the fact $f \equiv 0$ outside $\Delta_{s_{0}}$
for $s>s$, we will have the inequalities for $s>s_{0}$, we will have the inequalities

$$
\begin{equation*}
\left\|i_{n} \ll\right\|\left(\underline{\Sigma} \delta_{k i}(f)^{2}\right)^{12} \|_{L_{p}\left(J_{s}\right)} \ll f_{i b} \tag{5}
\end{equation*}
$$

where

$$
\delta_{k l}(f)=\sum_{ \pm\left(n_{|k|-1+1}\right)}^{ \pm n_{|k|}} \sum_{\left(n_{1 \mid 1-1+1}\right)}^{ \pm n_{1} \mid 1} c_{\mu v e} e^{\prime \frac{\pi}{3}(\mu x+v y)}
$$

and where we this time assume that $n_{0}=n_{-1}=0, n_{1}=1, n_{k}=2^{k-2} \beta(k=2,3, \ldots)$, and $s>s_{0}$ is selected so that $B=s 9_{\pi}>\overline{2}$ is integral. The sign + or - is assigned depending on whether k or l is positive or negative. Condition 1.5.2 (5) is observed

$$
\frac{n_{k+1}}{n_{k}} \geqslant 2 \quad(k=1,2, \ldots)
$$

therefore the constants appearing in inequalities (5) do not depend on $s>8_{0}$.
Suppose

$$
\delta_{k l}(f)=\frac{1}{2 \pi} \int_{\Delta_{n, 1}} I(u, v) e^{l\left(x u+v v^{\prime}\right.} d u d v=\widetilde{(1)_{\Delta_{n}} I}
$$

whore $\Delta_{k l}$ is rectangle (3) (when $k_{1}=k, k_{2}=1$, and $n=2$).
Let

$$
\begin{gathered}
a=\frac{k_{1} \pi}{s}, \quad b=\frac{k_{y} \pi}{s}, \quad c=\frac{l_{1} \pi}{3}, \quad d=\frac{l, ~}{3} ; \\
\Delta=\{[a, b] \times[c, d]\} ; b-a, d-c \geqslant 1 ; \\
|\eta|,\left|\frac{\partial f}{\partial x}\right|,\left|\frac{\partial f}{\partial y}\right|,\left|\frac{\partial y}{\partial x \partial y}\right| \leqslant M_{\Delta},(x, y) \in \Delta .
\end{gathered}
$$

We will use the Abel tranaformation for the sum

$$
\begin{align*}
& \delta_{\Delta}=\sum_{n_{1}}^{h_{1}} \sum_{l_{1}}^{l_{1}} c_{n} e^{i \frac{\pi}{8}\left(h_{x}+(y)\right.}= \\
& =\frac{\pi}{2 s^{2}} \sum_{k_{1}}^{k_{1}} \sum_{l_{1}}^{l_{1}} y\left(\frac{k \pi}{3}, \frac{i \pi}{s}\right) e^{\left(\frac{\pi}{3}(k x+1 / n)\right.}= \\
& =\frac{\pi}{2 s^{2}} \sum_{h_{1}}^{l} e^{i \frac{\pi}{s} i v}\left\{\sum_{k_{1}}^{k_{-1}-1} I_{k}(x) \Delta_{k}\right\}\left(\frac{k \pi}{s}, \frac{i \pi}{s}\right)+ \\
& \left.+i\left(\frac{k_{2} \pi}{s}, \frac{\pi}{s}\right) I_{k .}(x)\right\}, \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
I_{n}(x)= & \sum_{v=1}^{n} e^{\left(\frac{\pi}{8} v x\right.}=\frac{e^{\left(\frac{\pi}{8}(k+1) x\right.}-1}{\Delta_{x} a_{n l}=a_{n l}-a_{k+1,1}},
\end{aligned}
$$

A further Abel transformation leads to the equality

$$
\begin{aligned}
& \delta_{\Delta}=\frac{\pi}{2 s^{2}}\left\{\sum_{k_{1}}^{k_{j}-1} \sum_{l_{1}}^{l_{1}-1} I_{k}(x) I_{l}(y) \Delta_{x y}^{2} j\left(\frac{k \pi}{s}, \frac{k \pi}{s}\right)+\right. \\
& +\sum_{k_{1}}^{k_{2}-1} \Delta_{k} f\left(\frac{\dot{k} \pi}{s}, \frac{l_{2} \pi}{s}\right) I_{k}(x) I_{I_{2}}(y)+ \\
& +\sum_{l_{1}}^{l_{1}-1} I_{k_{2}}(x) I_{l}(y) \Delta_{d} f\left(\frac{k_{2} \pi}{s}, \frac{l \pi}{s}\right)+ \\
& +\left\{\left(\frac{k_{2} \pi}{s}, \frac{I_{2} \pi}{s}\right) I_{k_{1}}(x) I_{l_{2}}(y)\right\} .
\end{aligned}
$$

If we consider that

$$
\left|I_{n}(x)\right| \leqslant \frac{2}{\left|e^{\prime \frac{\pi}{2} x}-1\right|}<\frac{s}{|x|} \quad(|x|<s),
$$

then from (6) and (7) follow four inequalities

$$
\begin{equation*}
\left|\delta_{\Delta}\right| \leqslant c M_{\Delta}|\Delta|\left\{1,|x|^{-1},|y|^{-1},|x y|^{-1}\right\},|x|,|y|<s, \tag{8}
\end{equation*}
$$

where c does not depend on the series of standing multipliers and on a. The aecond inequality, for example, is obtained from (6) by means of the following computations:

$$
\left|\delta_{\Delta}\right| \ll \frac{1}{s^{2}}\left(l_{2}-l_{1}\right)\left\{\left(k_{?}-k_{1}\right) \frac{s}{|x|} \frac{M_{\Delta}}{s}+M_{\Delta} \frac{s}{|x|}(b-a)\right\}
$$

(the multiplier $b-a \geqslant 1$ is added in the second member within the braces). The fourth inequality follows by means of similar computations from (7).

Let us set $\phi_{1}(x, y)=\min c\left\{1,|x|^{-1},|y|^{-1},|x y|^{-1}\right\}$. Obviously, $\Phi_{1}<L_{p}(1<p<\omega 1)$ and from (8) it follows that

$$
\begin{equation*}
\left|\delta_{\Delta}\right| \leqslant M_{\Delta}|\lambda| \Phi_{1}(x, y) \quad\left((x, y) \in \Delta_{s}\right) \tag{9}
\end{equation*}
$$

Based on (9), since

$$
\begin{gathered}
\delta_{k l}^{s}(f)=\delta_{\Delta l l}^{\prime}, \\
\Delta_{k l}^{s}=\left\{ \pm \frac{\left(n_{k-1}+1\right) \pi}{s} \lessgtr x \lessgtr \pm \frac{n_{k} \pi}{s} ; \pm \frac{\left(n_{l-1}+1\right) \pi}{s} \lessgtr y \lessgtr \pm \frac{n_{l} \pi}{s}\right\},
\end{gathered}
$$

we get $\quad\left|\delta_{k l}^{s}(f)\right| \leqslant M_{s_{k l}^{s}}\left|\Delta_{k l}^{s}\right| \Phi_{1}(x, y)$.

Since the functions $\tilde{f}, \partial \tilde{f} / \partial x$, and $\partial \tilde{f} / \partial y$ decrease at infinity more rapidly than does $\left(1+|x|^{\lambda}+|y|^{\lambda}\right)^{-1}$, whore λ is as large as we wioh, then obviously

$$
\Sigma M_{\Delta_{k l}^{\prime}}\left|\Delta_{k l}^{f}\right|<A<\infty,
$$

where the constant A does not depend on 0 . Therefore

$$
\begin{align*}
&\left\{\Sigma \delta_{k l}^{\prime}(f)^{2}\right)^{1 / 2} \leqslant \Sigma\left|\delta_{k l}^{2}(f)\right| \leqslant A \Phi_{1}= \\
&=\Phi(x, y) \in L_{p}\left(R_{n}\right) \quad\left((x, y) \in \Delta_{j}\right) \tag{10}
\end{align*}
$$

Confining ourselves for eake of simplicity to nomnegative k and l, we will have (s is selected so that $\beta=s / \pi$ is integral)

$$
\begin{aligned}
& \xrightarrow[3 \rightarrow \infty]{\longrightarrow} \frac{1}{2 \pi} \int_{2^{n-1}}^{2^{h-1}} \int_{2^{l-1}}^{2^{l-i}} f(u, v) e^{l(u x+v v)} d u d v=\delta_{k-2,1-2}(f)
\end{aligned}
$$

is uniform relative to $(x, y) \in \Delta_{N}$ for k and $l \geqslant 2\left(2^{-1}\right.$ muat be replaced by 0$)$, whatever be the specified $N>0$. . If however one of the nambers (atill nonnegative) be less than 2, the doubled aum is converted into a aingle oum or even (for $\delta_{00}^{8}, \delta_{10}^{8}$, and δ_{01}^{s}) a aum that degenerates into a single momber.

In these cases $\delta_{\text {lel }}^{s}(f) \rightarrow 0$ is uniform on Δ_{N}, since under the integral appears a function that is contimuous with respect to x, y, u, and v. Similar argumonts are also valid for the numbers k and 1 of any sign, therefore it has been proved that for ans k and l

$$
\delta_{k l}^{f}(f) \longrightarrow \rightarrow \infty \delta_{k-2, l-2}(f) \text { на } \Delta_{N}
$$ on N

is uniform, whatever be $\mathrm{N}>0$.
From the second inequality (5), it follows for any $N, N_{1}>0$ that

$$
\left.\| \int_{\mid A_{1}, 1 \|<N_{1}} \delta_{k l}^{R}(f)^{2}\right)\left.^{1 / 2}\right|_{L_{p}\left(\Delta_{N}\right)} \leqslant\|f\|
$$

and after the passage to the limit when $s \rightarrow \infty$, then $N_{1} \rightarrow \infty$ and then $N \rightarrow \infty$, we get

$$
\left\|\left(\Sigma \delta_{n l}(f)^{2}\right)^{1 / 2}\right\|_{p} \leqslant\|f\|_{p}
$$

From (10) it follows that

$$
\left(\sum_{|k| 1.1 \mid<N} \delta_{k l}^{\delta_{k l}(f)^{2}}\right)^{1 / 2} \leqslant \Phi(x, y)
$$

therefore, after the passage to the limit initially when $s \rightarrow \infty$, then $\mathrm{N}_{1} \rightarrow \infty$, we got

$$
\left[\sum \delta_{k l}(f)^{2}\right]^{1 / 2} \leqslant \Phi(x, y)
$$

Finally,

$$
\begin{aligned}
& \left|\left\|\left.\left\{\Sigma_{k l}^{s}(f)^{2}\right\}^{1 / 2}\right|_{p} ^{p}\left(\Delta_{j}\right)-\right\|\left\{\Sigma_{k l}(f)^{2}\right\}^{1 / 2 / p_{p}\left(R_{2}\right)}\right| \ll \\
& \ll \|\left.\left\{\sum_{1 k l_{1}} \sum_{n \mid<N} \delta_{k l}^{f}(f)^{2}\right\}^{1 / 2}\right|_{L_{p}\left(\Delta_{N}\right)}- \\
& -\left|\left\{1 k \mid .1 \sum_{<N} \delta_{k l}(f)^{2}\right\}^{1 / 2}\right|_{L_{p}\left(\Delta_{N}\right)} \mid+ \\
& +\left|\sum_{|k|, 11<N}\right| \delta_{k l}^{s}(f)| |_{L_{p}\left(\Delta_{s}-\Delta_{N}\right)}+\left.\right|_{|k| .11 \mid<N}\left|\delta_{k l}(f)\right|_{L_{p}\left(R_{g}-\Delta_{N}\right)}+ \\
& +\left\|\Sigma^{\prime}\left|\delta_{k l}^{\prime}(f)\left\|_{L_{p}\left(\Delta_{N}\right)}+\right\| \Sigma^{\prime}\right| \delta_{k l}(f)\right\|_{L_{p}\left(\Delta_{N}\right)}=I_{1}+\ldots+I_{5},
\end{aligned}
$$

Where \sum^{\prime} is the sum over pairs of the numbers k and l, where at least one of these is not smaller than N .

Here

$$
\begin{gathered}
I_{2}, I_{3} \leqslant\|\Phi\|_{L_{p}\left(R_{2}-s_{s}\right)^{\prime}} \\
I_{1} \leqslant \Sigma^{\prime} M_{\Delta_{k l}^{s}}\left|\Delta_{k l}^{s}\right|^{\prime}\left\|_{, p} \leqslant \varepsilon_{s}\right\|^{\prime} \Phi \|_{Q_{0}},
\end{gathered}
$$

where ε_{N} does not depend on s and tends to zero when N

$$
I_{5} \leqslant \varepsilon_{N} \rightarrow 0 \quad(N \rightarrow \infty)
$$

Thus, N can be taken to be so large that I_{2}, \ldots, I_{5} is less than an assimed $\varepsilon>0$, and then s_{0} can be selected so that $I_{1}<\varepsilon$ for all $\mathrm{s}>s_{0}$.

We have proven that for any infinitely differentiable finite function f

$$
\lim _{s \rightarrow \infty}\left\|\left\{\Sigma \delta_{k l}^{s}(f)^{2}\right\}^{1 / 2}\right\|_{L_{n}\left(\Delta_{s}\right)}=\|\left\{\delta_{k l}(f)^{2}\right\}^{1 / 2}
$$

and then based on (5), where the constants in the inequality do not depend on s, we get (1) (stijl for infinitely differentiable finite functions).

Now if $f \in L_{p}$, then we select a sequence of infinitely differentiable finite functions $f_{j}(j=1,2, \ldots)$ such that

$$
\begin{equation*}
\left\|f-f_{l}\right\|_{\rho} \rightarrow \dot{0}(j \rightarrow \infty) . \tag{11}
\end{equation*}
$$

This shows that for any $\varepsilon>0$ and λ is found such that for i and j

$$
\left|\left\{_{1 n 1 .} \sum_{n \mid<N}\left[(1) \overline{\Delta_{n_{1}}\left(\tilde{f_{1}-f_{1}}\right)}\right]^{2}\right\}\right|_{0}<\mid f_{1}-f_{1} b_{0}<e_{1}
$$

after passage to the limit when $1 \rightarrow \infty$ in those inequalities f_{i} is replaced with f. But further passage to the limit when $N \rightarrow \infty$ leads to the inequality

$$
\left.\| \sum \delta_{M 1}(f,-f)^{2}\right]\left.^{1 / 2}\right|_{p}<\varepsilon \quad(j>\lambda)
$$

from whence it follows that

$$
\begin{equation*}
\|\left.\left[\delta_{k l}\left(f_{j}-f\right)^{2}\right\}^{1 / 2}\right|_{p} \rightarrow 0(j \rightarrow \infty) \tag{12}
\end{equation*}
$$

Inequalities (1) are satisfied for the functions f_{1}. But as a consequence of (11) and (12) in these inequalities it is legitimate to pass to the limit when $j \rightarrow \infty$, thereby obtaining inequalitios (1).
1.5.6.1. By wholly analogoun axguments, though aimpler because we have in mind the one-dimensional case, it is proven that for the functions $f(x) \in$ $L_{p}(-\infty, \infty)=L_{p}(1<p<\infty)$ the inequalities

$$
\begin{equation*}
\|f\|_{p} \ll\left\|\left(\Sigma \beta_{l}(f)^{2}\right]^{1 / \eta_{p}} \ll\right\| f \|_{p} \tag{13}
\end{equation*}
$$

obtain, where

$$
\beta_{1}(f)=(1)_{\Lambda},
$$

$\Delta_{1}=\left\{2^{1-1} \leqslant x \leqslant 2^{1}, 1=0,1, \ldots ; 2^{1-1}\right.$ for $1=0$ is replaced by zero $\}$, and the constants in (13) do not depend on f. In the periodic case, 1.5.2.1 (4) must be selected as the original inequality.
1.5.7. Fourier transform of the function sign x. The function $\operatorname{sign} x=\prod_{1=1}^{n} \operatorname{sign} x$,
is a multiplier when $1<p<\infty$ (cf section 1.5.5). The functional (explanation below) is

$$
\begin{aligned}
& (\operatorname{sign} x, \varphi)=(\operatorname{sign} x, \hat{\varphi})=\frac{1}{(2 \pi)^{n / 2}} \int \operatorname{sign} u d u \int e^{i u t} \varphi(t) d t= \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{R_{+}} d u \int \varphi(t) \prod_{j=1}^{n}\left(e^{u t / \mu}-e^{-t j^{\mu} j}\right) d t= \\
& =\left(\frac{2}{\pi}\right)^{n / 2} i^{n} \lim _{N \rightarrow \infty} \int \varphi(t) d t \int_{\Delta_{N}^{+}} \prod_{i=1}^{n} \sin t u_{j} d u_{j}= \\
& =\left(\frac{2}{\pi}\right)^{n / 2} i^{n} \lim _{N \rightarrow \infty} \int \varphi(t) d t \prod_{i=1}^{n} \int_{0}^{N} \sin t_{j} u_{j} d u_{j}= \\
& =\left(\frac{2}{\pi}\right)^{n / 2} i_{N \rightarrow \infty}^{n} \lim _{N \rightarrow \infty} \int \varphi(t) \prod_{i=1}^{n} \frac{1-\cos N t_{j}}{i_{j}} d t= \\
& =\left(\frac{2}{\pi}\right)^{n / 2}{ }^{n} \lim _{N \rightarrow \infty} \int_{R_{+}} \Delta \varphi(t) \prod_{i=1}^{n} \frac{1-\cos N t}{t} d t= \\
& =\left(\frac{2}{\pi}\right)^{\prime \prime 2} i^{\prime \prime} \int_{R_{+}} \frac{1 \varphi(t)}{t} d t=\left(\frac{2}{\pi}\right)^{n 2} i^{\prime \prime} \int \frac{\Phi(t)}{t} d t .
\end{aligned}
$$

Here R_{+}is the positive coordinate junction

$$
\begin{gather*}
\Delta_{N}=\left\{0 \leqslant x_{1} \leqslant N ; i=1, \ldots, n\right\}, \\
\Delta \varphi(t)=\Delta_{1} \Delta_{2} \ldots \Delta_{n} \varphi(t) \tag{2}
\end{gather*}
$$

and

$$
\begin{array}{r}
\Delta_{j} \varphi(t)=\varphi(t)-\varphi\left(t_{1}, \ldots, t_{j-1},-t_{j}, t_{j+1}, \ldots, t_{n}\right) \quad(j=1, \\
\ldots, n) . \tag{3}
\end{array}
$$

In the penultimate equality (1), when the product members are multiplied, the integrals

$$
\int_{R_{+}} \frac{\Delta \varphi(t)}{t} \prod_{l=1}^{k} \cos N t_{j} d t \rightarrow 0
$$

appear, tending to zero when $N \rightarrow$ codue to the summability of $t^{-1} \Delta \varphi(t)$ on R_{+} by virtue of a lemma well known in the theory of Fourier series. The integrel in the last member in (1) is written in the Cauchy sense:

$$
\begin{equation*}
\int \frac{\varphi(t)}{t} d t=\lim _{t \rightarrow 0} \int_{R^{2}} \frac{\varphi(t)}{t} d t . \tag{4}
\end{equation*}
$$

where R^{\in} is a set of points $x \in R$, located from any coordinate planes by a distance greater than $\mathcal{P} 0$. Functional (4) defines the genaralized function, which is denoted by v. p. $1 / \mathrm{t}$. And 80 , the equality

$$
\overline{\operatorname{sign} x}=\left(\frac{2}{\pi}\right)^{n / 2} i^{n} \text { v. p. } \frac{1}{t}
$$

For $f \in S$

$$
\begin{align*}
& \operatorname{sign} \backslash+f=\operatorname{sign} x\rangle=\frac{1}{(2 \pi)^{n}} \int \operatorname{sign} u \int f(t) e^{-(t u} d t e^{\prime \mu v} d u= \\
& =\frac{1}{(2 \pi)^{n}} \int \operatorname{sign} u d u \int f(x-t) e^{(u t} d t=\left(\frac{l}{\pi}\right)^{n} \int \frac{f(x-t)}{t} d t, \tag{.5}
\end{align*}
$$

where the last equality follows from the already proven equality between the third and last members of (1), if there we replace $\varphi(t)$ by $f(x-t)$. The last integral in (5) is understood in the Cauchy sense.

We will use the riotation

$$
\begin{equation*}
\overline{\operatorname{sign}} \bar{x} * f=\operatorname{sign} x\rangle=\left(\frac{i}{\pi}\right)^{n} \int \frac{f(x-t)}{t} d t \tag{6}
\end{equation*}
$$

for the case when $f \in L_{p}(1<p<\infty)$, understanuing the members of (6) to be limits to which the corresponding expressions for finite functions f_{1} tend in the L_{p}-sense, where $\left\|f-f_{1}\right\|_{p} \rightarrow 0$. With respect to the first and
second members of (6), this was validated above (cf 1.5.1), because sign x is a multiplier in L_{p} for $1<p<\infty$. We have now provided the appropriate definition for the expression externally written in integrel form. Actualir, it can be proven (M, Ris $L 1$ J when $n=1$) that for $f \in L_{p}(1<p<\infty)$ this is a real integral in the Cauchy senso, existing for almost x, but we will not dwell on this matter.

Let $\mu=\left(u_{1}, \ldots, u_{n}\right), a=\left(a_{1}, \ldots, a_{n}\right)>0\left(a_{j}>0\right)$ be two apecified vectors and

$$
\begin{gathered}
\Delta_{\mathrm{e}}=\left\{\left|x_{j}\right|<a_{1} ; j=1, \ldots, n\right\}, \\
\Delta(\mu, a)=\left\{\left|x_{j}-\mu_{j}\right|<a_{j} ; j=1, \ldots, n\right\}, \quad \Delta(0, a)=\Delta_{a} .
\end{gathered}
$$

Thus, $\lambda(\mu, a)$.is the displacement Δ for the vector μ. Notive that the characteristic function (of one variable t) on the interval (a, b) is

$$
(1)_{(a, b)}=\frac{i}{2}[\operatorname{sign}(t-a)-\operatorname{sign}(t-b)] .
$$

Hence it follows that

$$
\begin{gather*}
(1)_{\Delta(n, a)}=\prod_{i=1}^{n} \frac{1}{2}\left[\operatorname{sign}\left(x_{j}-\mu_{j}+a_{j}\right)-\operatorname{sign}\left(x_{j}-\mu_{j}-a_{j}\right)\right]= \\
=\frac{(-1)^{n}}{2^{n}} \sum \operatorname{sign} \alpha \operatorname{sign}(x-\mu-a) \tag{7}
\end{gather*}
$$

where the sum is extended over all possible vectors $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that $\left|\alpha_{j}\right|=\alpha_{j}, j=1, \ldots, n$.

We know that the function aign x is a multiplier:

$$
\begin{equation*}
\| \overparen{\operatorname{sign} x})\left\|_{p} \leqslant x_{p}\right\| f \|_{p} \quad(1<p<\infty) \tag{8}
\end{equation*}
$$

where x_{p} does not depend on $f(c f .1 .5 .5)$, and aign $(x=a)$ is also a moltiplier $p_{\text {with the same constant }} p_{\text {in }}$ the corresponding inequality (cf 1.5.1.2), whatever be the vector a $\in R$, ptherefore from (7) it follows that

$$
\begin{equation*}
\left\|\left(I_{\Delta(n, a)}\right\rangle\right\|_{\rho} \leqslant \frac{1}{2^{n}} \sum x_{p}\|f\|_{p}=x_{p}\|f\|_{p}, \quad 1<p<\infty \tag{9}
\end{equation*}
$$

because the sum is extended over $2^{\text {n }}$ terms. It is remarkable that the constant x_{p} in (9) is the same as in (8) and, therefore, does not depend on μ and

From (7) it follows (cf $1.4(18)$) that

$$
\begin{align*}
& \widehat{(1)}_{\Delta(n, a)}=\frac{(-1)^{n}}{2^{n}} \sum_{\operatorname{sign} \alpha e^{f(n+1) x} \operatorname{sign} x=}= \\
& =\frac{1}{2^{n}} e^{\ln x} \prod_{i=1}^{n}\left(e^{\left(a, j^{x}\right)}-e^{-\left(a, j^{x}\right)}\right)\left(\frac{2}{\pi}\right)^{n / 2}(-i)^{n} \text { v. p. } \frac{1}{x}= \\
& =\left(\frac{2}{\pi}\right)^{n / 2} e^{1 \mu x} D_{a}(x), \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
D_{a}(x)=\prod_{j=1}^{n} \sin a, x, v . \text { p. } \frac{1}{x}=\prod_{i=1}^{n} \frac{\sin a j x_{j}}{x_{j}} \tag{11}
\end{equation*}
$$

An ordinary function is obtained in (11) when an ordinary function is nultiplica by a generalized function. For exumple, in the one-dimensional casc this is proven thusly:

$$
\begin{align*}
& \left(\sin a x \text { v. p. } \frac{1}{x}, \varphi(x)\right)=\left(\text { v. p. } \frac{1}{x}, \sin a x \varphi(x)\right)= \\
& =\int_{0}^{\infty} \frac{\Delta|\sin a x \varphi(x)| d x}{x}=\int \frac{\sin a x}{x} \varphi(x) d x \tag{12}
\end{align*}
$$

where $\Delta F(x)=F(x)-F(-x)$. The integral in the right side of (12) can now be understnod in the Lebesque sense.

The equality

$$
\left.(1)_{(u, a)}\right\rangle=\frac{1}{\pi^{n}} \int e^{(u \cdot x-u)} D_{a}(x-u) f(u) d u
$$

obtains for functions $f: S$, in particular when $\mu: 0$

$$
\begin{equation*}
\left.f(x)=1 h_{u}\right\rangle=\frac{1}{u^{\pi}} \int n_{u}(x-u) j(u) d u, \tag{13}
\end{equation*}
$$

whore the integrals in the right sides are understood in the Lebesque sense.

Let us dwell in greater detail on (13). Integral (13) is meaninglul also for and function $f \in L_{p}(1 \leqslant p<\infty)$ because $D_{a}(x) \in L_{q}(1 / p+1 / q=1)$ and

$$
\int\left|D_{a}(x-a) f(u)\right| d u \leqslant\left\|D_{a}\right\|_{Q}\|f\|_{p}<\infty
$$

It is inmediately clear that it is a continuous function of x (even uniformly continuous):

$$
|F(x)-F(y)| \leqslant\left\|D_{a}(x-u)-D(y-u)\right\|_{q}\|f\|_{p} \rightarrow 0 \quad(x \rightarrow y) .
$$

If $f_{1} \in S, \quad\left\|f_{1}-f\right\|_{p} \rightarrow 0$, and F_{1} is a result of substituting f_{1} instead of f in (13), then

$$
\left|F(x)-F_{l}(x)\right| \leqslant\left\|D_{a}\right\|_{l}\left\|f-f_{l}\right\|_{p} \rightarrow 0
$$

is uniform. On the other herid, (1) $\Delta_{\text {a }}$ is a Marcinkievicz multiplier, because $\left\|F_{k}-F_{1}\right\|_{p} \rightarrow 0(k, 1 \rightarrow 0)$. This shows that F_{1} tends in the L_{p}-sense precisely to the function F defined by integral (13) and that for $f \in L_{p}$ (13) is valid, where its right-hand side is a Lebesgue integral, and the left-hand aide is understood in terms of the Marcinkievicz maltiplier (cf 1.5.1).

In fact, $F(x)$ is an analytic function, of the integral exponential type (of further 3.6.2).
1.5.8. Functions φ_{ε} and ψ_{ε}. The function ψ_{ε} is defined on $R=R_{n}$, depends on a small positive parameter $\varepsilon(0<\varepsilon<\varepsilon \varepsilon)$, and exhibits the following properties: $\phi_{\varepsilon}(x)$ is infinitely differentioble and is nonnegative on R, and has a carrier on the cube

$$
\Lambda_{\varepsilon}=\{|x,|<\varepsilon ; j=1, \ldots, n\}
$$

(i.e., $\varphi_{\varepsilon}=0$ outside Δ_{ε}) and, moreover, satisfies the equality

$$
\begin{equation*}
\int_{\Delta_{e}} \varphi_{e}(x) d x=1 \quad\left(0<\varepsilon<e_{0}\right) . \tag{1}
\end{equation*}
$$

It is important that $\phi_{\varepsilon} \leftarrow S$ also have a compact carrier, i.e., is a finite function (cf 1.4.1).

If ϕ is an arbitrary function continuous on R (even locally summable on R and contimous at the zero-point), then

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int \varphi_{e}(x) \varphi(x) d x=\Phi(0), \tag{2}
\end{equation*}
$$

because

$$
\begin{aligned}
&\left|\int_{\Delta_{e}} \varphi_{l}(x) \varphi(x) d x-\varphi(0)\right|\left.=\int_{\Delta_{i}} \varphi_{l}(x) \mid \varphi(x)-\varphi(0)\right] d x \leqslant \\
& \leqslant \int_{\Delta_{l}} \varphi_{l}(x) \sup _{\Delta_{l}}|\varphi(x)-\varphi(0)| d x- \\
&=\sup _{\Delta_{i}}|\varphi(x)-\varphi(0)| \rightarrow 0 \quad B \rightarrow 0 .
\end{aligned}
$$

If $f \in S$, then equality (2) can be written thusly:

$$
\begin{equation*}
\lim _{e \rightarrow 0}\left(\varphi_{e}, \varphi\right)=(\delta, \varphi)=\varphi(0), \tag{3}
\end{equation*}
$$

where $\delta=\delta(x)$ is a delta-function.
Let us suppose

$$
\psi_{l}(x)=(2 \pi)^{n / 2} \bar{\Phi}_{l}(x) .
$$

Since $\psi_{k} \rightarrow S(\varepsilon \rightarrow 0)$ weakly, then $\psi_{\varepsilon} \rightarrow(2)^{w / 2} j=1$ weakly. Moreover, $\psi_{\varepsilon}(x)$ as an ordinary function as $\varepsilon \xi^{\ell} \rightarrow 0$ converges boundediy to 1 for all x :

$$
\begin{align*}
\psi_{l}(x) & =\int \varphi_{l}(t) e^{-t x t} d t \rightarrow 1, \tag{4}\\
\left|\psi_{l}(x)\right| & \leqslant \int \varphi_{l}(t) d t=1 . \tag{5}
\end{align*}
$$

Below it will be shown that if $f \in L_{p}, g \in L$ and $\varepsilon \rightarrow 0$, then

$$
\begin{gather*}
\psi_{e} f \rightarrow f_{1} \tag{6}\\
\psi_{c} g * f \rightarrow g * f_{1} \tag{7}\\
g * \psi_{e} f \rightarrow g * f . \tag{8}
\end{gather*}
$$

weakly.
Further, if $f \in L_{p}, g \in L_{p}$, and $1 / p+1 / q=1$, then the convolution $g^{* f}$ can be defined by means of the integral

$$
\cdot n p(n-x) f(n) s \int \frac{z^{\prime \prime}(x z)}{1}=1.8
$$

Obviously,

$$
|(g * f)(x)| \leqslant \frac{1}{(2 \pi)^{n / 2}}\|g\|_{Q}\|f\|_{\rho} .
$$

This convolution lies to one side of the generalization of this concept introduced in 1.5, where $g \in S^{\prime}$ was such a function that $f \in L_{p}$ entails $g^{*} f \in L_{p}$. But in the given case when $f \in L_{p}$, the function $g^{*} \mathcal{I}$ belong to the class $L_{\infty}=M$ of bounded (measurable) functions. However, a property analogous to (8)

$$
\begin{equation*}
g * \psi_{e} f \rightarrow g * f \quad(e \rightarrow 0) . \tag{9}
\end{equation*}
$$

obtain for this convolution.
Proof for (6). By the Lebesgue theorem

$$
\left(\psi_{e} f, \varphi\right)=\int \psi_{\varepsilon}(t) f(t) \varphi(t) d t \rightarrow \int f \varphi d t=(f, \varphi) .
$$

Proof of (7).

$$
\begin{aligned}
\left(\psi_{e} g * f, \varphi\right) & =\frac{1}{(2 \pi)^{n / 2}} \iint \psi_{e}(t) g(t) f(x-t) \varphi(x) d t d x \rightarrow \\
& \rightarrow \frac{1}{(2 \pi)^{n / 2}} \iint g(t) f(x-t) \varphi(t) d t d x=(g * f, \varphi) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \iint|g(t) f(x-t)| d t|\varphi(x)| d x \leqslant \\
& \leqslant\left|\int\right| g(t) f(x-t) \mid d t\left\|_{\rho}\right\| \Phi\left\|_{Q} \leqslant\right\| g\left\|_{L}\right\| f\left\|_{\rho}\right\| \varphi \|_{Q}\left(\frac{1}{p}+\frac{1}{q}=1\right) .
\end{aligned}
$$

Proof of (8).

$$
\begin{align*}
\left(g * \psi_{e} f, \varphi\right) & =\frac{1}{(2 \pi)^{n / 2}} \iint \psi_{e}(t) f(t) g(x-t) \varphi(x) d x d t \rightarrow \\
& \rightarrow \frac{1}{(2 \pi)^{n / 2}} \iint f(t) g(x-t) \varphi(x .-t) d x d t, \tag{10}
\end{align*}
$$

since

$$
\begin{array}{r}
\iint|f(t) g(x-t) \varphi(x)| d t d x \leqslant\left\|\int f(t) g(x-t) d t\right\|_{\rho}\|\varphi\|_{P} \leqslant \\
\leqslant\|g\|_{L}\|f\|_{F}\|\Phi\|_{\Phi} .
\end{array}
$$

Proof of (9). The same as the proof of (8), but we must take into consideration the inequality

$$
\iint|f(t) g(x-t) \varphi(x-t)| d x d t \leqslant\|f\|_{p}\|g\|_{ه}\|\varphi\|_{L} .
$$

1.5.9. Operation I_{r} of the Liouville type. Let r be an arbitrary real number. The function

$$
\begin{equation*}
\left(1+|u|^{2}\right)^{\prime 2}=\left(1+\sum_{i=1}^{n} u_{i}^{2}\right)^{\prime 2} \tag{1}
\end{equation*}
$$

is infinitely differentiable on R and has polynomial growth for and sign of r. Let us suppose

$$
\begin{equation*}
G_{1}(u)=\left(1+|u|^{2}\right)^{-r / 2} . \tag{2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\overline{G_{r}}(\bar{n})=\left(1+\mid n_{1}^{n}\right)^{-1 / 2} \tag{3}
\end{equation*}
$$

is an infinitely differentiable function with polynomial growth, then for any generalized function $f \in S^{\prime}$, the convolution

$$
\begin{equation*}
F=G_{r} * i=\widehat{G_{r},}=\overparen{\left.\left(1+|u|^{2}\right)^{-n}\right\rangle}=I_{r} f_{1} \tag{4}
\end{equation*}
$$

defining the operation I_{r} mapping $f \in S^{\prime}$ onto $F \in S^{\prime}$ is meaningful.
Obviously,

$$
\begin{equation*}
I_{0} f=f . \tag{5}
\end{equation*}
$$

If r and f are arbitrary real numbers and $f \in S$, then

$$
\begin{align*}
\left.I_{1+\rho} f=\left(1+|\lambda|^{2}\right)^{-r / 2}\left(1+|\lambda|^{2}\right)^{-\rho / 2}\right\} & = \\
& =\left(1+|\lambda|^{2}\right)^{-1 / 2} \frac{1}{I_{p} f}=I_{1} I_{\rho} f . \tag{6}
\end{align*}
$$

In particular, when $\rho=-r$

$$
\begin{equation*}
I_{r} I_{-r} f=I_{0} f=f . \tag{7}
\end{equation*}
$$

i.e., the operation I_{r} and I_{-r} are mutualif inverse.

It is not difficult also to see that the operation I_{r} maps S onto S matually singio-valuedly and continuoualy: if $\varphi_{m}, \varphi \in S$, and $\varphi_{m} \rightarrow \varphi(S)$ as $\mathrm{m} \rightarrow \infty$, then

$$
I_{r} \varphi_{m} \rightarrow I_{r} \varphi(S) .
$$

We can even introduce the operation $I_{r}{ }^{*}$ defined by the formula

$$
I_{r}=\left(\overline{\left.1+|\lambda|^{2}\right)^{-r / 2} p_{1}}\right.
$$

which we naturally cill conjugate to I_{r}. Obviously, it exhibits all the properties established above for I_{r}, including continuity in the sense of convergence in S.

The comection between I_{r} and $I_{r}{ }^{*}$ is maifested in the equalities

$$
\begin{aligned}
& \left(I_{r}, \varphi\right)=\left(f, I_{i} \varphi\right), \\
& \left(I_{r}^{\prime}, \varphi\right)=(f, I, \varphi) \quad\left(f \in S^{\prime}, \varphi \in S\right) .
\end{aligned}
$$

From these it immodiately follows that the oparations I_{r} and $I_{r}{ }^{*}$ are contiand on S^{\prime} (weakly continuous), i.e., that from $f_{m}, f_{i} \in S^{\prime}, m=1,2, \ldots$, and
it follows that

$$
f_{m} \rightarrow f\left(S^{\prime}\right)
$$

$$
I_{r} f_{m} \rightarrow I_{r} f, \quad I_{r}^{*} f_{m} \rightarrow I_{r} f\left(S^{\prime}\right) .
$$

In fact, for example,

$$
\left(I_{r} f_{m}, \varphi\right)=\left(f_{m}, I^{\circ}, \Phi\right) \rightarrow\left(f, I_{,}^{\prime} \Phi\right)=\left(I_{r} f, \varphi\right)
$$

Notice that when $r=-2$ the remarkable equality

$$
\begin{aligned}
& I_{-2}=\left(\overline{\left(1+|\lambda|^{2}\right.}\right) \frac{f}{f}-f+\sum_{i=1}^{n} \lambda_{i} f= \\
& \\
& -i-\sum_{i=1}^{n}\left(i \lambda_{j}\right)^{2} \dot{f}=f-\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}=f-\Delta f=(1-\Delta) f,
\end{aligned}
$$

obtains, where Δ is a Laplace operator.
Consequently, for ans natural 1

$$
\begin{equation*}
I_{-2} f=\left(\overline{\left(1+\mid \lambda .1^{2}\right)^{2}}\right)^{2}=(1-\Delta)^{i} f \quad\left(f \in S^{\prime}\right) \tag{8}
\end{equation*}
$$

1.5.10. Regular generalized functions. Further enjargement of the concept of convolution. The operation I_{r} can serve as a convenient means for enlarging the concept of convolution to the class of generalized functions, which we call regular.

By the definition, we will call the function $f \in S^{\prime}$ regular in the L_{p}-sense and write $\mathrm{f} \in S_{p}^{\prime}$ if for some $\rho_{0}>0$

$$
\begin{equation*}
I_{p_{0}} f=F \in L_{p} . \tag{1}
\end{equation*}
$$

obtains.
Let be a multiplier in $L_{p}(\mu \in L$ when $p=1)($ of 1.5.1, 1.5.1.1). Let f further be a function in the L_{p}-sense for which the property (1) is satisfied.

Let us suppose for $p \geqslant P_{0}$ that

$$
\begin{equation*}
\hat{\mu} * f=I_{-\rho}\left(\hat{\mu} * I_{\rho} f\right) . \tag{2}
\end{equation*}
$$

This definition does not depend on $\rho \geqslant P_{0}$. In fact, let -- along with (1)

$$
\begin{equation*}
I_{\rho} f^{\prime}=F_{1} \in L_{\rho} \quad\left(\rho^{\prime}>\rho\right) . \tag{3}
\end{equation*}
$$

Then when $f^{\prime}-\rho=r$, considering that $I_{p} f=F \in L_{p}$, we get

$$
\begin{aligned}
& I_{-p^{\prime}}\left(\hat{\mu} * I_{\rho^{\prime}} f\right)=I_{-p} I_{-r}\left(\hat{\mu} * I_{1} I_{\rho} f\right)= \\
& \quad=I_{-p}\left(1+|x|^{2}\right)^{r / 2} \mu\left(1+|x|^{2}\right)^{-r / 2} \widetilde{I_{\rho} f}=I_{-\rho} \widehat{I_{\rho} f}=I_{-\rho}\left(\hat{\mu} * I_{\rho} f\right)
\end{aligned}
$$

(cf 1.5 .1 (12) when $\mu \in L$ and 1.5 .1 .1 (9) when $1 \leqslant p<\infty$). In the third equality, we used a fact that will be proven later (cf 8.1) to the effect that

$$
\left(\overline{\left(1+|x|^{2}\right)^{-r / 2}} \in L \quad(r>0)\right.
$$

and that the function $\left(1+|x|^{2}\right)^{\lambda}$ for any real λ is infinitely differentiable and of polynomial growth.

The equality $I_{x} x=x=x_{1} \ldots x_{n}$ holds for any real r, showing that the function x does not belong to $S_{p}^{\prime}(1 \leqslant p \leqslant \infty)$, though it does belong to S^{\prime}. This follows from 1.5 (12) when $k=\omega=(1, \ldots, 1)$:

$$
\begin{aligned}
&\left(1+|x|^{2}\right)^{-\frac{r}{2}} \tilde{x}=i^{n}(2 \pi)^{\frac{n}{2}}\left(1+|x|^{2}\right)^{-\frac{r}{2}} \delta^{(n)}(x)= \\
&=i^{n}(2 \pi)^{\frac{n}{2}} \delta^{(0)}(x)=\bar{x} .
\end{aligned}
$$

It is important to note that for the generalized function f that is regular in the I_{p}-sense, the equality

$$
\begin{equation*}
I_{-\lambda}\left(\hat{\mu} * I_{N} f\right)=\hat{\mu} * f \tag{4}
\end{equation*}
$$

obtains for any λ (positive and negative). In fact, for f there exists an $P>0$ such that $I_{p} f \in L_{p}$. When $\lambda \geqslant P$, equality (7) was already proven above, while if $\lambda<\rho$, then we assume $\rho=\lambda+\sigma(\sigma>0)$. Then the function $I_{\lambda} f$ is regular. Specifically, $I_{\sigma} I_{\lambda} f \in L_{p}$. Therefore,

$$
I_{-\lambda}\left(\hat{\mu}+I_{\lambda} f\right)=I_{-\lambda} I_{-0}\left(\hat{\mu}+I_{p} f\right)=I_{-p}\left(\hat{\mu}+I_{p} f\right)=\hat{\mu} * f
$$

It follows from (4) that for the functions f regular in the L_{p}-sense
feal r and for any real r

$$
\begin{equation*}
I_{r}(\hat{\mu} * f)=I_{r} I_{-r}\left(\hat{\mu} * I_{f} f\right)=\hat{\mu} * I_{r}, \tag{5}
\end{equation*}
$$

i, e., for the regular function f the operation I_{r} can be taken under the sign
of the convolution. of the convolution.

It follows from (5) that if μ is a Marcinkievicz multiplier and if f is a function regular in the Lp-sense, the convolution $\hat{\mu} * f$ is also reguiar. Actually, let $I_{r} f \in L_{p}$, then (5) obtains, where the right-hand side belongs to L_{p}.

Early the equalities 1-5.1.1 (9) were proven, which we wrote in terms of convolutions:

$$
\begin{equation*}
\lambda *(\hat{\mu} * f)=\hat{\mu} *(\lambda * f)=\widehat{\lambda} \hat{\mu} * f, \quad f \in L_{p}(1 \leqslant p<\infty) \tag{6}
\end{equation*}
$$

They are valid if λ and μ are Marcinkievicz multipliers, whence it follows that $(\lambda \mu)$ is also a Marcinkievicz multiplier. Now let f be a generalized function regular in the L_{p}-sense and let $I_{f} f \in L_{p}(\rho>0)$. Then equalities (6) will be satisfied, if Iff replaces f in them. But for regular f, the operation I_{p} is validiy removed from the signs of the convolution in all members of (6), but then the function appearing under the sign of I_{p} are equal to each other and we have proven that (6) obtains for any generalized function that is reguiar in the L_{p}-sense.

CHAPTER II TRIGONOMETRIC POLINOMIALS

2.1 Theorem on Zeroes. Linear Independence

$$
\begin{equation*}
T_{n}(z)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k z+\beta_{k} \sin k z\right) \tag{1}
\end{equation*}
$$

where $\alpha_{k}, \beta_{k}(k=0,1, \ldots, n)$ are arbitrary complex numbers, and z is a complex or real variable, this function is called a trigonometric polynomial $0 f n$-th order. This definition does not exceed the case $\alpha_{n}=B_{n}=0$.

The trigonometric polynomial is a function with period 2π, and therefore in studying it it suffices to confine ourselves to examining variation of the independent variable $z=x+i y$ in an arbitrary vertical strip $a \leqslant x<a+2 \pi$ (or $a<x \leqslant a+2 \pi$), $-\infty<y<\infty$ of the complex plane of width 2 .

Using the equalities

$$
\begin{gather*}
\cos k z=\frac{e^{i k z}+e^{-i k z}}{2}, \quad \sin k z=\frac{e^{i k z}-e^{-i k z}}{2 i} \tag{2}\\
(k=0,1,2, \ldots)
\end{gather*}
$$

the trigonometric polynomial (1) can be transformed to the more symmetrical form

$$
\begin{align*}
T_{n}(z) & =\sum_{k=-n}^{n} c_{k} e^{i k z} \\
c_{k} & =\frac{a_{k}-\beta_{n} i}{2}, \\
c_{-n} & =\frac{a_{k}+\beta_{k} l}{2} \quad(k=1,2, \ldots), c_{0}=\frac{a_{0}}{2} \tag{3}
\end{align*}
$$

It is clear from (3) that if coefficients α_{k} and β_{k} of polynomial (1) are real, then coefficients c_{k} and c_{-k} for each k are pairwise complexly conjugate

$$
\begin{equation*}
c_{-k}=\bar{c}_{k}, \quad k=0,1, \ldots, n . \tag{4}
\end{equation*}
$$

Conversely, it follows from (4) that the numbers $\alpha_{\mathbf{k}}$ and β_{k} are real.
The most important property of trigonometric polynomials is axpressed by the following theorem.
2.1.1. Theorem. Trigonometric polynomial T_{n} of order n, in which one of the coofficients α_{n} or β_{n} in (1) is not equal to zero and has in ard strip $a \leqslant x<a+2 \pi$ of thê complox plane $z=x+i y$ exactly $2 n$ zeroes, allowing for thoir multiplicity*).

If we represent them by $z_{1}, \ldots, z_{z_{n}}$, then the equality

$$
\begin{equation*}
T_{n}(z)=A \prod_{n=1}^{2 n} \sin \frac{z-2_{n}}{2} \tag{1}
\end{equation*}
$$

ottains, where $A \neq 0$ is some constant. Conversely, equality (1) defines the trigonometric polynomial of order n.

Proof. Let us use the representation T_{n} in the form of 2.1 (3). After substituting $Z=e^{i z}$, which tranaforms the mutuainy single-valuediy strip of the plane z considered here into the entire complex plane Z (except for $Z=0$), we get
where

$$
T_{n}(Z)=\sum_{k=-n}^{n} c_{k} Z^{k}=Z^{-n} P_{2 n}(Z)
$$

$$
P_{2 n}(Z)=c_{-n}+c_{-n+1} Z+\ldots+c_{n} Z^{2 n}
$$

By the conditions of the theorem $c_{n} F 0$ and $c_{-n} \neq 0$ because the poly-
nomial $P_{2 n}(Z)$ of degree $2 n$ has in the complex plane Z exactly $2 n$ zeroes (with allowance for moltiplicity) not equal to zero.

Hence it follows that the trigonometric polynomial T_{n} has in the strip here considered exactly $2 n$ zeroes (allowing for their multiplicity). Let us denote the zeroes of the polynamial $\mathrm{P}_{2 n}(\mathrm{Z})$ by $\mathrm{Z}_{\mathrm{k}}=e^{12 k}(\mathrm{k}=1, \ldots, 2 n)$, then

$$
\begin{aligned}
T_{n}(z) & =c_{n} e^{-i n z} \prod_{k=1}^{2 n}\left(e^{i z}-e^{i z_{k}}\right)= \\
& =c_{n} e^{\frac{1}{2}} \sum_{k=1}^{2 n} \prod_{k=1}^{z_{n}} \prod^{2 n}\left(e^{i-\frac{z_{k}}{2}}-e^{i z_{k}-z} \frac{2}{2}\right)=A \prod_{k=1}^{2 n} \sin \frac{z-z_{k}}{2},
\end{aligned}
$$

*) The number is calfed the zero of muftiplicity m of the function f, if $f(a)=f^{\prime}(a)=\ldots=f^{(m-1)}(a)=0, f^{(m)}(a) \neq 0$.
where

$$
A=c_{n} 2^{2 n}(-1)^{n} e^{\frac{1}{2}} \sum_{k=1}^{2 n} x_{n} .
$$

Thus, the first part of the theorem has been proven. To verify that function (1) where the numbers $z_{k}(k=1, \ldots, 2 n)$ belong to some vertical (closed on one side) strip of the complex plane with width 2 is a trigonometric polynomial of order n, it suffices to make this transformation on the opposite side, starting from (1).
2.1.2. Linear independence. If the trigonometric polynomial $T_{p}(z)$ equals zoro at more than $2 n$ points of a vertical strip of width 2π, thon based on theorem 2.1.1 all its coefficients must equal zero. In particular, this occurs if a trigonomatric polynomial of order n is identicaily or almost everywhere equal to zero at a real axis.

Hence it follows that the system of functions

$$
\begin{equation*}
1, \cos x, \sin x, \ldots, \cos n x, \sin n x \tag{1}
\end{equation*}
$$

is linearly independent in C^{*} and L_{p}^{*} (cf 1.1.1 and 1.2.1). We mast consider that the zero element in L_{p} "is a function almost everywhere equal to zero.

The linear independence of system (1) also follows from the orthogonal properties of the trigonometric functions ($m, n=0,1,2, \ldots$)

$$
\begin{aligned}
& (m, n=0,1,2, \ldots) \\
& \frac{1}{\pi} \int_{-\pi}^{\pi} \sin m x \sin n x d x= \\
& \quad=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos m x \cos n x d x= \begin{cases}1, & m=n_{1} \\
0, & m \neq n_{1}\end{cases} \\
& \quad \int_{-\pi}^{n} \sin m x \cos n x d x=0 .
\end{aligned}
$$

2.1.3. If T_{m} and T_{n} are trigonometric polynomials of, respectively, orders m and n and $m \geq n$, their sum and difference is a trigonometric polynomial of order not higher than m.

In fact, their product is a trigonometric polynomial of order not higher than $m+n$, which stems from equalities

$$
\begin{aligned}
\cos m x \cos n x & =\frac{1}{2}[\cos (m-n) x+\cos (m+n) x], \\
\sin m x \sin n x & =\frac{1}{2}[\cos (m-n) x-\cos (m+n) x], \\
\cos m x \sin n x & =\frac{1}{2}[\sin (m+n) x-\sin (m-n) x] .
\end{aligned}
$$

2.1.4. It follows from the orthogonal properties of the system 2.1.2 (1) that if the trigonometric polymomial is even (an even function), then it contains as its members only the cosines $\left(\beta_{k}=0\right)$, and if it is odd, then only the sines $\alpha_{k}=0$.

Inspecting the real parts of the equality
we get

$$
\cos n x+i \sin n x=(\cos x+i \sin x)^{n}
$$

получнм

$$
\begin{aligned}
\cos n x=\cos ^{n} x-C_{n}^{2} \cos ^{n-2} x & \left(1-\cos ^{2} x\right)+ \\
& +C_{n}^{4} \cos ^{n-4} x\left(1-\cos ^{2} x\right)^{2}+\ldots .
\end{aligned}
$$

from whence it follows that any even ttigonometric polynomial of n-th order can be represented in the form of $P_{n}(\cos x)$, where

$$
P_{n}(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}
$$

18 some algebraic polynomial of n-th degtee.
On the one hand, from the equality

$$
\cos ^{n} x=\frac{\left(e^{i x}+e^{-i x}\right)^{n}}{2^{n}}=\frac{1}{2^{n}}\left(e^{\ln x}+C_{n}^{1} e^{i(n-2) x}+\ldots+e^{-\ln x}\right)
$$

it follows that

$$
\begin{align*}
\cos ^{n} x=\frac{1}{2^{n-1}}[\cos n x+ & C_{n}^{1} \cos (n-2) x+\ldots \\
& \left.\ldots+C_{n}^{\frac{n}{2}-1} \cos 2 x+\frac{C_{n}^{\frac{n}{2}}}{2}\right] \tag{1}
\end{align*}
$$

for an even n, and

$$
\cos ^{n} x=\frac{1}{2^{n-1}}\left[\cos n x+C_{n}^{1} \cos (n-2) x+\ldots+C_{n}^{\left[\frac{n}{2}\right]} \cos x\right]
$$

for an odu x.
Thus, the function $P_{n}(\cos x)$ where $P_{n}(z)$ is an algebraic polynomial of n-th degree is an even polynomial of n-th order.

2.2 Inoortant Frannles of Trivenomatric Polvomigis

From the equality

$$
\sum_{i=0}^{n} e^{i n x}=\frac{e^{i(n+1) x}-1}{e^{i x}-1}=\frac{e^{i\left(n+\frac{1}{2}\right) x}-e^{-i \frac{x}{2}}}{e^{i \frac{x}{2}}-e^{-i \frac{x}{2}}}
$$

by inspecting in it, separately, the real and imaginary parts, we got

$$
\begin{align*}
\frac{1}{2}+\sum_{n=1}^{n} \cos k x & =\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}=D_{n}(x), \tag{1}\\
\sum_{n=1}^{n} \sin k x= & =\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}=D_{n}^{*}(x) . \tag{2}
\end{align*}
$$

In particular, equality (1) shows that the polynomial $D_{n}(x)$ tende to zero at the points

$$
x_{k}=\frac{2 \pi k}{2 n+1} \quad(k-1, \ldots, 2 n)
$$

of the interval (0,2), therefore, it can also be written as the product

$$
D_{n}(x)=A \prod_{k=1}^{2 n} \sin \frac{x-x_{k}}{2}
$$

where A is a constant. Assuming $x=0$ in this equality, we get the relationship

$$
\frac{2 n+1}{2}=A \prod_{k=1}^{2 n} \sin \frac{x_{n}}{2}
$$

from which we can determine A.
The trigonomotric polynomial $D_{n}(x)$ plays a large role in the theory of Fourier series. It is callod the Dirichlet kermel.

We note that (explanations below)

$$
\begin{align*}
& \left\|D_{n}\right\|_{L}=\int_{0}^{n}\left|\frac{\sin \frac{2 n+1}{2} x}{\sin \frac{x}{2}}\right| d x=2 \int_{0}^{\pi} \frac{\left|\sin \frac{2 n+1}{2} x\right|}{x} d x+O(1)= \\
& =2 \int_{0}^{\frac{(2 n+1) \pi}{2}} \frac{|\sin u|}{u} d u+O(1)=2 \int_{n_{n}}^{n \pi} \frac{|\sin u|}{u} d u+O(1)= \\
& =2 \sum_{k=1}^{n-1} \int_{0}^{\pi} \frac{|\sin u|}{k \pi-u} d u+O(1)=2 \sum_{k=1}^{n-1} \frac{1}{k \pi} \int_{0}^{n} \sin u d u+O(1)= \\
& =\frac{4}{\pi} \sum_{k=1}^{n=1} \frac{1}{k}+O(1)=\frac{4}{\pi} \ln n+O(1) \quad(n=1,2, \ldots) .
\end{align*}
$$

The variable $1 / \pi\left\|D_{n}\right\|_{\text {L* }}$ is called the Lebesgue constants of the (n-th order) Fourier sum. Here ${ }^{L *} O(1)$ denotes some bounded function of a natural n. In the computation_presented here we used the boundedress of the function $x^{-1}-(\sin x)^{-1}$ on $\angle 0, \pi / 2 /$ and the fact that for $u \in \angle 0, \pi /$

$$
\sum_{k=1}^{n-1}\left(\frac{1}{k \pi}-\frac{1}{k \pi+u}\right) \leqslant c \sum_{1}^{n-1} \frac{1}{k^{2}}<c_{1}<\infty .
$$

For a finite $p>1$ the norm $\left\|D_{n}\right\| I_{p} *$ is bounded

$$
\begin{align*}
\left\|D_{n}\right\|_{L_{p}^{p}} & =2 \int_{0}^{\pi}\left|\frac{\sin \frac{2 n+1}{2} x}{2 \sin \frac{x}{2}}\right| d x \leqslant \pi^{p} 2^{1-p} \int_{0}^{\pi}\left|\frac{\sin \frac{2 n+1}{2} x}{x}\right| d x= \\
& =\pi^{p} 2^{1-p} \int_{0}^{\frac{2 n+1}{2} \pi}\left|\frac{\sin u}{u}\right|^{p} d u \leqslant A_{p}<\infty, n=1,2, \ldots \tag{4}
\end{align*}
$$

2.2.1. Separating the real and the imaginary parts of the equaity

$$
\sum_{n=0}^{n} e^{t\left(k+\frac{1}{2}\right) x}=\frac{e^{\frac{i x}{2}}-e^{t\left(n+\frac{3}{2}\right) x}}{1-e^{i x}}=\frac{1-e^{i(n+1) x}}{e^{-1 \frac{x}{2}}-e^{1 \frac{x}{2}}},
$$

we get

$$
\begin{equation*}
\sum_{n=0}^{n} \cos \left(k+\frac{1}{2}\right) x=\frac{\sin (n+1) x}{2 \sin \frac{x}{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n} \sin \left(k+\frac{1}{2}\right) x=\frac{1-\cos (n+1) x}{2 \sin \frac{x}{2}}=\frac{\sin ^{2} \frac{n+1}{2} x}{\sin \frac{x}{2}} \tag{2}
\end{equation*}
$$

2.2.2. Using 2.2 (1) and 2.2.1 (2), we get

$$
\begin{align*}
& \frac{1}{2}+\sum_{k=1}^{n} \frac{n+1-k}{n+1} \cdot \cos k x=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(x)= \\
&=\frac{1}{2(n+1) \sin \frac{x}{2}} \sum_{k=0}^{n} \sin \left(k+\frac{1}{2}\right) x= \\
&=\frac{1}{(n+1)} \frac{\sin ^{2} \frac{n+1}{2} x}{2 \sin ^{2} \frac{x}{2}}=F_{n}(x) . \tag{1}
\end{align*}
$$

Let us note that the function

$$
\begin{equation*}
k_{v}(x)=\left(\frac{\sin \frac{\lambda x}{2}}{\sin \frac{x}{2}}\right)^{2 \sigma} \tag{2}
\end{equation*}
$$

where λ and σ are natural numbers, is a trigonometric polynomial of order $v=\sigma(\lambda-1)$, since it differs from the σ-th degree of the Fejer kernel $F_{\lambda-1}(x)$ only by the constant multiplier.

In the following it will be useful to estimate the exact order of variation of the variable

$$
\begin{equation*}
a_{v}=\int_{-\pi}^{\pi} k_{v}(x) d x=2 \int_{0}^{\pi} k_{v}(x) d x \tag{3}
\end{equation*}
$$

when $v=1,2, \ldots$
If we note that

$$
\begin{equation*}
\frac{2}{\pi} a \leqslant \sin a \leqslant a \quad\left(0 \leqslant a \leqslant \frac{\pi}{2}\right) \tag{4}
\end{equation*}
$$

then we will have

$$
2^{20+1} \int_{0}^{\pi}\left(\frac{\sin \frac{\lambda x}{2}}{x}\right)^{20} d x \leqslant a_{v} \leqslant 2 \pi^{20} \int_{0}^{\pi}\left(\frac{\sin \frac{\lambda x}{2}}{x}\right)^{20} d x .
$$

But ${ }^{\prime}$

$$
\begin{gathered}
\left.\int_{0}^{\pi}\left(\frac{\sin \frac{\lambda x}{2}}{x}\right)^{20} d x=\left(\frac{\lambda}{2}\right)^{20-1} \int_{0}^{\frac{\lambda \pi}{2}}\left(\frac{\sin t}{t}\right)^{20} d t \sim \lambda^{20-1}\right)^{20} \\
(\lambda=1,2, \ldots) .
\end{gathered}
$$

Obviously, thus, for a fixed

$$
\begin{equation*}
o_{v} \sim \lambda^{20-1} \quad(\lambda=1,2, \ldots) . \tag{5}
\end{equation*}
$$

Let us further introduce the trigonomotric polynomial

$$
\begin{equation*}
d_{v}(x)=\frac{1}{a_{v}} k_{v}(x)=\frac{1}{a_{v}}\left(\frac{\sin \frac{\lambda x}{2}}{\sin \frac{x}{2}}\right)^{2 v} \quad(v=\sigma(\lambda-1)) \tag{6}
\end{equation*}
$$

where $\sigma>0$ is a specified integral number, $\lambda=1,2, \ldots$ and a is a constant deftned by equality (3).

2.3 Intermolational Iargange Trironomatric Polvanomisi

If two trigonometric polynomials $T_{n} x$) and $Q_{n}(x)$ coincide at $2 n+1$ different points of the semiclosed interval a $\leqslant x<a+2 \pi$, their difference, being a polynomial of order n, equals zero at those points, and therefore is identically equal to zero, since a polynomial of n-th order not identically equal to zero can have no less than $2 n$ zeroes in the period.

And thus, the trigonometric polynomial $T_{n}(x)$ of oxder n is wholiy defined by its values

$$
y_{0,} y_{n}, \ldots, y_{2 n 1}
$$

*) Everywhere in this book we ascume that $a_{\lambda} \sim b_{\lambda}(\lambda \in \mathcal{E})$, where ξ_{0} is somo set of numbers λ, if there exists two positive constants c_{1} and c_{2} such that for all $\lambda \in E$ the inequalities $c_{1} a \leqslant b_{\lambda} \leqslant c_{2}^{a} \lambda$ are satiaified.
corresponding to and $2 n+1$ different points

$$
x_{0}<x_{1}<\ldots<x_{2 n}<x_{0}+2 n
$$

of the period.
It is not difficult to write an effective expresaion for it.
In fact, based on 2.1.1 the function

$$
\begin{aligned}
& Q^{(m)}(x)= \\
& =\frac{\sin \frac{x-x_{1}}{2} \ldots \sin \frac{x-x_{m-1}}{2} \sin \frac{x-x_{m+1}}{2} \ldots \sin \frac{x-x_{n}}{2}}{\sin \frac{x_{m}-x_{i}}{2} \ldots \sin \frac{x_{m}-x_{m-1}}{2} \sin \frac{x_{m}-x_{m+1}}{2} \ldots \sin \frac{x_{m}-x_{m} m}{2}} \\
& \quad(m=0,1, \ldots, 2 n)
\end{aligned}
$$

is a trigonometric polymonial of ordar n, obviouedy exhibitine the property

$$
Q^{(m)}\left(x_{k}\right)=\left\{\begin{array}{ll}
1, & k=m, \\
0, & k \neq m
\end{array} \quad(k, m=0,1, \ldots, 2 m)\right.
$$

Therafore, the untoown trifonomptric polyonial $T_{n}(x)$ satiatying the condi-
tione

$$
T_{n}\left(x_{n}\right)=y_{n} \quad(k=0,1, \ldots, 2 n)_{0}
$$

can be writton at

$$
\begin{aligned}
& T_{n}(x)=\sum_{m=0}^{m} Q^{(m)}(x) y_{m}= \\
& =\sum_{m=0}^{m} \frac{\sin \frac{x-x_{0}}{2} \ldots \sin \frac{x-x_{m-1}}{2} \sin \frac{x-x_{m+1}}{2} \ldots \sin \frac{x-x_{n}}{2} \ldots \sin \frac{x_{m}-x_{m-1}}{2} \sin \frac{x_{m}-x_{m+1}}{2} \ldots \sin \frac{x_{m i n}-x_{m n}}{2} y_{m} .}{} .
\end{aligned}
$$

The cace of equidistant interpolation nodes is eapecially important, 1.0., when

$$
x_{1}=\frac{2 k n}{2 n+1} \quad(k=0,1, \ldots, 2 n) .
$$

In this case we can write a eimplo expresaion for $Q^{(n)}(x)$ if wo note that the trigonometric palywoulal

$$
\begin{align*}
& D_{n}(x)=\frac{1}{8}+\cos x+\ldots+\cos n x=\frac{\sin \frac{2 n+1}{2} x}{2 \sin \frac{x}{2}} . \tag{1}\\
& \quad \because
\end{align*}
$$

exhibits the properties

$$
\begin{gathered}
D_{n}(0)=\frac{2 n+1}{2}, D_{n}\left(x_{k}\right)=0, \quad x_{k}=\frac{2 k \pi}{2 n+1} \\
(k=1,2, \ldots, 2 n) .
\end{gathered}
$$

Henoe it follows that the polynomial

$$
Q^{(m)}(x)=\frac{2}{2 n+1} D_{n}\left(x-x_{m}\right) \quad(m=0,1,2, \ldots)
$$

satiafies the conditions

$$
Q^{\left(m_{1}\right)}\left(x_{k}\right)= \begin{cases}1, & k=m, \\ 0, & k \neq m .\end{cases}
$$

Thus, any trigonomotric palynomial

$$
\begin{equation*}
T_{n}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{2}
\end{equation*}
$$

can be written as

$$
\begin{align*}
T_{n}(x)=\frac{2}{2 n+1} & \sum_{k=0}^{2 n} D_{n}\left(x-x_{k}\right) T_{n}\left(x_{k}\right)= \\
& =\frac{1}{2 n+1} \cdot \sum_{k=0}^{2 n} \frac{\sin \frac{2 n+1}{2}\left(x-x_{k}\right)}{\sin \frac{x-x_{k}}{2}} T_{n}\left(x_{k}\right) . \tag{3}
\end{align*}
$$

Subotituting in this equality the corresponding oum for $D_{n}(x)$, we obtain\#

$$
\begin{aligned}
& T_{n}(x)=\frac{2}{2 n+1} \sum_{k=0}^{2 n} \sum_{i=0}^{n} \cos i\left(x-x_{k}\right) T_{n}\left(x_{k}\right)= \\
& =\frac{2}{2 n+1} \sum_{i=0}^{n}\left[\left(\sum_{k=0}^{2 n} \cos i x_{k} T_{n}\left(x_{k}\right)\right) \cos i x+\right. \\
& \left.\quad+\left(\sum_{k=0}^{2 n} \sin i x_{k} T_{n}\left(x_{k}\right)\right) \sin i x\right] .
\end{aligned}
$$

7) We ascume that $\sum_{k=0}^{n} u_{k}=\frac{u_{0}}{2}+\sum_{k=1}^{n} u_{k}$.

Comparing the coefficients for cos ix and sin ix with the corresponding coefficients $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$, we get

$$
\begin{aligned}
& a_{l}=\frac{2}{2 n+1} \sum_{k=0}^{2 n} \cos i x_{k} T_{n}\left(x_{k}\right) \quad(i=0,1, \ldots, n), \\
& b_{l}=\frac{2}{2 n+1} \sum_{k=0}^{2 n} \sin i x_{k} T_{n}\left(x_{k}\right) \quad(i=1,2, \ldots, n) .
\end{aligned}
$$

-) Мы считаем, что $\sum_{k=0}^{n} u_{k}^{\prime}=\frac{u_{0}}{2}+\sum_{k=1}^{n} u_{k}$.

2.4 M. Riecz's Interpisationgl Formula*)

If $T_{n}(\theta)$ is a trigonomatric palynomial

$$
\begin{equation*}
T_{n}(\theta)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right), \tag{1}
\end{equation*}
$$

then the identity

$$
\begin{equation*}
T_{n}(\theta)=a_{n} \cos n \theta+\frac{\cos n \theta}{2 n}-\sum_{k=1}^{2 n}(-1)^{k} \operatorname{ctg} \frac{\theta-\theta_{k}}{2} T_{n}\left(\theta_{k}\right), \tag{2}
\end{equation*}
$$

is valid for it, where

$$
\theta_{k}=\frac{2 k-1}{2 n} \pi \quad(k=1,2, \ldots, 2 n)
$$

Let us prove it.
The points θ_{k} are zeroes of the polynomial of $\cos n \theta$, therefore

$$
\begin{equation*}
\cos n \theta=A \prod_{k=1}^{2 n} \sin \frac{\theta-\theta_{k}}{2} \tag{3}
\end{equation*}
$$

Hence the function

$$
\begin{aligned}
& Q^{(m)}(\theta)=\frac{\cos n \theta}{2 n}(-1)^{m} \operatorname{ctg} \frac{\theta-\theta_{m}}{2}= \\
& \quad=(-1)^{m+1} \frac{\cos n \theta}{2 n} \frac{\sin \frac{\theta-\left(\pi+\theta_{m}\right)}{2}}{\sin \frac{\theta-\theta_{m}}{2}} \\
& \quad \therefore(m=1,2, \ldots, 2 n)
\end{aligned}
$$

\#) M. Riecz $\overline{\mathbf{I}} \overline{\text { I }}$.
is a trigonomotric polynomial or srdor n, since it is a product of the form (3) in which the multiplier sin $\left(\theta-\theta_{m}\right) / 2$ is replaced by the multiplier $\sin \frac{\theta-\left(\pi+\theta_{m}\right)}{2}$. This polynomial obviousiy equals zero at all points θ_{k}, with the exception of point Q_{m}, where it equals zero. We can verify the latter by using L'Hoapital's rule. Thus.

$$
Q^{(m)}\left(\theta_{k}\right)=\left\{\begin{array}{ll}
1, & m=k, \\
0, & m \neq k
\end{array} \quad(k, m=1,2, \ldots, 2 n)\right.
$$

${ }^{*}$) М. Рисс [1].
Hence it follows that the function

$$
T_{n}^{*}(\theta)=\frac{\cos n \theta}{2 n} \sum_{k=1}^{2 n}(-1)^{k} \operatorname{ctg} \frac{\theta-\theta_{k}}{2} T_{n}\left(\theta_{k}\right)
$$

is a trigonomotric polynomial of order n coinciding with the original polynomial $T_{n}(0)$ at the zeroes of cos ne. In this case, based on theorem 2.1.1 on the zeroes of a trigonometric polynomial

$$
\begin{equation*}
T_{n}(\theta)=c \cos n \theta+T_{n}^{\circ}(\theta) \tag{4}
\end{equation*}
$$

where c is a constant.
We still have to prove that

$$
\begin{equation*}
c=a_{n} . \tag{5}
\end{equation*}
$$

In fact, the Fourier coofficient of the trigonometric polynomial cis no ctg $\left(\theta-\theta_{K}\right) / 2$ corresponding to $\cos \mathrm{n} \theta$ is

$$
\begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} \cos ^{2} n \theta \operatorname{ctg} \frac{\theta-\theta_{k}}{2} d \theta=\frac{1}{\pi} & \int_{-\pi}^{\pi} \cos ^{2} n\left(u+\theta_{k}\right) \operatorname{ctg} \frac{u}{2} d u= \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} \sin ^{2} n u \operatorname{ctg} \frac{u}{2} d u=0
\end{aligned}
$$

since the integrand function in the last integral is odd. In this case the polynomial $Q^{(1)}(\theta)$, and consequently, also the polynomial $T_{\eta^{*}}(\theta)$ do not contain members in cos no. Hence (5) follows from (1) and (4).

Identity (2) is proved. Iir we differentiate it and therf set $\theta=0$, we get

$$
T_{n}^{\prime}(0)=\frac{1}{4 n} \sum_{k=1}^{2 n}(-1)^{k+1} \frac{1}{\sin ^{2} \frac{\theta_{n}}{2}} r_{n}\left(\theta_{k}\right)
$$

This latter equation is valid for any polynomial of order n; in particular, it is valid for the polynomial $T_{n}(u+\theta)$, where u is a variable and θ is arbitrarily specified. Thus, for any θ

$$
\begin{equation*}
T_{n}^{\prime}(\theta)=\frac{1}{4 n} \sum_{k=1}^{2 n}(-1)^{k+1} \frac{1}{\sin ^{2} \frac{\theta_{k}}{2}}-T_{n}\left(\theta+\theta_{k}\right) \tag{6}
\end{equation*}
$$

obtains. This then is M. Rlecz's formula.

2.5 Bornshterm's Inequality

If we assume in M. Riecz's formula 2.4 (6) that $\mathrm{T}_{\mathrm{n}}(\theta)=$ sin $\mathrm{n} 日$, then when $\theta=0$ we get

$$
\begin{equation*}
n=\frac{1}{4 n} \sum_{k=1}^{n} \frac{1}{\sin ^{2} \frac{\theta_{k}}{2}} \tag{1}
\end{equation*}
$$

Therefore, from 2.5 (6) follows the inequality

$$
\begin{gather*}
\left\|T_{n}^{\prime}\right\|_{L_{p}} \leqslant n\left\|T_{n}\right\|_{L_{p}} \quad(1 \leqslant p \leqslant \infty), \tag{2}\\
\|f\|_{L_{p}}=\left(\int_{0}^{2 \pi}|f|^{p} d \theta\right)^{1 / p},
\end{gather*}
$$

called Bernshteyn's inequality, for any trigonometric polynomial of order n.
It is exact in the sense that there exists a trigonometric polynomial for which it transforms into an equality. Specifically, this occurs for the polynomial

$$
T_{n}(\theta)=A \sin (n \theta+a)
$$

where A and α are arbitrary real constants.

2.6 Trigonometric Polynomials in Several Variables

A function of the form

$$
\begin{equation*}
T_{v_{1}} \ldots, v_{n}\left(z_{1}, \ldots, z_{n}\right)=\sum_{\substack{-v_{1} \\ i=l_{1}, \ldots, n}} \sum_{i, v_{l}} c_{k_{1}} \ldots, k_{n} e^{l\left(k_{1} z_{1}+\ldots+k_{n} z_{n}\right)}, \tag{1}
\end{equation*}
$$

where v_{1}, \ldots, v_{n} are natural numbers, z_{1}, \ldots, z_{n} are complex variables, and $c_{k_{1}}, \ldots, k_{n}$ are constant coofficients that, generally spoaking, are complex and dependent on integral k_{1}, \ldots, k_{n}, is called a trigonometric polynomial of orders v_{1}, \ldots, v_{n}, reapectively, in the variables z_{1}, \ldots, z_{n}.

Using the vector notations

$$
\begin{array}{ll}
v=\left(v_{1}, \ldots, v_{n}\right), \quad k=\left(k_{1}, \ldots, k_{n}\right), \\
z=\left(z_{1}, \ldots, z_{n}\right), \quad k z=\sum_{1}^{n} k_{l} z_{l}
\end{array}
$$

we will write further

$$
T=T_{v}(z)=\sum_{\substack{-v_{l}<l_{1}<v_{l} \\ i=1, \ldots, n}} c_{n} e^{(l z s}
$$

and assert that $T=T_{V}$ is a trigonometric polynomial in s of order ∇.
If the coefficients satiafy the relationships

$$
\begin{equation*}
c_{-k}=\tilde{c}_{h_{1}} \tag{2}
\end{equation*}
$$

1.e.g if they vary for them the conjugate numbers when the sign is changed for all subscripts k_{1}, then for the real $s=\left(z_{1}, \ldots, z_{n}\right)$ the polynomial T_{V} is a real function. In fact if $x=\left(x_{1}, \ldots, x_{n}\right)$ is a real point, then by (2)

$$
\overline{T_{v}(x)}=\sum_{\substack{k_{1}\left|v_{v}\\\right|=1, \ldots, n}} \tilde{c}_{s i} e^{-k x}=\sum_{\substack{-v_{l}-k_{l}<v_{l} \\ t=1, \ldots, n}} c_{-k} e^{-i n x}=T_{v}(x) .
$$

We will mainly have to deal with polynomial satiafying condition (2), which we naturally call real trigonometric polynomials.

For complex s, the real polynomials $T_{V}(s)$ ars not in general real, but they become reai functions if they are considered as functions of real $x=\left(x_{1}, \ldots, x_{n}\right)$.

We have defined real triponometric podynomiale T_{v} as linear combinations (1) of complex functions in $0^{16 x}$ with complex coefficients satiafying conditions (2) of conjugativity, but they can also be defined as linear combinations with real coofficients of real function. Such functions all possible products of the form

$$
\begin{equation*}
\varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) \ldots \varphi_{n}\left(x_{n}\right)_{1} \tag{3}
\end{equation*}
$$

where $\varphi_{1}\left(x_{1}\right)(1=1, \ldots, n)$ is oither a function of ain $\mathrm{bx}_{1}\left(1 \leq k \leq v_{1}\right)$ or a function of cos $k x_{1}\left(0 \leqslant k \leqslant v_{1}\right)$.

Conversely, any linoar combination of functions of the form (3) with real coofficionts is a sum of the form (1) with coefficionte antinifing the conjugativity condition (2), i.e., a real trifonometric polynomin of order $\nabla=\left(v_{1}, \ldots, v_{n}\right)$.

The trigonomotric polynomials T_{y} are contimous functions perfodic in each variable and, therefore, they enter as alements on the apace $C(\underline{n}$) and all the more so on the apace $\frac{L}{p}(\underline{p})($ of 1.1.1).

Different functions of the form (3) eatialy the condition of orthogomality for the rectangle

$$
\Delta^{(n)}=\left\{0 \leqslant x_{n} \leqslant 2 \pi ; \quad k=1, \ldots, n\right\}
$$

and therefore form a inearly independent araten on $C(p)$ and on $\frac{(n)}{p}(1 \leqslant p \leqslant \infty)$.
As an example, we note that ans real trigonomotric polynomial of ordors μ and ν, respectively, in x and y can be writton as

$$
\begin{aligned}
& T_{\mu v v}(x, y)=\sum_{k=0}^{N} \sum_{l=0}^{v}\left(a_{M l} \cos k x \cos l y+\right. \\
& \left.\quad+b_{M l} \cos k x \sin l y+c_{k l} \sin k x \cos l y+d_{k l} \sin k x \sin l y\right)
\end{aligned}
$$

where $a_{k l}$, $b_{c l}, c_{k l}$, and $d_{k y}$ are real coofficionts.
If all variables are apecified in the polynomial $T_{V}(s)$, cave one, for example, z_{1}, then we obviousiy get a trisonomotric polynonial in the aingle variable z_{1} of degree ∇_{1}, and to it are attributed all the properties of trigonometric polynomiala in a alngle variable.

2.7 Trifonomatific Polymonial With Rospect to Sevarel Variables

Suppose $\mathcal{E}=R_{n} \times \mathbb{E}^{\prime} \subset R_{n}$ is a cylindrical sot of points $x=(n, y)$,
$a=\left(x_{1}, \ldots, x_{m}\right) \in R_{1}, V=\left(x_{m+1}, \ldots, x_{n}\right) \in \mathcal{E}^{\prime}$, whare ξ^{\prime} is a macourable
($n-m$)-dimensional set. Let us separate from \mathfrak{E} a truncated cylinder
where

$$
\mathscr{E}_{0}=\Delta^{(m)} \times \mathscr{E}^{\prime}
$$

$$
\Delta^{(m)}=\left\{0 \leqslant x_{k} \leqslant 2 \pi ; \quad k=1, \ldots, m\right\}
$$

is an m-dimensional cubr, and let us introduce the space $L^{*}(\underset{\sim}{\mathcal{E}})$ of functions $f=f(x)$ (real or complax), belonging to $L_{p}^{*}\left(\xi_{*}^{*}\right)$, and thal are for almost all $J \in \xi^{\prime}$ (in the sense of ($n-m$)-dimensional measure) periodic with period 2π in each of the variables x_{1}, \ldots, x_{m}. Obviously, $L_{p}^{*}(\mathcal{E})$ is a complote space.

Let us further denote by

$$
T_{v}(x)=T_{v}(u, y)=T_{v}\left(x_{1}, \ldots, x_{m}, y\right)
$$

functions such that each of thom belong to $L_{p}^{*}(\xi)$ and for almost all $\bar{\xi} \in$ in $q=\left(x_{1}, \ldots, x_{m}\right)$ each is a trigonometric polynomial*) of the order
$v=\left(v_{1}, \ldots, v_{m}\right)$.

The set of all such functions for a given v is denoted by $m_{v p}^{*}(\xi)$. It obviously is iinear.

Each function $T_{v} \in I_{p}\left(\mathscr{E}_{*}\right)$, therefore (Fubini's theorem) there exists a set $E ; E^{\prime}$ E' of complete measure such that $T_{v}(n, J) \in L_{p}\left(\Delta^{(m)}\right) \subset L\left(\Delta^{(m)}\right)$ in n for all $₹ \in E!\left(\Delta^{(m)}\right.$ is bounded!). At the same time we can consider that for all $J \in \underset{\substack{1}}{1}$ there exists the representation

$$
\begin{equation*}
T_{v}(u, y)=\sum_{\substack{v_{l}<k_{1}<v_{l} \\-1,1, \ldots, n}} c_{n}(y) e^{i n u}, \tag{1}
\end{equation*}
$$

where $c_{k}(\boldsymbol{y})$ are certain functions dependent on \bar{J}. The equalities

$$
\begin{equation*}
c_{n}(y)=\frac{1}{(2 \pi)^{m}} \int_{\Delta(m)} T_{v}(u, y) e^{i n u} d u, \tag{2}
\end{equation*}
$$

*) It mast be remembered that a function that is equivalent (relative to
हो) to the function $T_{v}(x)$ is considered as equal to T_{v}.
are valid, by virtue of the orthogonal propertiee of $e^{i l a n}$, from which it follows, in particular, by Fabini's theorem that $c_{k}(y)$ are measurable functions on \mathcal{E}^{\prime}, because T_{v}, since it belongs to $L_{p}\left(\xi_{H}\right)$, is in any case locally sumable (even if ${ }^{5}$ ' was unbounded). From (2), by using the generalized Minkowski inequality, and then Hollder's inequality, we get

$$
\begin{align*}
& \left\|c_{k}(y)\right\|_{L_{p}\left(y^{\prime}\right)} \leqslant \frac{1}{(2 \pi)^{m}} \int_{\Delta}\left\|T_{v}(u, y)\right\|_{L_{p}\left(y^{\prime}\right)} d u \leqslant \\
& \leqslant \frac{1}{(2 \pi)^{m}}\left|\Delta^{(m)}\right|^{1 / Q}\left\|T_{v}\right\|_{L_{p}\left(y_{t}\right)}=c\left\|T_{v}\right\|_{L_{p}\left(y_{q}\right)}\left(\frac{1}{p}+\frac{1}{q}=1\right), \tag{3}
\end{align*}
$$

where $\left|\Delta^{(m)}\right|$ is the (m-dimensional) volume $\Delta^{(m)}$ and c is a constant.
We have proven that each function $T_{v} \in m_{v p}^{*}(\xi)$ is representable in the form of (1), where $c_{k}(y)$ satisfy inequalities (3). The converse, obviousiy, is also valid.

Using this property of the functions $m_{v p}^{*}(\xi)$ and the fact that the space $L_{p}\left(\mathcal{E}^{\prime}\right)$ is complete, it is eary to see that the following lomma is valid.
2.7.1. Lemma. The set $m_{\underset{\sim}{*}}^{*}(\xi)$ is a subspace in $L_{p}^{*}(\xi)$.

If $\mathcal{E}=R_{n}$, i.e., \mathcal{E}^{\prime} is empty, then $m_{v p}^{*}(\mathscr{E})$ is obviously a finitomeasurable subspace as well. If however \mathcal{E}^{\prime} has a positive $(n-m)$-dimonsional measure, then $m_{\mathrm{vp}}^{*}(\mathcal{E})$ is not finite-measurable.
2.7.2. For the functions.

$$
T_{v}=T_{v}\left(x_{1}, y\right) \in \mathfrak{R}_{v p}\left(\mathscr{E}^{\circ}\right)=\mathfrak{M}_{v p}\left(R_{1} \times \mathscr{E}^{\prime}\right)
$$

(which are trigonometric polynomiala in x_{1} of degree v) for almost all $v \in \mathcal{E}^{\prime}$,
the generalized Bernshteyn inequality

$$
\begin{gather*}
\left|\frac{\partial T_{v}}{\partial x_{1}}\right|_{\rho_{p}\left(y_{0}\right)} \leqslant v\left\|T_{v}\right\|_{L_{p}\left(y_{0}\right)} \tag{1}\\
\left(\mathscr{E}_{v}=[0,2 \pi] \times \mathscr{E}^{\prime} ; \quad x_{1} \in[0,2 \pi], \quad y \in \mathscr{E}^{\prime}\right) .
\end{gather*}
$$

is satisfied.
In fact, $T_{v}\left(x_{1}, y\right)$ is a trigonometric polynomial in x_{1} for all $J \in \mathcal{E}_{1}^{\prime}$
$\subset \mathcal{E}^{\prime}$, where \mathscr{E}_{i}^{\prime} is a set of complete measure in \mathscr{E}^{\prime}. Therofore, based on
2.5 (2) when $1 \leqslant p<\infty$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\partial T_{v}\left(x_{n}, y\right)}{\partial x_{1}}\right|^{p} d x_{1} \leqslant v^{p} \int_{0}^{2 \pi}\left|T_{v}\left(x_{1}, y\right)\right|^{p} d x_{1} \quad\left(y \in \delta_{1}^{\prime}\right) . \tag{2}
\end{equation*}
$$

Integrating both parts of this inequality in $\bar{J} \in \mathcal{E}_{1}$ and raising it to the $1 / \mathrm{p}$ power, we get (1). When $\mathrm{p}=\infty$, inequality (1) obviously derives from the corresponding inequality 2.5 (2).
2.7.3. Cf 3.3 and 3.4 for other inequalities for trigonometric polynomials which we will use extensively.

GHAPTER III DNTDARAL FUNCTIONS OF THE EXPOMEMTIAL TIPE, BOUNDED ON R_{n}

3.1 Proliminarien

In this chapter we will examine several properties of integral functions of the exponential type, bounded on a real apace $R_{n}=R$. We will see that they are very analogous to the corroaponding properties of trisonomotrio polynomials. At the same time, the trigonomotric polynomials are a good means for approxirating periodic functions; iptegral functions of the exponential type can serve as a means of approximating*) nonperiodic functions assimed on an n-dimensional apace. It may be that the reader uninitiated in these problems should begin this chapter by reading 3.1.1, where general information from the theory of moltiple exponential series are additionally furniabed.

Let us assume n nomegative numbers v_{1}, \ldots, v_{n} (not necessarily integral) or a nonnogative vector $v=\left(v_{1}, \ldots, v_{n}\right) 0$.

The function

$$
g=g_{v}(z)=g_{v_{1}}, \ldots, v_{n}\left(z_{1}, \ldots, z_{n}\right)
$$

is called an exponential type integral function V if for it the following conditions are met:

1) it is an integral function in all variabies, i.e., is expanded in the exponential series

$$
\begin{equation*}
g(z)=\sum_{n>0} a_{3} z^{n}=\sum_{\substack{k_{1}>0 \\ 1-1, \ldots, n}} a_{n_{1}, \ldots, k_{n}} z_{1}^{k_{1}} \ldots z_{n}^{n_{n}} \tag{1}
\end{equation*}
$$

- Incidentally, while a trigonometric polynomial is defined by a finite number of mmerical paramoters (coefficients), the exposontial type function, seneralis apeaking, is essentiaily defined by an infinite (countable) number of parameters (for example, the coefficionts of its Faglor series), therefore the need of approximating it with a simpler function would uppear in prectical computations.
(with constant coofficients $a_{k}=\left(a_{1}, \ldots k_{n}\right)$, converging absolytely for all comples $s=\left(z_{1}, \ldots, z_{n}\right)$.

2) For and $\varepsilon>0$ there exists a positive number A_{ε} such that for adl complex $z_{k}=x_{k}+1 y_{k}(k=1, \ldots, n)$ the inequality

$$
\begin{equation*}
|g(z)| \leqslant A_{\varepsilon} \exp \sum_{j=1}^{n}\left(v_{j}+\varepsilon\right)\left|z_{j}\right| . \tag{2}
\end{equation*}
$$

We will further assert that this function g_{v} bolongs to the class E_{v}.
Suppose $P=\left(\rho_{1}, \ldots, \rho_{n}\right)\left(\rho_{j}>0 ; j=1, \ldots, n\right)$ and let

$$
\left|z_{j}\right| \leqslant \rho_{j}, \quad M(\rho)=\sup _{|z \rho|}|g(z)| .
$$

Then from property (2) obviously follows the apace

$$
M(\rho) \leqslant A_{i} \exp \sum_{j=1}^{n}\left(v_{j}+e\right) p_{j}
$$

and conversely, because

$$
|g(z)| \leqslant M\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right) \leqslant A_{\varepsilon} \exp \sum_{i=1}^{n}\left(v_{j}+\varepsilon\right)\left|z_{j}\right| .
$$

A derivative order $\mathbf{k}=\left(k_{1}, \ldots, \dot{k}_{n}\right)^{j}$ with respect to g at the point $s=\left(z_{1}, \ldots, z_{n}\right)$ can be writton by the cauctay formala

$$
\begin{equation*}
g^{(n)}(z)=\frac{n 1}{(2 \pi i)^{n}} \int_{C_{1}} \ldots \int_{C_{n}} \frac{g\left(\xi_{1}, \ldots, \xi_{n}\right) d \xi_{1} \ldots d \xi_{n}}{\left.\prod_{i=1}^{n}\left(z_{1}-z\right)\right)^{k} r^{1}}, \tag{3}
\end{equation*}
$$

where C_{j} is a circle in the plane ζ_{j} with its center at $=0$. Therefore, if we assume that $z=0$ and C_{j} bas the radius P_{j}, then we get the canchy inequality

$$
\left|a_{*}\right| \leqslant \frac{M(\rho)}{\rho^{\theta}}
$$

Suppose

Then

$$
\rho_{1}=\frac{k_{j}}{v_{j}+\varepsilon} .
$$

$$
\begin{equation*}
\left|a_{n}\right| \leqslant A_{\varepsilon} \frac{e^{\| l}(v+e)^{k}}{k^{t}} \quad(\varepsilon=(e, \ldots, e)) . \tag{4}
\end{equation*}
$$

We have proven that it follows from (2) that for any $\varepsilon>0$, an A_{e} is found auch that (4) is actiafiod. By Stirling's forman

$$
\frac{e^{101}}{k^{0}}=\frac{(\sqrt{2 \pi})^{n}\left(k_{1} \ldots k_{A_{1}}\right)^{\prime 2}}{\prod_{1=1}^{n}\left(1+e_{k_{j}}\right)^{n}\left(e_{k_{j}} \rightarrow 0, k_{1} \rightarrow \infty\right) .}
$$

therefore from (4) follows (2) (but conorally with anothor constant B_{z}):

$$
M(\rho) \leqslant \sum_{t}\left|a_{*}\right| \rho^{*} \leqslant B_{i} \sum_{0} \frac{(v+2 z)^{2}}{t} \rho^{4}=B_{c} e^{\sum_{1}^{1}\left(v^{2}+v\right) p}
$$

where B_{E} is a surficiently large number dopendent on .
From the foregoing it follows that if $E^{(\lambda)} \in E_{v}$, then any of its partial derivatives $g(\lambda) \in E_{i}$. The isnve is that it fallowe from (4) that the module of the ($k-\lambda$)-th coolficient of the exponential serios g λ) satiafiod the inequality

$$
\left|\frac{A 1}{(k-\lambda)!} a_{c}\right| \leqslant A_{c}^{\prime} \frac{e^{(N-1 \mid}(v+2 e)^{n-1}}{(n-\lambda)^{0-2}} .
$$

where A_{ε}^{\prime} is ourficientily large.
From the above it follows that for the case of an integral function

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{2}
$$

of one variable, the following two conditions, each of which expreas that f is of the exponential type of decree v , are equivalont:

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\ln M(r)}{r} \leqslant v \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty} \div \frac{n}{} \hat{\left|a_{n}\right|}-\sqrt{\lim _{n \rightarrow \infty}} \mathfrak{V} \sqrt{n!\left|a_{n}\right|} \leqslant v \tag{6}
\end{equation*}
$$

Lat ue denote by $m_{p p}(R)=m_{\nu p}(1 \leqslant p \leqslant \infty)$ the collection of all integral functions of the exponential type v, which as functions of a real $x \in R=R_{i}$ bolong to $L_{p}=L_{p}(R)$. Lot us furtbor auppose that $m_{v}=m_{v e \infty, ~}$ 1.e., m_{ν} conaiate of all functions of the type v bounded on R.

Let us here note what will be proved below, that (of 3.2.5 or 3.3.5) for anp $(1 \leqslant p \leq \infty), m_{\nu p} \subset m_{\nu}$. Moreover, it will be clear (cf $\left.3.2 .2(10), \underset{\sigma}{\xi}=R_{n}, n=n\right)$ that for ang function there exists a constant not dependent on 3 , such that

$$
\begin{equation*}
|g(z)| \leqslant A e^{\sum_{i=1}^{n} \cdot j\left|v_{n}\right|} \quad\left(x_{j}-x_{j}+i y_{j}\right) \tag{7}
\end{equation*}
$$

This inequaity is etronger than inequality (2). It follows directiy from it that g is bounded on R_{n}. Thus, m_{ν} can be definod as a class of integral functions $f(s)$ for which (7) obtains.

The runctions

$$
e^{\ln x}, \cos k z=\frac{e^{1 k z}+e^{-1 l n z}}{2}, \quad \sin k z=\frac{e^{1 k z}-e^{-1 m}}{2 z},
$$

where k is a real number, obvioush belonge to $m_{|k|}\left(R_{1}\right)=m_{|k|}$.
The trigonometric palrocolel

$$
T_{v}(z)=T_{v_{1}, \ldots, v_{n}}\left(z_{1}, \ldots, z_{n}\right)=\sum_{\substack{a_{1}\left|\leqslant v_{n}\\\right| \& \mid<n}} c_{n} e^{n s}
$$

belonge to $m_{v}\left(R_{n}\right)$, but not to $m_{v p}(1 \leqslant p<\infty)$.
The function aims $/ 8$ of a aingle variable ε belonge to $m_{1 p}\left(R_{1}\right) 1<$ $p \leq \infty$. In fact, as a function of a reel x, it obviously balones to L_{p} with the atipalated restrictions on p. On the othar hand, it is obviousiy an integral function; furtbor, in a is an lntageal function, and it is not diffloult to see that for it som conatant c_{1}, the inequality
is satisfied. Therefore, $|\sin z| \leqslant c_{1} e^{|\psi|}$.

$$
\left|\frac{\sin z}{z}\right| \leqslant c_{1} e^{\mid v 1} \quad(|z| \geqslant 1) .
$$

On the other hand, there exists a positive constant c_{2} such that

$$
\left|\frac{\sin 2}{2}\right| \leqslant c_{2} \quad(|z| \leqslant 1) .
$$

But, since $1 \leqslant e^{|\boldsymbol{Y}|}$, therefore

$$
\left|\frac{\sin z}{z}\right| \leqslant c_{2} e^{i v 1} \quad(|z| \leqslant 1) .
$$

Thus,

$$
\left|\frac{\sin z}{z}\right| \leqslant c e l y l \quad \text { obtaing for all } z,
$$

where

$$
c=\max \left(c_{1}, c_{2}\right) .
$$

The function of e^{2} belongs to $E_{1}\left(R_{q}\right)$, i.e., it is an integral function of the exponential type, but does not belong to $m_{1 p}\left(r_{y}\right)$ for any p $(1 \leqslant p \leqslant-0)$. On the other hand, the function of $e^{i z}$ obvioundy belonge to $m_{1 a}=m_{1}\left(R_{1}\right)$. Tha algebraic polynomial

$$
P(z)=\sum_{0}^{n} a_{k} z^{k} \text { is obviously }
$$ a function of the 0 type, not belonging, however, to $m_{0 p}\left(R_{1}\right)$ noither for any $p(1 \leqslant p \leqslant \sim)$. From the following (cf footnote on text page 137

 a constant (equal to 0 , if $1 \leqslant p<\infty$).

$$
\text { Obviously, } m_{\nu p} \subset m_{v p} \text {, if }
$$

If we consider thit ξ_{ν} denotes som function of the class m_{ν}, then obvioualy where

$$
\begin{gathered}
\mu=\left(\mu_{1}, \ldots, \mu_{n}\right), \mu_{j}=\max \left(v_{l}, v_{i}^{\prime}\right), \\
\prod_{i=1}^{n} g_{v}\left(z_{i}\right)-g_{0}(z) .
\end{gathered}
$$

It is easy to seo that if s is an integral function of the unity type of all variables and $\mu_{j} \neq 0(j=1, \ldots, n)$, then $g\left(\mu_{1} x_{1}, \ldots, \mu_{n} x_{n}\right)$ is
an integral function of the type $\left|\mu_{1}\right|, \ldots,\left|\mu_{n}\right|$. The converae assertion
is alao valid. Perhaps by using the goneral properties atated above, other auch function can be constructed from the civen integral functions of the axponential type. We bere use the operations of addition and multiplication taken at a finite number. The procese of intogration by parametor (cf 3.6.2) is an important means of constructing integral functions of the exponential type.
3.1.1. Multiple pover series. It suffices that all considerations be presented for the example of double series. The arguments are aimilar for sories of higher multiplicity.

Under the sum of the series

$$
\begin{equation*}
s=\sum_{n=0}^{\infty} \sum_{i=0}^{\infty} u_{n k} \tag{1}
\end{equation*}
$$

where be, , in general, are complex numbers, suboumes the linit

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \sum_{n=0}^{n} \sum_{i=0}^{n} u_{n}-s \tag{2}
\end{equation*}
$$

(if it axists), when netural mabers m and n inorease unboundedly, independentiy of each other.

The ceries (1) converses absolutely, then its mambers are uniforing bounded, 1.e., there exists a constant X such that

$$
\left|\psi_{n}\right|<K \quad(k, 1=0,1,2, \ldots) .
$$

However, if serios (1) oc:verges nomabeolutely, then its nembers are not necescarily uniformily bounded, as shown by the example of the series

$$
\begin{equation*}
\sum_{0}^{\infty} \sum_{0}^{\infty} a_{2 n} \tag{3}
\end{equation*}
$$

where $a_{01}=11, a_{11}=-11$, and $a_{121}=0$ for the remaning matural k and 1 . It convargee to a ere equal to zero, bat not absolutely and ite members are not bounded in the sot.

Lot us examine the pover series

$$
\begin{equation*}
I(\eta, b)-\sum_{0}^{\infty} \sum_{0}^{\infty}\left(\operatorname{cn} n^{n} \xi^{1} .\right. \tag{4}
\end{equation*}
$$

where $c_{k l}$ are the complex constants and η and ζ are complex variables. Let this series absolutely*) converges at point η_{0} and ζ_{0} where $\eta_{0} \neq 0$ and $\zeta_{0} \neq 0$. Then it also converges absolutely and uniformily for ans η and ζ satiafying the inequailities

$$
\begin{equation*}
|\eta|<p_{1}\left|\eta_{0}\right| . \quad|6|<p_{2}\left|b_{0}\right|, \quad 0<p_{1}, p_{1}<1 . \tag{5}
\end{equation*}
$$

In fact, thore exists a constant c such that

$$
\left|c_{\mathbb{M}} \eta_{0}^{k} s_{0}^{l}\right|<c \quad(k, 1=0,1, \ldots, 1),
$$

therefore for the specified. η and ζ_{0}
and, therefore, the members of the seriez (1) in absolute value thus do not exceed the members of the converging series

$$
c \sum \sum p_{1}^{k} p_{2}^{\prime}-\frac{c}{\left(1-p_{1}\right)\left(1-p_{2}\right)}
$$

Series (1) can be validly difforentiated mombor by momber for the indicated η and ζ as many times as dosired. Actually, after a single diffor ontiation, for example, with reapect to η, the common momber of the resulting sories for the indicated η and ζ will satiafy the inequalitios

Therofore, the differentiated series converges uniformiy in domain (5), since the serles

$$
\Sigma \Sigma k \mu_{1}^{R-1} \rho_{2}^{\prime}<\omega_{0} .
$$

converges. From the foregoing it follows that

$$
c_{B 1}=\frac{1}{A 111} \frac{\partial^{2011} /(0,0)}{\partial \eta^{2} \partial \sigma^{2}} .
$$

This, in particular, shows that the expansion of this function in the power series (1) is unique.
") If wo roject the vord "absolutely", then this aseartion is in goperal invalia. For exarple, if in (4) we take the coofficionts aky of eerios (3) as $c_{\text {ce, }}$, then series (4) converges when $n=\zeta=1$ and divertes when $n=0$ and sor any $\zeta \neq 0$, since it desencrates in this case into the divergent eerios

$$
\sum_{0}^{\infty} a_{n} i^{\prime}-\sum_{0}^{\infty} 16^{\prime}
$$

The function $f(\eta, \zeta)$, representable in the form of an absolutely*) convergent power series (4) in the complex domain defined by the inequalitiea

$$
\begin{equation*}
|\eta|<p_{1},|t|<p_{2} \tag{6}
\end{equation*}
$$

is called analytic in this domain.
Let $f(\eta, \zeta)$ be a function that is analytic in the crmain (6). Then with apecified $\eta\left(|\eta|<\rho_{1}\right)$ and arbitrary $\zeta\left(|\zeta|<\rho_{2}\right)$, the function

$$
f(\eta, t)=\sum_{0}^{\infty}\left(\sum_{0}^{\infty} c_{M} \eta^{4}\right) v^{t}
$$

is expanded into a series convergent in powers of ζ. Therefore, $f(n, \zeta)$ is an analytic function of ζ for $|\zeta|<\rho_{2}$. Similarly, $f(\eta, \zeta)$ for specified $\zeta\left(|\zeta|<P_{2}\right)$
is an analytic function of η for $|\eta|<P_{1}$. Hence follows the representation of f in the form of the cauchy integral

$$
\begin{equation*}
\frac{(\mathrm{u}-\mathrm{a})(\mathrm{u}-n)}{a p \pi p(a \cdot n) /} \int^{i 0} \int^{i 0} \frac{((n z)}{1}=n p \frac{\mathrm{u}-n}{(2 \cdot n)!} \int^{i 0} \frac{n z}{1}=(2 \cdot \mathrm{u}) 1 \tag{7}
\end{equation*}
$$

obtained by successive application of this representation in each of the variables η and ζ. Here C_{1} and C_{2} are circles in the complex planes η and ζ with centers at the sero pointe and with radil $r_{1}<P_{1}, r_{2}<P_{2}$ and $|\zeta|<r_{1}$ and $|S|<r_{2}$.

Since the series

$$
\frac{1+1^{a}++a^{n}}{2,53} \mathbf{5}=\frac{(2-a)(b-n)}{1}
$$

converges uniformity relative to $u \in C_{1}, v \in C_{2}, \eta$, and 5 satiafying the inequalitios

$$
|\eta|<r_{1}^{\prime}<r_{1} \cdot|t|<r_{2}^{\prime}<r_{2} .
$$

[^3]ita aubatitution in (7) and mamberwise integration leads to the original equality (4), from when
\[

$$
\begin{equation*}
c_{A B}=\frac{1}{(2 \pi i)^{2}} \int_{c_{1}} \int_{c_{1}} \frac{f(u, 0)}{u^{4}+\frac{1}{d j+1}} d u d \theta . \tag{8}
\end{equation*}
$$

\]

If we had aterted from the arbitrary function $f(u, v)$ continuous on C_{1} and C_{2}, the intogral (Cauchy type) appearing in the rieht-hand alde of (7) would be equal to some function $F(u, v)$, representable in the form of the sorles

$$
\begin{equation*}
F(u, v)=\sum_{n=0}^{\infty} \sum_{i=0}^{\infty} c_{n} \eta^{n} c_{1}^{d} \tag{9}
\end{equation*}
$$

absolutely and uniformily convergent for $|\eta|<r_{1}^{\prime}$ and $|\zeta|<r_{2}$, whatever the $r_{1}^{\prime}<r_{1}$ and $r_{2}^{\prime}<r_{2}$. Thus, the function F is analritic if $|\eta|<r_{1}$ and $|\zeta|<r_{2}$.

From the fact that the function f, amirtic in the domain (6), is analytic with respect to each variable, followe the formule

$$
\begin{align*}
f(\eta, b) & =\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f\left(\eta+e^{n \prime}, b+p_{e} \theta\right) d \theta d q . \tag{10}\\
0 & <r<p_{1}-|\eta| . \quad 0<p<p_{2}-166
\end{align*}
$$

which is obtained from the corresponding one-dimanaional formula.
Lot us also note the following property: if the sequence of functions $f_{N}(\eta, 5)$ analgtic in domaln (6) converges as $N \rightarrow \infty$ uniformly on the sot

$$
|\eta|<r_{1}<p_{1},|l|<r_{1}<p_{1}
$$

for ang apecified r_{1} and r_{2} to the function $f(\eta, \zeta)$, then the latter is amiytic in the domain (6). To be convinced of this, lot ue subetitute f_{m} in (7) instead of f and make the passage to the linit as $N \rightarrow \infty$, then for the lindt $f(\eta, 5)$, where $|\eta|<r_{1}$ and $|\zeta|<r_{2}$, (7) will be aatiafied, which shows that it is anailytic for $|\eta|<r_{1},|\zeta|<r_{2}$ and as a consequance of the arbitrary status of $r_{1}<P_{1}, r_{2}<P_{2}$ is amaistic in domain (6).

Let the set of power ceries

$$
I_{n}(\eta, z)-\sum_{0}^{\infty} \sum_{0}^{\infty} c_{n i=1 n^{n} n^{\prime} t}(n=1,2, \ldots) .
$$

be apecified, absolutely convorgent for $\eta=\eta_{0} \neq 0$ and $\zeta=\zeta_{0} \neq 0$ and auch
that

$$
\left.\sum_{0}^{\sum} \sum_{0}^{\infty}\left|\sigma_{m^{n}}^{(n)}-\left(m_{m}^{m}\right)\right| \eta_{0}\right|^{(k}\left|\xi_{0}\right|^{\prime} \rightarrow 0 \quad n, m \rightarrow \infty .
$$

Then it is obvious that

$$
\lim _{n \rightarrow-\infty} c_{n}^{(n)}-c_{n}
$$

whore cyc are cortain numbers. Hore the eories
converges absolutely whon $\eta=\eta_{0}$ and $\zeta=\zeta_{0}$, and for $|\eta| \leqslant \eta_{0}$ and $|\zeta| \leqslant \zeta_{0}$

$$
\begin{aligned}
& i\left|(n, b)-I_{n}\left(n_{0}, b\right)\right|<\left.\sum_{0}^{\infty} \sum_{0}^{\infty}\left|c_{n}-c_{n=1}^{(n)}\right|\left|n_{0}\right|^{*}| |_{0}\right|^{\prime} \rightarrow 0 \\
& (n \rightarrow \infty) \text {. }
\end{aligned}
$$

from which it ie clear that the equality

$$
\lim _{n \rightarrow \infty} \lim _{n}(n, 6)-1(n, b)
$$

obtaine in the domain

$$
|\eta|<\left|n_{0}\right|,|t| \leq\left|t_{0}\right| .
$$

In thle book we will work only with the integral functions

$$
\begin{equation*}
I(x)=\sum_{\Delta>0} a_{0} x_{1} \tag{11}
\end{equation*}
$$

1.0., with those functions for which series (11) absolutely converges for and complex 3 .

From the abovo-noted propertios of the anelotic functions, it followa that the powar corios (11) of cry integral function converges uniformly on ens bounded domin, just as do the eorios obtained by momberviee difforentiation of (11), which is lofitimetoly performed for ary of the variables z_{1}, \ldots... z_{n}, ary sinite number of times. For apecified z_{m+1}, \ldots, z_{n}, the function $f\left(z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{n}\right)$ is an intogral function with respoct to z_{1}, \ldots,

If function $f(s)$ is intocred, then it can be expended (uniquoly) into the serios

$$
f(x)-\sum_{s=1} c_{0}\left(8-z_{0}\right)^{0}
$$

in powers of $\left(z-z_{0}\right)^{k}=\left(z_{1}-z_{01}\right)^{k_{1}} \ldots\left(z_{n}=z_{o n}\right)^{k_{n}}$, absolutely convergent for all 2. For example, for the case $n=2$ this assertion follows from the fact that thes formal identities

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)-\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} a_{k l} l_{1}^{k} l_{2}^{\prime}- \\
&- \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} a_{k} \sum_{s=0}^{k} c_{k}^{s} z_{10}^{k-s}\left(z_{1}-z_{10}\right)^{s} \sum_{i=0}^{1} c_{l}^{\prime} z_{20}^{l-1}\left(z_{2}-z_{20}\right)^{\prime}- \\
&=\sum_{\mu=0}^{\infty} \sum_{v=0}^{\infty} c_{\mu v}\left(z_{1}-z_{10}\right)^{\mu}\left(z_{2}-z_{k 0}\right)^{v},
\end{aligned}
$$

are essentialiy legitimate. The last equality is derived after reducing the same number of members with identical powers of $\left(z_{1}=z_{10}\right)\left(z_{2}-z_{20}\right)$. To justify this, it suffices to show that its left-hand side is an absolvtely convergent multiple series, i.e., that

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} \mid a_{k i} \sum_{i=1}^{k} c_{k}^{5} x_{0}^{k-s}\left(x-x_{0}\right)^{s} \sum_{i=0}^{1} c_{l}^{1} y_{0}^{\prime-1}\left(y-y_{0}\right)^{\prime}<\infty \\
& \left(x_{0}=\left|z_{1}\right|,\left|, y_{0}=\left|z_{20}\right|, x-x_{0}=\left|z_{1}-z_{10}\right|, y-y_{0}-\left|z_{2}-z_{20}\right|\right) .\right.
\end{aligned}
$$

But this is because all mambers of this series are nonnegative and its sum

$$
\sum_{k=0}^{\infty} \sum_{i=0}^{\infty}\left|a_{k}\right| x^{k} y^{\prime}<\infty
$$

converges by the given condition.
3.1.2. Fourier tranoforms of class m_{vp} functions. From 3.1 we know that an integral function of one varinble

$$
\begin{equation*}
F(z)=a_{0}+\frac{a_{1}}{1} z+\frac{a_{1}}{2!} z^{2}+\ldots \tag{1}
\end{equation*}
$$

of the type $\sigma>0$ can be defined as an integral function possessing one of the following propertios

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\ln M(r)}{r}<0 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \leqslant 0 \tag{3}
\end{equation*}
$$

As a result, it can be asserted that the function $F(z)$ defined by series (1) is of the σ type if and only if the series

$$
\begin{equation*}
f(z)=\frac{a_{0}}{z}+\frac{a_{1}}{z^{2}}+\frac{a_{3}}{z^{3}}+\ldots \tag{4}
\end{equation*}
$$

converges for $|z|>\sigma$.
The function $\mathrm{f}(\mathrm{z})$ is called the Borel transform of the function $\mathrm{F}(\mathrm{z})$. Associated with it is the following integral:

$$
\begin{equation*}
\int_{0}^{\infty} F(t) e^{-t_{2}} d t=f(z, \theta) \tag{5}
\end{equation*}
$$

takon along the ray, $\left(5=\rho_{0}-10,0 \leq \rho<\infty\right)$. Namaly, it turns out (of book by N. I. Akhivezer $\angle 1$ / , section 81) that if the integral function F is of the σ type, then for it integral (5) uniformily and absolutely converges on ans set that is internal with respect to the half-plane A_{θ} which does contain the poinf $z=0$ and whose boundary is a tangent to the circle $|z|=\sigma$ at the point e^{10}. Here, the identity

$$
f(z)=f(z, \theta) \quad\left(z \in \Delta_{0}\right)
$$

obtaine for and (real) 0 .
Assume that it is known that the function $F(s)$ is not only an integral exponential type function, but also belongs to $L=L(-\infty, \infty)$ as a function of a real x, in othor words, $F \in m_{\sigma 1}\left(R_{1}\right)=m_{\sigma 1}$. If wo insert $0=0, \pi$, and $z=x+i 5$ in (5), then we get

$$
\begin{array}{ll}
f(x+i y)=\int_{0}^{\infty} F(\xi) e^{-i(x+1 y)} d \xi & (x>0) \\
f(x+i y)=-\int_{-\infty}^{\infty} F(\xi) e^{-i(x+(y) d \xi} & (x<0) \tag{7}
\end{array}
$$

Notice that based on the general considerations advanced above, we can state only that the integrals (6) and (7) converge for $x>\sigma$ and $x<-\sigma$. However in this case we are considering function $F \in L$. It is at once clear for it that integrals (6) and (7) converge in broader domains (respectively) $x \geqslant 0$ and $x \leqslant 0$.
The integrals obtained from (6) and (7) by formal difforentiation with reapect to $z=x+i y$ acain, obvioushy, absolutely converge when $x \geqslant 0$ and $x \leqslant 0$. This show that interals (6) and (7) define analytic functione whon $x>9$ and $x<0$ reapectively. They therefore coincide on thece indicated domalns with the function $1\left(\frac{1}{2}\right)$ - thingorel transform of the function F.

From (6) and (7), it follows for $\varepsilon>0$ that

$$
f(\varepsilon+i y)-f(-\varepsilon+i y)=\int_{-\infty}^{\infty} F(\xi) e^{-i t y e^{-\varepsilon \mid} \mid t d \xi}
$$

from whonce, on pasaage to the 11 mit as $\varepsilon \rightarrow 0$ we got

$$
0=\int_{-\infty}^{\infty} F(\xi) e^{-1 t v} d \xi \quad(|y|>\sigma),
$$

1.e., the Fourier tranaform of the function $F \in m_{g}$ is a function (continuous) identicaliy equal to zero outside the sommont $[\overline{[-\sigma}, \sigma \bar{\sigma}$.

If $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a positive vector and $F \in \eta_{G}\left(R_{n}\right)=\eta_{\sigma 1}$, then $F(x)$ is a function continuous on R_{n}. Since $F\left(u_{1}, \ldots, u_{n}\right)=F(a)$ is an integral function in u_{1} of the σ_{1} type, belonging to $L\left(R_{1}\right)=L(-\infty, \infty)$ for almost all $e^{\prime}=\left(u_{2}, \ldots, u_{n}\right)$ from the corresponding $(n-1)$-dimonsional space, then for such \mathbf{m}^{\prime}

$$
\int F\left(u_{1}, u^{\prime}\right) e^{-t x_{1} u_{1}} d u_{1}=0, \quad\left|x_{1}\right|>\sigma_{1}
$$

but then $\tilde{F}(x)=0$ if $\left|x_{1}\right|>\sigma_{1}$. This argument can be purgued for all $x_{j}(j=$ $1, \ldots, n$). We have thes proved the following assertion.
3.1.3. Theorem. If $F \in M_{\sigma}$, thon $\frac{r^{\prime}(x)}{}(x)$ a continuoue function, equal to sero outalde of

$$
\Delta_{0}=\left(\left|x_{j}\right|<\sigma_{j}, \quad j=1, \ldots, n\right) .
$$

3.1.4. It is kown, and this conaiats of the Paley-Wioner theorm"), that if $F \in m_{\sigma 2}$ and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, then the function

$$
\begin{equation*}
\tilde{F}(x)=\frac{1}{(2 \pi)^{n / 2}} \int F(u) e^{-i x u} d u \tag{1}
\end{equation*}
$$

where the integral is understood in the sense of convergence on the avarage

$$
\begin{gather*}
\left|\tilde{F}(x)-\frac{1}{(2 \pi)^{n 2}} \int_{\Delta_{N}} f(u) e^{-1 s u} d u\right|_{\left(\Delta_{N}\right)}^{\rightarrow 0} \quad(N \rightarrow \infty), \tag{2}\\
\Delta_{V}=\{|x,|<N ; \quad|=1, \ldots, n\},
\end{gather*}
$$

II Paley and Ulener $\overline{11} \overline{]}$ for $n=1$. For the proof in thile case, of, for axample, the book by N. I. Akijeser L1], and the book by Planaharal' and Fourier 11\rfloor when $n 1$.
not only belonge to $L_{2}\left(R_{n}\right)$, as followa from (2), but moreover, $\tilde{F}(x)=0$
almoat everywhere outaide Δ_{σ}. Conversely, if φ is an arbitrary function from $L_{2}\left(\Delta_{6}\right)$, then the function

$$
\begin{equation*}
F(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\Delta_{0}} \Phi(u) e^{i x u} d u \tag{3}
\end{equation*}
$$

belonge to $M_{\sigma 2}$, and the function $\tilde{F}=\varphi$ defined by (1) equals u almost everywhere.

It is easily verifiod that if it is asmued that $F(x) \in M_{6}$. 10 a goneralised function ($F \in \mathcal{E}^{\prime}$), then the function $F(x)$ is the transform \bar{F} (in the S-sense) and $\bar{F}=\hat{F}(c f(1.5)$.

Thus, the Fourior transform of the function $F \in M_{2}$ can be considered as a gonergilized and ordinary function, and incidentally one belonging to $L_{2}\left(\Delta_{\sigma}\right)$.

From the following it will be clear that if $1 \leq p \because 2$ and $F \in M$,
 if $2<p \leqslant \infty$, thon the Pourier tranaform of the function $F \in M_{p}$ can prove to be an escentially genoralized function. For example, $1 \in \dot{m}_{\sigma \infty}=m_{\sigma}$, and $1=(2 \pi)^{p / 2} \delta(x)(c f ~ 1.5)$. Therefore, when $p>2$, the assertion that \vec{r} has a carrier on Δ_{s} can be formulatod only in the idiom of ceneralized functions.

We will acoume that the genoralized function $\phi \in S$ has a carrier on Λ_{5} if for and fundamontal function $\phi(\phi \in S)$ is such that $\phi \equiv 0$ on $C_{6+\varepsilon}$, where $\subset+\varepsilon=\left\{\sigma_{1}+\varepsilon, \ldots, \sigma_{n}+\varepsilon\right\}$ then $(\phi, \phi)=0$ obtaine.
3.1.5. Let wi prove the following thoorem belonging to L. Schwarts.

Theorem. If $\varepsilon \in m_{G, p}(1 \leq p \leq \infty)$, then is hat a carrier on 4 .
Proof. We introduce the runctions $q_{E}(o f 1.5 .8)$ and $\psi_{E}=(2 \pi)^{1 / 2} \tilde{q}_{E}$. Since $\Phi_{t} \in S$, then $\psi_{z} \in S \subset L_{q}(1 / p+1 / q=1)$, therefore $\psi_{e} \in \in L$. Moreover, the function φ_{k} is an integrai exposential type ε function, therefore $\psi_{t} \varepsilon$ is of the exponential type $\sigma+\epsilon=\left(\sigma_{1}+\epsilon, \ldots, \sigma_{n_{n}}+\varepsilon\right)$ and, there-

After pasaage to the linit as $\varepsilon \rightarrow 0$, we get (cf $1.5 .8(6)) \quad(\bar{g}, \varphi)=0$,
which was required to be proved.
As for the inverse of this theorem, for our purposes it will be oufficient to know that the Fourier transform of the function (ordinary), equal to zero outside of Δ_{σ} and belonging to $L_{2}\left(\Delta_{\sigma}\right)$, is a function of the clase $m_{\sigma 2}$ based on the Paloy-Wiener theorem.

3.2. Interpolation Formula

Let (cf Civin $[\overline{1} \bar{\jmath}) \omega_{v}(t)$ be a continuous function with $2 v>0$ for each of its variables and let ${ }^{2}=\left(a_{1}, \ldots, a_{n}\right)$ be a vector that the Fourier series

$$
\begin{align*}
& e^{(a x} \omega_{v}(x)=\sum_{v} c_{v}^{v} e^{\left(\frac{\Delta \pi}{v} x\right.}(|x,|<v), \tag{1}\\
& c_{\Delta}^{v}=\frac{1}{(2 v)^{n}} \int_{\Delta_{v}} \omega_{v}(u) e^{i\left(--\frac{k \eta}{v}\right) k} d u, \tag{2}
\end{align*}
$$

Converge absolutely, 1.e.,

$$
\begin{equation*}
\sum\left|c_{n}^{\gamma}\right|<\infty . \tag{3}
\end{equation*}
$$

Let us show that if, moreover, $f, \tilde{f} \in L$ (thus, f and \widetilde{f} are continuous and bounded on R), then

$$
\begin{align*}
& \overline{\omega_{v}(t) \eta}(t)=\lim _{N \rightarrow \infty} \sum_{|\psi|<N} c_{c_{j} e^{t} \mid} \overline{\left(\frac{\Delta \pi}{v}-\alpha\right) \cdot T(t)}= \\
& =\lim _{N \rightarrow \infty} \sum_{|k,|<N} c_{v}^{v f}\left(x+\frac{k \pi}{v}-a\right)=\sum_{v} c_{v}^{v} f\left(x+\frac{k \pi}{v}-a\right) \text {, } \tag{4}
\end{align*}
$$

where the series at the right uniformiy converges relative to $x \in R$. The first equality in (4) follows from the fact that uniform convergence obtains as $\mathrm{N} \rightarrow \infty$ of the partial sum
to $u_{i}(x)$. In fact, conaidaring that $\tilde{f} \in L$, we get

$$
\begin{aligned}
\left|\hat{\omega}-\hat{r_{N}}\right| & =\left|\left(\omega_{r}-\lambda_{x}\right)\right| \mid< \\
& \leqslant \frac{1}{(2 x)^{n_{2}}} \int\left|\omega_{1}-\lambda_{:}:\right| d t \rightarrow 0 \quad(N \rightarrow \infty) .
\end{aligned}
$$

the secon= equeity in (4) fallows from formale 1.5 (19). The thiri is selfovicieat.
3.2.1. Theorem. Let $\Omega(x)=\Omega\left(x_{1}, \ldots, x_{n}\right)$ be an infinitaly difforentiable function of polyondal erouth, oven or odd. If $\Omega(x)$ is oven, then we vill assue that for any $\nu>0$ the function

$$
\begin{equation*}
\omega_{v}(x)=Q(x) \quad(|x,|<v ; j=1, \ldots, n) \tag{1}
\end{equation*}
$$

that is periodic vith the pariod 2 V for each of its veriables is expanded in Δ_{ν} in an absolately compergent Pourier ceries (3.2.(1) whan a $=0$). If how over 2 (x) is an odd function, then wo will asoun that the series $3.2(1)$ when $a=a_{v}=(\pi / 2 \nu, \ldots, \pi / 2 v)$ convertes absolutaly.

Ho vill furthar consider that

$$
' c_{i}^{\prime} \leqslant c_{\theta} \quad\left(v \leqslant v_{0}\right)
$$

and

$$
\begin{equation*}
\sum_{0} c_{0}<\infty \tag{3}
\end{equation*}
$$

Purther, lot $E(x) \in r_{\nu P}\left(n_{n}\right)=r_{i p}$.
Then tio equality

$$
\begin{equation*}
Q(t) g=\sum_{i} c_{i g}\left(x-c_{v}+\frac{n x}{v}\right) \tag{4}
\end{equation*}
$$

obtaine ($a,=0$ for ovan -2 , and $a,=(-12 \%, \ldots,-12 .$, for osi \therefore), with the series comverges in the i_{p}-sense.

It is not difilicalt to see that if $\therefore(x)$ is an odo fonction icionticelly not equal to zero, then the periodic function $1,(x)$ corresponding to it, seneralis speaking, is discout imous and vithout being mitipiled by ifit ita Fourier series cambot convarge abeolutely, te ve knov.

Proof. int $\varepsilon_{1}>0$ and int $0<\varepsilon<\varepsilon_{1}$. We introduce functions τ_{t} ant p_{z}.

 formula 3.2(4) to $\psi_{E} \mathrm{E}$.

We have

$$
\begin{align*}
& \Lambda_{t}(x)=\widetilde{Q(t) \widetilde{\phi_{c} g}}=\widetilde{\omega_{v v_{1}} \psi_{c} g}= \\
& -\sum_{i} c_{i}^{v+e_{1}} \phi_{e}\left(x-a_{v+e_{1}}+\frac{m_{n}}{v+a_{1}}\right) g\left(x-a_{v+e_{1}}+\frac{k_{n}}{v+a_{1}}\right) \tag{5}
\end{align*}
$$

$\left(a_{v+\varepsilon_{1}}=0\right.$ for an even function $\&$ and $\varepsilon_{v+\varepsilon_{1}}=\left(\pi / 2\left(v+\varepsilon_{1}\right), \ldots, \pi / 2\left(v+\varepsilon_{1}\right)\right)$ for an odd function Ω).

Ordinary functions figure evergwhere in these relationahips; the first equality obtains because $\Omega=\omega_{\nu+\varepsilon}$ on $\Delta_{\nu+\varepsilon}$ - the carrier of the function $\tilde{\Psi}_{E} g$; the second equality is valid by virtue of 3.2(4).
 converges uniformiy on R to its am, which we desigmated by $\Lambda_{\varepsilon}(x)$. On the other hand,

$$
\left|\psi_{k}(x)\right|=\left|\int_{\Delta_{a}} \varphi_{t}(t) e^{-t s t} d t\right| \leqslant\left|\int_{\Delta_{a}} \varphi_{i} d t\right|-1
$$

and under the condition $\varepsilon \in L_{p}$, therefore series (5) converges to $\Lambda_{\varepsilon}(x)$ aleo in the Lo-sonse. Let us underatand the convergence of series (5) in an oxactly this manber.

Notice that
therefore

$$
\psi_{t}(x)=\int_{\Delta_{0}} \Phi_{t}(t) e^{-1 s t} d t \rightarrow 1 \quad(e \rightarrow 0)
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} I_{1}(x)=\sum_{1} c_{2}+e^{\prime} g\left(x-a_{v+c_{1}}+\frac{m \pi}{v+a_{4}}\right) \tag{6}
\end{equation*}
$$

in the L_{p}-sense. In fact,

$$
\begin{aligned}
& \times\left. g\left(x-a_{v+e_{1}}+\frac{k \pi}{v+\varepsilon_{1}}\right)\right|_{L_{p}}+2 \Sigma^{\prime}\left|c_{v}^{v+e}\right|\|\varepsilon\|_{L_{2}},
\end{aligned}
$$

whese the atroke in the second aun donotes that the own is extended over all z which did not enter into the first aim. N can alwaye be taken to be large onouch that the cocond am will be loce than a praselectod $\eta>0$, and then ε_{0} can be selocted to bo 80 andil that the firat oum will be lase than η for poaitive $\varepsilon<\varepsilon_{0}$, which is poesible by the Lebeague thoorem. Both nides of equality (6) ectualis do not dopond on ε_{1} - this is clear from (5). From (6), after the pascege to the linit as $\varepsilon_{1}-0$, it fimally follows that

$$
\begin{equation*}
\lim _{e \rightarrow 0} K_{i}(x)=\sum_{v} c_{k} g\left(x-a_{v}+\frac{k \pi}{v}\right), \tag{7}
\end{equation*}
$$

where the series on the rient converges in the L_{p}-sense, and the init in the left-hand aide, as noted above, is also undofstood in the Ip-sense. In
fact, the norm in Lp-sense of the difference of the rieht-hand sides of (6) and (7) does not exbeed

$$
\begin{array}{r}
\sum_{|A|<N}\left|c_{v}^{v e_{1}}-c_{v}^{v}\right|\|g\|_{L_{p}}+\sum_{|n, j|<N}\left|c_{v}^{v}\right| \left\lvert\, g\left(x-a_{v+e_{1}}+\frac{n \pi}{v+\varepsilon_{1}}\right)-\right. \\
\quad-\left.g\left(x-a_{v}+\frac{k \pi}{v}\right)\right|_{L_{p}}+\|g\|_{L_{p}} \cdot 2 \sum^{\prime}\left|c_{n}\right| .
\end{array}
$$

whare equalities (2) and (3) are taken into account, in which wo mast assume that $\nu_{0}=\nu+\varepsilon^{0}\left(\varepsilon_{1}<\varepsilon^{0}\right)$. N can here again be taken large enough so that
the third oum will be majlor than η, where N of the firat and second awns
 and $o_{z}^{\prime}+\varepsilon_{1}-o_{z}^{\prime}\left(e_{1}-0\right)($ it is taken into account that Ω is in infiniteis differentiable function, therefore one that is sumable on $\Delta_{\nu+\varepsilon_{1}}$).

Thun, (7) had been provon.
On the other hand (of (5)),
and we have proven the interpolation formula (4).
3.2.2. Interpolation formula for the derivative of an exponantial type integral function. This formula will be derived as a partioular case of the comeral formula 3.2 .1 (4). Lot $G_{v}(x)=g(x) \in m_{\nu p}\left(R_{y}\right)=\eta_{\nu p}$, 1.0., let thare be an integral function of one variable of the three v bounded on
a real axis. The formula (1.5(10))

$$
\begin{equation*}
g^{\prime}(x)=\widehat{i t g} . \tag{1}
\end{equation*}
$$

obtaine for its derivative. The function it is infinitely differentiable, odd, and has polynomial growth. Let us oxarine the function

$$
\begin{gathered}
e^{1 \operatorname{tat} i t}-\sum_{n=-\infty}^{\infty} c_{k}^{v} e^{\frac{1 k \pi}{v} t} \quad\left\{|t|<v, a=\frac{\pi}{2 v}\right\}, \\
c_{v}^{v}=\frac{1}{2 v} \int_{-v}^{v} u e^{\prime}\left(\frac{\pi}{2 v}-\frac{k \pi}{v}\right) u d u= \\
\\
=-\frac{1}{v} \int_{0}^{v} u \sin \left(k-\frac{1}{2}\right) \frac{\pi}{v} u d u=\frac{v(-1)^{n-1}}{\pi^{2}\left(k-\frac{1}{2}\right)^{\prime}} .
\end{gathered}
$$

that is periodic with period $2 v$. It is clear that

$$
\left|c_{a}^{\nu}\right| \leqslant\left|c_{h}^{\psi}\right| \quad\left(0<\nu v \leqslant v_{0}\right)
$$

and

$$
\sum_{k}\left|c_{n}^{v_{0}}\right|<\infty .
$$

Therofore function it eatialios all the requirements that were imposed on $\rho(t)$ in 3.2.1. By virtue of $3.2 .1(4)$ the interpoiation formula

$$
\begin{equation*}
g^{\prime}(x)=\widehat{i t g}=\frac{v}{n^{2}} \sum_{-=-}^{\infty} \frac{(-1)^{n-1}}{\left(k-\frac{1}{2}\right)^{2}} g\left(x+\frac{\pi}{v}\left(k-\frac{1}{2}\right)\right), \tag{2}
\end{equation*}
$$

ie valld, where the series converses in the Lp-sense. It can be considered as the analog of the M. Rless formula for trisonometric polynomials.

In the following it will be clear that $m_{v p}<m_{\nu \infty}=m_{\nu}$ and, thus, In fact serite (2) converges not only in the L_{p}-sense, but also uniformily.

If we introduce in (2) $s(x)=$ in $x \in m_{\text {ion }}$, and then aubstitute $x=0$, we got

$$
\begin{equation*}
1=\frac{1}{n^{2}} \sum_{-\infty}^{\infty} \frac{1}{\left(k-\frac{1}{2}\right)^{2}} \tag{3}
\end{equation*}
$$

Therefore, for any function $\in M_{v p}(1 \leqslant p \leqslant \infty)$ the inequality

$$
\begin{equation*}
\left\|g^{\prime}\right\|_{p_{p}} \leqslant v\|g\|_{p_{p}} \tag{4}
\end{equation*}
$$

obtains, which is callod Berwushtegn's inequality*). It was proven by S. N. Bernshteyn ($\angle 1$ لـ, pp 269-270) when $p=\infty$.

If $z=x+i y$ is an aribitrarily complax number, then
$g(z)=\quad g^{(s)}(x)$, whence to $g(z)=\sum_{0}^{\infty} \frac{(i y)^{s}}{s i} g^{(s)}(x)$, откуда $\quad\|g(x+i y)\|_{L_{p}} \leqslant e^{v \|}\| \| g \|_{p} ;$
where the norm on the left-hand side is taken over $x \in B_{4}$.
Sluce the function $g(u+i y)$ for any fixed y with respect to u is again an integral exponential type σ type formila, from (5) it follows that if $g(z) \in M_{\nu p}$, than $g(u+i J) \in m_{\nu p}$ aiso obtains, but then equality (2) is valid if we roplace x in it with the arbitrarily complex $z:$

$$
\begin{equation*}
g^{\prime}(z)=\frac{v}{\pi^{2}} \sum_{-\infty}^{\infty} \frac{(-1)^{k-1}}{\left(k-\frac{1}{2}\right)^{2}} g\left(z+\frac{\pi}{v}\left(k-\frac{1}{2}\right)\right) \tag{6}
\end{equation*}
$$

where the convergence is understood to occur with respect to $x(z=x+i y)$. in the $I_{p}\left(R_{y}\right)$-sense. We bave already warned the reader that in the following it will be proven (of 3.3.5) that $m_{v p} \subset m_{\nu \infty}=m_{\nu}$ fram whonce it directiv follows that earies (6) converges uniformiy with reapect to $x(z=$ $x+1 y$), and by (5) it aleo casily followe that it convergen uniformily on any strip $\left\{y_{1}<y<y_{2}\right\}$ whare y_{1} and y_{2} are arbitrany real numbers.

Lot $g(x)=g\left(x_{1}, x^{\prime}\right)$ bo a function dofined on a moacurable aet $\xi=R_{1} \times \xi^{\prime}\left(x_{1} \in R_{1}, x^{\prime} \in g^{\prime}\right)$ belonging to $L_{p}\left(K_{3}\right)$, that is intogral and of the exponentil type v with reapect to x_{1} for almost all (in the ($n-1$)dimonaional macoure sense) $x^{\prime} \in \mathcal{E}^{\prime}$. By virtue of Pubini's theoren, it can be acserted that for the apecifiod x^{\prime} the function $g\left(x_{1}, x^{\prime}\right) \in m_{\nu p}\left(R_{1}\right)$ with respect to x_{1}, and because of (4).

$$
\left\|\frac{\partial g}{\partial x_{1}}\right\|_{L_{p}\left(R_{1}\right)}^{p} \leqslant v^{2} \| g \mathbb{R}_{p}\left(R_{1}\right) \quad(1 \leqslant p<\infty)
$$

After integrating both parts of this inequality with respect to $x^{\prime} \in \mathcal{E}^{\prime}$ and ralaing it to the power $1 / p$, wo get
7) Inoquality (4) is valdd also whon $\nu=0$: in fact, from (4) and the fact thit $G_{0} \in M_{O p} \subset M_{V P}$, followe that $\left\|E^{\prime}\right\|_{p}=0$ and g is a constant that is equal to, obviously, sero for finite p.

$$
\begin{equation*}
\left\|\left.\left\|\frac{\partial g}{\partial x_{1}}\right\|_{2,(y)} \leqslant v \right\rvert\, g\right\|_{p},(x) \quad(1<p<\infty) . \tag{7}
\end{equation*}
$$

We have also assiened the obrious case $p=\infty$.
If the fanction $g(x)=G\left(x_{1}, \ldots, x_{n}\right) \in M_{\nu p}\left(R_{n}\right)$, then aince and of its partial derivatives $g^{(\lambda)}$ is an intearal function of the exponantial type v (Cf 3.1), ve casily get, based on (7) $\left(E=K_{n}\right)$, the inequality

$$
\begin{equation*}
\left\|g^{(2)}\right\|_{L_{p}\left(R_{n}\right)} \leqslant v^{2}\|g\|_{L_{p}\left(R_{n}\right)} \tag{8}
\end{equation*}
$$

It can be conoraliaed further, by acouming that $g(x)=g\left(u, x^{\prime}\right)=g$ $\left(x_{1}, \ldots, x_{m}, x\right) \in L_{p}\left(y_{0}\right), \xi=R_{m} x \mathcal{E}_{\prime}^{\prime} \subset R_{n}$ is a meaourablo sot, $m<n$ and g is an intecral exponential type $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ function for almont an $x^{\prime} \in$. E^{\prime} over x_{1}, \ldots, x_{m}. Then, if $\lambda=\left(\lambda_{1}, \ldots, \lambda_{1}, 0, \ldots, 0\right)$ we get

$$
\begin{equation*}
\left\|g^{(2)}\right\|_{L_{p}(y)} \leqslant v^{2}\|g\|_{L_{p}(y)} . \tag{9}
\end{equation*}
$$

If it is ascumed that anost for all x^{\prime}

$$
g\left(u+i y, x^{\prime}\right)=g(z)=g(u+i y)=\sum_{i \geq 0} \frac{g^{(\mu)}(u)}{21}(i y)^{2},
$$

then froe (9) we earily obtain the regult that

$$
\begin{equation*}
\left\|g\left(x+i y, x^{\prime}\right)\right\|_{L,(y)} \leqslant\|g(x)\|_{L},(x)^{\sum_{i=1}^{m} v_{j} \mid v \rho l} . \tag{10}
\end{equation*}
$$

From (2) wo can derive the M. Bless formian as a partioular acce, proven 1s 2.4. We noed oniy consider that a trigoncmotric palymeniel of arder is an integrel function bounded on a reel axis $v\left(I_{y} \in M_{j}\right)$, tharefore formula (2) is applicable to $1 t$. Wo mant conalder further that I_{y} is a poriodic function with period 2π.
3.2.3. Inequality 3.2.2(4) can be axtended for more semenal norman). Lot E be a Banach opace of functione $f(x, y)$ dofinod and meacurable on $E=$ $R_{1} \times E_{1}$, oxhibitine the following propertios:

1) addition of two function E and miltipllcation of a funotion by number is dofined thusly. Two functions f_{1} and f_{2}, equal is each othur alnont overywhere \#) of note to 3.2.3 at and of book.
on \mathcal{E}, are assumed to be equal ($f_{1}=f_{2}$) as eloments of E;
2) if $f=f(x, w) \in E$, then $f_{x_{0}}=f\left(x+x_{0}, w\right) \in E$ for and real
value x_{0} and $\|f(x, w)\|=\left\|f\left(x+x_{0}, w\right)\right\|$;
3) from the fact that $f_{n} \in E(n=1,2, \ldots), f \in E,\left\|f_{n}-f\right\| \rightarrow 0$, and $f_{n}(x, w) \rightarrow \psi(x, w)(n \rightarrow \infty)$ for $x \in R_{1}$ and for almost all $w \in E_{1}$, it follow that $\psi=f$.

If the function $e_{v}(x, v) \in E$ and for almost all w relative to x it is a bounded integral iunction of the type v, thon for it the equality

$$
\begin{equation*}
g^{\prime}(x, w)=\frac{v}{n^{2}} \sum_{-\infty}^{\infty} \frac{(-1)^{k-1}}{\left(k-\frac{1}{2}\right)^{2}} g\left(x+\frac{\pi}{v}\left(k-\frac{1}{2}\right), w\right) \tag{1}
\end{equation*}
$$

obtains for almost all w in the sense of ordinary convergence. On the other hand, as a comsequence of property 2) aum of noxms of meabers of series' (1) does not exceed $v\left\|\left\|_{y}\right\|\right.$, and, thus, the right-hand side of eeries (1) converges according to the norm ve are considering to some function $\psi \in E$. But function ψ in the sense of property 3) mast be equal to $\partial g_{\nu} / d x$. This is substantiated by the inequality

$$
\begin{equation*}
\left\|\frac{\partial g v}{\partial x}\right\| \leqslant v\left\|g_{v}\right\| \tag{2}
\end{equation*}
$$

3.2.4. A generalised inequality analogous to 3.2 .3 (2) can be obtained, based on 2.7.2, aiso for trigonomotric polynomials. To do this, it is sufficient to assume that E conaista of functions $f(x, w)$ with period 2π in x with a norm aubject only to propertios 1) and 2).
3.2.5. Theorem") lat. $1<0<\infty$ and the integral function

$$
g=g_{v}(z)=g_{v}(x+i y)
$$

of the exponential type $V=\left(\nu_{1}, \ldots, \nu_{n}\right)>0$ belong to class $L_{p}\left(R_{n}\right)$. Then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} g_{v}(x)=0 \tag{1}
\end{equation*}
$$

Hence it follows, in particular, that $g(x)$ is bounded on R_{n}.
Proof. It is cufficient to prove the theorem for the case $v_{1}=\ldots v_{n}$ $=1$, to which we can reduce our function by replacing it with the following n 7) Planabarel' and Polya [1̄].
$g\left(z_{1} / \nu_{1}, \ldots, z_{n} / \nu_{n}\right)$. Let us linit ourcelven to the two-dimnsional cace, when $n>2$ the prool is analogous.

And so, lot an integral function $g\left(z_{1}, z_{2}\right)=G$ of the type $(1,1)$ be acoumod, belonging to $I_{p}\left(R_{2}\right)$, where $1 \leqslant p<\infty$. Ae alwayt, wo will acswo x_{1} and x_{2} to be real.

The inequality (of 3.1.1)

$$
g\left(x_{1}, x_{2}\right)=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} g\left(x_{1}+p_{1} e^{n_{1}}, x_{2}+p_{2} e^{\left(\theta_{1}\right.}\right) d \theta_{1} d \theta_{c}
$$

obtains where P_{1} and $P_{2}>0$. Let us multiply both of ita alse by $P_{1} P_{2}$ and integrate the reaulte over the rectanclo $0 \leq \rho_{1}, P_{2} \leq \sigma$. Then we get

$$
\begin{aligned}
& g\left(x_{1}, x_{2}\right) \frac{\phi^{i}}{4}= \\
& \quad=\frac{1}{(2 \pi)^{i}} \int_{0} \int_{0} g\left(x_{1}+\xi_{1}+i \eta_{1}, x_{2}+\xi_{2}+i \eta_{2}\right) d \xi_{1} d \eta_{1} d \xi_{2} d \eta_{2}
\end{aligned}
$$

where $\left(\xi_{1}, \eta_{1}\right)^{-}$and $\left(\xi_{2}, \eta_{2}\right)$ are Carteaian coordinates and σ is a circie with radiue δ with ite conter at oricin of coordinates.

Hence

$$
\begin{align*}
& \left|g\left(x_{1}, x_{2}\right)\right| \leqslant \\
& \leqslant \frac{1}{\delta^{2} \pi^{2}} \int_{0} \int_{0} \lg \left(x_{1}+\xi_{1}+i \eta_{1}, x_{2}+\xi_{2}+i \eta_{2}\right)+d \xi_{1} d \eta_{1} d \xi_{2} d \eta_{2} \leqslant \\
& \leqslant \frac{2}{0_{0}^{\left(1-\frac{1}{\theta}\right)_{\pi^{2}}}\left(\int_{-0}^{0} \int_{-}^{0} d \eta_{1} d \eta_{2} \int_{x_{1}-0}^{2+0} \int_{x r_{1}}^{2+0} 1 g(\xi+i \eta) P d \xi_{1} d \xi_{2}\right)^{1 / p},} \\
& \xi+i \eta=\left(\xi_{1}+i \eta_{1}, \xi_{2}+i \eta_{2}\right) . \tag{2}
\end{align*}
$$

Let ue prove that the integral

$$
I(g)=\int_{-0}^{0} \int_{-0}^{0} d \xi_{1} d \xi_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \lg (\xi+i \eta) p d \eta_{1} d \eta_{2}
$$

is finito, from whence it will follow that the ridht-hand alde of (2) tende to zero as $|x| \rightarrow \infty$, and the theorem will be proved.

In fact (of 3.2.2(10)),

$$
\begin{aligned}
I(g)= & \int_{-0}^{0} \int_{-0}^{0}\|g(\xi+i \eta)\|_{L_{p}}\left(n_{g}\right) d \eta_{1} d \eta_{D}< \\
& \leqslant\|g(\xi)\|_{p}\left(R_{2}\right) \int_{-0}^{0} \int_{-0}^{0} e^{\left(1 \eta_{1} 1+1 \eta_{1} 1\right) p d \eta_{!} d \eta_{2}<\infty .}
\end{aligned}
$$

when $p=\infty$, this theorve is invalid, as shown by the example of the function aime $z \in m_{1, \infty}\left(R_{1}\right)$.
3.2.6. Intefrel function of the exponential apherical type. We will state of the intecrell function

$$
\dot{g}(\dot{z})=\ddot{g}\left(z_{1}, \ldots, z_{n}\right)
$$

that it in an exponentinl opherical type $\sigma \geqslant 0$ formala if for and $\varepsilon>0$ we can specify a conetant $A_{e}>0$ such that

$$
\begin{equation*}
|g(z)|<A_{\varepsilon} \exp \left\{(\sigma+\varepsilon) \sqrt{\sum_{1}^{n}\left|z_{j}\right|^{2}}\right\} \tag{1}
\end{equation*}
$$

for all s. The collection of all auch functions of the given types $\sigma \geqslant 0$ will be denoted by SE σ° Since
than

$$
\frac{1}{V_{n}^{2}} \sum_{j=1}^{n}\left|z_{j}\right|<\sqrt{\sum_{i=1}^{n} \mid z_{j} p}<\sum_{j=1}^{n}\left|z_{j}\right|
$$

$$
E_{\sigma / V \bar{n}} \subset S E_{\sigma} \subset E_{\sigma}
$$

The set of functions $\in \in S E_{\sigma}$ which as functions of a real vector $x \in R_{n}$ belong to $L_{p}\left(R_{n}\right)=L_{p}$ we will denote with $S M_{\sigma p}$.

Let $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ be an arbitrary unit of vector (raal). Wo will $10 t$

$$
D_{0} f(x)=f_{0}^{\prime}(x)=\sum_{l=1}^{n} \frac{\partial f}{\partial x_{j}}(x) \omega_{j}
$$

stand for the derivative with reapect to f at point x in the direction w and wo will lot the notation

$$
f_{\omega}^{\prime \prime \prime}(x)=D_{-} f_{0}^{(\prime-1)}(x)=\sum_{|k|=\alpha} f^{(k)}(x) \omega^{k} \quad(l=1,2, \ldots)
$$

be a derivative of order 1 with reapeot to I at point x at directionew. Let ue introduce the tranaformation

$$
x=\left(x_{1}, \ldots, x_{n}\right) \leftrightarrows\left(\xi_{1}, \ldots, \xi_{n}\right)=\xi
$$

whore ξ_{1}, \ldots, ξ_{n} are coordinates of x in the new arthogonal ayaten of coordimates (real), which is selected so that the inorement in ξ_{1} for apecified ξ_{2}, \ldots, ξ_{n} leads to the translation of the point x in the direction w. The tranaformation of coordinates

$$
\begin{equation*}
x_{n}=\sum_{s=1}^{n} a_{n} \xi_{s} \quad(k=1, \ldots, n) \tag{2}
\end{equation*}
$$

is defined by a real orthogonal matrix. This matrix also dofines the transformation

$$
z_{k}=\sum_{n=1}^{n} a_{k} w_{s}
$$

of the complex syatems $w=\left(w_{1}, \ldots, w_{n}\right)$ into the ayeteme $s=\left(z_{1}, \ldots, z_{n}\right)$. Here, obviously, the equality
will be satisfied.

$$
\sum_{i=1}^{n}\left|z_{s} p=\sum_{i=1}^{n}\right| w_{s} p
$$

Lot us aesume $g(z)=g\left(z_{1}, \ldots, z_{n}\right)=g_{0}\left(w_{1}, \ldots, w_{n}\right)=g_{0}(w)$,
and let $g \in S M_{\sigma p} ;$ then $g_{*} \in S M_{\sigma p}$ as well because g_{*} is obviousiy an integral function and

From this inequality it is clear that f_{*} is a function of the type with respect to w_{1} and the inequality $3.2 .2(4)$ is applicable to it.

Further

$$
g_{a}^{(1)}(x)=\frac{\partial^{l}}{\partial \xi_{j}^{l}} g_{\cdot}(\xi),
$$

theroiore $\left\|S_{\dot{\prime}}^{(\prime \prime}(x)\right\|_{L_{p}}=\left\|\frac{\partial^{\prime}{\Omega_{0}}^{\prime}(\xi)}{\partial \xi_{1}^{\prime}}\right\|_{L_{p}} \leqslant \sigma^{\prime}\left\|g_{*}(\xi)\right\|_{L_{p}}=\sigma^{\prime}\|g(x)\|_{L_{p}}$.

Sotting $s=\left(x_{1}+1 y_{1}, \ldots, x_{n}+i y_{n}\right)$, wo get

$$
\begin{aligned}
& g(z)=\sum_{i=0}^{\infty} \frac{1}{\pi} \sum_{\mid=1=1}^{n} g^{(n)}(x)(i y)^{n}-\sum_{i=0}^{\infty} \frac{1}{1 \mid} g_{0}^{(n)}(x)(i|y|)^{l}, \\
& \left(|k|-\sum_{i=1}^{n} k_{1}, \quad|y|^{2}=\sum_{i=1}^{n} \mid y, P, \quad e=\frac{y}{|y|}\right),
\end{aligned}
$$

where, thens, $\mathrm{g}^{(1)}$ is a derivative of order 1 in the direction $\omega=y / y$ or 7 .

But then

$$
\begin{align*}
\|g(x+\mid y)\|_{p} & \leqslant\|g(x)\|_{p} \sum_{i=0}^{\infty} \frac{(0|y|)^{2}}{\|} \\
& =\|g(x)\|_{L_{p}} \exp \left(0 \sqrt{\sum_{1}^{n} y_{i}^{i}}\right) \tag{4}
\end{align*}
$$

The Fouriar tranafore $\bar{\delta}$ of the function $\varepsilon \in S m_{\sigma p}$ has a carrier belongine to the ephare $V_{\sigma} \subset A_{n}$ with radius σ and its conter at the zero point (L. Sobwarts L1」).

Actually, if $\xi_{2} \in L_{1}$, then comaidering that in an orthogonal tranaformation of coordinates (2) $\quad x \nLeftarrow \xi, m \nLeftarrow 0$. $x a=\xi v$ and $d u=d v$ obtains, und conaidering that $v^{\prime}=\left(v_{2}, \ldots, v_{n}\right)$ wo sot

$$
\begin{aligned}
g(x) & =\frac{1}{(2 \pi)^{n / 2}} \int g(u) e^{-(\pi x} d u=\frac{1}{(2 \pi)^{n / 2}} \int g_{0}(\theta) e^{-n v} a v= \\
& =\frac{1}{(2 \pi)^{n / 2}} \int e^{-1 v^{\prime} v} d \nabla^{\prime} \int g_{0}\left(v_{1}, v^{\prime}\right) e^{-1 \nu_{1}} d v_{1}=g_{0}(\delta) .
\end{aligned}
$$

that $\boldsymbol{e n}_{n}\left(\xi_{1}, \xi^{\prime}\right)$ is of the type σ with reapect to ξ_{1} and for almost all ξ^{\prime}
 choioe of coordinates $\left(\xi_{2}, \ldots, \xi_{n}\right)$, but then $\delta(x)=0$ outelde the ephere v_{σ}.
 If I is a genoralised function and $\bullet \subset R$ is an open aet, then we will write

$$
\begin{equation*}
(f)_{0}=\sigma_{0} \tag{5}
\end{equation*}
$$

if

$$
(f, \Phi)=0
$$

for all $\phi \in S$ that have a carrier belonging to e.
Let $0<\lambda<\sigma$ and v be as before a aphere with its center at the zero point and with radius σ. Let us show that if $f \in I_{p}(1 \leqslant p \leqslant \infty)$ and

$$
()_{0_{0}}=0,
$$

then for the integral function g of apherical power λ belonging $t c l$ the equality

$$
\begin{equation*}
g \cdot f=\frac{1}{(2 \pi)^{n / 2}} \int g(x-u) f(z) d u=0 \tag{6}
\end{equation*}
$$

obtains.
Let us introduce the functions φ_{ε} and $\psi_{\varepsilon}=(2 \pi)^{n / 2}$ defined in 1.5.8. For $\phi \in S$ and such an $\varepsilon>0$ that $\lambda+\varepsilon<\sigma$,

$$
\begin{equation*}
\left(\psi_{L} g \cdot f, \varphi\right)=\left(\overline{\left(\psi_{L} g\right.},, \dot{\phi}\right)=\left(f, \overline{\psi_{\Sigma} \Phi} \phi\right)=0, \tag{7}
\end{equation*}
$$

becanse g together with its derivativea is a bounded infinitely differentiable function, $\psi_{E} \in S, \psi_{E} B \in S$, and $\psi_{E} E \in S$, therofore, $\widetilde{\psi_{E} B} \hat{\phi} \in S$, and it has a carrior belonging to ∇_{6}. After passage to the linit in equality (7) as $\varepsilon \rightarrow 0$ (cf $1.5 .8(7)$), we get (6).

3.3. Fouslitien of Different Metrics for Interal Dunctions of the Expopery tial Trpe

In this section we will be interested in classes of integral functions $m_{\nu p}\left(R_{n}\right)$.

Here prominence will be given to inequalities of different metrics, by means of which the norm of the function $g_{v}(x)$ in the matrix $L_{p^{\prime}}=L_{p^{\prime}}\left(R_{n}\right)$ is estimated in terms of its norm in matrix $L_{p}\left(1 \leqslant p \leqslant p^{\prime} \leqslant \infty\right)$ and the product of several powers of v_{1}, \ldots, v_{n}. This inequality will play a substantial role in the following when we atudy differentiable functions of more general classes.

Obviously, $m_{\nu p}\left(R_{n}\right)$ is a linear set. It is infinite-measurable. For example, the functions sine ${ }^{2} \frac{x}{2 k} / x^{2}(k=1,2, \ldots)$ belong to $m_{1 p}\left(R_{1}\right)$, $1 \leq p \leqslant \infty$, and exhibit a innearly independent syatem. Thorefore, even from general considerations of function analysis can be concluded that the unit theorem $M_{v p}\left(R_{n}\right)$ is not compact in the metric $L_{p}\left(R_{n}\right)=L_{p}$. However,
we will soe that it is compect in the weak sense (of 3.3.6).
3.3.1. Theorem. Let $1 \leqslant p \leqslant \infty, h>0, x_{k}=k h(k=0, \pm 1, \pm 2, \ldots)$, and $\boldsymbol{c}_{v}=\mathrm{g}_{v}(z)$ be an integral function of a aingle variable of the type v and u

$$
\left.\left(i g_{v}\right)\right)_{L_{p}}=\sup _{u}\left(h \sum_{-\infty}^{\infty} \lg _{v}\left(x_{n}-u\right) p\right)^{1 / p}<\infty
$$

of $\left\|B_{V}\right\|_{L_{p}}<\infty$. Then the inequality

$$
\begin{equation*}
\left\|g_{v}\right\|_{L_{p}} \leqslant\left(\left(g_{v}\right)\right)_{L_{p}} \leqslant(1+h v)\left\|_{g_{v}}\right\|_{p} \cdot \tag{1}
\end{equation*}
$$

obtain.
proof. When $p=\infty$, the theorm is trivial. Let $1 \leq p<\infty$ and $\left\|S_{y}\right\|_{J_{p}}<\infty$. Then

$$
\int_{-\infty}^{\infty}\left|g_{v}\right|^{p} d x=\sum_{-\infty}^{\infty} \int_{x_{1}}^{x_{n+2}}\left|g_{v} \mu d x=h \sum_{-\infty}^{\infty}\right| g_{v}\left(g_{A}\right) P_{1}
$$

whore the nuver ξ_{k} actiary the inequalitios $x_{k}<\xi_{k}<x_{k+1}$. Uaing the general isod Bernehtegn's inequality, the Holder inoqualsty, and also the inequality $\mid\|x\|-\|y\| \leqslant\|x-y\|$, we lot

$$
\begin{aligned}
& \left|\left(h \sum_{-\infty}^{\infty} \mid g_{v}\left(L_{n}\right) p\right)^{1 / p}-\left(h \sum_{-\infty}^{\infty} \mid g_{v}\left(x_{h}\right) p\right)^{1 / p}\right|< \\
& \leqslant\left(h \sum_{-\infty}^{\infty} \mid g_{v}\left(\xi_{k}\right)-g_{v}\left(x_{v}\right) p\right)^{1 / p} \leqslant\left[h \sum_{-\infty}^{\infty}\left|\int_{x_{u}}^{v_{z+1}} g_{v}^{\prime}(t) d t\right|^{p}\right]^{1 / p} \leqslant \\
& \leqslant\left(h \sum_{-\infty}^{\infty} \int_{x_{i}}^{x_{k+1}}\left|g_{v}^{\prime}\right|^{p} d t h^{p / \rho}\right)^{1 / p}=h\left|g_{v}^{\prime}\right|_{L_{p}\left(R_{1}\right)} \leqslant h v\left|g_{v}\right|_{p,\left(R_{1}\right)} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
&\left(h \sum_{-\infty}^{\infty} \mid g_{v}\left(x_{k}\right) p\right)^{1 / p}= \\
&=\left[\left(h \sum_{-\infty}^{\infty}\left|g_{v}\left(x_{k}\right)\right|^{p}\right)^{1 / p}-\left(h \sum_{-\infty}^{\infty} \mid g_{v}\left(g_{k}\right) p\right)^{1 / p}\right]+ \\
&+\left(h \sum_{-\infty}^{\infty} \mid g_{v}\left(\xi_{k}\right) p\right)^{p} \leqslant(1+h v)\left\|g_{v}\right\|_{p}\left(R_{1}\right) \tag{2}
\end{align*}
$$

If we note that for any apecified u the function $\varepsilon_{v}(x-u)$, conaldared as a function of x, is an integral function of the type v, thon from the equaiity (2), after replacine (x) with $E_{y}(x-u)$ in $1 t$, wo got the second inequality of (1).

On the other hand, if $((\varepsilon))_{L_{p}}<\infty$, then

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|g_{v} p d x=\sum_{-\infty}^{\infty} \int_{x_{u}}^{x_{u+1}}\right| g_{v} P^{p} d x=\sum_{-\infty}^{\infty} \int_{0}^{\infty} \mid g_{v}\left(x_{u+1}-u\right) P d u= \\
& =\int_{0}^{n} \sum_{-\infty}^{\infty}\left|g_{v}\left(x_{k+1}-u\right) P d u \leqslant h \sup _{u} \sum_{-\infty}^{\infty}\right| g_{v}\left(x_{k}-u\right) P \tag{3}
\end{align*}
$$

where the subutitution of the order of sumation and intecretion is legitimate by virtue of the fact that we are dealine with nonnegative functions. Thus we have proved the firat inequality in (1).
3.3.2. Theorem") Let $1 \leq p \leq \infty, x_{k}^{(1)}=\operatorname{ch}_{1}(1=1, \ldots, n, k=0$, $\pm 1, \pm 2, \ldots),=$ be an integral function of the type $v=\left(v_{1}, \ldots, v_{n}\right)$,

$$
\begin{align*}
((g))_{p}^{(n)} & =\sup _{u_{l}}\left(\prod_{m=1}^{n} h_{m_{1}} \sum_{i}^{\infty} \cdots\right. \\
& \left.\cdots \sum_{i_{n}-\infty}^{\infty} \sum_{-\infty}^{\infty}\left|g\left(x_{i_{1}}^{(n)}-u_{1}, \ldots, x_{i_{n}}^{(n)}-u_{n}\right)\right|^{p}\right)^{1 / p}<\infty \tag{1}
\end{align*}
$$

or

$$
\|g\|_{p\left(R_{n}\right)}=\|g\|_{p}<\infty .
$$

Then

$$
\begin{equation*}
\left|g_{\cdot} k_{p,\left(R_{n}\right)} \leqslant\left(\left(g_{n}\right)\right)_{p}^{\left(n_{1}\right)} \leqslant \prod_{1}^{n}\left(1+h_{i} v_{t}\right)\right| g_{-} k_{p,\left(R_{n}\right)} . \tag{2}
\end{equation*}
$$

Proof. When $p=\infty$, inequalities (2) are trivial. Lot $1 \leq p<\infty$, then

- S. M. Nakol'akiy [̄̄].

$$
\begin{aligned}
& \int \lg p d x= \\
& =\sum_{i_{1}=-\infty}^{\infty} \ldots \sum_{1_{n}=-\infty}^{\infty} \int_{0}^{A_{1}} \ldots \int_{0}^{a_{n}} \mid g\left(x_{i_{1}}^{\left(n_{1}\right)}-u_{1}, \ldots, x_{i_{A}}^{(n)}-\left.u_{n}\right|^{n} d u=\right. \\
& =\int_{0}^{n_{1}} \ldots \int_{0}^{n_{n}} \sum \ldots \sum\left|g\left(x_{i_{1}}^{(1)}-u_{1}, \ldots, x_{i_{a}^{(n)}}^{(n)} u_{n}\right)\right| d u \leqslant((g))_{D}^{(n)},
\end{aligned}
$$

and we have proven the first inequality of (2) on the essumption that the second member of (2) is finite. Now let the third member of (2) be finite. To prove the ecocon inequailty in (2), we note that $g(s-a)=E\left(z_{1}-u_{1}\right.$, $\ldots, z_{n}-u_{n}$) for any apecified u_{1} is an integral function of the type with reapect to s for which $\|\varepsilon(x-u)\|_{p}=\|s(x)\|_{p}$. Therefore, it ouffices to prove the inequality

$$
\begin{aligned}
& \left(\prod_{=1}^{n} h_{1} \sum_{t_{1}=-\infty}^{\infty} \cdots \sum_{t_{a}=-\infty}^{\infty} \mid g\left(x_{i_{1}}^{(1)}, \ldots, x_{i_{n}^{(n)}}^{(n)}\right)\right)^{1 / p} \leqslant \\
& \cdots \quad \leqslant \prod_{i=1}^{n}\left(1+h_{1} v_{l}\right)\|g\|_{6} .
\end{aligned}
$$

Bod bas already been proved in the preceding theorem for the case $n=1$. Let us asoume that its validity has been established for $m=n-1$. Then by virtue of fact that for any apecified x_{1} in the function i is an integral
function of the type v_{2}, \ldots, v_{n}, reapectively, for x_{2}, \ldots, x_{n}, we will have

$$
\begin{array}{r}
\prod_{i=1}^{n}\left(1+h_{1} v_{1}\right)^{p} \int \ldots f \mid g\left(x_{1}, x_{2}, \ldots, x_{n}\right) p d x_{2} \ldots d x_{n}> \\
\geqslant \prod_{i=2}^{n} h_{1} \sum_{i_{2}=-\infty}^{\infty} \ldots \sum_{i_{n}=-\infty}^{\infty}\left|g\left(x_{1}, x_{i_{2}}^{(2)}, \ldots, x_{i_{n}}^{(n)}\right)\right|^{p},
\end{array}
$$

from whence after integration with respect to x_{1} and raiaing to the power p^{-1} we get

$$
\begin{aligned}
& \prod_{i=2}^{n}\left(1+h_{1} v_{1}\right)\|g\|_{p} \geqslant\left(\prod_{i=2}^{n} h_{1}\right)^{1 / p} \times \\
& \quad \times\left(\sum_{1_{2}=-\infty}^{\infty} \ldots \sum_{1_{n}=-\infty}^{\infty}\left(\int\left|g\left(x_{1}, x_{i_{2}}^{(n}, \ldots, x_{l_{n}}^{\left(n_{n}\right)}\right)\right|^{p} d x_{1}\right)^{1 / p} \geqslant\right. \\
& \quad \geqslant \frac{1}{1+h_{1} v_{1}}\left(\prod_{i=1}^{n} h_{1} \sum_{i_{1}=-\infty}^{\infty} \ldots \sum_{t_{n}=-\infty}^{\infty}\left|g\left(x_{i_{1}}^{(n)}, \ldots, x_{i_{n}}^{(n)}\right)\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

The last inequality holds by virtue of the second inequality 3.3.1(1), aince E is an integral function of the type ν_{1} with respect to x_{1}.
3.3.3. Lorma"). For ang $a_{k} \geqslant 0$

$$
\begin{equation*}
\left(\sum_{1}^{\infty} a_{n}^{p}\right)^{1 / p} \leqslant\left(\sum_{1}^{\infty} a_{n}^{p}\right)^{1 / p} \quad\left(1 \leqslant p \leqslant p^{\prime} \leqslant \infty\right) . \tag{1}
\end{equation*}
$$

Proof. It is surficient to hold that

$$
\sum_{i}^{\infty} a_{i}^{p}=1,
$$

then

$$
a_{i} \leqslant 1, \quad \sum_{1}^{\infty} a_{n}^{p} \leq \sum_{1}^{\infty} a_{i}^{0}=1,
$$

from whence follows inequality (1) for $1 \leqslant p<p^{\prime}<\infty$. To get (1) for $p^{\prime}=\infty$, it is auffice to pass the limit as $p^{\prime} \rightarrow \infty$.
3.3.4. Theorem. Under the conditions of theorem 3.3.2, the inequality

$$
\begin{equation*}
((g))_{p^{\prime}}^{(n)} \leqslant\left(\prod_{j=1}^{n} h_{1}\right)^{\frac{1}{p}-\frac{1}{p}}((g))_{p}^{(n)} \quad\left(1 \leqslant p \leqslant p^{\prime} \leqslant \infty\right) \tag{1}
\end{equation*}
$$

obtains.
It followe directly from the definition of $((g))_{p}^{(n)}$ and the preceding Lemma.
\#) ef Hardy, Littlewood, and Polya [1].
3.3.5. Theorm) If $1 \leq p \leq p^{\prime} \leq \infty$, then for an integral function of the exponantial type $=\varepsilon_{\nu} \in L_{p}\left(R_{n}\right), v=\left(v_{1}, \ldots, \nu_{n}\right)$, the inequality (of difforeat motricd)

$$
\begin{equation*}
\left|\varepsilon_{-} L_{\mu\left(R_{n}\right)}<2^{n}\left(\prod_{1}^{n} v_{n}\right)^{\frac{1}{p}-\frac{1}{\gamma}}\right| \varepsilon_{\cdot} L_{p}\left(R_{n}\right) . \tag{1}
\end{equation*}
$$

obtains.
For specified n and arbitrary $v{ }^{2}$, this inequality is an axact in the conce of order.

Proof. Baecd on 3.3.2(2) and 3.3.4, and sotting $\omega=1 / p-1 / p^{\prime}$, we sot

$$
\begin{align*}
& \|g\|_{L_{0},\left(R_{n}\right)}<((g))_{p}^{(n)}<\left(\prod_{i=1}^{n} h_{i}\right)^{-\infty}((g))_{p}^{(n)}< \\
& <\prod_{1}^{n} \frac{1+n_{i y^{\prime}}}{n_{i}^{\prime}}\|E\|_{,\left(R_{A}\right)}= \\
& =\prod_{i}^{n} \frac{1+a_{l}}{a_{i}^{\circ}}\left(\prod_{i}^{n} v_{l}\right)^{\omega}\|\varepsilon\|_{\varepsilon_{\mu}}\left(\alpha_{A}\right)^{\prime} \quad\left(a_{l}-h_{l} v_{l}\right) . \tag{2}
\end{align*}
$$

Punction

$$
\psi(a)=\frac{1+a}{a^{0}}
$$

a Lons the semiexis $0<\alpha<\infty$ reaches ite minimur equal to

$$
\begin{equation*}
\lambda_{\omega}=\frac{1}{\omega^{\omega}(1-\omega)^{1-\omega}} \leqslant 2 . \tag{3}
\end{equation*}
$$

Thus, we can write

$$
\|E\|_{L_{p}\left(R_{n}\right)} \leqslant\left(\lambda_{a}\right)^{n}\left(\prod_{1}^{n} v_{l}\right)^{\bullet}\|E\|_{p}\left(R_{a}\right)
$$

whence by (3) follow (1).
7) S. M. Mikol'skiy $\overline{\overline{3}} \overline{\mathrm{~J}}$, of notes 3.3-3.4.3 at the ond of the book.

To prove the ecoond ascertion of the theoren, let we exnmine the funotion

$$
\begin{equation*}
F_{v}-\prod_{1}^{n} \frac{\sin ^{2} \frac{v_{1}^{2} y_{1}}{.2}}{2_{1}^{2}} \tag{4}
\end{equation*}
$$

which obvioualy belonge to $L_{p}\left(R_{n}\right)$ for any p eatiofying the inequalitios $1 \leqslant p$ $\leq \infty$ and which is an integral function of the type $v=\left(v_{1}, \ldots, \nu_{n}\right)$. Its norm is

$$
\left\|F_{v}\right\|_{L_{p}\left(R_{A}\right)}=\left(2^{n} \prod_{1}^{n} \int_{i}^{\infty}\left|\frac{\sin ^{2} \frac{v_{1} t}{2}}{\rho^{2}}\right|^{p} d t\right)^{\frac{1}{p}}=c_{p}\left(\prod_{1}^{n} v_{n}\right)^{2-\frac{1}{p}}
$$

where o_{p} is a positive constant not dopendent on ν_{1}. Consequentiry,

$$
\cdot\left\|F_{r}\right\|_{L_{r}\left(n_{n}\right)}=\frac{c_{p}}{c_{p}}\left(\prod_{1}^{n} v_{n}\right)^{\frac{1}{p}-\frac{1}{r}}\left\|F_{v}\right\|_{p\left(n_{n}\right)}
$$

which vas what ve eot out to prove.
3.3.6. Theoren on compactnosg*). From any eequanoe of funotions (k) $\in m_{r p}\left(R_{n}\right)(1 \leq p \leq \infty, k=1,2, \ldots)$ bounded on the metric $K_{p}\left(R_{n}\right)$, we can soparate a subsequence $\mathbb{R}_{\left(k_{1}\right)}(1=1,2, \ldots)$ and dofine such function $E \in m_{\nu p}\left(R_{n}\right)$ that the inequality

$$
-\lim _{n_{1} \rightarrow \infty} g_{\left(a_{d}\right)}(z)=g(z)
$$

obtaine, uniforming on any bound ent.
Proof. By the civan condition there existe the constant Λ_{1} ouch that

$$
\begin{equation*}
\|g(n)\|_{L_{p}\left(R_{n}\right)} \leqslant A_{1}, \quad k=1,2, \ldots \tag{1}
\end{equation*}
$$

Hence, by 3.3.5(1)
7) $\mathrm{p}=\infty$ and $\mathrm{n}=1$, S. N. Bermabtern [1]. L , pp 269-270.

$$
\begin{equation*}
\left|g_{(x)}(x)\right|<2^{n}\left(\prod_{\|}^{n} v_{n}\right)^{\frac{1}{p}}\left\|g_{(x)}\right\|_{l_{p}}\left(n_{n}\right)<A_{1} \tag{2}
\end{equation*}
$$

where the constant A aleo does not dopend on k.
Lot ue expand $E_{(k)}(s)$ into a Taylor eeriess

$$
\cdot g(k)(z)=\sum_{\cdot>0} \frac{c_{1(k)}\left(z^{e}\right.}{a l},
$$

whore $a=\left(a_{1}, \ldots, a_{n}\right)$ are ajoting of nonintegral integers and

$$
c_{0}^{\left(n_{1}\right)}=\frac{\partial^{d 1_{1}+\cdots+E_{n}} g_{(u)}(0)}{\partial x_{1}^{E_{1}} \ldots \partial x_{n}^{E_{n}}}
$$

By moans of (2) and Bernahteyn's inequailty (3.2.2(8))

$$
\begin{equation*}
\left|c_{0}^{(4)}\right| \leqslant A v^{2}, \quad k=1,2, \ldots . \tag{3}
\end{equation*}
$$

Thus, the confficionts $c(k) k=1,2, \ldots$ are unifornly bounded for ans apecified ayster a and, it is posalbie, by using the diagonal procese, to get a aubsequence of natural nembera k_{1}, k_{2}, \ldots such that

$$
\begin{equation*}
\lim _{a_{d} \rightarrow \infty} c_{a}^{\left(a_{j}\right)}=c_{0} \tag{4}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
g(z)=\sum_{i>0} \frac{c_{a}}{a!} \tag{5}
\end{equation*}
$$

then

$$
|g(z)| \leqslant A \sum_{n>1} \frac{v^{0}\left|z_{1}\right|^{\varepsilon_{1}} \ldots\left|z_{n}\right|^{\varepsilon_{n}}}{a!}=A e^{\sum_{v} v_{1}\left|z_{j}\right|}
$$

because the numbers c_{a} eatiafy the inequality

$$
\begin{equation*}
\left|c_{a}\right| 5 A v \tag{6}
\end{equation*}
$$

Coneequantiy, $f(s)$ is an integral function of the exponential type .
Furthor, considering that $|\alpha|^{2}=\sum_{j=1}^{n} \alpha_{j}^{2}$, we get

$$
\begin{aligned}
\left|g(z)-g_{\left(z_{s}\right)}(z)\right| & <\sum_{1 \cdot 1<N} \frac{\left|c_{a}-c_{a}^{\left(a_{s}\right)}\right|}{a!}\left|z_{1}\right|^{a_{1}} \ldots\left|z_{n}\right|^{a_{n}}+ \\
& +\sum_{1 \cdot 1>N} \frac{\left|c_{0}\right|+\left|c_{1}^{\left(u_{s}\right)}\right|}{a!}\left|z_{1}\right|^{a_{1}} \ldots\left|z_{n}\right|^{a_{n}}=\sigma_{1}+\sigma_{2} .
\end{aligned}
$$

But by (3) and (6) for

$$
\sqrt{\sum_{1}^{n} \mid z, \beta} \leqslant K
$$

$$
\sigma_{2} \leqslant 2 A \sum_{\mid \cdot 1>N} \frac{\left|v_{1} z_{1}\right|^{\theta_{1}} \ldots\left|v_{\infty} z_{0}\right|^{\theta_{n}}}{a \mid}<8
$$

for oufficiontly large N , If thi aufficientiy large N is apecified, then by (4) wo can apeciry arch an 0_{0} that $\left|\sigma_{1}\right|<\varepsilon$ for all $>0_{0}$ and $|\leq| \leqslant K$.

Thus,

$$
\begin{equation*}
\lim _{k_{t} \rightarrow \infty} g_{k_{j}}(z)-g(z) \tag{7}
\end{equation*}
$$

is uniform for all satiafying the inequality $\mid s / \leqslant K$, where K is and poaltive number.

Finaily, if $v_{p} \subset P_{n}$ is a aphere with radius ρ and its center at the origin of coordinates, then by (7) and (1)

$$
|g|_{L_{p}\left(v_{p}\right)}=\lim _{p \rightarrow \infty} \mid g_{\left(A_{p}\right)} L_{p}\left(v_{p}\right)<A_{1},
$$

from whence after passage to the linit as $p \rightarrow \infty$, wo got
and $g \in m_{r p}\left(R_{n}\right)$.

$$
\|g\|_{L_{p}\left(R_{A}\right)} \leqslant \dot{A_{1}}
$$

> 3.3.7. Example of the application of thoorem 3.3.5. Lot us asaume the numbers $1 \leqslant p_{1}, p_{2}, \ldots, p_{n} \leqslant \infty$ and oxamine the apace $L_{\left(p_{1}, \ldots, p_{n}\right)}\left(R_{n}\right)$ $=L_{p}\left(R_{n}\right)$ of R_{n}-measurable functiona $f(x)=f\left(x_{n}, \ldots, x_{n}\right)$, for which the norm

$$
\begin{equation*}
=\left\{\int\left[\ldots\left(\int\left(\int|f|^{p_{n}} d x_{n}\right)^{\frac{p_{n-1}}{p_{n}}} d x_{n-1}\right)^{\frac{p_{n-1}}{p_{n-1}}} \ldots\right]^{\frac{p_{1}}{p_{1}}} d x_{1}\right\}^{\frac{1}{p_{1}}} \tag{1}
\end{equation*}
$$

if finite, where all integral taken from - ∞ to $+\infty$
Here, if $p_{n^{\prime}}=p_{n^{\prime}+1}=\ldots=p_{n}=\infty$, then we must assume

$$
\begin{array}{r}
\left\{\int\left[\cdots\left(\left(\int \mid f p_{n} d x_{n}\right)^{\frac{p}{p_{n}-1}} d x_{n-1}\right)^{\frac{p_{n-1}}{p_{n-1}}}\right]^{\frac{p_{n^{\prime}}}{p_{n^{\prime}+1}}} d x_{n^{\prime}}\right\}^{\frac{1}{p_{n^{\prime}}}} \\
=\sup _{x_{n^{\prime}}}\left|f\left(x_{1}, \ldots, x_{n^{\prime}-1}, x_{n^{\prime}}, \ldots, x_{n}\right)\right| \tag{2}
\end{array}
$$

for specified arbitrary $x_{1}, \ldots, x_{n^{\prime}-1}$.
Suppose initially $1 \leqslant p \leqslant p_{1} \leqslant p_{2} \quad \cdots \leqslant p_{n}$ and $g_{\nu}=g_{\nu_{1}}, \cdots \rho_{\nu_{n}}$ $=E$ is an integral function of exponential type ν bounded by R_{n}. Considering it as a function only of the variable x_{n}, we can write

$$
\left(\int \mid g P_{n} d x_{n}\right)^{\frac{1}{p_{n}}}<2 v_{n}^{\frac{1}{p_{n-1}}-\frac{1}{p_{n}}}\left(\int \mid g P^{p_{n-1}} d x_{n}\right)^{\frac{1}{p_{n-1}}}
$$

whore everywhere we agree to take the integrele within infinite limits $(-\infty, \infty)$.
Hence

$$
\begin{aligned}
& \left(\int\left(\int|g|^{p_{n}} d x_{n}\right)^{\frac{p_{n-1}}{p_{n}}} d x_{n-1}\right)^{\frac{1}{p_{n-1}}} \leqslant \\
& \quad-\leqslant 2 v_{n}^{\frac{1}{p_{n-1}}}-\frac{1}{p_{n}}\left(\iint|g|^{p_{n-1}} d x_{n-1} d x_{n}\right)^{\frac{1}{n_{n-1}}} \leqslant \\
& \leqslant 2^{1+2} v_{n}^{\frac{1}{p_{n-1}}}-\frac{1}{p_{n}}\left(v_{n-1} v_{n}\right)^{-\frac{1}{p_{n-2}}-\frac{1}{p_{n-1}}}\left(\iint|g|^{p_{n-2}} d x_{n-1} d x_{n}\right)^{\frac{1}{p_{n-2}}}
\end{aligned}
$$

Here the first inequality follows from theorem 3.3.5 when $n=1$ and $p=p$ and $p^{\prime}=p_{n}$, but the second inequality of theorem 3.3 .5 holds when $n=p_{n-13}$ and $p=p_{n-2}$ and $p^{\prime}=p_{n-1}$. Extending this process to the end, we get the inequality*)

$$
\begin{align*}
& \left|g_{v}\right|_{\left(p_{1}, \ldots, p_{n}\right)}\left(R_{n}\right)<2^{\frac{n(n+1)}{2}} \frac{1}{v_{n}} \frac{1}{p_{n-1}}-\frac{1}{p_{n}}\left(v_{n-1} v_{n}\right)^{\frac{1}{p_{n-2}}-\frac{1}{p_{n-1}}} \times \ldots \\
& \ldots \times\left(v_{1} \ldots v_{n}\right)^{\frac{1}{p}-\frac{1}{n_{1}}}\left|g_{v}\right|_{L_{p}\left(R_{n}\right)}=2^{\frac{n(n+1)}{2}} \prod_{1}^{n} v_{n}^{\frac{1}{p}-\frac{1}{p_{k}}}\left|g_{v}\right|_{L_{p}\left(R_{n}\right)} . \tag{3}
\end{align*}
$$

*) S. M. Nival' skis $\overline{L 5}, 13,1 \overline{4}$.

To get this inequality, easentially we ueed inequality $3.3 .5(1) \mathrm{n}$ times in the corresponding particular cases.

In order to prove inequality (3) in the goneral case $1 \leqslant p \leqslant p_{1}, \ldots$, $p_{n} \leqslant \infty$, it is sufficiont to note that

$$
\begin{equation*}
\|f\|_{\left(\rho_{1}, \ldots, \rho_{a_{0}}\right)} \leqslant\|f\|_{\left.L_{\left(\rho_{0}, \ldots,\right.}, \theta_{4}\right)} \tag{4}
\end{equation*}
$$

where q_{1}, \ldots, q_{n} is the permutation of the nubers p_{1}, \ldots, p_{n} in the nondescending order. Inequality (4) atens from the generalized Minkowaki inequality (of 1.3.2). For example, yhen $n=2$ and $p_{1} \leqslant p_{2}$, we have

$$
\begin{aligned}
& {\left[\int\left(\int\left|f\left(x_{1}, x_{2}\right)\right|^{p_{1}} d x_{2}\right)^{\frac{p_{1}}{p_{1}}} d x_{1}\right]^{\frac{1}{p_{1}}}=} \\
& \quad=\left[\int\left(\int\left(\left\lvert\, f\left(x_{1}, x_{2}\right)^{\frac{p_{1}}{p_{1}} \frac{p_{1}}{p_{1}}} d x_{2}\right.\right)^{\frac{p_{1}}{p_{1}} \cdots} d x_{1}\right]^{\frac{1}{p_{1}}}=\right. \\
& =\left(\int| | f\left(x_{1}, x_{2}\right) p_{\frac{p_{1}}{p_{1}}} d x_{1}\right)^{\frac{1}{p_{1}}} \leqslant\left.\left|\int\right| f\left(x_{1}, x_{2}\right)^{p_{1}} d x_{1}\right|_{\frac{1}{p_{1}}} ^{\frac{1}{p_{1}}, x_{1}}= \\
& \quad-\left[\int\left(\int \mid f\left(x_{1}, x_{2}\right)^{p_{1}} d x_{1}\right)^{\frac{p_{1}}{p_{1}}} d x_{2}\right]^{\frac{1}{p_{1}}} .
\end{aligned}
$$

Inequality (3) in the order sense is exact, which can be verified for the functions F (cf 3.3.5(4)).

tinl Tripe

This inequality will also be very significant for the following: uaing them the norm of an integral function of the exponential type computed for the subspace $R_{m} \subset R_{n}(m<n)$ is estimated in terms of its norm couputed for the entire space R_{n}. We will subsequently see that inequalities of different moasures serve as basis of studying stabloboundary properties of differentlable functions.
$x=(n, 5)$,

$$
\begin{gathered}
a-\left(x_{1}, \ldots, x_{m}\right) \in R_{m} \\
y=\left(x_{m+1}, \ldots, x_{n}\right) \in \mathcal{\delta}^{\prime} \subset R_{n-m}
\end{gathered}
$$

and

$$
v=\left(v_{1}, \ldots, v_{m}\right) .
$$

By the dofinition of the function $g(x) \in M_{\nu p}(E)$, if it belonga to $L_{p}(\xi)$, and for almost all $\bar{f} \in \mathrm{E}^{\prime}$ with reapect to a is a function of the exponential type V.

$$
\text { For the functions } \quad g=g_{v} \in \mathbb{R}_{v p}(\mathcal{\delta})=g_{v p}\left(R_{m} \times \mathcal{S}^{\eta}\right)
$$

the inequality

$$
\begin{align*}
& \left|\left|g_{v}(z, y)\right|_{L_{y}\left(R_{m}\right)}\right|_{L_{p}\left(z^{\prime}\right)}<2^{m}\left(\prod_{1}^{m} v_{n}\right)^{\frac{1}{p}-\frac{1}{v}}\left|g_{v}\right|_{L_{p}\left(y_{1}\right)} \tag{1}\\
& 1 \leqslant \rho \leqslant \rho^{\prime} \leqslant \infty,
\end{align*}
$$

is satiafied, whore in the lort-hand alde the interior norm is computed with respect to the variable $\in \mathbb{R}$, and the exterior with reapect to the variable $J \underset{\mathcal{B}^{\prime}}{ }$. In fact, based on the inequality of different mecoures (3.3.5(1)), which is used for almost 11

$$
\begin{aligned}
& \left(2^{m}\left(\prod_{1}^{m} v_{k}\right)^{\frac{1}{p}-\frac{1}{v^{\prime}}}\|g(u, y)\|_{p},(y)\right)^{\prime}= \\
& \left.-\int\left(2^{m}\left(\prod_{1}^{m} v_{n}\right)^{\frac{1}{p}-\frac{1}{\gamma_{j}}}\|g(u, y)\|_{p},\left(n_{m}\right)\right)^{\prime} d y\right\rangle \\
& \geqslant \int_{f}\|g(a, y)\|_{L_{,}\left(R_{m}\right)} d y .
\end{aligned}
$$

from whence, by raising both sides of the resulting inequality to the power $1 / \mathrm{p}$, we get (1).

Let us eet $p^{\prime}=\infty$ in formana (1) and conalder that for some eet $\xi_{j} \subset E_{i}$ of complote measure the following property obtaine: for any $\overline{\text { Eif }}$ function $g(x, y)$ is of the type ν with reapect to and the norm

$$
\begin{align*}
& \|g(m, y)\|_{L_{m}\left(R_{m}\right)}=\sup _{u \in R_{m}} \operatorname{vrai}|g(u, y)|= \\
& \quad=\lim _{\rho \rightarrow \infty} \max _{\in \in V_{p}}|g(u, y)| \geqslant|g(u, y)| \quad\left(z \in R_{m}\right) . \tag{2}
\end{align*}
$$

Is finite, whare V_{p} donotes a ephere with its center at the origin of the radiue P, belongine to i .
 $\|g(\varepsilon, y)\|_{c_{p}(z)}<\left.\|g(a, j)\|_{\varepsilon_{\infty}}\left(n_{m}\right)\right|_{p,(\pi)}$.
and we eot, by taking (1) into account, the followine inoquality:

$$
\begin{equation*}
\left.\left.\|g(n, y)\|_{L_{p},(z)} \leqslant 2^{m}\left(\prod_{1}^{m} v_{n}\right)^{\frac{1}{p}} \right\rvert\, g_{-} l_{L_{p}}(8)^{\circ}\right) \tag{3}
\end{equation*}
$$

3.4.2. Theorell). If $1 \leq p \leq \infty$ and $1 \leqslant m<n$, than for amy integrel function $f(s)=8 v_{1}, \ldots, m_{n}\left(s_{1}, \ldots, s_{n}\right) \in J_{p}\left(g_{n}\right)$ of the exponantial type v the inequality (of difforent measures)

$$
\begin{align*}
& \left(\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \lg \left(u_{1}, \ldots, u_{m}, x_{m+1}, \ldots, x_{n}\right) \mid p d u_{1} \ldots d u_{m}\right)^{\frac{1}{\theta}} \leqslant \\
& \cdot \leqslant 2^{n-m}\left(\prod_{m+1}^{n} v_{n}\right)^{\frac{1}{p}}\left(\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}|g|^{p} d u_{1} \ldots d u_{n}\right)^{\frac{1}{p}} \tag{1}
\end{align*}
$$

obtalns.
For epecified u and a and arbitiany $v=\left(\nu_{1}, \ldots, \nu_{n}\right)$, thals inequality Is exact in the sense of order.

Proof. The apace R_{n} can be conaidered as the topolocical product $R_{m}=R_{n-m} \times R_{m}$
whare $\left(x_{1}, \ldots, x_{n}\right) \in R_{n},\left(x_{n+1}, \ldots, x_{n}\right) \subset R_{n-m}$. If now wo asoume in inequaity $3.4 .1(3)$ that $\mathcal{E}_{\mathcal{E}}=R_{2}$ and $\mathcal{E}_{1}=R_{1}$ and for case R_{n} with R_{2-n}, wo got the inequality we sook.

The axactnose of inoquality (1) in the sence of conee of ordor relative to v can be verified for the functione F_{V} (of 3.3.5(4)), which have - S. M. Mirool akeiv $\angle \overline{3} \bar{\jmath}$.
already eerred a aimilar purpose in 3.3.5.
Noto. Sotting in $3.3 .7(3) p_{1}=\ldots=p_{n}=p$, and $p_{m+1}=\ldots=p_{n}=\infty$, we got the inequality

$$
\begin{aligned}
& \left(\left.\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \sup _{m+1} \lg \left(u_{1}, \ldots, u_{m}, x_{m+1}, \ldots, x_{n}\right)\right|^{p} d u_{1} \ldots d u_{m}\right)^{\frac{1}{p}} \leqslant \\
& \quad<2^{\frac{n(n+11}{2}}\left(\prod_{m+1}^{n} v_{n}\right)^{\frac{1}{p}}\left(\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}|g(u)|^{p} d u_{1} \ldots d u_{n}\right)^{\frac{1}{p}} .
\end{aligned}
$$

which rafines inequality (1) in the eance that on the loft-hand side instead of $\left|\varepsilon\left(u_{1}, \ldots, u_{m}, x_{m+1}, \ldots, x_{n}\right)\right|^{P}$ appearing in the integrel, we have

$$
\sup _{m+1} \lg , x_{n}\left(u_{1}, \ldots, u_{m}, x_{m+1}, \ldots, x_{n}\right) p .
$$

3.4.3. Inequalities of difforent metrics and meagures for trifoncentric polymonials. Thore are amilogove to the correaponding inequalitios for integrel functions of the exponentinl type.

Lot $T=T(x) \in \min _{y}\left(R_{n}\right)$, i.e., T is a trigonomotric polynomial with reapeot to n variablee, and

$$
\begin{align*}
((T))_{p}^{(n)}= & \max _{u_{t}}\left(\prod_{n=1}^{n} h_{1} \sum_{i_{1}=1}^{N_{1}} \ldots\right. \\
& \left.\ldots \sum_{i_{n}=1}^{N_{n}}\left|T\left(x_{i}^{(n)}-u_{1}, \ldots, x_{l_{n}}^{(n)}-u_{n}\right)\right|^{p}\right)^{\frac{1}{p}} \tag{1}\\
\left(h_{t}=\frac{2 \pi}{N_{t}},\right. & \left.N_{t}=1,2, \ldots ; t=1, \ldots, n, 1<p \leqslant \infty\right) .
\end{align*}
$$

Then the inequalitien")

$$
\begin{align*}
& \left\|T_{v}\right\|_{L_{i}}^{(n)} \leqslant\left(\left(T_{0}\right)\right)_{p}^{(n)} \leqslant \prod_{1}^{n}\left(1+h_{i} v_{l}\right)\left\|T_{v}\right\|_{L_{i}}^{(n)}, \\
& -\quad\left\|T_{-}\right\|_{i=}^{(n)}<3^{n}\left(\prod_{1}^{n} v_{l}\right)^{\frac{1}{p}-\frac{1}{\gamma^{\prime}}}\left\|T_{\cdot}\right\|_{c ;}^{(n)}, \tag{2}\\
& \left(\int_{0}^{2 \pi} \ldots \int_{0}^{2 \pi}\left|T\left(u_{1}, \ldots, u_{m}, x_{m+1}, \ldots, x_{n}\right)\right|^{p} d u_{1} \ldots d u_{m}\right)^{\frac{1}{p}} \leqslant \tag{3}
\end{align*}
$$

7) See note 3.3-3.4.3 at the ond of the book.

$$
\begin{equation*}
\leqslant 3^{n-m}\left(\prod_{m+1}^{n} v_{l}\right)^{\frac{1}{n}}\left(\int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi}|T \cdot|^{p} d u_{1} \ldots d u_{m}\right)^{\frac{1}{p}} . \tag{4}
\end{equation*}
$$

obtain. They are analogous to the correoponding inequalities proved above for integral functions of the exponential type and are almilarly proven. Hore already in our proof all the ove (Σ) are axtanded, as in (1), over a finite muber of a wianda (N_{1}, \ldots, K_{m}), the integrale are taken over periods,
and we use Bernahtegn's inequality for trigonomotric polypondals. Howover, If we pursue the arguent on analogy with what was done for functions of the exponontial type, we get a (rounded) constant 3 instead of 2 , which is because In the periodic case wo have to seek for the minisul of $\psi(\alpha)$ anong discrete values of α. But, of couree, those cases be reduced conetants are over-atated.

Absioss of etill other inequalities precented in 3.3 can be obtainod for trigonometric polfronials.

The exactness of those inequalitios in the sonse of order is verified in thise case for the Fojer kernels (of 2.2.2).

3.5. Subpacen of Function of a CAven Eroonentid. Tros

Theorem. The apace $m_{\nu p}(\xi)=m_{\nu p}\left(R_{1} \times \xi^{\prime}\right)($ of 3.4 .1$)$ is a aubapace of the apace $L_{p}(\varepsilon), i .0 .$, aet inearly closed on $L_{p}(\xi)$.

Proof. The linearity of $m_{\nu p}(G)$ is obvious.
Suppose lot the condition

$$
\begin{equation*}
\lim _{A_{1} \rightarrow \infty}\left\|g_{1}-g_{1}\right\|_{\varepsilon_{p}}\left(s_{1}=0\right. \tag{1}
\end{equation*}
$$

is satisfied for the sequence $g_{k}=g_{\nu k} \in \eta_{\nu p}(\xi)(k=1,2, \ldots)$. Then the exists of function $f \in L_{p}$ (\mathcal{E} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|f-g_{A}\right\|_{L,(n)}=0 . \tag{2}
\end{equation*}
$$

Obviously, we oan apecify this sot $\mathrm{E}_{\mathrm{q}} \subset \mathrm{g}^{\prime}$ of complete meanure just as for all , $k=1,2, \ldots$ auok that $f_{k}(\pi, y)$ will be integral with reapect to u and the expopantial typey for all $\bar{y} \in \mathrm{E}^{\prime} 1$. At the ame time wo can maintain that E', alao exhibits the property

$$
\begin{equation*}
\lim _{n_{j} \rightarrow \infty}\left|f(\mu, y)-g_{n_{0}}\left(u_{1} y\right)\right|_{L_{p}\left(R_{m}\right)}=0 \text { длп вcex } y \in \mathcal{\delta}_{1}^{\prime \prime} \quad \text { for all } \overline{I_{1}} \tag{3}
\end{equation*}
$$

whare k is a sume suquonce of natural numbers that is same for afl $\overline{K_{1}} \mathbb{E}_{1}$ (this falls for (2) on the bails of lemina 1.3.8). Further, from (3), by vistue of inequality 3.2.2(10) ($p=\infty$) and the inequality of different matrica It follow that $\left(J \in \mathcal{E}^{\prime}\right.$,)

$$
\begin{aligned}
& \left|g_{k_{j}}(u+i 0, y)-g_{h_{g^{\prime}}}(u+i 0, y)\right| \leqslant \\
& <\sup _{n}\left|g_{n_{g}}(\mu, \dot{y})-g_{h_{d}}(u, y)\right| e^{\sum_{m=1}^{m} v / \rho \rho}<
\end{aligned}
$$

This ahows that $f_{k_{0}}(z, y)$ for any apecified $\bar{y} \in \mathcal{E}_{1}^{\prime}$ as $\rightarrow \infty$ uniformily on any bounded set of ocmplex s tende to som function $g(s, y)$ that obviously is integral with reapect to s. Suppose

$$
\Delta_{N}=\{|x,|\leqslant N ;|=1, \ldots, n\} .
$$

From the foregoing it follow that $\mathrm{fl}_{\mathrm{g}}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{x})(\mathrm{s} \rightarrow \infty)$ almost everywhore on $\mathcal{E} \Delta_{N}$, and from (2) it then follow that $g(x)=f(x)$ almost everywhere on $\mathcal{E} \Delta_{N}$, and consequantly (by virtue of the arbitrary status of N), 180 on \mathcal{E}.

Finally, from an inequality analogous to (4),

$$
\left|\varepsilon_{n_{d}}(z, y)\right| \leqslant 2^{m} \prod_{m}^{m} v \frac{1}{p}\left|g_{n_{d}}(u, y)\right|_{L_{p}\left(n_{m}\right)}\left(y \in \varepsilon_{1}^{\prime}\right)
$$

passing to it at the limit as $s \rightarrow \infty$, we obtain the same inequality, but now for g, which ahows that g for any $y \in \delta_{1}$ is of the exponential type v with respect to a .

We have proven that the function f appearing in (2) can be modified on a set of n-dimensional measure zero auch that for almoat all \bar{y} it will be integral and of the exponential type γ with reapect to E , and aince $\mathrm{I} \in \mathcal{L}_{\mathrm{p}}\left(R_{\mathrm{h}}\right)$, then $f \in m_{\nu p}(E)$. The theorem stands proven.

3.6. Convolutions With Intersal Functions of the Expopantial Trpe

3.6.1. Lamma. Lot

$$
\begin{equation*}
g(t)=\sum_{n}^{\infty} c_{2 n} t^{2 k} \tag{1}
\end{equation*}
$$

be an even integral function of one variable of the exponential type V. Then the function

$$
\begin{equation*}
g .(x)=g(|x|)=\sum_{0}^{\infty} c_{2 n}|x|^{2 n} \tag{2}
\end{equation*}
$$

is integral and of the spherical type ν.
Proof. Series (1) converges absolutely for any t, and the polynomial

$$
|x|^{2 n}=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{n}
$$

his positive coefficients. Therefore series (2), after removal of the parentheses, is in each of its members a power series in powers of x_{1}, \ldots, x_{n} converging absolutely for any $x=\left(x_{1}, \ldots, x_{n}\right)$. Consequently, $\mathrm{En}_{n}(z)$ is an integral function. It is an exponential, spherical type ν function, because

$$
\left|g_{0}(z)\right|=\left|g\left(\sqrt{\sum_{1}^{n}\left|z_{j}\right|^{2}}\right)\right|<A_{s} e^{(v+e)} \sqrt{\sum_{1}^{n}|z j|^{p}} .
$$

3.6.2. Theorem. Suppose g is an integral function of the exponential type v_{j} with respect to $z_{j}(j=1, \ldots, n$ (or of the spherical type v), belonging to $L_{q}\left(R_{n}\right), 1 \leqslant q \leqslant \infty$, and $f \in L_{p}\left(R_{R}\right)(1 / p+1 / q=1)$. Then the function

$$
\omega(x)=\int g(x-u) f(u) d u
$$

belongs to $m_{\nu \infty}$ (respectively, to $S M_{H}$), i.e., is an integral oxponential type v_{j} function with respect to z_{j} (correspondingly, of apherical degree v) bounded on $R=R_{n}$.

If $\varepsilon \in L$, and $f \in L_{p}(1 \leqslant p \leqslant \infty)$, thon $\omega \in L_{p}(1.3 .3)$, tharefore $a \in M_{\nu p}\left(s m_{\nu p}\right)$.

Proof. The boundodnese of a on R follows from the inequelity

$$
\begin{equation*}
|\omega(x)| \leqslant\|g(x-\mu)\|_{Q}\|f(u)\|_{p}-\|g\|_{\|}\|f\|_{p} . \tag{1}
\end{equation*}
$$

Bocauce ε ie an intereal function, the Taylor corios expanaion

$$
\begin{equation*}
g(z-u)=\sum_{i \geqslant 1} \frac{e^{(u)}(-a)}{k i} \tag{2}
\end{equation*}
$$

obtaine, absolutoly convargent for any $u \in R$ and any complax $s=\left(z_{1}, \ldots, z_{n}\right)$.
We bave
then $(1 / p+1 / q=1)$

$$
\begin{aligned}
& \int \Phi(u) d u \leqslant \sum_{0} \frac{\left|x^{2}\right|}{u!}\left\|g^{(u)}\right\|\|f\|_{l}<
\end{aligned}
$$

This inoquality ahowe that equality (2) after ite multiplication by $f(x)$ can be legitimately (baced on the Loboscue theorem) integratod memberwise:

$$
\begin{gathered}
\omega(z)=\int g(z-u) f(u) d u-\sum \frac{c_{t}}{z t}, \\
c_{n}=\int g^{(u)}(-u) f(u) d u,
\end{gathered}
$$

and hare the inequality

$$
|\omega(z)| \leqslant\|g\|_{\bullet}\|f\|_{e} e^{\sum=1=1} v_{12},
$$

obtains.

If s is not only of the type y with reapect of each of the variables, but also of the apherical type v, then it can be further proven that ω is also of the apherical type v.

In fact, for real x, E, and y

$$
\begin{aligned}
& g(x+i y-u)=\sum_{i>0} \frac{f^{(n)}(x-m)}{n!}(i y)^{u}- \\
& =\sum_{i=0}^{\infty} i^{i} \sum_{i=1} \frac{g^{(n)}(x-\mu)}{k i} y^{n}-\sum_{i=0}^{\infty} i^{i} \frac{8_{y}^{(i)}(x-a)}{n}|y|^{\beta},
\end{aligned}
$$

where $f_{j}^{(1)}$ 1a derivative of g of the order 1 in the direction \bar{y}. Therefore, reaconing as in the derivation of (3), wo will have

$$
\omega(x+i y)=\sum_{i=0}^{\infty} \frac{\int \varepsilon_{y}^{(i)}(x-n) \mid(u) d \mu}{\|}(i|y|)^{?}
$$

considering the inequalities

$$
\left|\int \dot{g}_{y}^{(n)}(x-u) f(u) d u\right| \leqslant\left|g_{y}^{(n)}\right|_{\|}\|f\|_{p} \leqslant v\|g\|_{\|}\|f\|_{0} .
$$

which can be derived baced on 3.2.6(3), we got

$$
|\omega(x+i y)| \leqslant\|\varepsilon\|_{\|}\|f\|_{i} \sum_{i=0}^{\infty} \frac{(v \mid y)^{i}}{\|}=\|g\|_{Q}\|f\|_{\infty} e^{v|y|} .
$$

We have thuse proven that $w^{\prime} \in M_{\text {wos }}$

3.6.3. Theorem. Let

$$
\begin{equation*}
\omega(z)=\int k(|z-w|) f(z) d n, \quad \int-\int_{R m} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
k(t)=\left(\frac{\sin \frac{t}{\lambda}}{t}\right)^{\lambda} \tag{2}
\end{equation*}
$$

is a natural even number satiofying the inequalitios

$$
\begin{equation*}
0<\omega-b(H-\gamma) \tag{3}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(\frac{1}{p}+\frac{1}{q}-1\right) \\
\int\left|f(u)(1+|u|)^{-u}\right| d u<\infty \quad(u>0) . \tag{4}
\end{gather*}
$$

Than (s) is an integral function of the exponential spherical type 1. Proof. Suppose

$$
A=\left(\sum_{=1}^{m} \mid z, \beta\right)^{1 / 2} .
$$

Tains Hälder's inequality, we obtain

$$
\begin{equation*}
\text { - } \quad|\omega(z)| \leqslant|(z)| f(z)(1+|m|)^{-1} h_{p}\left(R_{\infty}\right) \tag{5}
\end{equation*}
$$

whase

$$
\begin{align*}
& I(f)=\left(\int_{\left.\mid k(|z-z|) P(l+|z|)^{m / n} d s\right)^{1 / 4}<} \leqslant\left(\int_{1<1<1}\right)^{1 / e}+\left(\int_{1<1<m}\right)^{1 / 0}+\left(\int_{\mid=1>1, m}\right)^{1 / 4}-I_{1}+I_{2}+I_{3}\right.
\end{align*}
$$

Notice that

$$
\begin{align*}
& 18-E P-\left|\Sigma x_{j}^{2}-2 \Sigma \Sigma_{2} \mu_{1}+\Sigma u_{1}^{2}\right|> \\
& \geqslant\left|\equiv \beta^{\beta}-2 A\right| \equiv \mid-A^{2}=(|m|-A)^{2}-2 A^{2}-\psi(|\approx|) \text {. } \tag{7}
\end{align*}
$$

Functione $(\text { ain } t / \lambda)^{\lambda}$ and $k(t)$ of the single varlable t are integral function of the type 1 , bounded on a real axie, tharofore (ain $|z| / \lambda)^{x}$ and \mathbf{k} (\mid s / ; are intapral functions of the apherical type 1 bounded on $R_{p}(3.6 .1)$. For thale case, considering that $n \in R$ are real pointe and $:=\left(x_{1}+i \gamma_{1}, \ldots\right.$, $\left.x_{n}+i y_{n}\right)$, and that (3.6.1) and 3.2.6(4) obtain, we have

$$
\begin{align*}
k(|z-n|) & <\exp |y| \leqslant \exp A . \tag{8}\\
\left(\sin \frac{|z-a|}{2}\right)^{2} & <\exp |y| \leqslant \exp A . \tag{9}
\end{align*}
$$

Therefore, by (8)

$$
\begin{array}{r}
I_{1} \ll \exp A\left(\int_{|u|<1}(1+|u|)^{q u} d u\right)^{1 / \varphi} \ll \exp A_{1} \\
I_{2} \ll \exp A\left(\int_{|u|<M}\left(1+\left.|u|\right|^{9 u} d u\right)^{1 / \varphi} \ll \exp \{(1+e) A\} .\right. \tag{11}
\end{array}
$$

where $E>0$ is an arbitrary amill number, the constant in the second inequality (11) depends on E, and by (7) and (9) (explanation below)

$$
\begin{equation*}
I_{3} \ll \exp A\left(\int_{\rho>1.2 \mu}^{p(\rho)^{\frac{-a}{2}}} \frac{\rho^{u a+m-1}}{\rho \rho}\right)^{1 / \varnothing} \ll \exp A \quad(\rho=|u|) \tag{12}
\end{equation*}
$$

The function

$$
\frac{p^{2}}{\varphi(p)}=\varphi(p) \quad(p>3 A)
$$

1e bounded, becaume it is positive and its derivative is negative. Consequent15, asauning

$$
-v=\frac{1}{2}(\lambda q-\mu q-m+1)
$$

and $P=t A$, wo get the reoult at the integral appearisig in (12) can, with an accuracy to conatant multipiler, not ourpase

$$
\begin{aligned}
\int_{\rho>M, 1} \frac{d \rho}{\psi(\rho)^{v}} & =\frac{1}{A^{2 v-1}} \int_{1>2, \frac{1}{A}} \frac{d t}{\phi(t)^{v}}< \\
& <\frac{1}{A^{2 v-1}} \int_{1>3, \frac{1}{A}} \frac{d t}{t^{2 v}}<\left\{\begin{array}{l}
\int_{0}^{\infty} t^{-2 v} d t<1 \quad(A>1), \\
\frac{1}{A^{2 v-1}} A^{2 v-1}=1 \quad(A<1),
\end{array}\right.
\end{aligned}
$$

1.e., that the eecond inequality (12) is valid. From the eatimate obtained it follows that for an $\varepsilon>0$ there exients a constant c_{c} not dependent on f, such that

$$
\begin{equation*}
|\omega(z)| \leqslant c_{e}\left|f(u)(1+|\mu|)^{-\mu}\right|_{L_{p}\left(R_{m}\right)} \exp \{(1+e) A\} \tag{13}
\end{equation*}
$$

It remaine to prove that (s) is an intecral function. Suppose $I_{N}=f$ for $\mid<\|$ and $f_{N}=0$ for $|x|>N$ and

$$
\omega_{N}(z)=\int k(|z-u|) f_{N}(u) d u .
$$

Let us againg an arbitrayy miber $\Lambda>0$ and $\operatorname{lot} \Sigma_{\Lambda}$ be the net of points $s=\left(s_{1}, \ldots, s_{n}\right)$ for whioh $\left|x_{j}\right|<\Lambda$. For arch pointa

$$
\therefore A=\sqrt{\sum_{1}^{m} \mid z, \beta} \leqslant m A
$$

and by (13)

$$
\left|\omega(z)-\omega_{N}(z)\right|<c_{z} m \Lambda \mid\left(\mid-f_{N}\right)(1+|u|)^{-\mu} L_{p}\left(R_{m}\right) \rightarrow 0,
$$

1.0.; $\mu_{H}(s) \rightarrow \omega(s)$ and $I \rightarrow \infty$ uniformig on ans E_{A}, and therafore, $\alpha(s)$ is an integrel (3.1.1). The ascertion has been proven (of furthar 4.2.2).

4.1. Ganyralized_Deriystive

Let us assign in the apace $R=R_{n}$ the open set g and let g_{1} atand for its arthogonal projection on the hyperplane $x_{1}=0$. Let the real (complox) moasurable function $f(x)=f\left(x_{1}, y\right)$ be given ong. For a apecified y it is a function of x_{1} determined on the correaponding open ainglo-dimensional sot. This function $f \cdot$ is absolutely contimous on any close finite segment belonging to this set, then we will state that it is locally absolutely continuous with respect to x_{1} for a apecified 5 .

By definition, function f has a generalised dorivative $\partial f / \partial x_{1}$ (with respect to x_{1}), if f is measurable on g and if thore exiats a function f_{j} equivalent to it (relative to g) and locaily absolutely contimous for almost all adaisaible $J\left(i, 0 ., J \in g_{1}\right)$. The function f_{1} will have almost everywhere on g (in the sense of the n-dimonaional meacure) for ordinary partial derivative $\partial f_{1} / \partial x_{1}$. We will then call ang function equivalent to it (in the sense of the n-dimensional meacure) the generalized derivative of f on g with respect to x_{1}, and refer to it with $\partial f / \partial x_{1}$.

If $P(t)$ is a function of the single variable t and Ω is an open set of points t, then the fact that φ has on Ω the genaral ised derivative $\varphi^{\prime}(t)$ can be expressed thualy: there exists a function φ_{1} equivalent to φ (with respect to Ω), and locally absolutely continuous on $\&$. Then P_{1} bas, as we know, almost everywhere on Ω the ordinary derivative φ ! (t). Any function equivalent to $\Phi^{\prime}{ }_{1}(t)$ is therefore by definition the gendralized derivative $\Phi^{\prime}(t)$ on Ω.

In order that there be no confusion, let us explain in greater detail why under the apecified conditions the ordinary partial derivative $\partial f_{1} / \partial x_{1}$ exists almost everywhere on g.

The projection g_{f} of the open set g on the subspace of points $y=$ $\left(0, x_{2}, \ldots, x_{n}\right)$ is ob̄lousiy aleo an open set. To oach apecified point
$y \in B_{1}$ there correoponds aro-diransioni opan (in the on-dimanalonal senne) eot σ of pointe of the form $\left(x_{1}, 7\right) \in E$. The cot E can be regarded an the theoretio-set an

$$
\varepsilon-\bigcup_{y \in g_{0}} e_{y}
$$

Under the oondition, the function $f_{f}\left(x_{1}, 7\right)$ for almont all $J \in E_{1}$ is absolutely continnong on x_{1} for each alosed secuant of variation of x_{1} belonsing to 9 . Hence it follow that for almost 11 pointe $J \in G_{1}$, the function $f_{1}\left(x_{y}, y\right)$ has for anoot all $x_{1} \in a_{y}$ the ordinery partini derivative $\partial f_{f} / \partial x_{1}=$ $f_{1 x_{1}}$. Lot \boldsymbol{E}^{\prime} stand for the sot of 11 pointa $x=\left(x_{y}, \delta\right) \in f$ for whioh the partial derivative $f_{1 x_{1}}$ doed not exiet. The eot f^{\prime} is manurable, aince it 1. complemontary to the cot of all pointe $x \in E$ for which there exicte the linit of the rointionchip.

$$
\lim _{h \rightarrow 0} \frac{f_{1}\left(x_{1}+h_{1} y\right)-f_{1}\left(x_{1, y}, y\right)}{h}-f_{1 x_{1}}\left(x_{1}, y\right)
$$

which is a meacurable function for each h (f is macurable on accordins to the fivon conditioni). We mast bear in aind that the eot of polnte of the conversence of the sequonce of meacurable frnotion on the (mocourabia) eot है is manurable'.

On the other hand,

$$
g^{\prime} \underbrace{}_{y} \bigcup_{\mathrm{a}_{1}} e_{y}^{\prime}
$$

whore for alnort $11 J \in E_{\text {, }}$ in the conse of the $(n-1)$-dimonsional mearure,
 and thus, the function f_{1} han alnoat evargwiere on f the ardinary partipl derivative of $f A x_{1}$, which wo called the genemilised partial derivative of f with seppect to x_{1}.

The function $d f / d x_{1}$ (Encurable on the opon2) set f) can in turn bave a conarilised pastial derivative with respect to $x_{1}, 1,0$, it can bo that there exists a function equivalent to it (in the eane of p-dimanaional meance),
T) Let F_{k} be a sequence of neacurable function civen on the menourable set $\kappa,{ }_{\text {en }}=\left\{x:\left|F_{2}(x)-F_{1}(x)\right|<1 / m\right\}$ for any k and $1 \geqslant n ; n$ and $m=$
 2) on fallowins page.
dofinod on g , and absolntoly continuous with reapect to x_{1} for asy closed cogent of variation of x_{1} for almost all $y \in g_{1}$. The ordinary derivative with reapect to x_{1} of F, oxiating alment overymbere, of the fupction equivalent to it is denoted by $\partial^{2 f / \partial x_{1}^{2}}$. Sinilarily, $\partial L_{/} / \partial x_{1}=f_{x_{1}}(k)(k=0,1$, $2, \ldots, f_{x_{1}}(0)=f$ is defined by induction. It is not difficult to see that if there existe on g the generalized derivative $\boldsymbol{a}_{\mathrm{f}}^{\mathrm{f}} / \partial \mathrm{x}^{\mathbf{k}}$, then the function I can alwase be brought into correapondence with the function ${ }_{2}$ equivalopt
to it and defimed on E auch that the derivative $\partial \rho / \partial x_{1}, \partial \rho / \partial x_{1}, \ldots, \partial p \rho x_{1}$ exists in the ordinary sense almont everyubere on and hore aiph x_{1}^{1} ($1=$ $0,1, \ldots, k-1$) are absolutely continuous with reapect to x_{1} on any alosed segment of variation of x_{1} for $2 l \mathrm{~J}$ belonging with the sam sot $\mathrm{E}_{1}^{\prime} \subset \mathrm{g}_{1}$,
distinct from \mathbf{g}_{1} on a set of zero measure.

$$
\text { The derivatives } k_{f /} x_{1}^{k}(1=2, \ldots, n) \text { generallsed on } g \text { are aimilarly }
$$

defined. Mixed derivatives of the second and higher orders are dofined inductively. For example, the derivative $\partial^{2} f / \partial x_{1} \partial x_{2}$ is defined by the equa13ty

$$
\frac{\partial y}{\partial x_{1} \partial x_{3}}=\frac{\partial}{\partial x_{1}} \frac{\partial f}{\partial x_{2}} .
$$

Obvioualy, the fact that the function $f(x)$ of one variable has a genoralised derivative of the order k on (a, b) reduces to the fact that it (after variation on the zero-measure set) has ordinary derivatives up to the orgar $k-1$ incluaivoly, that are absolutely continuous on any closed sement $L C$, $d /$ (a, b), which further entall the exietence of the derivative $f^{k}(x)$ the order of k almost everywhare on the interval (a, b).
2) In the definition of $\partial f / \partial x_{j}$, wo can take instead of the set $g \subset R_{n}$ by this open on R_{n}, the moasurable set $\mathcal{E} \subset R_{n}$, which is open with respect to
the variable x_{1}. More precisely, we can take the maamuable set R_{n}, whose projection 1 on the oubepace of pointe $y=\left(0, x_{2}, \ldots, x_{n}\right)$ is ${ }^{2}$
measurable in the ($n-1$)-dimonsional sense, such that

$$
r=\bigcup_{y \in \gamma_{1}} e_{y}
$$

where a are open one-dimensional sets of points of the form $\left(x_{1}, y\right)$ with the variable number x_{1}. In particular, the maaurable set of the form $E=R_{1} \times \mathcal{E}_{1} \subset R_{n}$, where E_{1} is a set measurable in the sense of the ($n-1$)dimensional measure is auch a aet.

Throughout thls book we will be dealing with comeralised dorivativea and therofore we will ofton call then derivatives without adding the word "comorallsed".

Though the definition of the generalised derivative given above is oxtremp coneral, oven as it presentis otande ae it is quite offective in applications for integration by parts, lot function f have on f the genoralized dorivative $\partial f / \partial x_{1}$. Hore we wifl conaider I to be already modified on the set of a-dimanional zoro meacure, as it in required by dofinition. Sappose, moreover that $\rho(x)$ is a function that is continuous on f together with its gerivative $\frac{3 p}{x}$. Thm , aimost all $y=\left(x_{2}, \ldots, x_{n}\right)$, watever be the eogent $\langle a, b / x y$ belonging to g, integration by parts is logitimate:

$$
\begin{align*}
& \int_{0}^{b} f\left(x_{1}, y\right) \frac{\partial \varphi}{\partial x_{1}}\left(x_{1}, y\right) d x_{1}=f(b, y) \varphi(b, y)- \\
& -f(a, y) \varphi(a, y)-\int_{0}^{b} \frac{\partial}{\partial x_{1}}\left(x_{1}, y\right) \varphi\left(x_{1}, y\right) d x . \tag{1}
\end{align*}
$$

Often it becomen necoscary that this exprescion be integrated with reapect to y, bat for this the masurability of $f(x)=f\left(x_{1}, y\right)$ on g is inourficiont, since auxiliary conditions on f are necessary. Sumability for locel suriability of f and $\partial f / \Delta x_{1}$ or of onily $\partial f / \partial x_{1}$ on f can be these offective conditions.

He find the concept of the conaralised derivative in the works of Boppo Levi LI_/, who considered cenerelised derivativee with an integrablo equare on 6. Subeoquentily many mathomaticians came to this concopt, often independentiy of their predecescora.
S. L. Sobolev $L \overline{1}, 2 \overline{/}$ arrived at the definition of the generalised derivative from the viewpoint of the concept of the goneralised function that he introduced. Sobolov's dofinition consiote of the following. Suppose f and λ ase functions locally aumable on the open cot E. If for any infinitely difforantiable function ρ finite on g, the equality

$$
\int \lambda \Phi d x=(-1)^{|\cdot|} \int f \Phi^{(n)} d x \text {. }
$$

is fulfilled, then λ is the generalised derivative $f(a)$ of f.
If the function f is locelly sumable on g together with its derivative $\partial f / \partial x$ on the sense of the firat definition, thon for an infinitels difforentiable function φ that is finite on 5 we will bave (cf (1))
and we have proven that the second definition followed from the firat definition of the derivative $\partial f / \partial x_{1}$. The converee is also true. It is more convenient for us to present the proof of this assertion later (cf 4.5.2), while we will operate from the firat definition. Notioe that both dofinitione of a nonmixed generalised dorivative $\partial^{P} f / \partial x f$ aloo coincide. But this is no longer true for a mixed derivative. From the firat definition atemed the second, but nct vice versa, as shown by the example of the function $f\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}\right)+\psi\left(x_{2}\right)$, where $\varphi\left(x_{1}\right)$ and $\varphi\left(x_{2}\right)$ are continuous nowheredifforentiable functions. In the sense of S. L. Sobolev, $\partial{ }^{2} f / \partial x_{p} \partial x_{2}=0$, but in the eonse of the first definition the derivative $\partial^{2} f / \partial x_{1} \partial x_{2}$ does not exist.
(s) The coincifence of both dufinitions of $f^{(s)}$ obtains in any case whon

$$
\begin{aligned}
f(a)=f\left(s_{1}, \ldots s_{n}\right), \text { also } & \int_{0} f \frac{\partial \varphi}{\partial x_{1}} d x=\int_{e_{1}}^{i} d y \int f(x, y) \frac{\partial \varphi}{\partial x_{1}}\left(x_{1}, y\right) d x_{1}= \\
& =-\int_{d_{1}}^{d y} \int \frac{\partial f}{\partial x_{1}}\left(x_{1}, y\right) \varphi\left(x_{1}, y\right) d x_{1}=-\int \frac{\partial f}{\partial x_{1}} \varphi d x_{1} \text { and } f
\end{aligned}
$$

a locally aumable. This obtaine for the function clageses $\mathrm{W}, \mathrm{H}, \mathrm{B}$, and L , which we will study in this book (ef for example, 4.4.6).

Lot us present a typical problem that naturally loads to the concept of the generalized derivative.

Let the sequence of continuously differentiable functions $f_{k}(x)(k=1$, 2, ...) and exhibiting the following property be given on gi whatever the bounded domain $\Omega \subset \Omega \subset E$

$$
\begin{array}{cc}
\mid f_{4}-f_{1} l_{L, \infty} \rightarrow 0 & \left(k_{1} l \rightarrow \infty\right) \\
\cdot\left|\frac{\partial h_{1}}{\partial x_{1}}-\frac{\partial h_{h}}{\partial x_{1}}\right|_{L, \infty} \rightarrow 0 & (k, l \rightarrow \infty) . \tag{3}
\end{array}
$$

It is required io characterize the local propertios of the function f to which f_{k} tends on the average (locally):

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{A}-f f_{p}(\infty)=0 \tag{4}
\end{equation*}
$$

These properties consiat of the fact that (cf 4.4 .5) the function f has the generalized derivative $\partial f / \partial x_{1}$ on g and f and $\partial f / \partial x_{1}$ are locally aumable on E in the p-th degree.

Let us present yot anotbor problem intimately related with our goals, leading to the concept of the generaliaed function.

Let Ω_{h} atand for the eot of points $x \in \Omega$ altuated from the boundary of the open h ot Ω by the diatance greater than $h>0$, and let

Purther, lot there be asciened on Ω a sequence of continuously differentiable function $f_{k}(x)$ arhibiting property (5) and such that

$$
\begin{equation*}
M_{a}\left[\frac{\partial / t}{\partial x_{1}}-\frac{\partial / t}{\partial x_{1}}\right] \rightarrow 0 \quad(k, t \rightarrow \infty) . \tag{6}
\end{equation*}
$$

It is required to characterise the properties of the function for which (4) obtains. These properties conaiat in fact that (cf 4.7) I has the genorelised derivative $\partial f A x_{1}$ on Ω, and that the velue of $M_{\alpha}\left(\partial f / \partial x_{1}\right)$ is finite.

Le'. Finite Differancal and Contimility Yodolan

Let $c \subset R_{n}$ be an open sot and $h=\left(h_{1}, \ldots, h_{n}\right) \in R_{n}$ is an arbitrary vector. We let E_{h} stand for the aet of points $x \in E$ auch that along with x, ans point $x+$ belong to f, where $0 \leqslant t \leqslant 1$, 1.0., ans point of the segmont comecting Σ and $x+h$.

We will aleo use the aymbol g_{δ}, where $\delta>0$, and the set of points $\Sigma \in E$ altuated from the boundary of g by a diatance ereater than δ. The sote E_{h} and δ_{δ} can be empty. Obviously, $|\mathrm{h}| \subset \mathrm{B}_{\mathrm{h}}$.

Let f be a function defined on g. If $x \in g_{h}$, then the (firat) differance

$$
\Delta_{n} f=\Lambda_{n} f(x)=f(x+h)-f(x)
$$

of the function f at point x with (vector) pitch h has a meaning.
By induction, we introduce the concept of the k-th difforence of function 1 at point. x with pitch k :

$$
\begin{aligned}
& \Delta_{h}^{k} f=\Delta_{h}^{k} f(x)=\Delta_{k} \Lambda_{h}^{k-1} f(x) \quad\left(\Delta_{h}^{0} f=f, \Delta_{h}^{\prime}=\Delta_{A}, k=1,2, \ldots\right) . \\
& \text { Lt is defined on the sat }
\end{aligned}
$$

In ans case, it is defined on the set Gych.
Obviously,

$$
\begin{equation*}
\Delta_{k}^{k} f(x)=\sum_{l=0}^{k}(-1)^{l+k} c_{k}^{l} f(x+l h) \quad(k=0,1, \ldots) . \tag{1}
\end{equation*}
$$

If s is a natural number, then obviously

$$
\Delta_{s n} f(x)=\sum_{i=0}^{1-1} \Delta_{n} f(x+l h)
$$

and (by induction)

$$
\begin{equation*}
\Delta_{s h}^{k} f(x)=\sum_{l_{1}=0}^{i-1} \ldots \sum_{l_{n}=0}^{i-1} \Delta_{n}^{k} f\left(x+l_{1} h+\ldots+l_{n} h\right) . \tag{2}
\end{equation*}
$$

We turn the module of continulty of order k of function f in the metric $L_{p}(g)$ in the direction h the variable

$$
\begin{align*}
\omega^{k}(\delta) & =\omega_{n}^{k}(f, \delta) \tag{3}\\
\omega(\delta) & =\sup _{n}(f, \delta)=\omega_{k}^{1}(f, \delta) .
\end{align*}
$$

(If \mathcal{E} is an empty set, then we assume $\|\cdot\|_{L_{p}(\xi)}=0$.) For the variable (3) to have a meaning, it is necessary that the norm under the aigm oup be finite which will obtain, for example, if $f \in L_{p}(g)$. Below we will dwell on several representative properties of the modules ${ }_{\omega} \mathrm{k}(\delta)$.

It is woll known (cf 1.3.12) that if the function $f \in L_{p}(g)$ and $1 \leqslant \mathrm{p}<\infty$, then

$$
\begin{equation*}
\lim _{t \rightarrow 0} \omega(t)=0 . \tag{4}
\end{equation*}
$$

When $p=\infty$ this property does not, eanerally speaking, obtain. However, it is satisfied trivially, if f is uniformily continuous on g.

The inoqualities

$$
\begin{equation*}
0 \leqslant \omega\left(\delta_{2}\right)-\omega\left(\delta_{1}\right) \leqslant \omega\left(\delta_{2}-\delta_{1}\right) \quad\left(0<\delta_{1}<\delta_{2}\right) . \tag{5}
\end{equation*}
$$

obtain. The first of these is obvious. The second can be demonstrated thusly. If δ_{1} and $\delta_{2} \geqslant 0$, then ang t with $|t| \leq \delta_{1}+\delta_{2}$ can be represented in the form $t=t_{1}+t_{2}$, where t_{1} and t_{2} are of the same aig with t and $\left|t_{1}\right| \leqslant \delta_{1},\left|t_{2}\right| \leqslant$ δ_{2}.

> Therefore,

$$
\begin{aligned}
& \leqslant \sup _{\substack{1 \\
1 t^{\prime} \mid<\alpha_{1} \\
1<o_{1}}}\left\|f\left(x+\left(t^{\prime}+t^{\prime \prime}\right) h\right)-f\left(x+t^{\prime \prime} h\right)\right\|_{p}\left(e_{n}\right)+ \\
& +\sup _{1 t^{\prime} \mid<Q_{0}}\left\|f\left(x+t^{\prime \prime} h\right)-f(x)\right\|_{p}\left(a_{t a}\right)< \\
& \leqslant \sup _{\left|t^{\prime}\right|<S_{G}}\left\|f\left(x+t^{\prime} h\right)-f(x)\right\|_{L_{p}\left(f_{t} \cdot k\right)}+\omega\left(\delta_{2}\right)=\omega\left(\delta_{1}\right)+\omega\left(\delta_{2}\right) \text {. }
\end{aligned}
$$

Substituting $\delta_{2}-\delta_{1}, \delta_{2}$ for $\delta_{2}, \delta_{1}+\delta_{2}$, respectively, in this inequality, we get (5).

From (4) and (5) it followa that the function (t) (when $1 \leqslant p<\infty$ and $p=\infty$, if f is ubiformly continoous on g) is continuous for ady $t \geqslant 0$.

Iet another property followa from the iecond inequality of (5):

$$
\omega(l \delta) \leqslant l \omega(\delta) \quad(\delta>0 ; l=1,2, \ldots) .
$$

It can be obtained also, and in a more goneral form, from equality (2) $(s=1):$

$$
\begin{equation*}
\omega^{A}(l \delta) \leqslant l^{A} \omega^{k}(\delta) \quad(k, l=1,2, \ldots) \tag{6}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\omega^{\prime \prime}(\delta) \leqslant \omega^{*}\left(\delta^{\prime}\right) \quad(0<\delta<\delta) . \tag{7}
\end{equation*}
$$

Inequality (6) is generalized for arbitrary, not necessarily integral $1>0$. To do this, lot us select a natural mach that $m \leq 1<m+1$; then

$$
\begin{align*}
& \omega^{k}(l \delta) \leqslant \omega^{k}[(m+1) \delta] \leqslant \\
& \leqslant(m+1)^{k} \omega^{k}(\delta) \leqslant(l+1)^{k} \omega^{k}(\delta) \quad(l>0, k=1,2, \ldots) . \tag{8}
\end{align*}
$$

Let us note stili further that
and consequently,

$$
\begin{equation*}
\omega^{s+k}(\delta) \leqslant 2^{2} \omega^{k}(\delta) \tag{10}
\end{equation*}
$$

int $1 \leqslant m \leqslant n, x=(n, y), n \in\left(x_{1}, \ldots, x_{m}\right) \in R_{m}$, and $j=\left(x_{m+1}, \ldots\right.$
x_{n}). We will also use R_{m} to stand for this set of points ($x_{1}, \ldots, x_{m}, 0, \ldots$
0) of the apace $R_{n}\left(R_{m} \subset R_{n}\right)$.
Let us introduce the variable

$$
\begin{equation*}
Q_{k_{m}}(f, \dot{\delta})_{L_{p}(6)}=\sup _{A \in k_{m}} \omega_{A}^{k}(f, \delta)_{L_{p},(6)} \tag{11}
\end{equation*}
$$

which we will call the module of continuity of order r of function f in direction (of subspace) $R_{C} \subset R_{n}$. If $i s$ a bounded sot and d is its dianoter, then it is eany to see that for $\delta>d$ the function $\Omega_{R_{m}}^{k}(f, \delta)$ is constant.

Now lot function f have any derivatives with reapect to $a \in R_{\text {p }}$ of order P. Then the derivative with respect to the direction of any unit voctor $h \in R_{m}$ on g has moaning for it:

$$
\begin{gather*}
f_{h}^{(0)}=\sum_{|0|=\rho} f^{(0)} h^{0} \tag{12}\\
\left(h=\left(h_{1}, \ldots, h_{m}, 0, \ldots, 0\right),|h|=1,\right. \\
h^{h^{\prime}}=h_{1}^{\left.h_{1}^{s} \ldots h_{m}^{L_{m}}=h_{1}^{s_{1}} \ldots h_{m}^{h_{m}^{s}} 0^{0} \ldots 0^{0}, 0^{0}=1\right) .}
\end{gather*}
$$

Let us assume

$$
\begin{equation*}
\Omega_{R_{m}}\left(f^{(\theta)}, \delta\right)=\sup _{A \in R_{m}} \omega_{n}^{k}\left(f_{h}^{(0)}, \delta\right) . \tag{13}
\end{equation*}
$$

We will call this varlable the module of continulty of derivatives (all) of order P of function f.

Since by (8) $\quad \omega_{k}^{k}\left(f_{k}^{(p)}, l(\delta) \leqslant(1+l)^{A} \omega_{A}^{k}\left(f_{l}^{(0)}, \delta\right)\right.$,
then the upper limits of these variables with respect to $h \in R_{\text {m }}$ remain in the came ralation

$$
\begin{equation*}
\Omega_{R_{m}}^{k}\left(r^{(0)}, 18\right) \leqslant(1+l)^{k} \Omega_{R_{m}}^{k}\left(f^{(0)}, \delta\right) \tag{14}
\end{equation*}
$$

Inequalities (8) and (14) show that the finiteneas of the contimuity module for amall δ entails thoir continuity for large δ.

Since $f_{h}^{(\rho)}$ is a finite innear combination of the derivatives $f^{(s)}$,
$|a|=P$ (in the coordinate directions) with bounded coefficients $h^{0}\left(\left|h^{3}\right| \leqslant 1\right)$ not dependent on x,

$$
\begin{align*}
& \leqslant \sup _{n} \sup _{i} \sum_{1, i=p}\left|\Delta_{i n}^{k} f^{(n)}(x)\right|_{L_{p}\left(e_{i n}\right)}= \\
& =\sup _{n} \sum_{10 \in-\infty} \omega_{h}^{k}\left(f^{(n)}, \delta\right)=\sum_{1, T=0} \Omega_{R_{m}}^{k}\left(f^{(n)}, \delta\right), \tag{15}
\end{align*}
$$

 of order P with $=\sum\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right)$.

$$
\text { 4.2.1. If } \xi^{\xi}=R_{1} \times E^{\prime} \subset R_{n}\left(x=\left(x_{1}, y\right), x_{1} \in R_{1} \text {, and } y \in E_{g}^{\prime}\right. \text { is a }
$$ crlindrical macurablo aet and f is a function with period 2π uith reapect to x_{1} defined on ξ, then in this case the norm of the function f in $l_{p}^{\prime \prime \prime}(\xi)$.

$$
\|f\|_{L_{p}(n)}=\left(\int_{\varepsilon_{0}} \mid f P d x\right)^{1 / p}
$$

where $E_{H}=\left\{(0,2 \pi) \times \mathcal{E}^{\prime}\right\}$. Thorefore in this case

$$
\omega_{x_{1}}^{n}(t)=\sup _{|h| \sum_{1}}\left|\Delta_{x_{1}, n}^{n} f(x)\right|_{p_{p}}\left(y_{\alpha}\right)^{0}
$$

where h is the increment of x_{1} (number). Propertios of the contimuity modules $\omega_{*}^{k}(t)$ are analogous to the proper-
ties $\omega^{k}(t)$.
4.2.2. Growth of a function with a bounded difforence. Lot $\xi_{5}=R_{m} \times \xi^{\prime}$ be a oyilndrical got of pointa $x=(i, y), m=\left(x_{1}, \ldots, x_{m}\right), y=\left(x_{m+1}, \ldots\right.$, $\left.x_{n}\right), a \in R$, and $\bar{\xi} \in \cdot$. For brovity we will write (In this section)

$$
\begin{gathered}
\left\|\cdot I_{A}^{*}-\right\| \cdot \dot{I}_{L_{p}}(A \times y) \\
\|\cdot\|=\|\cdot\|_{R_{m}}=\|\cdot\|_{L_{p}(n)}
\end{gathered}
$$

Let us asaipe a natural k and a positive number $\delta>0$.
Let a function $f(x)$ satiafying the conditione

$$
\begin{gather*}
\left\|\left.(x)\right|_{\|=1} \mid<0(n+m)\right\|<A_{1} \tag{1}\\
\left|\Delta_{n}^{n} /(x)\right|<B \tag{2}
\end{gather*}
$$

be ascigned on \mathcal{E} for any $h \in R_{\text {g }}$ and $|h|=\delta$.
Let us asaun that

$$
\begin{equation*}
\sigma_{N}=\{N<|z|<N+1, y \in y\} . \tag{3}
\end{equation*}
$$

We will prove the exiatence of a constant $c=c_{k}$ for which the inequa1ity

$$
\begin{equation*}
\|/\|_{S_{N}}<C N^{\frac{m-1}{T}}\left(A+(A+B) N^{k}\right), \quad N=1,2, \ldots \tag{4}
\end{equation*}
$$

Notice that for $\varepsilon>0$, from (4) it follows that

$$
\frac{1 / 6_{N}}{N^{m+(\alpha+e) P}}<\frac{c_{1}}{N^{1+e_{1}}} .
$$

where c_{1} does not depend on $N=1,2, \ldots$ and $\varepsilon_{1}>0$ depends on ε, from whence
when $\varepsilon>0$, taking (1) into and when $\varepsilon>0$, taking (1) into account, we get the inequaily

$$
\begin{equation*}
\left|\frac{f(x)}{\left(1+|x|^{\frac{m}{p}+k+e}\right)}\right|_{L p(x)}<\infty, \tag{5}
\end{equation*}
$$

In which we cannot assume $\varepsilon=0$, as is shown by the example of the function of a single variable $x^{k}(k=1,2, \ldots)$.

In the proof., for simplicity we will take $\delta=1$.
Let us assign an arbitrary unit vector $a^{\prime} \in R_{m}$ and define on $R_{m}(m-1)$ dimensional cube that is orthogonal to a^{\prime} with its center at the zero point and that has edges of unit length. On this cube as the base and with the vector a^{\prime} as the height we will construct the unit cube $\omega=\mu_{L^{\prime}} \in R_{n^{\prime}}$.

Let us further specify a natural number N, and let $u_{N}=\omega_{N u}$ represent the unit cube consisting of points of the form Na' $+n$, where a run through ω.

Notice that for the function $\psi(x)$ locally aumable in the p-th degree (when $p=\infty$, it is locaily bounded),

$$
\begin{aligned}
& \psi\left(N u^{\prime}+u, y\right)=\psi(u, y)+\sum_{i=0}^{N-1} \Delta \psi\left(j u^{\prime}+u, y\right), \\
& \Delta \psi\left(j u^{\prime}+u, y\right)=\psi\left((j+1) u^{\prime}+u, y\right)-\psi\left(j u^{\prime}+u, y\right),
\end{aligned}
$$

obtain, from whence

$$
\begin{equation*}
\|\psi\|_{\omega_{N}} \leqslant\|\psi\|_{\omega}+\sum_{j=0}^{N-1}\|\Delta \psi\|_{\omega_{j}} \tag{6}
\end{equation*}
$$

Let us prove the inequality

$$
\begin{gather*}
\left\|\left\|_{u^{\prime}}^{k-s} \mid\right\|_{\omega_{N u^{\prime}}}<c\left(A+(A+B) N^{*}\right)\right. \tag{7}\\
\left(c-c_{R, s ;} \quad N=0,1, \ldots ; \quad s=0,1, \ldots, k\right) . \quad .
\end{gather*}
$$

whon $\mathrm{a}=0$ it directly followe from (2) $(\delta=1)$. Let (7) be valid for s, and let us demonstrate its validity for +1 . We will essume
then

$$
\psi(x)=\Delta_{u^{k}-1-1}^{k} f(x) .
$$

$$
\begin{aligned}
& |\Psi|_{u}<\mid \sum_{i=0}^{k-s-1}(-1)^{1+k-s-1} C_{k-s-1}^{l}((a+\mid x, y) \mid< \\
& <A \sum_{i=0}^{n-t-1} c_{n-t-1}^{\prime}=2^{n-t-1} A, \\
& \| \Delta_{u} \cdot \nabla_{0},<\left.\left|\Delta_{i=l}^{k-t}\right|_{0}\right|_{0}<c(A+(A+B) / \eta \text {. }
\end{aligned}
$$

Therefore, based on (6)

$$
\begin{aligned}
\left|\Delta_{1}^{A-z-1} /| |_{N}<2^{h-s-1} A+c \sum_{i=0}^{N-1}\left(A+(A+B) I^{p}\right)\right. & < \\
& <c_{1}\left(A+(A+\dot{B}) N^{s+1}\right) .
\end{aligned}
$$

We have proven (7). Inserting $s=k$ in (7), we get

$$
\begin{equation*}
\| / l_{N a^{\prime}} \leqslant c\left(A+(A+B) N^{A}\right) . \tag{8}
\end{equation*}
$$

From (8) and (3) followa the existence of the constants c_{2} such that $\| / L_{N}^{\circ} \leqslant c_{2} V^{M^{-1}}\left(A+(A+B) N^{n}\right)^{\prime \prime} \quad(N-1,2, \ldots)$
or (4). The concern here is that the domain σ_{N} cannbe covered by cubea of the form ufsu', where $s=N-1, N$, and $N+1$, whose number is of the order of N^{m-1}.

4.3. Classes H. He and B

Lot us bogin with the definition of the embedding concept widely employed in this book.

If E and E^{\prime} are two normed bases, $E \subset E^{\prime}$, and hore there exists the constant c not dependent on x such that

$$
\begin{equation*}
\|x\|_{E^{\prime}} \leqslant c\|x\|_{E^{\prime}} \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{E^{\prime}}$ and $\|\cdot\|_{E}$ are the norme, respectively, in the $E^{\prime}-$ and E-sense, then we will assort that the embedding $E \rightarrow E^{\prime}$ obtains. If $E \rightarrow E^{\prime}$ and $E^{\prime} \rightarrow E$, then we will write $E \not E \mathrm{E}^{\prime}$.

If the elaments of the same linear set are normed in the sense of different metrics E and E_{y} and $E \neq E_{1}$, then we often write: $E=E_{1}$ and even $\|x\|_{E}=\|x\|_{E_{1}}$, adding in the cases when there can be confuaion that this inequality obtaing with an accuracy to equivalency.

Let R_{n} be considered as the direct product $R_{n}=R_{n} \times R_{n-m}$ of coordinate aubspaces R_{m} and $R_{n-m}, 1 \leqslant m \leqslant n$. Then the arbitrary point $x \in R_{n}$ can be written in the form $x=(u, j)$, where $u \in R_{m}$ and $\bar{j} \in R_{n-m}$. In particular, $x=n$ when $m=n$. Further, let $g \subset R_{n}$ be an open set and $1 \leqslant p \leqslant \infty$. In this section the classes

$$
\begin{gathered}
W_{u p}^{\prime}=W_{u p}^{\prime}(g) \quad\left(l=0,1, \ldots ; \quad W_{u p}^{0}(g)=L_{p}(g)\right), \\
H_{u p}^{r}=H_{u p}^{r}(g) \quad(r>0), \\
B_{u p \theta}^{\prime}=B_{u p \theta}^{r}(g) \quad\left(r>0,1 \leqslant \theta<\infty ; \quad B_{u p p}^{\prime}=B_{\mu p}^{r}\right) .
\end{gathered}
$$

are defined.
When $m=n$ in these notations, we will omit the letter and then we get: $\psi_{p} \eta_{p}, H_{p}^{r}, B_{p}^{r}$, and $B_{p}^{r}(\theta=p)$. In another important case when $R_{m}=R_{x_{j}}$ $(j=1, \ldots, m)$, we will write $W_{x_{j} p}^{l}, H_{x_{j} p}^{r}, B_{x_{j} p}^{r}$, and $B_{x_{j} p}^{r}$.

We will call these classes isotropic with respect to the $R_{\text {n }}$ directions,
because their differential properties along and $R_{\text {directions are identical, }}$ or simply isotropic, if $m=n$. For the intogral vector $1=\left(l_{1}, \ldots, l_{m}\right) \geqslant$ $0\left(1_{j} \geqslant 0\right)$ and the vector $p=\left(p_{1}, \ldots, p_{m}\right)$, where $1 \leqslant p_{j} \leqslant \infty$, we will additionaliy define the class (for different l_{j} or p_{j}, and isotropic)

$$
W_{p}^{\prime}(g)=\bigcap_{=1}^{n} w_{x, p,}^{\prime}(g) \quad\left(W_{p}^{\prime}=W_{p}^{\prime} \text { при } \rho=(p, \ldots, p)\right)
$$

$$
\text { when } p=(p, \ldots, p))
$$

as the intersection of the classes $W_{X_{j p}}^{l_{j}}(g)$. The classes

$$
\begin{aligned}
& H_{p}^{r}(g)=\bigcap_{j=1}^{n} H_{x, \rho j}^{\prime}(g), \quad B_{p \theta}^{r}(g)=\bigcap_{i=1}^{n} B_{x, p, \theta}^{\prime}(g), \\
& \text { rде } \quad r=\left(r_{1}, \ldots, r_{n}\right)>0 \quad\left(H_{p}^{r}=H_{p,}^{r} \quad B_{p \theta}^{r}=B_{p \theta}^{r}\right. \\
& p=(p, \ldots, p)) .
\end{aligned}
$$

are analogously defined, where $r=\left(r_{1}, \ldots, r_{n}\right)>0 \quad\left(H_{p}^{r}=H_{p}^{r}, B_{p \theta}^{r}=\underset{p 0}{r}\right.$ when $p=(p, \ldots, p))$.

The classes (n-dimensional) $w_{p}^{1}(g)(1=0,1, \ldots)$ are called Sobolev classes, named after S. L. Sobolev*), who studied their fundamental properties and was the first to obtain for them the fundamental theorems of embedding as applied to domains g, star-shaped relative to a certain sphere, and to finite sums of these domains. These classes consist of functions integrable in the p-th degree on g together with their partial derivatives (generalized) of order 1 .

The classes (n-dimonsional) $h_{p}^{r}(g)$ and $H_{p}^{r}(g)$ are defined for any $r>0$ or $r_{j}>0$. They consist of the functions belonging to $L_{p}(g)$ and that have on g partial derivatives of specific orders astiafying in the L_{p} matrix Holder's condition (Lipahits' condition when $p=\infty$) or (for integrai $p r$ and r_{j}), the thusly genoralized condition (Zigmund's condition) in which the first difference is replaced by a higher-order difference.

H-classes were completely defined in the works of S. M. Nikol'skiy**), who obtained embedding theorems for them. It turns out that these theorems form close system and, in particular, the embedding theorems of different measures (cf below) are completely invertible.

The classes $\mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}}$ and $\mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}}$ were determined in all completeness by $0 . \mathrm{V}$. Besov**), who obtaingd a close system of embedding theorems for them. The embedding theorems of different measures for these classes are also invertible.

In the following equivalent definitions in terms of the best approximations of exponential type functions will be given for the classes H and B . As applied to classes B there will be broader, encompassing the case $\theta=\infty$. We will see that it is natural to assume that

$$
B_{u p \infty}^{r}=H_{u p .}^{r} .
$$

\# S. L. Sobolev $L \overline{3}, ~ \overline{4}$. of S. M. Nikol'akiy $\angle \overline{10} \bar{\prime}$ for anisotropic Sobolev classes wp_{p}.
**) S. M. Nikol'skiy L-3, 5, 10/.
***) O. V. Besov $L_{\overline{2}}, \underline{3}$. . of V. P. Il'yin and V. A. Solonnikov $\overline{1}, \underline{\underline{/}}$ for the embedding theorem for classes $\mathrm{Br}_{\mathrm{p} \theta}^{\mathrm{F}}$.

In the following ft will be show (cf 9.3) that for oufficiently general domains $(\theta=p) *$

$$
\begin{gather*}
B_{u p}^{l} \rightarrow W_{u p}^{\prime} \quad(1 \leqslant p<2) . \tag{2}\\
W_{u p}^{\prime} \rightarrow B_{u p}^{l}\left(2 \leqslant p \leqslant \infty, \quad B_{u \infty}^{l}=H_{u \infty}^{l}\right) \quad(l=1,2, \ldots) . \tag{3}
\end{gather*}
$$

In particular, therefore,

$$
\begin{equation*}
B_{u 2}^{\prime}=W_{u 2}^{\prime} \quad(l=1,2, \ldots) . \tag{4}
\end{equation*}
$$

Equality (4) indicates a certain relation between clasees B and W, appearing when $p=2$. But there is also another relation, appearing for ans p. It stems from the properties of traces of the functions of these claeses (cf 9.1).
call**) Historically, the existence of these relations was the occasion to call**) classes which are here denoted by $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}^{\text {relationd }} \mathrm{B}_{\mathrm{p}}^{\text {² }}(\theta=\mathrm{p}) \text {, for cases of }}$ fractional (not integral) r and E by the classes W_{p}^{F} and W_{p}^{F}, respectively, assuming obviousiy that it is precisely these classes that are the natural extensions of the Sobolov (with integral 1, 1) classes W_{p}^{I} and w_{p} of course, the issue does not lie in notation, but even now when all the fundamental problems of the interrelations of these classes have been thoroughly clarified, it is clear that the natural (if we like, true) extenaions of the Sobolev classes in the n-dimensional case are the other so-called Liouville classes constructed on the basis of the direct generalisation of the concept of the fractional derivative in the Liouville sense (or in the Weyl sense for the periodic case). We will talk about the n-dimonsional case because in the one-dimensional case it was always held that the problem of traces does not arise.

And so, we will begin with the following notation. There exists the Sobolev classes ψ_{p} defined for integral $I=0,1, \ldots$; they are "buried" in fractional Liouville classes, denoted by $L_{p}^{l}(l$ is a real number); thus, $W_{p}^{I}=L_{p}^{I}(\mathcal{I}=0,1, \ldots)$. We see that the classes L_{p}^{r} are merged by the fact that the functions belonging to them have a unified integral representation (in terms of convolutions of the Bessel-Macdonald kemols with the functions $f \in L_{p}$, of 9.1). We also become aware that the classes L_{p}^{r} form a closed syotem with respect to the embedding theorems of different metrics The closeness is
\#) $0 . \bar{V}$. Besov $[\overline{3}, 5 \overline{/}$.
**) L. N. Slobodetskiy L̄̄/.
manifested in that the mboddine theorene of difforent metrics for the alasses ir are wholly exjressed in term of these classes and where the thooreme
oxhibit the property of tranaitivity (of further 7.1). However the clansea L_{p}^{r} when $p \neq 2$ do not form a closed ryatien with respect to the cabbedding thooreas of different measuren, and hare thare is no difforence between integral and nonintegral 5 .

The exact mbedding theorems of difforent metrios for the classes L_{p}^{r}
when $p \neq 2$ no longer are expressed in terns of these classes. To express them, it becomes necescary to involve the classes $\mathrm{Br}_{\mathrm{p}}^{\mathrm{p}}$. However, an exception is found in thip case $p=2$, atudied in theworke of Aronesajn $L \overline{1} \overline{/}$ and L. N. Slobodetakis"). The embedding thoorem of different metrice for the clasese By (in the notation of L. N. Slobodetakiy, w_{2}) where $p=2$ ie not changed, are selfclosed. The classes B_{p}^{r} of themeelven form a closed aystem with reapect to the embedding theorens of difforent motrios and the meacures (and several otbers) and have a unifiod integral representation in terme of Macdonald kernals (of 8.9.1), but at the same tive those clagges play a cervice role in the problom on traces of functions of the classes L_{p}^{F} (or M_{p} when $r=1$, $a \cdot n a t u r a l$ number), which is solved by the cabodding theorems of different moagures. Hore lies the relation between the alacses L and $\mathrm{B}_{;}$another relation, al noted above, is the fact that $L_{2}^{I}=B_{2}^{1}(1=0,1, \ldots)$. These ralationahips also obtain for the corresponding isotropic classes.

After the foregoing, it would be sounder elther to assume that w_{p}^{r} fior fractional r denotes a Liouvilic alass, and in genaral not to use the aymbol L_{p}^{P}, or else to continue oniy with the notation L_{p}^{p} for all r, discarding the apecial notation W_{p}^{l} for the Sobolev classes. But I did not do this in this book, because I feared I would be like a person who became aware of the soundness of renoming a streot, did so, bat did not seek the views of the residents living on the street about this change.

We will see (cf 6.1) that for any $\varepsilon>0$ the embedding
\#) L. N. Slobodetskiy $\overline{\angle 1}, \overline{2 /}$; of also V. M. Babich and L. N. Slobodetakiy $\overline{L_{1}} \bar{\jmath}$.

$$
\begin{array}{ll}
H_{s p}^{\prime+e} \rightarrow B_{u s p}^{\prime} \rightarrow H_{u p}^{\prime} & (r>0,1<x<\infty), \\
H_{u p}^{\prime+e} \rightarrow W_{u p}^{\prime} \rightarrow H_{a p}^{\prime} & (l=1,2, \ldots . \tag{6}
\end{array}
$$

obtain.
These clasces are linear normed apaces. This will bo immediately ominont from their dofinitions. As will be aloar in the following, they are complote, therefore, Banach apaces (of 4.7).

We would soe that the norm in the sonse W, H, and B is comprieed of two numbers

$$
\begin{equation*}
\|f\|_{\infty}=\|f\|_{L_{p}}+\|f\|_{\infty},\|f\|_{H}=\|f\|_{L_{p}}+\ddots_{n} \cdot \ldots \tag{7}
\end{equation*}
$$

where the second term (which wo will call the acminorm) oharacterises purely differential propertios of 1 . Soninosm can be conaldered the nosm in the corresponding apace w, h, and b where functions diatinct from each other by polynomiale of apecific degreen (with reapect to $x_{1}, \ldots, x_{\text {an }}$) are not diatinguish from each otber.

In the following (of 8.9.2 and 9.2) the apecified olacces will be dofined for the case $f=R_{n}$ and for sero and magative values of r, but they will in general conalet of cenerailsod function (rofular in the $I_{p}-60 n 0 e$).
4.3.1. Clase W. Lot $~ \in \in R$ be an open sot, 1 be an intocral nonnogative number, $1 \leq p \leq \infty$ and $x=(1, y), m=\left(x_{1}, \ldots, x_{m}\right) \quad g_{1}$, and $y=$ $\left(x_{m+1}, \ldots, x_{n}\right)$; $h_{\text {n }}$ will also rofor to the aubspece of polate of the form $(a, 0)$.

By definition $f \in w_{u p}^{l}(s)\left(w_{\text {up }}^{J}(s)=w_{p}^{l}(g) *\right)$ whon $m=n$ and $W_{u p}(g)=$ $\left.L_{p}(g)\right)$, if the nosm

$$
\begin{align*}
& \|f\|_{\boldsymbol{v}_{u p}^{\prime}(s)}=\|f\|_{L_{p}(\infty)}^{-}+\|f\|_{w_{u p}^{1}(\infty)} \quad(l=1,2, \ldots), \tag{1}\\
& \|f\|_{x_{0}^{0},(x)}=\|f\|_{L,(0)} \\
& \|f\|_{v_{u p}^{\prime}(0)}=\sum_{\mid=1}\left|f^{(n)}\right|_{l,(n)} \\
& \left(s=\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right), \quad|s|=\sum_{i}^{m} s_{j}\right) \text {, } \tag{2}
\end{align*}
$$

[^4]is finite, where, thus, the sum is extended over all derivatives(generalized), mixed and nomixed, of order 1 with respect to ε. Thus it is assumed that for f there exiat generalized derivatives with reapect to of orders less than 1, but a priori it is not assumed that they belong to $L_{p}(g)$. But we will see that in ary case they are locally aumable on 8 ; moreover, they, inclading derivatives of arder 1 and do not depend on the order in which the differentiation is performed (cf 4.5.1).

We can consider the space $w_{\text {up }}^{1}(g)$ (when $\left.m=n w_{p}^{l}(g)\right)$ of functions f for which the seminorm (2) is finite, i.e., we can assume that $w_{\text {up }}^{l}(\mathrm{~g})$ consists of moasurable functione f that may not belong to $L_{p}(g)$, but such that for these the generalised derivatives on g of order 1 belonging to $L_{p}(g)$ are meaningful. Obviously, $\mathrm{wl}_{\mathrm{up}}^{\mathrm{l}}(\mathrm{g})$ is a innear set. It will be a normed apace if it is assumed that the two functions f_{1} and $f_{2} \in W_{u p}^{1}(g)$, differing by the polynomial of degree $1-1$, defined the aame element of the apace $w_{p}(g)$; in other words, the zero element in wlol (g) is the arbitrary polynomial

$$
P_{i-1}(x)=\sum_{|k|<1-1} a_{k} x^{k}, \quad k=\left(k_{1}, \ldots, k_{m} ; 0, \ldots, 0\right),
$$

of degree 1-1 with coefficient $a_{k}=a_{k}(\boldsymbol{y})$ dependent on $\bar{y}=\left(x_{m+1}, \ldots, x_{n}\right)$.
The norm (1) equivalent to the following norm:

$$
\begin{align*}
\|f\|_{w_{m p}}(s) & =\left(\int_{0}\left(|f|^{p}+\sum_{|\Delta|-1}\left|f^{(o)}\right|^{p}\right) d x\right)^{1 / p}, \tag{3}\\
s & =\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right) .
\end{align*}
$$

The advantage of this latter expression is that when $p=2$ it is Hilbertian. The scalar product genarating this norm when $p=2$ is of the form

$$
\begin{equation*}
(f, \varphi)=\int_{i}\left(f \Phi+\sum_{\mid=1=1} f^{(0)} \varphi^{(0)}\right) d x . \tag{4}
\end{equation*}
$$

We can also talk about classes $W_{x_{j} p}^{\lambda}(g)$ of functions f for which the norm

$$
\begin{equation*}
\|f\|_{w_{x, p}^{\prime}}^{\prime}=\|f\|_{L_{p}(g)}+\left|\frac{\partial^{\prime} j}{\partial x_{1}^{\prime}}\right|_{L_{p}(s)} \quad(j=1, \ldots, n) \tag{5}
\end{equation*}
$$

finite and classes*)

$$
\begin{equation*}
W_{u p}^{r}(g)=\bigcap_{i=1}^{n} W_{x, j, j}^{\prime \prime}(g)\left(W_{u p}^{r}=W_{u p}^{r} \quad \text { when } p=p_{1}=\ldots=p_{n}\right) \text {, } \tag{6}
\end{equation*}
$$

$$
r=\left(r_{1}, \ldots, r_{n}\right)>0, p=\left(p_{1}, \ldots, p_{n}\right), \quad 1 \leqslant p, \leqslant \infty
$$

with the norm

$$
\begin{equation*}
\|f\|_{w_{\mu p}^{\prime}(\theta)}=\sum_{1}^{m}\left(\|f\|_{L_{p}(z)}+\left|\frac{\partial^{\prime} / f}{\partial x_{j}^{\prime}}\right|_{L_{p,}(\varepsilon)}\right) \tag{7}
\end{equation*}
$$

Let us further introduce another class ' $W_{\text {up }}^{1}$: the function $f \in W_{\text {up }}^{\top}(g)$, if for it the norm

$$
\begin{equation*}
\|f\|_{w_{u p}^{\prime}(g)}=!f_{\left.L_{l}, s\right)}^{\prime}+\sup _{u \leqslant R_{m}} \mid f_{u}^{l} \|_{L_{p}(g)^{\prime}} \tag{8}
\end{equation*}
$$

is meaningful, where

$$
\begin{equation*}
f_{s}^{p}=\sum_{|A|=p} f^{(n)} u^{0}\left(u^{d}=\left(u_{1}^{s_{1}} \ldots u_{m}^{p_{m}^{m}}\right),|u|=1\right), \tag{9}
\end{equation*}
$$

is the derivative of f of order P in the direction E .
In the following it will be shown (ef 9.2) that

$$
W_{p}^{\prime} \cdots{ }^{\prime}\left(R_{n}\right) \rightarrow W_{p}^{\prime}\left(R_{n}\right) .
$$

If the domain of g is such that for it the theorem on extension obtains (cf note at end of book to 4.3.6)

$$
W_{p}^{\prime} \cdots, I(g) \rightarrow W_{p}^{\prime} \cdots, I\left(R_{n}\right),
$$

then

$$
' W_{p}^{\prime}(g) \rightarrow W_{p}^{\prime} ; \cdots, I(g) \rightarrow W_{p}^{\prime}, \cdots, I\left(R_{n}\right) \rightarrow W_{p}^{\prime}\left(R_{n}\right) \rightarrow W_{p}^{\prime}(g),
$$

where the first embedding is because the derivative $f_{x_{j}}^{l}$ is at the same time a derivative in the direction x_{j}. The inverse embedding $\quad W_{p}^{\prime}(g) \rightarrow W_{p}^{\prime}(g)$, \#) S. M. Nikol' akiy $\overline{10} \overline{\mathrm{I}}$.
obviously, is also valid, therefore given the presence of the theorem on externsion

$$
W_{p}^{\prime}(g) \not \varlimsup^{\prime} W_{p}^{\prime}(g) .
$$

as will be seen from the following, for mary quite "good" sets g, it automaticalIf follows from the fact that $I \in W_{u p}^{P}(s)$ all partial derivatives of f with respeat to a up to the order $P-1$ inclusively belong to $L_{p}(g)$. However, this is generally invalid for an arbitrary open set g.
4.3.2. Example. The function $f(x)$ of the one variable x is assigned on the set

$$
g=\sum_{1}^{\infty} \sigma_{k} \text {, which is a theoretic-set sum of the integrals }
$$

$\sigma_{k}=\left(a_{k}<x<b_{k}\right)$ of length $\delta_{k}=k^{-2}$.
Let

$$
f(x)=\frac{(x-a, \dot{a})}{\delta_{k}^{a}} \quad(k=1,2, \ldots)
$$

Then, if $1 / 2 \mathrm{p} \quad 10$

$$
\begin{aligned}
& \|f\|_{L_{p}(x)}=\left(\sum_{1}^{\infty} \int_{\sigma_{k}}\left(\frac{x-a_{k}}{\delta_{k}^{a}}\right)^{p} d x\right)^{1 / p}- \\
& =\frac{1}{(p+1)^{1 / p}}\left(\sum_{1}^{\infty} \delta_{h}^{p}(1-\alpha)+1\right)^{1 / p}-\frac{1}{(p+1)^{1 / p}}\left(\sum_{1}^{\infty} \frac{1}{k^{2}(p(1-\alpha)+1)}\right)^{1 / p}<\infty \text {, } \\
& \left\|f^{(l)}\right\|_{L_{p}(4)}=0
\end{aligned}
$$

$$
\left\|f^{\prime \prime}\right\|_{L_{p}(g)}=\left(\sum_{1}^{\infty} \int_{\sigma_{k}}\left|\frac{1}{\delta_{k}^{c}}\right|^{p} d x\right)^{1 / p}-\sum_{1}^{\infty} \frac{1}{k^{2(1-\alpha)}}=+\infty .
$$

Here the condition $\delta_{k}=x^{-2}$ shows that the set g can be bounded.
Thus, $f \in W_{P}^{(l)}(g)(1 \geqslant 2)$ but the norm in the first derivative in the metric $L_{p}(g)$ is equal to $+\infty$.
4.3.3. Classea H. The notations introduced at the beginning of 4.3.1 remain in force. Let $1 \leqslant p \leqslant \infty, r>0$, and the numbers k and P be integral nonnegative, satisfying the inequalitiea $k>r-\rho>0$. We will call these pairs (k, p) admissible.

By definition the function $f \in H_{u p}^{r}(g)$, if it belongs to $L_{p}(g)$ and If for it the derivatives $f(a)$ of order $a=\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right)$ with $|s|=\sum_{1}^{m} s_{j}=\rho$ are meaningful and if for these the inequalities

$$
\begin{equation*}
\left|\Delta_{h}^{k} f^{(0)}(x) k_{p}\left(\varepsilon_{k n}\right) \leqslant M\right| h \gamma^{-p} . \tag{1}
\end{equation*}
$$

are satisfied, where M does not depend on $h \in R_{m}$, or the inequalities equivalent to it

$$
Q^{k}\left(f^{(0)}, \delta\right)=\sup _{n \in k_{m}} \omega_{n}^{n}\left(f^{(0)}, \delta\right) \leqslant M \delta^{r-p} .
$$

Here let us assume

$$
\begin{equation*}
\|f\|_{H_{M p}^{\prime}(s)}=\|f\|_{L_{p}(s)}+\|f\|_{h_{m p}^{\prime}(\Omega)} \tag{2}
\end{equation*}
$$

where the seminorm

$$
\begin{equation*}
\|f\|_{h_{\mu p}^{\prime}(0)}=M_{i}=\operatorname{ini} M \tag{3}
\end{equation*}
$$

is the lower bound of all M for which inequality (1) is satisfied for all $h \in R_{\text {m }}$ and any indicated 0 .

This definition actually depends on the admissible pair (r, p), but it will be proven (5.5.3) that the nurms (2) (but in general not (3)) for the measurable set $g=f_{m 1} \times g^{\prime}$ and different admissible pairs are pairwise
equivalent, and for other sets g the equivalence will depend on the possibility of extending the functions beyond the limits of g on R_{n} with the preservation of the corresponding norms (cf notes at the end of the book to 4.3.6).
*) When $p=\infty$, here we have the situation in which the function f is equivalent to some function again denoted by f for which (1) is satisfied.

Let $r=\bar{r}+$, where \bar{r} is integral and $0<\alpha \leqslant 1$. If $\alpha<1$, then by selecting the numbers $\rho=\bar{r}$ and $k=1$ as the admissible pair, to get the particular form of inequality (1):

$$
\begin{equation*}
\left.\left|\Delta_{k}\right|^{(\bar{r})}(x)\right|_{L_{p}\left(\theta_{k}\right)} \leqslant M|h|^{a} \quad(0<a<1) \tag{4}
\end{equation*}
$$

If however $\alpha=1$, then this pair is not suitable, but we can take $\rho=\bar{r}, k=2$ as the admiasible pair, and then inequality (1) will obtain:

$$
\begin{equation*}
\left|\Delta_{h_{i}^{2}}^{2} r^{\prime}(x)\right|_{L_{p}\left(a_{z x}\right)} \leqslant M|h| . \tag{5}
\end{equation*}
$$

Usually definitions*) (4) and (5) or simply one definition

$$
\begin{equation*}
\left\|\Delta_{i}^{2} f^{(n)}(x)\right\|_{L_{p}\left(z_{2 n}\right)} \leqslant M|k|^{a} \quad 0<a \leqslant 1, \tag{6}
\end{equation*}
$$

suitable for any of the α considered are used.
It is possible that the modification of these definitions consisting in the fact that the lower bound of such M for which (1) is satisfied for all $h \in R_{m}$ satisfying the inequality $|h| \leqslant \eta$ where η = given positive number is
taken as the seminorm M_{f}. Thus, the modified norm is also, as we will see, equivalent to the above-defined norms in any case for domains of the form $g=R_{m} \times g^{\prime}$.

Finally, yet another definition is possible: the function $f \in H_{u p}^{r}(g)$, if for it the derivatives $f_{h} \rho_{\text {or }}$ of order P in any direction $h \in R_{m}$ and

$$
\begin{equation*}
\left.\left|\Delta_{n}^{k} f_{n}^{p} \|_{c_{p}\left(l_{k}|n|\right)} \leqslant M\right| h\right|^{p-p} . \tag{7}
\end{equation*}
$$

where (k, P) is an admissible pair and M does not depend on $h \in R_{\text {m }}$ are meaningful for it. This inequaility is equivalent to the following:

$$
\begin{equation*}
\Omega^{k}\left(p^{p} ; \delta\right)=\sup _{|k|=1} \sup _{|1|_{0}}\left|\Delta_{t h}^{k} f_{n}^{0}\right|_{L_{p}}\left(\varepsilon_{k n}\right) \leqslant M \delta^{\prime-p} . \tag{8}
\end{equation*}
$$

The nerm f is defined analogously to (2).
If $R_{m}(m=1)$ is the coordinate axis x_{j}, then we will refer to the *) S. M. Nikoliskiy $\overline{5} \overline{\text { J. }}$
corresponding class $H_{u p}^{r}(g)$ with $H_{j}^{r} p(g)(j=1, \ldots, m)$ and the norm as

$$
\begin{gather*}
\|f\|_{k_{x, p}^{\prime},(x)}=\|f\|_{L_{p}(x)}+M_{x, f 1} \tag{9}\\
M_{x, f}=\|f\|_{h_{x, p}^{\prime}(6)} \tag{10}
\end{gather*}
$$

Finally, if $r=\left(r_{1}, \ldots, r_{m}\right), p=\left(p_{1}, \ldots, p_{m}\right)\left(r_{j}>0,1 \leqslant p_{j} \leqslant \infty\right.$; $j=1, \ldots, m \leqslant n)$, then we postulate*)

$$
H_{u p}^{\prime}(g)=\bigcap_{i=1}^{m} H_{x, p}^{\prime \prime}(g)\left(H_{u p}^{\prime}=H_{u p}^{\prime} \quad \text { where } \mathrm{p}=p_{1}=\ldots=p_{p_{111}}\right)
$$

with the norm

$$
\begin{align*}
& \|f\|_{H_{p}^{\prime}(s)}=\max _{1<1<m}\|f\|_{L_{p},(s)}+\|f\|_{\left.n_{p}^{\prime},()^{\prime}\right)} \tag{12}\\
& \|f\|_{n_{p}^{\prime}(s)}=\max _{1<1<m}\|f\|_{n_{x}^{\prime},(p)}(s) \tag{13}
\end{align*}
$$

In (13) we can replace max with \sum_{j}, obtaining the equivalent norm.
4.3.4. Classes B. Lat us preserve the notations introduced at the beginning of 4.3.1, and introduce an additional parameter θ, where $1 \leqslant \theta<\infty$. Let $r>0$ and the numbers k and ρ (forming the admiseible pair) be integral nonnegative, satisfying the inequalities $k>r-\rho>0$.

By definition, function f belongs to the class $\left.B_{\text {upe }}^{r}(g){ }^{*}\right)$ (whon $m=n$, simply $\left.B_{p}^{r}(g)\right)$, if $f \in L_{p}(g)$, there exist generalizod partial derivatives with respect to $\mathrm{n} \in \mathrm{R}_{\mathrm{m}}$ of f of orders $\mathrm{E}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}, 0, \ldots, 0\right)(|\varepsilon| \leqslant P)$, and one of the following seminorms is finite:
\#) cf. note to text page 189 [translation page $17 \overline{4}$

$$
\begin{align*}
& \left\|\|f\|_{b_{u v v}^{\prime}(s)}-\left(\int_{u_{m}}|u|^{m-\theta}(v-p)\left|\Delta_{u}^{k} f_{u}^{\rho}(x)\right|_{L_{p}\left(c_{k u}\right)} d u\right)\right. \tag{4}
\end{align*}
$$

(cf 4.2 (12), (13)). Here we atipulate that

$$
\begin{equation*}
\|f\|_{b_{\mu p \theta}^{\prime}(s)}=\|f\|_{1_{\mu}(\omega)}+\|f\|_{b_{\mu \nu D}^{\prime}(6)}(f=1,2,3,4) \tag{5}
\end{equation*}
$$

All four of the seminorme (1) - (4) presented still depend on the admissible pairs k, P; moreover, they can be modified by taking the integrals written here over bounded domains (respectively, over $0 \leqslant t \leqslant \eta$ or $|u| \leqslant \eta$), and in fact all of the norms determined by means of these integrals proved to be equivalent in any case for domains of the form $g=R_{m} \times g^{\prime} \subset R_{n}$ (cf, further, 5.6)
and, therefore, for the domains g with which the functions are extensible on R_{n} with preservation of the indicated norms.

Often these norms are specified in the following situation**). For a given $r>0$, an integral \bar{F} is defined such that $r=\bar{r}+\alpha$ and $0<\alpha \leqslant 1$. If $\alpha<1$, then it suffices to take the admissible pair $\rho=F, k=1$; if however $\alpha=1$, thon $p=\bar{r}, k=2$, or else, in order to combin these two classes, we can take $\rho=\bar{r}, \mathbf{k}=2$.

If g is a bounded set and d is its diamoter, then for $t>d$ each of the functions Ω in (1) and (2) are equal to some constants c and the residue of the \int_{α}^{∞} integrals appearing in the right-hand sides of (1) and (2) are finite (in fact, $\theta, r-p>0$). Therefore the finiteness of the seminorma (1) and (2) depend excluaively on the properties o_{2}^{\prime} the indicated modules for t.

The classes $B_{x_{j}}^{r} p(-1=1, \ldots, m)$ correspond to the case when R_{n} is replaced by the coordinate axis x_{j}.
\#\#) O. V. Besov $[\overline{3}, 5 \overline{4}$. The norms (1) and (3) are examined in these works.

Let us suppose*)

$$
\|f\|_{s_{u, \theta}^{r}(s)}-\sum_{i=1}^{m}\|f\|_{s_{x j \rho \rho}^{r} f(x)}\left(B_{u \rho \theta}^{r}=B_{r \theta}^{r}\right.
$$

$$
\text { when } m=n \text {). }
$$

We note the simpleat inequalities between these seminorms (1) - (4) (for the same pair k, ρ):

The last inequality foilowa from inequality 4.2(15). The first two are obtained directly if we introduce the polar coordinates $a=(t, \sigma), t=|a|$, and $d u=t^{m-1} d t d \sigma$ and taking into account the inequalities

$$
\begin{align*}
& \left|\Delta_{u}^{k} f^{(u)}(x)\right|_{L_{p}\left(d_{k u}\right)} \leqslant \Omega_{R_{m}}^{k}\left(f^{(a)}, t\right)_{L_{p}(t)} \tag{7}\\
& \left|\Delta_{k}^{k} p(x)\right|_{L_{p}\left(s_{k u}\right)} \leqslant \Omega_{R_{m}}^{k}(p, t)_{L_{p}}(s) \tag{8}
\end{align*}
$$

4.3.5. Periodic classes. The periodic classes $W_{X_{j} p}(E), H_{x_{j} p}^{r}(\xi)$, and $B_{x_{j} p e}^{r}(\xi)$ are defined on the set $\xi_{\xi}=R_{j} \times \xi^{j} \subset R_{n}$, where R_{j} is the real axis $x_{j}(j=1, \ldots, n)$. These are classes of functions $f\left(x_{j}, y^{j}\right) y^{j}=\left(x_{1}, \ldots\right.$, $x_{j-1}, x_{j+1}, \ldots, x_{n}$) with period 2π with respect to x_{j}. There defined exactly just as the corresponding classes $W_{x_{j}}^{l}(E), \ldots$ of periodic functions, but with the only difference that everywhere the norm $\|\cdot\|_{L_{p}}(\varepsilon)$ must be replaced with the nom $\|\cdot\|_{L_{p}\left(G^{*}\right)}$, where $\left.\xi_{*}+\angle \bar{O}, 2 \bar{I}\right) \times \mathcal{E}^{j}$. The periodic
 $m=n$, we omit the subscript u.
$\overline{\#} \overline{0}, \bar{V}$. Besov $\bar{L}, 5 \overline{5}$, case $p_{1}=\ldots=p_{n}$; V. P. Il'yin and V. A. Solonnikov
$[\overline{1}, \overline{2} /$, general case.
4.3.6. Extension of functions with class preserved. Let us make yet anothor important remark. Let (g) denote one of the claeses $W(g), H(g)$, and $B(g)$ with given parametere of r, p, \ldots If the domain $g \subset B_{p}$ is such that and function $f \in \wedge(\mathrm{~g})$ can be brought into correspondence with a function \bar{f} defined on R_{n} auch that $\bar{f}=f$ on g and

$$
\|f\|_{\Lambda\left(R_{A}\right)} \leqslant c\|f\|_{A(S)}
$$

whore c does not depend on f, then we will state that functions f of clase $\Lambda(g)$ can be extended from g onto R_{n} with preservation of alass (or norm). We will furthor assert in this case that the embedding holds.

$$
\Lambda(g) \rightarrow \Lambda\left(R_{n}\right) .
$$

Our classes are constructed so that if the function $f \in \Lambda\left(R_{n}\right)$, its values on g form the function $f \in \wedge(g)$ and

$$
\|f\|_{A(\Omega)} \leqslant\|f\|_{\lambda\left(R_{n}\right)}
$$

Accordingly; it is stated that the ambedding

$$
\Lambda\left(R_{n}\right) \rightarrow \Lambda(g)
$$

obtains. Now we would asoume that for some domain g the two classes $\Lambda(g)$ and $\Lambda^{\prime}(\mathrm{g})$ are given and that

$$
\begin{gather*}
\Lambda(g) \rightarrow \Lambda\left(R_{n}\right) \rightarrow \Lambda^{\prime}\left(R_{n}\right) \tag{1}\\
\Lambda(g) \rightarrow \Lambda^{\prime}(g) \tag{2}
\end{gather*}
$$

then

In this book we will piace our principal omphasis on the study of these classes for the case when $g=R_{n}$ or $g=R_{m} \times g^{\prime}$, where $1 \leqslant m<n$ and g^{\prime} is a measurable $(\mathbf{n}-\mathbf{n}$)-dimonsional set. In the notes at the ond of the book to 4.3 .6 the reader will find the formulation of several general theorems on extension with clase proserved. The presence of embeddings (1) automatically entails the ambedding (2).

Lut. Pepresentation of the Intermediate Darivative br a Hicher-Order Verivative and Function, Corojiaries

In this section several modified Teylor's formulas will be introduced, on the basis of which certain inequalities will be derived.
4.4.1. Lot us consider on the finite integral (a, b) the function $f(x)$ that has on any segment interior with reapect to (a, b) absolutely
continuous derivatives_of the order ($\rho-2$) incluaively, and, therefore, almost everywhere on $\angle \bar{a}, b /$ the derivative of order $P-1$. For it there exists for almost all x_{0} the purely formal Taylor's formula

$$
\begin{equation*}
f(x)=\sum_{i=0}^{0-1} f^{(/ 1)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{\prime}}{j 1}+R\left(x, x_{0}\right) \quad\left(a<x, x_{0}<b\right) \tag{1}
\end{equation*}
$$

because under the specified conditions we can state nothing about the behavior of the residual term $R\left(x, x_{0}\right)$.

Let us_denote the rectangle $\left\{a<x, x_{0}<b\right\}$ by Δ. Let us divide the segment $\angle \mathrm{a}, \mathrm{b} /$ into $2 p$ equal partial sogments

$$
\Delta_{0}, \ldots, \Delta_{2 p-1}
$$

and select for each segment a $\Delta_{2 k}$ with an even subscript, respectively, for the point x_{k}. Let g stand for the p-dimensional cube of points (x_{1}, \ldots, x_{p}), whose x_{k} coordinates correspondingly belong to the partial segments $\Delta_{2 k}$:

$$
x_{k} \in \Delta_{2 k} \quad(k=1, \ldots, p) .
$$

Transferring $R\left(x, x_{0}\right)$ in (1) to the loft side and subatituting in place of x the numbers x_{1}, \ldots, x_{x}, we obtain a linear system of P equation

$$
\begin{equation*}
\sum_{i=0}^{0-1} \frac{\left(x_{k}-x_{0}\right)^{\prime}}{j 1} f^{(j)}\left(x_{0}\right)=f\left(x_{n}\right)-R\left(x_{k}, x_{0}\right) \quad(k=1, \ldots, \rho) \tag{2}
\end{equation*}
$$

with P unknown $f^{(j)}\left(x_{0}\right)$ and the deteminant

$$
\begin{align*}
W & =W\left(x_{1}-x_{0} \ldots, x_{p}-x_{0}\right)= \\
& =\left|\begin{array}{llll}
1 & \left(x_{1}-x_{0}\right) \ldots & \frac{\left(x_{1}-x_{0}\right)^{p-1}}{(p-1)!} \\
\cdots & \ldots & \cdots & \cdot \\
1 & \left(x_{0}-x_{0}\right) \ldots & \frac{\left(x_{p}-x_{0}\right)^{p-1}}{(p-1)!}
\end{array}\right|= \\
& =\sum_{i=1}^{p} a_{j 1}\left(x_{1}-x_{01} \ldots, x_{p}-x_{0}\right) \frac{\left(x_{1}-x_{0}\right)!}{11}=\sum_{i=1}^{p} a_{j 1} \frac{\left(x_{1}-x_{0}\right)^{\prime}}{1!}, \tag{3}
\end{align*}
$$

where $\alpha_{j k}$ is the algebraic complement to determinant W correaponding to its element $\left(x_{k}-x_{0}\right)^{f}(j 1)^{-1}$.

From (2) and (3) it follows that

$$
\begin{equation*}
f^{(j)}\left(x_{0}\right)=\frac{1}{W} \sum_{k=1}^{p} a_{j k}\left[f\left(x_{k}\right)-R\left(x_{k}, x_{0}\right)\right](j-0,1, \ldots, p-1) . \tag{4}
\end{equation*}
$$

Function 4 differs only by the constant maltiplier from the Vandermonde determinant equal to the product of all possible militipliers of the form $\left(x_{k}-x_{1}\right)$ where $k \quad 1, k$, and $I=1, \ldots$, , and aince different x_{k} and x_{1} 11e at a distance greater than the positive constant, then the function $1 / \mathrm{W}$ is bounded. Functions $\alpha_{j k}$ are also bounded, therefore from (4) follows the inequality

$$
\begin{align*}
& \left|f^{(f)}\left(x_{0}\right)\right| \leqslant c_{1}\left(\sum_{k=1}^{\rho}\left|f\left(x_{k}\right)\right|+\left|R\left(x_{k}, x_{0}\right)\right|\right) \tag{5}\\
& \left(x_{0} \in[a, b], \quad\left(x_{1}, \ldots, x_{n}\right) \in g\right) .
\end{align*}
$$

Since the left aide of (5) does not depend on $x_{k}(k=1, \ldots$, , therefore obviously

$$
\begin{align*}
& \left|f^{(1)}\left(x_{0}\right)\right| \leqslant c_{2} \sum_{k=1}^{p}\left(\left\|f\left(x_{k}\right)\right\|_{L,(0)}+\left\|R\left(x_{k}, x_{0}\right)\right\|_{p,(0)}\right) \leqslant \\
& \leqslant c_{3}\left(\|f\|_{L_{p}(0, b)}+\left\|R\left(x, x_{0}\right)\right\|_{L_{p, x}(0, b)}\right)(j=0,1, \ldots, \rho-1) \tag{6}
\end{align*}
$$

where the sign of $L_{p, x}$ sienifies that the norm io computed with reapect to variable x.

Finally, from (6) follow

$$
\begin{equation*}
\left\|f^{\prime \prime}\right\|_{L_{p}(a, b)} \leqslant c\left(\|f\|_{L_{p}(a, b)}+\|R\|_{L},(\Delta)\right)(j=0,1, \ldots, p-1) . \tag{7}
\end{equation*}
$$

when $p=\infty$, this is obvious, but when p is finite this is obtainod if the loft and right aides of (6) are raised to the power p, and if to the right side we appiy the inequality

$$
\text { (} \left.\infty>d>1^{\circ} 0<q^{\circ} 0\right) \quad \quad_{1}\left(\alpha q+\alpha^{0}\right) \div-\quad \pi>q+0
$$

integrating both aides of the inequality with reapect to x_{0} and, finally, raiaing thom to the power $1 / \mathrm{p}$.
4.4.2. Let ue note that if $\|R\|_{L}(\Delta)<\infty$, then by aubstituting expreasion $4.4 .1(4)$ the derivatives $f(j)\left(x_{0}\right)$ in equality $4.4 .1(1)$ and intograting both ite parts over the cube g of points $\left(x_{0}, \ldots, x_{p}\right)$ and dividing
by the value of its volume x, we get the formula*)

$$
\begin{equation*}
f(x)=P(x)+F(x), \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{r}
P(x)=\sum_{i=0}^{p-1} \sum_{k=1}^{p} \frac{1}{x} \int_{k} \frac{a_{n}\left(x_{1}-x_{0}, \ldots, x_{p}-x_{0}\right)}{W\left(x_{1}, \ldots, x_{p}\right)} \times \\
\left.\quad \times \|\left(x_{k}\right)-R\left(x_{k}, x_{0}\right)\right] \frac{\left(x-x_{0}\right)^{\prime}}{!!} d g \tag{2}
\end{array}
$$

is a polynomial of degree p-1 and

$$
\begin{equation*}
F(x)=\frac{1}{x} \int_{g} R\left(x, x_{0}\right) d g . \tag{3}
\end{equation*}
$$

Formula (1) shows that function f can be represented as the sum of some polynomial $P(x)$ of degree $P-1$ and the residue $F(x)$. Here P and F are ciplicitly expressed only in terms of the natural function f and its reaudual Teylor's term R.

The residue R is usually given in terme of the derivative $f(P)$ of the function f of order ρ.

Thus, no explicit intermodiate derivatives $f(1), \ldots, f(p-1)$ appear at all in the right side of formula (1), which emables up to estimate the norms of these derivatives in terms of the norms f and $f(p)$.
4.4.3. Let us consider important particular cases of formulas 4.4.1 (6) and (7).

If function $f \in W_{p}^{P}(a, b)$, then it is equivalent to the wholly determined continuous funct toh which we again will denote by f. The Taylort formula 4.4.1(1) with residual term

$$
\begin{equation*}
R\left(x, x_{0}\right)=\frac{1}{(\rho-1) 1} \int_{x_{0}}^{x}(x-u)^{\rho-1} f^{(u)}(u) d u . \tag{1}
\end{equation*}
$$

where $f(P) \in L_{p}(a, b)$ is valid for it.
\# S. M. Nikol'skiy LT11].

From (1) follow the inequality
and further

$$
\begin{equation*}
\left|R\left(x, x_{0}\right)\right| \leqslant c_{1}\left|f^{(0)}\right|_{c, c, y)} \quad a \leqslant x, x_{0} \leqslant b \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\|R\|_{L ;(\Delta)} \leqslant c_{2}\left|\|^{(p)}\right|_{L_{p}}\left(c_{0}, b\right) \tag{3}
\end{equation*}
$$

where constant c_{2} depends on $b-a, p$, and p. In this case, from 4.4.1(6) and (7) follows, respectively, the inequalities

$$
\begin{array}{r}
\left|f^{(j)}\left(x_{0}\right)\right| \leqslant c_{3}\left(\|f\|_{L_{p}\left(c_{1} b\right)}+\left|f^{(b)}\right|_{L_{p}(a, b)}\right)=c_{3}\|f\|_{-(b)}(a, b)^{p} \\
\left|f^{(n)}\right|_{L_{p}(a, b)} \leqslant c_{3}\|f\|_{\nabla}^{(p)}(c, b) \quad(V=0,1, \ldots, p) . \tag{5}
\end{array}
$$

Both inequalities derived are directly extended to the case of the class of function $U_{x p}(\mathscr{E})$, where $E=L a, b / x \xi_{1}\left(x \in L a, b /, J \in E_{1}\right.$, and $\mathcal{E} \in R_{n}$) is the mensurable aet

$$
\begin{align*}
& \left|\left.\right|_{s_{0}} ^{N_{n}}\left(x_{0}, y\right)\right|_{p_{p}\left(x_{1}\right)} \leqslant c \| f I_{v_{p}}\left(x^{\prime}\right. \tag{6}\\
& \left|f_{x}^{(y)}\right|_{L,(y)}=\left(\int_{v_{1}}\left|f_{x}^{(n)}(x, y)\right|_{c,(x, b)}^{p} d y\right)^{\frac{1}{p}} \leqslant \\
& \leqslant c_{3}\left(\int_{x_{1}}\|f\|_{e_{x p}}(a, b) d y\right)^{\frac{1}{p}} \leqslant c_{1}\|f\|_{x_{x p}}(y) \\
& (j=0,1, \ldots, p) \text {. } \tag{7}
\end{align*}
$$

where If $f \in \mathbb{R}_{x p}^{F}(\xi)$ and $\bar{F}=p-1$, then f is written by formula 4.4.1(1),

$$
R\left(x, x_{0}\right)=\frac{1}{(p-2) \mid} \int_{m_{0}}^{x}\left(u-x_{0}\right)^{\rho-2}\left[f_{s}^{p-1)}(u, y)-f_{s}^{(p-1)}\left(x_{0}, y\right)\right] d u .
$$

Hence

Hence

$$
\begin{aligned}
& \int_{a}^{0}|R|^{p} d x_{0}<c\left(\left|\int_{i}^{x} \int_{u^{x}}^{x}\right| f_{s}^{(p-1)}(u, y)-\left.f_{s}^{(p-1)}\left(x_{0}, y\right)\right|^{p} d u d x_{0} \mid+\right. \\
& \left.+\left|\int_{x}^{b} \int_{x}^{\infty}\right| f_{x}^{(p-1)}(u, y)-\left.f_{x}^{(p-1)}\left(x_{0}, y\right)\right|^{p} d u d x_{0} \mid\right)= \\
& =c\left(\left|\int_{\varepsilon}^{x} \int_{0}^{x-x_{0}}\right| f_{x}^{(p-1)}\left(x_{0}+h, y\right)-\left.\left.\right|_{x} ^{(p-1)}\left(x_{0}, y\right)\right|^{p} d h d x_{0} \mid+\right. \\
& \left.+\left|\int_{x}^{p} \int_{0}^{x_{0}-x}\right| f_{x}^{(0-1)}\left(x_{0}-h, y\right)-\left.f_{x}^{(0-1)}\left(x_{0}, y\right)\right|^{p} d h d x_{0} \mid\right)= \\
& =c\left|\int_{0}^{x-a} \int_{0}^{x-h}\right| f_{x}^{(\rho-1)}\left(x_{0}+h, y\right)-\left.f_{x}^{(\rho-1)}\left(x_{0}, y\right)\right|^{h} d h d x_{0} \mid+ \\
& +c\left|\int_{0}^{0-x} \int_{x+1}^{p}\right| f_{x}^{(0-1)}\left(x_{0}-h, y\right)-\left.f_{x}^{(0-1)}\left(x_{0}, y\right)\right|^{p} d x_{0} d h \mid
\end{aligned}
$$

0.0 .1

$$
\begin{aligned}
& \left(\int_{\gamma_{1}}^{b}|R|^{p} d x_{0} d y\right)^{\frac{1}{p}}< \\
& \mathbb{<}\left[\int_{0}^{x-a}\left|\int_{\gamma_{1}}^{x-h} \int_{0}^{x}\right| f_{x}^{(p-1)}\left(x_{0}+h, y\right)-\left.f_{x}^{(p-1)}\left(x_{0}, y\right)\right|^{p} d x_{0} d y \mid d h\right]^{\frac{1}{p}}+ \\
& +\left[\int_{0}^{b-x}\left|\int_{\gamma_{1}} \int_{x+h}^{b}\right| f_{x}^{(p-1)}\left(x_{0}-h, y\right)-\left.f_{x}^{(p-1)}\left(x_{0}, y\right)\right|^{p} d x_{0} d y \mid d h\right]^{\frac{1}{p}}
\end{aligned}
$$

Hence, noting that when $h>0$

$$
\left(\int_{y_{1}}^{b-n}\left|f_{x}^{(\rho-1)}\left(x_{0}+h, y\right)-f_{x}^{(\varphi-1)}\left(x_{0}, y\right)\right|^{p} d x_{0} d y\right)^{\frac{1}{\varphi}} \leqslant M h^{e}
$$

where

$$
M=\|f\|_{n^{\prime}(y)} .
$$

we get

$$
\begin{aligned}
& {\left[R \|_{L_{p}(x)}=\left(\int_{0}^{0} \int_{y_{1}} \int_{i}^{b} \mid R P^{p} d x_{0} d y d x\right)^{\frac{1}{p}} \leqslant\right.} \\
& <\left(\int_{0}^{p} \int_{0}^{x-a} M^{p} h^{a p} d h d x\right)^{\frac{1}{p}}+\left(\int_{0}^{b 0-x} \int_{0}^{p} M^{\rho} h^{e p} d h d x\right)^{\frac{1}{p}}<c_{2} M .
\end{aligned}
$$

Therefore, from 4.5.1(7) follow a

$$
\begin{align*}
& \|\left. f f_{x}^{n}\right|_{L,(8)} \leqslant c_{3}\left(\|f\|_{L,(s)}+\|R\|_{L,(\infty)}\right)< \\
& <c_{1}\left(\|f\|_{L_{p}(x)}+M\right) \leqslant c_{1}\|f\|_{M_{p}(x)} \quad(j=1, \ldots, r) . \tag{8}
\end{align*}
$$

Inequalities (4) and (5), just as (8), are valid also when a $=-\infty$ and $b=+\infty$. This is obvious for the case (4). But in the case (5) and (8), this follow from 6.1 (2) and (8); in the case when (5) ($1<\mathrm{p}<\infty$), it follows from 9.2.2. The corresponding inequality for the interval (a, ∞) reduces to the preceding by application of the extension theorem 4.3.6.
4.4.4. Let us note that in the determination of functions of classes ${ }_{p}^{P}(\zeta)$ and $\mathrm{H}_{p}^{(G)}$, it was assured that there exists on E generalised partial derivatives $f_{x}^{(j)}$ of orders $j=1, \ldots, p_{-1}(\bar{y}-1)$, bat it was not assumed that they hare a finite norm in the $\mathrm{L}_{\mathrm{p}}(\mathrm{E})$-sense.

Inequalities 4.4 .3 (7) and (8) show that the finiteness of the worms of these derivatives given from the definition of the corresponding abases. But then derivatives $f_{x}(j)(j=0,1, \ldots, p-1)$ are absolutely continuous on the closed segment $\overline{L E}, \bar{j}$ with respect to the variable x for almost all $\bar{j} \in \mathcal{G}_{1}$. Thus, the expansion of I by Taylor's formula

$$
\begin{align*}
& f(a, y)=\sum_{n}^{n-1} \frac{r_{x}^{(x)}(a, y)}{n!}(x-a)^{n}+ \\
& \tag{1}\\
& \quad+\frac{1}{(p-1)!} \int_{a}^{x} F_{s}^{(p)}(u, y)(x-u)^{p-1} d u
\end{align*}
$$

obtains for almost all $y \in \xi_{1}$ in the neighborhood of the endpoint a of segment $[\bar{a}, b \bar{b}$, as does the corresponding expansion in the neighborhood of the other endpoint b. Let us note the inequality

$$
\begin{equation*}
\left\|\Delta_{x_{j}, n}^{0} f\right\|_{L_{p}\left(\varepsilon_{x_{p}|h|}\right)} \leqslant\left.\left|h p^{p}\right| \frac{\partial^{p}}{\partial x_{i}^{p}}\right|_{L_{p}(x)} \text {, } \tag{2}
\end{equation*}
$$

that can be similarly interpreted: if the right-side of the inequality (2) is meaningful, then so is the left, and inequality (2) itself obtains.

The inversion of inequality (2) when $\rho=1$ was obtained in 4.8.
Proof. Firat let $\rho=1$; then by virtue of the equality

$$
\Delta_{x_{1}, h} f(x)=\int_{0}^{n} f_{x_{1}}^{\prime}\left(x_{1}+t, y\right) d t, \quad x=\left(x_{1}, y\right) \in g_{|h| \prime}
$$

which holds for almost all admiasible $y=\left(x_{2}, \ldots, x_{n}\right)$ and for all x_{1} and n admissible for any y thus definod, we get (ci 1.3.2)

$$
\begin{aligned}
\left|\Delta_{x_{1} n} f \|_{L_{p}\left(\varepsilon_{1,1}\right)} \leqslant\left|\int_{0}^{n}\right| f_{x_{1}}^{\prime}\left(x_{1}+t, y\right)\right|_{L_{p}\left(\varepsilon_{1,1}\right)} d t \mid & \leqslant \\
& \leqslant\left.\left|\int_{0}^{n}\right| f_{x_{1}}^{\prime}\right|_{L_{p}\left(\varepsilon_{1}\right)} d t \mid
\end{aligned}
$$

Therefore for arbitrary p

$$
\begin{aligned}
& \left|\Delta_{x_{1}, n f}^{f}\right|_{L_{p}\left(e_{x, p|n|}\right)}=\left|\Delta_{x_{1}, n} \Delta_{x_{1}, n f}^{p-1}\right|_{L_{p}\left(e_{x_{1}|n| A \mid}\right)} \leqslant \\
& \leqslant|h| \mid \Delta_{x_{1}, h^{\rho-1} f_{x_{1}}^{\prime}}^{L_{p}\left(e_{x_{1}(\theta-1)|A|}\right)}< \\
& \leqslant\left.\left|h P^{p}\right| \Delta_{x_{1}, h}^{p-2} h_{x_{1}}^{N}\right|_{L_{p}\left(c_{x_{1}(\varphi-z| | A)}\right)} \leqslant \ldots \leqslant|h|^{p}\left|f_{x_{1}}^{(\varphi)}\right|_{L_{p}(x)} .
\end{aligned}
$$

Corollary 1. Inoquality")

$$
\begin{equation*}
\left|\Delta_{\dot{x}_{1}, n}^{\rho} g_{v} \dot{L}_{L_{p}(x)} \leqslant|h p| \frac{\partial_{p v_{v}}}{\partial x_{1}^{\rho}}\right|_{\varepsilon_{p}(v)} \leqslant(v h)^{\rho}\left|g_{v}\right|_{L_{p},(n)} \tag{3}
\end{equation*}
$$

obtaing for the function $\varepsilon_{v}(x)=g_{\nu}\left(x_{1}, \ldots, x_{n}\right) \in m_{x, \nu p}(\xi)$ and $(\xi)=$ $R_{1} \times \xi_{1}$ (1.0., belonging to $L_{p}(E)$ and of integral degree ν with reapect to x_{1}, of 3.4 .1) (of $3.2 .2(7)$). We must also consider that $E x_{1, \delta}=\xi$, aince ξ is a set oylindrical in the x_{1} direction.
coroluary 2. If $r>0$ is intogral, then

$$
\begin{equation*}
W_{x_{p}^{(1)}}^{(g)}(g) \rightarrow H_{s_{1}, p}^{(s)}(g) . \tag{4}
\end{equation*}
$$

This follows from the fact that
4.4.5. Lena. Let the sequonce of functions $f_{1}(1=1,2, \ldots)$ belongins to ${\underset{x}{x}, p}_{p}^{p}(g)$, whore $g \subset R_{n}$ is an open sot, the givon.

If for the two functions f and $\varphi \in L_{p}(s)$

$$
\begin{align*}
& \left\|f-f_{1}\right\|_{L_{p}(x)} \rightarrow 0, \quad l \rightarrow \infty, \tag{1}\\
& \left|\varphi-\frac{\partial f_{h}}{\partial x_{1}^{l}}\right|_{k,(x)} \rightarrow 0, \quad l \rightarrow \infty, \tag{2}
\end{align*}
$$

then (in the gemeralised sense)

$$
\begin{equation*}
\varphi=\frac{\partial \partial_{1}}{\partial x_{i}} \quad \text { on } E \tag{3}
\end{equation*}
$$

Thequality (3) is valid also for the trifonomotric polynomials g_{v} of order
v with reapect to x_{1} if wo substitute $L_{p}(E)$ for $L_{p}\left(G_{0}\right)$.

Proof. First let $g=\left[\bar{a}, \bar{b} \overline{/}\right.$. From the fact that $f_{1} \in W_{x p}^{\rho}\langle\bar{a}, \bar{b} /(1=$ $1,2, \ldots$) it follows that for it or some function equivalent to it, again refer to by f_{1}, there obtaina the expansion of f_{1} by Taylor' formula

$$
\begin{equation*}
f_{1}(x)=\sum_{0}^{\rho-1} \frac{l^{(n)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{1}{(\rho-1) \mid} \int_{x_{0}}^{2}(x-t)^{p-1} f_{l}^{(p)}(t) d t . \tag{4}
\end{equation*}
$$

for any x and $x_{0} \in[\bar{a}, \underline{b} /$. by 4.4.3(4) and the conditions of the lauma

$$
\begin{aligned}
& \left|f_{k}^{(l)}\left(x_{0}\right)-f_{l}^{(l)}\left(x_{0}\right)\right| \leqslant \\
& \leqslant c\left[\left|f_{k}-f_{l} \|_{L_{p}(0, b)}+\left|f_{k}^{(p)}-f_{l}^{(0)}\right|_{L_{p}(a, b)}\right] \rightarrow 0 \quad k, l \rightarrow \infty,\right.
\end{aligned}
$$

i.e., the uniform convergence

$$
\lim _{l \rightarrow \infty} f_{l}^{\prime \prime \prime}\left(x_{0}\right)=\lambda_{1}\left(x_{0}\right) \quad\left(a \leqslant x_{0} \leqslant b ; j=0,1, \ldots, p-1\right)
$$

obtains on the segment $[\bar{a}, \underline{b} /$. But then after the passage to the limit in (4) as $l \rightarrow \infty$, we get

$$
f(x)=\sum_{0}^{0-1} \frac{\lambda_{k}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{1}{(p-1) 1} \int_{x_{0}}^{x}(x-t)^{p-1} \varphi(t) d t .
$$

i.e.

$$
\begin{array}{ll}
\lambda_{1}(t)=f^{(n}(t) . & j=0,1, \ldots, p-1 . \\
\varphi(t)=f^{(t)}(t) & {[a<t \leqslant b] .}
\end{array}
$$

and the lema stands as proven.
In the general case the lemma will obviously be proven if the validity of equality (3) stands proven for an arbitrary rectanguiar parallelipiped $\Delta<\mathrm{B}$.

We will assert that $\Delta=\left[\bar{a}, \underline{b} / \times \Delta_{1}\right.$, where $x_{1} \in[\bar{a}, \bar{b}], y \in \Delta_{1}$. By virtue of the conditions posed on function f_{1} and the fact that there they are countable, we can take them to the modifications on a set of measure zero such that there exiets that $\Delta_{1}^{\prime} \subset \Delta_{1}$ of complete measure so that for all $y \in \Delta_{1}^{\prime}$, functions I_{1} are locally absolutely contimuous with respect to x. It follows from (1) and (2) that for almost any $y \in \Delta_{1}^{\prime}$ for which
(dopendont on y) the aubeequence of I_{s} holde (cf 1.3.8)

$$
\begin{aligned}
& \left|f-f_{1}\right|_{2,1 a, b i} \rightarrow 0, \\
& \left|-\frac{\partial h_{2}}{\left.\partial x\right|_{2}}\right|_{2,1 a, b)} \rightarrow 0 .
\end{aligned}
$$

But thon for the apecifiod y

$$
\varphi\left(x_{1}, y\right)=\frac{\partial \rho}{\partial x_{1}^{\rho}}\left(x_{1}, y\right)
$$

for almost all $x_{1} \in[\bar{a}, \bar{b} \overline{/}$. This in fact leade to the oonfirmation of the Lema.
4.4.6. Theorem. Lot $\in \subset R_{n}$ be an open eot and ε_{1} be anotber open bounded aot ouch that $\varepsilon_{1} \subset \bar{\varepsilon}_{1} \subset E$. Than, if $f \in \mathcal{H}_{\mathrm{p}}^{l}(\mathrm{~g})$, then

$$
\begin{equation*}
|f(a)|_{L_{p}\left(c_{1}\right)}<c_{R_{1}}\|f\|_{\infty_{p}}(s) \quad(|s|<n) \tag{1}
\end{equation*}
$$

where ${ }^{g_{1}}$ in a conetant dopendent on $p, 1$, and c_{1}, but not f.
This theoren ceaily followa by induction from inequality 4.4.3(7). Conoldering that E_{1} can be covered with a finite number of cubes $\triangle \subset \mathrm{C}$ with -dices paralial to the coordinate axen, it is surficiont that the theorem be proven for one of them.
4.4.7. Lemen. Let there be given the sequance of functions

$$
f_{A}=f_{k}\left(x_{1}, \ldots, x_{n}\right)-f_{k}(x) \quad(k=1,2, \ldots)_{1}
$$

intecrable on E in the p -th degree $(1 \leqslant \mathrm{p} \leqslant \infty)$ together with thoir partial derivatives of to order p induaively appearing below in (1) and, moreover, that the functions

$$
f, f_{e_{1},} f_{e_{1}, a_{1}} \ldots, f_{e_{1}} \ldots e_{s}
$$

be given $\left(\alpha_{1}+\ldots+\alpha_{g} \leqslant P, \alpha_{j}=\right.$ positive integera, $\left.1 \leqslant a \leqslant n\right)$ are ouch that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|f-f_{a}\right\|_{L_{p},()}=0, \\
& \lim _{k \rightarrow \infty}\left|f_{a_{1}}-\frac{\partial^{e_{1}}}{\partial x_{1}^{Q_{1}}}\right|_{L_{p}(6)}=0_{a} \tag{1}
\end{align*}
$$

$$
\lim _{k \rightarrow \infty}\left|f_{a_{1} \ldots a_{s}}-\frac{\partial^{a_{1}+\ldots+a_{s}} h_{k}}{\partial x_{1}^{a_{1}} \ldots \partial x_{s}^{a_{j}}}\right|_{L_{p}(\infty)}=0 .
$$

Then (in the generalized sense)

$$
\begin{equation*}
f_{a_{1}}=\frac{\partial^{a_{1}} l}{\partial x_{1}^{a_{1}}}, f_{a_{1} a_{2}}=\frac{\partial^{a_{1}+a_{2}}}{\partial x_{1}^{a_{1}} \partial x_{2}^{a_{2}}}, \ldots, f_{a_{1} \ldots a_{s}}=\frac{\partial^{a_{1}+\ldots+a_{4}}}{\partial x_{1}^{a_{1}} \ldots \partial x_{s}^{a_{s}}} . \tag{2}
\end{equation*}
$$

This is lemma 4.4.5 for the case $8=1$. The transition to the general case is made without difficulty by induction.
4.4.8. If the functions f_{k} and their partial derivatives of the correspording orders considered in 4.4 .7 are continuous on g, then these partial derivatives do not depend on the order of integration, therefore the generalized derivatives 4.4.7(2) also do not depend on the order of integration almost everywhere on g.
4.4.9. Theorem. Let functions f_{1}, f_{2}, \ldots be continuous together
widil their partial derivatives up to order inclusively and togethor with the function f satisfies the conditions of lemme 4.4.7 and, where equalities (1) are met for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $|\alpha| \leqslant P$. Let, moreover, domain g of variation of the variables $x_{1}, \ldots, x_{y_{1}}$ be mutually uniquely mapped onto domain \hat{g} of variables t_{1}, \ldots, t_{n} by means of the functions

$$
\begin{equation*}
x_{j}=\varphi_{j}\left(t_{1}, \ldots, t_{n}\right) \tag{1}
\end{equation*}
$$

that are continuous, with partial derivatives that are continuous and bounded on \mathbb{Z}, of orders not exceeding P and such that the Jacobian

$$
D(t)=\frac{D\left(x_{1}, \ldots, x_{n}\right)}{D\left(t_{1}, \ldots, t_{n}\right)}>k>0
$$

Then the function

$$
F\left(t_{1}, \ldots, t_{n}\right)=f\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

is integrable in the p-th dogree on \tilde{g} together with its partial derivatives of order up to P incluaively, where these partial derivatives are computed by classical formulas, just as if function i had continous partial derivatives.
f (s) Proof. Acuually, it follows from the conditions of the lowma that

$$
\begin{aligned}
\int_{i}\left|f^{(m)}(x)\right|^{p} d x & =\lim _{n \rightarrow \infty} \int_{i}\left|f^{(t)}(x)\right|^{p} d x= \\
& =\lim _{t \rightarrow \infty} \int_{i}\left|f_{n}^{(n)}\left(\varphi_{1}, \ldots, \Phi_{n}\right)\right|^{p} D(t) d t= \\
& =\int_{i} \mid f^{(t)}\left(\varphi_{1}, \ldots,\left.\varphi_{n}\right|^{p} D(t) d t_{1}\right.
\end{aligned}
$$

obtains, and since $D(t)$ is bounded from below by a positive constant, then $\mathrm{f}(\mathrm{g})\left(\varphi_{1}, \ldots, \varphi_{\mathrm{n}}\right) \in \mathrm{I}_{\mathrm{p}}(\mathrm{E})$. Let us aet

$$
F_{n}(t)=f_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right), \quad F(t)=f\left(\varphi_{1}, \ldots, \varphi_{n}\right) .
$$

By the alaceical formula the derivative of F_{k} of order $1=\left(l_{1}, \ldots, l_{n}\right)$ is of the form

$$
\begin{equation*}
F^{(n}(t)=\sum_{|0|<1 / 1} a_{0} f^{(n)}\left(\varphi_{1}, \ldots, \varphi_{n}\right), \tag{2}
\end{equation*}
$$

where α_{s} are functions continuous and bounded on $\tilde{\tilde{E}}$, defined by transformations (1). Since $f_{k}^{(a)} \rightarrow f^{(d)}(k \rightarrow \infty)$ in the $L_{p}(s)$-ene, then based on the following $f_{x}^{(a)}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \rightarrow f^{(s)}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ in the $L_{p}(\mathrm{E})$-sane and from (2) It follows that after passage to the limit as $k \rightarrow \infty$,

$$
F^{(n)}(t)=\sum_{101 \leqslant 1 \mid 11} a_{n} f^{(n)}\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

for almost all $t \in \tilde{E}$. Comenelised derivatives, in the main, appear in formula (2). If the latter are continuous, then (2) is the classical formae.

In these considerations we assure that p is finite $(1 \leqslant p<\infty)$. When $p(\bar{a})($ nothing novel a marges from the len (l) conditions, because then $f_{k}(a)(|s| \leqslant P)$ converges uniformly to $f\left(\begin{array}{l}\text { (}\end{array}\right.$.
4.5. More on Soboler Average in (i)

Let $\subset \mathbb{R}=R_{n}$ be an open aet, $1 \leqslant p \leqslant \infty$, the function $f \in I_{p}(R)$, and

$$
\begin{equation*}
f_{a}(x)=\frac{1}{\varepsilon^{x}} \int \Phi\left(\frac{x-a}{e}\right) f(u) d u \quad(f=0 \text { on } R-g) \tag{1}
\end{equation*}
$$

*) S. L. Sobolor [in].
is its ε-averaging (cf 1.4).
Obviously, $f_{\varepsilon}(x)$ is infinitely differentiable on R and

$$
\begin{equation*}
f_{e}^{(x)}(x)=\frac{1}{e^{n+10}} \int \varphi^{(u)}\left(\frac{x-u}{e}\right) f(u) d u \tag{2}
\end{equation*}
$$

for any integral vector $=\left(a, \ldots, s_{n}\right) \geqslant 0$.
4.5.1. Let us, as usual, use ge to stand for the sot of points $x \in g$ situated from the boundary of \boldsymbol{f} 的 a diatance grenter than $\varepsilon>0$.

Suppose $f \in L_{p}(g)$ and $d f / \partial x_{1} \in L_{p}(g)$. If $x \in g_{\varepsilon}$, then in the equality

$$
{ }_{1 x_{1}}^{n} f_{2}(x)=\frac{1}{e^{n+1}} \int \varphi_{x_{1}}^{\prime}\left(\frac{x-u}{e}\right) f(u) d u
$$

under the integer, which we can asgume to be distributed over a sphore of radius ε with center at x is included in function f, absolutely continuous with respect to u_{1} for almost all $\left(u_{2}, \ldots, u_{n}\right)$, therofore this intogral
can be integrated by parts with roapect to u_{1} (when $x \notin g$ e this generally spuaking is not so, and f can be essentially diacontinous in this sphere).

Considering that

$$
\frac{\partial}{\partial u_{1}} \varphi\left(\frac{x-\xi}{e}\right)=-\frac{1}{\varepsilon} \varphi_{x_{1}}^{\prime}\left(\frac{x-\xi}{\varepsilon}\right)
$$

and that $\varphi \in 0$ outside the indicated aphere, we get

$$
\begin{aligned}
& \frac{\partial}{\partial x_{1}} f_{x}(x)-\frac{1}{e^{n}} \int \frac{\partial}{\partial u_{1}} \Phi\left(\frac{x-u}{e}\right) f(u) d u= \\
&=\frac{1}{e^{\pi}} \int \Phi\left(\frac{x-\varepsilon}{e}\right) \frac{\partial f}{\partial x_{1}}(u) d u=\left(\frac{\partial f}{\partial x_{1}}\right)_{c}(x) .
\end{aligned}
$$

Generally, if we consider the functions $f, \partial f / \partial x_{j_{1}}, \partial^{2} f / \partial x_{j_{1}} \partial x_{j_{2}}, \ldots$, then, reasoning by induction, we get

$$
\begin{equation*}
\left.1^{4} V_{1}\right)-\left(D^{8} f\right)_{a}\left(x \in g_{e}\right), \quad D^{A}=\frac{\partial^{101}}{\partial x_{1}^{R} \ldots \partial x_{n}^{n}} . \tag{1}
\end{equation*}
$$

In the definition of clase $\psi_{p}^{l}(\mathrm{~s})$ it was asoumed that any function f belonging to it belongs to $L_{p}(g)$ together with its partial derivatives $f(1)$
of order 1. Ae for the auberwad derivatives $f^{(0)}(|s|<1)$, then they, natureily, are assuad to exdet (In the genoralised sonse) on g, but need not moeacarily be mamble in the p-th degree on E .

In 4.4 .6 it was shown that if $f \in \mathcal{H}_{p}^{\mathcal{L}}(\mathrm{s})$ and $\sigma \subset \mathrm{E}$ is an arbitrary n-dimanional aphare, then $f(s) \in L_{p}(\sigma)(|s| \leqslant 1)$. But thon for a sufficientiy amall $\varepsilon>0$, equality (1) obtains on σ, for which by $1.4(4)$ it follows that for $1 \leqslant p<\infty$ (or when $p=\infty$, on the aamumption that D^{li} in uniformily contimove on R_{n}) that

$$
\begin{equation*}
\left|D^{A}\left(f_{z}\right)-D^{d} f\right|_{L_{p}(0)}=\|\left(D^{e} f\right)_{z}-D^{a} f l_{L_{p}(0)} \rightarrow 0 \quad(\varepsilon \rightarrow 0,|\varepsilon| \leq l) . \tag{2}
\end{equation*}
$$

Conaldering that I_{E} is an infinitely differentiable function and, tharafore, for it the recult of the operation $D^{d} f_{E}$ does not dopend on the ordar of differentiation (with respect to a_{1}, \ldots, n_{n}) and that $\sigma \in E$ is an arbitrasy aphere, we arrive at the following concluaion.

If $f \in \psi_{p}^{\mathcal{l}}(\mathrm{g})$, then for the indicated e the derivativen $f(\mathrm{~s})$ almont everywhere are independent of the order of differentiation.
4.5.2. Theorem. Let f and λ be function locally awmale on g. If the function λ is a derivative with reapect to x_{1} on g in the Sobolev sonse, then it is aleo the derivative

$$
\begin{equation*}
\lambda=\frac{\partial f}{\partial z}, \tag{1}
\end{equation*}
$$

In the senee we mployed (cf beginning of section 4.1).
Proof. Let

$$
\begin{equation*}
f_{z}(x)=\int \varphi_{z}(x-u) f(u) d u \tag{2}
\end{equation*}
$$

where ε is the avaragine of f; then

$$
\begin{align*}
& f_{t}^{\prime}(x)=\int \frac{\partial}{\partial x_{1}} \varphi_{e}(x-u) f(u) d u= \\
&=-\int \frac{\partial}{\partial u_{1}} \varphi_{l}(x-u) f(u) d u= \\
&=\int \varphi_{k}(x-u) \lambda(u) d u \quad\left(x \in g_{k}\right) \tag{3}
\end{align*}
$$

The last equality obtaing by virtue of λ being a derivative of f with respect to x_{1} on g in the Sobolev cense, and the fact that $\varphi_{E}(x-e)$ for a fixed 1 $x \in g_{t}$ is a finite function of n.

Since f and λ are locally sumable on g, thon from (2) and (3) it follows that (of 4.5.1(2))

$$
\begin{aligned}
& \left\|f_{\varepsilon}-f\right\|_{L(0)} \rightarrow 0, \quad \varepsilon \rightarrow 0, \\
& \| f_{t}^{\prime}-\lambda L_{(0)} \rightarrow 0, \quad \varepsilon \rightarrow 0 .
\end{aligned}
$$

on and close sphere $\sigma \subset \mathrm{g}$, but then by lama $4.4 .5,(1)$ obtains.

4.6 Bitimater of Inorement in Direction

Let us consider the innoar tranoformation

$$
\begin{equation*}
x_{1}=\sum_{k=1}^{n} a_{1 n} t_{n} \quad(l-1, \ldots, n) \tag{1}
\end{equation*}
$$

with a determinant not equal to zero and mapping matually uniqualy pointa $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{E}$ into points $t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{C}$. It satisifies the requirements of theorem 4.4.9. If $f \in \mathcal{W}_{p}^{\mathcal{l}}(g)$, then wo already know that 4.5.1(2) is satiofied for each sphere $\sigma \subset \bar{\sigma} \subset \mathrm{g}$, then by theorem 4.4.9, the function $\hat{l^{\prime}(t)}=f\left(x_{1}(t), \ldots, x_{n}(t)\right)$ transformed by moans of (1) has on ary aphere $\sigma<\mathrm{g}$, consequentily, on g as well ail derivatives $\boldsymbol{f}(\mathrm{s})(\mathrm{t})$ with respect to t, where $|0| \leqslant 1$, colcalated moreover by the clasaical roles. Cloarly, $\bar{f} \in W_{p}(\underline{X})$.

In order to dofine the derivative of function $f \in \mathbb{L}_{\mathrm{p}}^{\mathrm{l}}(\mathrm{s})$ in the direction of vector $h \in R_{n} ;$ lot us introduce tho orthogonal Pranifomation (1)
such that change of t_{1} in the positive direction for fixed $t_{2} ; \ldots, t_{n}$ entalle change of x in the direction h. We will assert that the derivative of f in the direction of \boldsymbol{l} is defined by the equalities

$$
\begin{gather*}
\frac{\partial f}{\partial h}=\frac{\partial f}{\partial t_{1}}=\sum_{\mid=1}^{n} \frac{\partial f}{\partial x j} \cos \left(h, x_{j}\right), \tag{2}\\
\frac{\partial^{d} f}{\partial h^{3}}=\frac{\partial^{\prime} l}{\partial r_{1}^{3}}=\sum_{\mid 01=;} f^{(1)} h^{d} \tag{3}\\
\left(s=\left(s_{1}, \ldots, s_{n}\right) ;|s| \leqslant l_{1} h^{\prime}=h_{1}^{s_{1}} \ldots h_{n}^{3},|h|-1\right) .
\end{gather*}
$$

Obvionsly, this dofinition doen not dopend on the oboioe of the orthofonal tranaformation (1) subject to the indicated requarmants.

The equality

$$
\begin{equation*}
\Delta_{n} f(x)=f(x+h)-f(x)=|h| \int_{0}^{1} f_{n}^{\prime}(x+t h) d t \text {. } \tag{4}
\end{equation*}
$$

obtaina, from whonoe

$$
\begin{equation*}
\left\|\Delta_{n} f(x)\right\|_{p,\left(e_{n}\right)} \leqslant|h| \int_{0}^{1}\left|f_{h}^{\prime}(x+t h)\right|_{p,\left(e_{n}\right)} d t-\mid h\left\|f_{n}^{\prime}\right\|_{L_{p}(x)}, \tag{5}
\end{equation*}
$$

where in is an arbitrany vector. It is also eany to derive a moro general inequality (in particurar, one coutaining the relation

$$
\begin{equation*}
|\Delta h f(x)|_{p\left(c_{p k}\right)} \leqslant|h P| f f^{p} \|_{p(x)} \tag{6}
\end{equation*}
$$

in analogous to 4.4.2(2)).

Thoorm, Whatever the open set $g \subset R_{n}$, the opacea

$$
W_{w p}^{\prime}(g), W_{u p}^{\prime}(g), H_{u p}^{\prime}(g), H_{u p}^{r}(g), B_{u p 0}^{\prime}(g), B_{u p p}^{r}(g)
$$

are complote.
There are differant variants of the dafinitions of those clanses. Conerally, thare are not equivalont for an arbitrany open sot E. Wo will prove ocmplotemese for one of the variante: (4.3.1(1) for spaces wep 4.3.3(5) for Eup, and 4.3.4(2) or 4.3.4(4) for Bupe. The proof for not materialiv differ for the other variante.

Proof. Wo will aesert that $\mathrm{g}_{1} \subset \tilde{\mathrm{~g}}_{1} \subset \mathrm{~g}$ is a bounded open eet. Lot there be apecified the eequence of functions $f_{k} \in W_{u p}^{\mathcal{l}}(\varepsilon)(k=1,2, \ldots)$ aatiafying the Canches condition in the matrix ulpp (g).

Then (er 4.4.6 and 4.4.7)

$$
\begin{gather*}
\left\|f_{k}^{(s)}-f_{l}^{(s)}\right\|_{L_{j}\left(\varepsilon_{1}\right)} \leqslant c_{g_{1}}\left\|f_{k}-f_{1}\right\|_{w_{u p}^{\prime}(g)} \rightarrow 0 \\
k_{1} j \rightarrow \infty, \quad s=\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right),|s| \leqslant l_{1} \tag{1}
\end{gather*}
$$

there exists the function f for which

$$
\begin{equation*}
\mid f_{k}^{(i)}-f^{(i)} L_{L_{p}\left(\varepsilon_{1}\right)} \rightarrow 0 \quad(k \rightarrow \infty) \tag{2}
\end{equation*}
$$

It belongs to $W_{u p}^{l}\left(g_{1}\right)$, because $f_{k} \in \mathcal{U}_{\text {up }}^{\prime}\left(g_{1}\right)$. Assigning $\varepsilon>0$, we can apecify $\mathrm{N}>0$ such that for $k, j>N$
for any g_{1}. Passage to the limit in the firat term of (3) as $j \rightarrow \infty$ by virtue of (2) leads to the very same expression, where we must substitute f for f_{i}, i.e., the relation

$$
\left\|f_{k}-f\right\|_{W_{u p}^{\prime}\left(e_{1}\right)} \leqslant e \quad(k>N)
$$

obtains for and g_{1}, and 80 for g. Here f belongs (in addition to f_{k}) to $W_{u p}(g)$. In this way the completeness of $u_{u p}(g)$, in particular, $u_{x_{j p}}^{l j}(g)$ is proving, but then it is obvious that $W_{\text {up }}^{l}(g)$ is also complete.

Let us now prove the completeness of $\mathrm{B}_{\text {upe }}^{r}(\mathrm{~g})\left(1 \leqslant \theta \leqslant \infty, \mathrm{~B}_{\text {upos }}^{r}=\mathcal{H}_{u p}^{r}\right)$. We can show (of remark at the end of the book to section 4.3.6) that functions of the classes $\mathrm{Br}, \ldots, \mathrm{F}(\mathrm{g})=\mathrm{B}_{\mathrm{up}, \ldots, \mathrm{r}}^{\mathrm{r}} \mathrm{g}(\mathrm{g})$ can be oxtended from $\mathrm{g}_{1} \subset \mathrm{~g}_{1} \subset \mathrm{~g}$ to R with preservation of the norm (with reapect to g), i.e., for each $f \in$ $B^{r}, \ldots, F(g)$ its extension $\bar{f}\left(\mathbb{F}=f\right.$ on $\left.g_{1}\right)$ can be specified, such that

$$
\begin{equation*}
\left\|\tilde{f} \ddot{B r}_{r^{\prime}, \ldots, r(R)} \leqslant c\right\| f \|_{B^{r}, \ldots, r(0)} \tag{4}
\end{equation*}
$$

But further, it will be shown (5.6.2) that

$$
\begin{equation*}
B^{r, \cdots, r}(R)=B^{\prime}(R) . \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& 0 \leftarrow\left\|f_{h}-f_{f}\right\|_{B(G)} \gg f_{A}-f_{j} \|_{B} r_{1} \ldots, r_{\left(Q_{1}\right)}>
\end{aligned}
$$

$$
\begin{align*}
& \left(s=\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right),|s| \leqslant F_{1}, r=f+\alpha_{1}\right. \tag{6}
\end{align*}
$$

$$
\text { Fis an integer, } 0<\alpha \leqslant 1 \text {. }
$$

The firet inequality is trivial ($\left.B^{r} \ldots B^{r}, \ldots, r\right)$; the_second is valid by virtue of the above-noted theorem on extenaion; here \bar{f}_{j} and \bar{f}_{k} are functions extending, by this thoorem, functions f_{k} and f_{j}, reapectively, from the set G; the third inequality follows from (5); the fourth will be proven later (6.2(8)). Notice that in the case $H_{x_{1 p}}^{(g)}(\mathrm{g})(\mathrm{m}=1)$ the inequality between the firat and the last tarms in (6) follows immodiately from (4.4.3(8)) without bringing in the theorem on extension.

Obviously, it follows from (6) that when $P=\bar{F}$

$$
\begin{equation*}
\left\|_{h_{u}}-p_{k u}\right\|_{L},\left(c_{1}\right) \rightarrow 0 \quad\left(k, j \rightarrow \infty, u \in R_{m}\right) \tag{7}
\end{equation*}
$$

where $f_{\text {lau }}$ is a derivative of f_{k} of order ρ in the direction n, whatever be the $\mathbf{g}_{1} \subset \overline{\mathbf{B}}_{1} \subset \mathrm{~g}$.

Now, inspecting the clase $H_{\text {rup }}^{r}(\mathrm{~B})$, and for aimplicity asserting that $0<\alpha<1$, and asaigning $\varepsilon>0$, we get $\left(g_{1} \subset \bar{E}_{1} \subset g_{u}\right)$

$$
\begin{aligned}
& \left\|f_{k}-f_{j}\right\|_{k},(k)+
\end{aligned}
$$

where N is aufficiently large. If k is fixed and $g \rightarrow \infty$, then at tho limit the firat term in (8) by virtue of (7) is converted into the same expression, where f_{j} most be replaced with f. In this expresaion lot us replace g_{1} with

En which obviously is logitimate. Taking the upperbound of the reoulting expression with reapect to a, we get

$$
\left\|f_{k}-f\right\|_{H_{a,}^{\prime},(6)} \leqslant \varepsilon \quad(k>N)
$$

and since it follows from the fact that $f_{k} \in H_{u p}^{r}(g), f \in \mathbb{H}_{\text {up }}^{r}(g)$, then thic completeness of $H_{\text {up }}^{r}(g)$ provided $\alpha<1$ stande proven. When $\alpha=1$, the first difforence" of (8) must be roplaced by the second, reasoning analogounty.

But for the clase $\mathrm{B}_{\text {upe }}^{r}(\mathrm{~g})(1 \leq 0<\infty)$, for and $\epsilon>0\left(\mathrm{~g}_{1} \subset \overline{\mathrm{~B}}_{1} \subset \mathrm{~B}_{\mathrm{bu}}\right)$

$$
\begin{align*}
& \left\|f_{\mu}-f_{v}\right\|_{L_{p}(g)}+\left(\int_{1,<|u|<x}|u|^{-m-\theta x}\left\|\Delta_{u}^{k}\left(f_{H}^{p}-p_{v}\right)\right\|_{L_{p}\left(\varepsilon_{1}\right)} d u\right)^{10} \leqslant \varepsilon \\
& \left(\mu, v>N, u \in R_{m}, \rho=\bar{\gamma}, k \geqslant 2, \quad \text { provided } \alpha<1 \quad k \geqslant 1\right), \tag{9}
\end{align*}
$$

where $0<\lambda<x$ are arbitrary numbers.
The pascage to the limit as $\nu \rightarrow \infty$ reaches the same inequallty where f_{v} must be replaced by $f(p$. This followe from the fact that here we can omploy the Lebeague on the linit under the integral oign. The isiaue is that the u-dependent norm under the aign of the integral in (9) boundediy approaches the eame number, where f appears instead of f_{v} (of (6) and (7)). In the rosulting inequality valid for ans indicated λ and x, we can obviously set $\lambda=0$ and $x=\infty$ and replace g_{1} with $g_{k o u}$, which entails

$$
\left\|f_{\mu}-f\right\|_{\Delta_{\mu, 0}} \leqslant e_{1} \quad \mu>N
$$

Moreover, from the fact that $f_{\mu} \in B_{u p p}^{r}(g)$ followe $f \in B_{u p \theta}^{r}(g)$. The completeness of $\mathrm{B}_{\mathrm{ap} \theta}^{\mathrm{r}}(\mathrm{B})$ is proven.

4.8. Fotimate of A Derivative br the Difference Beiation

Theorem (Inverting inequality $4.4 .4(2)$). Suppose function $f(x)=$ $f\left(x_{1}, j\right)$ is given on an open cot g, is locaily aumable on it, and satiafies the inequality

$$
\begin{equation*}
\int_{\delta_{h}}\left|\frac{\Delta_{x_{1}, h^{f}} f(x)}{h}\right|^{p} d x \leqslant M \quad(1<p<\infty) \tag{1}
\end{equation*}
$$

where M does not depend on h.
\#) $\mathrm{r}_{\mathrm{cou}}-\mathrm{f}_{\mathrm{ju}}^{\rho}$

Than on 5 there oxiets the derivative $\partial f / \partial x_{1}$ oxbibiting the property

$$
\begin{equation*}
\int_{g}\left|\frac{\partial f}{\partial x_{1}}\right|^{P} d x \leqslant M \tag{2}
\end{equation*}
$$

Proof. Let us assign two open cubes $\Delta \subset \Delta_{1} \subset \bar{\Delta}_{1} \subset E$ with faces parailal to the coordinate axes and atrictly canbedded one in the other. Wo have

$$
\begin{aligned}
& \frac{\Delta_{x_{1, h} / 2}(x)}{h}=\left(\frac{\Delta_{x_{1, ~} h} I(x)}{h}\right)_{\varepsilon} \\
& ((\cdot)-E \text {-averaging }),
\end{aligned}
$$

Therefore from (1) and $1.4(7)$ it followe that for aufficiently mall h and ε

$$
\int\left|\frac{\Delta_{x_{1}, h / 2}(x)}{h}\right|^{p} d x \leqslant \int_{\Delta_{1}}\left|\frac{\Delta_{x_{1}, h} \mid(x)}{h}\right| \underset{\vdots}{P} d x \leqslant M
$$

Passing to the livit as $h-\infty, E$, we get

$$
\begin{equation*}
\int_{d}\left|\frac{\partial f_{1}}{\partial x_{1}}\right|^{p} d x \leqslant M \tag{3}
\end{equation*}
$$

He bave

$$
\begin{equation*}
f_{e}\left(x_{1}^{\prime}, y\right)-f_{e}\left(x_{1}, y\right)=\int_{x_{1}}^{x_{1}} \frac{\partial f_{e}}{\partial x_{1}}(t, y) d t_{0} \tag{4}
\end{equation*}
$$

where wo ascume that $\bar{y}=\left(\xi_{2}, \ldots, \xi_{n}\right)$ runs through the orthogonal paraliolapiped

$$
\dot{\Delta_{0}}=\left\{x_{j} \leqslant \varepsilon_{j} \leqslant x_{j}+h_{j ;} \mid-2, \ldots, n\right\}
$$

and

$$
\left[x_{1}, x_{1}^{\prime}\right] \times \Delta_{0} \subset \Delta
$$

Intacrating (4) with reapect to $Y \in 厶_{*}$, we get

$$
\begin{equation*}
\int_{4}\left[f_{i}\left(x_{1}^{\prime}, y\right)-f_{E}\left(x_{1}, y\right)\right] d y=\int_{\Delta} d y \int_{x 1}^{x_{1}} \frac{\partial / k}{\partial x_{1}}(t, y) d t . \tag{5}
\end{equation*}
$$

From (3) it follows that there exiats a sequence of numbers $\varepsilon_{k}^{\prime} \rightarrow 0$ and the function $\psi \in I_{p}(\Delta)$ such that $\quad \partial f_{\varepsilon^{\prime}} / \partial x_{1} \rightarrow \psi$ weakly in the $L_{p}(\Delta)$-sense (of 1.3.11), On the other hand, from the fact that $\left\|f_{\varepsilon_{k}^{\prime}}-f\right\|_{L_{p}}(\Delta)$ $\rightarrow 0$, we can separate the subsequence $\left\{\varepsilon_{k}\right\}$ from the sequence $\left\{\varepsilon_{k}^{\prime}\right\}$ such that

$$
\int_{\Delta_{0}} f_{e_{k}}\left(x_{1}, y\right) d y \rightarrow \int_{\Delta_{0}} f\left(x_{1}, y\right) d y, \quad e_{k} \rightarrow 0
$$

for all x_{1} on the same set $\mathcal{E} \subset[\bar{a}, \bar{b}]=n p_{x_{1}} \Delta$ (projection of Δ on the x_{1} axis) of measure (linear) $b-a$. In this case, if in (5) we set $\varepsilon=\varepsilon_{k}$, then ait the limit as $\varepsilon_{k} \rightarrow 0$ for any $x_{1}, x_{1}^{\prime} \in \xi$ we got

$$
\int_{\Delta_{\Delta_{1}}}\left[f\left(x_{1}^{\prime}, y\right)-f\left(x_{1}, y\right)\right] d y=\int_{\Delta_{0}} d y \int_{x_{1}}^{x_{1}^{\prime}} \psi(t, y) d t
$$

If we decompose the two parts of this inequality into h_{1}, \ldots, h_{n} and pass to the limit as $h_{1} \rightarrow 0$, then $h_{2} \rightarrow 0$ and so or, then we get for almoat all $y=\left(x_{2}, \ldots, x_{n}\right)$ and

$$
\begin{gather*}
x_{1} \in \mathscr{E}, \quad x_{1}^{\prime} \in \mathscr{E} .\left(\left(x_{1}, y\right),\left(x_{1}^{\prime}, y_{j}^{\prime} \in \Delta\right):\right. \\
f\left(x_{1}^{\prime}, y\right)-f\left(x_{1}, y\right)=\int_{x_{1}}^{x_{1}^{\prime}} \psi(t, y) d t . \tag{6}
\end{gather*}
$$

In fact, this equality is valid for almost all admissible \bar{y} and aimost all aduissible $x_{1}, x_{1}^{\prime} \in L \bar{a}, \underline{b} /$, since its right aide is contimuous with respect to x_{1}, x_{1}^{1}. It indicates the existence on Δ of a (generalized) partial derivative $\partial f / \partial x_{1}=\psi \in L_{p}(\Delta)$ and by virtue of the arbitrariness of Δ, it also indicates the existence of $\partial f / \partial x_{1} \in L_{p}(\Omega)$, whatever the openc $\Omega \subset \bar{\Omega} \subset \mathrm{B}$.

Since we now already know that the integrand function in (1) tends almost everywhere on Ω to $\left|\partial f / \delta x_{1}\right|^{p}$ then (Fatou theorem 1.3.10)

$$
=\int_{0}\left|\frac{\partial \mid}{\partial x_{1}}\right|^{p} d x \leqslant \sup _{h} \int_{0}\left|\frac{\Delta_{x_{1}, h} \mid}{h}\right|^{p} d x \leqslant M
$$

and by virtue of the arbitrarinese of $\Omega \subset \Omega \subset \mathrm{g}$, (2) is valld.
4.8.1. Theore 4.8 when $p=\infty$ and $n=1$ is a familiar theorem from thoory of function of a real variable: if function f antiafios on the interval (a, b) the Lipahita oondition with constants M, than it has almont overywhere on (a, b) a dorivative satiafying the inoquality $\left|f^{\prime}(x)\right| \leq M$ (of P. S. Alokeandrov and A. M. EOImogorov L1」.
4.8.2. Theoren 4.8 when $p=1, n=1$ changes into the following: if for a function f locally awmble on (a, b) the inequaisty

$$
\int_{a}^{b-h}|f(x+h)-f(x)| d x \leqslant M h \quad(0<h<b-a),
$$

is aatiafiod, thon it is equivalont to acme function that we will again deaisminte by f, with bounded variation on (a, b) and

$$
\underset{(c, b)}{\operatorname{Var}} f \leqslant M .
$$

In fact, reaconivis as in the beginning of the proof of theorem 4.8, we get

$$
\int_{\Delta}\left|f_{\varepsilon}^{\prime}\right| d x \leqslant M,
$$

where Δ is an arbitrany integral auch that $\Delta \subset \Delta_{1} \subset \bar{\Delta}_{1} \subset(a, b)$. Therefore

$$
\begin{equation*}
\operatorname{Var}_{(c, b)} f_{t}-\int_{0}^{1}\left|f_{e}^{\prime}\right| d x \leq M . \tag{1}
\end{equation*}
$$

Since $f \in L\left(\Delta_{1}\right)$, than $\int_{\Delta}\left|f_{\varepsilon}-f\right| d x \rightarrow 0$ and by virtue of the arbitrarineas of $\Delta_{1} \subset \Sigma_{1} \subset(a, b)$, thare exiats the aequance $\varepsilon_{k} \rightarrow 0$ euch that

$$
\begin{equation*}
f_{\varepsilon_{1}}(x) \rightarrow 1(x) . \tag{2}
\end{equation*}
$$

almagt overywhore on (a, b). But by the Helly theorm (af I. P. Natanson L1- (), from condition (1) and the fact that (2) is catiafiod oven if at only one point of the interval (a, b), it followa that there exists a subsequence $f_{\varepsilon^{\prime}}$ close the $\left\{\varepsilon_{\mathbf{k}}^{\prime}\right\}$ of sequance $\left\{\varepsilon_{k}\right\}$ avch that $f_{\varepsilon_{k}}$ tende everywhere on (a, b) to some function ψ bounded on (a, b) and

$$
\underset{(a, b)}{\operatorname{Var}_{1} \psi \leqslant M .}
$$

But then ψ and I are equivalont on (a, b).

CAUPTER V DIPECT AND INVERSE THEORENS OF THE THEORI OF APPEOXDMTIONS. gqUTVLIENT MORUS

5.1e Introduction

Everywhore in thi paragraph we will agaumo that $a=\left(x_{1}, \ldots, x_{n}\right)$ $R_{n}, y=\left(x_{m+1}, \ldots, x_{n}\right)$ and we will considor the oplindrical masurable sot $\xi=R_{m} \times \xi^{\prime}$ of points $x=(n, y)=\left(x_{1}, \ldots, x_{n}\right)$ whore $n \in R_{m}, \gamma \in E^{\prime}$. We will lot $R_{\text {n }}$ also atand for the aubapace R_{n} of points $(u, 0)=\left(x_{1}, \ldots\right.$, $\left.x_{m}, 0, \ldots, 0\right)$. When $m=n, \xi_{n} n_{n}$, the case $m=0$ would be of little interest.

This chaptor will be devoted to atudeing approximations of functions from the H, W, and B classes (of Chapter IV) civen on the indlcated colindrical set \mathcal{E}. Functions of classes H_{p} and W_{p} will be approximated by integral function of the exponential type (with reapect to u) in the metric L_{p}, while pariodic functions of the clasces H_{p}^{*} and W_{p}^{*} will be approximated by trigonomotric polynomials (in a) in themetric Lo.

The direct theoreme of the theory of approximation(Jackeon type) will be proven for the clasees H and K, abowing that the numbers F or aynteme of mubers (r_{1}, \ldots, r_{m}) determining the clans also define the order of approximation of the functions belonging to it.

We will also prove the inverse theoreme of the theory of approximations (Bernshteyn type), ahowing that the order of approxiantion of a given function f by means of functions of a finite ayatem for trienomotric polynonials frequentiy complotely defines the clase H (but not W) to which function f belonge. In several casea of analytic interest, necessary and oufficient oonditions will be obtained in the language of orders of approximation for the membership of function f to a given H-class. The concept of the best approximation, which
can be placed to P. L. Chebyshev considered as an important artifice in the expression of these thoorems.

Classes $B_{p 0}^{r}$ will also be examinod from this point of view. The functions belonging to them are also completely characterized by the behavior of their best approximations in terms of integral functions of the exponential type or (in the periodic case) by trigonometric polynomials. Namely, for the function to belong to a given B class it is neceasary and aufficient that a certain series composed of its best approximations converges. We will see that the definition of classes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ in the lancsage of the best approximation naturajly is extended to the case $\theta=\infty$ and loads to the equivalency:
$B(r)=H(r)$. $\underset{P_{\infty}}{B(r)}=\underset{p}{H(r)}$.

In the chapter, based on periodic approximations, we will obtain many different equivaiont definitions of norms in the H and B classes. The actual fact of equiveloney will be reduced to certain inequalities, in particular, inequalities between partial derivatives of the same function.

Let us consider the functions $g_{v}(x)=g_{v}(n, y), v=\left(\nu_{1}, \ldots, v_{m}\right)$, defined on $\xi=R_{\text {m }} \times \xi^{\prime}$, where the functions are for almost all $\bar{\xi} \in \xi_{\text {inte- }}$ gral and exponential type v in the variablea $a=\left(x_{1}, \ldots, x_{m}\right)$. The correction of all such functions $g_{\nu} \in L_{p}(\xi)$ for a given v forms the aubspace $m_{\nu p}(\xi) \subset L_{p}(\xi)(c f 3.5)$.

Let the function $f \in L_{p}(g)(1 \leq p \leqslant \infty)$ be given. The quantity

$$
\begin{equation*}
E_{v}(f)=E_{v}(f)_{L_{p}(y)}=\inf _{R_{v} \in f_{i, p}(y)}\left\|f \cdot g_{v}\right\|_{L_{p}(y)}=\inf _{g_{v}}\left\|f-g_{v}\right\|_{L_{p}(\eta)} . \tag{1}
\end{equation*}
$$

will be called the best approximation of f by means of functions $g_{\nu} \in M_{\nu p}(\xi)$, where $v=\left(\nu_{1}, \ldots, \nu_{m}\right)$ is a given system of mumbers. When $m=n$, the lower bound of (1) 1 'is reached for some (best) function. Actually, from (1) it follows that the sequance of functions $g_{\nu s} \in m_{\nu p}\left(R_{n}\right)(s=1,2, \ldots)$ exists for which the inequalit es

$$
\left\|f-g_{v s}\right\|_{L_{p}\left(R_{n}\right)} \leqslant E_{v}\left(f_{L_{p}\left(R_{n}\right)}+e_{s}=d+e_{s} \quad\left(e_{s} \rightarrow 0\right)\right.
$$

are satisfied. From this sequence, we can by 3.3 .6 separate a subsequence, which we will again denote by $\left\{g_{v}\right\}$ such that it uniformly converges to some
function $g \in m_{\mu p}\left(R_{n}\right)$ on and bounded domain $\subset R_{n}$. But then

$$
\left\|f-g_{v}\right\|_{L_{p}(s)}=\lim _{s \rightarrow \infty}\left\|f-g_{v s}\right\|_{L_{p}(s)} \leqslant \lim _{t \rightarrow \infty}\left\|f-g_{v s}\right\|_{L_{p}\left(R_{n}\right)}=d .
$$

Consequentiy,

$$
\left\|f-g_{v}\right\|_{L_{p}\left(R_{n}\right)}=d
$$

Since $m_{y p}(\xi)$ is a aubspace of the apace $L_{p}(\mathcal{E}$, then providing the condition $1<p<\infty$ is mot, the lower bound of (1) is attained for the unique (best) function $g_{\nu} \in M_{\nu p}(\xi)$. Somotimes, it is conveniont to oxamine functions that we will designate by $\mathrm{g}_{\mathrm{u}}(x)(\nu>0)$. These are functione defined on \mathcal{E} and for almoat all $y=\left(x_{m+1}, \ldots, x_{n}\right)$ are integral functions of the exponential type in $a=\left(x_{1}, \ldots, x_{m}\right)$ of apherioal decree.

We will call the quantity

$$
\begin{equation*}
\dot{E}_{u v}(f)=E_{u v}(f)_{L_{p}(y)}=\inf _{B_{u v}}\left\|f-g_{u v}\right\|_{L_{p}(y)^{\prime}} \tag{2}
\end{equation*}
$$

the best approximation of function $f \in L_{p}(\xi)$ by moans of functions $g_{u v}$ (for given $v>0$) where the lower bound is extended over all $\varepsilon_{u v} \in L_{p}(\mathcal{E})$ for given
v.

A particular case of these concepte is the quantity

$$
\begin{equation*}
E_{x, v}(f)_{L_{p}(y)}=\inf _{\varepsilon_{x, v}}\left\|f-g_{x, v}\right\|_{L_{p}(y)^{\prime}} . \tag{3}
\end{equation*}
$$

where $\varepsilon^{=}=R_{j} \times g^{j}(j=1, \ldots, n), R_{j}$ is the axis of x_{j} coordinates, and $\mathbb{e}_{x_{j}} \vee$ are functions from $L_{p}(\xi)$ of the exponential type v in x_{j}.

2.2. Theorem on Approximation

5.2.1. Direct theorem on approximation by integral functions of the axponential type. Let $g(\xi)$ be a nonnegative even function of one variable of exponential type 1, satiafying the condition

$$
\begin{equation*}
x_{m} \int_{0}^{\infty} g(\xi) \xi^{m-1} d \xi=\int_{R_{m}} g(|u|) d u=1 \tag{1}
\end{equation*}
$$

where $K_{1}=2$ and \mathcal{K}_{m} when $m>1$ is the area of a unit aphere with radius 1 in the m-dimensional apace R_{1} and lot $\xi=R_{n} \times \xi^{\prime}$.

The equality

$$
\begin{align*}
& (-1)^{l+1} \Delta_{\Delta}^{\prime} \varphi(x)= \\
& \quad=\sum_{l=0}^{l}(-1)^{l-1} C_{l}^{\prime} \varphi(x+j h)-\sum_{j=1}^{l} d_{j} \varphi(x+j h)-\varphi(x) \tag{2}
\end{align*}
$$

is valid for an arbitrary function $\varphi(x)$ defined on \mathcal{E}, vector $h \in R_{m}$, and natural number 1, where

$$
\begin{equation*}
\sum_{j=1}^{1} d_{j}=1 \tag{3}
\end{equation*}
$$

Let us assign the function $f \in L_{p}\left(\xi_{0}\right)$; then for almost all $y \in \mathcal{E}$ function $f(n, y)$ of a belongs to $L_{p}\left(R_{m}\right)$ and the function

$$
\begin{align*}
& g_{v}(x)=g_{v}(u, y)=\int_{R_{m}} g(|t|)\left((-1)^{l-1} \Delta_{l / v}^{\prime} f(x)+f(x) j d t=\right. \\
& =\int_{R_{m}} g \cdot(|t|) \sum_{i=1}^{1} d f\left(u+j \frac{t}{v}, y\right) d t=\int_{R_{m}} K_{v}(t-u) f(t, y) d t \tag{4}
\end{align*}
$$

is meaningful where

$$
\begin{equation*}
K_{v}(u)=\sum_{i=1}^{l} d_{j}\left(\frac{v}{l}\right)^{m} g\left(\frac{|u| v}{l}\right) \tag{5}
\end{equation*}
$$

By (1)

$$
\begin{equation*}
g_{v}(x)-f(x)=(-1)^{l-1} \int_{R_{m}} g(|t|) \Delta_{t_{N}}^{\prime} f(x) d t \tag{6}
\end{equation*}
$$

Lot un now asause that function f has on E with respeot to derivatives of ordar P bolonging to $L_{p}(\xi)$ and $k=1-P$. Then from (6) it follow that (explanations below)

$$
\begin{align*}
& E_{o v}(f)_{L_{p}}(n)\left\|f-g_{v}\right\|_{L_{p}}(x)-\left|\int_{R_{m}} g(|t|) \Delta_{t N}^{\prime} f(x) d t\right|_{p,(t)} \leqslant \\
& <\left.\int_{R_{m}} g(|t|)\left|\Delta_{t / v}^{\prime}\right|(x)\right|_{p,(x)} d t< \\
& <\int_{R_{m}} g(|t|)\left(\frac{|t|}{v}\right)^{p}\left|\Delta_{v / v}^{t} p_{i}^{p}\right|_{p,(n)} d t< \\
& \leqslant \frac{1}{v} \int_{R_{m}} g(|t|)|t|^{\rho} \Omega_{R_{m}}^{k}\left(p^{\rho}, \frac{|t|}{v}\right) d t \leqslant \\
& \leqslant \frac{1}{v^{\theta}} \int_{R_{m}} g(|t|) \left\lvert\, t P(1+|t|)^{n} d t R_{R_{m}}^{k}\left(P, \frac{1}{v}\right)_{L_{p}(z)}=\right. \\
& =\frac{c}{v^{\phi}} Q_{R_{m}}^{k}\left(p, \frac{1}{v}\right)_{L_{p},(D)} \quad(v>0), \tag{7}
\end{align*}
$$

If the right alde is finite.
In particular, it follows from (7) that if $f \in H_{u p}^{r}(\xi)$, then

$$
\begin{equation*}
E_{a v}(f)<\frac{c_{1}}{v^{t}} \tag{8}
\end{equation*}
$$

(6); f_{t}^{p} is the derivative of f of order p in direction 1.3 .2 apd inequality 4.6 min $\left.R_{\text {m }}, \delta\right)$ it module of the continuity of f with respect to all derivatives of order P. Property 4.2(14) was applied to it. Finaliy, wo assert that function g is chosen so that the integral

$$
\int_{-\infty}^{\infty} g(t) t^{p+k+m-1} d t
$$

is finite. We can select a function of the form

$$
\begin{equation*}
\mu\left(\frac{\sin \frac{t}{\lambda}}{t}\right)^{\lambda} \tag{9}
\end{equation*}
$$

serva as g, where $\lambda \geqslant \rho+k+m+2$ is an even integer and μ is a constant for which (1) holds.

Since $g(\xi)$ is an integral function of one variable of exponential type 1, then by (5) function $g_{y}(x)$ is in term an integral function of spherical type v with respect to $u=\left(x_{1}, \ldots, x_{m}\right)($ of 3.6 .2$)$, belonging to $L_{p}\left(\begin{array}{l}(\end{array}\right)$.
5.2.1.1. Let us assume that about function f we oniy know that the continuity module

$$
\begin{equation*}
\mathbb{Q}_{R_{m}^{*}}^{*}\left({ }^{\rho}, \delta\right)<\infty \tag{1}
\end{equation*}
$$

for it is finite for same $\delta>0$. Then, reasoning as above (from right to left), we can obtain for $1 / \nu \leqslant \delta$ the entire chain of relations 5.2.1(7), excludirs for the moanwhile the first inequality. The difference f-gy will otand for the formal notation of the function appearing under the integral in the third term in 5.2.1(7). However, if we know that function f is locally integrable in the p-th degree on 5 (or even somewhat less: of belou), then it can be concluded that f is integral in the p-th degree on E with a certain weight, and g given the choice of the suitable kernel g is an integral function of spherical type v (integral integrable with the same weight). In fact, from (1) for any $h \in R_{m}$ with $|h| \leqslant \delta$ it follows that:

$$
\left.\left\|\left.\Delta_{n}^{l} f(x)\right|_{k_{p}(y)} \leqslant \delta^{\rho}\right\| \Delta_{n}^{k} p_{n}^{p}(x)\right|_{L_{p}(y)} \leqslant \delta^{\rho} \Omega_{R_{m}}^{k}(p, \delta)
$$

and by $4.2 .2(5)$ (replace k with 1)
where

$$
\left\|f(x)\left(1+|\mu|^{-\mu}\right)\right\|_{L_{p}(y)}<\infty,
$$

$$
\begin{equation*}
\mu=\frac{m}{p}+l+a \quad(a>0) . \tag{3}
\end{equation*}
$$

But then for almost all 7

$$
\| /(x, y)\left(1+\left.|u|\right|^{-\mu} \|_{L_{p}}(y)<\infty .\right.
$$

and by 3.6.2, kernel $g(t)$ of form 5.2.1(9) can be selected so that (taking λ sufficiently large) that the function

$$
\begin{equation*}
g_{v}(x)=\int_{R_{m}} K_{v}(t-u) /(t, y) d t \tag{4}
\end{equation*}
$$

(cf 5.2 .1 (4), (5)) will clearly be of the spherical type for almost ald \mathbf{y}.

Now the firat term of formula $5.2 .1(7), E_{u v}(f)_{L_{p}}(E)$, also becomes meaningful. It can be considored as the boat approximation in matric $L_{p}(E)$ of the function f under consideration by means of integral functions of apherical type ν (generally not belonging to $L_{p}(\bar{f})$). We have shown that if module
(1) is meaningful for the function f locally aumable in the p-th dogree, then it makes sense to approach it in the matrix $\mathrm{L}_{\mathrm{p}}(\mathbb{B})$ by fractions of the aphorical type ν with respect to n.

In fact (cf 4.2.2(4)), instoad of local summability of $|f|^{p}$ (when $p=$ ∞, local boundedness and measurability of f), it is sufficiont to assume the exietence of $\|f\|_{I_{p}\left(v \times E^{\prime}\right)}$, where $v=\{|n|<\delta(1+m)\}$.
5.2.2. Other approximation estimates. Below are presented other eatimates based on formula 5.2.1(6). If f has generalised derivatives in $a=$ (u_{1}, \ldots, u_{m}) up to order incluaivaly, then from 5.2.1(6) it followa that in any case the equality

$$
\begin{equation*}
a_{v}^{(x)}-f^{(x)}=(-1)^{1-1} \int_{R_{m}} g(|f|) \Delta_{i n}^{\prime} f^{(0)}(x) d \tag{1}
\end{equation*}
$$

and the equality

$$
\begin{equation*}
\left|e_{v}^{(t)}-r^{(0)} k_{p}(x)<\int_{R_{m}} e(\mid t)\right| \Delta_{t}^{\prime}, v^{(x)}(x) L_{p}(x) d t . \tag{2}
\end{equation*}
$$

obtain formally for and integral nonnegative vector $=\left(a_{1}, \ldots, a_{m}, 0, \ldots, 0\right)$. If for any a with $|s| \leqslant \rho$, the integral in the right aide of (2) is finite, then already the nonformal equality (1) and inequality (2) hold.

We will use as well the inequality

$$
\begin{equation*}
\left|\Lambda_{h}^{\prime} \varphi(x) \|_{L_{p}(x)} \leqslant c\right| \Lambda_{h}^{\prime} \varphi(x){\dot{l_{p}}}_{p}(x) \quad\left(0<t^{\prime}<1\right), \tag{3}
\end{equation*}
$$

whore $c=2^{1-1}, h \in R_{m}$.
Then(from explanation below) when $k=1-p,|\varepsilon| \leqslant p$

$$
\begin{aligned}
& \left|g_{v}^{(n)}-r^{(0)}\right|_{\rho,(x)}<
\end{aligned}
$$

$$
\begin{align*}
& <\left.\frac{1}{\sqrt{p-1 \mid 1}} \int_{R_{m}} g(|f|)|t|\right|^{p-1 \mid 1} \sum\left|\Delta_{t / v}^{n+1} \cdot 1 p^{(\theta)}\right|_{L_{\rho}(n)}< \\
& <\frac{1}{v^{p-1}} \int_{R_{m}} g(|t|)|t|^{p-1 t \mid} \sum \alpha_{R_{m}}^{k+\mid 01}\left(f^{(0)}, \frac{|t|}{v}\right) d t< \\
& <\frac{1}{v^{p-1}} \int_{R_{m}} g(|t|)|t|^{p-1}-1 \left\lvert\,\left(1+|t|^{k+|s|}\right) d t \sum \alpha_{R_{m}}\left(f^{(0)}, \frac{1}{v}\right)<\right. \\
& <\frac{1}{\nu^{\rho-10}} \int_{0}^{\infty} g(t)(1+t)^{\rho+k+m-1} d t \sum \alpha_{R_{m}^{k}}\left(p(\rho), \frac{1}{v}\right)< \\
& \leqslant \frac{c}{v^{n-1} T} \sum_{|0|=0} a_{R_{m}}^{k}\left(f^{(0)}, \frac{1}{v}\right)(v>0) . \tag{4}
\end{align*}
$$

The first inequality is obtalned on the basis of $4.6(6)$; here $\left(\partial^{p \cdot|8|}\right) /\left(0 t^{p-18 \mid}\right)$
denotes the derivative of order $\rho-|s|$ in direction t. The secend inequality is derived by virtice of the fact that this derivative is a linear combination of ordinary ierivatives (in coordinate direction) of the same order with bounded coofifisiertf not dependent on x; here the some extended over all the derivatives $f^{(P)}$ of order P. The third inequality stems from the dofinition 4.2(13). The fourth, by $4.2(14)$, when $\rho=0$ (where necessary $f(\rho)$ can be replaced with f) and the last equaility, we must asaume that E is selected so that 5.2.1(1) 1s atiafied.

Let us note further that and derivative $g(P)$ with respect to $u \in R_{\text {m }}$ of order' P can be written (of 5.2.1(4)) as
from whence

$$
g_{v}^{(p)}(x)=\int_{R_{m}} g(|t|) \sum_{i=1}^{1} d f_{u}^{(p)}\left(u+\frac{j t}{v}, y\right) d t,
$$

$$
\begin{aligned}
& \left|\Delta_{k}^{k} E_{v}^{(x)}(x)\right|_{L_{p}(y)}-\int_{R_{m}} g(|f|) \sum_{\mid=1}^{i}\left|d_{f}\right|\left|\Delta_{n}^{k}(0)\left(x+\frac{p g}{v}\right)\right|_{L_{p}(x)} d t \leqslant \\
& \leqslant c \int_{R_{m}} g(|f|) d t \omega_{R_{m}}^{(k)} \mid\left(|n|, f^{(v)}\right)_{L_{p}(c)} \leqslant c_{1} \omega_{R_{m}}^{(k)}\left(|n|, f_{p}^{(v)}\right)_{L_{p}}(n) .
\end{aligned}
$$

or

$$
\begin{equation*}
\Omega_{R_{m}}^{k}\left(g_{v}^{(\varphi)}, 0\right)<c \Omega_{R_{m}}^{k}((\phi), 0), \tag{5}
\end{equation*}
$$

where c does not depend on V and f.
This shows that the differential properties of f are transferred on B_{γ} uniformly relative to γ.
5.2.3. Let us turn again to kernel 5.2.1(5), which we are interested in this time when $m=1$. We will, thus, assume that $E=R_{1} \times \xi^{\prime} \subset R_{n}$.

Let us suppose

$$
\begin{equation*}
K_{v, t}(u)=\sum_{i=1}^{l} d, \frac{v}{l} g\left(\frac{u v}{i}\right) \quad(l=\rho+k, \quad-\infty<u<\infty) . \tag{1}
\end{equation*}
$$

By 5.2.1(7)

$$
\begin{equation*}
\left|f-\int K_{v_{1} 1}\left(t-x_{1}\right) f(t, y) d t\right|_{L_{p}(x)} \leqslant \frac{b_{1}}{v^{\rho}} \omega_{x_{1}}^{t}\left(f x_{1}^{(y)}, \frac{1}{v}\right)_{L_{p}, m} \tag{2}
\end{equation*}
$$

on the assumption, of course, that the right side of (2) is meaningful. Naturally, we will asaume as in 5.2 .1 that the integral positive oven function $g(t)$ of one variable of exponential type 1 is chosen 80 that conditions 5.2.1(1) are satisfied when $m=1$, ensuring estimate (2). We stress that from these, and the case, it follows that

$$
\begin{gather*}
\int_{-\infty}^{\infty} K_{v_{1}, l}(t) d t=1 \tag{3}\\
\int_{-\infty}^{\infty}\left|K_{v_{1}, t}(t)\right| d t \leqslant c_{l}<\infty \quad(v>0) \tag{4}
\end{gather*}
$$

where c_{1} does not depend on $\nu>0$.
Now let $\xi_{5}=R_{m} \times \xi_{6} \subset R_{n}, g(x)$ is a function which for almost all
$J \in E^{\prime}$ is an integral function of exponential type $v=\left(v_{1}, \ldots, v_{m}\right)$ with reepect to $\left(x_{1}, \ldots, x_{m}\right)$; we will as always denote it by

$$
g_{v}=g_{v_{1}} \cdot \ldots, v_{m}\left(x_{1}, \ldots, x_{m}\right)
$$

This definition is meaningful when $\nu_{i}(1=1, \ldots, m)$ are positive finite numbers. Lot us extend this dofinition to the case whance certain γ_{i} (not all) are equal to ∞. Specificaily, if $V_{i}=\infty(i \leqslant m)$, we will aasume that with reapect to the variable x_{1} function g noed not necescarily be integral. For exmple, $\& v_{1}, \nu_{2}, \infty, \ldots, \infty$, where ν_{1} and ν_{2} are finite denotes that thie function for almont all $\left(x_{3}, \ldots, x_{n}\right)$ in the sense of the ($n-2$)-dimenaional maaure is with respect to x_{1} and x_{2} and intecral funotion of exponential type, reapectively, ν_{1} and ν_{2}.
5.2.4. Theorem. Let $P_{j}, k_{j}(j=1, \ldots, m)$ be natural numbers, $l_{j}=$ $P_{j}+x_{j}, f(x)=-f(x, y) \in L_{p}(f)$, and that the ryotem of functions

$$
\begin{aligned}
& g_{v_{1}, \infty}, \ldots, \infty(x)=\int_{-\infty}^{\infty} K_{v_{1}, 4}(u) f\left(x_{1}+u, x_{2}, \ldots, x_{m} ; y\right) d u_{0} \\
& \boldsymbol{g}_{v_{1}} v_{1 / 2} \omega_{1}, \ldots, \infty(x)= \\
& -\quad-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{K}_{v_{1} l_{1}}\left(u_{1}\right) K_{v_{k} l_{1}}\left(u_{2}\right) \times \\
& \times f\left(x_{1}+u_{1}, x_{2}+u_{2}, x_{3}, \ldots, x_{m i} y\right) d u_{1} d u_{3}, \\
& g_{y_{1}}, \ldots, v_{m}(x)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} K_{v_{1}, f_{1}}\left(u_{1}\right) \ldots \\
& \ldots K_{v_{m}} \prime_{m}\left(u_{m}\right) f\left(x_{1}+u_{1}, \ldots, x_{m}+u_{m i} y\right) d u_{1}, \ldots d u_{m 0} \\
& \text { zde } v_{s}>0 \text {. }
\end{aligned}
$$

be given where $v_{j}>0$.

Then each of functions $g v_{1}, \ldots, \nu_{1}, \infty, \ldots, \infty$ (obviously) belong to $L_{p}(\xi)$ and is an inteceral function of expomontial type ν_{1}, \ldots, ν_{1}, respectively, for $x_{1}, \ldots, x_{1}(1 \leqslant 1 \leqslant m)$. Moreover, the inequalitios

$$
\begin{align*}
& \mid f-g_{v_{1},}=\ldots,-L_{p_{1}(t)}<\frac{c \omega_{\Sigma_{1}}^{k_{1}}\left(p_{p_{1}}, \frac{1}{v_{1}}\right)_{L_{p_{1}}}(t)}{v_{1}^{p_{1}}}, \\
& \left|g_{v_{1}, \infty}, \ldots, \pm-g_{v_{1}, v_{2}} \oplus, \ldots,-\right|_{p_{1},(\eta)} \leqslant \\
& <\frac{c v_{\lambda_{1}}^{p_{1}}\left(f_{z_{1}}^{\left(\rho_{1}\right)}, \frac{1}{v_{1}}\right)_{L_{p_{1}}(n)}}{v_{j}}, \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \left|g_{v_{1}}, \ldots, v_{m-1},-g_{v_{1}}, \ldots, v_{m}\right|_{p_{m}}(\theta)<\frac{\left.c \omega_{x_{m}}^{k}\left(f_{x_{m}} \rho_{m}\right), \frac{1}{v_{m}}\right)_{L_{p}}(n)}{v_{m}}, \tag{3}\\
& \left|g_{-1}\right|_{p,(n)}<c\|f\|_{L_{p},(n)} \\
& \omega_{x_{j}}^{\phi_{l}}\left(g_{x j}^{(p)}, \delta\right)_{L_{p,}\left(x_{1}\right)}<c \omega_{x_{i}}\left(f_{x_{j}}^{(\rho)}, \delta\right)_{L_{p j}(n)}(1=1, \ldots, m) . \tag{4}
\end{align*}
$$

are satiafied.
that:
From (1), in partionjar, when $p=p_{1}=\ldots=p_{m}$ obviously it follows

$$
\begin{equation*}
\left\lvert\, f-\varepsilon_{v} L_{p}(x)<c \sum_{i=1}^{m} \frac{\omega_{x_{j}}^{i_{j}}\left(f_{x_{f}}\left(p_{j}\right), \frac{1}{v_{j}}\right)_{L_{p}(n)}}{v_{j}} .\right. \tag{5}
\end{equation*}
$$

Proof. Let us present the proof of the theorem for the case $m=3$; it is analogous for $m>3$.

The first inequality in (2) is obtained on the basis of 5.2.3(2):

$$
\mid f-g_{v_{1}, \infty}, \ldots,-k_{\varepsilon_{p}\left(v_{1}\right)} \leqslant \frac{b_{l_{1}}}{v_{1}^{p}} \omega_{x_{1}}^{\left(v_{1}\right)}\left(f_{x_{1}}^{\left(\rho_{1}\right)}, \frac{1}{v_{1}}\right)_{L_{p}(n)} .
$$

The second inequality in (2) is derived by means of the following manipulations:

$$
\begin{align*}
\mid g_{v_{1}, \infty, \infty} & -\left.g_{v_{1}, v_{1} \infty}\right|_{L_{p_{1}}(y)} \\
& =\left|\int_{-\infty}^{\infty} K_{v_{1}, l_{1}}\left(u_{1}\right) h_{1}\left(x_{1}+u_{1}, x_{2}, x_{3} ; y\right) d u_{1}\right|_{L_{p,}(y)} \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
& h_{1}\left(x_{1}, x_{2}, x_{3} ; y\right)= \\
& \quad=f\left(x_{1}, x_{2}, x_{3} ; y\right)-\int_{-\infty}^{\infty} K_{v_{2}, l_{2}}\left(u_{2}\right) f\left(x_{1}, x_{2}+u_{2}, x_{3} ; y\right) d u_{2}
\end{aligned}
$$

and by $5.2 .3(2$,

$$
\mid h_{1} \|_{L_{p_{1}}(y)} \leqslant \frac{b_{1_{2}} \omega_{x_{1}}^{k_{1}}\left(p_{x_{2}}^{\left(p_{2}\right)}, \frac{1}{v_{8}}\right)}{v_{2}^{p_{2}}}
$$

Then, applying to (6) the generalinadMinkowski inequality, we get (cf further 5.2.3(4))

$$
\begin{aligned}
& \left.\right|_{g_{v_{1}, \infty, \infty}}-\left.g_{v_{1}, v_{1} \infty}\right|_{\sum_{p_{1}}(z)} \leqslant \\
& \leqslant \int_{-\infty}^{\infty}\left|K_{v_{1}, l_{1}}\left(u_{1}\right)\right|\left|h_{1}\left(x_{1}+u_{1}, x_{2}, x_{3} ; y\right)\right|_{L_{p_{2}}(y)} d u_{1}- \\
& =\left|h_{1}\right|_{L_{p_{1}}(y)} \int_{-\infty}^{\infty}\left|K_{v_{1}, L_{1}}\left(u_{1}\right)\right| d u_{1} \leqslant \frac{c_{1} b_{1} \omega_{x_{2}}^{n_{1}}\left(p_{x_{3}}^{\left(p_{2}\right)}, \frac{1}{v_{1}}\right)}{v_{2}^{p_{2}}} .
\end{aligned}
$$

Finally, the third inequality in (2) is obtained by mans of the considerations:

$$
\begin{aligned}
& \left(g_{v_{1}, v_{3}, \infty}-g_{v_{1}, v_{31}}\right)\left(x_{1}, x_{2}, x_{3} ; y\right)= \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{v_{1}, i_{1}}\left(u_{1}\right) K_{v_{2}, f_{2}}\left(u_{2}\right) h_{2}\left(x_{1}+u_{1}, x_{2}+u_{2}, x_{3} ; y\right) d u_{1} d u_{8}
\end{aligned}
$$

where

$$
\begin{gathered}
h_{2}\left(x_{1}, x_{2}, x_{3} ; y\right)= \\
=f\left(x_{1}, x_{2}, x_{3} ; y\right)-\int_{-\infty}^{\infty} K_{v_{1}, l_{2}}(u) f\left(x_{1}, x_{2}, x_{3}+u ; y\right) d u \\
\cdots \quad-213-
\end{gathered}
$$

Therefore, using the generalised Minkowakd inoquality and ralationc 5.2.3(2) En: 1 (4), we get

Inequalitiea (2) stand proven. Inequality (3) (when $m=3$) is quickly cerived if we apply the generalized Minkowaki inequality

$$
\begin{aligned}
& \left|g_{v_{i}, v_{2}, v_{2}}\right|_{p_{i}}(s)< \\
& \leqslant \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|K_{v_{1}, l_{1}}\left(u_{1}\right) K_{v_{2}, l_{1}}\left(u_{2}\right) K_{v_{2}, l_{1}}\left(u_{3}\right)\right| d u_{1} d u_{2} d u_{3}|f|_{L_{p_{1}}(z)} \leqslant \\
& \leqslant c_{l_{1}} c_{1} c_{1} I / l_{p_{i}}(s) \quad(i=1,2,3) .
\end{aligned}
$$

to the integral appoaring in right aide of the last equality (1). Finaily, if we differentiate the last equality (1) P_{1} times with respect to x_{1} and use the operation of the k_{1}-th difference with reapect to x_{1}, then by the

Minkowaki inequality we get

$$
\begin{aligned}
& \left|\Delta_{x_{1}, n}^{t} \frac{\partial^{n} g_{v}}{\partial x_{1}^{A}}\right|_{L_{p_{1}}\left(z_{k}\right)} \leqslant \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{v_{1}, h_{1}}\left(u_{1}\right) K_{v_{v_{2}}, l_{2}}\left(u_{2}\right) K_{v_{1}, l_{1}}\left(u_{3}\right) \times \\
& \times\left|\Delta_{x_{1}, n}^{u_{1}} f_{x_{1}}^{\left(x_{1}\right)}\left(x_{1}+u_{1}, x_{2}+\ddot{u}_{2}, x_{3}+u_{3}, y\right)\right|_{L_{p}(y)} d u_{1} d u_{2} d u_{3} \leqslant \\
& \leqslant \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|K_{v_{1}, 1} K_{v_{1}, l_{2}} K_{v_{v_{1}}, l_{2}}\right| d u_{1} d u_{2} d u_{3} \omega_{x_{1}}^{\left(w_{1}\right)}\left(|h|, \rho_{x_{1}}^{\left(\alpha_{1}\right)}\right) \text {. }
\end{aligned}
$$

from whence follows (4). When $1=2,3$ the proof is analogous.

2.3. Periodic Clarses

Theorems in section 5.2 are preserved with certain modifications in the proof if in their formulations the functions considered there are assumed to be periodic with period 2 , and the approximating integral functions g are replaced by the trigonomotric polynomial T. As always, in this case we must replace the norms $\|\cdot\|_{L_{p}(\xi)}\left(\xi=R_{\text {m }} \times \xi_{1} \subset R_{n}\right)$ by the norms $\|\cdot\|_{L_{p}\left(\xi_{j}\right)}\left(\xi_{*}=\right.$ $\left.\Delta^{(m)} \times \mathcal{E}_{j}\right)$, where $\Delta^{(m)}=\left\{0 \leqslant x_{j} \leqslant 2 \pi ; j=1, \ldots, m\right\}$. The first of the aimplest direct theorems of approximation were obtained in the periodic case. Namely, Jackson showed that a periodic function, with period 2π, of a single variable that has a continuous derivative of the order r can be approximated by trigonometric polynomials $T_{p}(x)(n=1,2, \ldots)$ such that the deviation (in a uniform metric C) satisfies the inequality

$$
\left|f(x)-T_{n}(x)\right|<c_{r} \frac{\omega_{0}\left(\mu, \frac{1}{n}\right)}{n^{\prime}} \quad(n-1,2, \ldots)
$$

where $\omega_{n}(f(r), \delta)$ is the continaity module of the function $f(r)$. The mothod of approxination of pariodic function with trisonometric polynomiale, which will be cooneldared below, is a modernised Jackeon mothod. In the aimpleat caces (af furthar 5.3.1(6), (8) $1=1, \sigma=2$, and $n=1$) it coincides with Jackeon's mothod. On the other hand, it is an analog of the above considered method 5.2.1(f) of the appraximation with integrel functione of exponential type.
5.3.1. The firet two equalitiea $5.2 .1(4)$ when $m=1,-\infty \quad x<\infty$ can furtber be writton as

$$
\begin{align*}
\Delta_{v}(x, y)= & \int_{-\infty}^{\infty} v g(v) f\left((-1)^{l+1} \Delta_{x, f}^{l} f(x, y)+f(x, y)\right) d t= \\
& \cdot \quad-\int_{-\infty}^{\infty} v g(v f) \sum_{k=1}^{i} d_{k} f\left(x+h l_{1} v\right) d t_{1} \tag{1}
\end{align*}
$$

whare

$$
d_{k}=(-1)^{k-1} c_{l}^{k} \quad(k=1, \ldots, 1)
$$

and

$$
\begin{equation*}
\varphi v(t)-v g(v) \tag{2}
\end{equation*}
$$

is an integral nonmegative functions of exponential type, eatialying (of 5.2.1(1), (2)) the followine condition:

$$
\begin{equation*}
\int_{-\infty}^{\infty} 9 v(t) d t-1 \tag{3}
\end{equation*}
$$

Lot us introduce into conaideration, by amalog, trifoncmotric polynomials $\tau_{\nu}(t)(\nu=0,1,2, \ldots)$ of order not higher than v, axhibiting the following propartios:

$$
\begin{gather*}
\int_{0}^{2 \pi} \tau_{v}(t) d t-1, \tag{4}\\
\int_{0}^{2 \pi}\left|\tau_{v}(t)\right| d t<c, \quad(v-1,2, \ldots), \tag{5}
\end{gather*}
$$

where c is a constant independent of γ.
Obviously,

$$
r_{0}(t)=\frac{2}{\pi} .
$$

when $\nu>0$, polynomials $\tau_{\nu}(t)$ are defined nonuniqualy.
These polynomiale can be obtained, for example (cf 2.2.2(2)) by moane of the formula

$$
\begin{equation*}
d_{v}(t)=\frac{1}{a_{v}}\left(\frac{\sin \frac{\lambda t}{2}}{\sin \frac{t}{2}}\right)^{2 q} \tag{6}
\end{equation*}
$$

where $\sigma>0$ is an integral number not dependent on λ and λ is the natural
number such that number such that

$$
\begin{equation*}
2(\lambda-1) \sigma<v<2 \lambda \sigma_{0} \tag{7}
\end{equation*}
$$

the constant a been selected so as to satisfy equality (4). In an example (6) polynomial $\tau_{\nu}(t)$ are nonnegative, therefore property (5) automatically follows property (4).

Let us define by analogy with (1) the function

$$
\begin{align*}
& \tau_{v}(x, y)=\int_{0}^{2 \pi} \tau_{v}(t)\left\{(-1)^{l+1} \Delta_{x, t}^{\prime} f(x, y)+f(x, y)\right\} d t= \\
&=\int_{0}^{2 n} \tau_{v}(t) \sum_{k=1}^{1} d_{k} f(x+k t, y) d t_{1} \tag{8}
\end{align*}
$$

whore this time $f(x)=f(x, y)$ is a function definod on $E=R_{1} x \xi^{\prime} \subset R_{n}$ ($x \in R_{1}, y \in \xi^{\prime}$) with period 2π with respect to x and integrable in the p-th degree on $\xi_{*}=\left\langle\overline{0}, 2 \bar{\pi} \times \xi^{\prime}\right.$.

Let us note that

$$
\begin{gather*}
r_{0}(x, y)=\frac{2}{\pi} \int_{0}^{2 \pi} \sum_{k=1}^{t} d_{n} f(x+k t, y) d t= \\
=\int_{0}^{2 \pi} f(u, y) d u \sum_{k=1}^{1}(-1)^{k+1} C_{l}^{k}-\int_{0}^{2 \pi} f(u, y) d u=T_{0}(y) \\
-216-
\end{gather*}
$$

Thus, for fixed \bar{y}, funotion $T_{0}(x, y$) is a conatant (a function of \bar{y}), and the moan value of $f(x, y)$ with period 2 .

By virtue of the periodicity of f, wo can write further:

$$
\begin{align*}
T_{v}(x, y) & =\sum_{k=1}^{1} \frac{d_{k}}{k} \int_{0}^{2 k n} \tau_{v}\left(\frac{u}{k}\right) /(x+u, y) d u= \\
& =\sum_{k=1}^{1} \frac{d_{k}}{k} \sum_{k=0}^{k-1} \int_{2 i \pi}^{2\left(c_{0} 11 \pi\right.} \tau_{v}\left(\frac{u}{k}\right) /(x+u, y) d u= \\
& =\sum_{k=1}^{1} \frac{d_{k}}{k} \sum_{k=0}^{n-1} \int_{0}^{2 \pi} \tau_{v}\left(\frac{1+25 \pi}{k}\right) /(x+1, y) d t= \\
& =\int_{v}^{2 \pi} K_{v}(1) /(x+1, y) d t, \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
K_{v}(t)-\sum_{k=1}^{i} \frac{d_{k}}{k} \sum_{k=0}^{k-1} r_{v}\left(\frac{t+2 s \pi}{k}\right) . \tag{10}
\end{equation*}
$$

Let us show that function $X_{y}(t)$ is a trisonomotric polynomial of order not hicher than v, from whonce it follows that $T_{v}(x, y)$ with reapect to x (for almost all I) is aleo a trigonomotric polynomial of order not highor than ν 。

Actuaily, the trifonomotric polynomial τ_{v} can be written as a certain linear combination

$$
r_{v}(1)=\sum_{-v}^{v} a_{\lambda} e^{i N} \quad\left(a_{\lambda}-a_{-\lambda}\right)
$$

with constant coofficients a_{λ}.
But

$$
\begin{aligned}
& \sum_{i=0}^{k-1} e^{\lambda \frac{t+2 s \pi}{k}}=e^{\frac{i \lambda_{t}}{k}} \sum_{t=0}^{k-1} e^{\frac{\lambda_{2} \pi}{k}}- \\
&=\left\{\begin{array}{cc}
k e^{i \frac{\lambda_{t}}{k}}-k e^{i \mu t} \quad \text { when } \lambda k=\mu \text { intogral } \\
0 & \\
& =\quad \text { whan } \lambda / k=\mu \text { nonintegral }
\end{array}\right.
\end{aligned}
$$

and, therafore, the sum

$$
\sum_{i=1}^{k-1} x_{v}\left(\frac{t+2 s \pi}{k}\right)-\sum_{-v}^{v} a_{\lambda} \sum_{s=0}^{k-1} e^{1 \lambda \frac{i+2 s \pi}{k}}
$$

is a trigonomotric polynomial of order V. But thon X_{v} is aleo a trigonomotric palfnomial of osder v.

From (8) it follow that

$$
\begin{equation*}
T_{v}-l-(-1)^{1+1} \int_{0}^{2 \pi} r_{v}(t) \Delta_{x, t}^{\prime} f(x, y) d t_{1} \tag{11}
\end{equation*}
$$

from whence by employing the generalised Minkowald inequality, we get the fundamental inequality

$$
\begin{equation*}
=\left|r_{v}-i\right|_{L_{0}\left(r_{0}\right)}<\int_{0}^{2 \pi}\left|r_{1}(t)\right|\left|\Delta_{x, t}^{\prime} f(x, y)\right|_{L_{p}\left(r_{0}\right)} d t \tag{12}
\end{equation*}
$$

The following theorem, reducing to an inequality analogous to 5.2.1(7), obtains.
5.3.2. Theorem. Lot $1 \leqslant p \leqslant \infty$ and $\xi=R_{1} \times \xi_{1}^{\prime} \subset R_{n}$, and function $f=f(x, y)\left(x \in R_{y}, J \in E_{1}\right)$ be dofinod on \mathcal{E}, have the period 2π with respect to x for almost all $\delta \in \xi^{\prime}$ and balong to alase $L_{p}\left(\zeta_{\#}\right), \xi:=\angle \overline{0}, 2 \bar{\Pi} / \times \xi_{\#}^{\prime}$.

Moreover, let I have on E the generalised derivative $f_{x}^{(\rho)}=\partial^{\rho} f / \partial x^{\rho}$ of order $\rho\left(f_{x}(0)=f\right)$. Finaliy, let oven nonnogative trifononotric polynomiale $\tau_{\nu}(t)$ of order v satiafy, along with condition $5.3 .1(4)$, also the auxiliary condition

$$
\begin{equation*}
\int_{0}^{\pi} \tau_{v}(t) p d t<\frac{a_{p}}{(v+1)^{p}} . \tag{1}
\end{equation*}
$$

where constant ap does not dopend on $\nu=0,1,2, \ldots$ (thif polynomial can be obtained by formula $5.3 .1(6)$ with the appropriate selection of σ and λ. .)

Then function $T_{\nu}(x, y)$ defined by equality 5.3.1(8) (trigonometric polynomial of order γ with reapeot to x) approaches f in the e matrix $I_{p}\left(\zeta_{*}\right)$ with the following eotimate:

$$
\begin{equation*}
\left\|f-T_{v}\right\|_{L_{p}\left(y_{0}\right)}<b_{p} \frac{\omega_{x, L_{p}(y)}^{\omega_{0}}\left(f_{x}^{(p)}, \frac{\pi}{v+1}\right)}{(v+1)^{p}} . \tag{2}
\end{equation*}
$$

where $b p$ is a constant dependent on ρ.
Proof. we already know that trigonometric polynomial d (t) definod by relations $5.3 .1(6)$ and 5.3 .1 (7) satiafy conditions 5.3.1 (4). Let us show that they, provided $v \geqslant 1$, also aatiofy inequality (1) for acme constant a_{p+1} on the assumption that $2 \sigma-\rho \geqslant 3$. By this wo will establish the exiatence of polynomial satiafying the conditions of the theorem. In fact,

$$
\begin{aligned}
\int_{0}^{\pi} d_{v}(t) p^{p} d t & <\frac{c_{1}}{a_{v}} \int_{0}^{\pi}\left(\frac{\sin \frac{\lambda t}{2}}{t}\right)^{20} \rho d t<\frac{c_{9}}{\lambda^{p}} \int_{0}^{\infty} \frac{(\sin u)^{20}}{u^{20}-p} d u
\end{aligned}<
$$

where the last inequality follows from 5.3.1(7).
We note that the inequality

$$
\begin{equation*}
\left|\Delta_{x, t}^{\rho+t} f(x, y)\right|_{L ;(y)}<|t|^{p}\left|\Delta_{x, t}^{k}, t_{x}^{(p)}(x, y)\right|_{L_{p}^{*}(y)}<\left.|t|\right|_{0} ^{\omega_{0}^{*}}(|t|), \tag{3}
\end{equation*}
$$

obtains, where

$$
\omega_{0}^{k}(\delta)=\infty_{x, L p}^{i}(x)(1,8) .
$$

Lot us note furthor that the inequality

$$
\begin{equation*}
\omega_{0}^{k}(t)<c(v+1)^{k} t^{k} \omega_{0}^{k}\left(\frac{\pi}{v+1}\right) \quad\left(\frac{\pi}{v}<t\right) . \tag{4}
\end{equation*}
$$

is valid, which is proven analogoualy to the proof for inequality 4.2(8).
Let us use inequality $5 \cdot 3.1(12)$ when $l=p+k$, taking (3) and (4) into account:

$$
\begin{aligned}
& u t-\tau_{v i} L_{p ;}(y)<\int_{-\pi}^{\pi} \tau_{v}(1)\left|\Delta_{x_{1}}^{p+1} f(x, y)\right|_{L ;(y)} d t< \\
& <\int_{-\pi}^{\pi} \tau_{v}^{\pi}(t)|t| \rho_{0}^{k}(|t|) d t-2 \int_{0}^{\pi} \tau_{v}(t) \rho_{\omega_{0}^{k}}^{n}(t) d t= \\
& -2 \int_{0}^{\frac{\pi}{v+t}} \tau_{v}(t) l_{0}^{n} \omega_{0}^{k}(t) d t+2 \int_{\frac{\pi}{v+1}}^{\pi} \tau_{v}(t) \rho_{0}^{n} \omega_{0}^{k}(t) d t< \\
& \begin{array}{l}
\leqslant 2 \omega_{0}^{k} \cdot\left(\frac{\pi}{v+1}\right)\left[\left(\frac{\pi}{v+1}\right)^{p}+\frac{2}{\pi}(v+1)^{k} \int_{\frac{\pi}{n}}^{\pi} \tau_{v}(t) p^{p+k} d t\right]< \\
\leqslant 2 \omega_{0}^{k}\left(\frac{\pi}{v+1}\right)\left[\left(\frac{\pi}{v+1}\right)^{\rho}+\frac{2}{\pi} \frac{a_{\rho}+k}{(v+1)^{p}}\right]=\frac{b_{\rho}}{(v+1)^{\rho}} \omega_{0}^{k}\left(-\frac{\pi}{v+1}\right) .
\end{array}
\end{aligned}
$$

where

$$
b_{p}=2\left(\pi^{p}+\frac{2}{\pi} a_{D+1}\right) .
$$

Thus the theorem is proven.
Note 1. Equality 5.3 .1 (11) is satiafied for the trigonometric polynomial T_{ν} under canaideration, therofore

$$
T_{v}^{\left(y^{\prime}\right)}(x, y)-P^{p}(x, y)+(-1)^{l+1} \int_{0}^{2 \pi} r_{v}(t) \Delta_{x,}^{\prime}, d_{x}^{\left(y_{x}^{\prime}\right.}(x, y) d t,
$$

and we get an equality analogous to the equailty 5.2.2(1). Arguing as in 5.2.2 when $1=P+k$, it is eaey to obtain an inequality analogous to 5.2.2(5):
whare constant c does not depend on the serioe of the standing multiplior.
Note 2. If poriodic function $f(x, y)$ is such that ite mean for the pariod equale sero, 1.0.,

$$
\int_{0}^{2 \pi} f(u, y) d u=0
$$

then $T_{0}=0$ (af 5.3.1(8)), therofore Inequality (2) when $\nu=0$ reduoes to the following inequality:
5.3.3. Juat as in 5.2.3, wo can dofino (analogoun to $\varepsilon_{\nu_{1}}, \ldots v_{m}$ (funotione $T_{\nu_{1}}, \ldots \nu_{n}\left(x_{1}, \ldots, x_{n}\right)$ civen on the macurable sot $\mathcal{E}=R_{m} \times E_{1} \subset$ R_{n}, which are trisoncmetric polynoniele for almont all $y=\left(x_{n+1}, \ldots, x_{n}\right) \in \in_{6}$ with roapect to variable x_{1}, \ldots, x_{n}, reapectivaly, of ordere v_{1}, \ldots, v_{n}. We will, as in 5.2.3, acouse that individual $\nu_{k}(k=1, \ldots, m)$ can equal ∞.

Let $E=\left(r_{1}, \ldots, r_{n}\right)>0$. Let ue define even nonnogative trigonometric polymoniele $\tau_{v, r_{j}}(t)$ of order eatiafying the conditions of theorem 5.3.2, reepectively, for $P=r_{1}, \ldots, P=r_{\text {m }}$. For theoe, and thus, the following conditions are eatioriod:

$$
\begin{gather*}
\int_{0}^{2 \pi} \tau_{v, r}(1) d t-1, \tag{1}\\
\int_{0}^{2 \pi} v_{v, r},(1) d t<\frac{a_{1},}{\left.(v+1)^{\prime}\right)} \quad(1-1, \ldots, m ; v-1,2, \ldots) .
\end{gather*}
$$

Lot ua, furthor, dofino trisoncmotric polinomial $\mathbb{K}_{\nu, r_{j}}$ (kornols) of
ν by the formuiai orders v by the formulai
(of 5.3.1), where $\lambda_{j} \geqslant r+k$.
Let us further assume

$$
K_{\mathrm{v}, r_{j}} r^{\prime}(t)=\sum_{q=1}^{\prime} \frac{d_{q}}{q} \sum_{t=0}^{q-1} r_{v, j}\left(\frac{t+2 s \pi}{q}\right) \quad(k=1, \ldots, m)
$$

$$
\text { (си. 5.3.1), где } \upharpoonleft>r+k \text {. }
$$

Полагием далее

$$
T_{v_{1}, \infty, \ldots, \infty}(x)=\int_{0}^{2 \pi} K_{v, r_{1}}(u) f\left(x_{1}+u, x_{2}, \ldots, x_{m} ; y\right) d u,
$$

$$
T_{v_{1}, \ldots, v_{m}}(x)=
$$

$$
-\int_{0}^{2 \pi} \ldots \int_{0}^{2 \pi} K_{v_{1} r_{1}}\left(u_{1}\right) \ldots K_{v_{m^{\prime} m}}\left(u_{m}\right) /\left(x_{1}+u_{1}, \ldots, x_{m}+u_{m} ; y\right) d u_{1} \ldots d u_{m}
$$

For the indicated family $T v_{1}, \ldots, v_{m}$ of functions f, we can on analogy formulate and improve a theorem (generalization of Jackson's theorem) analogous to theorem 5.2.4.

In particular, from it it follows that if $f \in H_{u_{p}^{r}}^{r}(E)$, then

$$
\begin{equation*}
E_{x, v}\left(f_{p}<\frac{c\|/\|_{n_{x}^{\prime}}^{\prime}}{n_{x, p}},\right. \tag{3}
\end{equation*}
$$

where c does not depend on the series of the standing multiplier.

5.4. Inverse Theoreme of the Theory of Apuroximations

In this section we will eluci date a schame by which inverse theorems of theory of approximation can be obtained that indicate to which class a function belongs if its approximation estimates are know.

The general theorem whose basis is the inverse theorem of the theory of approximation (for trifonometric polynomials and integral functions of the exponential type), originating with S. N. Bernshteyn*) is to be proven.
5.4.1. Theorem. Let R_{n} be an n-dimensional space of points $x=(u, J)$, $u=\left(x_{1}, \ldots, x_{m}\right), y=\left(x_{m+1}, \ldots, x_{n}\right)$ and $R_{m}=(u, 0)$ be its m-dimensional subspace $(1 \leqslant m \leqslant n)$. Further, let $r>0, k$ be a natural number, $1 \leqslant p \leqslant \infty$, and η_{ν} be linear, dependent on parameter $\nu \geqslant 1$, sets of functions defined on „) S. N. Bernshteyn L1̄], pages 11-104.
the open space $g \subset R_{n}$, where

$$
\begin{equation*}
\mathscr{R}_{v} \subset \mathscr{R}_{v} \quad(v<v) . \tag{1}
\end{equation*}
$$

Let us assume that each function $\tau_{\nu} \in M_{\nu}$ axhibits the following property:
τ_{ν} has on g derivatives with respect to u of orders less than $r+k$ and that the inequalities

$$
\begin{gather*}
\left|\tau_{v}^{(0)}\right|_{L_{p},(s)} \leqslant c v^{\prime}\left\|^{\prime} \mid \tau_{v}\right\|_{L_{p}(s)} . \tag{2}\\
s=\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right), \quad|s|<r+k
\end{gather*}
$$

obtain, where constant c does not depend on ν.
Let, moreover, there exista for given function $f \in L_{p}(g)$ a family of functions $\tau_{\nu} \in m_{\nu}$ dependent on ν, such that

$$
\begin{equation*}
\left\|f-\tau_{v}\right\|_{L_{p}(v)} \leqslant \frac{K}{v^{\prime}} \quad(v \geqslant 1) \tag{3}
\end{equation*}
$$

where K does not depend on v.
Then $f \in H_{u p}^{r}(B)$ (cf 4.3.3) and the inequality

$$
\begin{equation*}
\left|f^{(\theta)}\right|_{L_{p}^{())}} \leqslant A\left(\|\mid f\|_{L_{p}(x)}+K\right) \tag{4}
\end{equation*}
$$

are satisfied for all derivatives $f(\rho)$ of f of order $\rho<r$ and

$$
\begin{equation*}
\|f\|_{H_{a_{p}^{\prime}}^{\prime}(\xi)} \leqslant A\left(\|f\|_{L_{p}()}+K\right) . \tag{5}
\end{equation*}
$$

where A does not depend on the series of the standing multiplier.
Note 1. Functions τ_{ν} can even be considered periodic with respect to x_{1}, with period 2π, defined on $g=\xi=R_{1} x \xi^{\prime}{ }^{\prime}$ and then in $(1)-(5) L_{p}(g)$ and $H_{u p}^{\Gamma}(g)$ must be replaced by $L_{p} *(\xi)$ and $H_{u p}^{r}{ }^{*}(\xi)$.

Note 2. It can be assumed that runs through the values $\nu=\nu(\mathrm{s})$, dependent on $s=0,1, \ldots$, and satisifying the conditions:
1)

$$
v(s) \geqslant 1
$$

2) $v(s) \rightarrow \infty \quad(s \rightarrow \infty)$,

$$
\frac{v(s+1)}{v(s)} \leqslant \Lambda<\infty \quad(s=0,1, \ldots),
$$

3)

where \wedge does not depend on s. In particular, it can be assumed that $\nu(\mathrm{s})=$ $a^{s}, a>1$.

Actually, let

$$
\left\|f-\tau_{v(s)}\right\|_{L_{p}(\Omega)} \leqslant \frac{K}{v(s)^{T}} \quad(s=0,1, \ldots)
$$

and $\nu_{0}=\min \nu(s), s=0,1, \ldots$

$$
v(s) \leqslant v<v(s+1) .
$$

S'ace $\tau_{\nu(s)} \subset m_{\nu(g)} \subset m_{\nu}$, then we can assume $\tau_{\nu(s)}=\tau_{\nu}$ and therefore,

$$
\left\|f-\tau_{v}\right\|_{L_{p}(s)} \leqslant \frac{K}{v(s)^{\prime}} \leqslant \frac{K}{v^{\prime}}\left(\frac{v(s+1)}{v(s)}\right)^{\prime} \leqslant \frac{K \Lambda^{r}}{v^{\prime}}, \quad v \geqslant 1 .
$$

Thus,

$$
\left\|f-\tau_{v}\right\| \leqslant \frac{k_{1}}{v}, \quad v \geqslant 1,
$$

where

$$
K_{1}=\|f\| v_{0}+K \Lambda,
$$

and inequality (3) is satisfied for all $v \geqslant 1$, as required by the theorem. The conclusion of the theorem ($\mathrm{cf}(4)$ and (5)) does not change when K is replaced by K_{1}, because $\|f\|+K_{1} \leqslant\|f\|+K$.

Proof of theorem 5.4.1. By (3) function f can be represented as the series
where

$$
\begin{equation*}
f=\sum_{0}^{\infty} Q_{p} \tag{6}
\end{equation*}
$$

$$
Q_{0}=\tau_{1}=\tau_{2} 0, \quad Q_{1}=\tau_{2}-\tau_{2} /-1 \quad(j=1,2, \ldots),
$$

convergent in the $L_{p}(g)$-sense. Hose $\left(\|\cdot\|_{L_{p}(g)}=\|\cdot\|\right)$,

$$
\begin{align*}
& \left\|Q_{0}\right\|-\left\|\tau_{1}\right\| \leq K+\|f\|_{0} \\
& \left|Q_{,}\right| \leqslant\left|\tau_{8}-f\right|+\left|f-\tau_{g},-1\right| \leqslant \\
& \tag{7}
\end{align*} \quad \frac{K}{2^{\prime \prime}}+\frac{K}{2^{U-1) f}}=\frac{c_{1} K}{2^{\prime \prime}} \quad(j=1,2, \ldots) .
$$

Let us take ans derivative of f of order p mixed or unmixeds

$$
\begin{equation*}
f^{(0)}=\sum_{0}^{\infty} Q f^{(n)}|\rho|=\rho \tag{8}
\end{equation*}
$$

Since the sots $m_{2^{j}}$ ane linear and $m_{2^{j-1}} \subset m_{2^{j}}(j=1,2, \ldots)$, then $Q_{j} \in m_{2^{j}}$ and baced on ertimate (2) the inequalities

$$
\begin{align*}
& \left|Q_{8}^{\prime \prime}\right|<\bar{c}\left\|Q_{0}\right\|<c_{1}(\|f\|+K) \text {, } \\
& \left|Q_{1}^{(H)}\right| \leqslant c 2^{2 /}\left\|Q_{1}\right\| \leqslant \frac{c \cdot K}{2^{\prime}(-a n}, \tag{9}
\end{align*}
$$

hold, showing that the formail namberwise difforentiation (8) of series (6) when $P<r$ is legtimate and series (8) convorsen in the $L_{p}(g)$-sense to $f(p)$ (of Lomma 4.4.7). Here $f \in W_{\text {up }}^{P}(\mathrm{~g})$ and inequalitios (4) are eatiafied.

Let us assign the vector $\boldsymbol{M}=\left(h_{1}, \ldots, h_{n}, 0, \ldots, 0\right) \in R_{\text {n }}$ and choose a natural N auch that

$$
\begin{equation*}
\frac{\ddot{1}}{2^{N+1}}<|h|<\frac{1}{2^{N}}, \quad|h|^{2}=\sum_{1=1}^{m} h_{j}^{2} \tag{10}
\end{equation*}
$$

Let ue consider the k-th difference of the function $f(f)$ corresponding to the shift h. Conaidering the equality

$$
\Delta_{h} \varphi(x)=|h| \int_{0}^{1} \frac{\partial \varphi}{\partial h}(x+t h) d t
$$ we get

$$
\begin{align*}
& \Delta_{N}^{n} f^{(n)}\left(x^{n}\right)= \\
&=\sum_{0}^{N}|h|^{n} \int_{0}^{1} \ldots \int_{0}^{1} \frac{\partial^{k}}{\partial h^{k}} Q_{l}^{(n)}\left(x+h\left(u_{1}\right.\right.\left.\left.+\ldots+u_{k}\right)\right) d u_{1} \ldots d u_{k}+ \\
&+\sum_{N+1}^{\infty} \Delta_{n}^{k} Q_{!}^{(p)}(x) \tag{11}
\end{align*}
$$

where $x \in$ geh. Obvioualy,

$$
\begin{align*}
& +2^{*} \sum_{N+1}^{\infty} \mid Q_{1}^{(p)} k_{p}(x)=J_{1}+J_{2} \text {. } \tag{12}
\end{align*}
$$

Considering that the derivative $\partial^{k} / \partial h^{\mathbf{k}}$ is a finite linear combination of ardinary derivatives with respect to coordinates x_{1}, \ldots, x_{m} and talding the inequalitios (2), (9), and (10) into account, we get

$$
\begin{align*}
I_{1} & \leqslant|h|^{k} c_{4}(\|f\|+K) \sum_{Q}^{N} 2^{(h-b-\rho) \mid} \leqslant \\
& \leqslant c_{5}|h|^{k}(\|f\|+K) 2^{|h-(-\alpha)| N} \leqslant c_{0}(\|f\|+K)|h|^{p-p} . \tag{13}
\end{align*}
$$

It is important to know that wo have assumed that $k>r-P$. If we had hold that $k=r-p$, then the sum

$$
\sum_{0}^{N} 2^{(n-(l-0)) /}=N+1
$$

would not be of order $2^{[k-(r-f)] N}=1$.
Further

$$
\begin{equation*}
\left.I_{2} \leqslant c_{7} K \sum_{N+1}^{\infty} \frac{1}{2^{(r-0) T}} \leqslant c_{3} K \right\rvert\, h Y^{-\infty} . \tag{14}
\end{equation*}
$$

From (12) - (14) and (4), when $\rho=0$, follows (5).
5.4.2. Theorem. (inverse of 5.2.1(8)*). Let $r>0,1 \leqslant p \leqslant \infty$, $1 \leq m \leq n, \xi=R_{m} x \xi^{\prime}$, and $f \in L_{p}(E)$.

If for the beat approximation of f In metrio $L_{p}(E)$ by moand of integral functions of exponential spherical type γ the inequality

$$
\begin{equation*}
E_{u v}(f)_{L_{p}}(\delta) \leqslant \frac{K}{v^{\prime}}(v \geqslant 1), \tag{1}
\end{equation*}
$$

is satisfied, where K does not depend on $\nu(\nu \operatorname{can}$ run through the values $\nu=\nu(s)$ satiafying the conditione of note 2 in $5.4 .1, s=0,1, \ldots)$, then $f \in \operatorname{H}_{\mathrm{p}}^{r}(\xi)$, and

$$
\begin{gather*}
\|f\|_{H_{p}^{r}(8)} \leqslant A\left(\|f\|_{L_{p}(y)}+K\right), \tag{2}\\
\left\|\|^{(\theta)}{L_{p}(y)} \leqslant A\left(\|f\|_{L_{p}(y)}+K\right), \quad(|\rho|=0,1, \ldots, r)\right. \tag{3}
\end{gather*}
$$

where A does not depend on the series of the standing multiplier.
Proof. From the candition there follows the exiatence of a family of functions $g_{\nu}(u, J)\left(n \in \beta_{m}, J \in \mathcal{E}^{\prime \prime}\right)$ of exponontial sphorical type v with respect to (for almost all $\bar{\in} \in \mathcal{E}^{\prime}$) auch that

$$
\left\|f-g_{v}\right\|_{L_{p}(y)} \leqslant 2 E_{v}(f)_{L_{p}(y)} \leqslant \frac{2 K}{v^{r} .}
$$

But then the confirmation of the theorem directly stems from theorem 5.4.1 if we consider that g, are also functions of exponential type v with respect to each of the variable x_{1}, \ldots, x_{m} and therefore the inequality (cf 3.2.2(9))

$$
\left|g_{v}^{(x)}\right|_{L_{p}(x)} \leqslant v^{(x)}\left|g_{v}\right|_{L_{p}(x)}
$$

is satisfied for thom, whatever the derivative of order $k=\left(k_{1}, \ldots, k_{m}, 0, \ldots\right.$,
0). The case when $\gamma=\nu(\mathrm{s})$ runs through values described in 2 in 5.4.1, converges, according to this same note, to the case of a continuously varying
\#) $m=1, p=\infty-$ S. N. Bornshtogn $[\overline{1} \overline{\mathrm{~J}}$, pages 421-432; $m=n=1,1 \leq p$

5.4.3. Theorem (inverse of 5.3.3(3)*). Lot $r>0,1 \leqslant \mathrm{p} \leqslant \infty, \zeta=$ $R_{1} \times \mathcal{E}^{\prime} \subset R_{n}$, and function $f(x)=f\left(x_{1}, J\right)\left(x_{1} \in R_{y}, J \in \mathcal{E}^{\prime}\right)$ with respect to the variable x_{1} (for almost all $\bar{\xi} \in \xi^{\prime}$) is periodically with period 2π and belongs to $L_{p}^{*}\left(E_{6}\right)$.

If for the best approximation f in matric $L_{p}^{*}(\mathbb{E})$ by means of functions $T_{\nu}\left(x_{1}, J\right)$, which are (for almost all $J \in \xi^{\prime}$) trigonomotric polynomiala of order ν, the inequality

$$
\begin{equation*}
E_{x_{i}, *(f)_{L_{p}}(y)} \leqslant \frac{K}{(v+1)^{r}} \quad(v=0,1, \ldots) \tag{1}
\end{equation*}
$$

*) Cf note to 5.4 at the end of the book.

Using the Abel tranaformation, we get

$$
\begin{aligned}
x_{n}^{(u)}(u)= & \sum_{u=0}^{n-2}(k+1) \Delta^{2}\left(1-\frac{k}{u}\right)^{1} F_{k}(u)+ \\
& \quad+\frac{1}{n^{1-1}} F_{n-1}(u)+\frac{n-1}{n^{1}}\left(2^{1}-2\right) F_{n-2}(u),
\end{aligned}
$$

where $F_{k}(u)$ are Fejor kernels (of 2.2.2(1)), and $\Delta^{2} \mu_{k}=\mu_{k}-2 \mu_{k+1}+\mu_{k+2}$.
It is essential to note that $F_{k}(u) \geqslant 0$ and $\Delta^{2}(1-k / n)^{i} \geqslant 0$, by moans of which $\chi_{n}^{(1)}(u) \geqslant 0$ and $1 / \pi \int_{0}^{2}\left|x_{n}^{(j)}(u)\right| d u=1(1=1,2, \ldots)$. Applying to (6) the generalised Minkowaki inequality, wo get

$$
\begin{aligned}
&\left.\left|\Psi_{n}^{(1)} L_{L_{p}\left(\sigma_{R}\right)} \leqslant 2\right| \lambda_{1}\left|n^{\prime} R^{-1}\right| \Phi_{n}\right|_{D_{D}\left(\sigma_{R}\right)} \frac{1}{\pi} \int_{0}^{2 \pi}\left|x_{n}^{(1)}(u)\right| d u \leqslant \\
& \leqslant c_{R^{n}}{ }^{\prime}\left|\Phi_{n}\right|_{L_{p}\left(\sigma_{R}\right)}
\end{aligned}
$$

from whonce follow (3) and (4). Inequality (5) stems from the fact that $\phi_{n}(P, \theta)$ is a trifonomotric polynomial with reapect to 0 of order n.

5.5. Di reot and Inyeree Theorem on tha Beat Approxinationg. Poniyelent B-liorm

In this section the above-proven direct and inverse theorems on best approximations are compered. We will see that function of clanses H are completely characterised by the behevior of their beat approximations. As overywhere in this chapter, $E=R_{n} \times \xi^{\prime} \subset R_{n}$.

The best approximation of a function f measurable on ξ by means of integral functions of the exponential apherical type \vee with reapect to n, by 5.2.1(7), satisfies the inequality

$$
\begin{equation*}
E_{v}(f)=E_{u v}(f)_{L,(v)} \leqslant \frac{c}{v^{\phi}} \Omega_{R_{m}}^{k}\left(p, \frac{1}{v}\right) \leqslant \frac{c}{v^{p}} \sum_{|x|=0} \Omega_{R_{m}}^{k}\left(f^{(n)}, \frac{1}{v}\right) \tag{1}
\end{equation*}
$$

if, of course, its right aide is meaningful. Thus,

$$
\begin{equation*}
E_{v}(f)=o\left(v^{-p}\right) \quad(v \rightarrow \infty) \tag{2}
\end{equation*}
$$

for $f \in H_{u p}^{p}(\xi)$ when p is finite $(1 \leqslant p<\infty)$ and whon $p=\infty$, if derivativen $f^{(s)}(|a|=\rho)$ are uniformaly continuous on ξ in direction B_{n} which mana that for any ε wo can find a $\delta>0$ auch that

$$
\left|f^{(\theta)}(x+h)-f^{(x)}(x)\right|<\varepsilon, \quad\left(|h|<\delta, h \in R_{m}\right) .
$$

As ahown by the example (5.5.5) given above, eatinate (1) when $\rho>0$ is not becoming inverted, 1.0., from the fact that for $f \in L_{p}(\mathcal{E})(2)$ is satisfied it does not follow that $f \in \mathbf{u}_{\text {up }}^{P}(\xi)$.

But in the case $\rho=0$, it does invert. Namoly, the following two theorems (Nelerstrass) hold.
5.5.1. Theorem. Let $1 \leqslant p<\infty$. For the function $f \in L_{p}(\xi)$, it is necessary and oufficient that there exists a family of functions $E_{\nu} \in L_{p}(\xi)$ that are integrable and of exponential spherical type ν with reapect to a such that

$$
\begin{equation*}
\left\|f-g_{v}\right\|_{L_{p}}(x) \rightarrow 0 \quad(v \rightarrow \infty) . \tag{1}
\end{equation*}
$$

The necesaity follows from 5.5(1) when $\rho=0$, and the oufficiency is trivial.
5.5.2. Thoorem $4^{* *}$). For a function f to be bounded and uniformly continoous on 6 in the direction R_{n}, it is necessary and oufficient that there exist a family of functions \mathbb{R}_{ν} that are intrgeal and of the exponential apherical type v with respect to bounded in a aot on ξ, ouch that

$$
\begin{equation*}
\lim _{v \rightarrow \infty} g_{v}(x)=f(x) \tag{1}
\end{equation*}
$$

uniformily on है.
Proof. Again the necesaity followa from 5.5.(1) when $P=0$. Lot us prove the sufficiency. Since g_{ν} are bounded and aince the uniform convergence of (1) obtains, then f is bounded and their existe a constant λ such that for all v and $x \in \xi$

$$
\left|g_{v}(x)\right| \leqslant \lambda
$$

Therefore for $h \in R_{h} \quad\left|g_{v}(x+h)-g_{v}(x)\right| \leqslant|h| \sup _{z}\left|\frac{\partial}{\partial h} g_{v}(x)\right| \leqslant$

[^5]1.e., v (for civen γ) are uniformy contimow on ξ in direotion R_{n}, and becane i is aleo unfformy contimous on है in irection f .
5.5.3. Let ue conaldor the norme
asd the deacoos J_{B} and I_{h} oorrocponding to thene, whare
ase the mallest constante M for which, respectively, inequalitiea given below (of 4.3.3) are actiafied:
\[

$$
\begin{align*}
& |\Delta \Delta R(x) h,(i) \leqslant M| h \Gamma^{-} \tag{2}
\end{align*}
$$
\]

$(P \geqslant 0, k>r-P>0)$ and $k \in R_{\text {. . Wo furthor introduce the norm (of classea) }}$

$$
\begin{equation*}
\text { If } h_{h}=\sup _{v>0} v^{v} E_{v}(\eta) \text {. } \tag{5}
\end{equation*}
$$

where $\mathrm{E}(f)=\mathrm{F}_{\mathrm{u}}(f)$ is the best approximation of function f in matrix $L_{p}(\xi)$ by integral functions of apherical ν with reapect to m . Here ν can aleo ran through the values $v(a)=a^{a}, a>1(a=0,1,2, \ldots)$.

Mareover,
where it is asounod that function f is representaile in the form of the series

$$
\begin{equation*}
f=\sum_{s=0}^{\infty} Q_{a^{\prime}}(x) \tag{7}
\end{equation*}
$$

convergent in it in metric $L_{p}(\xi)$, whone terma are integral functions of epherical type $a^{\text {a }}$ with reapect to a , where norm (6) is finite. Let us note that the norm of f does not explicitily appear in (6).

When $j=1,2,3,4$, we can further examine modifiod constanta $J_{M_{\rho}}$, which we will denote by ${ }^{{ }^{1} \mathrm{M}_{f}}$-- these are the mallest constants in the corresponding inequalities (1) - (4), when $\delta \leqslant \eta$ or $|h|<\eta$, whore η is a given arbitrary positive number. The corresponding classes will be aymbolised by J_{H} and $J_{h^{\prime}}$ and the norme by

$$
\eta f\left\|_{H^{\prime}}=\right\| f\left|+{ }^{\prime}\right| f \|_{k^{\prime}}
$$

Our aim will be proved that all the alagees J_{H} and I_{H} (but in general, not j_{h} and I_{h}) are equivalent to each other; here each of them can be taken with any independent asitem of admicaible paramotera k, P, η, and a. Incidentaliy, the constants of the corresponding embeddings depend on these parameters (along with r, n, and m).

The foregoing lays the foundation for employing, in the following treatmont, the aingle notation $\|f\|_{H \rho}(\xi)$ for all nome $\left\|_{\|} \cdot\right\|$ and $\jmath_{\|}\| \|_{H^{\prime}}$, onitting the j and the stroke; as for the norns $j_{\|\cdot\|_{h}}$ and $j_{\|\cdot\|_{h}}$, then this notation generally speaking is essential to them. In pasaing we will obtain cortain embeddings for the classes h that are intereating in thomselves.

It directly follows from the definiticn of the continuity modulos appearing in (1) and (2) that the equivalency

$$
\begin{equation*}
{ }^{1} H \not{ }^{3} H: \quad{ }^{3} H \not \rightleftarrows^{4} H . \tag{8}
\end{equation*}
$$

holds, if the classes compared are taken over the aame paira k, ρ. This in fact does hold if in (8) we replace H with h, 畀 or uith h_{2}^{\prime} (upop comparison with the identical). Below it will be shown that $1 \mathrm{H} \leftrightarrows 2_{\mathrm{H}} \rightleftarrows \mathrm{T}_{\mathrm{H}} \rightleftarrows \mathrm{X}^{\prime}$ and that here these classes can be taken independently with any admissible k_{2} P, and also with any $\eta>0$. Then by (8) LiLlogible text pages 248 and 249/
and we have proven that

$$
{ }^{1} H \rightarrow{ }^{8} H \rightarrow{ }^{5} H .
$$

1.0.

$$
{ }^{8} H=8 .
$$

The result, obteined, in partioular, contain the following theorem.
5.5.4. Theorem. For a function f defined on $\mathcal{E}=R_{M} \times \mathcal{E}^{\prime}$ to belong to one of the classes ${\underset{K}{p}}^{r}(\xi)(j=1,2,3$, and 4$)$ or ${ }_{j_{p}}{ }_{p} r(\xi)(j=1,2,3$, and 4), it is nocessary and cufficiont that its bort approximation by moans of intecral fuactions of the exponential and apherical type with reapect to a satielleothe inequality

$$
E_{u v}\left(f_{L_{p}(x)} \leqslant \frac{c}{\gamma}\right.
$$

where c does not depend on $\nu>0$ or $v=a^{a}(s=0,1, \ldots ; v>0, a>1)$.
5.5.5. Example 1. It is well known that if a real-valued function $f(x)$ with period 2 belongin to L_{2}, then it can be expanded in the Fourier earios

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{1}^{\infty}\left(a_{k} \cos k x+b_{n} \sin k x\right) \tag{1}
\end{equation*}
$$

converging to it in the senee of $L_{2}=L_{2}(0,2 \pi)$, where

$$
\left.\begin{array}{l}
a_{i} \tag{2}\\
b_{k}
\end{array}\right\}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t)\left\{\begin{array}{l}
\cos k t \\
\sin k t
\end{array}\right\} d t \quad(k=0,1, \ldots)
$$

Here

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{2 \pi} p d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{i}^{2}+b_{n}^{2}\right) \tag{3}
\end{equation*}
$$

In contrast, if a series of any real number a_{k} and b_{k} appearing in the right side of three converge, then series (1) converges in the L_{2}-sense to some function $f \in L_{2}$ and equalities (2) hold.

As a consequence of familiar orthogonal properties of trigonometric functions, the square of the best approximation by means of trigonometric polynomials of order $n-1$ (in the Liz-sense) of function $f \in L_{\frac{1}{2}}$, defined by series (1), is

$$
\begin{align*}
E_{n}\left(n_{L_{2}^{0}}\right. & -\min _{y_{k} o_{k}}^{2 x}\left[f(x)-\frac{y_{0}}{2}-\sum_{1}^{n-1}\left(y_{k} \cos k x+o_{k} \sin k x\right)\right]^{2} d x= \\
& -\int_{0}^{2 \pi}\left[f(x)-\frac{a_{0}}{2}-\sum_{1}^{n-1}\left(a_{k} \cos k x+b_{k} \sin k x\right)\right]^{2} d x=. \\
& -\int_{0}^{2 \pi}\left[\sum_{n}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)\right]_{0}^{1} d x=\pi \sum_{n}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right) . \tag{4}
\end{align*}
$$

If function f belongs to $W_{\frac{1}{2}}^{1}$, i.e., is absolutely convergent and its (existing almost everywhere) derivative $f^{\prime} \in L_{\frac{\mu}{2}}$, then its Fourier coefficients a_{k} and b_{k} can (by integrating by parts) be represented as

$$
\begin{equation*}
a_{k}=-\frac{\beta_{k}}{k}, \quad b_{k}=\frac{a_{k}}{k} \quad(k-1,2), \tag{5}
\end{equation*}
$$

where α_{k} and β_{k} are Fourier coefficients of the derivative f^{\prime} for which the series

$$
\begin{equation*}
\sum_{1}^{\infty} a_{k}^{2}+\beta_{k}^{2}-\sum_{1}^{\infty} k^{2}\left(a_{k}^{2}+b_{k}^{2}\right) \tag{6}
\end{equation*}
$$

converges. Conversely, function f belongs to ${\underset{\sim}{4}}_{1}^{1}$ if it is representable as series (1) (convergent in $\frac{1}{2}$ in the L_{2}-sense), where

$$
\sum_{i}^{\infty} k^{2}\left(a_{k}^{R}+b_{k}^{2}\right)<\infty .
$$

The best approximation of the function $f \in W_{\frac{1}{2}}^{1}$ by means of trigonometric polynomials of ($n-1$)-th order is subjected to the inequality

$$
\begin{equation*}
E_{n-1}()_{L_{2}^{2}}^{2}-\pi \sum_{n}^{\infty} \frac{a_{k}^{2}+\beta_{L}^{2}}{k^{2}}<\frac{\pi}{n^{2}} \sum_{n}^{\infty}\left(a_{k}^{2}+\beta_{k}^{2}\right)-o\left(n^{-2}\right) \quad{ }_{n \rightarrow \infty} \tag{7}
\end{equation*}
$$

which agrees with the general theory (the periodic analog of formuia 5.5(1)).
In ordor to see that, conversely, the membership of f in class X_{2}^{1} does not stem from (7), lot us examine the function

$$
\varphi(x)-\sum_{1}^{\infty} \frac{\cos k x}{k^{3 / 2} \sqrt{\ln k}} .
$$

Obviously,

$$
E_{n}()_{L_{2}}^{2}-\pi \sum_{n}^{\infty} \frac{1}{k^{3} \ln k}<\pi \frac{1}{\ln n} \sum_{n}^{\infty} \frac{1}{k^{3}}=0\left(n^{-2}\right) \quad(n \rightarrow \infty) .
$$

On the other hand, $f \notin W_{2}^{1}$, since the series

$$
\sum_{1}^{\infty} \frac{1}{k \ln k}
$$

corresponding to series (6) di!verges.
Example 2. The function with period 2

$$
f(x)=\sum_{1}^{\infty} \frac{\sin k x}{k^{3} \ln k}
$$

is obviously continuous and has the best approximation by moans of trigonometric polynomiais of ($n-1$)-th order in matric C (or L_{∞}) satiafying the inequality

$$
E_{n-1}(n)_{c}<\sum_{n}^{\infty} \frac{1}{k^{2} \ln k}<\frac{c}{n \ln n}-\frac{o(1)}{n} \cdot(n \rightarrow \infty) .
$$

At the same time the neriberwise differentiated agries

$$
\begin{equation*}
f^{\prime}(x)=\sum_{2}^{\infty} \frac{\cos k x}{k \ln k} \tag{8}
\end{equation*}
$$

by virtue of the monotonic diminighing to zero of its coefficients in the formerly converges on $[\varepsilon, 2 \pi-\varepsilon /$ for any $\varepsilon>0$ (of zigmond(1],2.6). Thus, its sum is continuous on the integral $(0,2 \pi)$ and is equal to the derivative $f^{\prime}(x)$. Here series (8) is a Fourier series for $f^{\prime}(x)$, since

$$
: \sum \frac{1}{k^{2} n^{2} k}<\infty
$$

In this case f^{\prime} is discontinuous at the point $x=0$, because if f^{\prime} were continuous everywhere, then its n-th Fejer sum at $x=0$ would tend to $f^{\prime}(0)$.

Even 80, the Fejor sum as the arithnotic moan of the firat $n+1$ Fojor auns at $x=0$ tends to ∞ together with the oums.
5.5.6. Anisotropic case. Wo will bogin from the estimate

$$
\begin{gather*}
\left\|-g_{v}\right\|_{L_{p}\left(y_{1}\right)} \leqslant c \sum_{i=1}^{m} \frac{\omega_{x_{j}}^{k_{j}}\left(f_{x}^{\left(p_{j}\right)} \cdot \frac{1}{v_{j}}\right)_{L_{p}(n)}}{v_{j}} \tag{1}\\
\left(\mathscr{f}=R_{m} \times \delta^{\prime \prime}, v_{j}>0\right) .
\end{gather*}
$$

proven in 5.2.4(5). From it, for the beat approximation $f \in \mathbb{W}_{\text {up }}^{r}(E)$ by moand of integral functions g_{ν} of exponential type $\nu=\left(\nu_{1}, \ldots, \nu_{m}\right)$ with respect to $m=\left(x_{1}, \ldots, x_{m}\right)$ follows the inequality

$$
\begin{equation*}
E_{v}(f)_{L,(v)}=\sum_{l=1}^{m} \frac{o(1)}{v_{j}^{\prime}} \quad(v, \rightarrow 0) \tag{2}
\end{equation*}
$$

 pondingly uniformly continuous on \mathcal{G} in the direction x_{j}.

If $f \in H_{p}^{r}(E)$, then from (1) it follows that

$$
\begin{equation*}
E_{v}()_{L_{p}(n)} \leqslant\left\|f-g_{v} L_{L,(n)} \leqslant c\right\| f \|_{n_{p}^{\prime}(n)} \sum_{1}^{n} \frac{1}{v_{j}^{\prime}} \tag{3}
\end{equation*}
$$

In particular, if in this inequality we replace ν_{j} accordingly by $\nu^{1 / r_{j}}(\nu>0)$, then we got (omitting $\left.L_{p}(\xi)\right)$

$$
\begin{equation*}
v E_{v} 1 / r_{1} \ldots, v^{1 / m_{m}}(f) \leqslant c_{1}\|f\|_{n_{p}^{\prime}(v)}-(v>0) \tag{4}
\end{equation*}
$$

Let us asaume a >1 and introduce the norme

$$
\begin{equation*}
\stackrel{N \cdot\left\|_{H}=\right\| \cdot\|+\| \cdot\left\|_{H} \quad(j-1,2,3), 甘 \cdot\right\|=\|\cdot\|_{L}(())}{\ldots} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& { }^{2}\|f\|_{L}=\|f\|_{n_{p}^{\prime}}^{f} \text {. } \tag{6}\\
& \text { m }\left\|\|_{k}=\sup _{v>0} v E_{v} 1 / r_{1} \ldots, v^{1 r_{m}}()_{1}\right. \tag{7}\\
& \geqslant f \|_{n}=_{a \rightarrow 0,1, \ldots} \sup _{0} E_{a}^{a / r_{1}, \ldots, e^{s i r_{m}}(\eta)} \text {, } \tag{8}
\end{align*}
$$

Additiomaily, lot us auppose

$$
\begin{equation*}
\|f\|_{n}=\sup _{n=0} a_{1} a^{\|}\left\|Q_{0}\right\|_{0} \tag{9}
\end{equation*}
$$

where the last norm (not explioitly containing $\|f\|$) mast be understood in the semse that f is representable in the form of the eeries

$$
\begin{equation*}
-f=\sum_{0}^{\infty} Q_{0} \tag{10}
\end{equation*}
$$

convergent to it in the metric $\mathcal{L}_{p}(\xi)$, be terme of whoce functions are intogral and of type $a^{i / r y}$ with reaphet to $x_{j}(j=1, \ldots, m$ moh that norm (9) is finite.
[隶legible toxt page 254]

Therefore $f \in{\underset{p}{r}}_{r}(\xi)={ }^{1} H$ and

$$
\|f\|_{H} \ll\|f\|_{H} .
$$

We have proven that

$$
{ }^{1} H \rightarrow{ }^{2} H \rightarrow{ }^{3} H \rightarrow{ }^{1} H,
$$

i.e., these classes are equivalent.

The results contain, in particular, the following theorem.
5.5.7. Theorem*). For a function $f \in H_{p}^{F}(\xi)$, it is nocessary and sufficient that the inequalities

$$
\begin{equation*}
E_{v}(f) \leqslant c \sum_{1}^{m} \frac{1}{v_{f}^{\prime}} \quad\left(v_{j}>0\right) \tag{1}
\end{equation*}
$$

be satisfisd.
Inequality (1) must follow from 5.5.6(3). Conversely, if it is satiofied for and independent $\nu_{j}>0$, then atill more so for ν_{j} of the form $\nu_{j}=\nu^{1 / r_{j}}(j=1, \ldots, m)$, and then the upper bound of $5.5 .6(7)$ is ininite. [inlogible teat on page 255]


```
\(1 \leqslant \mathrm{p}<\infty\).
```


5.6. Dafinition of B-cianar bed Mean of Bant Appreximationg. Pouivilent

Let $\xi=R_{n} \times \xi^{\prime} \subset R_{n}, r>0, k$ and ρ be admiasible integers
(satisfying the inequalitien $\rho \geqslant 0, \mathbf{k}>\boldsymbol{r}-\rho>0$), $1 \leqslant p \leqslant \infty, 1 \leqslant \theta<\infty$, $a>1$, and the function f is ancomed measurable on ε.

The principal goal will be prove that the narme
where $\|\cdot\|=\|\cdot\|_{L_{p}(\xi)}$,

$$
\begin{align*}
& \|f\|_{0}=\sum_{10,1=p}^{\infty}\left(\int_{0}^{\infty} t^{-1 \rightarrow \theta}(t-\theta) \Omega^{k}\left(f^{(n)}, t\right)^{\varphi} d t\right)^{n \theta} \text {, } \tag{1}\\
& \eta f \|_{0}=\left(\int_{0}^{\infty} t^{1-\theta(t-\rho)} \Omega^{2}\left(\rho^{\rho}, t\right)^{0} d t\right)^{1 / n} \text {. } \tag{2}
\end{align*}
$$

$$
\begin{align*}
& { }^{4}\|f\|_{0}=\left(\left.\int_{R_{m}}\left|u \Gamma^{m-\theta(x-p)}\right| \Delta_{u}^{k} f_{u}^{p}(x)\right|_{L_{p}(s)} d u\right)^{10} \text {. } \tag{3}\\
& \left.\$\|f\|_{b}=\left\{\sum_{i=0}^{\infty} a^{i / \theta} E_{\omega a^{l}}^{\theta}(f)_{Y} L\right)_{p}\right\}^{1 / \theta} \text {, } \tag{4}
\end{align*}
$$

are equivalont; in addition, they are equivalont to the nom (not explicitly containing $\|f\|$)

$$
\begin{equation*}
\|f\|_{B}=\left\{\sum_{i=0}^{\infty} a^{l r e}\left|Q_{u a^{l}}\right| \sum_{p, i n}\right\}^{1 / n} \quad(a>1) \tag{6}
\end{equation*}
$$

which must be underatood in the sense that f can be represented as the series

$$
\begin{equation*}
f=\sum_{i=0}^{\infty} Q_{u a^{\prime}}(x), \tag{7}
\end{equation*}
$$

convergent in it in the $L_{p}(\mathscr{F})$-sense, and the terms of this seriea are integral and of the exponential Papherical type a with respect to $n \in R_{\text {m }}$, such that the norm $\|f\|_{B}$ is finite.

Here $f(s)$ denoten an arbitrary derivative of f of order $a=\left(\rho_{1}, \ldots, g_{m}\right)$, $|a|=P$, with respeot to the variablea u_{1}, \ldots, u_{n}, and f_{u} is a derivative in the direction $\in R_{\text {m }}$ of order P,

We further introduce the norms

$$
\|f\|_{B}=\|f\|+\|f\|_{b} \quad(j=1,2,3,4) .
$$

These are the aame norme at, reapectivoly, ${ }^{j}\| \|_{B}$ and ${ }^{j}\| \|_{b,}$ but integration in thom by dofinition is performed with respect to $t \in L \bar{O}, \eta \bar{Y}$ or with respect to u with $\mid<\eta$.

It will be proven that these norme are equivalant to the proceding (with atrokea) but with comatants dopendent on η. Wo must remember that each of the alaseses listed depends furtber on the admisaible pair (k, P). It will be shown that any two of these clacces correaponding to difforent palre are also equivalont (with conetant dependent on these paire).

Let us note that the equivalency of nosm (5) with one of the ramaining norme for the clases $\mathrm{B}_{\text {upp }}^{r}(\xi)$ corresponds to conflimation of theorem 5.5.4, which yields in terme of beat approximations the neceacary and oufficiont conditions for the function I belongs to the alase $H_{u p}^{r}(\xi)$. From (5) it followe that $\mathrm{B}_{\mathrm{up} \mathrm{\infty}}^{\mathrm{p}}(\xi)=\mathrm{H}_{\mathrm{up}}^{r}(\xi)$.

The classes correpponding to those norm are multiplos of the series, which we will denote by J_{B} and $J_{b}(j=1, \ldots, 6)$ and $J_{B^{\prime}}$ and $j_{b}(j=1, \ldots, 4)$.

It mant be born in mind that of themeelves ceminorma j_{b} and l_{b}, ceneralIs epeaking, are not equivalent, while their with $\|f\|=\|f\|_{L_{p}(E)}$ are equivalent, $1 . \theta .$, the norms j_{B} and $\mathcal{I}_{B^{\prime}}$.

Below we will prove ceveral ambeddinge, from which will follow the confirmation of equivalence stated above. These embeddinge are of interest in themselves. Several of thom are valid not only for admialible pairy k, i.e., those satiafying inequalition $k>r-p>0$.

We have thus far for the same, but not necessarily admiasible, pair of natural k, p

$$
\begin{equation*}
{ }^{\prime} b \rightarrow 1^{\prime} b^{\prime} \rightarrow{ }^{2} b^{\prime} \rightarrow{ }^{4} b^{\prime} . \tag{8}
\end{equation*}
$$

The Pirut and cecond abeddinge are obvious, and the third follown from the relations

$$
\left|\Delta_{m}^{\Delta f p_{a}^{p}}(x)\right|-\left|\Delta_{=}^{n} \sum_{|0|=0} f^{(n)}\left(\frac{n}{T m}\right)^{n}\right|<\sum_{|0|=\rho}\left|\Delta_{\infty}^{\Delta} f^{(0)}\right| .
$$

Sinilariy, aleo for the amm, and not necescarily admianiblo, pair k, p :

$$
\begin{equation*}
{ }^{1} b \rightarrow{ }^{\prime} b^{\prime} \rightarrow{ }^{2} b^{\prime} \rightarrow{ }^{\prime} b^{\prime} \tag{9}
\end{equation*}
$$

Now lot $I \in \mathcal{L}^{\prime}$ for sovaral, not mocacarily admisaible k, P pair.
For each $v>0$ thase exiate an inteceral function ε_{ν} of apberioal type with reapect to $\because \in A_{\text {a man }}$, (5.2.1(6))

$$
\begin{equation*}
B_{v}-f=(-1)^{l-1} \int_{R_{m}} g(|u|) \Delta_{u / v}^{R+\rho} f(x) d u \tag{10}
\end{equation*}
$$

and thon

$$
\begin{aligned}
E_{a}(f) \leqslant\left|g_{a} J-A\right| & =\left|\int_{R_{巾}} g(|u|) \Delta_{a}^{a n+j_{a}} f(x) d u\right|= \\
& =c\left|\int_{0}^{\infty} \int_{1 \| i=1} g(t) \Delta_{a}^{n+\rho} f(x) t^{m-1} d \xi d t\right|
\end{aligned}
$$

Therefore (explanation civen below)

$$
\begin{aligned}
& \$\|f\|_{b}=\left\{\sum_{j=0}^{\infty} a^{l / \theta} E_{a}^{\theta}(f)\right\}^{1 / \theta} \leqslant a^{r}\left\{\int_{-1}^{\infty} a^{1 / \theta} E_{a}^{0}(f) d j\right\}^{10} \ll \\
& \left.<\left\{\int_{-1}^{\infty} a^{\prime n \theta} \mid \int_{0}^{\infty} \int_{\mid 11-1} g(t)\right)_{a^{n-1}=1}^{n+\infty} f(x) t^{m-1} d \xi d t \mid d j\right\}^{10} \leqslant
\end{aligned}
$$

$$
\begin{align*}
& \ll \int_{0}^{\infty} t^{m-1+r} g(t)\left\{\int_{0}^{a t} \int_{\mid 11-1} v^{-r a-1}\left|\Delta_{01}^{\alpha+\rho} f(x)\right|^{\infty} d \xi d v\right\}^{10} d t \ll \\
& \ll \int_{0}^{\infty} t^{m-1+r} g(t) d t\left\{\int_{1=1<\eta}|u|^{-m-(t-p) \theta}\left|\Delta_{m}^{n} p\right| d u+\right. \\
& \left.+\int_{\eta}^{\infty} v^{-r a-1} d v\|f\|^{\rho}\right\}^{1 / \infty}<^{4}\|f\|_{b^{\prime}}+\eta^{-r}\|f\|<^{4}\|f\|_{B^{\prime}} . \quad \cdots \tag{11}
\end{align*}
$$

The generalized Minkowaki inequality was appliec to the fourth relation (inequality): firat the norm $\|\cdot\|$ with respect to x is brought under the aign of the integral with respect to j, and thon the norm with reapect to j-under the sigen of integral with reapect to t. In the firth relation, j and the integral was replaced with v by meane of the aubstitution $a-j_{t}=v$.

If $\eta=\infty$, then

$$
\begin{equation*}
\|f\|_{0} \ll\|f\|_{0} \tag{12}
\end{equation*}
$$

1.e.,

$$
\begin{align*}
& { }^{4} B^{\prime} \rightarrow{ }^{5} B, \tag{13}\\
& 4 b \rightarrow{ }^{5} b . \tag{14}
\end{align*}
$$

In the following we use only embedding (13), but embedding (14) is of interest for its own sake.

Now let $f \in 5^{5}$. We will lat $g_{a}{ }^{l}$ atand for a function that is integral and of spherical degree a^{\beth} with respect to a such that

$$
\left|f-g_{a}!\right| \leqslant 2 E_{a}(f) \quad(l=0,1, \ldots)
$$

and set

$$
Q_{a} 0=g_{a}, \quad Q_{a} i-g_{a} l-g_{a} l-1 \quad(l-1,2, \ldots)
$$

Then in the $L_{p}(\xi)$-sense

$$
f=\sum_{i=0}^{\infty} Q_{a}
$$

because from the finiteness of ${ }^{5}\|\cdot\|_{b}$ it follows that $E_{a}^{1}(f) \rightarrow 0(1 \rightarrow \infty)$.
Further

$$
\begin{aligned}
& \left\|Q_{a^{\prime}}\right\| \leqslant\|f\|+2 \dot{E}_{a}(f) \\
& \left|Q_{a}\right| \leqslant\left|g_{a}^{l}-i\right|+\left|f-g_{a^{l-1}}\right| \leqslant 4 E_{a^{\prime}}(f)
\end{aligned}
$$

therefore $\mathrm{F}_{\mathrm{a}} \mathrm{l}(\mathrm{I})$ does not increase with increasing 1 . Therefore

$$
\begin{aligned}
& \|f\|_{\Delta}<\left\{\left(\|f\|+2 E_{\infty}(f)^{0}+\sum_{j=1}^{\infty} a^{\prime 0} E_{a^{l-1}}(f)^{0}\right\}^{10}<\right. \\
& <\|f\|_{1}+\left\{\sum_{l=0}^{\infty} a^{\prime r e} E_{a}(f)^{0}\right\}^{10}-q\|f\|_{s}
\end{aligned}
$$

and we have proven that

$$
\begin{equation*}
{ }^{8} B \rightarrow{ }^{8} B . \tag{15}
\end{equation*}
$$

Now lot $f \in \epsilon_{B}$ and lot f be representable as (7). We will assign arbitrary adiasiblo natural k, P. For and $a \in R_{m}$, integral vector $=$ $\left(s_{1}, \ldots, s_{m}, 0, \ldots, 0\right)$ with $|a|=P$ and natural N

$$
\begin{gathered}
\Delta_{u}^{k} f^{(t)}(x)=\sum_{i=0}^{N-i} \Delta_{u}^{k} Q_{a}^{(n)}(x)+\sum_{t=N}^{\infty} \Delta_{u}^{k} Q_{a}^{(n)}(x), \\
\left|\Delta_{u}^{k} f^{0}\right| \leqslant|u|^{k} \sum_{i=0}^{N} a^{i}(\varphi+k)\left|Q_{a}\right|+2^{n} \sum_{i=N}^{\infty} a^{i \rho}\left|Q_{a}\right|
\end{gathered}
$$

From whence

$$
\begin{aligned}
& Q^{A}\left(f^{(N)}, a^{-N}\right)=\sup _{|A|<a^{-N}, u \in R_{m}}\left|\Delta_{n}^{A} f^{(n)}(x)\right|< \\
& \quad<a^{-N k} \sum_{l=0}^{N} a^{l}(t+k)\left|Q_{a}\right|+\sum_{i=N}^{\infty} a^{t \rho}\left|Q_{a}\right| \mid
\end{aligned}
$$

Let us estimate ${ }^{1}\|f\|_{b}$. We have

$$
\begin{align*}
& =u p d n-0 \cdot \cos) ; \theta_{u}\left(0-n \theta^{0} \int_{0}^{0} D u l=\right. \tag{10}\\
& =\operatorname{sp} d(\cos)+\theta_{(\alpha-1)-1-7} \int_{1}^{0} \\
& \text { - } 243 \text { - }
\end{align*}
$$

where (explanations given below)

Inequalitios 《 are justified thusily. If $a>1,0<\delta<\beta$, and $b_{1} \geqslant 0(1=0$, 1, ...), then

$$
\sum_{N=0}^{\infty} a^{\operatorname{pNN}}\left(\sum_{n=N}^{\infty} b_{1}\right)^{0}-\sum_{N=0}^{\infty} a^{\operatorname{pes}}\left(\sum_{N=N}^{\infty} a^{(0-B)} a^{(N-\theta)}\left(b_{1}\right)^{0}<\right.
$$

$$
\ll \sum_{N=0}^{\infty} a^{\infty \otimes N}\left(\sum_{N=N}^{\infty} a^{(0-\beta) \theta i l}\right)^{\theta \infty \theta}\left(\sum_{=N}^{\infty} a^{(\theta-\theta) \alpha} b_{i}^{0}\right) \ll
$$

$$
\begin{equation*}
<\sum_{i=0}^{\infty} a^{\infty} b_{i}^{0} ; \tag{20}
\end{equation*}
$$

where $A<B$ must be underatood in the sense of $A \leqslant O B$, where c is a constant dependent on and δ, but not on b_{1}.

$$
\beta=r-p_{1} \quad b_{l}=a^{l 0}\left|Q_{a}\right| .
$$

$$
\begin{align*}
& <\sum_{i=a}^{i} a^{-2 \pi} b_{i,}^{i} \tag{19}
\end{align*}
$$

$$
\begin{align*}
& J_{2}-\sum_{N=0}^{\infty} a^{\theta(-Q) N}\left(\sum_{=N} a^{\prime \prime \prime}\left|Q_{a}\right|\right)^{\theta}<\sum_{i=0}^{\infty} a^{\prime r \rho}\left|Q_{a}\right| P . \tag{17}
\end{align*}
$$

The une of these two inequalitien requires the sasumption of the admiasibility of the pair k, P, i.e. that the conditione $k>s-P>0$ be eatiafiod. We have proven that

$$
\begin{equation*}
\left(\int_{0}^{n} t^{-1(t-D)-1} Q^{k}\left(f^{(n)}, t\right)^{n} d t\right)^{1 / n} \ll\|f\|_{0} \tag{21}
\end{equation*}
$$

Iurthor, asauning $1 / \theta+1 / \theta^{\prime}=1$, we get

$$
\begin{align*}
\|f\|<\sum_{0}^{\infty}\left|Q_{a}\right|- & \sum_{0}^{\infty} a^{-l} a^{L \prime}\left|Q_{a}\right|< \\
& <\left(\sum_{0}^{\infty} a^{-1 r \infty}\right) \quad \tag{22}
\end{align*}
$$

therefore from (21) and (22) it follow that (for and admasible pair k,)

$$
\begin{equation*}
{ }^{8} B \rightarrow{ }^{1} B^{\prime} . \tag{23}
\end{equation*}
$$

Finally, by using (7) it follow that ($|=f|=r$)

$$
\begin{align*}
& \|f(t)\|<\sum_{l=0}^{\infty} a^{l p}\left|Q_{a}\right|=\sum_{l=0}^{\infty} a^{-(t-0)} a^{l l}\left|Q_{a}\right|< \\
& <\left(\sum_{0}^{\infty} a^{\alpha r}\left|Q_{a}\right| p\right)^{1 p}-q\|f\|_{0} \tag{24}
\end{align*}
$$

and since the function $t^{-9}(x-\rho)-1$ is integrable on $(1, \infty)$ and $(|\varepsilon|=\rho)$

$$
\Omega^{n}\left(b^{(n)}, t\right)<\left|f^{(m)}\right|
$$

then

$$
\int_{n}^{\infty} t^{-\infty(-0)-1} \Omega^{h}\left(f^{(m)}, t\right) d t<^{4} H H_{0}
$$

from whence obtains the embedding

$$
\begin{equation*}
{ }^{\prime} B \rightarrow 18 \tag{25}
\end{equation*}
$$

which is atronger than (23) and develop for any admisaiblo k, ρ pair.
Now lot k, ρ be an admisaible pair. Combining (8), (9), (13), (15), and (25), we get

Since here b can be replaced everywhere with B (because this aignifies merely that the corresponding inequality remains unchanged if to both of ite parts we add \|f\|), then

$$
{ }^{1} B \rightarrow{ }^{1} B^{\prime} \nearrow_{2_{2} B^{\prime}}^{{ }^{3} B^{\prime}} \searrow^{\prime} B^{\prime} \rightarrow{ }^{5} B \rightarrow{ }^{0} B \rightarrow{ }^{1} B .
$$

On the other hand, it is obvious that (abains (8) and (9) are valid if the atrokes everywhere in tham are omitted)

This shows that all classes appearing in both chains are equivalent. We again achieve the equivaloncy of these classes for another admiasible pair k', p^{\prime} and aince claes 5B, just as $6 B$ is independent of (admisaible) k, p pairs, then obviously all the indicated classes ($J_{B}(j=1, \ldots, 6)$, $J_{B}(j=1, \ldots$, 4) are equivalent to each other independentiy of by which k, p or parameter $\eta>0$ they are defined. Of couree, the embedding constminte emerging here depend generally speaking on k, P, η, and a. Lot us note further that the classes $5 B$ and b_{B} remain equivalont given the variation $a>1$. This follows from the fact that, for example, they are equivalant, (but with constants dependent on a) to the classes 1 B not dependent on 2 .

Note. Let $f \in 1 B$. Let us define for f functions $g r$ by means of equality (10). It ia eaey to see that g_{ν} is obtained from f by means of the linear operation $g_{\nu}=A_{\nu}(f)(c f 5.2 .1(4))$. From the chain of inequalitiea (11) that we must read atarting with the third term and from the subsequent estimates (cf (12)) follows the inequality

Therefore, if we set

$$
Q_{a}=g_{a}, \quad Q_{a}-g_{a}-g_{a} a^{\prime-1} \quad(i=1,2, \ldots)
$$

and cossider that

$$
\left|Q_{a}\right| \leqslant\left|g_{a} t-f\right|+\mid f-g_{a}(-1 \mid
$$

then it is easy to obtain the inequaility

$$
\|f\|_{B}=\left(\sum_{i=0}^{\infty} a^{i r e}\left|Q_{a}\right| p\right)^{1 / n}<\left\|^{1 /} f\right\|_{b} .
$$

This line of reaconing was advanced in order to omphasise that if we introduce a norm of the form from $6\|\cdot\|_{B}$ for functions $f \in B_{p}^{\prime}(\xi)$, then we can elvaye asaume that here functions Q_{a} are obtained from I by means of wholly dotersined linear operations (5.2.1(4)). It is important to note atill further that for a iven $r_{0}>0$ for all $r<r_{0}$ these operations for each a can be taken as the samo.
5.6.1. Anfatropic case. Lat us assien a function $I \in B_{p \theta}^{r}(\xi)$ whore

$$
\begin{gathered}
\beta-\left(p_{1}, \ldots, p_{m}\right), \quad \theta-\left(\theta_{1}, \ldots, \theta_{m}\right), \quad r=\left(r_{1}, \ldots, r_{m}\right) \\
1 \leqslant m \leqslant n, \quad 1 \leqslant p_{1}, \quad \theta, \leqslant \infty, \quad r_{1}>0, \quad a>1, \quad \delta-R_{m} \times r_{m} .
\end{gathered}
$$

Let us define for it a fanily of functions $v_{\nu_{1}}, \ldots, v_{m}$ that are integral and of exponential type ν_{j} with reapect to x_{j} by formulas $5.2 .4(1)$, where $0 \leqslant \nu_{j}$ $\leq \infty$ and let us introduce the constant a >0. We will ahow that there exist inoqualitios genoralising inquality 5.2.4(2) for the oase of finite 0 :

$$
\begin{align*}
& \leqslant c\|f\|_{\rho_{\infty}}\left(\text { D }^{\prime}\right. \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \leqslant c\|f\|_{b_{0}} \cos ^{\circ}
\end{aligned}
$$

When $\theta_{j}=\infty$, the corresponding j-th inequality is of the form

$$
\begin{aligned}
a^{s} \mid g_{a}^{s / r_{1}} \ldots, a^{s / r} / r_{-1, \infty}, \ldots, \infty & -g_{a}^{s / r_{1}}, \ldots,\left.a^{s / r_{1}, \infty, \ldots, \infty}\right|_{p_{p},\left(y_{1}\right)}
\end{aligned} \leqslant
$$

It follows directly from 5.2.4(2). However θ_{j} is finite, and ($r_{j}-P_{j}>0$,

$$
\begin{aligned}
& P_{j} \geqslant 0 \text {, of } 5.2 .4(2) \text {; 5.6) }
\end{aligned}
$$

and we have proven (1).
Now let $p=p_{1}=\ldots=p_{n}, \theta=\theta_{1}=\ldots=\theta_{m}$. Let us introduce the $\operatorname{norm}\left(\|f\|=\|f\|_{L_{p}}(\xi)\right):$

$$
\begin{equation*}
H f\left\|_{B}=\right\| f\left\|+{ }^{\prime}\right\| f \|_{B} \quad(j=1,2,3) \tag{2}
\end{equation*}
$$

We assume that $1_{b}=b_{p \theta}^{r}(\xi)$, i.e., this is already the familiar class
and

$$
\begin{align*}
& 4 \mid f \|_{0}=\left(\sum_{r=0}^{\infty} a^{0 s} E_{c} d / r_{1} \ldots, c^{s / r_{m}}()_{L, i n}^{0}\right)^{10} \tag{3}\\
& \left\|\left\|\|_{B}=\left(\sum_{B=0}^{\infty} a^{\theta}\left\|\dot{Q}_{B}\right\|\right)^{1 n}\right.\right. \text {, } \tag{4}
\end{align*}
$$

where it is assumed that f is representable as the series

$$
\begin{align*}
f= & \sum_{s=0}^{\infty} \dot{Q}_{s} \tag{5}\\
& -248-
\end{align*}
$$

convergent in the $L_{p}\left(\mathcal{E}^{(}\right)$-sense, and whose teras Q_{B} are functione that are integral and of the type $a^{1 / r_{j}}$, reapectively, in $x_{j}(j=1, \ldots, m)$.

Norms (2) (of claen B), but not ${ }^{j}\|\cdot\|_{b}$, are equivalont.
Actually, let $f \in{ }^{1} B=\mathrm{B}_{\mathrm{p} 0}^{\mathrm{r}}(E)$

$$
\begin{equation*}
{ }^{2}\|f\|_{b} \leqslant\left(\sum_{s=0}^{\infty} a^{\mu_{s}}\left|f-g_{a}^{a s r_{1}} \ldots \ldots, e^{s n_{m}}\right|_{L_{p}(x)}\right)^{1 / 4}<\left\|_{\|}\right\| \|_{\Delta} \tag{6}
\end{equation*}
$$

(the middle part of (6) doen not exceed the sum of the loft sides of inequalities (1) given equal p_{j} and equal O_{j}).

On the otber hand,

$$
\begin{equation*}
{ }_{\|}^{2} \mid f\left\|_{B}=\right\| f\left\|_{L_{p}(y)}+\left(\sum_{0}^{\infty} a^{\theta_{r}} E_{x} \rho^{2 / / r}(f)^{0}\right)^{10}>\right\| f \|_{B_{i}^{\prime}!} \tag{7}
\end{equation*}
$$

where the second quality is valid by virtue of the equivilency of the norme corresponding to seminorm $5.6(1)$ and $5.6(5)$.

From (6) and (7) it follows that ${ }^{1} B=2_{B}$.
 $f \in 1_{B}$. Lot us dofine for f a family of integral functione $g_{g}=g_{a}, r_{1}, \ldots$, $a^{8 / r_{m}}$ ia $>1, s=0,1, \ldots$) for which (6) obtaine:

$$
\begin{equation*}
\left(\sum_{0=0}^{\infty} a_{0}^{\theta_{s}}\left\|f-g_{3}\right\|\right)^{10}<\left\|^{10}\right\|_{b} \tag{8}
\end{equation*}
$$

Hence, in particular, it followe that

$$
\left\|f-g_{0}\right\|<\| \tilde{\|_{B}} \quad \text { and }\left\|g_{0}\right\| \ll 1\|r\|_{B}
$$

Let

$$
\begin{equation*}
\ddot{Q_{n}}=g_{0} \quad Q_{1}=g_{1}-g_{n-1} \quad(s=1,2, \ldots) \tag{9}
\end{equation*}
$$

It follows from the convergence of the eeries appearing in (8) that the function is representable in the form of series (5) convergent in it in the $L_{p}(\mathbb{F})$ -
sense.

Further,

$$
\begin{aligned}
\left\|_{\|}\right\|_{B}=\left(\sum_{s=0}^{\infty} a^{\theta_{s}}\left\|Q_{s}\right\|^{\beta}\right)^{1 / \theta} \leqslant & \left\|Q_{0}\right\|+\left(\sum_{s=1}^{\infty} a^{\theta_{s}}\left\|g_{s}-f\right\|^{\rho}\right)^{1 \theta}+ \\
& +\left(\sum_{s=1}^{\infty} a^{\theta_{s}}\left\|g_{t-1}-f\right\|^{\rho}\right)^{1 / \theta} \leqslant 3\|f\|_{B^{\prime}}
\end{aligned}
$$

Finally, if $f \in{ }^{3} B$, then f is representable ag series (5) with finite norm (4). But Q_{s} is for each j integral and the type $a^{89} r_{j}$ with respect to x_{j}, therefore $f \in B_{x_{j}}^{r}(\mathcal{E})\left(\right.$ cf $5.0(6)$, replace a^{r} with a, and set $m=1, R_{m}=R_{x_{j}}$) and

$$
\|f\|=\|f\|_{B_{D}^{\prime} ;}\left(y_{1} \ll\|f\|_{A} .\right.
$$

We have proven that ${ }^{1} B=3_{B}$.
In conclusion let us emphasize that the norms of classes ${ }^{1} B={\underset{p}{r}}_{\mathrm{r}}^{(\xi)}$) are expressed in (4.3.4) by means of norms $B_{x_{j} p}^{r_{j}}(\xi)(j=1, \ldots, m)$ which can be conceived in any equivalent norms described in 5.6 (when $m=1, R_{m}=R_{x}$).

We observed that everywhere here we have asaumed that θ_{j} and θ can be equal to infinity, therefore, in particular, it has been proven that $3_{\mathrm{H}}=4 \mathrm{H}$ obtained in the notations of section 5.5.6.
5.6.2. Let us show the equivalency of the classes

$$
\begin{equation*}
B_{p b}^{\prime} \cdots \cdot(\zeta)-B_{\infty}^{\prime}(\zeta) \quad(1 \leqslant \theta \leqslant \infty) . \tag{1}
\end{equation*}
$$

We denote first of these by B_{2} and the second by B^{\prime}. Let us choose a number a such that $a^{1 / r} \geqslant \sqrt{m}$, then $\sqrt{m} a^{a / r} \leqslant a^{a+1 / r}(s=0,1, \ldots, m)$. We obeerved that the integral function $Q_{a} s / r, \ldots, a^{s / r}$ of type $a^{s / r}$ with respect to each variable $x_{j}(j=1, \ldots, m)$ is of the same time spherical of the type $\sqrt{m} a^{8 / r}$
with respect to u, and so more so of the spherical type $a(a+1) / r$ with reapect to $\mathrm{a}:$

$$
Q_{a} a_{1}, \ldots, a^{f / r}=Q_{s a}(r+1) h \cdot
$$

Now let f G. Then

$$
f=\sum_{s=0}^{\infty} Q_{a t / f, \ldots, a^{s t r}}=\sum_{s=0}^{\infty} Q_{u a^{(s+1)},}
$$

and

$$
\begin{aligned}
& \therefore\|f\|_{B}=\left(\sum_{r=0}^{\infty} a^{\theta_{S}} \mid Q_{u Q}(s+r) r r^{0}\right)^{i n}- \\
& =\frac{1}{a}\left(\sum_{s=0}^{\infty} a^{\theta(s+1)} \mid Q_{u a^{(s+1} / / r} \|_{p}^{\theta}\right)^{1 / \theta} \leqslant \frac{1}{a}\left(\sum_{s=0}^{\infty} a^{\beta_{s}}\left\|Q_{u a^{s s / r}}\right\|_{p}\right)^{10}= \\
& =\frac{1}{a}\|f\|_{B},
\end{aligned}
$$

where we set $Q_{u a}=Q_{u 1} \equiv 0$.
And thus, it has been proven that if the function $f \in B$, then it is represented as the series

$$
f \in \sum_{0}^{\infty} Q_{m a r}
$$

of integral functions of spherical type $a^{s / r}$ with reapect to u ouch that

$$
\|f\|_{B_{0}}<\|f\|_{0}
$$

i.e., it is proven that $B \rightarrow B^{\prime}$. The inverae embedding is trivial, and we have proven (1).
5.6.3. Theorem" Let $f \in B_{p 0}^{r}(\xi)$ and $1=\left(1_{1}, \ldots, 1_{m}\right)$ be an integral on negative that is nonnegative vector $\left(l_{j} \geqslant 0\right)$ such that

$$
\begin{equation*}
x=1-\sum_{i=1}^{m} \frac{1}{r_{j}}>0 \tag{1}
\end{equation*}
$$

Then there exists the derivative
and

$$
\begin{gather*}
f^{(n)} \in B_{\infty}^{N}(\eta) \tag{2}\\
\left|f^{(n)}\right|_{\Delta \infty(y)}^{N_{\infty}} \leqslant c\|/\|_{D_{\infty}^{\prime}}(n) \tag{3}
\end{gather*}
$$

7) of note at and of book to sections 5.6.2-5.6.3.
where c does not dopend on f .
The theorem ceaces to be valld when $p=\mathcal{X} r$ is replaced by $p+\varepsilon$, where $\varepsilon>0$ (cf 7.5). Additionally, genoraily apeaking it is invalid for $x=0$ (cf note to 5.6.3).

Proof. By the condition of the theorem

$$
f=\sum_{s=0}^{\infty} Q_{a^{s / r}} \ldots a^{s / m_{m}}-\sum_{v}^{\infty} Q_{0} \quad(a>1)
$$

whore the terms of the eeries are integral functions of the exponential type $a^{8 / r j}$ with reapect to $x_{j}(j=1, \ldots, m)$, where

$$
\begin{gathered}
\|f\|_{B}=\left(\sum_{U}^{\infty} a^{\theta_{r}}\left\|Q_{s}\right\|\right)^{10} \\
\left(B=B_{D \theta}^{\prime}\left(\mathcal{C}^{\prime}\right),\|\cdot\|-\|\cdot\|_{L_{\rho}(y,}, a>1\right) .
\end{gathered}
$$

We have for the present, formally,

$$
\begin{equation*}
f^{(b)}=\sum_{0}^{\infty} Q_{i}^{(n)} \tag{4}
\end{equation*}
$$

whore k is and of the vectore $\left(l_{1}, 0, \ldots, 0\right),\left(1_{1}, 1_{2}, 0, \ldots, 0\right), \ldots, 1=$ $\left(l_{1}, \ldots, 1_{2}\right)$. Let us note that

$$
\left|Q_{i}^{(i)}\right| \leq a^{\cdot} \sum_{i}^{\frac{1}{1}}\left\|Q_{i}\right\|-a^{(1-x)}\left\|Q_{,}\right\|
$$

Therefore

$$
\begin{equation*}
\left(\sum_{0}^{\infty} a^{a n \infty}\left|Q_{1}^{(n)}\right|\right)^{1 \infty}<\left(\sum_{0}^{\infty} a^{\infty}\left\|Q_{0}\right\|\right)^{1 n}=\|f\|_{\rho} . \tag{5}
\end{equation*}
$$

From (5) it follow that eeries (4) converges in the L_{p}-senee, therefore memberwise difforentiation in (4) (In the gemeralized sence) is logitimate based on lamm 4.4.7.

Lot us note that $Q^{(1)}$ just as Q_{s}, is an integral function of the type $a^{s / r j}$ with respect to $x_{j}(j=1, \ldots, m)$. If wo aet $a^{x}=b(b>1)$ then
equality(5)for $k=1$ will be written as

$$
\left(\sum_{0}^{\infty} b^{s e}\left|Q_{i}^{(n}\right|\right)^{1 n} \leqslant\|f\|_{0}
$$

Where $Q_{d}^{(1)}$ is an intecral function of the type $b^{8 / r_{j} x}$ with respect to x_{j}. In this case $f^{(1)} \in B_{p 0}^{3(E)}(E)$ and inequality (3) is satiafied.

Let ua make also the folloyipg addition. Let us ascome that we wiabod to differentiate the derivative $f^{(1)}$ montioned in the theoren another $\mathcal{I}^{\prime}=$ ($11, \ldots, l^{\prime}$) "times". This is possible by this theorem, if the quantity

$$
\dot{x^{\prime}}=1-\sum_{i=1}^{m} \frac{r_{1}^{\prime}}{1 x}>0
$$

Hence

$$
x x^{\prime}=x-\sum_{i=1}^{m} \frac{i_{i}^{\prime}}{r_{j}}=1-\sum_{i=1}^{m} \frac{i_{1}+i_{i}^{\prime}}{r_{j}}=x_{0}>0 .
$$

But the quantity $\mathcal{X}_{\text {i }}$ in tormis the constant K appearing in our theore if in it 1 is roplaced by $1+1$.

In thie eone the theorem is tranaitive character.
5.6.4. Example. Bolow is presented an example showing that seminorms $3 b$ and 3 b , genoralis speaking, are not equivalont (cf $5.6(3)$, (4)). Lot us confine ourselves to the 1-dimonsional case

$$
m=1, \quad r=1-\frac{1}{p}<1, \quad \rho=0, k=1, \quad \theta=p .
$$

Let $f_{N}(x)$ be an even function, equal to

$$
f_{N}(x)= \begin{cases}\frac{x}{N}, & 0 \leqslant x \leqslant N \\ 1, & N<x\end{cases}
$$

Thon

$$
\begin{aligned}
& \left\|f_{N}\right\|_{0}^{0}= \\
& =2 \int_{0}^{\infty} d h \int_{-\infty}^{\infty}\left|\frac{I_{N}(x+h)-f_{N}(x)}{h}\right|^{p} d x \geqslant 2 \int_{0}^{N} d x \int_{0}^{N-x} \frac{d h}{N^{N}}=N^{2-1} \\
& \frac{1}{2}\left\|\left\|_{N}\right\|_{0}^{\infty}-\int_{0}^{1} d h\left\{\int_{0}^{\infty}+\int_{-\infty}^{-h}+\int_{-A}^{0}\right\} d x=I_{1}+J_{2}+J_{3}=O\left(N^{1-p}\right) .\right.
\end{aligned}
$$

because

$$
\begin{gathered}
\left.J_{2}=J_{1} \leqslant \int_{0}^{N-1} d x \int_{0}^{1} \frac{d h}{N^{\phi}}+\int_{N=1}^{N} d x \int_{0}^{N-x} \frac{d h}{N^{\phi}}+\int_{N-x}^{1}\left|\frac{1-\frac{x}{N}}{h}\right| d h\right\}- \\
\quad=O\left(N^{1-\rho}\right), \\
J_{3}=\int_{0}^{1} d h \int_{-h}^{0}\left|\frac{\frac{x+h}{N}+\frac{x}{N}}{h}\right| d x=O\left(N^{1-\rho}\right) .
\end{gathered}
$$

From this $-c$ is clear that it dooe not oxist a constant c auch that for all $N>0$ the inequality $3\left\|f_{N}\right\|_{b} \leqslant c^{3}\left\|f_{N}\right\|_{b^{\prime}}$ is satiafied.
5.6.5. Translatiomise continuity. Theorem. When $\boldsymbol{h} \rightarrow 0$

$$
\begin{align*}
& f(x+h)-f(x) \|_{W} \rightarrow 0\left(f \in \mathbb{W}^{\prime}=W_{p}^{\prime}\left(R_{n}\right), 1 \leqslant p<\infty, l \geqslant 0\right) . \tag{1}\\
& f(x+h)-f(x) \|_{\Delta} \rightarrow 0\left(f \in B=B_{p}^{\prime}\left(R_{n}\right), 1 \leqslant p, \theta<\infty, r \geq \theta\right) . \tag{2}
\end{align*}
$$

The confirmation of (1) when $p=\infty$ does not obtain, just as (2) when $\theta=\infty$ ($B_{p=\omega}^{r}=H_{p}^{r}$, cf. further 7.4.1); when $p=\infty, 1 \leqslant \theta<\infty(2)$ remaine valid.

Proof. In the case $1=0\left(W_{p}^{0}=L_{p}\left(R_{n}\right)\right)$, property (1) is a well-known fact (invalid, however, whon $p=\infty$). The gineral case actually reduces to it because $\|f\|_{W}$ is the aum of norme f and $\partial \mathcal{I}_{f / \partial x_{j}^{j}}$ in $L_{p}\left(R_{n}\right)(j=1, \ldots, n)$. The representation

$$
\begin{gathered}
f=\sum_{0}^{\infty} Q_{n} \\
=\left\{\sum_{0}^{\infty} 2^{n \theta}\left\|Q_{3}\right\|_{0}\right\}^{1 / \theta}
\end{gathered}
$$

where Q_{g} are integral functions of the type $2^{8 / r y}$ with respect to x_{j} obtains for the function $f \in B$. Therefore

$$
\begin{aligned}
& l f(x+h)-f(x) \|_{B} \leqslant\left\{\sum_{0}^{N-1} 2^{n e}\left\|Q_{s}(x+h)-Q_{s}(x)\right\|_{b}^{p}\right\}^{10}+ \\
&+2\left\{\sum_{N}^{\infty} 2^{n}\left\|Q_{s}\right\|_{p}^{n}\right\}^{1 N}<\varepsilon+s-2 \varepsilon
\end{aligned}
$$

if we take N oufficiently large and thon choose a aufficiently gmall .
Note. We can roplace p in (1) and (2) with $p=\left(p_{1}, \ldots, p_{n}\right)\left(1 \leqslant p_{j}\right.$ $<\infty$), because these relations are valid, in particular, for the classea ${U_{x_{j}}, p_{j}}_{l_{j}}\left(R_{h}\right)$ and $B_{x_{j}, P_{j}}^{r_{j}}\left(R_{n}\right), j=1, \ldots, n$.
5.6.6. Under the condition that $1 \leqslant 0, p<\infty$, and $g \subset g_{n}$ 1a an open eot, $\boldsymbol{g}^{N}=g\left(R_{n}-V_{N}\right)$, where V_{V} is a aphere with center at the zero point and of radius N, and $f \in B_{p O(s)}^{r}=B(s)$,

$$
\begin{equation*}
\|f\|_{B\left(a^{N}\right)} \rightarrow 0 \quad(N \rightarrow \infty) . \tag{1}
\end{equation*}
$$

holds. This is evident from the definition of the norm $\|\cdot\|_{B}$, for examplo, in the form 4.3.4(2) $(\rho=0, k \geqslant 2)$:

$$
थ f \|_{\nabla_{0}}\left(6^{N}\right)=\left(\int_{0}^{\infty} t^{-1-\phi} Q_{R_{m}}^{*}(\eta, t)_{L,\left(a^{N}\right)}^{0}\right)^{10} \rightarrow 0 \quad(N \rightarrow \infty) .
$$

In fact $r \in I_{p}(\rho)$, therefore $\Omega_{R_{m}}^{k}(f, t)_{L_{p}}\left(f^{N}\right)$ in finite for any t and tenda to zero, monotonically dininishing ae $N \rightarrow \infty$, and wo can use the Lobesgue theorem on the lirit pascase under the alen of the integral.

Chapter vi thborgas of mbedding of differtar marrics and mandures

6.1. Introduction

Begin by sotting up the S. Lo Sobaligy embedding theorem_ $\angle \overline{3} \overline{/}$ with latter supplements due to V. I. Kondrashov L1_ and V. P. Il'yin $\left.\overline{2}_{2}^{2} 7^{*}\right)$. Ae applied to space R_{n} and to its coordinato aubapace $R_{(}(1 \leq m \leq n)$, this theorem reads:

If a function $f \in w_{p}^{l}\left(R_{n}\right)$ and

$$
\begin{equation*}
0 \leqslant \rho-l-\frac{n}{p}+\frac{m}{p^{\prime}}, \quad 1<p<p^{\prime}<\infty, \tag{1}
\end{equation*}
$$

then**)

$$
\begin{equation*}
W_{p}^{\prime}\left(R_{n}\right) \rightarrow W_{p}^{\prime \rho!}\left(R_{m}\right), \tag{2}
\end{equation*}
$$

where $\overline{L P} \overline{-}$ is the integral part of P. This means that the trace of the function $\left.f\right|_{R_{m}}=\varphi$ belonging to the clase $\mathrm{w}_{\mathrm{p}^{\prime}}^{\left[\rho^{\prime}\right.}\left(\mathrm{R}_{\mathrm{m}}\right)$ oxiste, and that the inequality

$$
\begin{equation*}
\|\varphi\|_{\nabla_{p}^{\prime \rho}\left(R_{m}\right)} \leqslant c\|f\|_{\sigma_{p}\left(R_{n}\right)} \tag{3}
\end{equation*}
$$

is met where c does not depend on f**).
This concept of the trace of f will be explained in the following, but for the present we will state that is any case if f is contimuous on $R_{p,}$ then its trace on R_{m} is the mame given to the function $\varphi=\left.f\right|_{R}$ induced by the function f on $R_{\text {u }}$.
7) Cf note to 6.1 and the book.
**) The general S. L. Sobolev theorem can be writton in the form of formula (2), where we must replace R_{n} and R_{m} by and $\Delta_{m}=R_{m}$ and asoume that g is a star-shaped domain relative to same n-dimenaiowal ophere.

In particular, when $m=n$, from (2) follow the "pore" mbedding of difforent motrica:

$$
\begin{equation*}
W_{p}^{\prime}\left(R_{n}\right) \rightarrow W^{|p|}\left(R_{n}\right), \tag{4}
\end{equation*}
$$

assorting that if $f \in w_{p}^{2}\left(R_{n}\right)$, than $f \in u_{p}^{[p]}\left(R_{n}\right)$ and

$$
\begin{equation*}
\|f\|_{\omega_{p}^{(p)}\left(\mathbb{R}_{n}\right)} \leqslant c\|f\|_{\dot{\nabla}_{p}\left(R_{n}\right)} \tag{5}
\end{equation*}
$$

provided the condition that (1) is satiafied (whon $m=n$).
The S. L. Sobolev embedding thensme will be proven in Chapter IX.
But in this ahapter we will set out to disouns these quections for the

from the theorm obtalned in thie chaptor, in partioular, thare will follow the above-formulated theorea, for the oase when $p>010$ monintegral, and then, at we will see, they are valld urdor mose aroopling conditicans $1 \leq p \leq P^{\prime} \leq \infty$.

Lot us prosent oven at thia atage the charectoriotio theoren of the embedding of different matrice, which in partioular will be obtilined in this chapter:

$$
\begin{equation*}
B_{p 0}^{\prime}\left(R_{n}\right) \rightarrow B_{p \theta}^{\rho}\left(R_{n}\right), \tag{6}
\end{equation*}
$$

if

$$
\begin{align*}
& 1 \leqslant \rho<\rho^{\prime} \leqslant \infty, \quad 1 \leqslant \theta \leqslant \infty, p=r-n\left(\frac{1}{p}-\frac{1}{p^{\prime}}\right)>0 . \tag{7}
\end{align*}
$$

Thus, if function f belonge to the loft clase of (6), then it belongs aleo to the richt alase and, moreover, the imequality

$$
\begin{equation*}
\|f\|_{0_{\%}^{p}\left(R_{n}\right)} \tag{8}
\end{equation*}
$$

1e catiafied where c does not dopend on f .
The characteriatic (direct) theoren of abodding of different macourea which will be proven in thie chapter, ie writton thualy:

$$
\begin{equation*}
B_{p 0}^{\prime}\left(R_{n}\right) \rightarrow B_{\rho 0}^{\rho}\left(R_{m}\right) \tag{9}
\end{equation*}
$$

whore

$$
\begin{equation*}
1 \leqslant p, \theta \leqslant \infty, \quad 1 \leqslant m<n, \quad \rho=r-\frac{n-m}{p}>0 \tag{10}
\end{equation*}
$$

It assorts that provided the corditions (10), if a function f of clase $B_{p}\left(R_{n}\right)$ is given on R_{n}, thon it hat the trace φ on R_{1} belonging to the olase $B_{p 0}\left(R_{1}\right)$ and the inequality

$$
\begin{equation*}
\left.\|\varphi\|_{A_{D}^{D}\left(R_{m}\right)} \leqslant c\|f\|_{s_{m}^{\prime}\left(R_{n}\right)}\right) \tag{11}
\end{equation*}
$$

10 eatiafied, where c doen not depend on f.
Inequality (11) is important for applications; it indicates a oertain (atable) dependence of the narma of traces of functions f on the norms of f.

Theorems of ambedding of differont moagures for the olaeses $B_{p 0}^{r}$ are present characterised by the fact that they are wholly invertible. Lot ue by way of example the theorem that is the inverse of theorem (9). It is described thualy:

$$
\begin{equation*}
B_{p \theta}^{\rho}\left(R_{m}\right) \rightarrow B_{\infty \theta}^{\prime}\left(R_{n}\right) \tag{12}
\end{equation*}
$$

(provided condition (10)) and reade: to each function φ delined on F_{m} and belonging to the class $B_{p p}\left(R_{\text {m }}\right)$ there can be brought in correapondence its axtension on $R_{n}--$ the function $f \in B_{p}^{r}\left(R_{n}\right)-$ ouch that $\left.f\right|_{R_{n}}=\varphi$ and

$$
\begin{equation*}
\|f\|_{B_{\infty}^{\prime}\left(R_{n}\right)} \leqslant c\|\varphi\|_{B_{\infty} p_{\infty}\left(R_{m}\right)} \tag{13}
\end{equation*}
$$

where c does not depend on φ.
More general theorems of embeddinge of difforent mencures that the reader can find in this chapter are correspondingily also wholly invertible. This indicates, in particular, the unimprovability of those theorems. As far as theorems of embedding of different metrics are concerned, they alao are untmprovable (in the terme in which they are atated); this is proven in the naxt chapter. There the reader can find out about certain interenting so-cealiod tranaitive properties of embedding theorems.

We will comence this chapter by establiahing the aimplest relationehipe betwoen the classes H, H, and B expreseible by mans of uilboddinge.

Here we note only the follouing relationshipe:

$$
\begin{equation*}
H_{p}^{r+e} \rightarrow W_{p}^{\prime} \rightarrow H_{p}^{\prime} \quad(e>0, r=0,1, \ldots) \tag{14}
\end{equation*}
$$

the second of which is already known to us.

From (14), (6), and (9) followa ($p=1-n / p+m / p^{\prime}>0$ is nonintegral):

$$
\begin{equation*}
W_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{p}^{l-n}\left(\frac{1}{p}-\frac{1}{\nu}\right)\left(R_{n}\right) \rightarrow H_{p}^{p}\left(R_{m}\right) \rightarrow W^{p \rho!}\left(R_{m}\right) \tag{15}
\end{equation*}
$$

1.0., (5).

Theorems of embedding of different metrics and measures, just as the inverse theorams of ambedding of different metrica, wore proven for clasees $H_{p}^{\Gamma}\left(R_{n}\right)$ by S. M. Nikol'skiy L3 / using methods of approximation by integral functions of exponential type. They were generalized by O. V. Besov $[\overline{2}, \overline{3} \overline{1}$ for the classes $\mathrm{B}_{\mathrm{p}}^{r}\left(\mathrm{R}_{\mathrm{n}}\right)\left(\mathrm{H}_{\mathrm{p}}^{\Gamma}=\mathrm{B}_{\mathrm{p} \infty}^{r}\right)$ he introduced. O.V. Besov also founded his approsch on the wethod of approximation with integral functions of exponential type. Certain embedding theorems of differegt metrice for one-dimensional classes H_{p}^{r} were found by Hardy and Littlewood [i]. The theorem of embedding of difforent measures was also proven for more general classes $H_{p}^{r}\left(R_{n}\right)$ (p_{j}, generally apeaking, are different) by S. M. Nikol'okdy $\overline{10} \overline{0}$ by the mothods of approximation. Then it was generalized for the classes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ by V. P. Il'yin and V. A. Solonnikov $\overline{1}, 2 \overline{2}$, but then by different methods.

Below overywhere in our proof we will operate with methods of approximation, including our examination of this theorem for the genoral classes Bren).

6.2. Rolationohipg Betveen Claroes Be He and y

We will consider the functions of these classes on a cylindrical measurable space $\xi_{\xi}=\xi_{m} \times \xi^{\prime}\left(1 \leq m \leq n, u=\left(x_{1}, \ldots, x_{m}\right), v=\left(x_{m+1}, \ldots, x_{n}\right)\right)$.

We will supdose for sake of brevity that

$$
\begin{gathered}
B_{u p \infty}^{\prime}(\xi)-B_{p_{1}}^{\prime} \quad H_{u p}^{r}(\xi)=H_{p_{1}}^{\prime} \quad W_{u p}^{\prime}(\xi)=W_{p_{1}}^{\prime} \\
\|f\|_{L_{p}}(x)=\|f\|_{1} \quad r>0, \quad 1 \leqslant \theta \leqslant \infty .
\end{gathered}
$$

The folluwing embeddings ($r \overline{\bar{r}} \bar{r}+\alpha, 0<\alpha \leqslant 1, \bar{r}$ is an integer) obtain:

$$
\begin{gather*}
B_{n}^{\prime} \rightarrow B_{\infty}^{\prime} \rightarrow B_{\infty}^{\prime} \rightarrow B_{p+\infty}^{\prime}=H_{l}^{\prime} \quad\left(1 \leqslant \theta<\theta^{\prime} \leqslant \infty\right), \tag{1}\\
W_{n}^{\prime} \rightarrow H_{p}^{\prime} \quad(r=1,2, \ldots) \tag{2}
\end{gather*}
$$

7) CF I. I. Amanov $\overline{[} \overline{3} \bar{\prime}$.

$$
\begin{align*}
& H_{p}^{+\infty} \rightarrow B_{\infty}^{\prime} \rightarrow H_{p}^{\prime} \quad(6>0), \tag{3}\\
& H_{p}^{\prime} \rightarrow W_{p}^{0} \quad(\rho=0,1, \ldots, i), \tag{4}\\
& B_{p=}^{\prime+\infty} \rightarrow B_{\infty}^{\prime} \tag{5}
\end{align*} \quad(\varepsilon>0) .
$$

Embeddings (1) show that classes $B_{p 0}^{r}$ expand with increment in θ. The proof of (1) directly followe from the fact that (of $5.6(6)$, (7)) function $f \in B_{p e}^{r}$ can be defined as the sun of the series

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} Q_{n} \tag{6}
\end{equation*}
$$

convergent in it in the L_{p}-sense, the members of whose function Q_{s} are integral and of the spherical type $a^{\prime}(a>1)$ with reapect to auch that

$$
\begin{equation*}
\|i\|_{B^{\prime}}=\left(\sum_{d=0}^{\infty} a^{s+\theta}\left\|Q_{s}\right\|^{0}\right)^{1 / n} \quad(a>1) \tag{7}
\end{equation*}
$$

In fact, the right aide of (7) diminishes with increment in θ (of 3.3.3). It is also clear from the chain (1) that for fixed r and p, the "worat" class is class H_{p}^{r} and the "best" is $\mathrm{B}_{\mathrm{p} 1}^{r}$.

Embedding (3), from which it follows that

$$
B_{p \theta}^{r+e} \rightarrow B_{p \theta}^{r} \rightarrow B_{\infty}^{\prime-\theta}
$$

for any $1 \leqslant \theta^{\prime}, \theta, \theta^{\prime \prime} \leqslant \infty$, however small the $\varepsilon>0$, show that the class $B_{p 0}^{r}$ depends more strongly on r than on θ. The second ambedding in (3) was already proved in (1). Suppose $\mathrm{f} \equiv \underset{\mathrm{p}}{\mathrm{H}^{\mathrm{r}} \mathrm{E}}$; then

$$
\|f\|_{H_{b}^{\prime+t}}=\sup _{s} a^{s(r+e)}\left\|Q_{s}\right\|=M<\infty,
$$

therefore

$$
\|f\|_{B_{s}^{\prime}} \leqslant\left\{\sum_{i=0}^{\infty}\left(a^{a \prime \prime} \frac{M}{a^{s(c+c)}}\right)^{0}\right\}^{10} \leqslant c M_{1}
$$

where c does not depend on 11 , from whence follows the first embedding of (3). Embeciding (5) follows from the fact that the right aide of (7) increases together with r. We must bear in mind that for a given $r_{0}>0$, functions Q_{B}
for all $r<r_{0}$ can be assumed to be the same (cf note at ond of section 5.6).
Bebedding (2) follows from the inequalitios ($h \in R_{i n}$):

$$
\begin{aligned}
& \left|\Delta_{n}^{A} f^{n}(x)\right| \leqslant 2^{n-1}\left|\Delta_{n} f^{n}(x)\right| \leqslant 2^{n-1}|h|\left|\frac{\partial}{\partial k} f^{n}(x)\right| \ll \\
& <|h| \Sigma|f(r)| \quad(r-r-1)
\end{aligned}
$$

whare the aum is extended over all derivativea $f(r)$ from of order r.
From (1) and (4) it follows that

$$
\begin{equation*}
B_{\infty}^{r} \rightarrow H_{\rho}^{r} \rightarrow W_{p}^{r} \quad(p=0,1, \ldots, r) \tag{8}
\end{equation*}
$$

For the anisotropic classes
the following embedding $\left(p=\left(p_{1}, \ldots, p_{n}\right)\right.$ obtain:

$$
\begin{align*}
& B_{p l}^{P} \rightarrow B_{p}^{r} \rightarrow B_{p,}^{\prime} \rightarrow B_{f-\infty}^{\prime}=H_{p,}^{P} \quad 1<\theta<\theta^{\prime}<\infty, \tag{9}\\
& \ldots W_{p}^{\prime} \rightarrow H_{p}^{\circ} \quad(\rho \text { is an integral vector) } \tag{10}\\
& H_{p}^{++\infty} \rightarrow B_{p=}^{p} \rightarrow H_{p}^{P} \quad\left(\varepsilon>0,1.0 ., E_{j}>0\right) \tag{11}\\
& B_{m}^{r+\infty} \rightarrow B_{\rho}^{r} \quad(r>0), \tag{12}\\
& B_{n}^{\prime} \rightarrow H_{p}^{\prime} \rightarrow W_{D}^{\prime} \quad(\rho<r, P \text { is an integral vector) } \tag{13}
\end{align*}
$$

They are analogous to embeddinge (1) - (5) and (8) and directiy follow from then. If $p=p_{1}=\ldots=p_{n}$, than p can everywhere be roplaced by p.

6.3. Bubadding of pifferent Metrice

$$
\begin{equation*}
B_{\infty}^{p}\left(R_{n}\right) \rightarrow B_{p 0}^{r}\left(R_{n}\right) \tag{1}
\end{equation*}
$$

obtaing*) if the following conditions are met:
\# (\#) on following para/

$$
\begin{gather*}
1 \leqslant p<p^{\prime} \leqslant \infty, \quad, 1 \leqslant \theta \leqslant \infty, \tag{2}\\
x=1-\left(\frac{1}{p}-\frac{1}{p^{\prime}}\right) \sum_{1}^{n} \frac{1}{r_{j}}>0, \tag{3}\\
r^{\prime}=x r . \tag{4}
\end{gather*}
$$

(We assume that $r>0$.)
\left. In particular, if we consider that ${\underset{p}{p}}_{r}^{(} R_{n}\right)=B_{p}^{r}, \ldots, r\left(R_{n}\right)($ cf 5.6.2 $)$,

$$
\begin{equation*}
B_{p \theta}^{\prime}\left(R_{n}\right) \rightarrow B_{p \nabla}^{\prime \prime}\left(R_{n}\right) \tag{1'}
\end{equation*}
$$

obtains provided the conditions

$$
\begin{gather*}
1 \leqslant p<p^{\prime} \leqslant \infty \\
x=1-\left(\frac{1}{p}-\frac{1}{p^{\prime}}\right) \frac{n}{r}>0 \tag{3'}\\
r^{\prime}=x
\end{gather*}
$$

For example, when $p^{\prime}=\infty$ and

$$
\begin{aligned}
& r^{\prime}=r-n\left(\frac{1}{p}-\frac{1}{\infty}\right)=r-\frac{n}{p}>0, \\
& B_{\infty \theta}^{\prime}\left(R_{n}\right) \rightarrow B_{\infty}^{\prime}, \\
& \left.R_{n}\right) \rightarrow H_{\infty}^{r^{\prime}}\left(R_{n}\right)
\end{aligned}
$$

and, therefore, if the function $f \in B_{p 0}^{r}\left(R_{n}\right)$, then it is continuous and bounded on F_{h} together with its partial derivatives of order less than r^{\prime}. Additionally, if, for example, $r^{\prime}=\rho+\alpha$, is an integer, and $0<\alpha<1$, then the derivative $f(\rho)$ of order f satiafies on R_{n} the Lipshits condition of degree α.

Let us prove (1). Suppose B and B^{\prime}, respectively, stand for the first and second classes (1) and $\|\cdot\|_{p}=\|\cdot\|_{L_{p}}\left(R_{m}\right)$. Let us assign the function $f \in B$ and the number $a>1$. It can be represented as the series
\#) S. M. Nikol'skiy $L^{\overline{3}} \bar{J}$, case $H_{p}^{r}\left(R_{n}\right)=B_{p \infty}^{r}\left(R_{n}\right) ; 0$. V. Besov $[\overline{2}, 3 \overline{3}$, case $1_{r} \leqslant \theta<\infty$; Hardy and Littlewood LIM for certain ono-dimonsional classea $\mathrm{H}_{\mathrm{p}}{ }^{-}$

$$
\begin{equation*}
1-\sum_{n=0}^{\infty} Q_{n} \tag{5}
\end{equation*}
$$

whose terms Q_{B} are intogral functions of type $a^{8 / Y j}$ with respect to x_{j} $(j=1, \ldots, n)$, and where

$$
\begin{equation*}
\|f\|_{2}-\left(\sum_{0}^{\infty} a^{0_{s}}\left\|Q_{D}\right\|_{0}\right)^{1 / n}<\infty \quad(a>1) . \tag{6}
\end{equation*}
$$

The inequality of different metrice (3.3.5(1))

$$
\left\|Q_{s}\right\|_{\rho} \leqslant 2^{n} a^{(1-x)} \cdot\left\|Q_{a}\right\|_{p}
$$

is satiafied for the functions Q_{8}, therefore

$$
\left(\sum_{0}^{\infty} a^{0 x+}\left\|Q_{s}\right\|_{p}^{0}\right)^{i n}<\left(\sum_{0}^{\infty} a^{\theta_{t}}\left\|Q_{s}\right\|_{p}^{0}\right)^{i n}=\|f\|_{s} .
$$

But if we set $a \mathcal{X}=b(b>1)$, then we get the inoquality

$$
\begin{equation*}
\left(\bar{\sum}_{0}^{\infty} b^{n}\left(\left\|Q_{a}\right\|_{0}\right)^{0}\right)^{1 / n}<\|f\|_{b} \tag{7}
\end{equation*}
$$

where Q_{B} are integral functions of the type $b^{s / r^{\prime}} j$ with respect to x_{j}. From this it follows that series (5) convarges in the metric L_{p}, and here to $f_{\text {, }}$ because it already converges to f in the matric L_{p} (of (1.3.7)). Moreover, from (7) it follows that $f \in B^{\prime}$ and the left aide of (7) is $\|f\|_{B}$. We have proven that

$$
\|f\|_{8}<\|f\|_{0} .
$$

and embedding (1) stands proven.
In this case conditione ($\mathbf{2}^{\prime}$) - (4^{\prime}) are equivalent to the followings

$$
r_{r}, r^{\prime}>0, \quad 1 \leqslant p<p^{\prime} \leqslant \infty, \quad r-\frac{n}{p}-r^{\prime}-\frac{n}{p} .
$$

The quantity $r-n / p$ appears in them, which mast be invariant in order to insure embedding. In the generel case of 7.1 on this isave.

Let us note that R_{n} cannot be replaced by $R_{n} x$ है in (1), since in this case there would be no mequality aimilar to (7). In fact, this never occurs, and can be easily seen in examples.

6ete Place of Function

The function f belonging to a given clase $B\left(R_{n}\right)$ and $W\left(R_{n}\right)$ is defined on R_{n} only with accuracy up to the set of n-dimenaional measure zero or, as we will additionally state, with an accuracy up to equivalence relative to R_{n} or in the R_{n}-sense. Therefore the trace of function f

$$
\begin{equation*}
f I_{R_{m}}=\varphi=\varphi\left(x_{1}, \ldots, \cdot x_{m}\right) \tag{1}
\end{equation*}
$$

for any subspace $R_{m} \subset R_{n}(m<n)$ ds not meaningful, if it is understood literally.

Below we give the definition of the trace of function f on R_{m} leading to the unique function φ with an accuracy up to equivalence relative to R_{m}.

We will denote each point $x \in R_{n}$ as the pair $x=(u, w)$, where $u=$ $\left(x_{1}, \ldots, x_{m}\right), w=\left(x_{m+1}, \ldots, x_{n}\right)$, and let $R_{n}(w)$ be the m-dimenaional aubspace of points (u, w) where w is fixed, and let a runs through all posisible values. In particular, let $R_{m}(0)=R_{\text {m }}$.

Suppose $f(x)$ is a function measurable on R_{n}.
We will state that the function

$$
\begin{equation*}
\varphi=\varphi(u)=\left.f\right|_{R_{m}} \tag{2}
\end{equation*}
$$

is the trace of f on R_{m} if f can be modified on a set of m-dimensional measure zero auch that aftor this, for a certain $p, 1 \leqslant p \leqslant \infty$, the following
properties will be satiafied: properties will be satiafied:
1)
2)
3)
where δ is sufficiently mall.
Let us show that the trace of f on $R_{\text {d }}$ definad in this way is unique With an accuracy up to equivalence in the R_{m}-sonse.

Actually, ascure that wo will be able to find the two modifications f_{1} and f_{2} of function f on the set of $n-d i m e n s i o n a l$ moasure zero and auch numbers p_{1} and $p_{2}\left(1 \leqslant p_{1} \leqslant p_{2} \leqslant \infty\right)$ that for $f_{1}, \varphi_{1}, p_{1}$, and $f_{2}, \varphi_{2}, p_{2}$, relations 1) - 3) are individually fulfiliod, and suppose $\& \subset R_{m}$ is not arbitrarily bounded open set. Then

$$
\begin{align*}
& \left\|\varphi_{2}(u)-\Phi_{1}(u)\right\|_{p_{1}(x)} \leqslant\left\|\varphi_{1}(n)-f_{1}(u, w)\right\|_{p_{1}(u)}+ \\
& +\left\|f_{1}(u, w)-f_{2}(u, w)\right\|_{p_{1}(s)}+c\left\|f_{2}(u, w)-\varphi_{2}(u)\right\|_{p_{1}}(s) \tag{3}
\end{align*}
$$

where c is a constant dopendent on the meanure of g. Functions f_{1} and f_{2} are equivalent in the R_{n}-sense, tharefore $\quad \iint_{R_{n}} \mid f_{1}-f_{2} P_{1} d x d w=0$
and by Fubini's thooram, for almost all w

$$
\int_{R_{m}(m)} \mid f_{1}-f_{2} P_{1} d x=0 .
$$

But from the dot of pointe v for which this equality holds, we can always select this sequance w_{1}, w_{2}, \ldots with $\left|v_{k}\right| \rightarrow 0$. The rifat side of (3), when w run throurh this sequence, tends to sero, but then the loft aide equals 3ero, and aince $\subset R_{m}$ arbitrarify, then $\varphi_{1}=\varphi_{2}$ on R_{m}.

It is not difficult to nee that if function f not oniy is measurablo on R_{n}, but also is continuous in the n-dimensional noifhborhood R_{n}, then its trace φ coincides with the trace of f on R_{m} with accuracy up to equivalence in the R_{m}-eenee in the ordinary meaning of thie word, Danote further that if for the two measurable functions f_{1} and f_{2}, for some p the above-described operation of removal of trace (2), which we will further denote as:

$$
\begin{equation*}
\varphi=A(f)=f I_{R_{m}} \tag{4}
\end{equation*}
$$

is possible, then it is possible also for any linear combination

$$
c_{1} f_{1}+c_{2} f_{2}
$$

where c_{1} and c_{2} are arbitrary real numbers and whore the equality

$$
A\left(c_{1} f_{1}+c_{2} f_{2}\right)=c_{1} A\left(f_{1}\right)+c_{2} A\left(f_{2}\right) .
$$

obtains.
Thus, the set of all measurable functions f for which operation (4) is possible for some p is linear and (4) is the linear operation (operator) defined in it. As will be clear from the following, functions of classes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ and W_{p}^{r}, with the corresponding values of parameters p and r, have traces on R_{m} in the above-indicated sense.

Suppose tho domain $g \subset R_{n}$ and $g^{\prime} \subset \overline{\mathbf{g}}$ such that, in particular, g^{\prime} can the boundary of g . Further assume that the class of function \mathcal{M} is defined on g^{\prime}. Let us assign function f on g and assume that on g^{\prime} it has the trace:

$$
\varphi=f l_{x}
$$

Delonging to M. Then we will not only write: $\varphi=\left.f\right|_{g} \in M$, but also $f \in M$.

6.5. Pmbeddince of pifferent Meagures

There obtains*)

$$
\begin{equation*}
B_{p 0}^{\prime}\left(R_{n}\right) \rightarrow B_{p 0}^{r}\left(R_{m}\right) \tag{1}
\end{equation*}
$$

given the conditions

$$
\begin{gather*}
0 \leqslant m<n, \quad 1 \leqslant p, \quad \theta \leqslant \infty, \tag{2}\\
x=1-\frac{1}{p} \sum_{1=m+1}^{n} \frac{1}{r_{1}}>0, \tag{3}\\
r^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right) \quad r_{1}^{\prime}=x_{1} . \tag{4}
\end{gather*}
$$

Here R_{m} stands for the m-dimensional subapace of points
u.. $\left(x_{1}, \ldots, x_{m}\right), y=\left(x_{m+1}, \ldots, x_{n}\right)$, where 7 is fixed. Let B and $B '$,
\#) S. M. Nikol'skiy $\overline{\overline{3}} \bar{J}$, case $H_{\mathrm{p}}^{r}=\mathrm{B}_{\mathrm{p}}^{\mathrm{F}}$; O. V. Besov $[\overline{2}, 3 \overline{3}$, case $1 \leqslant 0<\infty$.
reapectively, be the first and eecond classes in (1) and $\|\cdot\|^{m}=\|\cdot\|_{L_{p}}\left(R_{m}\right)$ Brbeding (1) states that and function $f \in B$ has the trace

$$
f \|_{\Omega_{m}}=\varphi \in B^{\prime}
$$

and that the inoquality")

$$
\|\varphi\|_{B^{\prime}} \leqslant c\|f\|_{b}
$$

1s satiafied by where c does not depend on f.
For the case when $m=0$, it is asaumed that

$$
B_{\infty}^{r_{0}^{\bullet}}\left(R_{0}\right)=B_{\infty, 0}^{r}\left(R_{n}\right) .
$$

Thus, in this cace we are talking about ambeding in different metrics (from p to $p^{\prime}=\infty$), and it hal alreads been proven in 6.2.

If we consider that $B_{p}^{r}\left(R_{n}\right)=B_{p}^{r, \ldots, r}\left(R_{n}\right)$, and $B_{p}^{r}\left(R_{n}\right)=B_{p}^{r, \ldots, r}\left(R_{m}\right)$ then from (1), in particular, it followe that

$$
\begin{equation*}
B_{\infty}^{r}\left(R_{n}\right) \rightarrow B_{\infty}^{r}\left(R_{m}\right) \tag{1}
\end{equation*}
$$

providing the conditions -

$$
\begin{gather*}
0<m<n, \quad 1<p, \quad \theta<\infty \\
x=1-\frac{n-m}{r p}>0 \tag{31}\\
r=r x-r-\frac{n-m}{p}
\end{gather*}
$$

$f \in B_{p o}^{\text {Let }}$ us now turm to the proof when $1 \leqslant m<n$. We represent the function

$$
\begin{equation*}
f=\sum_{0}^{\infty} Q_{2} \tag{5}
\end{equation*}
$$

which are integral functions of the type $a^{a / r j}(a>1)$ with respect to x_{j} ($j=1, \ldots, n$) with the norm

$$
\begin{equation*}
\|f\|_{0}=\left(\sum_{0}^{\infty} a^{\infty}\left(\left\|Q_{a}\right\|^{n}\right)^{10}\right. \tag{6}
\end{equation*}
$$

W) The more exact inequality $\|f\|_{b^{\prime}} \leqslant c\|f\|_{b}$ obtalne given cortain reservations (cf 7.2(10) and (11)).

Let us use estimate ($3,4.2(1)$

$$
\left\|Q_{s}\right\|^{m} \leqslant 2^{n-m} a^{s}(1-x)\left\|Q_{s}\right\|^{n}
$$

for Q_{s}, from whence

$$
\left(\sum_{0}^{\infty} a^{\theta \times s}\left(\left\|Q_{s}\right\|^{m}\right)^{\theta}\right)^{1 / \theta}<\left(\sum_{0}^{\infty} a^{s \theta}\left(\left\|Q^{s}\right\|^{n}\right)^{\rho}\right)^{1 / n}=\|i f\|_{s}:
$$

Setting $a^{\mathcal{K}}=b(b>1)$, we get

$$
\begin{equation*}
\left(\sum_{0}^{\infty} b^{\theta_{s}}\left(\left\|Q_{s}\right\|^{m}\right)^{0}\right)^{10}<\|f\|_{s} \quad\left(Q_{s}-Q_{b} d l_{1}^{\prime} \ldots,\left.b^{\prime}\right|_{m} ^{\prime}\right) . \tag{7}
\end{equation*}
$$

This inequality, in particular, shows that series (5) converges for and fixed \bar{J} and the $L_{p}\left(R_{m}\right)$-sense with respect to $a=\left(x_{1}, \ldots, x_{m}\right)$ to some function $f_{1}(x)=f_{1}(u, y) \in I_{p}\left(R_{m}\right)$. But then $f_{1}=f$ almost everywhere in the sense of the n-dimensional measure ($c f$ 1.3.9).

By virtue of inequality (7), $f_{1}(u, J) \in B^{\prime}$ for any \bar{y}

$$
\begin{equation*}
\left\|f_{1}(n, y)\right\|_{B^{\prime}} \ll\|f\|_{B} \tag{8}
\end{equation*}
$$

The constant in this inequality does not depend on \bar{y}.

If it will be proven that $f_{1}(\Omega, y)$ is the trace of f on R_{m} for any \bar{J}, then together with inequality (7) this leads to the required embedding (1). Since (cf 6.1(14))
then

$$
\begin{align*}
B= & B_{D \theta}^{r}\left(R_{n}\right) \rightarrow H_{p}^{P}\left(R_{n}\right), \tag{9}\\
& \left\|Q_{J}\right\|^{n}<a^{-s} .
\end{align*}
$$

The inoremant in $Q_{8}(x)$ in turn is an integral function of the type $a^{0 / r_{j}}$ with reapect to $x_{j}(j=1, \ldots, n)$, therefore based on 3.4.2(1), 3.2.2(7), and 4.4.4(2)

The inequality

$$
\left|\Delta_{x \rho} h_{1}\right|^{m} \leqslant \sigma_{\mu}^{\prime}+\sigma_{\mu}^{\mu}
$$

is valld, where

$$
\sigma_{\mu}^{\prime} \leqslant \sum_{v}^{\mu-1}\left|\Delta_{x, j} Q_{s}\right|^{m}, \quad \sigma_{\mu}^{\prime \prime}-\sum_{\mu}^{\infty}\left|\Delta_{x j h} Q_{y}\right|^{\mu} .
$$

Let us asaign the number h with $|\mathrm{h}|<1$ and choose an intogral $\|$ such that

$$
\begin{equation*}
a^{-\omega / r}\left|<|h| \leqslant a^{-(h-1)|x|}\right. \tag{10}
\end{equation*}
$$

Then (of (9))

$$
\begin{equation*}
\left.\sigma_{\mu}^{\prime} \leqslant 2^{n-m} \sum_{0}^{\mu-1} a^{a}\left(1-x+\frac{1}{r}\right)\right)_{\left\|Q_{a}\right\|^{n}|h|<|h| \sum_{0}^{\mu-1} \frac{1}{a^{n}}, ~}^{\ldots} \tag{11}
\end{equation*}
$$

where

$$
\delta=x-\frac{1}{r} .
$$

If $\delta<0$, in other worde, if $r_{j}=r_{j} \mathcal{H} .<1$, then

$$
\sigma_{\mu}^{\prime}<|h|\left|a^{-\mu b}\right|<|h| \mid,
$$

and if $\delta>0$, i.0., if $1<r_{j}^{\prime}$, then

$$
\sigma_{\mu}^{\prime}<|h| .
$$

When $\delta=0$, i.0., $r_{j}^{\prime}=1$

$$
\sigma_{\mu}^{\prime} \ll|h| \mu \ll|\dot{h}||\ln | h| | .
$$

On the other hand,

$$
\begin{align*}
& \sigma_{\mu}^{\prime \prime} \leqslant 2 \sum_{\mu}^{\infty}\left\|Q_{s}\right\|^{m} \ll \sum_{\mu}^{\infty} a^{s(1-x)}\left\|Q_{s}\right\|^{\mu} \ll \\
& \therefore \tag{12}\\
& \quad .
\end{align*}<\sum_{\mu}^{\infty} \frac{1}{a^{x s}} \ll a^{-x \mu} \ll|h|^{\prime \prime} .
$$

From the estimate obtained it obviously follows that*)

$$
\left\|\Delta_{x, h} f_{1}(x)\right\|^{n}= \begin{cases}O\left(|h| r^{\prime}\right), & 0<r_{1}^{\prime}<1 . \tag{13}\\ O(|h||\ln | h| |), & r_{1}^{\prime}=1, \\ O(|h|), & r_{1}^{\prime}>1 .\end{cases}
$$

The right sides of (13) tend to zero together with h, therefore $f_{1}(m, y)$ has the trace $f(x, y)$ for any \bar{J}.

Let us emphasize that the desired function $f(x)=f(m, J)$ was known to an accuracy up to a set of n-dimensional measure zero, therefore it was not meaningful tc consider it as a function of a for fixed \bar{y}. The mothod of obtaining the trace of function $f \in B$ was given above. This requires that f be expanded in series (5) with finite norm (6) and that \bar{y} be fixed in its term Q_{s}. Then the resulting series of functions of a converges in the $L_{p}\left(R_{m}\right)$-sense namely, to the trace $f_{f}(x, y)$ of function f.

Ordinarily, in inequalities of the type (13), it amounts to the same to write f instead of f_{1}, understanding this in the sense that f can be modified on a set of n-dimensional measure such that after tris (i3) will obtain for y and in this case with a constant indensendent j.
6.5.1. Note. Embedding 6.5(1) ramains valid for the same condition 6.5(2)-(4) if in. it R_{n} and R_{m} are replaced, respectivei.y, with the measurable cylindrical sets $\mathscr{E}_{n}=R_{n} \times \mathscr{L}^{\prime}$ and $\mathscr{E}_{m}=R_{m} \times \mathscr{E}^{\prime \prime}$, whers as before, $R_{m} \subset R_{n}$ and $z=(x, w), x \in R_{n}$, and $w \in \mathscr{L}^{\prime \prime}$. In fact, an inequality corresponding to 6.5 (1) where constant c does not depend not only on $3 ;$ but also does not depend on w is valid for almost any w given a finite p. Let us raise both its sidea \#) L. D. Kuciryavtsev $[\overline{2} \bar{Z}]$, part 1.
to the power p, integrate with reapect to w and then raise the result to the power $1 / p$. Wo finaily got the necescary inequality. Whon $p=\infty$, this statemont is trivial.
6.5.2. Inequalitios6.5(13) are of intereat in theaselves. They indicate for function of the clase $H_{p}^{F}\left(R_{i n}\right)$ the averace order of the trend of their traces. This order is unimprovable (of 7.6).

It is not difficult to show that the inequality

$$
\begin{equation*}
\left|\Delta_{x, \mu}^{k} f_{1}(x)\right|^{m}=0,(|h|) \quad\left(r_{1}^{\prime}=1, k>1\right) \tag{1}
\end{equation*}
$$

obtains (even without 1n), supplemanting the eecond inequality 6.5(13).
Since

$$
W_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{p}^{r}\left(R_{n}\right) \quad(\Sigma-\text { integral vector), }
$$

then estimate $6.5(13)$ are applicable also to $W_{p}^{F}\left(R_{n}\right)$. In this cace as woll
they are improvable in the sense that the powers of $|\mathrm{h}|$ ahown in their right sides cannot be replaced by larger values. However, for each individual function $f \in W_{p}^{F}\left(R_{n}\right)$ the followire estimates obtain:

$$
\left|\Delta_{x, f}\right|(x) P^{P}= \begin{cases}\left.0\left(|h|^{\prime}\right)\right)_{(|h| \rightarrow 0),}, & 0<r_{1}^{\prime}<1, \tag{2}\\ 0(|h||\ln | h \mid 0(|h| \rightarrow 0), & r_{1}^{\prime}=1, \\ 0(|h|)(|h|<1), & r_{1}^{\prime}>1,\end{cases}
$$

improving, provided $r^{\prime}{ }_{j} \leqslant 1$, the eatimates 6.5(13).
In fact (of 5.6.1(9) and 5.2.4(5)), in this case

$$
\begin{aligned}
& \left\|Q_{s}\right\|^{n} \leqslant \mid g_{a}\left(r_{1}, \ldots, a^{s / r_{a}-f \mid+}\right. \\
& \quad+\left|f-g_{\&}(s-1) / r_{1}, \ldots, s^{(s-1) / r_{a} \mid}\right|=o\left(a^{-9}\right) \quad(s \rightarrow \infty),
\end{aligned}
$$

and then inequalitios $6.5(11)$, (12) are replaced by these:
\#) These estimatos for the clase $W_{p}^{l}(1=1,2, \ldots)$ were obtained directly by V. I. Kondrachov L1」.

$$
\begin{aligned}
\sigma_{\mu}^{\prime} \ll o\left(|h|^{r_{1}^{\prime}}\right) \quad & \left(r_{1}^{\prime}<1\right), \sigma_{\mu}^{\prime}< \\
& <o(|h||\ln | h| |) \quad\left(r_{1}^{\prime}=1\right), \sigma_{\mu}^{\prime \prime}<o\left(|h|^{\prime \prime}\right)
\end{aligned}
$$

In fact the estimate $O(|h|)$ cannot be improved. This is ecsily verified for the example $f=g(x) g(y)$, where $g(x) \in L_{p}\left(R_{1}\right)$ is an integral function of type 1 such that $g^{\prime}(0) \neq 0$ and $R_{m}=R_{1}$.

6.6. Simpleat Inverse Theorem of Fabedding of Different Neasures

Let $1 \leqslant m<n$ and R_{m} be a coordinate subspace of R_{n}. For definiteness, we will assert that it consists of the points $(a, 0)=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$. In section 6.5 the following theorem is proven:

$$
\begin{equation*}
B_{p \theta}^{\prime}\left(R_{n}\right) \rightarrow B_{p \theta}^{\prime}\left(R_{m}\right) \tag{1}
\end{equation*}
$$

grovided the condition that

$$
\begin{equation*}
r^{\prime}=r x=r-\frac{n-m}{p}>0 . \tag{2}
\end{equation*}
$$

Below it will be proven that a theorem that is its complote inverse exists*):

$$
\begin{equation*}
B_{p 0}^{\prime \prime}\left(R_{m}\right) \rightarrow B_{m}^{\prime}\left(R_{n}\right) \tag{3}
\end{equation*}
$$

provided condition (2). For explanation, of 6.1(12).
Let B^{\prime} and B stand, respectively, for the first and second classea in (1). Let us assign the arbitrary function $\Phi \in \mathrm{B}^{\prime}$. It can be represented as the series

$$
\varphi(a)=\sum_{0=0}^{\infty} Q_{s a l n}
$$

convergent in it in the $L_{p}\left(R_{m}\right)$-sense, where $Q_{a} s / r$ are integral functions of spherical type $a^{s / r}(a>1)$ and

$$
\begin{equation*}
\|\Phi\|_{\varphi}=\left\{\sum_{0}^{\infty} a^{x_{\infty}}\left(\mid Q_{1} \|^{m}\right)^{0}\right\}^{1 \infty},\|\cdot\|^{m}-\|\cdot\|_{L_{p}}\left(R_{m}\right)^{\cdot} \tag{4}
\end{equation*}
$$

Suppose

$$
F_{v}(t)=\left(\frac{\sin \frac{w}{2}}{\frac{w}{2}}\right)^{2} \quad(v>0)
$$

This is an integral function of one variable t of type ν such that

$$
\left\|F_{v}\right\|_{p}\left(R_{1}\right)=\left(\int\left(\frac{\sin \frac{v t}{2}}{\frac{v i}{2}}\right)^{2 p} d\left(\frac{v t}{2}\right)\right)^{1 / p}\left(\frac{2}{v}\right)^{1 / p}=\frac{c_{p}}{v i / p}(v>0) .
$$

Let un introduce a new function of $x \in R_{n}$ defined by the series

$$
\begin{equation*}
f(x)=\sum_{0}^{\infty} q_{0} \text { ti }(x) \tag{5}
\end{equation*}
$$

where

Obviously (cr (2)),

$$
\left|Q_{a}+1 / 1\right|^{n}=\left|Q_{a} / 1 /\right|^{m} a^{-\left(1-x_{0}\right)} c_{c}^{n-m}
$$

In this case

$$
\begin{align*}
& \left(\sum_{0}^{\infty} a^{n}\left(\left|q_{a} a_{1 / 1}\right|^{n}\right)^{n}\right)^{1 / n}= \tag{7}
\end{align*}
$$

Since functions $q_{a} a / r$ are integral of the (exponential) type $a^{a / r}$ with reapect to each variable x_{1}, \ldots, x_{n}, then by $5.6 .1(4),(5)$ the loft side of (7) is
 and we plill prove that $f \in B,\|f\|_{B} \ll\|\varphi\|_{B}$.

The function f is defined by series (5) convergent in it in the sense $L_{p}\left(R_{n}\right)$. But the series for any $\bar{y}=\left(x_{m+1}, \ldots, x_{n}\right)$ converted also in the sense of $L_{p}\left(R_{m}\right)$ to some function $f_{1}(x)$, which can differ from $f(x)$ oniy by a set of n-dimensional measure zero (1.3.9). Obviously,

$$
f_{1}(u, 0)=\Phi\left({ }^{(}\right)
$$

in the K sense, i.e., for almost all and the sense of the m-dimensional m measure. Further, considering that $F_{v}(0)=1, F_{v}(t)$ are bounded with respect to v and t and that

$$
\begin{aligned}
& \text { and that } \sum_{0}^{\infty}\left\|Q_{a^{s}} s \int\right\|^{n}<\infty \text {, we got } \\
& \left\|f_{1}(u, y)-f_{1}(u, 0)\right\|^{m} \leqslant \sum_{v}^{\infty}\left|\prod_{m+1}^{n} F_{a^{\prime} y}\left(x_{i}\right)-1\right|\left|Q_{a^{\prime \prime \prime}}\right|^{m} \rightarrow 0 \\
& \left(y=\left(x_{m+1}, \ldots, x_{n}\right) \rightarrow 0\right) .
\end{aligned}
$$

This reasoning shows that ϕ is the trace of $f(6.3)$. In this way the statement (3) is previously completely proven.

Let us note that the class $B=B_{p \theta}^{F}\left(R_{n}\right)$ is a Banach space. If

$$
r^{\prime}=r-\frac{n-m}{p}>0,
$$

then, by (1), the operation of obtaining the trace

$$
\begin{equation*}
A f=f I_{R_{m}}=甲 \tag{8}
\end{equation*}
$$

holds for the functions $f \in B$ on $R_{m} \subset R_{n}(1 \leqslant m<n)$. This operation is linear; moreover, by (1), it boundedly mape B into B, where owing to the invertibility of embedding (1), it does this already not into B^{\prime}, but on B^{\prime}. nbove we proved that in turn B^{\prime} can map on some portion of B by means of some bounded inear operator. i'his latter is not unique, because an infinite set of such operator can be specified.

In the language of functional analysis the linear bounded operator A mapping Banach space B onto Banach space B^{\prime} is called continuously invertible*).
) L^{}) on following pase7

In the last seations we will prove an embedding mane ganeral than 6.5(1), in which we will apeak about the boundary property not oniy of the runction f itsalf on the subapace $R_{n} \subset R_{n}$, but also of some of its partial derivatives. We will then completely invert this theorem.

6.7. Onnex Thaoren of Pbedding of Different Manura

Theorem**). Suppose $f \in \mathcal{B}_{p 0}^{r}\left(K_{n}\right), 0 \leq m<n$, and for some vector $\lambda=\left(\lambda_{m+1}, \ldots, \lambda_{n}\right)$ with nonnegative integral coardimatea inequalities

$$
\begin{equation*}
\rho_{i}^{(i)}=r_{i}\left(1-\sum_{1-m+1}^{n} \frac{\lambda_{j}}{r_{j}}-\frac{1}{p} \sum_{1-n+1}^{n} \frac{1}{r_{j}}\right)>0 . \tag{1}
\end{equation*}
$$

sre autiafied. Furthar, let
and lot K_{n} aenote the m-dimanaional aubapace R_{0} obtained when vector y $\left(x_{m+1}, \ldots, x_{n}\right)$ and $\mu(\lambda)=\left(\mu_{1}^{(\lambda)}, \ldots, \mu_{n}^{(\lambda)}\right)$ are apecified.

Then

$$
\left.\psi\right|_{R_{m}}=\varphi \in B_{\infty}^{\theta(\alpha)}\left(R_{m}\right)
$$

an.i the inequality

$$
\|\bullet\|_{Q_{\infty}^{0}}^{\left(\alpha^{\prime}\right)}\left(R_{m}\right) \leqslant c\|f\|_{\Delta_{\infty}^{\prime}}\left(R_{n}\right)
$$

with constant o not depencent on \mathcal{I} and \bar{y} is satialied.
Proai. From (1) it follows that

$$
\sum_{t=m-1}^{n} \frac{\lambda_{j}}{r_{j}}<1
$$

*) Y. Hausdort $[\bar{L} / \overline{/}$ gddition.

Therefore based on theorem 5.6.3

$$
\begin{gathered}
\psi \in B_{n 0}^{\prime \prime}\left(R_{n}\right), \\
r^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right), r_{1}^{\prime}=r_{i}\left(1-\sum_{k=m+1}^{n} \frac{\lambda_{k}}{r_{k}}\right), \quad i=1, \ldots, n,
\end{gathered}
$$

and the inequality

$$
\|\psi\|_{s_{D 0}}\left(R_{n}\right)<\|f\|_{s_{p \theta}\left(R_{n}\right)} .
$$

is satisfied.
In order to see to which class the trace ψ on R_{m} belongs, let us employ embedding theorem 6.5(1). It is applicable because

$$
x=1-\frac{1}{p} \sum_{m=1}^{n} \frac{1}{r_{l}^{\prime}}=\frac{1-\sum_{m+1}^{n} \frac{\lambda_{j}}{r_{j}}-\frac{1}{p_{j}} \sum_{m+1}^{n} \frac{1}{r_{j}}}{1-\sum_{m+1}^{n} \frac{\lambda_{j}}{r_{j}}}>0
$$

and thus we have confirmation of the theorem.

6.8. General Inyerea pmbeddine Theorem

Theorem*). Let there be given the vector $r=\left(r_{1}, \ldots, r_{n}\right) \quad 0$ and all possible vectors

$$
\begin{equation*}
\lambda=\left(\lambda_{m+1}, \ldots, \lambda_{n}\right) \tag{1}
\end{equation*}
$$

with nonnegative integrel coordinates for which vectors $\rho(\lambda)=\left(\rho_{1}^{(\lambda)}, \ldots\right.$, $p_{n}^{(\lambda)}$) defined by formula 6.7(1) are positive.

Suppose, in addition, that the function

$$
\begin{equation*}
\Phi_{(2)}\left(x_{1}, \ldots, x_{m}\right) \in B_{p}^{p(2)}\left(R_{m}\right) . \tag{2}
\end{equation*}
$$

M) S. M. Nikol'skiy $\overline{L 5} \bar{J}$, case $H_{p}^{r}={\underset{p \infty}{r}}_{r} ; 0$. V. Besov $[\overline{2}, \overline{3}$, case $1 \leq 0<\infty$.
is brought into correspondence with each vector (λ). Than we can construct on R_{n} funotion $I \in B_{p 0}^{r}\left(R_{n}\right)$ ouch that
where c does not dopend on $\varphi(\lambda)$, the aum is extended over all posaible indiaated vectore λ, and $\varphi(\lambda)$ are traces of partial derivatives of function f :

$$
\begin{equation*}
\left.\frac{\partial_{m+1^{2}}^{+} \cdots \Delta \lambda_{n}}{\partial x_{m+1}^{\lambda_{m+1}^{\prime}} \cdots \partial x_{m}^{\lambda_{n}^{\prime}}}\right|_{R_{m}}=\varphi_{(M)} . \tag{4}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
& r_{l}^{(a)}=r_{1}\left(1-\sum_{m+1}^{n} \frac{\lambda_{l}}{r_{j}}\right) \quad(l=1, \ldots, n), \tag{5}\\
& x^{(a)}=1-\frac{1}{n} \sum_{m+1}^{n} \frac{1}{r_{n}^{(2)}} . \tag{6}
\end{align*}
$$

Then it is obvious

$$
\begin{equation*}
\rho_{t}^{(a)}=r_{l}^{(a)} x^{(a)} . \tag{7}
\end{equation*}
$$

Let $\varphi_{(\lambda)} \in B_{p O}^{P(\lambda)}\left(R_{m}\right)=B^{(\lambda)}$. Thon

$$
\varphi_{(2)}=\sum_{j}^{\infty} Q_{a} a_{0}
$$

where $Q_{a}(\lambda)$ are intogral functions of the type $2^{9 / r_{1}(\lambda)}$ with respect to x_{i} ($1=1, \ldots, m$) and

$$
\begin{align*}
& \left(\|\cdot\|^{m}=\|\cdot\|_{R_{p}\left(n_{m}\right)}\right) . \tag{8}
\end{align*}
$$

Let us introduce trisonomatric polvnomiale $T_{v}(x)(\nu=0,1, \ldots, 1)$ where 1 denotea the lareent of the mubers λ_{j} oncountered in the different vectors $\lambda=\left(\lambda_{m+1}, \ldots, \lambda_{n}\right)$ considered. Suppose these polynomials exhibit the following peoperties: the function

$$
\Phi_{v}(x)=\frac{T_{v}(x)}{x^{2}}
$$

is integral and, moreover,

$$
\begin{gather*}
\Phi_{v}^{(v)}(0)=\left.\frac{d^{v}}{d v^{v}} \Phi_{v}(x)\right|_{x=0}=1, \Phi_{v}^{(k)}(0)=0 \tag{9}\\
(k=0, \ldots, v-1, v+1, \ldots, l) .
\end{gather*}
$$

We would not be concerned about the magnitude of the powar of the trigonometric palynonial, because the conditions indicated above do not uniquely define it. We will agaume that we have chosen wholly doternined polynomials that are of pover $\mu(v)$. Then $\phi_{\nu}(x)$ is an integral function of the type $\mu(v)$ and $\phi_{\nu}\left(\frac{k}{\mu(v)} x\right)$ is an integral function of the type k. obvioualy, further

$$
\begin{align*}
&\left|\Phi_{v}\left(\frac{k}{\mu(v)} x\right)\right|_{\varepsilon_{p}\left(R_{1}\right)}=\left(\int_{-\infty}^{\infty}\left|\Phi_{v}\left(\frac{k}{\mu(v)} x\right)\right|^{p} d x\right)^{1 / p}= \\
&-\left(\frac{\mu(v)}{k}\right)^{1 / p}\left(\int_{-\infty}^{\infty} \mid \Phi_{v}(u) P d \mu\right)^{1 / p}=\frac{A_{v}}{k^{1 / p}} \tag{10}
\end{align*}
$$

where A_{ν} depends only on v.
Let ue define functions $f_{(\lambda)}\left(x_{1}, \ldots, x_{n}\right)$ corresponding to different λ vectors by means of the series

$$
\begin{align*}
& f_{(2)}\left(x_{1}, \ldots, x_{n}\right)= \\
& =\sum_{s=0}^{\infty} Q_{z(2)} \prod_{1=m+1}^{n}\left(\frac{\mu\left(\lambda_{j}\right)}{2^{s / 1} j^{(2)}}\right)^{\lambda_{j}} \Phi_{\lambda_{j}}\left(2^{s(1)\left(()^{2}\right)} \frac{x)}{\mu\left(\lambda_{j}\right)}\right)=\sum_{s=0}^{\infty} R_{s(2) 0} \tag{11}
\end{align*}
$$

where, obviously, $R_{a}(\lambda)$ are integral functions of the type $2^{8 / r_{1}(\lambda)}$ with respect to $x_{i}(i=1, \ldots, n)$.

Conaldoring (5)-(8) and (10), we hevo
or

$$
2^{r_{1}^{(\omega)}}\left\|R_{s}(a)\right\|^{n}<\| Q_{b}\left(\|^{m} 2^{m(\alpha)}\right.
$$

Therefore by (8), considering further that

$$
\frac{r_{1}(n)}{r_{1}}=1-\sum_{m+1}^{n} \frac{\lambda_{j}}{r_{j}}
$$

does not in fact dopend on 1, we got the inequality

$$
\left|f_{(a)}\right|_{D_{D}\left(R_{n}\right)}<\left|P_{\omega N}\right|_{2 \alpha}
$$

Let us note further that by virtue of the properties of the function ϕv, the equality
is eatiafied for the function $f(\lambda)$, if the voctor λ is aderesible, 1.0., entiaflos conditions 6.7(1).

In fact, if cories (11) is formaliy differentiated momberwice with reapeot to x_{n+1}, \ldots, x_{n}, rempectively, $\lambda_{m+1}, \cdots, \lambda_{n}$ times, then we get

$$
\begin{align*}
& \frac{\partial^{2} m+1+\cdots+\lambda_{a}}{\partial x_{m+1}^{\alpha_{m+1}} \ldots \partial x_{a}^{\alpha_{a}}} f= \\
& -\sum_{i=0}^{\infty} Q_{s(i)} \prod_{i=m+1}^{n} \Phi_{i}^{(\lambda)}\left(2^{s / r}(\alpha) \frac{x j}{\mu j(\lambda)}\right)-\sum_{i=0}^{\infty} \mu_{i(u)} . \tag{13}
\end{align*}
$$

From the eatimated derived for $R_{B}(\lambda)$ it follows that at any etage of differentiation series convergent in the $L_{p}\left(R_{R}\right)$-sense are obtained, therefore equality (13) actually obtained in the sense of the oonvergence of $L_{p}\left(R_{n}\right)$ (cf lemma 4.4.7). Further, by virtue of the boundednase of $\phi_{\lambda_{j}}$, the derivatives $\phi_{\lambda_{j}}^{\left(\lambda_{1}\right)}$ are also bounded, therefore

$$
\begin{aligned}
& \left|\sum_{0}^{\infty}\left(\mu_{s(a)}-Q_{s(a)}\right)\right|_{L_{p}\left(n_{m}\right)} \leqslant \\
& <\sum_{0}^{N}\left\|Q_{a}(x)\right\|_{2,\left(R_{m)}\right.}\left|\Phi_{l_{j}}^{\left(\lambda_{j}\right)}\left(2^{\varepsilon / f,(\lambda)} \frac{x j}{M(\lambda)}\right)-1\right|+ \\
& +2 c \sum_{N+1}^{\infty}\left\|Q_{t}(\alpha)\right\|_{L_{p}\left(R_{m}\right)} .
\end{aligned}
$$

Let us now asaign $\varepsilon>0$ and choose N aufficiently large so that the second term in the rifht aide of (14) is amaller than E, and now we select (cf(9)) δ to be ourficiontiy amall that for $\mid x_{j} k \delta(j=m+1, \ldots, n)$ with first term is swall than \mathcal{E} :

If however $\left\{\lambda^{\prime}\right\}$ is another admissible vector $\left(\lambda_{m+1}^{\prime}, \cdots, \lambda_{n}^{\prime}\right)$, then by similar arguments we get

$$
\left.\frac{\partial_{m+1}^{\lambda_{m}^{\prime}+\cdots+\lambda_{n}^{\prime}}}{\partial x_{n+1}^{n_{n+1}^{\prime}} \ldots \partial x_{n}^{\lambda_{n}^{\prime}}}\right|_{R_{m}}=0 .
$$

In this case the function

$$
f=\sum_{2} f_{2}
$$

where summation is extended over all possible admiesible vectors λ and satisfies all requirements of the theorem.

6e2. Sanapelination of the Moary of Fimbeddine of mefferent Metric:

Below is civan the senaralizetion of embedding theorem 6.3(1) for the case of classes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}\left(\mathrm{R}_{\mathrm{n}}\right)$.

Theorm"). Suppose that far the numbers considered below the inequaLuty $\left(s_{j}>0\right)$

$$
\begin{gather*}
1 \leqslant p_{1} \leqslant p^{\prime} \leqslant \infty, \tag{1}\\
x^{\prime}=1-\sum_{l=1}^{n}\left(\frac{1}{p_{l}}-\frac{1}{p^{\prime}}\right) \frac{1}{r_{l}}>0, \tag{2}\\
x_{l}=1-\sum_{l=1}^{n}\left(\frac{1}{p_{l}}-\frac{1}{p_{l}}\right) \frac{1}{r_{l}}>0 \quad(l=1, \ldots, n) \tag{3}
\end{gather*}
$$

are atiafied and that

$$
\begin{equation*}
p_{t}=\frac{r x^{\prime}}{x_{t}} * \text {. } \tag{4}
\end{equation*}
$$

Furthar, lat $m=\left(r_{1}, \ldots, s_{n}\right), p=\left(p_{1}, \ldots, p_{n}\right)$, and $p=\left(p_{1}, \ldots, p_{n}\right)$. Then the embedding

$$
\begin{equation*}
B_{m p}^{p}\left(R_{n}\right) \rightarrow B_{p, p}^{p}\left(R_{n}\right) . \tag{5}
\end{equation*}
$$

obtains.
From (5), whan $p_{2}=p_{1}=\ldots=p_{n}$ follow $6.3(1), p=r^{\prime}$. Let us further note that from the fact that $\mathcal{K}^{\prime}>0$ it followe that $K_{1}>0$ for all i, since $\mathbf{p}^{\prime} \geqslant \mathbf{p}_{1}$.

Proof. Let us introduce a family of functions $g_{v}=\varepsilon_{y_{1}}, \ldots, v_{n}$ $\left(0<\nu_{j} \leqslant \infty ; j=1, \ldots, n\right)$ that are integral and of the exponential type *) S. M. Nikol'akiy $\angle \overline{10} \bar{\jmath}$, case $\mathrm{H}_{\mathrm{p}}^{5}=\mathrm{B}_{\mathrm{p} \infty}^{\mathrm{r}}$; V. P. Illyin and V. A. Solonnikov $\langle\bar{Y}, \overline{2}$, cace $1 \leqslant 0<\infty$ (using the T. I. Amanov approximation thoory $\langle\overline{3} \bar{J}$). **) In thise theorem we can proceed $\mathrm{f}_{\text {som }}$ the condition that all $P_{j}>0$, aince for such an 1 for which p_{i} takes on the mallest value, $\mathcal{K}_{1}>0$, then also $M^{\prime}>0$, and 80 do the remaining $\mathcal{H}_{1}>0$.
ν_{j} with respect to x_{j}, defined by the last equality in $5.2 .4(1)$ when $m=n$. Let us suppose

$$
v_{k}=v_{k}(s)=2^{s / p_{k}} \quad(k=1, \ldots, n ; s=0,1, \ldots . \quad \text { and } a=\infty)
$$

and

$$
\begin{equation*}
Q_{0}=g_{v(0)} \cdot Q_{1}=g_{v(0)}-g_{v(s-1)} \quad(s=1,2, \ldots) . \tag{6}
\end{equation*}
$$

Obvioualy,

$$
\begin{equation*}
Q_{s}=\sum_{i=1}^{n} Q_{i}^{(1)} \quad(s=1,2, \ldots) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& Q_{b}^{(1)}=g_{v_{1}(s)}, \ldots, v_{l}(s), v_{l+1}(s-1), \cdots, v_{n}(-1)- \\
& -g_{v_{1}}(s), \ldots, v_{l-1}(s), v_{l}(s-1), \ldots, v_{n}((-1) \cdot \tag{8}
\end{align*}
$$

He have

$$
\begin{align*}
& \left|Q_{s}\right|_{p^{\prime}} \leqslant \sum_{i=1}^{n}\left|Q_{B}^{(n)}\right|_{p^{\prime}} \quad(s=1,2, \ldots) \tag{9}\\
& \left(\|\cdot\|_{p^{\prime}}=\| \cdot L_{p^{\prime}\left(R_{n}\right)}\right) \text {. }
\end{align*}
$$

Let us apply to each i-th term of this sum inequality of different metrics (3.3.5)

$$
\begin{align*}
& \left|Q_{s}^{(i)}\right|_{0_{1},} \leqslant 2^{n} 2^{s}\left(\frac{1}{p_{i}}-\frac{1}{\gamma^{\gamma}}\right) \sum_{1}^{n} \frac{1}{p_{j}}\left|Q_{s}^{(i)}\right|_{p_{l}}= \\
& -2^{n_{2}-s\left[\frac{1}{p_{1}}-\left(\frac{1}{p_{l}}-\frac{1}{p^{\gamma}}\right) \sum_{i=1}^{n} \frac{1}{p_{j}}\right]_{2} \frac{r_{l}}{p_{i}}\left|Q_{s}^{(n}\right|_{p_{l}}} \\
& -\quad(i=1, \ldots, n) . \tag{10}
\end{align*}
$$

Let us now select numbers P_{j} such that the expressions in the brackets equal unity:

$$
\begin{equation*}
1=\frac{r_{l}}{p_{l}}-\left(\frac{1}{p_{l}}-\frac{1}{p^{\prime}}\right) \sum_{l=1}^{n} \frac{1}{p_{l}} \quad(i=1, \ldots, n) \tag{11}
\end{equation*}
$$

Dividine all equalitien by x_{1}, and roplacing 1 with 1 and oviaing up with seapeot to 1 , we get

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{r_{t}}=\left(1-\sum_{i=1}^{n} \frac{\frac{1}{p_{i}}-\frac{1}{p^{\prime}}}{r_{i}}\right) \sum_{i=1}^{n} \frac{1}{p_{i}} . \tag{12}
\end{equation*}
$$

Cancelling out the are ircm (11) and (12), we obtain

$$
\begin{equation*}
P_{1}=r_{1} \frac{x}{x_{l}} \quad(l=1, \ldots, n) . \tag{13}
\end{equation*}
$$

Therefore craction (10) with iepiopect to 1 bisinge us (of (7)) from which it follow that (oxpianations below)

$$
\left.2^{n}\left\|Q_{1}\right\|_{1} \leqslant 2^{n} \sum_{i=1}^{n} 2^{i} \frac{r_{1}}{Q_{l}}\right\rfloor Q_{B}^{(n} L_{i}
$$

frem which it fallows that (explanations below)

$$
\begin{aligned}
& \left\{\sum_{1}^{\infty} 2^{n}\left\|Q_{0}\right\|^{n}\right\}^{10}<\sum_{i=1}^{n}\left\{\left.\sum_{i=1}^{\infty} 2^{\infty+\frac{1}{D_{i}}} \right\rvert\, Q_{i}^{(n)} \sum_{i i}\right\}_{,}^{10} \ll \\
& <\sum_{i=1}^{n}\left(\sum_{s=1}^{\infty} 2^{\infty} \frac{a_{i}}{n_{1}} \omega_{x_{i}}^{i}\left(f_{s_{i}, 2^{\prime}}^{-\frac{1}{\sigma_{i}}}\right)_{n_{i}}^{0}\right)^{10} \leqslant . \\
& <\sum_{i=1}^{n}\left(\int_{0}^{\infty} 2^{\infty \frac{c_{1}}{\theta_{1}}} \omega_{s_{i}}^{n}\left(P_{s_{i}}, 2^{-\frac{\theta}{p_{i}}}\right)_{s_{i}}^{0} d s\right)^{10}<
\end{aligned}
$$

The second inequality (14) follow from the fact that if ν_{1}, \ldots, ν_{n} and ν_{n}^{\prime} are arbitiany mumbere and $\nu_{n} \leqslant \nu_{n}^{\prime}$, then by 5.2.4(2)

$$
\begin{aligned}
& \left|g_{v_{1}}, \ldots, v_{n}-g_{v_{1}}, \ldots, v_{n-1}, v_{n}^{\prime}\right|_{p_{n}} \leqslant\left|g_{v_{1}, \ldots, v_{n}}-f\right|_{p_{n}}+ \\
& +\left|f-g_{v_{1}, \ldots, v_{n-1}, v_{n}^{\prime}}\right|_{p_{n}} \leqslant \frac{2 c \omega_{x_{n}}^{\prime}\left(p_{x_{n}}, \frac{1}{v_{n}}\right)_{p_{n}}}{v_{n}^{\prime}} \quad\left(r_{n}-z_{n}=a_{n}\right) .
\end{aligned}
$$

Further, aince $£ \in L_{p_{i}}$, therefore we also have $Q_{0} \in L_{p_{i}}$ (cf integral representation $5.2 .4(1)$), so more so $q_{0} \in L_{p}$, since $p_{i} \leqslant p^{\prime}$ and

$$
\begin{equation*}
\left\|Q_{0}\right\|_{p^{\prime}} \leqslant\|f\|_{p_{1}} \leqslant\|f\|_{\Delta p_{\infty}\left(R_{R}\right)} \tag{15}
\end{equation*}
$$

From (14) and (15), in particular, it follows that the series
converges in the L_{p}-sense. It.clearly converges in the $I_{p_{i}}$-sense to f because

$$
\begin{aligned}
& \left|f-\sum_{0}^{N} Q_{i}\right|_{0_{i}}-\left|f-g_{v}(N)\right|_{p_{i}}<\frac{\omega_{s_{i}}^{k}\left(f_{x_{i}^{\prime}}^{\prime} v_{i}(N)^{-1}\right)_{p_{1}}}{v_{i}^{\prime}}< \\
& <\frac{1}{v_{l}(N)^{\prime \prime}} \rightarrow 0 \quad(N \rightarrow \infty) \text {, }
\end{aligned}
$$

snnce $\mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}} \rightarrow \mathrm{H}_{\mathrm{p}}^{\mathrm{r}} \rightarrow \mathrm{H}_{\mathrm{x}_{1} \mathrm{p}_{1}}^{\mathrm{r}_{1}}$.
And thus, series (16) converges to f; inqqualities (14) and (15) are valid, Q_{s} are integral functions of the type 2^{87} with respect to $x_{i}(i=$ $1, \ldots, n)$, therefore $f \in B_{p^{\prime}}^{P}\left(R_{n}\right)$, and embedding (5) obtaina.
6.9.1. Suppose instead of the number $p^{\prime}($ af 6.9$)$ the vector $p^{\prime}=$ $\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)$ is given such that $p_{i}^{\prime} \geqslant p_{j}(i, j=1, \ldots, n)$. We will assume

$$
\begin{equation*}
x_{i}^{\prime}=1-\sum_{i=1}^{n}\left(\frac{1}{p_{1}}-\frac{1}{p_{i}^{\prime}}\right) \frac{1}{l_{1}}>0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i}^{\prime}=\frac{r_{1} x_{i}^{\prime}}{x_{i}}, \tag{2}
\end{equation*}
$$

whore \mathcal{K}_{i} are defined as in 6.9(3).
Then, it comen by theorem 6.9

$$
\begin{equation*}
B_{\infty}^{\prime \prime}\left(R_{n}\right) \rightarrow B_{x, p_{0}^{\prime} 0}^{r_{l}^{\prime}}\left(R_{n}\right) \quad(l-1, \ldots, n) \tag{3}
\end{equation*}
$$

and, tharefore,

$$
\begin{equation*}
B_{\mu H}^{\prime \prime}\left(R_{n}\right) \rightarrow B_{\rho^{\prime} \theta}^{\prime \prime}\left(R_{n}\right) . \tag{4}
\end{equation*}
$$

6.10. Addition Inforention

6.10.1. Theoreme dorived in this chapter are automatically tranaferable to the periodic cace. Their formulations remain valid if in them the aymbole $H, H_{\text {, and }} \mathrm{B}$ are repiaced, reapectively, by $\mathrm{H}_{\mathrm{k}}, \mathrm{H}_{\mathrm{H}}$, and B*.

In presenting the proof for the periodic case, the role of integral functions of the exponontial type is now played, of course, by a trisonomotric polyacial. It wili be central to our exposition that integral functions of the exponential type exhibit following propertions for them the inequalitios 1) for derivativee (Bernabtegn type inequilities), 2) inequalitios of different motrica, and 3) inequalities of different maagure are vaild. Trigonomotric polynomials arhibit auch properties. Additionaly, we can for poriodic and nomperiodic functions, as we know (compare 5.2.1(6) and 5.3.1(11)), construct analogous methode for thoir approximation with triconometric polynomials and, accordingly, with functions of the exponential type. Wo in fact used these mothode in presenting the theory in the nonperiodic phase.
6.10.2. We can indicate the method of obtaining general syatems of functions that are not analytic, but such that inequalitiea very similar to the inequalitios discussed above for derivatives are valid for them, as are the inequalities of different metrics and different meacures.

Suppose (O. V. Besov)

$$
\begin{gather*}
h=\left(h_{1}, \ldots, h_{n}\right), \quad h_{1}>0, \quad y: h=\left(\frac{y_{1}}{h_{1}}, \ldots, \frac{y_{n}}{h_{n}}\right), \\
\varphi_{A}(x)=\int_{R_{i}} \prod_{i=1}^{n} \frac{1}{h_{1}} \chi(y: h) \varphi(x+y) d y \tag{1}
\end{gather*}
$$

where function $\chi(y)$ is infinitely differentiable on R_{n} and is concentrated (has a carrier) within the firat coordinate junction, and

$$
\begin{equation*}
\int_{R_{R}} x(y) d y=1 . \tag{2}
\end{equation*}
$$

We call function $\varphi_{h}(x)$ the mean function for $\varphi(x)$ with vector pitch $h=\left(h_{1}, \ldots, h_{n}\right)$.

The inequality

$$
\left\|D^{*} \varphi_{n}(x)\right\|_{L_{\varphi}\left(R_{m}\right)} \leqslant c_{1}\left(\prod_{1}^{n} h_{i}^{-a_{i}}\right)\left(\prod_{1}^{n} h_{i}^{-\frac{1}{p}}\right)\left(\prod_{1}^{m} h_{i}^{\frac{1}{q}}\right)\|\Phi\|_{L_{p}\left(R_{n}\right)}
$$

is valid for mean functions.
Inequality (3) is to some extent*) analogous to the corresponding estimates for integral functions of finite degrees $\nu_{1}=1 / h_{1}$, which enables the theorem expounded here to be transferred without essential changea to the case of approximation with mean functions φ_{h} (or with secondary mean functions $\left.\varphi_{\mathrm{hh}}=\left(\varphi_{\mathrm{h}}\right)_{\mathrm{h}}\right)$, adopting in $5.2 .1(5)$ in place of

$$
g(t)=\mu\left(\frac{\sin \frac{t}{\lambda}}{t}\right)^{\lambda}
$$

a smooth finite function $\xi(t)$.
In this way, for example, we can arrive at the integral representation pbtained from other considerations) by V. P. II'yin L^{6} / for the function in terms of its difference. Let us note that only values of the function $\phi(x+y)$ for the points y from the portion of the vicinity of point $y=0$ lying in the first coordinate junction participate in construction (1) of mean function $\varphi_{p}(x)$. Thus we have made it possible to construct the corresponding "local" h theory.
*) There is some difference in that P and not φ_{h} appears in the right side of (3) under the sign of the norm. A way out of this predictment can be found in the fact that inequality (3) is used for φ_{h}, and then instead of $\varphi_{h}, \varphi_{h h}$ will appear in the left side.

Let up prove inequality (3). It can be obviously acserted that $\alpha=0$. Using Holder's inequality for the three functions

$$
|x|^{1-e},|\varphi(x+y)|^{\frac{a-\infty}{a}},|x||\varphi(x+y)|^{\frac{2}{4}} \quad(e>0)
$$

with the exponente $\lambda_{1}=\frac{p}{p-1}, \lambda_{2}=\frac{p q}{q-p}$, and $\lambda_{3}=q$, we have*)

$$
\begin{aligned}
& \left|\int_{n_{n}} \prod_{1=1}^{n} \frac{1}{h_{1}} x(y: h) \varphi(x \div y) d y\right|< \\
& \leqslant\left(\prod_{l=1}^{n} \frac{1}{h_{l}}\right)\left(\prod_{i_{2}}: x(y: h)^{\frac{1-\ell}{p-1} p} d y\right)^{1-\frac{1}{\eta}} x
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left\lvert\, \Phi_{n}\left\|_{L_{p}\left(R_{m}\right)} \leqslant c_{1}\left(\prod_{a}^{1} h_{1}\right)^{-\frac{1}{\varphi}}\right\| \Phi\right. \|_{L_{p}\left(h_{n}\right)}^{1-\frac{p}{R_{n}}} \times \\
& \times \operatorname{supvrai}_{x_{m+1} \ldots, s_{n}}\left\{\left.\int_{R_{n}}\left|x(y ; h) P^{p} \int_{R_{m}}\right| \dot{(}(x+y)\right|^{p} d x_{1} \ldots d x_{n} d y\right\}^{1 / i} \leqslant \\
& \leqslant c\left(\prod_{i}^{n} h_{i}^{-\frac{1}{\rho}}\right)\left(\prod_{1}^{m} h_{i}^{\frac{1}{f}}\right)\|\Phi\|_{L,\left(a_{n}\right)} .
\end{aligned}
$$

6.10.3. It is ueaful to bear in mind the following loman.

Lowna. Suppose on $R_{n}=R_{m} \times R_{n-m}\left(x=(n, w), v \in R_{m}, w \in R_{n-m}\right.$, two functions $f \in L_{p}\left(R_{n}\right)(1 \leqslant p \leqslant \infty)$ and f_{*} be eiven, elong with the sequence of functions $f_{k}(k=1,2, \ldots)$ continuous on R_{n}, ouch that the following properties are satiafied:
1)

$$
\begin{aligned}
& \left\|f_{k}-f\right\|_{L_{p}\left(R_{g}\right)} \rightarrow 0^{-}(k \rightarrow \infty) ; \\
& \left\|f_{k}\left(k, w^{\prime}\right)-f_{0}(x, w)\right\|_{L_{p}\left(R_{m}\right)} \rightarrow 0(k \rightarrow \infty) .
\end{aligned}
$$

B) Pelations $1 \leqslant \lambda_{i}<\infty \quad \lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}=1$ are fulfilled for the exponents $\lambda_{1}, \lambda_{2}, \lambda_{1}$ and λ_{3}.
uniformily relative to $w(|w|<a)$;
3)

$$
\left.\left.\begin{array}{l}
\left\|f_{k}(u, w)-f_{k}\left(u, w^{\prime}\right)\right\|_{L_{p}\left(R_{m}\right)}^{\prime} \rightarrow 0 \\
\quad\left|\left|w-w^{\prime}\right|\right.
\end{array}\right)=0,|w|,\left|w^{\prime}\right|<a\right) .
$$

uniformly relative to $k=1,2, \ldots$
Then f_{*} for any fixed $w(|w|<a)$ is the trace of function f on the corresponding m-dimensional subspace $R_{m}(w)$.

Proof. From properties 1) and 2) it followa, by lemma 1.3.9, that f and f_{n} are equivalent on $R_{n}: f=f *$ almost everywhere on R_{n}. Further, for the indicated w and w^{\prime}

$$
\begin{array}{r}
\left\|f_{*}(u, w)-f_{0}\left(u, w^{\prime}\right)\right\|_{L_{p}\left(R_{m}\right)} \leqslant\left\|f_{0}(u, w)-f_{k}(u, w)\right\|_{L_{p}}\left(R_{m}\right)+ \\
+\left\|f_{k}(u, w)-\left.f_{k}\left(u, w^{\prime}\right)\right|_{L_{p}\left(R_{m}\right)}+\right\| f_{k}\left(u, w^{\prime}\right)-\left.f_{0}\left(u, w^{\prime}\right)\right|_{L_{p}\left(R_{m}\right)}< \\
<\varepsilon+\varepsilon+\varepsilon=3 e\left(k>k_{0},\left|w-w^{\prime}\right|<\delta\right)
\end{array}
$$

for sufficiently small δ and large enough k_{0}. This is possible owing to properties 1), 2) and 3).

In order to be clear as to the significance of this lemma, let us turn to the theorem of embedding of different measures, for simplicity confine ourselves to the isotropic case. Empluying this lomma we can easily conclude that it is sufficient to prove the theorem on treces only for continuous or even infinitely differentiable functions, of the corresponding class, as it will automatically be valid for all functions of this class. Let us explain this reasoning.

$$
\text { Suppose } B=B_{p \theta}^{r}\left(R_{n}\right), B^{\prime}=B_{p \theta}\left(R_{m}(w)\right)\left(p=r-\frac{n-m}{p}>0,1 \leq m<n\right)
$$

and $M \subset B$ is a set of cortinuous functions dence in B (in the metric B)*). Further let the inequalities

$$
\begin{align*}
& \|f\|_{B^{\prime}} \leqslant c\|f\|_{B}, \tag{1}\\
& \cdots f(u, w)-f\left(u, w^{\prime}\right)\left\|_{L_{p}\left(R_{m}\right)} \leqslant\right\| f \|_{B} \lambda\left(\left|w-w^{\prime}\right|\right), \tag{2}\\
& \quad(\lambda(\delta) \rightarrow 0, \delta \rightarrow 0),
\end{align*}
$$

*) In this reasoning B can be replaced with $w_{p}\left(R_{n}\right)(1=1,2, \ldots)$.
be proved, where c does not depend on v and indicated f, just as function $\lambda(\delta)$ does not dopend on f and w and w^{\prime}. Then these inequalities with the same constant 0 and function $\lambda(\delta)$ obtainod for $11 f \in B$. In fact, lot f_{k} $(k=1,2, \ldots)$ and $\left\|f_{k}-f\right\|_{B} \rightarrow 0(k \rightarrow \infty)$. Thon

$$
\begin{gather*}
\left\|f_{k}\right\|_{p^{\prime}} \leqslant c\left\|f_{k}\right\|_{b}^{\prime} \tag{3}\\
\left\|f_{k}(u, w v)-f_{k}\left(u, w^{\prime}\right)\right\|_{L_{p}\left(R_{m}\right)} \leqslant K \lambda\left(\left|w-w^{\prime}\right|\right), \tag{4}
\end{gather*}
$$

where the constant K does not depend on k. From (3) it further follows that

$$
\left\|f_{k}-f_{l}\right\|_{B} \dot{\leqslant} \leqslant c\left\|_{k}-f_{k}\right\|_{B}
$$

from (1) owing to the completeness of B^{\prime} for and w there oxiets the function $f_{*}(x)=f_{*}(n, w)$ such that

$$
\begin{align*}
& \left\|f_{k}-f_{0}\right\|_{L_{p}}\left(R_{m}\right) \leqslant\left\|f_{k}-f_{0}\right\|_{L_{1}} \leqslant c\left\|f_{k}-f_{0}\right\|_{B} \rightarrow 0, \quad k \rightarrow \infty, \\
& \left\|f_{0}\left(u, w_{0}\right)-f_{0}\left(u, w^{\prime}\right)\right\|_{L_{p}}\left(R_{m}\right) \leqslant K \lambda\left(\left|w^{2}-w^{\prime}\right|\right), \\
& \left\|f_{0}\right\|_{!}, \leqslant c\|f\|_{3} . \tag{5}
\end{align*}
$$

Thus, conditions 1) - 3) of the Lamea are satiafied for $f_{,} f_{*}$, and f_{k}, and therefore, f_{*} for any w is the trace of f on $R_{m}(w)$. By this we have proven inequalities (1) and (2) for arbitrary function $f \in B$ (we mast bear in mind that constant K in (4) can for sufficiently jarge k and 1 be taken as littio differing from $\|f\|_{B}$ as deaired).

This argumantation can be pursued for the cace of the inverse theorem of embedding. Suppose $m^{\prime} \subset B^{\prime}$ is a set of continuous functions dence in B^{\prime}, and lot to each contimuous function $\Phi \in M$ definod on $R_{m}=R_{m}(0)$ there be brought into correspondence the continuous function $A_{p}=f(x)$ $\in B$, defined on R_{n}, auch that the trace f on H_{m} is φ, and the ipequailits*)

$$
\begin{equation*}
\|f\|_{B} \leqslant c\|\Phi\|_{B} \tag{6}
\end{equation*}
$$

is satiofied, where c does not dopend on $\varphi \in M^{\prime}$. Let us asaien the arbitrary function $\varphi \in B^{\prime}$, and lot $\varphi_{k} \in m^{\prime},\left\|\Phi^{-} \varphi_{k}\right\|_{B^{\prime}} \rightarrow 0(k \rightarrow \infty), A \varphi_{k}=f_{k^{\prime}}$,
\#) ${ }^{4}$) on following pare/

$$
\left\|f_{h}-f_{l}\right\|_{B} \leqslant c\left\|\varphi_{n}-\varphi_{l}\right\|_{B^{\prime}} \rightarrow 0 \quad(k, l \rightarrow \infty)
$$

and there exists $f \in B(B$ is complete $)$ ouch that $\left\|f-f_{\mathcal{L}}\right\|_{B} \rightarrow 0$. obviously, inequality (6) (with the same constant c) Is satiafied for functions φ and f.

Let us note that for finite 0 the set M of integrel functiona $f \in L_{p}\left(R_{n}\right)(1 \leqslant p \leqslant \infty)$ of exponential epherical types (ail) is compacted in ang $B=B_{p 0}^{r}\left(R_{h}\right)$ (in metric B). Actually, it is compacted in and $B=B_{p 0}^{r}\left(R_{n}\right)$ $(1 \leqslant \theta<\infty)$ because if $f \in B$, then (of 6.2(6))
and

$$
l=\sum_{0}^{\infty} Q_{s} \quad\|f\|_{\Delta}=\left(\sum_{0}^{\infty} a^{n t \theta}\left\|Q_{s}\right\|^{1}\right)^{1 / 0}
$$

$$
\left\|f-f_{k}\right\|_{B}=\left(\sum_{k+1}^{\infty} a^{s+0}\left\|Q_{s}\right\|^{1 / n} \rightarrow 0 \quad(k \rightarrow \infty)\right.
$$

where

$$
f_{k}=\sum_{0}^{n} Q_{s} \in m_{R}
$$

When $1 \leqslant p<\infty, m$ is aleo compact in $w_{p}^{l}\left(R_{n}\right)(1=0,1,2, \ldots)$, which follows from ostimates 5.2.2(4).

Of couree, from the foregoing it follow that a sot of all infinitely differentiable functions of the clase $B_{p 0}^{r}\left(R_{n}\right)(1 \leqslant 0<\infty)$ or $H_{p}^{l}\left(R_{n}\right)$ is compact in the corresponding class, because it includen the aet of functions of exponential types belonging to $L_{p}\left(R_{n}\right)$.
*) Here again B can be replaced with $\psi_{p}^{l}\left(R_{n}\right)(I=1,2, \ldots)$. The corresponding theorem on extension from R_{m} to R_{n} is proven in 9.5.2.

CUAFTER VII TRAMSITIVITI NND UIDGPROVABILTIY OF EBEDDDAG THDERMS. COVPACIIESS

Lot ue acolen gyoteng of mumbers

$$
\begin{equation*}
r=\left(r_{1}, \ldots, r_{n}\right)>0, \quad p=\left(p_{1}, \ldots, p_{n}\right) \quad\left(1 \leqslant p_{1} \leqslant \infty\right) \tag{1}
\end{equation*}
$$

and the mumbere p^{\prime} and $p^{\prime \prime}$ atinfying the inequailtion

$$
\begin{equation*}
p_{l} \leqslant p_{l}^{\prime}<p^{n} \leqslant \infty . \tag{2}
\end{equation*}
$$

If the condition

$$
\begin{align*}
& p_{i}^{\prime}=\frac{r_{1} x}{n_{t}}, \tag{3}\\
& x=1-\sum_{t=1}^{n} \frac{\frac{1}{p_{i}}-\frac{1}{r}}{r_{t}}>0 \tag{4}\\
& x_{1}=1-\sum_{t=1}^{n} \frac{\frac{1}{p_{i}}-\frac{1}{p_{i}}}{r_{t}}>0 \quad(i=1, \ldots, n) \tag{5}
\end{align*}
$$

are eatiaried, then eabodding theorem (6.8) $B_{p}^{r}\left(R_{n}\right) \rightarrow B_{r o}^{r}\left(R_{n}\right)$,
obtaing, that persite pasaing from ayotem of numbere (1) to ayaten of numbera

$$
1, p^{\prime} \cdots\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right), p^{\prime}
$$

7) S. M. Miral' àkiy $\angle \overline{3}, 10 \overline{\%}$.

We must bear in mind that $\mathcal{K}\left[S \mathcal{K}_{1}\right.$, also because inequality (5) is a consequence of inequality (4).

But now the clase $B_{p^{\prime} O}\left(R_{n}\right)$ can be taken as the starting class and given the existence of the inequality

$$
x^{\prime}=1-\left(\frac{1}{p^{\prime}}-\frac{1}{p^{\prime \prime}}\right) \sum_{1}^{n} \frac{1}{p_{n}^{\prime}}>0
$$

we can conclude that the further embedding of clances
obtains, whore

$$
\rho^{\prime \prime}=\left(\rho_{1}^{\prime \prime}, \ldots, \rho_{n}^{\prime \prime}\right)=x^{\prime} \rho^{\prime} .
$$

Thus, we have tranaformad the aystem (p, p) into the aystem ($\rho^{\prime}, p^{\prime}$), which in turn was convorted into the ayatem ($p^{\prime \prime}, p^{\prime \prime}$). Wo must remomber that ρ^{\prime} is defined by means of p, p and p^{\prime}, and $p^{\prime \prime}-$ terme of p^{\prime}, p^{\prime}, and $p^{\prime \prime}$. It is remarkable that these transformations are transitive in charactor: the passage from the first ayctem to the aecond, and then from the eecond to the third can be replaced by the singlo passage from the first agetum to the third.

In fact,

$$
P_{k}^{\prime \prime}=\frac{r_{k} x x^{\prime}}{x_{k}} \quad(k=1, \ldots, n)
$$

where it is assumed that

$$
\begin{equation*}
x, x^{\prime}, x_{k}>0 \quad(k=1, \ldots, n) . \tag{6}
\end{equation*}
$$

On the other hand, suppose $\mathrm{p}_{k} \leqslant \mathrm{p}^{\prime \prime}(\mathrm{k}=1, \ldots, \mathrm{n})$ and lot the inequalities

$$
\begin{equation*}
x^{\prime \prime}, x_{k}>0 \quad(k=1, \ldots, n), \tag{7}
\end{equation*}
$$

obtain, where

$$
x^{\prime \prime}=1-\sum_{l=1}^{n} \frac{\frac{1}{p_{1}}-\frac{1}{p^{\prime \prime}}}{r_{1}} .
$$

Then the embedding

$$
B_{p \theta}^{\prime}\left(R_{n}\right) \rightarrow B_{p-\theta}^{\left(\rho^{\prime \prime}\right)}\left(R_{n}\right),
$$

holda, 1.0., the paasage from (y, p) directly to (p ", $p^{\prime \prime}$), whare

$$
\rho_{0}^{\prime \prime}=\left\{\rho_{0,1}^{\prime \prime}, \ldots, \rho_{o n}^{n}\right\}
$$

and

$$
P_{a k}^{n}=\frac{r_{d} x^{\prime \prime}}{x_{k}} \quad(k=1, \ldots, n) .
$$

But it is eagy to compute that

$$
\begin{equation*}
x^{\prime \prime}=x \times x_{0},-i \tag{8}
\end{equation*}
$$

therefore

$$
. P_{0}^{\prime \prime}=P^{\prime \prime} .
$$

Moseover, by virtue of the inequality $\mathrm{p}^{\prime}<\mathrm{p}^{\prime \prime}$ it is obvious that $\mathcal{K}^{\prime}>\mathcal{K}^{\prime \prime \prime}$, 1.e., $\mathcal{K}^{\prime}>0$. But then as a consequence of (8) $\mathcal{K}>0$ and the transitivity stande proven.

The tranaitivity of the theorems of embedding of different meacures
where

$$
\begin{gathered}
B_{p 0}^{r}\left(R_{n}\right) \rightarrow B_{p 0}^{r}\left(R_{m}\right) \rightarrow B_{\infty 0}^{r}\left(R_{m_{n}}\right) \\
\left(1 \leqslant m_{2}<m_{1}<n\right)_{0} .
\end{gathered}
$$

$$
\begin{aligned}
& r_{i}^{\prime}=r_{1} x^{\prime}\left(l-1, \ldots, m_{1}\right) \\
& x^{\prime}=1-\frac{1}{p} \sum_{m_{1}+1}^{n} \frac{1}{r_{j}}>0 \\
& r_{i}^{\prime \prime}=r_{i}^{\prime} x^{\prime \prime}\left(l=1, \ldots, m_{2}\right. \\
& x^{n}=1-\frac{1}{p} \sum_{m_{2}+1}^{n} \frac{1}{r_{l}^{\prime}},
\end{aligned}
$$

fallows from the easily verified equality

$$
x=1-\frac{1}{p} \sum_{m_{1}+1}^{n} \frac{1}{r_{1}}=x^{\prime} x^{\prime \prime}
$$

Lot us asaign the function $f(x) \in H_{p}^{Y}\left(R_{n}\right)=H_{p}^{r}$ and the poaitive vector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Lot us asauno $F(x)=f\left(\varepsilon_{1} x_{1}, \ldots, \varepsilon_{n} x_{n}\right)=f_{z}(x)$. Obviourly ($\mathbf{k}_{j}>r_{j}-P_{j}>0$),

$$
\begin{aligned}
& \frac{\|\left.\Delta_{n}^{k} F_{x_{j}}^{\left(\rho_{j}\right)}\right|_{p}}{h^{r} f^{\rho}}=\frac{e_{j}^{r}\left|\Delta_{x_{j} f^{\prime} h^{\prime} f_{j}}^{\left(\rho_{j}\right)}\left(e_{1} x_{1}, \ldots, \varepsilon_{n} x_{n}\right)\right|_{R}}{\left(\varepsilon_{j} h^{\prime} f^{-\theta_{j}}\right.}=
\end{aligned}
$$

Taking the upper bound of both parts of the inequality in h, we get

$$
\begin{equation*}
\left\|\left.f_{t}(x)\right|_{h_{x j p}^{\prime}}=e^{\prime} j e^{-\frac{1}{p}}\right\| f \|_{h_{x, p}} \tag{1}
\end{equation*}
$$

whatever the $\varepsilon>0$.
Let us further conoider the seminorm $b_{x_{j} p}^{r_{j}}=b_{x_{j} p \theta}^{r_{j}}\left(R_{n}\right), 1 \leqslant 0 \leqslant \infty$;

The function f_{ε} can also appear in it and a change of variables can be made in the integral under the sign Ω. As a reault, we get an equality anal.ogous to (1):

$$
\begin{equation*}
\left\|\left.f_{0}(x)\right|_{b_{x j p},}=e^{r} / e^{-\frac{1}{p}}\right\| f \|_{b_{x j p}^{\prime}} \tag{3}
\end{equation*}
$$

Thus it is valid for any $\theta(1 \leqslant 0 \leqslant \infty)$.
Obviously, further,

$$
\begin{equation*}
\left\|f_{\cdot}\right\|_{p}=e^{-\frac{1}{p}}\|f\|_{p} \tag{4}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\| f_{1} l_{0_{p}^{\prime}}=e^{-\frac{1}{p}}\left\{\|f\|_{0}+\sum_{i=1}^{n} \varepsilon_{f}^{\prime}\|f\|_{d_{s, p}^{\prime}}\right\} \tag{5}
\end{equation*}
$$

lacuming $f_{\varepsilon}(x)=f(\varepsilon x)$ for functions f belonging to isotropic alsases, where now \mathcal{E} is a poaitive coalar, and reaconing as above, we get

Let us present an exmpile of the application of formane (3)-(6).
The inequality

$$
\begin{equation*}
\|f .\|_{\Omega_{\rho}} \leqslant c\left(\|f\|_{\rho}+\|f\|_{\phi_{p}}\right) \tag{7}
\end{equation*}
$$

Is aecociated with the mabodding $B_{p}^{F} \rightarrow B_{p}(0<p<r)$, and from this inequality

$$
\begin{equation*}
\|f\|_{s_{p}} \leqslant c\left(c \rightarrow\|f\|_{\varphi}+c \rightarrow\|f\|_{r_{p}}\right) \tag{71}
\end{equation*}
$$

with arbitrary paramotar \mathcal{E}.
Convarealy, from (71) whan $\varepsilon=1$ follows (7). Inequality (71) is used in applications when it is dealred that a certain term of ite richt aide be meficientiy mill. Minimising the right alde of (71) with reapect to ε, we set the inoquality

$$
\begin{equation*}
\|f\|_{p_{p}}<c\left[\left(\frac{r-p}{p}\right)^{\alpha / r}+\left(\frac{p}{r-p}\right)^{1-\phi r}\right]\|f\|^{1-\frac{p}{r}}\left(\|f\|_{0}\right)_{p}^{\rho /}, \tag{7n}
\end{equation*}
$$

which is callod a multiplicative inequaity. Conversely, from (7") obviously fallow (7).

Let us also conaidar the inequaitien

$$
\begin{gather*}
\|f\|_{s_{p}^{p}\left(R_{m}\right)} \leqslant c\left(\|f\|_{L_{p}\left(R_{n}\right)}+\|f\|_{b_{p}^{\prime}\left(R_{n}\right)}\right) \tag{8}\\
\left(1 \leqslant m<n, p=r-\frac{n-m}{p}>0\right), \\
\|f\|_{p_{p^{\prime}}^{\prime}\left(R_{n}\right)} \leqslant c\left(\|f\|_{L_{p}\left(R_{n}\right)}+\|f\|_{b_{p}^{\prime}\left(R_{n}\right)}\right) \cdot \\
r^{\prime}=r-\left(\frac{1}{p}-\frac{1}{p^{\prime}}\right) n>0, \tag{9}
\end{gather*}
$$

associated with embedinge of different measures and metrics, where R_{m} is a subspace of points ($x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}$) with arbitrary fixed $y=$ $\left(x_{m+1}, \ldots, x_{n}\right)$ and where c does not depend on f and φ. If if is replaced by f_{f} in these inequalities, and then is removed from the norms by means of (6), then we get, respectively,

$$
\begin{aligned}
& \|f\|_{b_{p}^{\prime}\left(R_{m}\right)} \leqslant c\left(e^{-r}\|f\|_{L_{0}\left(R_{n}\right)}+\|f\|_{\left.b_{p^{\prime}}\left(R_{n}\right)\right)}\right. \\
& \|f\|_{b_{p}^{\prime}\left(R_{n}\right)} \leqslant c\left(e^{-r}\|f\|_{L_{p}\left(R_{n}\right)}+\|f\|_{b_{p}\left(R_{n}\right)}\right)
\end{aligned}
$$

Passing to the limit as $\varepsilon \longrightarrow \infty$, we get the inequalitios

$$
\begin{align*}
& \|f\|_{b_{p}\left(R_{m}\right)} \leqslant c\|f\|_{b_{p^{\prime}}^{\prime}\left(R_{n}\right)} \tag{10}\\
& \left.\|f\|_{b_{p^{\prime}}^{\prime}\left(R_{n}\right)} \leqslant c\|f\|_{b_{p}^{\prime}\left(R_{n}\right)}\right) \tag{11}
\end{align*}
$$

refining inoquailitios (8) and (9), for the same constant c appoars in them, but thoy no longer containe the torm $\|f\|_{L_{p}}\left(R_{n}\right)$ which was finite. However, if $\|f\|_{L_{p}}\left(R_{n}\right)=0$, then inequalitios (10) and (11) geporally apeaking are valid. Thus, when $r-P \geqslant 1$, the polynomial

$$
P_{l}(x)=\sum_{1} \sum_{1<1} a_{\&} x^{n}
$$

whero $1=\bar{r}$, if s is a noninteger, and $I=\bar{r}+1$ if r is an integer, the right side of inequality (10) approaches zero, while at the same time its left side in general does not equal zero. When $r-p<1$, inequalitios (10) can be satiafied without the norm being finite (cf note 7.2).

We can in the spirit of formulas (10)-(11) attain a rofinoment of the theoren on estimating mixed derivatives. For example, the inequality (cf 9.2.2)

$$
\left|\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right| \leqslant c\left(\left|\frac{\partial^{2} u}{\partial x_{1}^{2}}\right|+\left|\frac{\partial^{2} u}{\partial x_{2}^{2}}\right|+\|u\|\right)
$$

obtalng for $\mathrm{H}_{\mathrm{p}}^{2}(1<\mathrm{p}<\infty)$, whance

$$
\left|\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right| \leqslant c\left(\left|\frac{\partial^{2} u}{\partial x_{1}^{2}}\right|+\left|\frac{\partial^{2} u}{\partial x_{2}^{2}}\right|+\varepsilon^{-2}\|u\|\right)
$$

and after pascage to the limit as $\varepsilon \rightarrow 0$, wo got the inequality

$$
\left|\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right| \leqslant c\left(\left|\frac{\partial^{2} u}{\partial x_{1}^{2}}\right|+\left\lvert\, \frac{\partial^{2}}{\partial x_{2}^{2}}\right. \|\right)
$$

which it valid providing the condition $\|u\|<\infty$
Such mefinementa do not iwaya obtain. For examples, in inequality (7) the firat tean of ite richt aide camot be dropped, ar evident ircm the inequality (71) equivilent to it. If the flrot torm ware absent in the lattor, then after passage to limit as $\varepsilon \rightarrow 0$ we will obtain tho remit at the loft side equal zero, which is posaible only if I were poignominl.

Let ue furthar conmider an example appiring to the anisotropic case.
In the inequality of difforent measures

$$
\begin{gather*}
\|f\|_{\rho_{p_{j}}\left(R_{m}\right)} \leqslant c\left(\|f\|_{L_{p}}+\|f\|_{b_{p}^{\prime}\left(R_{n}\right)}\right), \tag{12}\\
x=1-\frac{1}{p} \sum_{m+1}^{n} \frac{1}{r_{j}}>0, \quad \rho_{j}=x_{j} \\
\quad(j=1, \ldots, m)
\end{gather*}
$$

(13)
the firet tesm of the right aide is auperfluous. In fact, taking for convenionce $j=1$ and aubetituting f_{c} in (12) based on (3), we get

$$
\begin{aligned}
& \varepsilon_{1}^{\rho_{1}}\left(e_{1} \ldots e_{m}\right)^{-1 / p}\|f\|_{D_{x, p}\left(R_{m}\right)} \leqslant \\
& \leqslant c\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)^{-1 / p}\left\{\|f\|_{L_{p}\left(R_{n}\right)}+\sum_{j=1}^{n} e_{j} j\|f\|_{x_{j p} f_{j}\left(n_{n}\right)}\right\} .
\end{aligned}
$$

Let us cancel out $\left(\varepsilon \ldots \varepsilon_{m}\right)^{-1 / p}$ and pass to the linit as $\varepsilon_{j} \rightarrow 0$ only whon $j:=2, \ldots, m$, and let us set $\varepsilon_{j}=\varepsilon_{1}^{r 1 / r_{j}}$ when $j=m+1, \ldots, n$. Then

$$
\|f\|_{b_{x, p} p_{1}\left(R_{m}\right)} \leqslant c\left\{e_{1}^{-r}\|f\|_{p}\left(R_{n}\right)+\sum_{1=m+1}^{n}\|f\|_{b_{x p} f}\left(R_{n}\right)\right\} .
$$

The passage to the limit as $\varepsilon_{1} \rightarrow 0$ leads to inequality (12), but no longer without the firat term in the right side for $j=1$. But this can be done for any $j=1, \ldots, m$. Suming up with respect to j, wo get (if $\|f\|_{L_{p}}<\infty$) the inequality

$$
\|f\|_{p_{p}\left(R_{m}\right)} \leqslant c_{1}\|f\|_{b_{p}^{\prime}\left(R_{n}\right)}
$$

revising the corresponding theorem on embedding of different measures.

7.3. Extremal Functions in $\mathrm{H}_{\mathrm{p}}^{\mathrm{F}}$. Unimprovability of Bmbedding Theorem:

Let us write $\varepsilon=\left(\varepsilon_{q}, \ldots, \varepsilon_{n}\right) \quad 0$, if for all $\varepsilon_{j} \geqslant 0$ and even if one of the components $\varepsilon_{j}>0$. We will call function f the oxtremal function in the class H_{p}^{r} if it belongs to H_{p}^{r} but does not belong to $H_{p}^{r+\varepsilon}$, whatever the vector $\varepsilon>0$.

We will consider the class $H_{p}^{r}\left(R_{n}\right)$, where $r=\left(r_{1}, \ldots, r_{n}\right)>0, p=$ $\left(p_{1}, \ldots, p_{n}\right), 1 \leqslant p_{j} \leqslant \infty$, and $j=1, \ldots, n$. As always, if $p=p_{1}=\ldots$ - p_{n}, then in place of the vector p we will talk about the number p and instead of $\mathrm{H}_{\mathrm{p}}^{\mathrm{r}}$, write $\mathrm{H}_{\mathrm{p}}^{\mathrm{r}}$. Let us impose the condition

$$
\begin{equation*}
x_{1}=x_{j}(p)=1-\sum_{l=1}^{n}\left(\frac{1}{p_{l}}-\frac{1}{p_{l}}\right) \frac{1}{r_{l}}>0 \quad(j=1, \ldots, n) . \tag{1}
\end{equation*}
$$

on vector p. In particular,

$$
x_{j}(p)=1 \quad(j=1, \ldots, n),
$$

and in the oace of the clasese $H_{p}^{F}\left(R_{n}\right)$ condition (1) is automatically satisfied. Let us note that

$$
\sum_{l=1}^{n} \frac{x_{1}}{r_{j}}=\sum_{1} \frac{1}{r_{l}}+\sum_{1} \sum_{1}\left(\frac{1}{p_{1}}-\frac{1}{p_{j}}\right) \frac{1}{r_{1} r_{j}}-\sum_{1} \frac{1}{r_{j}}
$$

Suppope

$$
\begin{equation*}
F(t)=\left(\frac{\sin \frac{t}{2}}{\frac{t}{2}}\right)^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
& \left(a>1, x_{j}=x_{j}(p)\right) \text {. }
\end{aligned}
$$

Iin partioular,

$$
\begin{equation*}
\psi_{0, r}(a, x)=\sum_{s=0}^{\infty} \frac{\prod_{n}^{n} F\left(\frac{a_{a}^{\prime}}{a^{\prime}}, x_{j}\right)}{e\left(1-\frac{1}{n} \sum_{1}^{n} \frac{1}{n_{1}}\right)} \tag{4}
\end{equation*}
$$

Let us show that $\Psi_{p, r}(a, x) \in H_{p}^{r}\left(R_{n}\right)$. In fact, suppose Q_{g} is the e-th term of series (3). Since F is an integral function of the type 1 of a aincle variable, then Q_{g} is an integral function of the type $\gamma_{j}(a)=$ $8 x / x_{j}$ with reapect to x_{j} and hore

$$
\begin{equation*}
\left\|Q_{s}\right\|_{p_{j}}\left(R_{n}\right) \sim a^{-m m_{j}} \quad(s=0,1, \ldots) \tag{5}
\end{equation*}
$$

because

$$
\begin{equation*}
1-\sum_{1}^{n} \frac{1}{p_{1} l_{l}}+\frac{1}{p_{i}} \sum_{1}^{n} \frac{x_{1}}{r_{l}}=1-\sum_{1}^{n}\left(\frac{1}{p_{l}}-\frac{1}{p_{i}}\right) \frac{1}{r_{1}}=x_{b} . \tag{6}
\end{equation*}
$$

Consequently*),

$$
\begin{equation*}
v_{l}(s)^{r}\left\|Q_{s}\right\|_{p_{l}\left(R_{n}\right)}=\left(a^{s \frac{x_{l}}{r_{l}}}\right)^{r_{l}}\left\|Q_{s}\right\|_{p_{l}}\left(R_{n}\right) \sim 1 \quad(s=0,1, \ldots) \tag{7}
\end{equation*}
$$

Thus, the left side of (7) is bounded for $\nu_{j}(s)$ running through an ascending progression. This shows (cf 5.5.3(6)) that $\psi \in H_{x_{i} p_{i}}^{r_{i}}\left(R_{n}\right)$ for any $i=1, \ldots$, n, i. $\theta ., \psi \in H_{p}^{r}\left(R_{n}\right)$.

But it will be proven below (cf 7.4) that in any case, for sufficiently large a >1 function $\psi_{p, r}$ not only belongs to $H_{p}^{r}\left(R_{n}\right)$, but is extremal in this class, though for the present we will draw several conclusions that follow from this.

Let us assign the number $p^{\prime} \geqslant p_{j}(j=1, \ldots, n)$, which in particular can be equal to ∞, such that

$$
x=1-\sum_{1}^{n}\left(\frac{1}{p_{t}}-\frac{1}{p^{\prime}}\right) \frac{1}{r_{t}}>0
$$

(then automatically $\mathcal{H}_{\mathrm{j}}>0, \mathrm{j}=1, \ldots, n$), and let us define, as in the theorem of embedding of different metrics the numbers

$$
\rho_{i}=\frac{r i x}{x_{i}} \quad(i=1, \ldots, n) .
$$

If we set

$$
\begin{equation*}
b=a^{x}, \quad a^{x^{\frac{x_{1}}{r}}}=b^{s p_{j}} \quad(i=1, \ldots, n), \tag{8}
\end{equation*}
$$

then we get
*) By definition $a_{s} \sim b_{s}(s \in e)$ if there exists positive constant c_{1} and c_{2} not dependent on $s_{s \in \theta}$, such that $c_{1} a_{s} \leqslant b_{s} \leqslant c_{2} a_{s}(s \in e)$.

$$
\begin{equation*}
\psi(x)=\phi_{p^{\prime}, p}(b, x)=\sum_{t=0}^{\infty} \frac{F\left(e_{b} \frac{1}{p_{j}} x_{j}\right)}{{ }_{b}\left(1-\frac{1}{\nabla^{\prime}} \sum \frac{1}{p_{l}}\right)} . \tag{9}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
& \times\left(1-\frac{1}{p^{\prime}} \sum_{l} \frac{1}{p_{l}}\right)=x-\frac{1}{p^{\prime}} \sum_{t} \frac{x_{l}}{r_{l}}=1-\sum_{l}^{\sum}\left(\frac{1}{p_{t}}-\frac{1}{p^{\prime}}\right) \frac{1}{r_{l}}- \\
&-\frac{1}{p^{\prime}} \sum_{l} \frac{1}{r_{l}}=1-\sum \frac{1}{p_{l} r_{l}} .
\end{aligned}
$$

Equalities (3) and (9) point to the fact that beside ψ is at the same time functions $\psi_{p, r}(a, x)$ and $\psi_{p^{\prime}, p}(b, x)$, where b and a are associated by equality (8). But if a is sufficiently large, then $\Psi_{p, r} \in H_{p}^{r}\left(R_{n}\right)$ and $\Psi_{p^{\prime}, p} \in H_{p^{\prime}}\left(R_{n}\right)$, which is in agreement with the embedding theorem. But $\Psi_{p^{\prime}, p}$ is the extremal function in the class $H_{p^{\prime}}\left(R_{n}\right)$. It does not belong to any such class $H_{p}^{p}+\varepsilon\left(R_{n}\right)$, where $\varepsilon>0$. This shows that the embedding $H_{p}^{r}\left(R_{h^{\prime}}\right) \rightarrow H_{p^{\prime}}^{\rho_{+} \varepsilon}\left(R_{n}\right)(\varepsilon>0)$ is invalid. But then the embedding $\mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}}\left(\mathrm{R}_{\mathrm{n}}\right) \rightarrow \mathrm{B}_{\mathrm{p}^{\prime}}^{P+\varepsilon}\left(R_{\mathrm{n}}\right)$ is also invalid, because if we assume that it is valid, then we would have

$$
H_{p}^{r+\frac{1}{2}}{ }^{2}\left(R_{n}\right) \rightarrow B_{p \theta}^{r}\left(R_{n}\right) \rightarrow B_{p \theta}^{p+e}\left(R_{n}\right) \rightarrow H_{p}^{p+1}\left(R_{n}\right)
$$

which, as we have proven, is impossible. We will now proceed from the function $\psi_{p, r}(a, x)(c f(3))$, and assume

$$
\begin{equation*}
x=1-\frac{1}{p} \sum_{m+1}^{n} \frac{1}{r_{l}}>0 \quad(1 \leqslant m<n) . \tag{10}
\end{equation*}
$$

We will assert that the vector $p=\left(\rho_{1}, \ldots, \rho_{m}\right)$, here already m-dimensional, is defined, as in the theorem of embedding of different measures, by the equa-
lities.

$$
\rho_{j}=r_{j} \mu \quad(j=1, \ldots, m)
$$

and we will assume $x=(u, y), u=\left(x_{1}, \ldots, x_{m}\right), y=\left(x_{m+1}, \ldots, x_{n}\right)$, and $\psi(\mathbf{x})=\psi(\mathbf{u}, \mathbf{y})$. Let R_{m} stard for the coordinate subspace of points $(\mathrm{a}, 0)$. The trace of ψ on R_{m} is the function $(F(0)=1)$

$$
\begin{aligned}
& \psi(u, 0)=\sum_{i=0}^{\infty} \frac{\prod_{a=1}^{m} f\left(a_{a}^{\frac{1}{T_{x}}}\right)}{{ }_{a}\left(1-\frac{1}{0} \sum_{1}^{n} \frac{1}{T_{i}}\right)}=
\end{aligned}
$$

because

$$
x\left(1-\frac{1}{p} \sum_{i}^{n} \frac{1}{p_{l}}\right)=x-\frac{1}{p} \sum_{1}^{m} \frac{1}{r_{1}}=1-\frac{1}{p} \sum_{1}^{n} \frac{1}{r_{1}} .
$$

From (11) we see that the trace of $\psi_{p, r}(x)$ on R_{m} is $\psi_{p, p}(u)$. Here $\psi_{p, r}(x) \in H_{p}^{r}\left(K_{n}\right)$, and $\psi_{p, \rho}(a) \in H_{p}^{p}\left(R_{m}\right)$, which is in agreement with the theorem of embedding of different measures. But ψ_{p}^{p} is an extremal function in $H_{p}\left(R_{\text {II }}\right)$ and does not belong to $H_{p}^{p+\varepsilon}\left(R_{m}\right)(\varepsilon>0)$. Therefore the embedding $H_{p}^{r}\left(R_{n}\right) \rightarrow H_{p}^{P+\varepsilon}\left(R_{m}\right)$ is invalid. Reasoning as above, we arrive at the conclusion that the embedding $\mathrm{B}_{\mathrm{p} \theta}^{r}\left(R_{\mathrm{n}}\right) \rightarrow \mathrm{B}_{\mathrm{p} \theta}^{p+\varepsilon}\left(R_{\text {ml }}\right)$ is also invalid. By this we have proven that the theorem of embedding of different metrics in this sense is unimprovable. Nevertheless, improvement is possible in terns of more general classes. For example, A. S.rDahafarov $\angle 1 /$ obtained refinements of enbedding theorems for the classes H_{p} by considering the more general classes $H_{p}^{r, s}\left(H_{p}^{r} \cdot 0=H_{p}^{r}\right)$ of functions f, which, for example, provided $n=1, r<1$, are defined thusly: $f \in H_{p}^{r, s}$, if $f \in L_{p}$, and

$$
\|f(x+h)-f(x)\| \leqslant\left. M|h r| \ln \frac{1}{|h|}\right|^{?}
$$

We have seen that the conclusion of the impossibility of this embedding loads to the proof of impossibility of the inequality accompanying it. Even though, it remains unclear whether there does exist in the class $\mathrm{B}_{\mathrm{p} 9}^{\mathrm{r}}\left(\mathrm{R}_{\mathrm{n}}\right)$ a function not belonging to $\mathrm{B}_{\mathrm{p} 9}\left(\mathrm{R}_{\mathrm{m}}\right)$. It would be show in 7.6 that such a function does exist.

The More on Extremai Functiong in Hip

Let us proceed to the proof that $\psi=\psi_{p r}(a, x)(7.3(3))$ given sufficiently Largo a is an extremal function in $H_{p}^{r}\left(F_{n}\right)$.

Let us note that function $F(t)$ exhibits the following properties: for each natural 1 we can indicate such numbers c and δ, dependent on 1 , that

1) the derivative $F(1)(t)$ preserves its sign at $(0, \delta)$;
2) at ($0, \delta$) the following inequality is satisfied:

$$
\begin{equation*}
\left|F^{\prime \prime} \prime(t)\right| \geq c t . \tag{1}
\end{equation*}
$$

The first property stems from the analyticity of F. The second stems from the fact that

$$
F(t)=a_{0}+a_{2} t^{2}+a_{1} t^{4}+\ldots
$$

where $a_{i} \neq 0$ for and $1=0,1, \ldots$
Suppose

$$
\begin{equation*}
\gamma=1-\sum_{1}^{n} \frac{1}{p_{r_{1}}} \tag{2}
\end{equation*}
$$

and note that

$$
\begin{equation*}
\frac{1}{p_{i}} \sum_{i=1}^{n} \frac{x_{j}}{r_{l}}-x_{i}=\frac{1}{p_{i}} \sum_{i} \frac{1}{r_{l}}-\left(1-\sum_{i}\left(\frac{1}{p_{i}}-\frac{1}{p_{i}}\right) \frac{1}{r_{l}}\right)=-\gamma . \tag{3}
\end{equation*}
$$

Let us assign the sequence

$$
\begin{equation*}
h=h_{\mu}=\frac{\delta}{2} a^{-\mu \frac{x_{1}}{r_{1}}} \quad(\mu=0,1, \ldots), \tag{4}
\end{equation*}
$$

where δ is the number apecified above, selected for $1=\bar{r}_{1}+2\left(r_{1}=\bar{r}_{1}+\alpha\right.$,
\bar{r}_{1} is an integer, $\left.0<\alpha \leqslant 1\right)$.

Our function can be written as

$$
\psi=\sum_{0}^{\infty} Q_{s} \quad Q_{2}=a^{-s v} \prod_{j=1}^{n} F\left(a^{x^{\prime} \frac{x_{j}}{r_{j}}}\right) .
$$

Our coal is an estimate from below of the norm $\left.\Delta_{x_{1} h}^{2} \psi_{x_{1}} \bar{r}_{1}\right)(x)$ in the metric $L_{p_{1}}\left(R_{n}\right)$, where $\psi_{x_{1}}^{\left(r_{1}\right)}$ denotes the derivative of ψ with respect to x_{1} of order \bar{F}_{1}.

We have

$$
\begin{gather*}
\Delta_{x_{1} h}^{2} \psi_{x_{1}}^{\left(p_{1}\right)}=\sum_{s<\mu} \Lambda_{x_{1} h}^{2} Q_{s x_{1}}^{\left(p_{1}\right)}+\sum_{s>\mu}=s(h)+\dot{\sigma}(h), \tag{5}\\
\|\sigma(h)\|_{L_{p_{1}}\left(R_{n}\right)} \leqslant 4 \sum_{s>\mu} \mid Q_{s x_{1}}^{\left(y_{1}\right)} \|_{L_{p_{1}}\left(R_{n}\right)} \leqslant 4 \sum_{s>\mu} a^{-s x_{1}\left(1-\frac{h_{1}}{r_{1}}\right)}= \\
=4 a^{-(\mu+1) \frac{x_{1}}{r_{1}} a} \sum_{0}^{\infty} a^{-s \frac{x_{1}}{r_{1}} a}=\left(\frac{2}{\delta} h\right)^{a} \frac{4}{a^{\frac{x_{1}}{r_{1}} a}\left(1-a^{-\frac{x_{1}}{r_{1}} a}\right)} . \tag{6}
\end{gather*}
$$

We used the estimate 7.3(5) in the second inequality, while in the last equality the aubatitution $h=h_{\mu}$ by formula (4) was made. We computed the constant for mi not in vain -- here it is clear that it approaches zoro as a $\rightarrow \infty$.

On the other hand (explanations below)

$$
\begin{align*}
& \begin{aligned}
&\|s(h)\|_{L_{p_{1}}\left(R_{n}\right)}= \\
&=\int_{1}^{1} a^{-s v}\left(h^{s \frac{x_{1}}{r_{1}}}\right)^{2} a^{s s_{1} \frac{x_{1}}{r_{1}}} F_{x_{1}}^{\left(r_{1}+2\right)}\left(a^{s \frac{x_{1}}{r_{1}}}\left(x_{1}+\theta h\right)\right) \times
\end{aligned} \\
& \times\left.\prod_{j=2}^{n} F\left(a^{, \frac{x_{1}}{r_{j}}} x_{j}\right)\right|_{L_{p_{1}\left(R_{n}\right)}} \geqslant\|\cdot\|_{\left.L_{p_{1}}(0, n) \times R_{n-1}\right)} \geqslant \\
& \geqslant\left(h a^{\mu} \frac{x_{1}}{r_{1}}\right)^{2} a^{-\mu\left(\gamma-r_{1}, \frac{x_{1}}{r_{1}}\right)} \times \\
& \times \left\lvert\, F_{x_{1}}^{\left(x_{1}+2\right)}\left(a^{\mu \frac{x_{1}}{r_{1}}}\left(x_{1}+\theta h\right)\right) \prod_{1=2}^{n} F\left(\left.a^{\left.\mu \frac{x_{1}}{r_{j}} x_{j}\right)}\right|_{{\left.c_{p_{1}}(0, k) \times R_{n-1}\right]}^{x_{1}}} \geqslant\right.\right. \\
& \left.\geqslant c_{1}\left(\frac{8}{2}\right)^{2} a^{-\mu\left(y-x_{1}+\frac{a x_{1}}{r_{1}}\right.}\right)\left(\int_{0}^{n}\left|c a^{\mu \frac{x_{1}}{r_{1}}}\right|_{x_{1}}^{p_{1}} d x_{1}\right)^{1 / p_{1}}-\mu \frac{1}{p_{1}} \sum_{2}^{n} \frac{x_{1}^{\prime}}{r_{j}}= \\
& =c_{2}\left(\frac{\delta}{2}\right)^{2}\left(h a^{\mu \frac{x_{1}}{r_{1}}}\right)^{1+\frac{1}{p_{1}}}\left(h a^{\mu} \frac{x_{1}}{r_{1}}\right)^{-a} h^{a}=c_{2}\left(\frac{\delta}{2}\right)^{3-a+\frac{1}{p_{1}}} h^{a} . \tag{7}
\end{align*}
$$

In the second relation (inequality), the domain of integration of R_{n} is replaced by its portion ($0, h$) $\times k_{n-1}$, consisting of points x, where $0<x_{1}<h,-\infty<x_{j}<\infty$ for $j=2, \ldots, n$. In this case when $s \leqslant \mu$, by virtue of (4) a $a^{s \mu_{1} / r_{1}}\left(x_{1}+\theta h\right) \leqslant a^{\mu 火 / r_{1}} h_{h} \leqslant \delta$ also because functions $F_{x_{1}}\left(F_{1}+2\right)\left(a^{3)} /{ }^{1 / r 1}\left(x_{1}+\theta h\right)\right)$ retain their sign and, since further $F \geqslant 0$, then the norm to which we have arrived can only decrease, if one term corresponding to $s=\mu$ remains in the sum. This explains the passage from the third term to the fourth. The passage from the fourth term to the fifth is executed by (4) and inequalities (1) when $1=\bar{F}_{1}+2$; for integration with respect to R_{n-1}, we must consider that

$$
\left(\int|F(N x)|^{p} d x\right)^{1 p}=\frac{1}{d^{1} p}\left(\int|F(u)|^{F} d \|\right)^{1 / p}-c_{1} N^{-1 / p} .
$$

The passage from the fifth term to the sixth is based on application of (3). Finaily, we apply (4) to the last inequality. It is essential to observe that the constants $c_{,} c_{1}$, and c_{2} in (7) did not depend not only on h and μ, but
neither on a. On the other hand, as has already denoted above, the constant for $\mathrm{h}^{\text {d }}$ in inequality (6) can be made as small as desired, given a sufficiently large a. Consequentily, from (5), (6), and (7) it follows that for a sufficiently large a the inequality

$$
\begin{equation*}
\left\|\Delta_{x_{1}, h}^{2} \psi_{x_{1}^{\prime}}^{\prime}\right\|_{L_{p}\left(R_{n}\right)} \geqslant\|s(h)\|_{L_{p}\left(R_{n}\right)}=\|\sigma(h)\|_{L_{p}\left(R_{n}\right)} \geqslant c(a) h^{a}, \tag{8}
\end{equation*}
$$

is satisfied, where h runs through the sequence (4) diminishing to zero. But then function ψ cannot belong to the class $H_{p_{1}}^{r_{1}+\varepsilon}\left(R_{n}\right)(\varepsilon>0)$. In fact, let us assume that $\psi \in H_{p_{1}}^{1}\left(R_{n}\right)$ and let $0<\eta<\min \{\varepsilon, 1\}$. Then also
$\psi \Leftarrow \mathrm{H}_{\mathrm{P}_{1}}^{r_{1}+\eta}\left(\mathrm{R}_{\mathrm{n}}\right)$ and here $\mathrm{r}_{1}+\eta-\bar{r}_{1}=\alpha+\eta<2=k$, therefore the inequality

$$
\left\|\Delta_{x, h}^{2} \psi_{x_{1}}^{p_{1}}\right\|_{p_{1}\left(R_{n}\right)} \leqslant M|h|^{a+\eta}
$$

must be satisfied for all h, which contradicts (8). Similarly, it is proven that $\psi \notin H_{p_{i}}^{r_{i}+\varepsilon}\left(R_{n}\right)$ for and $i=1, \ldots, n$, if $\varepsilon>0$.

We have proven that the function $\psi_{p, r}(a, x)$ given sufficiently large a, does not belong to any such class

$$
H_{\rho}^{\prime+1}\left(R_{n}\right), \quad \text { where } \varepsilon>0
$$

7.4.1. For the function ψ that is extremal in $H_{p}^{r}\left(R_{n}\right)=H(r>0)$, the ψ nom $\|\psi(x+h)-\psi(x)\|_{H}$ does not tend to zero as $h \rightarrow 0$. In fact, let $r_{1}>0$ and $r_{1}=\bar{r}_{1}+\alpha\left(\bar{r}_{1}\right.$ is an integer, $\left.0<\alpha<1\right)$. By 7.4(8), for real $h>0$ running through some sequence $\left(\|\cdot\|_{L_{p}}\left(R_{n}\right)=\|\cdot\|_{p}\right)$ converging to zero:

When $\alpha=1$, the second difference with respect to k (instead of the first) would figure in (1), which will lead to the need to prove inequality $7.4(8)$ for the third difference (instead of the second). This is done analogously.

7.5. Unimprovability of Ineoualities for Mixed Pariyetives

The inequality

$$
\begin{equation*}
\left\|f^{(t)}\right\|_{B_{p \theta}^{p}\left(R_{n}\right)} \leqslant c\|f\|_{B_{p \theta}\left(R_{n}\right)} \tag{1}
\end{equation*}
$$

was proven in 5.6.3, provided the condition that

$$
\begin{equation*}
\rho=x p, \quad x=1-\sum_{1}^{n} \frac{\ln }{r_{n}}>0 . \tag{2}
\end{equation*}
$$

It ceases to be valid if ℓ in it is replaced with $P+c(\varepsilon>0)$. This can also be proven by considering the extremal function

$$
\psi=\psi_{p, r}=\sum_{s=0}^{\infty} \frac{\prod_{a=1}^{n f} f\left(a^{a} / r_{x j}\right)}{s\left(1-\frac{1}{p} \sum \frac{1}{r_{l}}\right)} \quad(a>1) .
$$

its derivative
even though not a particular case of the families of extremal functions we have considered, nevertheless is extremal in the class $H_{p}\left(R_{n}\right)$, and this is proven quite analogousiy to the procedure in 7.4 where we had to assert $p=p_{1}=\ldots=p_{n}$. The fact that now different functions $F^{\left(l_{j}\right)}$ appears under the sign Π is not significant.

This proves our assertion for H-classes*), but now also for B-classes.

7.6. Another Proof of the Unimprovability of Fmbedding Theorems

Let us consider a problem relating to the general theory of functional spaces. Let E_{1} and E_{2} be Banach (i.e., Iinear normed complete) spaces. The following are valid:

Theorem $1^{* *}$). If a linear bounded operator A mutualiy uniquely maps E_{1} onto E_{2}, then the operator A^{-1} inverse to it, which is obviously linear and maps E_{2} onto E_{1}, is in turn bounded.

Let Banach spaces E_{1} and E_{2} have the nonempty intersection $E_{1} E_{2}$. We will write for the elements $x \leftrightarrows E_{1} E_{2}$ the nom

$$
\begin{equation*}
\|x\|_{E_{1} E_{2}}=\|x\|_{E_{1}}+\|x\|_{E_{2}} \tag{1}
\end{equation*}
$$

$E_{1} E_{2}$ with it is a normed space.
Theorem 2. If $E_{1} E_{2}$ is a complete space, i.e., a Banach space, and if the constants $c>0$ such that $\quad\|x\|_{E_{3}} \leqslant c\|x\|_{E_{1}}$
for all $x \approx E_{-} E_{2}$ do not exist, then there does axist in E_{1} an element
not belonging E_{2}.
*) S. M. Nikol'skiy $L^{\overline{2}} \overline{/}$, the case when $\mathrm{p}=\infty$.

* ${ }^{*}$) Cf book by Hausdorff 11 . . Addendum.

Proof. Actually, lot us assume this is not so, i.e., $E_{1} \subset E_{2}$. Fach element x of Banach space $E_{1} E_{2}$ can be assumed to be mapped (uniquely) in x, but still belonging to E_{1}. This operation is linear and bounded:

$$
\|x\|_{E_{1}} \leqslant\|x\|_{E_{1}}+\|x\|_{E_{2}}=\|x\|_{E_{1} E_{2}}
$$

and maps $E_{1} E_{2}$ onto E_{1}. But then, based on theorem 1, the constant c must exist such that
or

$$
\begin{gathered}
\|x\|_{E_{1}}+\|x\|_{E_{3}} \leqslant c\|x\|_{E_{1}} \\
\|x\|_{E_{2}} \leqslant c\|x\|_{E_{1}}, \quad x \in E_{1} E_{2}
\end{gathered}
$$

and we have reached a contradiction with the condition fos the theorem.
Use of theorem 2 requires that the completeness of $E_{1} E_{2}$ be collaborated. If $E_{1}=B_{p}^{r}\left(K_{n}\right)$ and $E_{2}=B_{p}^{P}\left(R_{n}\right)$ (hore $\left.B_{p}=B_{p}\right)$, then the completeness of $E_{1} E_{2}$ does obtain, because in this case from the fact that $\left\|f_{k}-f_{1}\right\| E_{1} E_{2}$ $\rightarrow 0, k, 1 \rightarrow \infty$, owing to the completeness of E_{1} and E_{2}, there follows the existence $f \in E_{1}$ and $F \in E_{2}$ such that $\left\|f-f_{k}\right\|_{E_{1}} \rightarrow 0,\left\|F-f_{k}\right\|_{E_{2}} \rightarrow 0,(k \rightarrow \infty)$, but then also

$$
\left\|f-f_{k}\right\|_{L_{p_{i}}\left(P_{n}\right)} \rightarrow 0,\left\|F-f_{k}\right\|_{L_{p^{\prime}}\left(R_{n}\right)} \rightarrow 0 \quad(i=1, \ldots, n)
$$

Hence (cf 1.3.9) $\mathrm{f}=\mathrm{F}$ almost everywhere, and we have proven the existence $f \in E_{1} E_{2}$, such that

$$
\left\|f-f_{k}\right\|_{E_{1} E_{1}} \rightarrow 0
$$

Let $\mathrm{r}=\left(r_{1}, \ldots, r_{n}\right)>0, p=\left(p_{1}, \ldots, p_{n}\right), 1 \leqslant p_{j} \leqslant \infty, \kappa_{j}=\kappa_{j}$

$$
(x, p)>0(\text { cf } 7.3(1))
$$

Let us introduce the function $F(t)$ of one variable, finite and infinitely differentiable.

Its norms in the metric $\mathrm{B}_{\mathrm{p}}^{(}\left(R_{p}\right)(0<\dot{F} \leqslant 1)$ are positive, otherwise it would be zero.

Let us construct a family of functions (cf 7.4(2),

$$
\begin{align*}
& \left.=1-\sum_{i=1}^{n} \frac{1}{\rho_{f}^{\prime} / j}\right) \\
& \Phi_{N}=\Phi_{N, p, r}(x)=\frac{1}{N^{v}} \prod_{l=1}^{n} F\left(N^{\frac{x_{1}}{\prime_{l}}} x_{j}\right), \tag{2}
\end{align*}
$$

dependent on parameter $\mathrm{N}>0$.
Based on formulas 7.2(1) and (6)

$$
\begin{aligned}
& \left\|\Phi_{N, p_{1}, r}\right\|_{p_{l}} \sim N^{-\frac{1}{p_{1}} \sum_{i=1}^{n} \frac{x_{l}}{r}-\gamma}=N^{-x_{l}} \quad(N>0), \\
& \left\|\Phi_{N, p, r}\right\|_{b_{x_{i}^{\prime} p_{i}}^{\prime}} \sim N^{\frac{\prime_{1} x_{i}}{r_{i}}} N^{-x_{i}==} N^{0}=1 \quad(i=1, \ldots, n) \\
& \left(b_{\lambda_{1} p_{i}}^{\prime}=b_{x_{1} p_{l},}^{\prime}\right) .
\end{aligned}
$$

Let us direct our attention at a specific 1 and assign the numbers $p^{*} \geqslant p_{1}$ and $r^{*} \geqslant r_{j}$, where even one of these inequalities is rigorous. Let us i compute for comparison the norms

$$
\begin{aligned}
& \| \Phi_{N_{1}, p_{1}, \|_{p_{0}} \sim N^{-\frac{1}{p_{0}}} \sum_{i}^{n} \frac{x_{1}}{\gamma_{i}-\gamma}}^{==N^{-\left(x_{j}-c\right)}} . \\
& \left\|\Phi_{N, p, r}\right\|_{b_{x_{i} p_{0}}} \sim N^{-\left(x_{i}-r\right)} N^{\frac{\cdot x_{x_{i}}}{r_{i}}}=N^{\left(\frac{r^{\bullet}}{r_{1}}-1\right) x_{j}+\varepsilon} \\
& (e>0, N>0) \text {. }
\end{aligned}
$$

It is essential to know that here ε is a positive number, therefore

$$
\begin{equation*}
\left\|\Phi_{N, p_{1} r}\right\|_{b_{x_{l}, p_{0}}} \rightarrow \infty \quad(N \rightarrow \infty) . \tag{L}
\end{equation*}
$$

And thus, to each pair of vectors p, F eatiafyins the above indicated conditions wo have brought it into correspondence the family of functions $\phi(N, P, P)$, whose norme

$$
\|\Phi(N, p, r)\|_{s_{p}^{f}\left(R_{n}\right)} \leqslant c<\infty \quad(N>0)
$$

are bounded, or at the came time for any 1 property (4) is catiafied if and oniy if $r^{*} \geqslant r_{1}, p^{*} \geqslant p_{i}$ and one of these inequalitios is rigorous.

We will call the family $\phi(N, p, r)$ the boundary family of functions in the claes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}\left(\mathrm{R}_{\mathrm{n}}\right)$.

Let us show that (proven in 6.9) the embedding

$$
B_{p \theta}^{\prime}\left(R_{n}\right) \rightarrow B_{p \theta}^{\circ}\left(R_{n}\right)
$$

civen the conditions $1 \leqslant p_{j} \leqslant p^{\prime} \leqslant \infty, \mathcal{X}>0$ (there:ore also $\mathcal{\mathcal { K } _ { j } > 0 \text { , of }}$ 7.1(4), (5)),

$$
\begin{equation*}
\rho_{j}=\frac{n^{x}}{x_{j}} \quad(j=1, \ldots, n) \tag{5}
\end{equation*}
$$

ceases to be valid if in it oven one of the components P_{j} or the number p^{\prime} is increased, or both are increased. In fact, if we taked $N_{1}=N^{x}$, then (explanations bolow)

$$
\begin{align*}
\Phi_{v, p, r} & =\frac{1}{N^{v}} \prod_{l=1}^{n} f\left(N^{\frac{x_{j}}{\gamma_{j}}} x_{j}\right)= \\
& =\frac{1}{N_{i}^{\gamma_{1}}} \prod_{i=1}^{n} F\left(N_{1}^{1 / \rho} x_{i}\right)=\Phi_{N_{1}, p, p} \quad\left(N_{1}=N^{x}\right) . \tag{6}
\end{align*}
$$

Here

$$
v_{1}=1-\frac{1}{p^{\prime}} \sum_{1}^{n} \frac{1}{p_{1}}=\gamma\left(p_{1} p^{\prime}\right),
$$

because

$$
\begin{aligned}
x y_{1} & =x-\frac{1}{p^{\prime}} \sum \frac{x_{1}}{r_{l}}=1-\sum \frac{1}{p_{p_{l}}}+\frac{1}{p^{\prime}} \sum \frac{1}{r_{t}}-\frac{1}{p^{\prime}} \sum \frac{1}{r_{t}}- \\
& \left.-\frac{1}{p^{\prime}} \sum \frac{1}{r_{l}}+\frac{1}{p^{\prime}} \sum \sum \sum \frac{1}{p_{l}}-\frac{1}{p_{j}}\right) \frac{1}{r_{r^{\prime}}}=1-\sum \frac{1}{p_{f_{l}}}=\gamma_{1}
\end{aligned}
$$

further

$$
x_{j}\left(p, p^{\prime}\right)=1-\sum\left(\frac{1}{p^{\prime}}-\frac{1}{p^{\prime}}\right) \frac{1}{r_{l}}=1 .
$$

This proves equality (6).
Thus, the family of functions ϕ_{N} is simultaneously a boundary fanily in the classes B_{p}^{r} and $B_{p^{\prime}}^{P}$ and the norm ϕ_{N} in the metrics of these classes are uniformly bounded with respect to N. However, the norms $\phi_{N} i$ the metric $B_{p^{\prime}+\eta}^{p+\varepsilon}$ are not bounded. But then constant c not dependent on N and such that

$$
\left\|\Phi_{N}\right\|_{B_{p^{\prime}+\eta}^{p+2}} \leqslant c\left\|\Phi_{N}\right\|_{B_{P}^{r}},
$$

does not exist, and we have proven our assertion.
By virtue of theorem 2, in this case it follows that for any $\varepsilon \geqslant 0$, $\eta_{r} \geqslant 0$, where one of the inequalities is rigorous, there exists in the class
$B_{p}\left(R_{n}\right)$ a function not belonging to $B_{p^{\prime}}^{P}+\xi_{n}\left(R_{n}\right)$. In particular, a function not velonging to $B_{p+\eta}^{r+\varepsilon}\left(R_{n}\right)$ exists in the class $B_{p}^{r}\left(R_{n}\right)$.

The embedding (proven in 6.5)

$$
\begin{align*}
& B_{p}^{r}\left(R_{n}\right) \rightarrow B_{p}^{p}\left(R_{m}\right) \tag{7}\\
& 1 \leqslant m<n, \quad \rho_{j}=x r_{j}, \quad j=1, \ldots, \quad m \\
& x=1-\frac{1}{p} \sum_{m+1}^{n} \frac{1}{r_{l}},
\end{align*}
$$

ceases to be valid if in it we replace ρ and p with $f^{*} \geqslant \rho, p^{*} \geqslant p$, where
one of the inequalities is rigorous.
Actually, there exists the function $\phi \in B_{p}^{\rho}\left(R_{m}\right)$, but not belonging to ${ }_{B} f+\varepsilon\left(h_{m}\right)$. Based on the theorem on extension, φ can be extended from R_{m} to R_{n} such that the extended function $f \in B_{p}^{r}\left(R_{n}\right)$. Since $\left.f\right|_{R_{m}}=\varnothing$, then f is an example of the function $f \Leftarrow B_{p}^{r}\left(R_{n}\right)$ whose trace on R_{m} does not belong to $B_{p+\eta}^{p_{+1}}\left(n_{m}\right)$.

Incidentally, from the foregoing it follows that the theorem on extension

$$
B_{p}^{\prime}\left(R_{m}\right) \rightarrow B_{p}^{\prime}\left(R_{n}\right)
$$

can also not been improvod in terms of the classes considered. However, this does not signify that this theorem cannot be improved in other terms. For example, it will be shown in Chapter IX that given the same relationship betwoen r and P, and between n and m, the mutually inverse embeddings

$$
B_{p}^{\prime}\left(R_{m}\right) \rightrightarrows L_{p}^{r}\left(R_{n}\right),
$$

holu, where the class L_{p}^{r} when $p \neq$ is not equivalent to $B_{p}^{r}\left(R_{n}\right)$.
Let us further assign the family (boundary in $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}\left(\mathrm{h}_{\mathrm{n}}\right)$)

$$
\Phi_{N}=\Phi_{N, p, r}=\frac{1}{N^{v}} \prod_{l=1}^{n} F\left(N^{1 / r} / x_{j}\right)
$$

In this case

$$
\begin{gathered}
\gamma=1-\frac{1}{r} \sum_{1}^{n} \frac{1}{n}>0, \quad x_{j}(p, r)=1 \\
(j=1, \ldots, n) .
\end{gathered}
$$

Let us further assume that $F(t)$, in addition to being finite and infinitely differentiable, as the Taylor expansion

$$
F(t)=1+a_{1} t+\ldots+a_{t+1} t^{t+1}+R_{t+1}
$$

with coefficients not equal to zero appearing at the odd positions or even. Then, as we can easily see, we can specify a positive number δ and constant B such that

$$
\left|F^{(k)}(t)\right|>B t \quad(k=0,1, \ldots, l,|t|<\delta) .
$$

Let in be a subspace of points $\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)=(u, 0), n=$ $\left(x_{1}, \ldots, x_{m}\right)$. Then
where

$$
\Phi_{v_{S}}(u, 0)=\frac{1}{N_{i}^{\gamma_{i}}} \prod_{i=1}^{m} F\left(N_{1}^{\frac{1}{\rho_{j}}} x_{i}\right)=\Phi_{N_{1, ~ p, ~}} \quad\left(N_{1}=N^{x}\right)
$$

$$
r_{1}=\gamma_{1}(p, p)=1-\frac{1}{p} \sum_{i}^{m} \frac{1}{p_{1}}
$$

(considering that $V=\mathcal{K} V_{1}$).
Let $h>0$ and $i=m+1, \ldots, n$. Let us consider the increment

$$
\begin{aligned}
\Delta_{x_{i} h} \Phi_{N}(u, 0)=\frac{1}{N_{i}^{\gamma_{i}}} \prod_{i=1}^{m} F\left(N_{1}^{\frac{1}{\rho_{l}}} x_{j}\right) & {\left[F\left(N_{1}^{\frac{1}{\rho_{l}}} h\right)-F(0)\right]=} \\
& =\Phi_{N_{1}, p_{1} p}(u)\left[F\left(N_{1}^{\frac{1}{p_{l}}} h\right)-F(0)\right] .
\end{aligned}
$$

Function F does not identically equal to zero, therefore we can find such a $\delta>0$ that $|F(\delta)-F(0)|=K>0$. We will consider the values of h and N_{1} associated by the equality $\mathcal{S}=N_{1}^{1} / P_{i} h$. By virtue of the first estimate (3), we have (in our case $\mathcal{K}_{i}=1$)
,

This estimate from below shows that the first inequality (6.4) (13) ($\left.P_{i}=r_{i}^{\prime}\right)$ derived earlier is reached and in this case not only for the class $H_{p}\left(R_{n}\right)$, but also for $B_{p \theta}^{r}(R)$.

7.7. Theorems on Compactness

 one of the following properties:

$$
\begin{align*}
& \text {. (i) (} x \text {, fs an intogyal yetor) } \\
& \text { b) } \tag{2}
\end{align*}
$$

Then we can separate the subsequence $\left\{f_{f}\right\}$ and such a function f satisfying*), respectively, conditions (1) and (2) that whatever the numbers ry for which

*) on following page.

$$
\begin{equation*}
\left|f_{A_{A}}-f\right|_{M_{p}^{\prime \prime}(\infty)} \rightarrow 0 \quad\left(l_{A} \rightarrow \infty\right) \tag{3}
\end{equation*}
$$

obtains for any bounded domain $\subset R_{n}$.
The proof of this theorem will be based on the following lerma from functional analyais.

Lerma. Suppose that the aame linear set of elementa x is normed by two norms $\|$. \| and $\|\cdot\|$, where the normed apaces E and $E_{\#}$ obtained are complete and $\|x\|_{*} \leqslant c \mid x \|$, where the conetant c does not depend on x.

Let thare be assimed in E a bounded aet F and a sequence of operator $A_{n}(x)(n=1,2, \ldots)$ mapping E onto E_{*} defined by the equalities

$$
A_{n}(x)=x-U_{n}(x)
$$

and eatiafying the conditions:

1) oparator $\bar{y}=U_{n}(x)\left(x \in E, J \in E_{x}\right)$ are wholly continuous (the innearity of U_{n} is not n required);
2) $\sup _{x \rightarrow f}\left\|A_{n}(x)\right\|=\eta_{n} \rightarrow 0 \quad(n \rightarrow \infty)$.

Then the set F is compact in E_{k}.
Proof. Lot ue acsign an arbitrary sequence of elemente x_{1}, x_{2}, \ldots belpneipe to F. It is bounded apd owing to property 1), from it the aubsequance $\left.x_{1}(1), x_{2} 1\right), \ldots$ for which $U_{1}\left(x_{k}(1)(k=1,2, \ldots)\right.$ converfes in E_{k} can be eeparated. In turn, from this sequence we can separate the subsequence $x_{1}^{(2)}, x_{2}^{(2)} \ldots$ for which $\sigma_{2}\left(x_{k}^{(2)}\right)(k=1,2, \ldots)$ convarges in E_{k}. Continulng this process
 wo find that $U_{n}\left(s_{k}\right)$ converges in E_{n} as $k \rightarrow \infty$ and for and n. Lot us now asairn $<>0$. By condition (2), for some $n=N$ the inequality

$$
\left\|A_{N}(x)\right\|_{0} \leqslant c\left\|A_{N}(x)\right\|<\varepsilon
$$

is satisfied for all $x \in F$. If p and q exoeed a aufficiently large number, then

$$
\left\|z_{p}-z_{q}\right\|_{\leqslant} \leqslant\left\|A_{N}\left(z_{p}\right)\right\|_{0}+\left\|U_{N}\left(z_{p}\right)-U_{N}\left(z_{\rho}\right)\right\|_{0}+\left\|A_{N}\left(g_{\rho}\right)\right\|_{0}<3 e
$$

7) Function f satisfies (1) or (2) with the same constant N if we understand thennorm in the same sense; in the case b) the proof will be given below for the variants of the norm $4\|\cdot\|_{B}, P=\bar{r}(c f 5.6)$.
and the compactnese of F in E_{x} is proven.
Proof of thearem. Let $K=M+N$. Let us now first consider the case b) when $\theta=\infty$, i.e., the case of class $H_{p}^{r}=H_{p}^{r}\left(R_{n}\right)$.

Let 7 be a set of all functions f for which any quality (2) (when $\theta=$ ∞) is satisfied. The expansion (5.5.3(6), (7))

$$
\begin{gathered}
f=\sum_{s=0}^{\infty} Q_{s} \\
Q_{s}=Q_{a}^{s / r_{1}} \ldots, a^{s / r_{n}} \quad(a>1)
\end{gathered}
$$

obtains for each of these, where
are integral functions of exponential type $a^{8 / r j}$, respectively, with respect to $x_{j}(j=1, \ldots, n)$ and

$$
\sup _{s} a^{s}\left\|Q_{s}\right\|_{p}=\|f\|_{H_{p}^{r}} \leqslant c K
$$

Let us assign a number Y, satisfying the inequality $0<V<1$ and set

$$
T_{m}(f)=T_{m}=\sum_{0}^{m-1} Q_{s}, \quad a^{\nu}=b
$$

$\operatorname{Then}\left(\|\cdot\|_{p}=\|\cdot\|_{L_{p}}\left(R_{n}\right)\right.$

$$
\begin{aligned}
\left\|f-T_{m}\right\|_{H_{p}^{\gamma}} & =\sup _{s \geqslant m} b^{s}\left|Q_{b}^{\frac{s}{\gamma_{1}}} \ldots . b^{\frac{s}{\gamma_{n}}}\right|_{p}= \\
& =\sup _{s \geqslant m} a^{\gamma s}\left\|Q_{s}\right\|_{p} \leqslant \frac{1}{a^{(1-\gamma) m}} \sup a^{s}\left\|Q_{s}\right\|_{p} \leqslant \frac{c K}{a^{(1-\gamma) m}} .
\end{aligned}
$$

Moreover,

$$
\|f\|_{H_{p}^{r r}} \leqslant c\|f\|_{H_{p}^{r}} \leqslant c K
$$

(of 6.2(3)).
We will consider the function from the space

$$
E=H_{p}^{\mathrm{yr}}=H_{p}^{\mathrm{vr}}\left(R_{n}\right)
$$

also as elements of the space

$$
E_{\Delta}=H_{p}^{v r}(g) \quad\left(g \subset R_{n}\right),
$$

where, obviously,

$$
\|f\|_{E_{0}} \leqslant\|f\|_{E_{E}}
$$

We have

$$
f=T_{m}(f)+\left(f-T_{m}(f)\right)
$$

where for f

$$
\left\|i-\eta_{1}(f)\right\|_{E} \leqslant \frac{c K}{e^{(1-v) m}} \rightarrow 0 \quad(m \rightarrow \infty) .
$$

Further

$$
T_{m}(f)\left\|_{p} \leqslant\right\| T_{m}(f)\left\|_{H_{p}^{v r}} \leqslant\right\| f \|_{E}+\frac{c K}{a^{(1-\gamma) m}} .
$$

Therefore, the image of any sphere E in the transformation T_{m} is a set of functions $T_{m}(f)$ of exponential type $a^{m / r j}$ with respect to x_{j} bounded in the sense $L_{p}=L_{p}\left(R_{n}\right)$. In this case, this set is compact on any bounded set $g \subset F_{n}$ in the sense of the metric $c^{1}(g)$ (cf 3.3.6*)), and therefore for any natural I it is also compact in the sense $E_{*}-H_{p}^{r}(g)$. We have proven that $T_{m}\left({ }^{\prime}\right)$ is a wholly continuous operator (generally speaking, nonlinear).

As a consequence of the above proven lenma, m is a set compact in $H_{p}^{\nu r}(g)$. Since this argumentation applies to any v with $0<v<1$, then \mathcal{M} is compact in the $H_{p}{ }^{r}$-sense for any specified V. Let us take a specific sequence of numbers $\left\{v_{k}\right\}$ monotone-approaching 1, and let us specify an arbitrary sequence of functions $\left\{f_{1}\right\}$ from $F(\subset M)$. By virtue of the proven completeness of $H_{p} \mathrm{H}_{\mathrm{r}}$ as well ($\mathrm{cf}^{2} \mathrm{l}_{4} 7$), from it we can separate a subsequence $\left\{\mathrm{f}_{\mathrm{I}_{k}}\right\}$ convergent in the metric $H_{p}^{\gamma_{1} r}$ to some function $\mathrm{f} \in \mathrm{H}_{\mathrm{p}}{ }_{1} r$. In turn, from the resulting subsequence we can separate a subsequence $\left\{f_{1} \sum_{k}\right\}$ convergent in the metric $H_{p}^{\gamma_{2}{ }^{r}}$ to the function $\mathrm{f} \in \mathrm{H}_{\mathrm{p}}^{\gamma_{2}{ }^{\text {r }}}$, which is obviousiy the same. Continuing this process without limit and taking the diagonal sequence that we denote by $\left\{\mathrm{f}_{\mathcal{l}_{k}}\right\}$, we find that $f_{I_{k}} \rightarrow \mathrm{f}$ in the sense of the metric $H_{p}^{\gamma_{s}^{r}}$, whatever the s, but then by $(6.2(3))$, this
of the metric $H_{p}^{r^{\prime}}$, where $r_{j}^{\prime}<r_{j}(j=1, \ldots, n)$.
*) From the boundedness (in the L_{p}-sense) of functions $T_{m}\left(f_{k}\right)(k=1,2, \ldots$) follows the boundedness of their derivatives of axy given order. The application of 3.3 .6 not only to functions, but also to their derivativesup to order l inclusively and tho diagonal process leads to compactness not only in the $c(g)$-sense, but also in the $c^{\mathcal{L}}(\mathrm{g})$-sense.

We have proven (3) in the case b) for $\theta=\infty$; the remaining case a) and b) when $1 \leq 0<\infty$ reduce to the samo case, because $H_{p}^{r}, B_{p \theta}^{r} \rightarrow H_{p}^{r}$. But it atill remainafor us to prove a more subtle fact, that the limit function f belonge, specifically, to W_{p}^{r} and $B_{p 0}^{P}$ and that the inequalitios hold, respectivaly

$$
\|f\|_{0_{i}^{r}}\|f\|_{b_{\infty}^{r}} \leqslant N .
$$

Inequality $\|f\| \leqslant M$ follows from (1), (2), and (3).
Aa always, we will assert that $r_{j}=\bar{r}_{j}+\alpha_{j}$ whore \bar{r}_{j} is an integer and $0<\alpha_{j} \leqslant 1$. Lot $f_{x_{j}}^{\bar{r}_{j}}$ atand for the partial derivative of f of order \bar{r}_{j} with rospect to $x_{j}\left(\bar{r}_{j}<r_{j}^{\prime}<r_{j}\right)$.

Then (6.2(3))

$$
\begin{equation*}
\left|f_{L_{k}}-f \|_{0} \cdot\right| f_{n^{x} j}^{\prime \prime}-\left.f_{x_{j}}^{\prime \prime}\right|_{0} \leqslant c\left|f_{l_{n}}-f\right|_{\mu_{0}^{r}} \rightarrow 0 \quad\left(l_{A} \rightarrow \infty\right) \tag{4}
\end{equation*}
$$

In the case b) the functions $f_{1_{k}}$ are aubject to inequality (2), there-
fore

$$
\begin{align*}
& \left(\int_{-\infty}^{\infty}|u|^{-1+\infty}\left|A_{x, \mu}^{2} f_{i_{x}}^{\prime}(x)\right|_{0} d u\right)^{10}=m_{1}^{(i)} \quad(1<0<\infty) \text {, } \tag{5}\\
& \left|\Delta_{x_{j} u}^{2} f_{i_{k} j_{j}^{\prime}}^{(x)}\right|, \leqslant m_{j}^{(k)}|u|^{2} \quad(\theta=\infty),
\end{align*}
$$

where

$$
\sum_{i=1}^{n} m_{f}^{(k)} \leqslant N \quad(j=1, \ldots, n ; k=1,2, \ldots) .
$$

Pasaing (5) to the linit as $k \rightarrow \infty$, based on (4) we get

$$
\begin{aligned}
& m_{j}=\left(\left.\int_{-\infty}^{\infty}|u|^{-1-\infty}| | \Delta_{x, u}^{2} f_{x j}^{\prime \prime}(x)\right|_{j} d u\right)^{10} \leqslant \lim _{n \rightarrow \infty} m^{(x)} \\
& \left|\Delta_{x, u}^{2} u_{i_{x}, j}^{\prime}(x)\right|_{,}^{(1 \leq \theta<\infty)} \leqslant \overline{\lim m_{l}^{(x)}|u|^{a,} \quad(\theta=\infty),}
\end{aligned}
$$

therefore $\left(f \in L_{p}\right) f \in B_{p e}^{r}$

$$
\|f\|_{b_{\infty}^{\prime}}-\sum_{i=1}^{n} m, \leqslant N .
$$

In the case a) the functions $f_{l_{k}}$ are subject to inequalitios

$$
\begin{equation*}
\left|\frac{a_{x, \mu} l_{k k_{1}^{\prime}}^{\prime}}{4}\right|_{p} \leqslant\left|r_{k^{\prime}, 1}^{\prime}\right|_{p} \leqslant m_{1}^{(a)}, \tag{6}
\end{equation*}
$$

whore

$$
\sum_{i=1}^{n} m_{i}^{(k)} \leqslant N .
$$

Passing to the limit in (6) as $k \rightarrow \infty$, we get

$$
m_{j}=\left|\frac{\Delta_{x} l_{t} l_{t i}^{\prime \prime}}{u}\right|, \leqslant \lim _{t \rightarrow \infty} m_{i}^{\left(m_{1}\right)}
$$

and since further $f \in L_{p}$, then (of 4.8) $f \in W_{p}^{r}$ and

$$
\|f\|_{v_{i}^{\prime}}-\sum_{i=1}^{n} m_{j} \leqslant N .
$$

Note. In the theorem proven W_{p}^{r} and $B_{p 0}^{r}$ can be replaced, respectively, by W_{p}^{r} and B_{p}^{r}, and then in (3) we can replace r^{\prime} with $r^{\prime}, 0<r^{\prime}<r$. The case ψ_{p}^{r} and similar cases that can be proven on analoge find application in the theory of variational mothods. It is very essential to applicationithat the inoquality of type (1) entails the same inequality for the limit function with the seme constant. In the theorem, the classes involvod can be roplaced by the corresponding periodic classes.
7.7.1. Theorem. In order that the set M are functions $f \in L_{p}=L_{p}(g)$
where $g \subset R_{h}$ is an arbitrary domain, be compact, it is necessary and surficiont that $h_{\text {it }}$ be: 1) bounded in L_{p}, and 2) equicontinuous translationwise in L_{p} :

$$
\begin{aligned}
& \Lambda(\delta)=\sup _{i \in \lambda} \omega\left(\delta, f_{\rho} \rightarrow 0 \quad(\delta \rightarrow 0),\right. \\
& \omega(\delta, f)_{p}=\sup _{\| h<\delta}\|f(x+h)-f(x)\|_{p} \quad\left(f=0 \text { на } R_{n}-g\right),
\end{aligned}
$$

3) and that the functions $f \in M$ diminish uniformily with respect to the norm in L_{p} at infinity

$$
\sup _{\mid=\sharp y}\|f\|_{\left.L_{1},|x|>N, x, z \sharp\right)} \rightarrow 0 \quad(N \rightarrow \infty)
$$

This theorem was proven in the book by S. L. Sobolev $[\bar{L}-\bar{J}$, Chapter I, section 4.3. Property 3), obviously, drops out for a bounded domain 8 . When $p-\infty$, the theorem geberally ceases to be valid. In this case the translationwise norm of an individual function in general will not tend to zero as $h \rightarrow 0$.
7.7.2. Theorem. For the set m of functions $f \in W \in W_{p}^{2}\left(R_{n}\right),(1 \leqslant p$ $<\infty, 1 \geqslant 0$) bounded in $L_{p}=L_{p}\left(R_{n}\right)$ to be compacted W, it is $\left.W_{p} R_{n}\right)$ and sufficiont that m be equicontinuous translationwise:

$$
\begin{equation*}
\Lambda(\delta)=\sup _{|\in \||} \sup _{|h|<0}\|f(x+h)-f(x)\| \rightarrow 0 \quad(\delta \rightarrow 0) \tag{1}
\end{equation*}
$$

and that the functions $f \in M$ uniformiy diminish normwise at infinfty:

$$
\begin{equation*}
\sup _{i \in \neq N}\|f\|_{L_{p}(1 \times 1>N)} \rightarrow 0 \quad(N \rightarrow \infty) . \tag{2}
\end{equation*}
$$

In this formulation W can be replaced by $B=B_{p \theta}^{r}\left(R_{n}\right)(1 \leqslant p, \theta<\infty, v \geqslant 0)$.
Proof. We will consider the space W, but W can everywhere be replaced by B. But n ' be compact in W. Then it is compact also in L, because (cf I.I.1) satiafies property (2). By the general compactness criteribn (Hausdorff (11」), for a given $\varepsilon>0$, we can specify a finite system of functions $f_{j}(f=1, \ldots, N)$ such that for any function $f \in M$ we can find a j (dependent on f) for which

$$
\|f-f,\|<e
$$

We can also specify δ and N such that the inequality (cf 5.6.5)

$$
\|f(x+h)-f(x)\|_{r}<e, \quad\|f\|_{L_{p}}|x|>N_{1}<e, \quad|h|<\delta
$$

will be satisfied for all $f_{j}(J=1, \ldots, N)$. But then for and $f \in m$, given
suitable j,

$$
\begin{aligned}
& f(x+h)-f(x) w \leq f(x+h)-f_{j}(x+h) w+ \\
& \quad+f_{j}(x+h)-f_{j}(x) w+f_{j}(x)-f(x) w<3 e \quad(|h|<\delta),
\end{aligned}
$$

if δ is sufficiently small, and must be proven in (1). The necessity of the conditions in the theorem is proven.

Suppose, conversely, that M is a set bounded in L_{p} and satisiying conditions (1) and (2). Then based on 7.7 .1 , it is compacted in $L_{p}(\|\cdot\| W$ $\|\cdot\| L_{p}$). Let us introduce a new concept -- the module of continuity of $\mathrm{f} E \mathrm{~W}$:

$$
\omega(t)=\omega(f, t)=\sup _{|h|<t}\|f(x+h)-f(x)\|_{W}
$$

It satisfies the conditions

$$
\begin{gather*}
0 \leqslant \omega\left(\delta_{2}\right)-\omega\left(\delta_{1}\right) \leqslant \omega\left(\delta_{2}-\delta_{1}\right) \quad\left(0<\delta_{1}<\delta_{2}\right), \\
\omega(l \delta) \leqslant(l+1) \omega(\delta) \quad(l, \delta>0) . \tag{3}
\end{gather*}
$$

This is proven precisely as for the module of continuity of f in L_{p} (cf 4.2). From (3) it follows that for the function $\Lambda(\delta)(c f(1))$: the inequality

$$
\begin{equation*}
. l(l \delta) \leqslant(l+l) . \Lambda(\delta) \quad(l, \delta>0) \tag{4}
\end{equation*}
$$

is also satisfied. Let us further introduce a function of one variable

$$
K_{k}(t)=a_{k}\left(\frac{\sin k t}{t}\right)^{\lambda} \quad(k>1)
$$

that is integral and of the exponential type $k \lambda$, where $\lambda>n+1$ is an evon natural number and the constant a_{k} defined from the equality

$$
\begin{aligned}
I=\int_{k_{n}} \kappa_{n}(u \mid) d u & =a_{k} x_{n} \int_{0}^{\infty}\left(\frac{\sin k t}{t}\right)^{\lambda} t^{n-1} d t= \\
& =k^{n-n} a_{k} x_{n} \int_{0}^{\infty}\left(\frac{\sin t}{1}\right)^{\lambda} t^{n-1} d t-c k^{\lambda-n} a_{k}
\end{aligned}
$$

(K_{n} is tho urea of a unit field in R_{n}, and c does not depend on k and a_{k}). Hence it follows that

$$
a_{k}=O\left(k^{n-\lambda}\right) \quad(k>1)
$$

Let us supposo

$$
U_{k} f=\int K_{k}(\| u \mid) /(x+u) d u
$$

from whence

$$
\begin{align*}
& . \text { Для } f^{f} \in \mathbb{Q} \quad\left\|U_{k} f\right\|_{p} \leqslant\left\|K_{k}\right\|_{L}\|f\|_{p} . \\
& \quad i-U_{k} f\left.=\int K_{k}(\mid \boldsymbol{u} \|) \|(\boldsymbol{x})-f(\boldsymbol{x}+\boldsymbol{u})\right] d \boldsymbol{u}, \tag{5}
\end{align*}
$$

$$
\text { For } \mathrm{f} \in m
$$

therefore

$$
\begin{align*}
& \left|f-U_{k} f\left\|_{u} \leqslant \int K_{k}(|u|)\right\| f(x)-f(x+u)\right|_{x, u} d u \leqslant \\
& \leqslant \int K_{k}(|u|) \Lambda(|u|) d u \leqslant \int_{|u|<0} K_{k}(|u|) \Lambda(|u|) u u+ \\
& \quad+\int_{|u|>0} K_{k}(|u|) \Lambda\left(\frac{|u|}{\delta} \delta\right) d u \leqslant \\
& \leqslant \Lambda(\delta)+\Lambda(\delta) \int_{|u|>0} K_{k}(|u|)\left(1+\frac{|u|}{\delta}\right) d u< \tag{6}\\
& <\varepsilon+\varepsilon=2 \varepsilon \quad\left(k>k_{0} \mid\right.
\end{align*}
$$

where k_{0} is sufficiently large, because by (1) we can specify such a δ that $\triangle(\delta)<\varepsilon$ and consequently $\delta-$ the second member of the penultimate term in (6) -- can be made also smaller than E for sufficiently large k :

$$
\begin{aligned}
& \int_{|=|>0} K_{k}(|n|)\left(1+\frac{|m|}{\delta}\right) d u \ll \\
& \quad \ll k^{n-\lambda} \int_{0}^{\infty}\left(\frac{\sin k t}{t}\right)^{\lambda}\left(1+\frac{t}{\delta}\right) t^{n-1} d t \ll \\
& \quad<k^{n-1} \int_{0}^{-}\left(1+\frac{t}{\delta}\right) t^{n-\lambda-1} d t=c_{0} k^{n-\lambda} \rightarrow 0 \quad(k \rightarrow \infty) .
\end{aligned}
$$

We have proven that

$$
\sup _{l \in: x}\left\|f-U_{n}\right\|_{w \rightarrow 0} \quad(k \rightarrow \infty)
$$

Now let a sequence of Iunctions $f_{1} \Leftarrow M$ be givon. If it is compact in L_{p}, therefore from it we can separate a subsequence that we will again denote by $\left\{\delta_{\perp}\right\}$ convergent to some function $f \in L_{p}$. For any $\{i x e d k(c \rho(s))$

$$
U_{n} \|_{1} \rightarrow \dot{U}_{n} l \quad(l \rightarrow \infty)
$$

in L_{p}, but then also in W, because for f ixed k the functions $J_{k} f_{I}(1=1,2$, ...) are integral and the exponential spherical type $k \lambda$ (af 3.6 .2 and lenma 7.7.3 below).

By (7), for any $\varepsilon>0$ we can select a k such that

$$
\left\|f_{l}-U_{k} f_{l}\right\|_{W}<e \quad(\text { for all } 1=1,2, \ldots)
$$

Consequently, the sequence $\left\{f_{\mathcal{I}}\right\}$ exhibits the property that for any $\varepsilon>0$ we can specify a k such that

$$
f_{l}=U_{a} f_{1}+\left(f_{l}-U_{n} f_{l}\right)_{1}
$$

where the first term canverges as $1 \rightarrow \infty$ in the W-sense, and the second, with reapect to the nom W, does not exceed \mathcal{E} for any $1=1,2, \ldots$ But then by virtue of the completeness of W

$$
f_{1} \rightarrow f \quad(l \rightarrow \infty)
$$

in W. The theorem is proven.
7.7.3. Lemma. The inequality

$$
\begin{align*}
& \left|g_{v}\right|_{v} \leqslant\left(1+\sum_{i}^{n} v_{j}^{\prime}\right)\left|g_{v}\right|_{L_{n}} \tag{1}\\
& \left|g_{v}\right|_{0} \leqslant c\left(1+\sum_{1}^{n} v^{\prime} \prime\right)\left|g_{v}\right|_{L_{p}} \tag{2}
\end{align*}
$$

is obtained in the notation of theorem 7.7.2, where c is a constant not dependent on the series of the standing multiplier and g is an integral function of exponential type $v=\left(v_{1}, \ldots, v_{n}\right) \geqslant 0$. In (2) B can be replaced with $H=$ $H_{p}^{F}\left(R_{n}\right)$.

Thus, if the sequence $\mathrm{o}^{\text {l }}$ of integrnl functions of the same type tends to some function $b_{v}\left(c f(3.5)\right.$ in the $L_{p}-8 e n s e$, then it also does $s 0$ in the sense of W, H, and B.

Proof. Inequality (1) borrows directly from the definition of w and Bernshteyn's inequality $3.2 .2(9)$. The function $g=E y$ is integral and
the type ν_{j} with respect to x_{j}, and consequently, is also of the type $2^{s}>1+\gamma_{j}$, where s is the smallest natural number for which inequility is satisfied. Let us set $\mu_{20}==\mu_{2}=\ldots=\mu_{2}=1=0, \quad g_{2}:=g$,
then (of 5.6.6(6)

$$
\begin{gathered}
g=g_{2^{0}}+\sum_{1}^{\prime}\left(g_{2}-g_{2^{\prime}-1}\right) \\
\cdot\|g\|_{B_{x_{j}^{\prime j \theta}}^{\prime}}=2^{8 r}\|g\|_{L_{\mu}} \leqslant 2^{\prime}\left(1+v_{f}\right)^{\prime}\left\|_{g}\right\|_{p} \leqslant c\left(1+v_{j}^{\prime}\right)\|g\|_{p} \\
(j=1, \ldots, m)
\end{gathered}
$$

from whence it follows (2). Obviously, in these considerations we can replace B with H.
7.7.4. Theorem 7.7.2 remains valid and is proven precisely just as when W in it is replaced by $H=H_{p}^{r}\left(R_{n}\right)(r \geqslant 0,1 \leqslant p<\infty)$, but it is prosupposed that for each function $f \in m$ the reaction

$$
\begin{equation*}
\|f(x+h)-f(x)\|_{A} \rightarrow 0 \quad(|h| \rightarrow 0) \tag{1}
\end{equation*}
$$

obtains (which in general (ioes not hold).
In the case $p=\infty$, it is valid.
7.7. $\%$. Theoram. Let there be givon a set $M \subset H$. $H^{r}\left(H_{n}\right)(r \geqslant 0) 0_{i}^{\prime}$ functions f, each of which belones further to the class $\mathbb{C} \cdot \mathbb{C}\left(R_{n}^{n}\right)$ of functions continuous on R_{n} and with a finite limit at the point $x-\infty$. Then for oach function $f \in M, 7.7 .4(1)$ obviously holds. Lot, moreover, m be boundea in c.

For 7 to be compact in H, it is necessary and sufficiont that the conditions

$$
\Lambda(\delta)=\sup _{\mid \in \geq x} \sup _{|h| \leq 0} \| f(x+h)-f(x) \nmid \nrightarrow 0 \quad(0 \rightarrow 0)
$$

be satiafiod ing that for ang $\varepsilon>0$ we can also :ind i.. i. >0 such that

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|<e \tag{1}
\end{equation*}
$$

whatever the x and x^{\prime} satiafying inequalities $|x|,\left|x^{\prime}\right|>N$ for all f $\in M$.
The proof of this theorem is also exactly the same as the proof of 7.7.2, if wo take note of the fact that the following assertion holds here: For the set $M \subset \tilde{C}$ of functions to be compact in \tilde{C}, it is necessary and sufficient that it be: 1) bounded, 2) equicontinuous (on R_{n}), and that 3) for any $\varepsilon>0$ a N be found such that property (1) holds.

This latter assertion can be easily obtained by starting from Arzela's thooren: satisfying for m_{i} conditions 1) and 2) for an arbitrary sphere $|x|<N$ is necessary and sufficient for the compactness of M on this sphere.

CHAPTER VIII INTEGRAL HEPRESENTATIONS AND ISOMDRPHISM OF ISOTROPIC CLASSES

8.1. Bessel-Macdonald_Kernels

The Fourier transform of the function $\left(1+|x|^{2}\right)^{-r / 2}$ for sufficiently large $r>0$ can be obtained effectively; since it is a function of $|x|$, then to it the familiar formula*)

$$
\begin{aligned}
&\left(1+|x|^{2}\right)^{-1 / 2}=\frac{1}{(2 \pi)^{n 2}} \int \frac{e^{(u 1} d z}{\left(1+|z|^{2}\right)^{\prime n}}= \\
&=\frac{1}{|u|^{\frac{n-1}{2}}} \int_{0}^{\infty} \frac{\rho^{n 2}}{\left(1+\rho^{2}\right)^{\prime 2}} I_{\frac{n-2}{2}}(|u| \rho) d \rho,
\end{aligned}
$$

where I_{A} is the Bessel function of order μ, is applied.
This integral (Hankel type) is computed, for example, in the book by Titchmarsh**), where we must take $\mu+1=r / 2, v+1=n / 2$, which yiclus

$$
\begin{align*}
& \frac{\Delta}{(1+\mid x)^{2-2}}=\frac{1}{2^{\frac{r-2}{2}} \mathrm{r}\left(\frac{r}{2}\right)} \frac{K_{\frac{n-r}{}}^{2}(|x|)}{|x|^{\frac{n-1}{2}}}=G_{,}(|x|) . \tag{1}\\
& K_{v}(z)=K_{-v}(z)=\frac{1}{2}\left(\frac{z}{2}\right)^{\prime} \int_{0}^{\infty} \xi^{-N-s} e^{-t-\frac{z^{\prime}}{4}} d \xi . \tag{2}
\end{align*}
$$

\#) Bochner $\overline{1} \overline{1}_{2} / 2$ theorem 5.6, page 263.
*i) Titchmarsh L1_/, 7.11.6, page 26k,_seo further Watson LT]/, section 13.6(2), page 476 and N. Ya. Sonin L1』.

Function $K(2)$ is called the Macdonald function of order ν or the modifiod Bessel function of order

Asymptotic ostimates are familiar or tine kernol $K(x)$ is a function of the single variable x.. Here we will give them without proof, referring to the book by Matson [1]. (below these references will be denoted by the letter B). The following asymptotic equalities hold:

$$
\begin{aligned}
& K_{v}(x)=\left(\frac{\pi}{2 x}\right)^{1 / 2} e^{-x}\left(1+O\left(\frac{1}{x}\right)\right) \quad(1<x) \\
& \text { (B7.2.3(1), page 226), } \\
& K_{0}(x)=\ln \frac{1}{x}+O(1) \quad(0<x<1) \\
& \text { (B 3.7.1 (14), page 95) } \\
& \text { (B 3.7.1(15), page 95) } \\
& K_{v}(x)=\frac{\cdot \pi}{2 \sin |v| \pi \Gamma(-|v|+1)}\left(\frac{1}{2} x\right)^{-|v|}+O(x-|v|) \\
& (x \rightarrow 0, \nu \text { is a nonintegar })
\end{aligned}
$$

(B $3.7(6)$, page 92; 3.1 (8), pace 51)
For our purposes, it would be quite surficient to boar in mind that fran these eatimes it follows that

$$
\begin{aligned}
& \left|K_{v}(x)\right| \leqslant \frac{c c^{-x}}{x^{1 / 2}} \quad(1<x), \\
& \left|K_{0}(x)\right|<c\left(\ln \frac{1}{x}+1\right) \quad(0<x<1), \\
& \left|K_{v}(x)\right| \leqslant \frac{c}{x^{1 v 1}} \quad(0<x<1, ; 0 \text { is any nusiber }),
\end{aligned}
$$

where c dopends on γ, but not on x.

Incidenteily, inequalitios (3) can earily be obtained directiy, by eotimatins the intecrel

$$
\begin{equation*}
T(v, x)=\int_{0}^{\infty} \xi^{-v-1} e^{-t-\frac{x}{4}} d \xi . \tag{4}
\end{equation*}
$$

Parameter $\nu=\lambda+i \mu$ can be assumed complex in integral (4). If we consider that

$$
\begin{equation*}
\left|\xi^{-\nu}\right|=\left|\xi^{-\lambda}\right| . \tag{5}
\end{equation*}
$$

then estimetes (3) remain velid whon v in them is ropleced by λ and for complex v. Lot us note that the integral hal oniy two aingularitios $\xi=\infty$ and $\xi=0$, and the integrand is contimuous with reapect to $(\xi, x, \vee)(\xi>0)$ for any real x and complax $v ;$ moreover, the intecral uniforily convergee relative to the indicated x, v in a falsis andi michborbood of ary indicated point x_{0}, v_{0}. This abow that $\phi(v, x)$ is contimous relative to v, x. These facts also obtain for the integral formaily differentiated with reapect to ν. This shows that the function $\phi(v, x)$ has the derivative $\partial 人 \nu \phi(v, x)$ with respect to ν and thie derivative is continuous with respect to (ν, x). Thus, $\phi(\nu, x)$ is analytic with reopect to V.

In equality (1) ita loft alde, if it is considered at a goneralized function, io manigerul for any complax r. The richt aide, expresaible by moans of intefrel (2), iso is maningful as an ordinary function of (x, x), whatevor he the complex number $r(\operatorname{Ror}>0)$ and points $x \in R_{n}, x \neq 0$. Additionally, $G_{r}(|x|)$ is contimous relative to the indicated $n^{\prime}(r, x)$, just as its deri vative in 5 . Thus, it is analotic in r.

It follow from ostimes (3) and equality (1) that

$$
|G,(|x|)|<c_{1} \begin{cases}\frac{e^{-|x|}}{|x|^{\frac{n-r+1}{2}}} & (|x|>1, n, r \text { are and numbers }), \\ \ln \frac{1}{|x|}+1 & (|x|<1, n-r=0) \\ \frac{1}{|x|^{n-1}} & (|x|<1, n-r>0) \\ 1 & (|x|<1, n-r<0)\end{cases}
$$

where $c_{r}>0$ is a continuous function of r.
We took r as real in the inequalities. They are valid also by virtue of (5) if in their left members we take r as complex, but in their right substitute everywhere λ for $r=\lambda+i \mu$.

It is easy to see from (6) that $G_{r}(|x|) \in L\left(R_{n}\right)=L$. From the foregoing it follows that equallty (1) is actually valid for any complex r if Ror $=\lambda ン 0$. Actually, let $\varphi \in S$, then the function

$$
\left(\left(1+|x|^{2}\right)^{-2}, \varphi\right)=\left(\left(1+|x|^{2}\right)^{-2}, \dot{\varphi}\right)=\psi(r)
$$

1s, as eusily verified, an analytic function in r. On the other hand, using estimates (6) it can be directly established that function $\mathbf{G}_{\mathrm{r}}(|x|)$ with respect to module tees not exceed the summable function*) relative to r and satisfying the inequality $\left|r-r_{0}\right|<\delta\left(\lambda_{0}>\delta>0\right)$, and since $G_{r}(|x|) \varphi(x)$
is continuous from $(r, x), x \neq 0$ and ϕ is bounded, then by the Weierstrass characteristic, the function

$$
\psi_{1}(r)=\left(G_{r}(|x|), \Phi(x)\right)=\int G_{1}(|x|) \Phi(x) d x
$$

is a finite continuous function in $r(\lambda>0)$. By means of estimates (3) and (6), an anslogous fact**) is established for the derivative

$$
\frac{d}{d r} \psi_{1}(r)=\left(\frac{d}{d r} G,(|x|), \Phi(x)\right) .
$$

This shows that $\psi_{1}(r)$ is analytic for $\lambda>0$. Moreover, it is equal to $\psi(r)$ for oufficiently large real r, therefore, also for any complex r with $\lambda>0$, whatover be the $\Phi \in$ S. This is entailed by equality (1). Let us show that the following estimates

$$
\begin{aligned}
& \left|D^{\prime} G_{1}(|x|)\right| \leqslant
\end{aligned}
$$

LDGEND for (7):

1. s is any number $3 . \operatorname{sis}$ in odd number
2. s is an oven number

* and " L^{F} and "* on following page/
where c (continuously) depends on n, r, and s, but does not depend on x, obtain for derivatives of $G_{r}(|x|)$ of order $=\left(s_{1}, \ldots, s_{n}\right)$.

Notice that it is easily verified by induction that
where D^{s} is the operator of differentiation of order $=\left(s_{1}, \ldots, s_{n}\right), x^{k}=$ $x_{1}, \ldots x_{n}^{k_{n}}, k=\left(k_{1}, \ldots, k_{n}\right)$ are integral nonnogative vectors, $A_{k, 1}$ are constants, and the sum is extended over the pairs $k, 1$ satisfying the inequality indicated in the brackets.

Therefore

$$
\begin{align*}
& \left|D^{A} G_{r}(|x|)\right|<\left|D^{8} \int_{0}^{\infty} \xi^{\frac{n-r}{2}-1} e^{-i-\frac{1 \& P}{4}} d \xi\right| \ll \\
& <\sum\left|x_{0}^{\infty} \int_{0}^{\infty} \xi^{-\frac{n-r+22}{2}-1} e^{-i-\frac{1 \& H}{4}} d \xi\right| \ll \sum\left|x^{n} G_{r-21}(|x|)\right| . \tag{9}
\end{align*}
$$

where the suns, are extended over the pairs k, 1 specified in (8).
If $|x|>1$, then by virtue of the first assumption (6)

$$
\begin{aligned}
& \left|D^{\prime} G,(: x \mid)\right|<\sum \frac{\left|x^{*}\right| e^{-i s 1}}{|x|^{\frac{n-(t-2 \mid+1}{2}}} \ll \\
& \ll \frac{e^{-|x|}}{(x)^{2-1+1}+i-141} \ll-\frac{e^{-\mid x 1}}{|x|^{\frac{n-1+1}{2}}}
\end{aligned}
$$

because $1-|\mathbf{x}| \geqslant 0$. We have proven the first inequality in (7).
Now suppose $|x|>1$. If, additionally, $n-r+21>0$, then by virtue of the third estimates (6)
7) Constants c_{r} in inequality (6) are bounded for tho specified r.
*) The anslogous anisotropic case is examined in detail in 9.4 .

$$
\begin{align*}
\left|x^{*} G_{r-2 l}(|x|)\right| \ll \frac{\left|x^{\star}\right|}{|x|^{n-r+2 i}} & = \\
& =\frac{1}{|x|^{n-r+2 \mid-1} \mid} \ll \frac{1}{|x|^{n-r+10 \mid}} \tag{10}
\end{align*}
$$

ivecause $21-|\mathbf{k}| \leqslant|a|$.
Further, if $n-r+21<0$, then by the fourth estimate (6)

$$
\begin{equation*}
\left|x^{\star} G_{t-2 l}(|x|)\right| \ll\left|x^{\star}\right| \ll 1 \tag{11}
\end{equation*}
$$

If however for some 1 (one) $n-r+21=0$, then by the second estimates (6)

$$
\begin{equation*}
\left|x^{*} \dot{U}_{r-2 l}(|x|)\right| \ll\left|x^{*}\right| \left\lvert\, n \frac{1}{|x|} .\right. \tag{12}
\end{equation*}
$$

rurther, if $n-r+|a|>0$, the right member of (10) is larger than the right siace of (11) and (12) ($|\mathbf{k}| \geqslant 0)$. We have proven the third estimate for $n-r$ $+\mid s i \geqslant 0$. If however $n-r+|s|=0$ and $|s|$ is an odd number, then there is no natural 1 which $n-r+21 \div 0$ and in this case estimate (12) does not omerge, while estimates (10) and (11) yield 1. By this means, the third estimate (7) is completely proven. If however $n-r+|s|=0(|s|$ is an even number), then estimate (12) also arises. By this we have proven the second inequality in (7).

Finally, if $n-r+|s|<0$, then the right sides of (10) and (11) and when $|\mathbf{k}| 0$ are estimated by unity. It remains only to explore the case (12) when $\mathbf{k}=0$, but it is not possible, because from $n-r+i s i<0=n-$ $r+21$ follows inequality $1 \mid<21$, which contradicts the fact that in addition to this inequality $21-|\mathbf{k}| \leqslant|\varepsilon|, 1 . e ., 21 \leqslant|0|$, must be satisfied when $|k|=0$. Thus we have proven the last inequality in (7).

From inequality (7) it is easily seen that $G_{r}(|x|)$ for any $r>0$ and any natural n belong to $L\left(k_{n}\right)-L$, therefore for the functions $f \in L_{p}\left(R_{n}\right)=\operatorname{Ln}(1<p \leqslant \infty)$ the convolution

$$
\begin{equation*}
\left.f(x)=\frac{1}{(2 \pi)^{n / 2}} \int G,(|x-u|) j(u) d u=\left(\hat{i}+|u|^{2}\right)^{2-r / 2}\right)=1, f \tag{13}
\end{equation*}
$$

is meaningful. Here, obviously, $F \in L_{p}$. In fact, function F exhibits, as we will see, considerably better properties.

8.2. Isomorphism of the Classes W_{p}^{1}

 a linear operator A mapping E_{1} onto E_{2} mutually uniquely, and two positive constants c_{1} and c_{2} not dependent on $x \in E_{1}$, such that

$$
\begin{equation*}
c_{1}\|x\|_{E_{1}} \leqslant\|A(x)\|_{E_{3}} \leqslant c_{2}\|x\|_{E_{1}} \tag{1}
\end{equation*}
$$

for all $x \in E_{1}$.
We will state about operator A^{-1} that it executes the isomorphism E_{1} and E_{2} :

$$
\begin{equation*}
A\left(E_{1}\right)=E_{2} . \tag{2}
\end{equation*}
$$

Then the inverse operator A^{-1} obviously does exist, is linear, and in turn executes the isomorphism

$$
A^{-1}\left(E_{2}\right)=E_{1}
$$

We will prove that the operation I_{1} for natural 1 executes the isomorphism

$$
\begin{gather*}
I_{l}\left(L_{p}\right)=W_{p}^{\prime} \tag{3}\\
\left(1<p<\infty ; W_{p}^{\prime}=W_{p}^{\prime}\left(R_{n}\right), \quad L_{p}=W_{p}^{0}, l=0,1, \ldots\right) .
\end{gather*}
$$

Suppose $F \in W_{n}^{\top}$. Then

$$
\left(i u_{j}\right)^{\prime} \hat{F}=\frac{\partial^{\prime} F}{\partial x_{i}^{\prime}} \in I_{p} \quad(j=1, \ldots, n)
$$

and by virtue of the fact that $\left(i^{3} \text { sign } u_{j}\right)^{l}$ is a Marcinkievicz multiplier (cf 1.5.5, example 1, and 1.5.4.1),

$$
\left\|\left.^{\prime} \overline{u_{j}}\right|^{\prime} \stackrel{\rightharpoonup}{F}\right\|_{p} \leqslant c_{1} \|\left.\frac{\partial^{t} F}{\partial x_{i}^{i}}\right|_{p} .
$$

Therefore, considering further that $F=\mathrm{L}_{\mathrm{p}}$, we get

$$
\left|\left(1+\sum_{i=1}^{n} u_{j} i^{\prime}\right) \vec{F}\right|_{0} \leqslant c_{2}\|F\|_{\nabla_{p}^{\prime}} .
$$

But function

$$
\underset{\ldots \ldots}{\left(1+|u|^{12}\right.}\left(1+\sum_{1}^{n}\left|u_{1}\right|\right)^{-1}
$$

is a Marcinkievicz multiplier (1.5.5, example 7), therefore
and

$$
l=\overline{\left(1+|u|^{2}\right)^{1 / 2}} \bar{F} \in L_{p}
$$

$$
\begin{equation*}
\|f\|_{p} \leqslant c_{3}\|F\|_{v_{p}} \cdot \tag{4}
\end{equation*}
$$

Now suppose $f \in L_{p}$; then $\tilde{F}=\mathcal{C}_{1} \tilde{f}=\left(1+|\lambda|^{2}\right)^{-1 / 2} f$ and, by (1.5(10)),

$$
\overline{F^{(\lambda)}}=(i \lambda)^{*}\left(1+|\lambda|^{2}\right)^{-\frac{i}{2}} \tilde{j} .
$$

But when $|k|=1$, the function

$$
(i \lambda)^{k}\left(1+|\lambda|^{2}\right)^{-1 / 2}
$$

is a Marcinkievicz multiplier (of 1.5.5, example 5). Therefore

$$
\begin{equation*}
\left\|F^{(n)}\right\|_{\rho} \leqslant c_{1}\|f\|_{p} . \tag{5}
\end{equation*}
$$

But also (8.1(13)) $\|F\|_{n} \leqslant c_{5}\|f\|_{p}$, therefore $F \in W_{p}^{l}$ and

$$
\|F\|_{W_{p}^{\prime}} \leqslant c\|f\|_{p} .
$$

We have proved that the operation I_{I} executes isomorphism (3).
In the following it will be shown that it can serve as an artifice for defining an executing isomorphism of other classes of differentiable functions.

8.3. Properties of Bessel-Macdonald Kernels

Below it is proven for the Bessel-Macdonald kernel $G_{r}(|x|)$ when
$r>0$ that the estimate (s is a natural number, $-\infty<h<\infty$)

$$
\begin{gathered}
\Lambda=\int\left|s_{h, j}^{2} \frac{\partial^{s} G,(|x|)}{\partial x_{j}^{j}}\right| d x \leqslant M,|h|^{a} \\
(j=1, \ldots, n ; \quad s=\bar{r}, r=\bar{r}+a, \quad \bar{r} \text { is un integer, } 0<\alpha \leqslant 1)
\end{gathered}
$$

obtains.

Since $G_{r}(|x|) \in L=L\left(R_{n}\right)$ when $r>0$ then from (1) it follows (of definition of the classes H_{p}^{r} and 5.6.2), that
and

$$
\begin{equation*}
G_{r}(|x|) \in H_{1}^{r}=H_{1}^{r}\left(R_{n}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left\|G_{r}(|x|)\right\|_{H_{1}^{\prime}}=\left\|G_{r}(|x|)\right\|_{L}+M_{r} \tag{3}
\end{equation*}
$$

where M_{r} is the least constant for which inequalities (1) are satisfied.
Let us set $u=\left(u_{j}, \dot{u}^{\prime}\right), u^{\prime}=\left(u_{1}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{n}\right)$,
$g^{(t)}(x)=\frac{\partial G_{r}(|x|)}{\partial x_{f}^{\prime}}, \quad \Delta_{h}^{2} \Phi(t)=\varphi(t+h)-2 \varphi(t)+\varphi(t-h)$.

We will employ the four estimates 8.1 (7)(we will denote them by, reapectively, 1), 2), 3), and 4)).

By 1) - 3)

$$
\begin{aligned}
& \Lambda<4 \int \lg (n) \mid d u \ll \\
& \quad<\int_{|u|<1}\left(\ln \frac{1}{|u|}+\frac{1}{|u|^{n-r+e}}\right) d u+\int_{|\in|>1} e^{-\frac{|u|}{2}} d u \leqslant c<\infty,
\end{aligned}
$$

because $n-(r-n)=n-\alpha<n$. Therefore, for $|h| \geqslant 1$

$$
\begin{equation*}
\Lambda \leqslant c \leqslant c \mid h \rho^{p} . \tag{4}
\end{equation*}
$$

We will proceed to the case $|\mathrm{h}|<1$. For definiteness we will assume that $0<h<1$. We have

$$
\begin{equation*}
\Lambda=\Lambda_{1}+\Lambda_{1} \tag{5}
\end{equation*}
$$

where Λ_{1} is the same as the Λ, but now taken not over the entire space, but ovar the sphere $|\mathrm{a}|<4 \mathrm{~h}$. Then

$$
\begin{align*}
\Lambda_{1} & <4 \int_{|u|<2 k}\left|g^{(s)}(u)\right| d x
\end{aligned} \quad \begin{aligned}
& <\int_{|u|<2 n} \frac{d u}{|a|^{n+j-s}}<\int_{0}^{2 n} \rho^{a-1} d \rho<h^{e}
\end{align*}
$$

by virtue of estimate (3).
However, there remains the case

$$
n-r+s=0, \quad \text { s is an even number. }
$$

Since $0<r-s \leqslant 1$, then this can obtain if and only if $n=1, s=r-1$ is an even number, i.e., $\alpha=r-8-1$.

The required estimate then is obtained thusiy (the integrals are onedimenaional):

$$
\begin{aligned}
& \Lambda_{1} \leqslant \int_{|u|<d u}\left|g^{(u)}(u+h)-g^{(0)}(u)\right| d u+ \\
& +\int_{|u|<1 h}\left|g^{(u)}(u)-g^{(0)}(u-h)\right| d u \ll \\
& <2 \int_{|u|<8 k}\left|g^{(u)}(u+h)-g^{(u)}(u)\right| d u= \\
& =2 \int_{-m}^{-n}\left|g^{(n)}(u+h)-g^{(u)}(u)\right| d u+2 \int_{-n}^{0}+2 \int_{0}^{5 n}=\Lambda_{1}^{(i)}+\Lambda_{1}^{(n)}+\Lambda_{1}^{(n)},
\end{aligned}
$$

where

$$
\begin{aligned}
& \Lambda_{1}^{(3)}=2 \int_{0}^{3 n} d u\left|\int_{u}^{u+n} g^{(t+1)}(t) d t\right| \ll \int_{0}^{3 n} d u \int_{u}^{u+n} \frac{d t}{t}= \\
&=\int_{0}^{5 n} \ln \left(1+\frac{h}{u}\right) d u=h \int_{0}^{5} \ln (t+t) d t<h,
\end{aligned}
$$

and analogously

$$
1_{1}^{\prime \prime \prime}=
$$

and (considering that $G_{r}(|u|)$ is an even function, and bocause when $s \quad r-1$ is even, function $g(s)(u)$ is also even)

$$
\begin{aligned}
& 1_{i}^{\left(j^{\prime}\right.}=2 \int_{-h}^{0}\left|g^{(s)}(u+h)-g^{(s)}(u)\right| d u= \\
& =2 \int_{-h}^{0}\left|g^{(s)}(u+h)-g^{(s)}(-u)\right| d u= \\
& =2 \int_{0}^{n}\left|g^{(s)}(u)-g^{(s)}(h-u)\right| d u=2 \int_{0}^{n} d u\left|\int_{n-u}^{u} g^{(s+1)}(t) d t\right| \ll \\
& \ll \int_{0}^{n} d u\left|\int_{n-u}^{u} \frac{d t}{t}\right|=2 \int_{0}^{n}\left|\ln \frac{u}{h-u}\right| d u=2 h \int_{0}^{n}\left|\ln \frac{1}{1-t}\right| d t \ll h .
\end{aligned}
$$

By this way we fully proved (6). Let us proceed to the estimate

$$
\begin{aligned}
& \Lambda_{2}=\int_{|u|>+1}\left|\Delta_{n, x}^{2} g^{(s)}\right| d u= \\
& =\int_{|u|>+n}\left|\int_{0}^{n} \int_{0}^{n} \frac{\partial^{2} g^{(s)}}{\partial x_{j}^{2}}\left(u_{j}+v+t, u^{\prime}\right) d v d t\right| d u=
\end{aligned}
$$

where by virtue of 3) (considering that $n+s-r+2: n-\alpha+2 \geqslant n+1>0$)
anci noting that for $|u|>4 h,-2 h<u_{j}<0,\left|u^{j}\right| \geqslant|u|-\left|u_{j}\right| \geqslant 4 h-2 h-2 h$,
we get

$$
\begin{align*}
.2_{2}^{12} & <h^{3} \int_{\left.|u|\right|_{>2 h}} \frac{d u^{\prime}}{\left.\left|u^{\prime}\right|\right|^{n+s-r+2}} \ll h^{3} \int_{2 n}^{\infty} \frac{\rho^{n-2} d \rho}{\rho^{n+s-r+2}} \ll \\
& <h^{3} \int_{2 n}^{\infty} \rho^{n-1} d \rho \ll h^{e} . \tag{8}
\end{align*}
$$

From (4), (6), (7), and (8) follows (1).

8.4. Estimate of Best Approximation for If I^{f}

Let the function $f \in L_{p}=L_{p}\left(R_{n}\right), r>0$ and (8.1(13))

$$
\begin{equation*}
F=I, f=\frac{1}{(2 \pi)^{n^{2}}} \int G_{,}(|u|) f(x-u) d u . \tag{1}
\end{equation*}
$$

Furthor, let $\omega \in L_{,} \lambda_{\nu} \in L_{p}$ be arbitrary functions of the exponential spherical type ν. Thus, $\omega_{\nu} \in S m_{\nu}, \lambda_{\nu} \in S m_{\nu}$. We set

$$
\begin{aligned}
& F(x)-\Omega_{v}(x)= \\
&=\frac{1}{(2 \pi)^{n / 2}} \int\left[G_{1}(u)-\omega_{v}(u)\right]\left[f(x-u)-\lambda_{v}(x-u)\right] d u .
\end{aligned}
$$

Cbviously, $\Omega_{v} \in \operatorname{s} m_{v p}$ (cf 3.6.2) and

$$
\left\|F-\Omega_{v}\right\|_{p} \leqslant \frac{1}{(2 \pi)^{n_{2}}}\left\|G_{r}(|x|)-\omega_{v}(x)\right\|_{2}\left\|f-\lambda_{v}\right\|_{b} .
$$

"'herefore, considering that the function $G_{r}(|x|) \in H_{1}^{r}$ (cf 8.3) and that, consequently, its best approximation in the metric L by means of the integral functions of spherical degroc v or of the order $Q\left(v^{-F}\right)($ cf 5.5.4 $)$, we will have

$$
\begin{equation*}
E_{v}(F)_{p} \leqslant \frac{1}{(2 \pi)^{n / 2}} E_{v}\left(G_{r}(|x|)\right)_{L} E_{v}(f)_{p}=\frac{b_{r}}{v^{v}} E_{v}(f)_{p} \tag{2}
\end{equation*}
$$

Chero $B_{V}(P)_{P}, F_{V}(P)_{L}$ denote the best approximations of Φ by means of integral functions of the spherical type V, respectively, in the metrics L_{p} and L, where the constant b_{r} does not depend on the series of the standing

Now again let $f \in L_{p}$ and, additionally, let the Fourier transformation \tilde{f} (usually a generalized function) be equal to zero on the sphere v, with its center at the origin of coorcinates, with radius v (cf 3.2.6(5)):

$$
\begin{equation*}
\tilde{f}=0 \quad \text { on } v \quad v_{v} . \tag{3}
\end{equation*}
$$

Then (cf 3.2.6(6)), if $0<\lambda<\nu$, then the convolution of any function $\omega_{\lambda} \in S m_{\nu 1}$ with f equals zero:

$$
\omega_{\lambda}+f=\frac{1}{(2 x)^{21 / 2}} \int \omega_{1}(u) f(x-u) d u=0,
$$

therefore
and

$$
F(x)=I, f=\frac{1}{(2 \pi)^{n / 2}} \int\left[G_{,}(|u|)-\omega_{\lambda}(u)\right] f(x-u) d u
$$

$$
\|F\|_{0} \leqslant \frac{1}{(2 \pi)^{n / 2}}\left\|G_{1}-\omega_{A}\right\|_{L}\|f\|_{0} .
$$

But then, taking the lower bound with rospect to ω_{λ}, we get the inequality

$$
\|F\|_{\rho} \leqslant \frac{1}{(2 \pi)^{n / 2}} E_{\lambda}\left(O_{r}\right)_{L}\|f\|_{\rho}=\frac{b_{r}\left\|_{f}\right\|_{b}}{\lambda^{\prime}}
$$

which is valid for any $\lambda<\nu$, therefore

$$
\begin{equation*}
\left\|I_{f} f\right\|_{b}-\|F\|_{b} \leqslant \frac{b_{r}\| \|_{f}}{v^{\prime}} \quad\left(v>0 .()_{v_{v}}=0\right) \tag{4}
\end{equation*}
$$

where b_{r} is the constant entering into inequality (2). It does not depend on $v>O^{r}$ and on the I considered.

8.5. Multipilicator Equal to Unity on a Domin

By definition the generalized function $f \in S^{\prime}$ is equal to unity on the open set $g \subset R_{n}$ if for any function \subset finite in g, the relation

$$
(f, \varphi)=0 .
$$

obtains. If bere f does not only belong to S, but also is a function locaily sumable on g , thon almost everywhere

$$
f(x)=0 \quad \text { on } g .
$$

ictually, euppose σ ce g is an arbitrary sphere. There oxists (cf 1.4.2) a set of functions of finite in σ for which the bounded convergence

$$
\lim _{N \rightarrow \infty} \varphi_{N}(x)=\operatorname{sign} f(x) \text { almost evergwhere on } \sigma
$$

obtains. Therefore, by virtue of the Lebesfue theorem

$$
0=\left(f, \varphi_{N}\right)=\int_{0} f(x) \varphi_{N}(x) d x \rightarrow \int_{0}|f(x)| d x \quad(N \rightarrow \infty)
$$

1.e., $f(x)=0$ on σ almost ovarywhore, and consequently, also on g.

If $f_{1}, f_{2} \in S^{\prime}$ and $f_{1}-f_{2}=0$ on the open set g, then we can naturally say that $f_{1}=f_{2}$ on g.
8.5.1. Lemma. Suppose μ is a multiplicator in $L_{p}(1 \leqslant p \leqslant \infty ; \mu \in L$ when $p=\infty$; of $1.5 .1,1.5 .1 .1$) equal to unity on the open set $g \subset R_{n}$. Then for $f \in L_{p}$ and the general for the function f that is regular in the L_{p}-sense,

$$
\begin{equation*}
\widetilde{K_{*} \tilde{f}}=\tilde{\mathbf{I}}=\tilde{\mathbf{I}} \quad \text { on } \boldsymbol{E}(K=\hat{\mu}) . \tag{1}
\end{equation*}
$$

Proof. For $\Phi \in S$ that has a carrior in g, and for the infinitely differentiable finite function f

$$
\begin{equation*}
(\mu f, \varphi)=(\mu, f \varphi)=(1, f \varphi)=(\tilde{f}, \varphi) . \tag{2}
\end{equation*}
$$

Here we must consider that μ (by the definition of a multiplicator) is an ordi. nary measurable function by the condition of the lemma, equal to unity on E , therefore the second term in (2) is a Lobestue integral; moreover, by the condition of the lemma $\mu(x)=1$ on g, and $\tilde{f} \varphi$ has a carrier in g, which proves the second equality.

If $f \in L_{p}$, then we can find a sot of infinitely differentiabis finite functions $f_{1} p^{\prime}$ such that $f_{1} \rightarrow f_{, ~} \mu_{1} \rightarrow \mu \mathcal{F}_{1}$ woakly. Substituting f_{1} instead of f in (2) and passing to the linit as $1-\infty$, we again get (2), but now for $\mathcal{I} \in L_{p}$.

If now I is a function that is regular in the $L_{p}-$ sense, then for $P \in S$ with a carrier in g, for sufficiently large ρ we get

$$
\begin{aligned}
\left.\left(\widetilde{K} I_{,} \varphi\right)=\left(\overline{I_{-p}\left(K * I_{\rho} f\right.}\right), \varphi\right)=\left(\overline{\left.K * I_{p} f_{1}(1+\mid \lambda \beta)^{\rho / 2} \varphi\right)}\right. & = \\
& =\left(\widetilde{I_{\rho}},(1+\mid \lambda \beta)^{\rho / 2} \varphi\right)=(\tilde{Y}, \varphi)
\end{aligned}
$$

1.e. (1).
8.5.2. Lerma. Suppose the multiplicator $\mu=u_{N}=1$ on $\Delta_{N}=\left\{\left|x_{j}\right|<N\right.$; $j=1, \ldots, n\}$. Then if $N^{\prime}<N$ and the function $\omega_{N}, \in M_{N^{\prime} p}$ (integral and of the exponential type N^{\prime} with respect to all variables, and belonging to L_{p}), then

$$
\begin{equation*}
K \omega_{!} \quad \overparen{!\left(\omega_{n}\right.}-\omega_{n} \quad(K=\dot{\mu}) \tag{1}
\end{equation*}
$$

Proof. Suppose $\varepsilon>0$ and $N^{\prime}+\varepsilon<N$. Since ψ_{ε} is of exponential type $\varepsilon, \psi_{\varepsilon} \omega_{N^{\prime}} \in m_{N+\varepsilon, p}$. Moreover, $\psi_{e} \omega_{N^{\prime}} \in S$, because $\psi_{s} \in S$, and ω_{N}, together with ang of its derivatives is bounded $\left(\omega_{N}\right.$, is of polynomial group). Therefore
where the second equality obtains because the carrier $\tilde{\psi}_{\varepsilon} \omega_{N}, \varphi$ belongs to $\Delta_{N} \cdot$ Consequently,

$$
\begin{equation*}
\widetilde{\mu \psi_{\varepsilon} \omega_{V^{\prime}}}=\psi_{e} \omega_{N^{\prime}} . \tag{2}
\end{equation*}
$$

Passing to the limit in (2) in the weak sense as $\varepsilon \rightarrow 0$, we get (1). This follows from 1.5.8(6) for right side of (1). As far as left side is concerned, then we must consider that

$$
\left\|\psi_{e} \omega_{N^{\prime}}-\omega_{N^{\prime}}\right\|_{p}^{p}=\int \mid\left(\psi_{e}(x)-1\right) \omega_{N^{\prime}}(x) \|^{0} d x \rightarrow 0 \quad(e \rightarrow 0)
$$

by the Lebesgue theorem, from whence by virtue of the fact that μ is a multiplicator, the left side of (2) tends to the left side of (1) not only weakly, but even in the L_{p}-sense.

8.6. de la Vallob-Poussin Sums of a Rerular Function

In the theory of Fourier integrals, the kernel

$$
\begin{equation*}
\frac{\sin N_{t}}{t}=\int_{0}^{v} \cos n t d n \tag{1}
\end{equation*}
$$

for incegral N corresponds to the trigonometric polynomial

$$
\begin{equation*}
n_{V}^{\circ}(t)=\frac{1}{2}+\sum_{n=1}^{N} \cos n t=\frac{\sin \left(N+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \quad(N=0,1, \ldots) \tag{2}
\end{equation*}
$$

is callod a virichlet kernel of order N .

The arithmetic mean

$$
\begin{aligned}
& v_{N}^{\cdot}=v_{N}^{*}(t)=\frac{D_{N+1}^{\bullet}+\ldots+D_{2 N}^{\bullet}}{N}= \\
&=\frac{1}{2}+\sum_{0}^{N} \cos k t+\frac{1}{N} \sum_{N+1}^{2 N}(2 N+1-k) \cos k t= \\
&=\frac{\cos (N+1) t-\cos (2 N+1) t}{4 N \sin ^{2} \frac{t}{2}}
\end{aligned}
$$

is called the dela Valled-Poussin kernel*). We will state that it is of order N.

Important properties of the de Ia Valleb-Poussin kernel are as follows:
1*) ${ }^{*} \mathrm{~N}$ is an even trigonometric polynomial of order 2 N ;
2*) The Fourier coefficients ${ }^{*} \mathrm{~N}$ with indexes $\mathrm{k}=0,1, \ldots, \mathrm{~N}$ are equal to unity;

$$
\begin{aligned}
& \text { 3') } \frac{1}{\pi} \int_{-\pi}^{\pi} v_{N}^{*}(t) d t=1 \text {; } \\
& \left.4^{*}\right) \frac{1}{\pi} \int_{-\pi}^{\pi}\left|v_{N}^{*}(t)\right| d t=\frac{1}{2 N \pi} \int_{0}^{\pi} \frac{|\cos (N+1) t-\cos (2 N+1) t|}{\sin ^{2} \frac{t}{2}} d t \leqslant \\
& \leqslant \frac{\pi}{N} \int_{0}^{\pi} \frac{\left|\sin \frac{N}{2} t \sin \left(\frac{3 N}{2}+1\right) t\right|}{t^{2}} d t \leqslant \\
& \leqslant \frac{\pi}{N} \int_{0}^{\pi} \frac{\left|\sin \frac{N}{2} t \sin \frac{3 N}{2} t\right| d t}{t^{2}}+\frac{\pi}{N} \int_{0}^{\pi} \frac{\left|\sin \frac{N}{2} t\right|}{t} d t \leqslant \\
& \leqslant \pi \int_{i}^{\pi \pi} \frac{\left|\sin \frac{u}{2} \sin \frac{3}{2} u\right|}{u^{2}} d u+\frac{\pi^{2}}{2}<A<\infty .
\end{aligned}
$$

where A does not depend on $N \geqslant 1$.
*) de Ta Valled-Poussin LT_,.

Bolow we will conalder the corresponding analog of the de la VallebPousein kornel for the case of Fourier integral in the n-dimonsional case.

Lot us begin with ciusoidering an ordinary moagurable function $g(x)$ bounded on $R=R_{n}$, such that its Fourior tranaform in in turn in an ordinary bounded function. Suppose furthor $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a vector paramoter that will vary on the rectangle $\Omega_{a}=\left\{a<\lambda_{j}<2 a ; j=1, \ldots, n\right\}$, where $a>0$. The equality

$$
\begin{equation*}
\int_{Q_{0}} g\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right) d \lambda=\int_{0_{e}} \frac{:}{g\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)} d \lambda . \tag{4}
\end{equation*}
$$

obtaine. In fact, if $\Phi \in S$, then

$$
\begin{aligned}
\left(\int_{\Omega_{0}} g\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right) d \lambda_{:} \varphi\right) & =\int_{0_{\varepsilon}} d \lambda \int \overline{g\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)} \varphi(x) d x= \\
= & \int\left(\int_{0_{0}}^{g\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)} d \lambda\right) \Phi(x) d x= \\
& =\left(\int_{0_{0}}^{k\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)} d \lambda, \varphi(x)\right) .
\end{aligned}
$$

All the insqualities hare are obvious, and explanation is required only for the fact that $\&\left(\lambda_{1} x_{1}, \cdots, \lambda_{n} x_{n}\right)$ is when $\lambda \in \Omega_{a,}$ an ordimary bounded function. But this follows from the ${ }^{n}{ }^{n}$ equality

$$
\begin{gathered}
\pi\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)=\frac{1}{(2 \pi)^{n / 2}} \int u\left(\lambda_{1} u_{1}, \ldots, \lambda_{n} u_{n}\right) e^{-i x u} d u= \\
=\frac{1}{\prod_{1}^{n} i_{1}(2 \pi)^{n / 2}} \int g(u) e^{-i \sum_{i=1}^{n} \frac{x_{j} u_{j}}{\lambda_{j}} d \mu} .
\end{gathered}
$$

and the asaumptions that \tilde{g} is an ordinary bounded measurable function.
The apalog of the de la Vallob-Pousain kernel is dofined by means of an equality analogous to (3):

$$
\begin{align*}
V_{N}(t) & =\frac{1}{N^{n}} \int_{Q_{N}} \prod_{l=1}^{n} \frac{\sin \lambda \mu_{j}}{t_{j}} d \lambda= \\
& =\frac{1}{N^{n}} \prod_{l=1}^{n} \int_{N}^{2 N} \frac{\sin v t_{j}}{t_{j}} d v=\frac{1}{N^{n}} \prod_{\mid=1}^{n} \frac{\cos N t_{j}-\cos 2 N t_{j}}{t_{l}^{2}} . \tag{5}
\end{align*}
$$

The kernel V_{N} satisfies properties analogous to properties $\left.1^{*}\right)-4^{*}$):

1) $V_{N}(z)$ is an integral function of the exponential type of degree $2 N$ with respect to each of the variables $z_{j}(j=1, \ldots, n)$, and is bounded and summable on R;

$$
\begin{align*}
& \text { 2) } \quad\left(\frac{2}{\pi}\right)^{n / 2} \tilde{V}_{N}=\frac{1}{\pi^{\pi}} \int V_{N}(t) e^{-t x t} d t=1 \quad \text { on } \quad N^{\prime} \tag{6}\\
& \Delta_{N}=\{|x,| \leqslant N ; i=1, \ldots, n\}, \\
& \text { 3) } \tag{7}\\
& \text { 4) } \quad \frac{1}{\pi^{n}} \int V_{N}(t) d t=1, \tag{8}\\
& \text { 4 } \quad \int\left|V_{N}(t)\right| d t \leqslant M \quad(N \geqslant 1) .
\end{align*}
$$

Property 1) is established without difficulty. Property 3) follows from the equality

$$
\frac{1}{\pi} \int \frac{\sin v t}{t} d t=1 \quad(v>0)
$$

where the improper Riomann integral converges uniformiy relative to $v \in[\bar{N}, 2 N \sim$, owing to which the integration of this integral with respect to parameter can be validly carried out under the sign of the integral

$$
\begin{aligned}
& \frac{1}{n^{n}} \int V_{N}(t) d t=\frac{1}{(\pi V)^{n}} \prod_{i=1}^{n} \int d t, \int_{N}^{2 v} \frac{\sin v t}{t} d v= \\
&=\frac{1}{N^{n}}\left(\int_{N}^{2 v} d v \frac{1}{n} \int \frac{\sin v t}{i} d t\right)^{n}=1 .
\end{aligned}
$$

Property 4) is obvious:

$$
\begin{aligned}
& \frac{1}{N} \int_{-\infty}^{\infty} \frac{|\cos N t-\cos 2 N t|}{t^{2}} d t=\frac{2}{N} \int_{0}^{\infty} \frac{\left|\sin \frac{N}{2} t \sin \frac{3}{2} N t\right|}{t^{2}} d t= \\
&=2 \int_{0}^{\infty} \frac{\left|\sin \frac{u}{2} \sin \frac{3}{2} u\right|}{u^{2}} d u<\infty .
\end{aligned}
$$

Lot us consider the function

$$
D_{R}(t)=\prod_{t=1}^{n} \frac{\sin \lambda(t)}{t}
$$

which is an analog of the pirichlet kernel in the n-dimensional case. Its Fourier transform (cf 1.5.7(10)) is

$$
\widetilde{D_{1}(t)}=\prod_{i=1}^{n} \frac{\sin \lambda_{f^{\prime}(t)}}{t^{\prime}}=\left(\sqrt{\frac{\pi}{2}}\right)^{n}(1)_{\Delta_{2}},
$$

where (1) Δ_{λ} is a function equal to unity on $\Delta_{\lambda}=\left\{\left|x_{j}\right|<\lambda_{j} ; j=1, \ldots, n\right\}$ and equal to zero outside of Δ_{λ}. Thus, it is bounded together with its Fourier tranaform, so equality (4) when $a=N$ can be applied to it, consequently, noting that

$$
(1)_{\Delta_{\lambda}}(x)=\prod_{j=1}^{n}(1)_{\lambda_{j}}\left(x_{j}\right)
$$

where (1) λ_{j} is a function of the single variable x_{j} equal to unity on the interval $\left|x_{j}\right|<\lambda_{j}$ and equal to zero for the remaining x_{j}, we get

$$
\begin{align*}
& \dot{V}_{S}=\frac{1}{N^{n}} \int_{U_{N}} \prod_{l=1}^{n} \frac{\sin \lambda_{j} f_{j}}{l_{j}} d \lambda=\left(\frac{1}{N} \sqrt{\frac{\pi}{2}}\right)^{n} \int_{Q_{N}}(1)_{A_{2}}(x) d \lambda= \\
& =\prod_{i=1}^{n} \frac{1}{i} \sqrt{\frac{\pi}{2}} \int_{i}^{2 N}(1)_{,_{j}}(x,) d i, j=\prod_{j=1}^{n} \mu(x,), \tag{9}
\end{align*}
$$

where

$$
\mu(\xi)=\sqrt{\frac{\pi}{2}} \begin{cases}1 & (|\xi|<N) \tag{10}\\ \frac{1}{N}(2 N-\xi) & (N<|\xi| \leqslant 2 N), \\ 0 & (2 N<|x|) .\end{cases}
$$

We have obtained an offective formula for \tilde{V}_{N}. From it (6) follows directiy.

Suppose $f \in L_{p}(1 \leq p \leq \infty)$. Then

$$
\begin{equation*}
\sigma_{N}(f, x)=\left(\frac{2}{\pi}\right)^{n / 2}\left(V_{N} ; f\right)=\frac{1}{\pi^{n}} \int V_{N}(x-u) f(u) d u \tag{11}
\end{equation*}
$$

is a function belonging to L_{p}, differing only by ite conatant meltiplior from the convolution $V_{N^{*}}$. This function is an analog of the periodic de la Valloe'pousain sum of order N. Since $V_{N} \in M_{2 N}$ (integral function of exponential type 2N wath reapect to all x_{j} belonging to L), therefore $\sigma_{N}(f, x) \in M_{2 N, p}$ (cf 3.6.2) for all $f \in L_{p}$. Moreover, if $\omega_{N} \in M_{N, p}$, then the identity

$$
\begin{equation*}
\sigma_{N}\left(\omega_{N}, x\right)=\omega_{N}(x) \tag{12}
\end{equation*}
$$

obtaine.
In fact, $V_{N} \in L$; therefore, \tilde{v}_{N} is a multiplicator. Additionally, by virtue of (9) and (10) $\tilde{\mathrm{V}}_{\mathrm{N}}=(\pi / 2)^{n}$ on Δ_{N}; therefore, by lemma 8.5.2,

$$
\sigma_{N}\left(\omega_{N}, x\right)=\omega_{N}(x) \quad\left(N<N_{0}\right) .
$$

(12) follows from this equality as $N_{0} \rightarrow N$. The validity of the paseage to the limit can easily be established by considering the offective formula (5) for V_{N}.

If $f \in L_{p}$ and $\omega_{N} \in L_{p}$ is an integral function of the exponential type N, then by (12)

$$
\sigma_{N}(f, x)-f(x)=\sigma_{N}\left(f-\omega_{N}, x\right)+\omega_{N}(x)-f(x)
$$

from whance

$$
\begin{equation*}
\left\|\sigma_{N}(f, x)-f(x)\right\|_{\rho} \leqslant(1+M) E_{N}(f)_{P} \tag{13}
\end{equation*}
$$

1.e., the approximation of f by mans of $\sigma_{X}(f)$ is of the order of the best approximation of f by means of functions of exponential type N.

If p is finite, then the right aide of (13) tenda to zero as $N \rightarrow \infty$ (ar 5.5.1); whonce it follows that

$$
\begin{equation*}
\sigma_{N}(n \rightarrow 1 \quad(N \rightarrow \infty) \quad \text { woaki_y } \tag{14}
\end{equation*}
$$

When $p=\infty$, the quantity $E_{N}(f)$ no loncer tonde to sero, but property (14) atill obtaing. In fact, baced on 8.3(1) $(0<\alpha \leqslant 1)$

Therefore

$$
\int\left|\Delta_{h x}^{2} \sigma_{a}(|x|)\right| d z \leqslant M \mid h P .
$$

$$
\begin{aligned}
& \left|\Lambda_{x_{j}}^{2} \int C_{n}(\cdot x-x \mid) f(m) d s\right|= \\
& =\int\left|\Delta_{n_{x},}^{2} C_{1}(u) f(x-u) d x\right| \leqslant\|f\|_{L_{\infty}} M \mid h F^{2} \quad(U=1, \ldots, n), \\
& \|f\|_{L_{\infty}}=\operatorname{supvrai}|f(x)| .
\end{aligned}
$$

We seok that the function $F(x)=I(f)$ antiafies the condition

$$
' \cdot ?_{, 2, x} F(x)|\leqslant c| h p^{p} \quad(j=1, \ldots, n),
$$

and aince it, moreover, is bounded, then it belone to $H_{\infty}^{\alpha}(R)$ and, therefore, is uniformis contimove on $R, 1 . e .$, belonge to C.

But than

$$
f_{\because:}\left(I_{n} f\right)_{\infty}=E_{N}(F)_{\infty} \rightarrow 0 \quad(N \rightarrow \infty) .
$$

This shows that

$$
\sigma_{N}(F) \rightarrow F \quad \text { weakly }
$$

therefore

$$
\begin{align*}
& \left.\left(\sigma_{s}(f), q\right)-\begin{array}{c}
2 \\
\pi^{2}
\end{array}\right)^{n / 2}\left(V_{N} \cdot f, \varphi\right)=\left(\frac{2}{\pi}\right)^{n 2}\left(I_{-a}\left(V_{v} * I_{a} f\right), \varphi\right)= \tag{15}
\end{align*}
$$

and we have provon (14) also for the case $p=\infty$.
Thus, (14) does obtain for any $f \in L_{p}$ and and $p(1 \leqslant p \leqslant \infty)$. It is important to note that this property is preserved for any function f regular in the L_{p}-sense. In order to be convinced of this, it is sufficient to perform the manipulation described above (15) on f.

Finally, let us note the following inequalities ($f \in L_{p}$) that are important to us:

$$
\begin{gather*}
\| I_{r}\left[\sigma_{N}(f)-\sigma_{2 v}(f)\left\|_{p} \leqslant \gamma_{r} N^{-r}\right\| \sigma_{N}(f)-\sigma_{2 N}(f) \|_{p}\right. \tag{16}\\
\left\|I_{r} \sigma_{1}(f)\right\|_{p} \leqslant \gamma_{r}\left\|\sigma_{1}(f)\right\|_{p_{1}} \tag{17}
\end{gather*}
$$

Where r is and real number and V_{r} does not depend on N and f.
When $r>0$, inequality (17) follows from the fact that operation I_{r} as a kernel belonging to $L(c f 8.1(13)$ and $1.5 .1(5))$, and inequality (16) from the fact that (of 8.5.1 and 8.6(6))

$$
\widetilde{\sigma_{N}}(f)-\widetilde{\sigma_{2 N}}(f)=0 \quad \text { on } \quad \Delta_{N} .
$$

But when r is negative, inequality (16) and (17) derive from the inequality which will be shown in the next section, if we consider that

$$
\sigma_{v}(f)-\sigma_{2, v}(f) \in \mathcal{S}_{1 N_{1} p}
$$

It will be proven in 8.8 that inequalities (16) and (17) remain in effect for any (generalized) function regular in the L_{p}-sense.

8.7. Inequality for the Operation $I_{-r}(r>0)$ on Functions of the Exponential
 Type

Let $G=G_{V} \in M_{\nu \rho}\left(R_{n}\right)=m_{\nu \rho}$, i.e., g is a function of the exponential type v with respect to each variable x_{j} belonging to $L_{p}=L_{p}\left(R_{n}\right)$. Let us apply to it the operation (cf 1.5 .9)

$$
\begin{equation*}
1, g \longdiv { (1 + 1 x 1 ^ { 2 }) ^ { 2 } \frac { 1 } { g } } \tag{1}
\end{equation*}
$$

The main goal of this section is to show that the inequality

$$
\begin{gather*}
\left\|l_{-r} g\right\|_{L_{p}\left(R_{n}\right)} \leqslant x_{r}(1+v)^{f}\|g\|_{L_{p}\left(R_{A}\right)} \tag{2}\\
(r, v>0, \quad 1 \leqslant p \leqslant \infty),
\end{gather*}
$$

where \mathcal{K}_{r} is a constant not dependent on v, obtains.
Let us set $w(x)=\left(1+|x|^{2}\right)^{r / 2}$ and for any $v>0$ let us introduce the function $u_{v}(x)$ with period $2 v$ (with respect to each variable x_{j}) defined by the equality

$$
\begin{equation*}
\omega_{v}(x)=\left(1+|x|^{2}\right)^{r / 2} \quad\{|x,| \leqslant v, j=1, \ldots, n\} . \tag{3}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
\omega_{v}(x)=\sum_{h} c_{n}^{\nu} e^{1 \frac{\pi}{v} A x} \tag{4}
\end{equation*}
$$

is its Fourier series. We show that for $r>r_{0}$, where r_{0} is sufficiently large the inequality

$$
\begin{equation*}
\sum_{k}\left|c_{k}^{v}\right| \leqslant x_{r}\left(1+v^{2}\right)^{\prime 2} . \tag{5}
\end{equation*}
$$

obtains, where \mathcal{H}_{r} does not depend on ν, from whence by theorem 3.2.1 follows the validity of $r_{\text {the }}$ interpolation formula

$$
\begin{equation*}
I_{-r g} g=\sum c_{k}^{v} g\left(x+\frac{k \pi}{v}\right) \tag{6}
\end{equation*}
$$

from which directly follows inequality (2):

$$
\begin{equation*}
\left\|I_{-r g} g\right\|_{p}=\sum_{k}\left|c_{k}^{v}\right|\|g\|_{p} \leqslant x_{r}\left(1+v^{2}\right)^{r / 2}\|g\|_{p} \tag{7}
\end{equation*}
$$

and the fact that $I_{-r} g$ is an integral function of the exponential type v (cf 3.5).

For anall r, the considerations associated with the estimate of the sum $\Sigma\left|c_{k}^{\vee}\right|$ become more involved. From the fact that inequality (2) is valid for lasge r, we derive from general considaration that it is valid with the corresponding constant \mathcal{K}_{r} and for ans $r>0$.

Lot us linit ourselves to considering the two-dimensional case. When $n \geqslant 2$, the argument is more complex, but is analogous.

We have

$$
J_{0}=\frac{1}{v^{2}} \int_{-v}^{v} \int_{-v}^{v}\left(1+u^{2}+v^{2}\right)^{n^{\prime 2}} d u d v \leqslant\left(1+2 v^{2}\right)^{/ 2} \leqslant c_{1}\left(1+v^{2}\right)^{n / 2} .
$$

$$
J_{1}=\frac{1}{v^{v}} \sum_{i}^{\prime}\left|\int_{-v}^{v} \int_{-v}^{v} \omega(u, v) e^{-\frac{1 v \pi}{v} u} d u d v\right| \leqslant
$$

$$
\leqslant \max _{|0|<v} \frac{2}{v} \sum_{v}\left|\int_{-v}^{v} \omega(u, v) e^{-\frac{u x}{v} u} d u\right|=
$$

$$
=\max _{v} c \sum_{v}^{\prime} \frac{1}{k}\left|\int_{-v}^{v} \frac{\partial \omega}{\partial u} e^{-\frac{u n \pi u}{v}} d u\right| \leqslant
$$

$$
\leqslant \max _{v} c_{2}\left\{\sum_{n}^{\prime}\left|\int_{-v}^{v} \frac{\partial \omega}{\partial u} e^{-\frac{u t r u}{v}} d u\right|^{2}\right\}^{1 / 2} \leqslant
$$

$$
\leqslant \max _{v} c_{3}\left\{v \int_{-v}^{v}\left(\frac{\partial w}{\partial u}\right)^{2} d u\right\}^{1 / 2} \leqslant
$$

$$
\leqslant \max _{0} c_{1}\left\{, \int_{0}^{v}\left(1+u^{2}+v^{2}\right)^{r^{-2}} u^{2} d u\right\}^{1 / 2} \leqslant c_{s}\left(1+v^{2}\right)^{\prime 2}(r>2) .
$$

$$
\begin{aligned}
& \left(\sum_{k}^{\prime \prime}=\sum_{i=0}^{ \pm}\right) \\
& \begin{aligned}
& \Sigma\left|c_{k i}^{\prime}\right|=\left|c_{\infty}^{\prime}\right|+\sum_{n}^{\prime}\left|c_{k 0}^{v}\right|+\sum_{i}^{\prime}\left|c_{\alpha}^{v}\right|+\sum_{k}^{\prime} \sum_{l}^{\prime}\left|c_{w u}^{v}\right|= \\
&=J_{0}+J_{1}+J_{2}+J_{3} .
\end{aligned}
\end{aligned}
$$

Here we employ integration by parts and variable u. Similarly

$$
J \leqslant \leqslant 11,1 \% \quad(r \geqslant 2) .
$$

Finally, application of integration by parts and Parseval's equality for both
variables u and v yields

$$
\begin{aligned}
& J_{3}=\sum_{1}^{\prime} \sum_{1}^{\prime} \frac{1}{k\left(\pi^{2}\right.}\left|\int_{-v}^{v} \int_{-v}^{v} \frac{\partial^{2} \omega}{\partial u \partial v} e^{-\frac{i \pi}{v}(u u+(v)} d u d v\right| \leqslant \\
& \leqslant c_{0}\left\{\sum^{\prime} \sum^{\prime}\left|\int_{-v}^{v} \int_{-v}^{v} \frac{\partial^{2} \omega}{\partial u \partial v} e^{-\frac{i n}{v}(u u+(v)} d u d v\right|^{2}\right\}^{1 / 2} \leqslant \\
& \leqslant c_{7}\left\{v^{2} \int_{0}^{v} \int_{0}^{v} u^{2} v^{2}\left(1+u^{2}+v^{2}\right)^{2-4} d u d v\right\}^{1 / 2} \leqslant c_{0}\left(1+v^{2}\right)^{1 / 2} \\
& (r \geq 4) .
\end{aligned}
$$

We have proven (5) when $r \geqslant 4$.
Now let r be an arbitrary positive number and as before $g=m_{\nu p}$. Let us select the natural s such that

$$
2^{x-1}<1+v<2^{\prime}
$$

and let us represent g in the form (of 8.6(11), (12))
where

$$
g(x)=\sigma_{2}(g, x)=\sum_{i=0}^{\dot{n}} q_{j}
$$

$$
q_{0}=\sigma_{2}(g, x), \quad q_{j}=\sigma_{2}(g, x)-\sigma_{2},-1(g, x) \quad(j=1, \ldots, s) .
$$

Suppose the number $\rho>r$ is sufficiently large that for it inequality
(2) is setisfied. Then we have

$$
I_{-, g}=\sum_{0}^{i} J_{p-r} J_{-p} q_{1}
$$

and (explanations below)

$$
\begin{align*}
& \left\|I_{-1 g}\right\|_{p} \ll \sum_{i=0}^{\dot{\prime}} \frac{1}{2^{(a-n)}}\left\|I_{-p} q_{1}\right\|_{p} \ll \sum_{i=0}^{\dot{D}} \frac{1}{2^{(\theta-n) \mid}} 2^{\rho \mid} \ll \\
& \ll \sum_{i=0}^{\prime} 2^{\prime \prime} \ll 2^{s /} \ll(1+v)^{\prime} . \tag{8}
\end{align*}
$$

The first relation in this chain obtains on the basis of the already established inequalities $8.6(16),(17)(p-r>0)$. The second relation follows from the fact that P is such a number that inequality (2) is valid for it when $r-p$.

By this, inequality (2) is proven for any r. Of course, these considerations give a crude constant \mathcal{K}_{r}. But cases are known when its exact (least) value can be obtained. Thus $r_{\text {it }}$ is considered as an example the case $n=1$.

Owing to the evenness of $\omega(t)-\left(1+t^{2}\right)^{r / 2}\left(\theta_{j}=\left(j+\frac{1}{2}\right) \frac{v}{k}\right)$

$$
\begin{aligned}
c_{-k}^{v} & =c_{k}^{v}=\frac{1}{v} \int_{0}^{v} \omega(t) \cos \frac{k \pi}{v} t d t= \\
& =\frac{1}{v} \sum_{i=0}^{k-1} \int_{\theta,-\frac{v}{2 k}}^{\theta_{j}+\frac{v}{2 k}} \omega(t) \cos \frac{k \pi}{v} t d t= \\
& =\frac{1}{v} \sum_{0}^{k-1}(-1)^{\mu-1} \int_{0}^{\frac{v}{2 k}}\left[\omega\left(\theta_{j}+t\right)-\omega\left(\theta_{j}-t\right)\right] \sin \frac{k \pi}{v} t d t .
\end{aligned}
$$

If $r \geqslant 1$, then com "tations show that

$$
\omega^{\prime \prime}(t)>0
$$

and therefore the difference appearing in the square brackets under the integral in the right side of (9) monotone-increases with j. Hence it follows that the terms in the sum in the right side of (9) increase in absolute magnitude, successively changing sign, and the sign of c_{k} coincides with the sign of the last term in the sum corresponding to $j=k-1$. By this we have proven that

$$
\begin{equation*}
(-1)^{k} c_{k}^{v} \geqslant 0 \quad(k=0, \pm 1, \pm 2, \ldots ; r \geqslant 1) . \tag{10}
\end{equation*}
$$

From the evenness of $\omega_{\nu}(t)$ it follows that

$$
\omega_{v}(t)=c_{v}^{v}+2{\underset{\zeta}{1}}_{\infty}^{\omega} c_{k}^{v} \cos \frac{k \pi}{v} t,
$$

therefore by (10) the remarkable equality*) holda.

$$
\left(1+v^{2}\right)^{1 / 2}=\omega_{v}(v)=c_{0}^{v}+2 \sum_{1}^{\infty}(-1)^{k} c_{h}^{v}=\sum_{-\infty}^{\infty}\left|c_{h}^{v}\right| .
$$

So we have proven that for $x \geqslant 1$ and $n=1$, we can take $\mathcal{K}_{r}=1$ in inequality (7). This constant is unimprovable*) in this form, but we will not dwell here on proving this.

8.8. Bxpapsion of a perplar Function in Saries by de la Valleb-Pousain Sums

If if a generalized function regulas in the I_{p}-sense, then naturally we assume (cf 1.5.10)

$$
\begin{equation*}
\sigma_{N}(f)=\left(\frac{2}{\pi}\right)^{n / 2}\left(V_{N} * f\right)=\left(\frac{2}{\pi}\right)^{n / 2} I_{-p}\left(V_{N} * I_{\rho} f\right) \tag{1}
\end{equation*}
$$

whore $p>0$ is sufficiently large that $I_{\mu} f \in L_{p}$. But $V_{N} \in L$, therefb re $V_{N} I_{\rho} f$ belongs to I_{p}, and by virtue of the fact that the function V_{N} is of exponential type $2 N(c f 3.6 .2), V_{N}{ }^{*} I_{p} f \cong M_{2 N, p}$. Applying operation $I_{\text {(}}(c f$ 8.7) to this last function doss not remove it from the class $m_{2 N, p}$. Thuse,

$$
\begin{equation*}
\sigma_{s}(f) \in \mathbb{R}_{2 v_{1} p} \tag{2}
\end{equation*}
$$

whatever be the function f that is regular (in the L_{p}-sense).
Further, for any real

$$
\begin{equation*}
I_{\lambda} \sigma_{N}(f)=\sigma_{N}\left(I_{\Lambda} f\right) \tag{3}
\end{equation*}
$$

\#) P. I. Morkin $\angle^{\overline{8}}$].
(of $1.5 .10(5)$). Since for the regular function $f, \sigma_{N}(f) \in M_{2 N, p}$, then when $r>0$ obviously inequalitios $8.6(16)$ and (17) hold for it. When $r<0$, these inequalities also obtain for any rejular function f, because for it $\sigma_{N}(f)$ $\sigma_{2 N}(f) \in L_{p}$ and $\tilde{\sigma}_{N}(f)-\tilde{\sigma}_{2 N}(f)=0$ on $\Delta_{N}($ ef 8.5.1 and 8.6(6)).

It is convenient for us to associate with each regular function the following series:

$$
\begin{equation*}
f=\sigma_{2^{0}}(f)+\sum_{k=1}^{\infty}\left[\sigma_{2^{k}}(f)-\sigma_{2^{k-1}}(f)\right], \tag{4}
\end{equation*}
$$

weakly convergent, as we will explain, to f. We will further call this series the expansion of the regular function f in sums of the de la Vallod-Poussin type.

For any real r, it is legitimate to apply to it, memberwise, the operation

$$
\begin{align*}
& I_{1} f=I_{1} \sigma_{2^{0}}(f)+\sum_{k=1}^{\infty} I_{1}\left[\sigma_{2^{k}}(f)-\sigma_{2^{k-1}}(f)\right]= \\
&=\sigma_{2^{0}}\left(I_{r} f\right)+\sum_{k=1}^{\infty}\left[\sigma_{2^{k}}\left(I_{r} f\right)-\sigma_{2^{k-1}}(I, f)\right] \tag{5}
\end{align*}
$$

because if f is a regular function, then $I_{r} f$ also is, and therefore $I_{r} f$ can be expanded in the form of its dela Vallee-Poussin series weakly convergent to it -- the second series in (5). The terms of the first and second series are correspondingly equal by virtue of (3).

8.9. Ropresentation of Functions of the Glasses B^{r} in Terms of dels Valleb-
 Poustin Saries. Zere Glanser ($1 \leq P \leq \infty$)

We have assumed that $r>0,1 \leqslant p \leqslant \infty, 1 \leqslant \theta \leqslant \infty$, and $B_{p \theta}^{r}\left(R_{n}\right)=B_{p 0}^{r}$ $\left(B_{p \infty}^{r}=H_{p}^{r}\right)$. Let us proceed from the following definition of the class $B_{p \theta}^{r}$ (5.6(5)): the function f belongs to $\mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}}$ if for it the norm

$$
\begin{equation*}
s\|f\|=\|f\|_{s_{p o}^{\prime}}=\|f\|_{p}+\left(\sum_{p=0}^{\infty} 2^{n+1 / E} E_{2^{2}}\left(f_{p}^{\circ}\right)^{1 \rho} .\right. \tag{1}
\end{equation*}
$$

is finite. Another definition (5.6(6)) equivalent to it is as follows: $f \in$ $\mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}}$, if is possible to represent f in the form of the following series, convergent to f in the L_{p}-sense:

$$
I=\sum_{i=0}^{\infty} Q_{t}
$$

of functions that are integral and of the exponential type of spherical degree 2^{8} (on R_{n}) such that the norm

$$
\begin{equation*}
q\|\|=\| f\|_{B_{p \theta}^{\prime}}=\left(\sum_{s=0}^{\infty} 2^{s \theta r}\left\|Q_{s}\right\|_{p}^{\rho}\right)^{1 / \theta} \tag{2}
\end{equation*}
$$

is finite.
Let us show that the following is also equivalent to these definitions:
Function $f \in B_{p \theta}^{r}$ if f is a (generalized) function regular in the L_{p} sense and if to it the correaponding de la Valleb-Poussin series (convergent to it weakly) corresponding to it

$$
\begin{gather*}
f=\sum_{i=0}^{\infty} q_{1 n} \tag{3}\\
q_{0}=\sigma_{2^{0}}(f), \quad q_{3}=\sigma_{2 s}(f)-\sigma_{2 s-1}(f) \quad(s=1,2, \ldots), \tag{4}
\end{gather*}
$$

is such that

$$
\begin{equation*}
\pi f\|=\| f \|_{a_{p \theta}^{\prime}}=\left(\sum_{s=0}^{\infty} 2^{s, \theta}\left\|q_{s}\right\|_{p}^{p}\right)^{1 / \theta}<\infty . \tag{5}
\end{equation*}
$$

In fact, let f be a regular function in the L_{p}-sense for which (3)(5) hold. Then q_{s} is an integral function of the oxponential type 2^{s+1} in all variables, but then of the exponential spherical typo $\sqrt{n 2^{s+1}}$ (cf 3.2.6) and, consequently, of the type 2^{8+1}, where we have assumed tnat 1 is a natural number such that $2 \sqrt{n} \leqslant 2^{l}$. Setting $q_{s}^{*}=0(s=0,1, \ldots, 1)$ and $q_{s}^{*}+1=q_{s}$ ($s=0,1, \ldots$), we find that $f=\sum_{s=0}^{\infty} q_{s}^{*}, q_{s}^{*}$ is of the spherical type 2^{s} and

$$
\left(\sum_{s=0}^{\infty} 2^{s, \theta}\left|q_{s}^{0}\right|_{p}^{p}\right)^{1 / \theta}<\infty,
$$

i.e., $\quad{ }^{6}\| \|<\infty$ and $f \in B_{p 0^{r}}^{r}$.

Now lot ${ }^{5}\|f\|_{<} \infty$, then $f \in L_{p}$ and (cf 8.6(13))

$$
\begin{gather*}
\left\|\psi_{s}\right\|_{n} \leqslant\left\|\sigma_{a_{s}}(f)-i\right\|_{p}+\left\|\sigma_{2^{s-1}}(f)-f\right\|_{r} \leqslant \\
\leqslant 2 M F_{2^{s-1}}(f)_{p}(s=1,2, \ldots), \tag{6}\\
\left\|\psi_{v}\right\| \leqslant 11\|f\|_{p} .
\end{gather*}
$$

Therefore ${ }^{7}\|\mathrm{f}\| \ll{ }^{5}\|f\|$, and we have proven the equivalence of the norms (5) with the norms (1) and (2).

Note. The equivalency is preserved if the de la Valled-Poussin sums $S_{2^{s}}(f)$ are replaced, correspondingly, by the Dirichiet sums $S_{2}(f)$ (cf further 8.10), however, given the condition that $1<p<\infty$. When $p=1, \infty$, the constant M in the inequality (6) depends on s and thereby is not bounded as $s \rightarrow \infty$.

Let us introduce the zero class $\mathrm{B}_{\mathrm{pe}}^{0}$ of, usually, generalized functions.
By the definition $f \in B_{p \theta}^{0}$, if f is regular in the $L_{p}-$ sense and if its de la Villab-Poussin series (3) is such that

$$
\begin{equation*}
\|f\|_{s_{p \theta}^{0}}=\left(\sum_{s=0}^{\infty}\left\|q_{s}\right\|_{p}^{p}\right)^{1 / 0}<\infty . \tag{7}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\|f\|_{H_{p}^{0}}=\sup \left\|q_{s}\right\|_{p}<\infty . \tag{8}
\end{equation*}
$$

The definition (7) and (8) of zero classes given here have the advantage that they do not depend on the definitions of the corresponding classes for positive r values. But the following definition of $B_{p e}^{0}$ is also possible: this is a class of functions f of the form $I_{-r} \varphi$, where $\varphi \in \mathcal{B}_{p \theta}^{r}$, and $r>0$ is any number. Let us note further that the apparatus by means of which the original definitions of the H - and B-classes will be given for positive r
evideatally is not adapted for imediate generalizations to the case $r \leq 0$.
8.9.1. Isomorphiam of the classes $B_{p 0}^{r}$ for different r. Theorem. The operation $I_{r}(r>0)$ executes the isomorphism

$$
\begin{equation*}
I_{r}\left(B_{p \theta}^{0}\right)=B_{p \theta}^{r} \quad\left(1 \leqslant p, 0 \leqslant \infty, B_{p \infty}^{r}=H_{p}^{\prime}\right) . \tag{1}
\end{equation*}
$$

Squality (1) gives the representation of functions of the class B_{p}^{r} in term of the convolution of the Bessel-Macdonald kernel G_{r} with
of the class $\mathrm{B}_{\mathrm{p} 0}^{0}$ that are, generally speaking, generalized.
Proof. Suppose $f \in B_{p \theta^{0}}^{0}$, then f is a function regular in the L_{p}-sense and expandable in the series

$$
\begin{equation*}
f=\sum_{s=0}^{\infty} q_{1}, q_{0}=\sigma_{2}(f), q_{1}=\sigma_{2^{\prime}}(f)-\sigma_{2^{s-1}}(f)(s=1,2, \ldots) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\|f\|_{s_{p \infty}^{0}}-\left(\sum_{x=0}^{\infty}\left\|q_{s}\right\|^{p}\right)^{10}<\infty . \tag{2}
\end{equation*}
$$

But

$$
F=I_{r} f
$$

is also a regular function that can be expanded in the series

$$
\begin{gather*}
F=\sum_{s=0}^{\infty} Q_{s j} \tag{3}\\
Q_{0}=\sigma_{2^{1}}(F), \quad Q_{1}=\sigma_{2^{2}}(F)-\sigma_{2 s-1}(F) \quad(s=1,2, \ldots)
\end{gather*}
$$

Here

$$
\left\|Q_{s}\right\|_{p}=\left\|I_{r} q_{s}\right\|_{p} \leqslant c \cdot 2^{-r s}\left\|q_{s}\right\|_{p}
$$

Therefore,

$$
\begin{equation*}
\|F\|_{B_{\infty}^{\prime}}=\left(\sum_{a=0}^{\infty} 2^{s e n}\left\|Q_{1}\right\|_{p}^{0}\right)^{1 / \theta} \leqslant c\left(\sum_{s=0}^{\infty}\left\|q_{s}\right\|_{p}^{0}\right)^{1 / n}=\|f\|_{B_{p 0}^{0}} \tag{4}
\end{equation*}
$$

Conversely, if $F \in \mathrm{~B}_{\mathrm{p} 0}^{\mathrm{r}}$, then the expension (3)

$$
\|F\|_{\theta_{p \theta}^{\prime}}=\left(\sum_{d=0}^{\infty} 2^{z r \theta}\left\|Q_{I}\right\|_{\rho}^{\theta}\right)^{1 / \theta}<\infty,
$$

obtains for F, and expansion (1) and (cf 8.6(16))

$$
\left\|q_{s}\right\|_{p}=\left\|I_{-1} Q_{s}\right\|_{p} \leqslant c \cdot 2^{s f}\left\|Q_{s}\right\| \quad(s=0,1, \ldots)
$$

for $f=I_{-r} F$, therefore

$$
\begin{equation*}
\|f\|_{s_{p \theta}^{0}}=\left(\sum_{s=0}^{\infty}\left\|q_{s}\right\|_{p}^{0}\right)^{1 \omega} \leqslant c\|F\|_{s_{p \theta}^{r}} \tag{5}
\end{equation*}
$$

The theorem is proven.
8.9.2. Classes $\mathrm{B}_{\mathrm{p} 0}^{\mathrm{r}}$ when $\mathrm{r}<0$. The concept of a regular function and its expansion in the de la Valleb-Pousain sories yields the possibility of enlarging the classes $B_{p \theta}^{r}$ to nogative r. It is natural to assume that the function $f \in{\underset{p O}{r}}_{F}$, where r is an arbitrary real number if f is regular (in the L_{p}-sense) and if its expansion in the de la Valled-Poussin series

$$
\begin{equation*}
f=\sum_{s=0}^{\infty} a_{t}=\sigma_{2^{0}}(f)+\sum_{s=1}^{\infty}\left[\sigma_{2^{s}}(f)-\sigma_{2^{f-1}}(f)\right] \tag{1}
\end{equation*}
$$

is such that

$$
\begin{equation*}
\|f\|_{s_{p \theta}^{\prime}}=\left(\sum_{s=0}^{\infty} 2^{s f 0}\left\|q_{s}\right\|_{p}^{p}\right)^{10}<\infty . \tag{2}
\end{equation*}
$$

It is easy to see, by reasoning as in the previous section, that for any real r and r_{1} the operation $I_{r_{1}-r}$ performs the isomorphism

$$
\begin{equation*}
I_{r_{1}-r}\left(B_{p \theta}^{\prime}\right)=B_{p \phi}^{\prime \prime} \quad\left(1 \leqslant p, \theta \leqslant \infty ; B_{p \infty}^{\prime}=H_{p}^{\prime}\right) \tag{3}
\end{equation*}
$$

8.10. Serier in Disichlet Sum $(1<0<\infty)$

If p satiafies the inequalities $1<p<\infty$, then the above-performed theorem can be developed based on Dirichlot kernels

$$
\begin{equation*}
D_{N}(t)=\prod_{t=1}^{n} \frac{\sin N t_{j}}{t} \tag{1}
\end{equation*}
$$

which are analoge of the periodic Dirichlet sum.
The kemals $\mathrm{D}_{\mathrm{N}}(\mathrm{s})$ exhibit the following properties:

1) $\mathrm{g}_{\mathrm{N}}(\mathrm{z})$ is an integral function of the exponential type N in the each variable $z_{j}(j=1, \ldots, n)$ belonging to L_{p}, where $1<p \leqslant \infty$

$$
\text { 2) }\left(\frac{2}{\pi}\right)^{n / 2} \tilde{D}_{N}=(1)_{a_{N}}= \begin{cases}1 & \text { on } \Delta_{\mathrm{N}}=\left\{\left|x_{j}\right|<N\right\} \tag{2}\\ 0 & \text { outside } \Delta_{\mathrm{N}}\end{cases}
$$

(cf 1.5.7(10)).

$$
\begin{equation*}
\frac{1}{n^{n}} \int D_{N}(t) d t=1 \quad(N>0) . \tag{3}
\end{equation*}
$$

4) The convolution

$$
S_{:}(f, x)=D_{i}: \left.f=\frac{1}{(2: 1)^{11}} \int D_{1}(x-t) \right\rvert\,(t) d \dot{t}
$$

for $f \in L_{p}(1<p<\infty)$ is an integral function of the exponential type N with respect to each variable (cf 3.6.2) belonging to L_{p} (cf 1.5.7(9), (13); 3.6.2; $\left.S_{N}(f) \in \eta_{N p}\right)$. Here

$$
\begin{equation*}
\left\|D_{N} \cdot f\right\|_{p} \leqslant x_{p}\|f\|_{p} \tag{4}
\end{equation*}
$$

where K_{p} depends only on p. When $p=1, \infty$ this fact ceases to be valid.
5) If $\omega_{N} \in m_{N p}$, then

$$
\begin{equation*}
S_{s^{\prime}}\left(\omega_{v}\right)=\omega_{s_{0}} \tag{5}
\end{equation*}
$$

The fact that

$$
\begin{equation*}
D_{N_{0}} * \omega_{V}=\frac{1}{(2 \pi)^{n}} \int D_{N_{0}}(x-t) \omega_{V}(t) d_{i}-\omega_{V}(x)\left(N<N_{0}\right), \tag{6}
\end{equation*}
$$

follows from 8.5.2. Further

$$
\left|\frac{\sin N_{0} t \mid}{1 \mid}\right| \leqslant \varphi\left(t_{j}\right)=\left\{\begin{array}{ll}
N_{1} & \left|t_{j}\right| \leqslant \leqslant 1 \\
\left.\frac{1}{|t|} \right\rvert\, & \left|t_{j}\right|>1
\end{array} \quad\left(N<N_{0}<N_{1}\right),\right.
$$

therefore

$$
\begin{aligned}
& \left|D_{N_{0}}(x-l) \omega_{N}(t)\right| \leqslant \varphi(x-t) \omega_{v}(t) \cdot I\left(R_{n}\right), \varphi(t)=\prod_{i=1}^{n} \varphi\left(t_{j}\right) \\
& \left(\omega_{N} \in L_{\nu}\left(R_{n}\right), \varphi \in L_{9}\left(R_{n}\right), \frac{1}{p}+\frac{1}{\eta}=1\right) .
\end{aligned}
$$

Moroover, $\mathrm{V}_{\mathrm{N}_{0}}(x-t) \rightarrow D_{N}(x-t)\left(N_{0} \rightarrow N\right)$ for all t. Consequently, by the Lebesgue theorem, in (6) we can replace N_{0} with N.
6) $\overparen{D_{N} * f} \tilde{f}$ on $\Delta_{N}(c f(2)$ and 8.5.1).

From (4) and (5) it follows that if $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}(1<\mathrm{p}<\infty)$ and \dot{u}_{N} is its best approximating function of the class $m_{N p}$ in the L_{p}-sense, then $(1<p<c)$

$$
\begin{align*}
\| f-S_{N}\left(f_{1},\right. & \leqslant\left\|f-\omega_{N}\right\|_{D}+\| S_{N}\left(\left(_{v}\right)-f \|_{p} \leqslant\right. \\
& \leqslant\left(1+x_{p}\right) E_{N}(f)_{\mu}>0 \quad(N \rightarrow \infty) . \tag{7}
\end{align*}
$$

In particular, thus

$$
\begin{equation*}
S_{N}(f) \rightarrow f(N \rightarrow \infty) \quad \text { weakly } \tag{8}
\end{equation*}
$$

Arguing as in the proof of $8.6(14)$ (cf $8.6(15)$), where V_{N} must be replaced with D_{N}, we get the result that property (8) remains in effect for any function that is regular in the L_{p}-sense.

In this case the function f rogular in the L_{p}-sense can be expanded in the sories

$$
\begin{equation*}
f=S_{2^{0}}(f)+\sum_{k=1}^{\infty}\left[S_{2^{k}}(f)-S_{2^{k-1}}(f)\right] \tag{9}
\end{equation*}
$$

conversing weakly to it (analog of $8.8(4)$). Application of the operation I_{p}, where p is any real number, memberwise to this series is logitimate.

It is important to note that the k-th term of series (9) is an ordinary function of the claes $m_{2^{k} p}$, moreover, it is important that

$$
\overline{S_{2^{4}}(f)}-\overline{S_{2^{k-r}}(f)}=0 \quad \text { on } \Delta_{2^{k-1}} \quad(k=1,2, \ldots)
$$

and the inequalities

$$
\begin{gather*}
\left\|I_{r}\left[S_{N}(f)-S_{2 N}(f)\right]\right\|_{P} \leqslant \lambda_{r} N^{-r}\left\|S_{N}(f)-S_{2 N}(f)\right\|_{P} \tag{10}\\
\left\|I, S_{1}(f)\right\| \leqslant \lambda_{r}\left\|S_{1}(f)\right\|_{P} \tag{11}
\end{gather*}
$$

obtain for any real r and and function f regular in the L_{p}-sense.
Arpuing as 8.9 - 8.9.2, where it is necessary everywhere to replace ${ }_{1}(f)$ with $S_{1}(f)$, we can obtain based on the theorem set forth above
8.10.1. Theorem. Suppose $1<p<\infty, 1 \leqslant 0 \leqslant \infty$, and r is an arbitrary real number. Then $f \in B_{p 0}^{r}\left(B_{p}^{r}=H_{p}^{r}\right)$ if and only if f is regular in the $L_{p}-$ sense and ite series (convergent to it weakly)

$$
\begin{gather*}
f=\sum_{k=0}^{\infty} \beta_{21} \tag{1}\\
\beta_{0}=S_{2^{\prime}}(f), \quad \beta_{1}=S_{2^{\prime}}(f)-S_{2^{2}-1}(f) \quad(s=1,2, \ldots),
\end{gather*}
$$

1s auch that

$$
\begin{gather*}
\|f\|_{s_{p \infty}^{\prime}}=\left(\sum_{s=0}^{\infty} 2^{s, \theta}\left\|\beta_{s}\right\|_{p}^{p}\right)^{1 / \theta}<\infty, \\
\|f\|_{\|_{n}^{\prime}}=\|f\|_{R_{p \infty}^{\prime}}=\sup 2^{s \prime \prime}\left\|\beta_{s}\right\|_{p}<\infty \tag{2}
\end{gather*}
$$

(of note to 8.9).

Let us prove the lemen aupplemonting the results of 1.5 .6 (in the same notation).
8.10.2. Lemma. Suppose f is a genoralized function regular in the L_{p}-sense $(1<p<\infty)$, for which

$$
\begin{equation*}
\left|\left\{\sum_{0} n_{0}(x)\right\}^{1 / 2}\right|_{0}<\infty \text {. } \tag{1}
\end{equation*}
$$

then $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}$.
Proof. Suppose N is a natural number, then
and

$$
\Lambda_{N}=\underset{|x,|<N}{\text { S }} \Lambda_{0} \cdots\left(|x,|-2^{N} ; i=1, \ldots, N\right)
$$

1.e., F_{N} is a Dirichlet oum of order 2^{N} for the function f. It belongs to L_{p}. Wo have further (of 1.5.1.1) for $\mathrm{N}<\mathrm{N}^{\prime}$

$$
\begin{aligned}
\delta_{B}\left(F_{N^{\prime}}-F_{N}\right)=(1)_{\Lambda_{B}}(1)_{\Lambda_{N^{\prime}}} & \left.\left.(1)_{\Lambda_{N}}\right)\right\rangle= \\
& -\left\{\begin{array}{cc}
\Lambda_{B}(\eta), & \tilde{\Lambda}_{1} \subset \Delta_{N^{\prime}}-\Lambda_{N_{1}} \\
0, & \tilde{\Delta}_{1} \cap\left(\Delta_{N^{\prime}}-\Lambda_{N}\right)=0 .
\end{array}\right.
\end{aligned}
$$

where $\tilde{\Delta}_{k}$ is the open kernel $\Delta_{k^{\prime}}$. And therefore, applying equality 1.5.6(1) to F_{N}, we get

$$
\left\|F_{N^{\prime}}-F_{N}\right\|_{j} \ll\left\{\left._{1_{2}, \cdot} \underset{1_{N^{\prime}} 1_{N}}{\sum} n_{1}\left(\|^{2}\right\}^{1 / 2}\right|_{n} \rightarrow 0 \quad\left(N, N^{\prime} \rightarrow \infty\right) .\right.
$$

But $F_{N} \rightarrow \mathrm{f}$ weakly, consequentiy $\mathrm{F}_{\mathrm{N}} \rightarrow \mathrm{I}$ in the matrix L_{p} and $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}$.
The following thoorem is annlogously proven (notations found in 1.5.6.1).
8.10.3. Theorem. If the function $f(x)$ of one variable is a generalized function regular in the L_{p}-sense $(-\infty, \infty) 1<p<\infty$, for which

$$
\begin{equation*}
\sum_{1,2} \operatorname{mon}_{1} 11_{1},<\infty, \tag{1}
\end{equation*}
$$

then it belongs to I_{p}.
8.10.4. Bxample. Below we present an example of the function $g(x)$ $L_{p}(-\infty, \infty)=L_{p}(2<p<\infty)$ that is integral and the exponential type 1 , whose Fourier transform is a generalized function not sumable on any interval (a, b) C. $(-1,+1)$.

Suppose

$$
\psi_{n}(x)=\left\{\begin{array}{l}
a_{k}\left(2^{k}-\frac{1}{2}<|x|<2^{k}+\frac{1}{2}\right), \tag{1}\\
0 \text { (for remaining } k \text {) }
\end{array}\right.
$$

where the numbers $\alpha_{k}>0$ are such that

$$
\begin{equation*}
\sum_{1}^{\infty} a_{k}^{2}=\infty, \quad \sum_{1}^{\infty} a_{k}^{p}<\infty \quad(2<p<\infty) . \tag{2}
\end{equation*}
$$

Let us further set $f_{N}=\sum_{1}^{N} \Psi_{k}$ and

$$
\begin{equation*}
f(x)=\sum_{1}^{\infty} \psi_{n}(x) \tag{3}
\end{equation*}
$$

Series (3) obviously converges in the sense of $L_{p}=L_{p}(-\infty, \infty)$, and consequently, also in the sense of S^{\prime}, and $f \subset L_{p} \subset S^{\prime}$ and $\|f\|_{p}=\left(2 \Sigma\left|\alpha_{k}\right|^{p}\right)^{1 / p}$ $<\infty$. Suppose further

$$
\lambda_{k}(x)=a_{k} \sqrt{\frac{2}{\pi}} \int_{2^{k}-\frac{1}{2}}^{2^{k}+\frac{1}{2}} \frac{\sin x y}{y} d y \quad(k=1,2, \ldots)
$$

It is easy to verify (of $1.5 .7(10)$) that

$$
\begin{aligned}
& \lambda_{k}^{\prime}(x)=2 a_{k} \sqrt{\frac{\overline{2}}{\pi} \cos 2^{k} x} \begin{aligned}
& \frac{\sin \frac{x}{2}}{x}
\end{aligned}= \\
&-\alpha_{k} \sqrt{\frac{\overline{2}}{\pi}}\left(e^{12^{k} x}+e^{-12^{k} x}\right) \frac{\sin \frac{x}{2}}{x}=\psi_{k}(x) .
\end{aligned}
$$

Let us further suppose

$$
\begin{gathered}
F_{N}(x)=\sum_{1}^{N} \lambda_{k}(x)=\frac{1}{2} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \sum_{1}^{N} \psi_{k}(y) \frac{\sin x y}{y} d y \\
f(1)-\sum_{i}^{\infty} \lambda_{k}(x)
\end{gathered}
$$

Then

$$
\begin{align*}
\left|F_{N}(x)\right|< & \int_{-\infty}^{\infty} f(y)\left|\frac{\sin x y}{y}\right| d y \leqslant \\
& \leqslant\|f\|_{p}\left(\int_{-\infty}^{\infty}\left|\frac{\sin x y}{y}\right|^{\psi} \cdot d u\right)^{1 / 4} \times\|f\|_{p}|x|^{1-\frac{1}{4}} \tag{4}
\end{align*}
$$

where the constaiats appearing in these inequalities do not depend on $N,\|f\|_{p}$, and x. Therefore

$$
\begin{equation*}
\left|F(x)-F_{N}(x)\right|<1\left|{\underset{N}{N}}^{x_{n}}\right|_{N}|x|^{1-\frac{1}{6}} \tag{5}
\end{equation*}
$$

and $F_{N}(x) \rightarrow F(x)$ uniformly on any finite segment. But then $F(x)$ is a continuous function. It easily also follows from (4) and (5) that $F \in S^{\prime}$ and $\mathrm{F}_{\mathrm{N}} \rightarrow \mathrm{F}\left(\mathrm{S}^{\prime}\right)$.

In this case

$$
F^{\prime}=\sum_{1}^{\infty} x_{k}^{\prime}-\sum_{1}^{\prime \prime \prime} w_{n}-1 .
$$

whore all operations (differentiation, summation, and Fourier transformation) are understood in the S^{\prime}-sense.

We can prove (see the book by Zigmund $L \overline{2} \overline{7}$, part II, Chapter XV, at end of section 3.14 for proof), that the function $F(x)$ (understood as an ordinary function) almost everywhere has no derivative. But then the generalized derivative F^{\prime} on any interval (a, b) is not a sumabie function, in other words, whatever be the interval (a, b), there dossnot exist a function $\alpha(x)$ surmable on (a, b) such that

$$
\begin{equation*}
\left(F^{\prime}, \varphi\right)=\int_{a}^{\dddot{h}} u(1) \psi(x) d x \tag{6}
\end{equation*}
$$

for ali functions $\Phi \in S$ that have a carrier on (a, b). In fact, if the function α did exist, then, integrating the right side of (6) by parts, we will obtain the equality

$$
\int_{:}^{b} F(x) \varphi^{\prime}(x) d x \cdot=\int_{n}^{n} \int_{n}^{n} 4\|1\| / \psi^{\prime}(x) d x
$$

1.e., $\int_{a}^{b} \psi(x) \Phi^{\prime}(x) d x \ldots 1, \cdots 1,1 \cdots \int_{a}^{x} a(l) d t, \quad$ NOT REPRODUCIBLE
whatever be the function $\Phi \in S$ with carrier on (a, b). But then $\psi(x) \equiv C$ is a constant F would be differentiable almost everywhere on (H, b). The fact that $\psi=$ constant can be proven thusly. If it would not be so, then we could select such a constant c_{1} that the function $\lambda(x)=\Psi(x)+c_{1}$ would take on values of different aigns at some two points. Suppose for definiteness $a<:_{1}$ $<x_{2}<b$ and $\lambda\left(x_{1}\right)<0<\lambda\left(x_{2}\right)$. It is obvious for the functions φ considered,

$$
\int_{a}^{b} \lambda(x) \varphi^{\prime}(x) d x=0
$$

bocause $\int_{a}^{b} \phi^{\prime}(x) d x=0$. Let us choose $\delta>0$ sufficiontly small that $\lambda(x)<0$ on $\left(x_{1}-\delta, x_{1}+\delta\right)$ and $\lambda(x)>0$ on $\left(x_{2}-\delta, x_{2}+\delta\right)$, and suppose that $\omega(x)$ is a function continuous on (a, b), equal to zero, for $x<x_{1}-\delta / 2$ and $x>x_{2}+\delta / 2$ and such that $\omega^{\prime}(x)=-1$ on $\left(x_{1}-\delta / 2, x_{1}+\delta / 2\right), c^{\prime}(x) \therefore 0$ on $\left(\because_{1}+\delta / 2, x_{2}-\delta / 2\right)$ and $\omega^{\prime}(x)=1$ on $\left(x_{2}-\delta / 2, x_{2}+\delta / 2\right)$. Its e-averaging $u_{\epsilon}(x)$ obviously belong to the class of the function φ considered here, also because

$$
0=\int_{a}^{b} \lambda(x) \omega_{e}^{\prime}(x) d x \rightarrow \int_{a}^{b} \lambda(x) \omega^{\prime}(x) d x>0 \quad(e \rightarrow 0)
$$

and we have reached a contradiction.
Let is s . t

$$
\left.g(x)=(1)_{\Delta}\right\rangle=\frac{1}{\pi} \int D_{1}(x-t) f(t) d t, \quad \Delta=\{|x|<1\}
$$

Since $r \in L_{p}$, then the function $g \in L_{p}$ is integral and of the exponential type 1. Its Fourier transform

$$
\bar{g}-(\mathrm{l})_{\Delta} I
$$

is a generalized function equal to $\underset{f}{ }$ on Δ. This means that

$$
(\delta, \varphi)=(\eta, \varphi)
$$

for all $\phi \in S$ with carrier around Δ. But then \tilde{f}, consequently, \tilde{B}, can now be represented in any siisle interval $(a, b) \subset \Delta$ by a sumable function.

CHAPTER IX LIOUVILLE CLASSES L

2.1. Introduction

We denote the Liouville classes by $L_{p}^{r}\left(R_{n}\right)\left(r \geqslant 0, L_{p}^{0}\left(R_{n}\right)=L_{p}\left(i_{n}\right)\right)$ in the isotropic case and by $L_{p}^{r}\left(R_{n}\right)$ in the anisotropic. For integral r, r, they coincide with the Sobolev classes W :

$$
\begin{gathered}
W_{p}^{r}\left(R_{n}\right)=L_{p}^{\prime}\left(R_{n}\right) \quad(r=0,1, \ldots) \\
W_{p}^{r}\left(R_{n}\right)=L_{p}^{r}\left(R_{n}\right) \quad\left(r_{1}=0,1,2, \ldots ; j=1, \ldots, n\right) .
\end{gathered}
$$

Generalizations are possible for the case when p is vectorial.
The classes L^{r}, L^{F} for fractional r, r are the most natural extensions of the classes W^{5}, W^{5}.

For orientation, even at this stage we will note their fundamental properties.

The functions $F \in L_{p}^{r}\left(H_{n}\right)$ are defined in the form of the integrals

$$
\begin{equation*}
F(x)=I_{r} f=\frac{1}{(2 \pi)^{n / 2}} \int G_{r}(|x-u|) f(u) d u, \quad f \in L_{p}\left(R_{n}\right) \tag{1}
\end{equation*}
$$

already familiar to the reader, where (cf 8.1) G_{r} is a Bessel-lacdonald kernel. If r is a natural number, then (cf 8.2) F runs through the class $W_{p}^{r}\left(R_{n}\right)$, when f rnns through $L_{p}\left(R_{n}\right)$, where the isomorphism $I_{r} L_{p}\left(R_{n}\right)=w_{p}^{r}\left(R_{n}\right)$ obtains. For fractional r, equality (1) becomes the definition of class $\mathcal{L}_{p}^{r}\left(R_{n}\right)$ (at least in this book, of 9.2.3.), i.e., we assume that $F \in L_{p}^{r}\left(R_{n}\right)$, if and only if $F=I_{r} f$, where $f \in I_{p}\left(R_{n}\right)$ and we set

$$
\|F\|_{L_{p}^{\prime}\left(R_{n}\right)}=\|f\|_{L_{p}\left(R_{n}\right)} .
$$

For any $r>0 \quad L_{p}^{r}<H_{p}^{r}$, moreover "with an accuracy up to and small $\varepsilon^{\prime \prime}$, the class L_{p}^{r}, just as B_{p}^{r}, coincide with H_{p}^{r}, namely

$$
H_{p}^{\prime+e} \rightarrow L_{p}^{\prime} \rightarrow H_{p .}^{\prime} .
$$

From these embeddings it follows that in and case, "with an accuracy up to $\varepsilon "$ the eame embedding theorems are valld for the class L_{p}^{r} as for the class H_{p}^{r}, since, for example, $L_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{c}^{\prime-\frac{n}{p}+\frac{m}{q}}\left(R_{m}\right) \rightarrow L_{q}^{r-\frac{n}{p}+\frac{m}{q}-\varepsilon}\left(R_{m}\right)$.

The embeddings (cf 9.3, $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}=\mathrm{B}_{\mathrm{pp}}^{\mathrm{r}}$)

$$
\begin{equation*}
B_{p}^{\prime} \rightarrow I_{p}^{\prime} \quad(1 \leqslant p \leqslant 2), \quad L_{p}^{\prime} \rightarrow B_{p}^{\prime} \quad(2 \leqslant p \leqslant \infty) . \tag{2}
\end{equation*}
$$

are valid. The coincidence of classes B in L obtains only when $p=2$ ($B F=$ $\left.L_{2}^{r}\right)$. When $p \neq 2$, they differ essentially from each other.

The classes L_{p}^{r} are united by the same integral representation in terms of functions $f \in L_{p}$. The classes B_{p}^{r} are united by the same representation, but now in terms of the function $f \in B_{p}^{0}$, where B_{p}^{0} is a class essentially distinct from L_{p}; when $p>2$ it includes generalized functions (cf 8.9.1).

The family of classes L_{p}^{r} is also remarkable by being closed with respect to such embedding theorems where passage from one metric to another occurs. Thus, the embedding of different metrics

$$
\left.\left.\begin{array}{c}
I_{n}^{\prime}\left(R_{n}\right) \rightarrow l_{.}^{\prime \prime}\left(R_{n}\right) \tag{3}\\
\left(\rho=r \cdots n\left(\frac{1}{p}\right.\right. \\
1
\end{array}\right) \geqslant 0,1<p<q<\infty\right) .
$$

obtains. Another, more general class is the embedding

$$
\begin{gather*}
L_{p}^{r}\left(R_{n}\right) \rightarrow L_{q}^{p}\left(R_{m}\right) \tag{4}\\
\left(\rho=r-\frac{n}{p}+\frac{m}{q} \geqslant 0,1<p<q<\infty\right) .
\end{gather*}
$$

where in addition to change of measure, there is the passage from one metric to another. Thus far as the embedding theorem is concerned where the number of measures changes without metric change, then the corresponding direct thoorem reads thusly

$$
\begin{equation*}
\left(1 \leq m<n, 1<p<\infty, p=r-\frac{n-m}{p}>0\right): \tag{5}
\end{equation*}
$$

$$
L_{p}^{\prime}\left(R_{n}\right) \rightarrow B_{p}^{p}\left(R_{m}\right),
$$

and the inverse thusly:

$$
\begin{equation*}
B_{p}^{0}\left(R_{m}\right) \rightarrow L_{p}^{\prime}\left(R_{n}\right) . \tag{6}
\end{equation*}
$$

Based on the forogoing, B can be roplaced with L when $p=2$ in (5) and (6); moreover, this can be done in (5), if $1<p<2$, and in (6), if $2<p$ $<\infty$. This substitution is invalid in the remaining cases. Thus, the embedding theorem of different measures is in goneral not closed with respect to the classes L.

The followins aituation obtains:

$$
\begin{array}{ll}
B_{p}^{\prime}\left(R_{n}\right) \rightarrow L_{p}^{\prime}\left(R_{n}\right) \rightarrow B_{p}^{p}\left(R_{m}\right) \rightarrow B_{p}^{\prime}\left(R_{n}\right) & (1<p \leqslant 2) \\
L_{p}^{\prime}\left(R_{n}\right) \rightarrow B_{p}^{\prime}\left(R_{n}\right) \rightarrow B_{p}^{p}\left(R_{m}\right) \rightarrow L_{p}^{\prime}\left(R_{n}\right) & (2 \leqslant p<\infty)
\end{array}
$$

showing that the two distinct classes $B_{p}^{r}\left(R_{n}\right)$ and $L_{p}^{r}\left(R_{n}\right)$ of functions defined in R_{n} yields the same set of traces on R_{m} (class $B_{p}\left(R_{m}\right)$).

We must note that the embeddings

$$
B_{p}^{r}\left(R_{n}\right) \nleftarrow B_{p}^{p}\left(R_{m}\right)
$$

for indicated m, n, p, r, and P, can be obtained as a consequence of embeddings (5) and (6). In fact,

$$
B_{p}^{\prime}\left(R_{n}\right) \rightleftarrows L_{p}^{\prime+\frac{1}{p}}\left(R_{n+1}\right) \longleftarrow B_{p}^{\prime \prime}\left(R_{m}\right) .
$$

The facta that we present here are representative. In the anisotropic case similar facts obtain. They will also be proven in this chapter.

2.2. Dafinitions and Fundemantal Propertios of the Classes L_{p}^{r} and \sum_{p}^{r}

Suppose $1 \leqslant m \leqslant n, x=(n, y), n=\left(x_{1}, \ldots, x_{m}\right) \quad R_{m}$, and $J=\left(x_{m+1}, \ldots\right.$, $\left.x_{n}\right) \in R_{n-m^{*}}$ For the functions $\varphi(x)=\phi(n, j)$ of the fundamental class S, we will denote their Fourier transform (direct and inverce) in the variable

$$
\begin{equation*}
\tilde{\Phi}^{u}(u, y)=\frac{1}{(2 \pi)^{m / 2}} \int \varphi(t, y) e^{-t u x} d t . \tag{1}
\end{equation*}
$$

The operations $\tilde{\boldsymbol{\varphi}}^{u}, \phi^{u}$ map S into S and are weakly continuous (cf further 9.2.1); therefore for arbitrary generalised functions $f \in S^{\prime}$ (dofined on H_{n}), the corresponding Fourior transforms $\mathcal{F}^{\prime 2}$ and \hat{S}^{4} are correctly defined by the functionals

$$
\begin{aligned}
& \left(\mathcal{f}^{\prime \prime}, \varphi\right)=\left(f, \hat{\Phi}^{\prime \prime}\right) \\
& \left(\hat{f}^{\prime \prime}, \varphi\right)=\left(f, \hat{\varphi}^{\prime \prime}\right) .
\end{aligned}
$$

If $\lambda(a)$ is an infinitely differentiable function of polynomial group dependent only on a, then for $f \in S^{\prime}$

$$
\widehat{\lambda F^{u n}}=\widehat{\lambda F}, \quad \widetilde{\lambda \tilde{F}^{4}}=\widetilde{\lambda \tilde{F}},
$$

which follows directly from the validity of these qualities for $\varphi \in S$.
Let us introduce the operation
$\left(|u|^{2}-\sum_{1}^{m} u_{j}^{2}, I_{u r}=I_{r}\right.$, when $\left.m=n, f \in S^{\prime}\right)$, corresponding to the real number r mapping S^{\prime} onto S^{\prime}, mutually uniquoly. When $m=1$, when $R_{m}=R_{x_{j}}$
is the axis of coordinates x_{j}, we will denote it further with $I_{x_{j}}$.
For the function $f \in L_{p}=L_{p}\left(R_{n}\right)(1 \leqslant p \leqslant \infty)$ this operation when $r>0$ reduces to the convolution

$$
\begin{equation*}
f=I_{u} i f=\frac{1}{(2 \pi)^{m / 2}} \int_{R_{m}} G,\left(\mid u-t l_{n}\right) f(t, y) d t\left(|t|_{m}^{2}=\sum_{1}^{m} t_{i}^{2}\right), \tag{3}
\end{equation*}
$$

where G_{r} is a Bessel-Macdonald kernel, which is proven thusly.
For $I \in S$ the equalities

$$
\tilde{f}(x)=\hat{f}(-x)=\hat{f(-x)}
$$

obtain, which follow by means of ordinary "changeovers" Lprebroskī from the fact that thoy obviously are valid for any $\phi \in S$. Further, if $\hat{\Lambda} \in L$ and $f \in L_{p}$, then

$$
\bar{\Lambda} \overline{\tilde{j}}=\overline{\Lambda \tilde{f}(-u)}(-x)=\frac{1}{(2 \pi)^{n / 2}} \int \hat{\Lambda}(-x-u) f(-u) d \mu
$$

In particular, if $\hat{\Lambda}(u)=\hat{\Lambda}(-u)$ then $\widehat{\hat{\Lambda}}:=\hat{\Lambda}$. Therefore, for $f \in L_{p}, \varphi \in S$, considering that $G_{r}\left(|n|_{m}\right)=G_{r}\left(|-n|_{m}\right) \in L_{p}\left(F_{m}\right)$, we get

$$
\begin{aligned}
& \left(I_{u}, f, \varphi\right)=\left(V_{1} \overparen{\left.\left(1+|u|^{2}\right)^{-r / 2} \stackrel{\alpha}{\varphi}\right)}=\right. \\
& =\left(f_{1}\left(1+|u|^{2}\right)^{-1 / 2} \varphi\right)=\left(f,\left(1+|u|^{2}\right)^{-1 / \nu^{2}}\right)= \\
& =\frac{1}{(2 \pi)^{m / 2}} \int f(u, y) d u d y \int G_{r}\left(|u-t|_{n}\right) \varphi(t, y) d t= \\
& =\frac{1}{(2 \pi)^{m / 2}} \int q(x) d x \int G_{r}\left(|t-u|_{n}\right) f(u, y) d u \quad(d x=d t d y) \text {, }
\end{aligned}
$$

which in fact proves (3).
Let us introduce the functional classes $L_{u p}^{r}=L_{u p}^{r}\left(R_{n}\right)$,

$$
I_{x_{i} \rho}^{r}=I_{x_{i} \rho}^{r}\left(R_{n}\right), \quad L_{u \rho}^{r}=L_{u \rho}^{r}\left(R_{n}\right), \quad r=\left(r_{1}, \ldots, r_{n}\right) .
$$

By definition, the function $F \in S^{\prime}$ belongs to $L_{u_{p}}^{r}=L_{u p}^{r}\left(R_{n}\right), L_{x_{i}}^{r}\left(K_{n}\right)$,
$1 \leqslant \mathrm{p} \leqslant \infty,-\infty<\mathrm{r}<\infty$, if it is representable, respectively, in the form

$$
l:=I_{u r} f, \quad l=I_{x_{l}} f,
$$

where $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}$. Here we introduce the norms $\|F\|_{L_{\text {up }}}=\|f\|_{\mathrm{p}}$, in particular, if $F\left\|_{L_{x_{i} p}^{r}}^{r}=\right\| f \|_{p}$, trivially indicating the isomorphisms

$$
I_{u r}\left(L_{p}\right)=L_{u \rho,}^{\prime} \quad I_{x_{i}}\left(L_{\rho}\right)=L_{x_{i},}^{\prime}
$$

performing operations $I_{u r}$ and $I_{x_{i} r}$. The class $L_{u_{p}}^{r}=L_{u p}^{r}\left(R_{n}\right)$ corresponding to an arbitrary real vector F is defined as the intersection

$$
L_{u \rho}^{\prime}=\bigcap_{i=1}^{m} L_{x, p}^{\prime}
$$

with the norm

$$
\|f\|_{L_{u p}^{\prime}}=\sum_{i=1}^{m}\|f\|_{L_{x, p}^{\prime},} .
$$

By virtue of the foregoing, the class $L_{u p}^{r}$ can be defined further as a class of function representable (for almost all y) as the integral (3), where $f(x): f(u, J) \models L_{p}\left(R_{n}\right)$.

Given the condition $1<p<\infty$

$$
\begin{gather*}
L_{u \rho}^{\prime}=L_{u p}^{\prime} \ldots, r \quad(r \geqslant 0), \tag{4}\\
L_{u \rho}^{\prime}=W_{u \rho}^{\prime}=W_{u \rho}^{\prime}, \ldots, r \quad(r=1,2, \ldots), \tag{5}\\
L_{u \rho}^{r}=W_{u \rho}^{\prime}\left(r=\left(r_{1}, \ldots, r_{m}\right),\right. \tag{6}
\end{gather*}
$$

where r_{i} are nonnegativo integers).
Equalities (5) and (6) show that the classes $L_{u p}^{r}$ and $L_{u p}^{r}$ can be considered as distributions on any real r, r of the Sobolev classes $W_{u p}^{r}$ and $W_{u p}^{r}$. But we must bear in mind that the functions of classes $L_{u p}^{r}$ and $L_{\text {up }}^{r}$ were defined by us for the entire space k_{n}, while the functions of the Sobolev classes can
be assignod on arbitrary open domain $g \subset R_{n}$.
The first equality (5), when $m=n$, is proven in 8.2. If however $m<n$, then auppose for the time being that $f \in S$ (class of fundamental functions). Then $f \in W_{p}^{r}\left(R_{m}\right)$ for any y, is also obvious $f \in I_{p}^{r}\left(R_{m}\right)$ for any y if function $f(\boldsymbol{u}, \boldsymbol{y})$ in \boldsymbol{a} belongs to $S=S\left(R_{m}\right)$ and if the operation I_{r} (in u) maps it into the function of the class $S\left(R_{m}\right)$, and thus into $L_{p}\left(R_{m}\right)$. Therefore by the virtue of the relation alreacty proven in 13.2

$$
\begin{equation*}
c_{1}\|f\|_{\Psi_{p}^{r}\left(R_{m}\right)} \leqslant\left\|I_{\left.u_{1}-r\right)}\right\|_{L_{D}\left(R_{m}\right)} \leqslant c_{2}\|f\|_{w_{p}^{\prime}\left(R_{m}\right)^{\prime}} \tag{7}
\end{equation*}
$$

whore c_{1} and c_{2} do unct depend on f and y.
Raising these equalities to the power p, applying the elementary inequality*), integration with respect to y, and appication of another elementary inequality*) leads to the inequalities

$$
\begin{equation*}
c^{\prime}\|f\|_{w_{u p}^{\prime}} \leqslant\left\|I_{u(-n)}\right\|_{L_{p}} \leqslant c^{\prime \prime}\|f\|_{w_{u p}^{\prime}} \tag{8}
\end{equation*}
$$

even for just functions $f \in S$.
If now $f \in W_{p}^{(}\left(R_{n}\right)$ then we define the sequence of finite functions $f_{I}(1=1,2, \ldots)$ such that $\left\|f_{l}-f\right\|_{W_{p}^{r}\left(R_{n}\right)} \rightarrow 0(1 \rightarrow \infty)$.

From (8) it follows that

$$
\begin{aligned}
& c^{\prime}\left\|f_{h}-f_{l}\right\|_{w_{u p}^{\prime}} \leqslant\left\|\varphi_{k}-\varphi_{l}\right\|_{L_{p}} \leqslant \\
& \quad \leqslant c^{\prime \prime}\left\|f_{k}-f_{l}\right\|_{w_{u p}^{\prime}} \rightarrow 0(k, l \rightarrow \infty) \quad\left(\varphi_{k}=I_{u(-1)} f_{k}\right),
\end{aligned}
$$

*) We must bear in mind the inequalities

$$
c\left|\Sigma a_{4}\right|^{p} \leqslant \sum_{i}^{n}<c_{1}\left|\sum_{a_{2}}\right|^{p} .
$$

where numbers $a_{k}>0$ and c, c_{1} depend only on p and on the number (finite) of terms undor the sign Σ.
and by virtue of the completeness of $W_{u p}^{r}$ and the fact that (of (3))

$$
f_{1}(u, y)=\frac{1}{(2 \pi)^{m / 2}} \int G,\left(|u-t|_{m}\right) \varphi_{l}(t, y) d t,
$$

where $G_{r}\left(|a|_{m}\right) \in L_{p}\left(H_{m}\right)$, the second inequality (8) obtains where

$$
\left\|I_{w}(-1)\right\|_{L_{D}}=\|f\|_{L_{u p}^{\prime}} .
$$

If however $f \in L_{u p}^{r}$ and $\left.I_{u(-r}\right)^{f}=\varphi$, then we can select a sequence of finite (belonging to S^{\prime}) functions φ_{1} such that $\| \varphi_{k}-\Phi_{L_{p}} \rightarrow 0$, therefore by virtue of the first inequality of (8) and the completeness of $W_{u p}^{r}$, we arrivo at the first inequality of (8). By this we have proven the first equality of (5).

From the first equality of (5) applied to each axis $R_{x_{j}}(j=1, \ldots, n)$ obviously follows (6).

Let us proceod to the proof of (4). Suppose $F \in L_{\text {up }}^{r}, \ldots, r(r \geqslant 0)$, then

$$
\psi=\sum_{i=1}^{m}\left(1+u_{i}^{2}\right)^{r / 2} \tilde{F} \in L_{p,} \quad\|\psi\|_{p} \ll\|F\|_{L_{i j p}, \ldots, r}
$$

and, since the function

$$
\left(1+|u|^{2}\right)^{r / 2}\left(\sum_{i=1}^{m}\left(1+u_{i}^{2}\right)^{r / 2}\right)^{-1}
$$

 also consider and below the note 1.5.4.1), then

$$
\begin{aligned}
& I_{u(-) \mid} F=\left(\overline{\left.1+|u|^{2}\right)^{\prime 2}} \bar{F} \in L_{p 0}\right. \\
& \|F\|_{L_{u F}^{\prime}}=\left\|I_{u(-r)} F\right\|_{\rho} \ll\|\psi\|_{p} \ll\|F\|_{L_{i j}, \ldots,},
\end{aligned}
$$

from whence it follows that $L_{\text {up }}^{r, \ldots, r} \rightarrow L_{\text {up }}^{r}$. Conversely, if $F \in L_{\text {up }}^{r}$, then

$$
\begin{aligned}
& f=\left(\overline{\left.l+|u|^{2}\right)^{r / 2}} \bar{F} \in L_{p 1} \quad\|f\|_{\rho}=\|F\|_{L_{u p}^{r}}\right. \\
& \text { function }
\end{aligned}
$$

and, since the function

$$
\left(1+\mid u P^{2}\right)^{-r / 2}\left(1+u_{j}^{2}\right)^{-/ 2} \quad(r \geqslant 0)
$$

is a larcinkievicz multiplier (cf 1.5.5,exanplc 3), then

$$
f_{1}=\left(1+\overline{l_{i}^{2}}\right)^{\prime 2} \tilde{\tilde{F}} \in L_{p}, \quad\left\|f_{I}\right\|_{p}<\|f\|_{p}=\|F\|_{L_{u p}^{\prime}}
$$

thereiore ${\underset{L u p}{r}}_{r} \rightarrow \mathcal{L}_{\text {up }}^{r, \ldots, r}$ and (6) is proven.
From the forogoing it follows that

$$
W_{u p}^{r} \leftrightarrows L_{u p}^{r} \leftrightarrows L_{u p}^{r} \ldots, r \leftrightarrows W_{u, p}^{r, \ldots, r} \quad(r=0,1, \ldots)
$$

which ontails the second equality of (5). Its nontrivial part is the embedding $W_{u p}^{r} \ldots, W_{u p}^{r}(1<p<\infty)$, expressing that if the function $f \in L_{p}$ does have nommixed derivatives of the order r with respect to the variables x_{1}, \ldots, x_{n} taken separatoly, belonging to L_{p}, then it also has any mixed derivatives of the order r with respect to these variables belonging also to L_{p}. rxamples are existod showing that this embodding provicied $p-1$ and $p-\infty$ does not obtain (B. S. Mityagin L1」).
9.2.1. The weak continuity of the operation $\tilde{\Phi}^{u}(\Phi \in S)$ follows from the following considerations. We will write $\dot{\mathcal{F}}$ instead of $\tilde{\boldsymbol{q}} \mathrm{u}$. Let us assign a natural number 1 and an integral nonnegative vector $k=1+p$, where $s=(k, \ldots$, $\left.k_{m}, 0, \ldots, 0\right), f:\left(0, \ldots, 0, k_{m+1}, \ldots, k_{n}\right)$. Then, obviously, the derivative

$$
D^{*} \tilde{\Phi}=D^{*} \widetilde{\varphi^{(\prime)}} .
$$

Wo have (explanations bolow)

$$
\begin{align*}
& \left(1+|x|^{2}\right)^{\prime}\left|D^{(a)} \tilde{\Phi}\right| \leqslant\left(1+|y|^{()^{\prime}}\left(1+|u|^{2}\right)^{\prime}\left|D^{\prime} \Phi^{(0)}\right| \leqslant\right. \\
& \leqslant c\left(1+|y|^{p}\right)_{(r, s)}^{l} \sum_{\gamma_{l, 0}} \max _{u}\left(1+|u|^{2}\right)^{l^{\prime}}\left|D^{(n)} \varphi^{(n)}(u, y)\right|= \\
& =c\left(1+|y|^{2}\right)^{l} \sum\left(1+\left|u_{0}\right|^{1}\right)^{\prime \prime}\left|D^{\left(0^{\prime}+p\right)} \varphi\left(u_{0}, y\right)\right| \leqslant \quad \text {, } \\
& \leqslant c \sum\left(1+|y|^{2}+\left|u_{0}\right|^{2}\right)^{2}\left|D^{\left(0^{\prime}+p\right)} \Phi\left(u_{0}, y\right)\right| \leqslant \\
& \leqslant c \sum x\left(2 l, s^{\prime}+\rho, \varphi\right) . \tag{1}
\end{align*}
$$

The second inequality follows from 1.5(4); in the third term the constant c depends on 1 and $\underset{z}{ }$, but not on Φ and \bar{J}; the sum of the third and successive terms is extended over some (dependent on I and P) finite set E 1 , of pairs
(I^{\prime}, E^{\prime}) and natural numbers l^{\prime} and nonnegative a^{\prime}. In the fourth term, $u_{0} \in R_{m}$ does in fact depend on the corresponding term and also on \bar{J}; this
u_{0} is the maximum point (with respect to u) of the corresponding term for fixed \boldsymbol{y}. The weak continuity of $\tilde{\boldsymbol{\phi}}^{u}$ follows from the derived inequalities (1).
9.2.2. Theorem on derivatives. Suppose $1<p<\infty, F \in L_{p}^{r}=L_{p}^{r}(R)$, $R=R_{n}, r=\left(r_{1}, \ldots, r_{n}\right)>0\left(r_{j}>0\right)$ and $1=\left(I_{1}, \ldots, I_{n}\right) \geqslant 0$ is an integral voctor ($I_{j} \geqslant 0$ are integers) for which

$$
\begin{equation*}
x=1-\sum_{i=1}^{n} \frac{l_{1}}{r_{j}} \geqslant 0 \tag{1}
\end{equation*}
$$

Further supposo

$$
\begin{equation*}
\rho=x p . \tag{2}
\end{equation*}
$$

Then the derivative
and

$$
\begin{equation*}
F^{(n}=(i x)^{\prime} \stackrel{\rightharpoonup}{F} \in L_{p}^{p} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left\|F^{(h)}\right\|_{L_{p}^{0}} \leqslant c\|F\|_{L_{p}} \tag{4}
\end{equation*}
$$

Proof. By the condition $F \in \mathcal{L}_{\mathrm{p}}^{\mathrm{r}}$, therefore

$$
\begin{equation*}
\psi=\widehat{\tilde{\Gamma}} \in L_{p}, \quad \Lambda=\sum_{i=1}^{n}\left(1+x_{i}^{2}\right)^{r / 1}, \quad\|\psi\|_{p} \leqslant c\|F\|_{L_{p}^{r \cdot}} \tag{5}
\end{equation*}
$$

To prove (3) and (4), we must establish that for any $s=1, \ldots, n$, and

$$
\left(1+x_{s}^{2}\right)^{\frac{x_{s}}{2}} \overline{F^{(h)}}=\left(1+x_{s}^{2}\right)^{x_{s}}(i x)^{2} \tilde{F} \in L_{\infty}
$$

but this follows from (5) if we notice that the functions

$$
1-V,(x) \frac{\varepsilon}{\frac{\varepsilon}{x}}\left({ }_{2}^{5} x+1\right)
$$

are Marcinkievicz multipliers (of 1.5 .5 , example 6).
The proof in theorem 9.2.2 is in a certain sense analogous to the theorem 5.6.3 B-classes. However, theorem 9.2.2 is valid when $1<\mathrm{p}<\infty$ and $\gamma<0$, while theorem 5.6.3 is vaild for $1 \leqslant p \leqslant \infty$ but when $\}<0$.

Example. Suppose f is a function definfod on the circle $\sigma=\left\{\rho^{2}=x^{2}+\right.$ $\left.y^{2} \leq 1\right\}$ by the equalities

$$
\begin{equation*}
f=x y \ln \rho^{2}(\rho>0), \quad f=0(\rho=0) \tag{1}
\end{equation*}
$$

and is extended over the entire plane R such that it together with its partial derivatives up to the second order inclusively are bounded and continuous on the domain $p>\frac{1}{d}$ (cf theorem 3 in notes to 4.3.6).
while $\partial^{2} t$ is easy to verify that $f, \partial f / \partial x$, and $\partial f / \partial y$ are continuous and bounded, while $\partial^{2} f / \partial x^{2}$ and $\partial^{2} f / \partial y^{2}$ are bounded on R; at the same time $\partial^{2} f / \partial x \partial y$ is continuous for $P>0$, but is unbounded in the peighborhood of the zero point.

This example shows that when $p=\infty$, theorem 9.2.2 is in general invalid.
9.2.3. Note on derivatives of fractional order. In this book we will deal with expressions of the form

$$
\begin{equation*}
\left.(l x)^{\prime}\right\rangle=f^{(a)} \quad\left(f \in S^{\prime}\right) \tag{1}
\end{equation*}
$$

only for the case of integral vectors α. If $\alpha \geqslant 0$, then $f(\alpha)$ is a derivative of $f \in S^{\prime}$ of order α. The function (ix) for integral α is infinitely
differentiable and of polynomial growth, therefore expression (1) correctly defines $\mathrm{f}^{(\alpha)} \in \mathrm{S}^{\prime}$.

If the real number α is nonintegral, then the function (it) ${ }^{\alpha}$ ($-\infty<t$ $<\infty$) is multivalued, but we can agree to understand this expression to refer to the unique branch of this function

$$
(i t)^{a}=\left\lvert\, t t^{a} \exp \left\{\frac{1}{2} \pi i \alpha \operatorname{sign} t\right\}\right.,
$$

then when α is natural

$$
(i t)^{a}=\underbrace{(i t)}_{a} \ldots(i t) .
$$

If further, α and β are real numbers, then

$$
(i t)^{a+\beta}=(i t)^{a}(i t)^{\beta} .
$$

If now $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ are real vectors and $x=\left(x_{1}, \ldots, x_{n}\right)$ is a real vectorial variable, then we set

$$
(i x)^{)^{d}}=\left(i x_{1}\right)^{a_{1}} \ldots\left(i x_{n}\right)^{a_{n}},
$$

then, obviously, the equality will be satisfied

$$
(i x)^{n}(i x)^{n}=(i x)^{n+1} .
$$

Now it is natural to define the derivative $f^{(\alpha)}$ of order α for any, not necessarily, integral vector α by means of expression (1). However, here we face the difficulty that for fractional α the function (ix) ${ }^{\alpha}$ is not infinitely differentiable; it also is not a Marcinkievicz multiplier and, thus, is inapplicable in the sense of the definition considered in this book, even if $f \in L_{p}$. The way out of the dilemma is found in the fact that instead
of S, we will consider another class Ω of fundamental functions_consisting of functions that are orthogonal polynomials (P. I. Lizorkin [5」).

A class of functionals (generalized functions) Ω^{\prime} is defined over Ω. The concept (ix) ${ }^{\text {r }}$ for fractional vector α is meaningful in the terms of Ω^{\prime}. Here we have proven that the class $L_{x_{j}}^{r} p$, where $r>0$ is generally fractional, can be defined as consisting of the functions f for which the norm

$$
\|f\|_{L_{p}}+\|\left(i\left(i x_{1}\right)^{\prime}\right) k_{p_{p}}
$$

is finite. This norm is equivalent to our introduced norm $\|f\|_{L_{x_{j}} p}$.

2.3. Interrelationshins of Liouville and Othor Classes

We will assume that $R=R_{n}, L=L(R), \mathbf{H}=H(R), \ldots$ and

$$
B_{\rho p}^{r}=B_{p,}^{\prime}, \quad B_{p p}^{\prime}=B_{p}^{r} .
$$

The following embeddings ($r \geqslant 0, r \geqslant 0$) are valid:

$$
\begin{array}{lll}
L_{p}^{\prime} \rightarrow H_{p}^{r}, & L_{p}^{r} \rightarrow H_{p}^{r} & (1 \leqslant p \leqslant \infty), \tag{1}\\
B_{p}^{\prime} \rightarrow L_{\rho}^{r}, & B_{p}^{r} \rightarrow L_{p}^{\prime} & \left.(1 \leqslant p \leqslant 2)^{*}\right), \\
L_{p}^{\prime} \rightarrow B_{p,}^{r}, & L_{p}^{\prime} \rightarrow B_{p}^{\prime} & \left.\left(2 \leqslant p \leqslant \infty, \quad B_{\infty}^{\prime}=B_{\infty}^{\prime}=H_{\infty}^{r}\right)^{*}\right) .
\end{array}
$$

From (2) and (3) it follows that

$$
\begin{equation*}
B_{2}^{r}=I_{-2}^{r}, \quad B_{2}^{r}=L_{2}^{r} \tag{4}
\end{equation*}
$$

and, in particular,

$$
B_{2}^{\prime}=W_{2}^{\prime}, \quad B_{2}^{r}=W_{2}^{r} \quad\left(r_{1} r_{1}=0,1, \ldots\right) .
$$

Thus, the value of parameter $p=2$ is exclusive -- for it the corresponding classes B and L, and for natural r, r, and W coincide.

Let us present the proof to (1) - (3) for $n=1$, for the time being. In this case the embeddings appearing in each of the pairs (1), (2), and (3) correspondingly coincide.

Let function $f \in L_{p}=L_{p}\left(H_{y}\right)$ and $\sigma_{N}(f)$ be its de la Valleb-Poussin sum. Then
 general case, $1<\mathrm{p}<\infty$. Cf further note to 9.3.

$$
\begin{gathered}
\left\|\sigma_{2^{0}}(f) \mid \leqslant M\right\| f \|_{p^{\prime}} \\
\left\|\sigma_{2^{\wedge}}(f)-\sigma_{2^{2}-1}(f) b<2 M\right\| f \|_{p_{0}}
\end{gathered}
$$

and this shows that (ef 8.9.1(1))

$$
\|f\|_{n_{0}^{u}}=\sup _{A}\left(\left|\sigma_{2^{*}}(f)\right|_{0} \mid \sigma_{2^{2}}(f)-\sigma_{2^{n-1}}(f) b_{b}\right)<2 M\|f\|_{p_{1}}
$$

i.e., $L_{p} \rightarrow H_{p}^{0}$, but since the operation I_{r} performe the isomorphisme:
then

$$
I_{(}\left(L_{p}\right)=L_{p_{1}^{\prime}}^{\prime} \quad I_{r}\left(H_{p}^{0}\right)=H_{p_{1}^{\prime}}^{\prime}
$$

$$
L_{0}^{\prime} \rightarrow H_{0}^{\prime} .
$$

Let us prove (3). The case $p=\infty$ was alroedy considered. Suppose $2 \leqslant p<\infty$ and function $f \in L_{p}=L_{p}(-\infty, \infty)$ is, consequently, regular in the L_{p}-sense.

Then, considering that $\beta_{k}(f)$ has the same meaning as in 8.10.1, we got (explanations below)

$$
\begin{aligned}
& -\int_{-\infty}^{\infty} \sum_{0}^{\infty}\left|\beta_{k}(f)\right|^{p} d x=\sum_{j}^{\infty}\left\|\beta_{k}(f)\right\|_{p}^{p}-\| f \mu_{0} p_{0}
\end{aligned}
$$

The first inequality followe from 1.5.6.1, the aecond from 3.3.3, and finally the last from theorem 8.10.1. Consequentiy, $L_{p} \rightarrow B_{p}^{0}$.

Now suppose for the same notation $f \in B_{p}^{0}, 1<p \leqslant 2$. Then (explanations below)

$$
\begin{aligned}
&\|f\|_{B_{p}^{0}}=\sum_{0}^{\infty}\left\|\beta_{k}(f)\right\|_{p}^{p}=\int_{-\infty}^{\infty} \sum \mid \beta_{k}(f) P^{p} d x \geqslant \\
& \geqslant \int\left\{\sum \beta_{k}(f)^{2}\right\}^{p / 2} d x \geqslant \| f \mathscr{l}_{6} .
\end{aligned}
$$

The first equality follows from 8.10.1, the next to the last from 3.3.3, and the last from 1-5.6.1. Consequently, $\mathrm{B}_{\mathrm{p}}^{0} \rightarrow \mathrm{~L}_{\mathrm{p}}$.

When $p=1$, let us reason in a different fashion. Suppose the function $\mathrm{I} \in \mathrm{B}_{1}^{0}$; then it is regular in the L -sense and is represented as the de l_{a}

Vallod-Pousein series 8.9(3)

$$
f=\sum_{0}^{\infty} q_{s}
$$

weakiy convergent in the S^{\prime}-sense, where $\sum_{0}^{\infty}\left\|q_{s}\right\|_{L}<\infty$. But then, obviously,
$I \in L$ and $\|f\|_{k} \leqslant\|f\|_{B_{i}}$

Wo have proven (1) - (3) for $n=1$. But then the following ambeddings are also valid

$$
\begin{array}{ll}
L_{x, p}^{r}\left(R_{n}\right) \rightarrow H_{x, p}^{r}\left(R_{n}\right), \\
B_{x, p}^{r}\left(R_{n}\right) \rightarrow L_{x, p}^{r}\left(R_{n}\right) & (1 \leqslant p \leqslant 2) \\
L_{x, p}^{r}\left(R_{n}\right) \rightarrow B_{x, p}^{r}\left(R_{n}\right) & (2 \leqslant p \leqslant \infty) \tag{7}
\end{array}
$$

In fact, it is immediately clear from the definition of the H - and B-classes that if the function $F(x)=F\left(x_{1}, J\right), J=\left(x_{2}, \ldots, x_{n}\right)$, belongs to $H_{x_{1} p}^{r}\left(R_{n}\right), B_{x_{1}}^{r} p\left(R_{n}\right)$, then for almost all y it as a function of x_{1} belongs, respectively, to $H_{p}^{P}\left(R_{x_{1}}\right)$ and to $B_{p}^{r}\left(R_{x_{1}}\right)$ where $R_{x_{1}}$ is the x_{1} axis; analogously, if $F(x) \in L_{x_{1} p}\left(R_{n}\right)$, then for almost all y it belongs to $L_{p}^{r}\left(R_{x_{1}}\right)$ (this follows from the integral representation $9.2(3)$ of the functions of the class $L_{x_{1} p}^{r}\left(R_{x_{1}}\right)$).

The equalities

$$
\begin{align*}
& \|F\|_{{x_{1} p}_{\prime}\left(R_{n}\right)}=\left(\int\left\|F\left(x_{1}, y\right)\right\|_{\Lambda_{p}^{\prime}\left(R_{x_{1}}\right)} d y\right)^{1 / p} \tag{9}\\
& \|F\|_{L_{x_{1} p}^{\prime}\left(R_{n}\right)}=\left(\int\left\|f\left(x_{1}, y\right)\right\|_{L_{p}\left(R_{x_{1}}\right)}^{p} d y\right)^{1 / p} \tag{10}
\end{align*}
$$

are valid here with an accuracy up to equivalency, whore instead of Λ we can substitute H or B, and in (10) F and f are related by equality $9.2(3)$. The inequalities defining embedding (6) - (8) thon follow the corresponding
inequalities between the norm under the integrale in (9) and (10) that wore already proven for the ono-dimonsional case.

From (6) - (8), where x_{1} can be further replaced by $x_{i}(i=1, \ldots, n)$, embeddings (1) - (3) follow $1_{\text {trivially }}$, if we conalder (in the proof of the firet embeddings (1) - (3)), that

$$
\begin{gathered}
H_{p}^{\prime}=H_{p}^{\prime} \cdots, r \quad(1 \leqslant p \leqslant \infty), \quad B_{p}^{\prime}-B_{p}^{\prime,} \cdots, r \quad(1<p<\infty), \\
L_{p}^{\prime}=L_{p}^{\prime, \cdots, r} \quad(1<p<\infty) .
\end{gathered}
$$

2.6. Intecrel Fopresentation of Anisotropic clames

In this section wo will be concerned with studying the operations

$$
\begin{gather*}
\left.F=\widehat{\Lambda_{r}}\right\rangle=I_{r} f_{1} \tag{1}\\
\left.\dot{\Lambda}=\Lambda_{r}=\left\{\sum_{i=1}^{n}\left(1+x_{i}^{2}\right)\right)^{, \rho_{n}}\right\}^{-\frac{1}{\theta}} \tag{2}\\
\left(0>0, r=\left(r_{1}, \ldots, r_{n}\right)>0\right),
\end{gather*}
$$

dependent on the positive vector r and parameter σ. It is analogous to the a ready studied operation $I_{r}(r$ is a number) and in the one-dimanaional case, trese operations, provided $r=r_{1}$ and $\sigma=1$, coincide. For the case $n>1$, $r_{1}=\ldots=r_{n}=r$, the operations I_{r} and I_{r} even when $\sigma=1$ do not coincide; however, they do have analogous properties, which, for example, is evident from the fact that the function

$$
\begin{equation*}
\left(1+|x|^{2}\right)^{/ 2} \Lambda_{r}(x) \tag{3}
\end{equation*}
$$

and the quantity that is inverse to it for any $\sigma>0$ is a Marcinkievicz mutiplier (when $1<p<\infty$, of 1.5 .5 , examples 8 and 9).

We will further write

$$
\begin{equation*}
l, r F=1 \tag{4}
\end{equation*}
$$

Since the multipliar Λ_{r} is an infinitely differentiable function of polynomial growth, just as the quantity that is its inverse, then I_{r} transforms mutually uniquely S^{\prime} onto $\mathbf{S '}^{\prime}$.

The operation I_{r} is remarkable in that it performs the isomorphism

$$
L_{p}^{\prime}=I_{f}\left(L_{p}\right) \quad(1<p<\infty) .
$$

In fact, if $\mathrm{f} \in \mathrm{L}_{\mathrm{p}}$, then

$$
\left\|I_{-1}, F\right\|_{p}<\|f\|_{0}
$$

which follows from the fact that the functions

$$
\begin{equation*}
\left(1+x_{l}^{2}\right)^{\prime} l^{\prime 2} \Lambda_{f}(x) \quad(l-1, \ldots, n) \tag{6}
\end{equation*}
$$

are Marcinkievicz multipliers (cf 1.5.5, example 10). Therefore $F \in \underset{p}{r}$ and

$$
\|F\|_{L_{0}^{r}}<\|f\|_{0} .
$$

Conversely, if $F \in L_{p}^{F}$, then

$$
\|f\|_{p} \ll\|F\|_{L_{p}^{r}}
$$

This follows from the fact that the function (cf 1.5 .5 , example 11)

$$
\begin{equation*}
\left.\Lambda_{r}^{-1}(x)\left\{\sum_{l=1}^{n}\left(1+x_{j}^{2}\right)^{2} /\right)^{-1}\right\}^{-1} \tag{7}
\end{equation*}
$$

is a Marcinkievicz multiplier.
Suppose $r>0, \lambda, \delta>0$, then, as we have proven, the isomorphism

$$
\begin{equation*}
I_{(1 .+\delta) r}\left(L_{p}\right)=L_{p}^{(\lambda+\delta) r} \quad(1<p<\infty) . \tag{8}
\end{equation*}
$$

obtains. Remarkably, even though the operation

$$
I_{1, r} I_{\delta r}
$$

is generally distinct from the operation $I(\lambda+\delta) r$, they are equivalent in the sense that in addition to (8) isomorphism

$$
L_{1,} I_{\Delta r}\left(L_{p}\right)=L_{\rho}^{(0+\theta) r} \quad(1<p<\infty)
$$

obtains. This follows from the fact that the functions μ, μ^{-1} considered in the example (1.5.5, example 12) are Marcinkievicz multipliers.
9.4.1. E'stimates of anisotropic kernels. Let us assign $r=\left\langle r_{1}, \ldots\right.$, $\left.r_{n}\right)>0$ and $1:\left(I_{1}, \ldots, I_{n}\right)$, and suppose $\sigma>0$ is so large that the inequaIities

$$
\sum_{1}^{n} \frac{t_{1}}{r_{j}}<\sigma-\sum_{1}^{n} \frac{1}{r_{j}}+\frac{i}{r_{1}} \quad(i=1, \ldots, n) .
$$

are satisfied. Our most immediate aim will be shown that in this case the Fourier transform (of 9.4(2))

$$
\begin{equation*}
\hat{\Lambda}=\hat{\Lambda}_{r}(x)=G_{r}(x) \tag{1}
\end{equation*}
$$

is an ordinary function exhibiting the "derivative"*)

$$
\left.I_{-t} G_{r}=\prod_{1}^{n}\left(1+x_{l}^{2}\right)\right)^{1 / 2} \Lambda
$$

(an ordinary function), subject to the inequalities

$$
\left|l_{-1} G_{r}(x)\right| \leqslant c\left\{\begin{array}{ll}
\left\{\sum_{1}^{n}|x,|^{\prime j^{x}}\right\}^{-1} & \left(x=\sum_{1}^{n} \frac{1+l_{j}}{r_{j}}-1>0,\right. \tag{2}\\
\ln \left(\frac{1}{|x|}+1\right) & (x=0) \\
1 & (x<0)
\end{array},\right.
$$

where $c_{1}>0$ is sufficiently small and σ appears only in constant c, from whence it follows that $G_{r} \in L$. This, in particular, shows that
\#) We can show that this assertion is preserved if in it the operation I_{-1}
for integral 1 is replaced by the operation of the derivative
$D_{G_{r}}=(i x)^{1} \Lambda .(\mathrm{P}$. I. Lizorkin $\angle 10 /)$.

$$
\begin{equation*}
I_{r} f=\int G_{r}(x-u) f(u) d u \tag{4}
\end{equation*}
$$

is an ordinary convolution for $f \in L_{p}(1 \leqslant p \leqslant \infty)$.
9.4.2. Let Ω stand for the complex plane with the excision -$-\infty<x \leqslant 0$ and $\rho=\lambda+i \mu$ is a complex number. We will in the following assume without explanation that z^{ρ} is a single-valued branch, defined on Ω, of the multi-valued function 2 , equal to $x^{\rho}=\dot{x}^{\lambda} e^{i n 1 n} x$ on the ray $0<x<\infty$. In other words, if $z=x+i y$, then it is always assumed that

Lemma 1. Suppose $0<\alpha \leqslant 1$. Then

$$
\begin{equation*}
\left|z^{a}-A^{a}\right| \leqslant M|z-A|^{a} \quad(z \in \Omega, A \geqslant 0), \tag{1}
\end{equation*}
$$

where M does not depend on z and A.
Proof. Let us first consider the single-valued analytic function

$$
\begin{equation*}
f(z)=\frac{z^{a}-1}{(z-1)^{a}} \tag{2}
\end{equation*}
$$

on the domain Ω^{*} of the complex plane with two excisions $-\infty<x \leqslant 0,1 \leqslant$ $x<\infty$, equal to

$$
f(x)=\frac{x^{a}-1}{(x-1)^{a}}
$$

on the upper edge of the excision $1 \leqslant x<\infty$.
In order to construct this function, we assume that the function z appearing in the numerator of (1) is defined by the formula $z^{\alpha}=p^{\alpha} e^{1 \alpha \theta}$ ($z=\rho^{i 0}, p>0,-\pi<\theta<i$); i.e., that $z \alpha$ (in the numerator) is understood as the single-valued branch of z^{α}, defined on Ω, equal to x^{α} for $0<x<\infty$; as far as the function ($z-1$) in the denominator is concerned, then it is understood in the sense of $(z-1)^{\alpha}=r^{\alpha} e^{i \alpha \phi}\left(z-1=r e^{i \rho}, r>0\right.$, $0 \leq \varphi \leq 2 \pi$.

The function $f(z)$ defined this way has the limit $\lim _{z \rightarrow \infty} f(z)=1$; moreover, it is bounded on all edges of both excisions. Thus, it is bounded over the entire boundary of Ω^{*} and, by the principle of the maximum, is bounded on Ω^{*} :

$$
M \geqslant\left|\frac{z^{a}-1}{(z-1)^{a}}\right|=\frac{\left|z^{a}-1\right|}{\mid z-1)^{a} \mid}=\frac{\left|z^{a}-1\right|}{|z-1|^{a}},
$$

and we have proven inequality (1) when $A=1$ and for all $2 \in \Omega^{*}$, but then also for $z \in \Omega$, because for real $z=x>1$, the inequality

$$
\left|x^{a}-1\right| \leqslant|x-1|^{a} \quad(0<a<1)
$$

is well known.
If now A is an arbitrary positive number, then for $z \in \Omega$

$$
\left.\left|z^{a}-A^{a}\right|-A^{a}\left|\left(\frac{z}{A}\right)^{a}-1\right| \leqslant M A^{a}\left|\frac{z}{A}-1\right|^{a}=M \right\rvert\, z-A^{a},
$$

and we have proven (1).
Lamma 2. Suppose $\alpha \geqslant 1$, then for $z \in \Omega$ and any $A>0$,

$$
\begin{equation*}
\left|z^{a}-A^{a}\right| \leqslant M|z-A|\left(A^{a-1}+|z|^{a-1}\right) \tag{3}
\end{equation*}
$$

obtains, where M does not depend on z and A.
Proof. In fact, let us connect points A and z with the segmont $c:$

$$
\zeta=A+t(z-A) \quad(0 \leqslant t \leqslant 1),
$$

obviously belonging to Ω. Then

$$
z^{a}-\dot{A}^{a}=a \int_{c} z^{a-1} d z=a \int_{0}^{1}[A+t(z-A)]^{a-1}(z-A) d t
$$

from whence also follows (3) $\left((a+b)^{\beta} \leqslant c\left(a^{\beta}+b^{\beta}\right), \beta>0\right.$, and c does not depend on a and $b)$.
9.4.3. Let us introduce the notation

$$
\begin{equation*}
V=\sum_{1}^{n}\left(1+u_{i}^{2}\right)^{\frac{r_{1}}{2}}, \quad U=\sum_{1}^{n}\left(1+u_{i}^{2}\right)^{\frac{r_{1}}{2 r_{n}}} \quad\left(r_{l}>0\right) . \tag{1}
\end{equation*}
$$

and take note of the inequality

$$
\begin{equation*}
U^{\prime}{ }^{\prime \prime} \leqslant c V \tag{2}
\end{equation*}
$$

where c does not depend on V

$$
\begin{equation*}
\left|u_{n}\right| \leqslant\left(1+u_{n}^{2}\right)^{1 / n}-\left(1+u_{n}^{2}\right)^{\frac{r_{n}}{2 \cdot n}} \leqslant U \tag{3}
\end{equation*}
$$

Here (2) follows from the fact that for $\beta>0$ and any $x_{j}>0$

$$
\left(\sum_{i}^{n} x_{i}^{\beta}\right)^{1 / \beta} \leqslant c_{\beta} \sum_{1}^{n} x_{i}
$$

and c_{β} does not depend on x_{j}.
Let us introduce the curve $L_{u^{\prime}}$ in the plane of the complex variable $w_{n}=u_{n}+i v_{n}$:

$$
\begin{equation*}
u_{n}+i k U\left(0<k<1,-\infty<u_{n}<\infty\right), \tag{4}
\end{equation*}
$$

dependent on the constant k and the vectorial parameter $u^{\prime}=\left(u_{1}, \ldots, u_{n-1}\right)$. Let us moreover introduce the curve L_{u}^{*} ' \cdot Suppose

$$
\begin{equation*}
B=k\left(\sum_{1}^{n-1}\left(1+u_{1}^{2}\right)^{\frac{r_{1}}{2 r_{n}}}+1\right) \tag{5}
\end{equation*}
$$

where k is a constant. If $B \leqslant 1$, then we will assert that $L_{u^{\prime}}^{*}=L_{u^{\prime}}$, but if $B>1$, then when $L_{u^{\prime}}$ lies above point 1 , then suppose

$$
L_{u^{\prime}}^{\bullet}=L_{u^{\prime}}+l_{u^{\prime}}
$$

where $I_{u^{\prime}}$ is the twice-transversed segment $\bar{L}, i B \bar{j}$. More exactly, we assert that the oriented curve $I_{u_{1}^{\prime}}^{*}$ is obtained by the following motion: first the point $L_{u}^{*}{ }_{\mathbf{u}}$ transverses the left piece of $L_{u^{\prime}}$ corresponding to an increment in u_{n} over the interval $(-\infty, 0)$, then it descends along the segment $L_{u^{\prime}}$ downward to i, envelopes i, ascends up to $L_{u^{\prime}}$, and departs to $+\infty$ along the right piece of L_{u}.

We let $E_{u^{\prime}}$ stand for the set point w_{n} filling part of the complex plane w_{n} between the real axis u_{n} and the curve $L_{u}^{*}{ }_{1}$.

Since $\Lambda=V^{-1 / \sigma}$ is an infiritely differentiable function of polynomial growth, then $\hat{\lambda} \in S^{\prime}$ is meaningful. For small r_{j} the integral

$$
\cdot \hat{\jmath}(x)=\frac{1}{(2 \pi)^{n / 2}} \int e^{i x u} \Lambda(u) d u
$$

even in any case cannot convergeabsolutely, because study of the function $\hat{\lambda}$ will proceed by the circuitous route of introducing the auxiliary function

$$
\begin{equation*}
V^{-\frac{\rho}{\sigma}}=\Lambda_{\rho, r, 0} \quad\left(\rho=\lambda+i \mu, \lambda>0, \quad \Lambda_{i, r, 0}=\Lambda_{r}=\Lambda\right) \tag{6}
\end{equation*}
$$

with complex parameter P. For sufficiently large λ, the direct notation in terms of the Lebesgue (absolutely convergent) integral*)

$$
\begin{align*}
I_{-1} \hat{\Lambda}_{p, r, 0} & =\frac{1}{(2 \pi)^{n / 2}} \int \frac{\prod_{1}^{n}\left(1+u^{2}\right)^{1 / 2 / 2} e^{i x u} d u}{V^{p / 0}}= \\
& =\frac{1}{(2 \pi)^{n / 2}} \int e^{i x^{\prime} u^{\prime} d u^{\prime} \int \frac{\prod_{1}^{n}\left(1+u_{1}^{2}\right)^{l^{\prime / 2}} e^{\left(x_{n} u_{n}\right.}}{V^{p / \sigma}} d u_{n}} \\
& \left(x^{0}=\left(x_{1}, \ldots, x_{n-1}\right), u^{\prime}=\left(u_{1}, \ldots, u_{n-1}\right)\right) . \tag{7}
\end{align*}
$$

is meaningful. Along with (7), we will further consider when $x_{n}>0$ the function

$$
\begin{equation*}
\mu_{\rho}^{(1)}(x)=\frac{1}{(2 \pi)^{n / 2}} \int e^{i x^{\prime} u^{\prime}} d u^{\prime} \int_{L_{a^{\prime}}^{\prime}} \frac{\left.\prod_{1}^{n}\left(1+u^{2}\right)^{l}\right)^{\prime / 2} e^{i x_{n} u_{n}}}{v^{\rho / \sigma}} d u_{n} . \tag{8}
\end{equation*}
$$

If $x_{n}<0$, then $\mu_{f}^{(1)}(x)$ is determined analogously, but the curve in the complex plane symmetrical to it relative to the real axis would be taken as L.'. The consideration of the second integral, which we will also denote with $\mu_{p}^{(1)}(x)$, is analogous and leads to analogous results.

[^6]When $x_{n}>0$ for real $P>P_{0}$, where P_{0} is sufficiently large, the inner integrals (7) and (8) are equal to each other. In fact, in (8) the complex term

$$
\begin{aligned}
\left(1+z^{2}\right)^{\frac{r_{n} 0}{2}}= & {\left[1+(x+i y)^{2}\right]^{\frac{r_{0} 0}{2}}=(\xi+i \eta)^{\frac{r_{n} 0}{2}} \quad\left(z \in E_{u^{\prime}}\right), } \\
& \xi=1+x^{2}-y^{2}, \quad \eta=2 x y .
\end{aligned}
$$

appears in V.
The number $\xi+i \eta$ can belong to the excision $-\infty<\xi \leqslant 0$ if and only if $x=0, y^{2} \geqslant 1,1 . e .$, if

$$
\begin{equation*}
z=i y, \quad y^{2} \geqslant 1 . \tag{9}
\end{equation*}
$$

But points of the formula (9) do not belong to $E_{u^{\prime}}$, which shows that V is a single-valued analytic function of w_{n} on $E_{u^{\prime}}$. In the following (of 9.4.6(7)) it will be show that here, for sufficiently small k

$$
\begin{equation*}
-\pi<\arg V<\pi \tag{10}
\end{equation*}
$$

(if we assume a priori that $|\arg V| \leqslant \pi$), which shows that when W_{n} transverses $E_{u^{\prime}}$, the point V belongs to Ω (a plane with the excision $-\infty<x \leqslant 0$), but then $V^{P / \sigma}$ is also (for real σ and complex p) a single-valued analytic function. Thus, a single-valued function, analytic in the domain $E_{L^{\prime}}$, appears under the sign of the interrals of (7) and (8). Their equality follows from the fact that the integral over the segment c_{ξ} of points $\xi_{\xi}+i \eta(0 \leqslant \eta \leqslant k U)$ tends to zero as $|\xi|-\infty \infty$:

$$
\begin{aligned}
& \left\lvert\, \int_{a_{i}} \frac{\left(1+u_{n}^{2}\right)^{l_{n} / 2} e^{\left(x_{n} u_{n}\right.}}{V^{\rho / \sigma}} d u_{n} \leqslant \int_{0}^{k \nu} \frac{e^{-x_{n} \eta} d \eta}{\left(1+(\xi+i \eta)^{2}\right)^{\frac{T_{n}-1}{2}}} \leqslant\right. \\
& \leqslant-\quad \frac{1}{(|\xi|-1)^{\frac{T_{n} 0-I_{n}}{2}}} \int_{0}^{\infty} e^{-x_{n} \eta} d \eta \rightarrow 0 .
\end{aligned}
$$

*) In considering the operation $D^{1} \hat{\Lambda}_{p}$ in (7) and (8), the products $\prod_{1}^{n}\left(1=x^{2}\right)^{1} j{ }^{2}$ is replaced with (ix) ${ }^{1}$.

We can similarly prove the equality of the inner integrals in (7) and in an expression corresponding to (8), when $x_{n}<0$. This shows that

$$
\begin{equation*}
I_{t} \bar{X}_{n, p_{0},}(x)=\mu_{n}^{(n)}(x) \quad\left(x_{n} \neq 0, \rho>p_{0}\right) \tag{11}
\end{equation*}
$$

if $P_{0}>0$ is sufficiently large.
Lstimates for the function $\mu_{p}^{(1)}(x)$ will be obtained in 9.4.6.
Based on these estimates and the analytic properties of $I_{-1} \hat{\Lambda}_{, r}$,
and $\mu_{f}^{(1)}$, we succeed in showing (of 9.4.7) that equality (11) actually does obtain for all complex $\beta=\lambda+i \mu$, in particular for $\rho=1$. (Thus, the generulized function $\hat{\lambda}$ is the ordinary function $\hat{\lambda}(x)=\mu_{1}(x)=\mu(0)$ summable on $\quad F_{n}$. Listimates that will be obtained for $\mu_{1}^{(1)}(x)$ are directly trans erred to $I_{1} \hat{\Lambda}^{(1)}(x)$, which in fact leads to the inequality 9.4.1(1), (2).
9.4.4. Let us begin with estimation of the n-th integral $\left(r_{j}, s>0\right.$, $1-\left(i_{1}, \ldots, i_{n}\right) \geqslant 0$, explanations below)

$$
\begin{aligned}
& \int \frac{\prod_{i}^{n}\left(1+u_{i}^{2}\right)^{t / 2}}{v^{\frac{1}{\theta}}} d u=\int \frac{\prod_{1}^{n}\left(1+u_{i}^{2}\right)^{\frac{1}{2}} d u}{\left\{\sum_{1}^{n}\left(1+u_{i}^{2}\right)^{\frac{\prime 2}{2}}\right\}^{\frac{a}{\theta}}}= \\
& =\int_{|=|<1}+\int_{|=|>1}<1+\int_{\substack{\left.|u|\right|_{>1}>0^{\prime}}} \frac{\prod_{i}^{n}\left(1+u_{i}^{n}\right)^{1 / / 2}}{\left\{\sum_{1}^{n} u_{1}^{\prime \prime]^{\prime}}\right\}^{1 / \sigma}} d u \ll
\end{aligned}
$$

$$
\begin{equation*}
s>\sum_{1}^{n} \frac{1+1}{r} \tag{2}
\end{equation*}
$$

In the third relation the estimate of the intograd on $\{|\mathbf{a}|>1\}$ is reduced to the estimate on $\left\{|u|>1, u_{j}>0 ; j \ldots 1, \ldots, n\right\}$ owing to tne symmetrical properties of the function V. In the fourth, the cnange of variables $u_{j}{ }^{10}-\boldsymbol{F}_{j}$ with the Jacobian appearing in the aumerator under the integral and the fifth term is introduced; here, we further make use of the inequality

$$
\left(\sum_{1}^{n} \xi_{j}^{\sigma}\right)^{1 / \sigma} \gg \sum_{1}^{n} E_{j}(\sigma>0) ;
$$

here $\beta>0$ is a sufficiently small number that the sphere $|u|<1$ and closes the sphere $|\xi|<\beta$. In the fifth we introduce the conversion to polar coordinates. From (1) and (2) it follows that when $p \cdot \lambda+i \mu, 10$ and

$$
\begin{equation*}
\lambda>\sum_{1}^{n} \frac{1}{r 1} \tag{3}
\end{equation*}
$$

integral 9.4.3(7) converges absolutely and can be written as

$$
\int_{R}=\int_{R^{\prime}} d u^{\prime} \int d u_{n}, \quad u^{\prime}=\left(u_{1}, \ldots, u_{n-1}\right),
$$

where the inner integral (with respect to u_{n}) converges absolutely for any $u^{\prime}\left(\left|v^{\prime}\right|=|i|^{\lambda}>\left|u_{n}\right|^{\lambda r_{n}}, \lambda r_{n}>1\right.$, of (3)).
9.4.5. Other show that whatever the $\rho \in S$, the function

$$
\begin{equation*}
\Phi(\rho)=\left(I_{-1} \tilde{\Lambda}_{0, r, 0}, \varphi\right) \quad(\rho=\lambda+i \mu, \lambda>0) \tag{1}
\end{equation*}
$$

is anolytic on $\{\lambda>0\}$. We obviously have

$$
\begin{equation*}
\Phi(\rho)=\left(\Lambda_{p, r, 0}, \psi\right)=\int \frac{\phi(u) d u}{v^{\rho / 0}}\left(\psi=\prod_{1}^{n}\left(1+u_{i}^{2}\right)^{t^{\prime / 2}} \tilde{\varphi} \in S\right) \tag{2}
\end{equation*}
$$

The derivative of ϕ is formally of the form

$$
\begin{equation*}
D^{\prime}(\rho)=-\frac{1}{\sigma} \int \frac{\phi \ln V}{v^{v / \sigma}} d u \tag{3}
\end{equation*}
$$

Continuous functions $(V \geqslant 1)$ are found under the integrals in (2) and (3) and, moreover,

$$
\begin{gathered}
\left|\frac{\psi(u)}{V^{p / 0}}\right|=\frac{|\psi(u)|}{V^{2 / 0}} \leqslant|\psi(u)| \in L, \\
\left|\frac{\ln V \psi(u)}{V^{\eta / 1}}\right|=\frac{|\ln V \psi(u)|}{V^{2 / n}} \ll|\psi(u)| \in L,
\end{gathered}
$$

where the right sides do not depend on P. This proves that differentiation (3) is legitimate and that $\phi^{\prime}(P)$ is continuous, and consequently, ϕ is analytic when $\lambda>0$.
9.4.6. Below it will be proven that if the parameter σ is sufficiontly large (more exactly,

$$
\left.\left.r_{n}(\mu-\sigma)<1, \chi=\sum_{1}^{n} \frac{1+l_{j}}{r_{j}}-\lambda^{*}\right)\right), \text { then the integral }
$$

(cr 9.4.3(8))

$$
\begin{align*}
& \mu_{\rho}^{(n)}(x)= \frac{1}{(2 \pi)^{n / 2}} \int e^{1 x^{\prime} u^{\prime}} d u^{\prime} \int_{t_{u^{\prime}}} \frac{\prod_{i}^{n}\left(1+u_{i}^{2}\right)^{1 / 2} e^{1 x_{n} u_{n}}}{V^{\rho / \sigma}} d u_{n} \tag{1}\\
& \quad(\rho=\lambda+i \mu, \lambda>0, \text { кроме того**)},|\mu|<1)
\end{align*}
$$

$$
(p=\lambda+i \mu, \lambda>0, \text { moreover** }),(\mu \mid<1)
$$

is a function continuous with respect to (ρ, x) on the set $\{\lambda>0,|\mu|<1$, $\left.\because_{n}+0\right\}$, anilytic with respect to ρ and the estimates

$$
\begin{gather*}
\left|\mu_{0}^{(n)}(x)\right| \ll\left\{\begin{array}{ll}
\left|x_{n}^{-r_{n} x}\right| & (x>0), \\
|\ln | x_{n}| |+1 & (x=0),\left(\left|x_{n}\right|<1\right), \\
1 & (x<0),
\end{array} \quad\left|\mu_{0}^{(n)}(x)\right| \ll e^{-c\left|x_{n}\right|}\right. \tag{2}\\
\left(c>0,\left|x_{n}\right|>1\right) . \tag{3}
\end{gather*}
$$

are valis.
$\left.{ }^{3}\right)$ Here $\mathcal{K} \mu(\lambda)$, but $\mathcal{K}(1)$ aporoaches the value \mathcal{H} considered in 9.4.1(2). *) The restriction $|\mu|<1$ is actually not essential.

Let us use V_{*} to stand for the result of replacing u_{n} in V with the complex variable $u_{n}+i \eta_{n} \in E_{u^{\prime}}$, where $E_{u^{\prime}}$ is the domain between $I_{u^{\prime}}$ and the axis $u_{n}=0$. Obviously
where $\left(\eta_{\mathrm{n}}=\eta\right)$

$$
V_{0}=V+\omega_{1}
$$

$$
\begin{aligned}
& \omega=\left(1+\left(u_{n}+i \eta\right)^{2}\right)^{\frac{r_{n} 0}{2}}-\left(1+u_{n}^{2}\right)^{\frac{r_{n} 0}{2}}:= \\
&=\left(1+u_{n}^{2}+2 u_{n} \eta i-\eta^{2}\right)^{\frac{r_{n} 0}{2}}-\left(1+u_{n}^{2}\right)^{\frac{r_{n} 0}{2}}
\end{aligned}
$$

Let us estimate ω from above. If $0<r_{n} \sigma \leqslant 2$, then by $9.4 .2(1)$ (explanations below)

$$
\begin{align*}
|\omega| & \leqslant M\left|2 u_{n} \eta i-\eta^{2}\right|^{\frac{r_{0}}{2}} \ll| | u_{n}\left|\eta+\eta^{2}\right|^{\frac{r_{0}}{2}} \ll \\
& <\left(\left|u_{n}\right| k U\right)^{\frac{r_{n}}{2}}+k^{r_{n} 0} U^{\prime} n^{0} \ll k^{\frac{r_{n} 0}{2}} U^{r_{n} 0} \ll k^{\frac{r_{n} 0}{2}} V . \tag{4}
\end{align*}
$$

Use of inequality $9.4 .2(1)$ is legitimate because as explained in 9.4.3, the complex point in the first brackets defining ω belongs to Ω. (plane with the excision $-\infty<u_{n} \leqslant 0$).

We assume that the constants appearing in the inequality \ll do not depend on k. The third inequality follows from $(x+y)^{a} \ll x^{a}+y^{a}(x, y>0)$; the next to last from the fact that $\left|u_{n}\right| \leqslant U$ (cf 9.4.3(3)), and the last
from 9.4.3(2).
But if $r_{n} \sigma \geq 2$, then (of 9.4.2(3))

$$
\begin{array}{r}
|\omega|<\left|2 u_{n} \eta i-\eta^{2}\right|\left[\left(1+u_{n}^{2}\right)^{\frac{r_{n} 0}{2}-1}+\left|2 u_{n} \eta i-\eta^{2}\right|^{\frac{r_{n} 0}{2}-1}\right] \ll \\
<k V^{r_{n} 0}<k V . \tag{5}
\end{array}
$$

because of (9.4.3(2)) $\quad\left|2 u_{n} \eta i-\eta^{2}\right|<\left|u_{n} k U\right|+k^{2} U^{2} \leqslant k U^{2}$
and (of 9.4.3(3), $1 \leq \mathbb{U}$)

$$
\left(1+u_{n}^{2}\right)^{\frac{P_{n}}{2}-1} \leqslant U^{r_{n} \sigma-2}
$$

If follows from (4) and (5) that for sufficiently small k we can attain the result that for adl $u_{n}+i \eta \in E_{u^{\prime}}$

$$
\begin{equation*}
|\omega|<\gamma V \quad\left(\gamma<\frac{1}{2}\right) \tag{6}
\end{equation*}
$$

when V can be as small as we wish, hence

$$
\begin{equation*}
(1-\gamma) V \leqslant(V, 1 \leqslant(1+\gamma) V \tag{7}
\end{equation*}
$$

Inequalities (6) and (7), in particular, are satisfied on the curve of $L_{u^{\prime}}^{*}$ (upper bound of $E_{u^{\prime}}$). The following estimate obtains for the differential of the length of the arc $L_{u^{\prime}}^{*}$:

$$
\text { на } \begin{align*}
L_{u^{\prime}}: d L_{u^{\prime}}^{0} & =\sqrt{1+\left(k \frac{\partial \eta}{\partial u_{n}}\right)^{2} d u_{n}=} \\
& =\sqrt{1+\left(k u_{n}\right)^{2}\left(1+u_{n}^{2}\right)^{-1}} d u_{n} \leqslant \sqrt{2} d u_{n^{\prime}} \tag{8}
\end{align*}
$$

on $I_{u^{\prime}}: d L_{u^{\prime}}^{*}=|d \eta|$.
Argument V_{*} (i.e., V on $E_{u^{\prime}}$) for aufficiently omall k designated thualy (assuming a priori, that $\left|\arg V_{i}\right| \leq i$):

$$
\begin{equation*}
\left|\arg V .\left|<\left|\frac{\operatorname{Im} V_{0}}{\operatorname{Re} V_{0}}\right|<\frac{|\oplus|}{V-|\omega|}<\frac{\gamma V}{(1-\gamma) V}<1 .\right.\right. \tag{9}
\end{equation*}
$$

By this we have proven inequality 9.4.3(10), which we noedod to in order to show that $V P / \sigma$ is a singlo-valued analytic function of the complex variable $w_{n} \in E_{u^{\prime}}$. From (9) and (7) it aloo follows that

$$
\begin{align*}
\left|V_{0}^{\rho / \sigma}\right|=\mid & \left|\left(\left|V_{0}\right| e^{i \arg V_{0}}\right)^{\frac{\lambda+1 \mu}{\sigma}}\right|=\left|V_{0}\right|^{\frac{\lambda}{\sigma}} e^{-\frac{\mu}{\sigma} \operatorname{seg} V_{0}}
\end{align*}>
$$

where, thus, c does not depend on $\lambda>0$ and $|\mu|<1$.
We have

$$
\begin{aligned}
& \mu_{D}^{(t)}(x)=\frac{1}{(2 \pi)^{n / 2}} \int e^{l x^{r} u^{\prime}} d u^{\prime} \times \\
& \times\left(\int_{-\infty}^{\infty} \frac{\prod_{1}^{n}\left(1+u_{i}^{2}\right)^{1 / 2} e^{i x_{n}\left(u_{n}+k U\right)} \sqrt{1+k u_{n}\left(1+u_{n}^{2}\right)^{-1}} d u_{n}}{V_{!}^{0 / 0}}+\right. \\
& \left.+\int_{I_{0}} \frac{\prod_{1}^{n}\left(1+u_{i}^{2}\right)^{l_{j} / 2} e^{l_{2} v_{n}}}{V^{p / 0}} d w_{n}\right)=I_{1}^{(n)}+l_{2}^{(n)}
\end{aligned}
$$

where V_{*} is understood here as V on $L_{u^{\prime}}$. The second integral develops if and only if

$$
k\left(\frac{u_{1}^{1}}{1}\left(1+u_{i}^{2}\right)^{\frac{1}{2 n}}+1\right)>1
$$

The modulo of the integrand in $I(1)$ does not exceed

$$
\begin{equation*}
c \frac{\prod_{1}^{n}\left(1+u_{i}^{2}\right)^{l_{j} p_{2} e^{-k x_{n} v}}}{V^{\lambda 0}}=\alpha\left(\lambda, x_{n}, u\right), \tag{12}
\end{equation*}
$$

where c does not depend on $n, x_{n}, P=\lambda+i \mu(\lambda>0,|\mu|<1)$. The integral with respect to $u \in R_{n}$ of (12) wo will then estimate. We would see that it is finite for any $1 \geqslant 0, x_{n}>0, \lambda>0$. If we assume that $\alpha\left(\lambda, x_{n}, a\right)$ increases with decrease in x_{n} and $\lambda(v \geqslant 1)$, then we have

$$
\begin{gathered}
\alpha\left(\lambda, x_{n}, u\right) \leqslant a\left(\lambda_{0}, x_{n}^{0}, u\right) € L\left(R_{n}\right)=L \\
\left(\lambda \geqslant \lambda_{0}>0, x_{n} \geqslant x_{n}^{0}>0\right) .
\end{gathered}
$$

Moreover, the integrand $I_{1}^{(1)}$ is continuous with respect to (p, x, u). In this case, based on the Weierstrass characteristic $I_{1}^{(1)}=I_{1}^{(1)}(f, x)$ is a continuous function of (f, x). If the integrand in $I_{1}^{(1)}$ is differentiated with respect to (complex) f, then the module of the resulting derivative will be equal to, with an accuracy up to the constant coefficient,

$$
\begin{align*}
& \frac{\left|u^{\prime}\right| e^{-k x_{n}} v^{\prime}\left|\ln v_{0}\right|}{\left|V_{0}^{\rho_{0}^{\prime o}}\right|} \leqslant c \frac{\left|u^{\prime}\right| e^{-k x_{n}^{0} v}}{v^{\frac{\lambda_{0}-\varepsilon}{\sigma}}}=\alpha\left(\lambda_{0}-e, x_{n}^{0}, u\right) \tag{13}\\
& \quad\left(\lambda>\lambda_{0}-\frac{e}{2}>\lambda_{0}-e>0 ;|\mu|<1, x_{n} \geqslant x_{0}>0\right)
\end{align*}
$$

and, since the right side of (13) with respect to a belongs to L, then owing to the Weierstrass characteristic of uniform convergence of the integral we can state that for specified f and x there exists the derivative $\partial A P I(1)$. continues with respect to (P, x). This shows that the function $I_{1}^{(1)}(\rho, x)$ is analytic with respect to $\rho\left(1 \geq 0, \lambda>0,|\mu|<1, x_{n}>0\right)$.

Let us note that the constants in inequalities (12) and (13) (just as in the preceding equality in the estimate of $I_{2}^{(I)}$) depend continuously on P.

For small x_{n} (explanations are the same of those in 9.4.4)

$$
\begin{aligned}
& \left|l_{1}^{(n}\right| \ll \int \frac{\prod_{1}^{n}\left(1+u_{i}^{2}\right)^{1 / 2} e^{-k x_{n} v}}{v^{k / 0}} d u \ll
\end{aligned}
$$

$$
\begin{align*}
& \ll 1+\int_{n}^{\infty} \rho^{x-1} e^{-c x_{n} \rho^{\frac{1}{\prime} n}} d \rho \ll 1+\int_{\gamma x_{n}}^{\infty} e^{-c z} z^{\prime} n^{x-1} d z \frac{1}{x_{n}^{\prime} x^{x}} \ll \\
& <\left\{\begin{array}{cc}
x_{n}^{-f_{n} x} & (x>0), \\
1 & (x<0), \\
\left|\ln x_{n}\right|+1 & (x=0)
\end{array} \quad\left(0<x_{n}<1\right) .\right. \tag{14}
\end{align*}
$$

We must bear in mind that the integral in the next to the last of the relations, taken over ($1, \infty$) converges, but over ($v x_{n}, 1$) it does not exceed

$$
\int_{i x_{n}}^{1} z^{\prime n^{x-1}} d z \ll\left\{\begin{array}{cl}
1 & (x>0) \tag{15}\\
x_{n}^{\prime n^{x}} & (x<0), \\
\left|\ln x_{n}\right|+1 & (x=0)
\end{array}\left(0<x_{n}<\frac{1}{y}\right) .\right.
$$

But for large $x_{n}>1$

$$
\begin{align*}
& \ll e^{-k x_{n}}+\int_{0}^{\infty} \rho^{+} n^{(x+\lambda)-1} e^{-t x_{n} 0} d \rho \ll \\
& \ll e^{-k x_{n}}+\int_{B}^{\infty} e^{-\frac{c}{2} x_{n} 0} \ll e^{-c_{1} x_{n}} \quad\left(c_{1}>0\right) . \tag{16}
\end{align*}
$$

Let us proceed to the estimate of $I_{2}(1)$. Here the inner integral is taken along the section ($1, i B$), whore

$$
B=k\left(\sum_{1}^{n-1}\left(1+u_{1}^{2}\right)^{\frac{1}{2 r_{n}}}+1\right) .
$$

The number B depends on a^{\prime}; yhon $a^{\prime}=0$ iti is minimum and equal to kn . If $\mathrm{kn}>1$, then in computing $\mathrm{I}_{2}^{(1)}$ the outer integration is performed with respect to $a^{\prime} \in R_{n-1}$, however if kn<1 then integration with respect to u^{\prime} proceeds along the external of some bounded moighborhood of the point $u^{\prime}=0$. We have $u_{n}=1 y(1 \leq y \leq B)$ on (1,iB); bere the term $\left(1+u_{n}^{2}\right) r_{n} \sigma / 2$ along one margin of $l_{u^{\prime}}$ appearing in V must be understood as $\left(y^{2}-1\right)^{r_{n} \sigma / 2} e^{i r_{n} i \sigma \pi}$, and on the other margin, as $\left(y^{2}-1\right)^{r_{n} \sigma / 2} e^{-i r_{n} \sigma \pi / 2}$. The corresponding V value on different margins $I_{L^{\prime}}$ are complexly adjoint to each other; consequently, their product is equal to the square of their modules, and the inner integral in $\mathrm{I}_{2}(1)$ is equal to

$$
\begin{gather*}
-\int_{i}^{B} \prod_{1}^{n-1}\left(1+u_{i}^{2}\right)^{1 / 2} y^{\prime} n e^{-x_{n} y} x \\
\times\left\{\frac{1}{\left\{A+\left[\left(y^{2}-1\right) e^{-i \pi}\right]^{\frac{r_{n} 0}{2}}\right\}^{p / 0}}-\frac{1}{\left\{A+\left[\left(y^{2}-1\right) e^{i \pi}\right]^{\frac{r_{n}}{2}}\right\}^{\nu / 0}}\right\} d y \\
A=\sum_{1}^{n-1}\left(1+u_{i}^{2}\right)^{\frac{\rho_{0}^{0}}{2}} \quad(\rho=\lambda+i \mu, \lambda>0) . \tag{17}
\end{gather*}
$$

The module of the expression in the braces does not exceed (explenations below)

$$
\begin{aligned}
& \ll a^{-r_{n} \tau^{2} \tau^{\prime} \eta^{\prime}}\left|\sin \frac{r_{n} \sigma \pi}{2}\right| \ll a^{-r_{n} n^{\prime} \tau^{\prime} n^{d}} \text { 。 }
\end{aligned}
$$

where the constants in the inequality in any case can be assumed to be locally independent of $\rho=\lambda+i \mu$; here

$$
\begin{equation*}
\tau=a^{-1} \sqrt{y^{2}-1}, \quad a=A^{\frac{1}{n^{0}}} . \tag{18}
\end{equation*}
$$

and since $1-y<B$, then

$$
\begin{align*}
0<\tau<a^{-1} \mid & \bar{B}^{2}-1 \ll a^{-1} B= \\
& =\frac{k\left\{\begin{array}{l}
\left.\sum_{1}^{n-1}\left(1+u_{i}^{2}\right)^{\frac{1}{2 r n}}+1\right\} \\
\left\{\begin{array}{l}
n-1 \\
1
\end{array}\left(1+u_{i}\right)^{\frac{1}{2}}\right\}^{\frac{1}{n^{0}}}
\end{array}\right.}{l} .=c k=\omega<1, \tag{19}
\end{align*}
$$

where ω can be assumed to be smaller than unity, given sufficientily small k. On this ground, we drop the denominator in the second term, restricting from below the positive constant. The function under the sign of the module in the numerator is analytic on the interval $|\tau|<1$, equal to zero when $\tau=0$. The theorem on the mean can be applied to it. Thus, the integrand in $I_{2}^{(1)}$ coes not exceed, based on the module,

$$
\begin{equation*}
c \prod_{1}^{n-1}\left(1+u_{i}^{2}\right)^{1 / 2} y_{y^{\prime} e^{-x_{n}} a^{-r} r_{n}^{\lambda} \tau^{\prime} n^{0}} \tag{20}
\end{equation*}
$$

where c does not depend on $u^{\prime}, y, x_{n}>0$ and in any case locally on $\lambda>0$.
Me will show that function (20) is summable over the domain ($u^{\prime} \mathrm{y}$) of definition of the integral $I_{2}(\underline{f}$ for and specified x, P; moreovor, it is imediately clear that increases with decrease in x_{n} and λ. This leads to the fact that $I_{2}^{(1)}(p, x)$ is continuous with respect to the specified (P, x) and is a real derivative (with respect to x) of order 1 of I_{2}. Finally, if we differentiate the integrand in (17) with respect to f, we get

$$
\begin{aligned}
& \prod_{i}^{n-1}\left(1+u_{i}^{2}\right)^{t / 2} y^{\prime} n e^{-x_{n}} \frac{1}{\sigma}\left\{\frac{\ln \left(A+\frac{\left.\left(y^{2}-1\right) e^{-l \pi}\right]^{\frac{\rho_{0} 0}{2}}}{\left(A-\left[\left(y^{2}-1\right) e^{-i \pi}\right]^{\frac{\rho_{n}}{2}}\right)^{\rho / \theta}}\right.}{}-\right. \\
& \left.-\frac{\ln \left(A+\left[\left(y^{2}-1\right) e^{(\pi)}\right]^{\frac{r_{0} 0^{0}}{2}}\right)^{\rho / 0}}{\left(A+\left[\left(y^{2}-1\right) e^{i n}\right]^{\frac{r_{n}}{2}}\right)^{\rho / \sigma}}\right\} .
\end{aligned}
$$

If the expression in the braces is reduced to a common denominator, its module taken, and A is everywhere removed from within the braces, then, as we know, in estimating (from above) the denominator can be dropped as a positive constant bounded from below; as for the numerator, it obviousiy can be estimated from above by the following means:

$$
\begin{aligned}
& \ln A\left|\left\{1+\left(\tau e^{+1 \frac{\pi}{2}}\right)^{1 n^{0}}\right\}^{0 / 0}-\left\{1+\left(\mathrm{re}^{-\frac{i \pi}{2}}\right)^{1 / n^{0}}\right\}^{p / 0}\right|_{+} \\
& +\left\lvert\,\left\{1+\left(\pi e^{\frac{1 \pi}{2}}\right)^{r_{n} 0}\right\}^{\rho / 0} \ln \left\{1+\left(\pi e^{-\frac{1 \pi}{2}}\right)^{r_{0} \theta}\right\}-\right. \\
& -\left\{\left.1+\left(\tau e^{\left.-\frac{1 \pi}{2}\right)^{r^{\prime} \theta^{0}}}\right\}^{p / 0} \ln \left\{1+\left(\tau e^{\frac{1 \pi}{2}}\right)^{r^{\prime \theta} \theta}\right\} \right\rvert\, \ll(\ln A+1) \tau^{\prime n^{\theta}}=\right. \\
& =\left(\ln a^{\prime} n^{0}+1\right) \tau^{\prime} n^{0} \ll a^{2} \tau^{\prime} n^{0} \quad(e>0, a \geqslant 1) .
\end{aligned}
$$

The constant in the right side depends on (arbitrary small) ε; but we can assume that it does not depend on p from some small neighborhood of ρ_{0}. s.s a resuit, we find that that integrand continues with respect to (a^{\prime}, y, p, x_{n}), $x_{n}>0$, $\lambda>0$), differentiated with respect to ρ, does not exceed as to module the function analogous to (20),

$$
c \prod_{1}^{n-1}\left(1+u_{j}^{2}\right)^{t / 2} y^{\prime} n^{-x_{n} y} a^{t-t_{n} n^{\prime}} \tau_{n^{\prime}} \in L .
$$

This ahows that function $I_{2}^{(1)}(P, x)$ is analytic with reapect to ρ. And thus (explantions below)

$$
\begin{aligned}
& \left|I_{2}^{(1)}\right| \ll \prod_{1}^{n-1}\left(1+u_{i}^{2}\right)^{l / 2 / 2} a^{-r_{n}} \int_{1}^{D} y^{1} n^{-x_{n} y} \tau^{\prime} n^{0} d y \ll \\
& \ll \prod_{1}^{n-1}\left(1+u_{i}^{2}\right)^{1 / 2} a^{1-r_{n} \lambda} d u^{0} \int_{0}^{0}\left(1+a^{2} \tau^{2}\right)^{1 / 2 / 2} x
\end{aligned}
$$

$$
\begin{aligned}
& =1+\int_{0}^{0} \tau^{\prime} n^{0} d \tau \int_{0}^{\infty} \rho^{\prime} n^{x-1} e^{-x_{n} v 1+c \rho^{\rho} \pi} d \rho< \\
& <1+\frac{1}{x_{n}^{n_{n}^{x}}} \int_{0}^{0} \frac{d \pi}{r^{r} n^{(x-\sigma)}} \int_{B x_{n} x^{x}}^{0} t^{r} n^{x-1} e^{-\sigma t} d t \quad(c>0) \text {. }
\end{aligned}
$$

In the first relation we employ the estimate of (20); in the second we replace y with τ from formula (18) in the inr s integral; wo also took inequality (19) into account; in the third relation, the integral with respect to a $^{\prime}$ was docomposed into two: with respect to $\left|a^{\prime}\right|<1$ and with respect to $\left|a^{\prime}\right|>1$; of which the firat, obviously, is bounded; moreover, we consider the eymetric properties with respect to a^{\prime} of the integrand; the problem was reduced to integration with respect to $u_{j}>0$. Here the substitution of variable

$$
\xi_{l}=u_{l}^{r} / r_{n}, \quad d u_{1}=\frac{r_{n}}{r_{j}} \xi_{l}^{\frac{r_{n}}{r_{j}}-1} d \xi_{j} \quad(j=1, \ldots, n-1)
$$

was made; in the fourth relation, we change the ordes of integration; the polar coordinates ($|\xi|=P$) was introduced into the space ξ; we use the fact that the variables a and p bave the aame order:

$$
\rho=\left(\sum_{1}^{n-1} u_{j}^{2} / r_{n}\right)^{1 / 2}<\left\{\sum_{1}^{n-1}\left(1+u_{i}^{2}\right)^{\frac{\prime \rho}{2}}\right\}^{\frac{1}{n_{n}}}=a<p_{0} .
$$

and we employ the inequality $\left(1+\rho^{2} \tau^{2}\right)^{1^{n} / 2}<\quad \rho^{\ln }(P>B, 0<\tau<\omega)$.
Finaliy, in the last relation we use the inouqality $\sqrt{1+c^{2} \rho_{r}^{2} r^{2}}>c \rho r$ and introduce the change $x_{n} \rho_{\tau}=\xi, x_{n} \tau d \rho=d E$.

Let $\mathcal{K}>0$ and lot the parametor σ be chosen so that $r_{n}(\mathcal{K}-\sigma)<1$; then the integral in ζ in the right aide of (21) is finite with respect to the interval ($0, \infty$), juat as the integral with respect to τ is finite; therefore

$$
\left|1_{2}^{\prime \prime \prime}\right| \ll x_{n}^{-n_{n} n^{x}} .
$$

If $\mathcal{H}=0$, then integral in ζ i $\dot{\text {, for }} x_{n}$, of the order $\left(x_{n} \tau\right)$; therefore when $\sigma>0$, we will have

$$
\left|f_{2}^{(n)}\right|<\left|\ln x_{n}\right|+1
$$

Finally, when $\mathcal{K}<0$ the integral in ζ for small x_{n} is of the order $x_{n}^{r_{n} \mathcal{K}}$; so when $\sigma>0$

$$
\left|\ell_{2}^{(n)}\right|<1
$$

We have proven that (for the appropriate σ)

$$
\left|1_{2}^{(n)}\right|<\left\{\begin{array}{l}
x_{n}^{-n_{n} n^{x}}, \\
1, \\
1, \\
\ln \frac{1}{x_{n}}, x=0, \\
\ln =0,
\end{array} \quad\left(0<x_{n}<1\right)\right.
$$

Finaily, to get the estimate of $I_{2}^{(I)}$ for large x_{n}, let us decompose the integral $I_{2}^{(1)}$ into two integrals: with respect to $\left|a^{\prime}\right|<1$ and with respect to $\left|a^{-x}\right|>1$. The first integral (cf third member in formula (21)) is of the order $e^{-x} n\left(x_{n}>1\right)$. Estimating the second, let us use the next to last integral (21). Then we get

$$
\begin{aligned}
& \left|I_{2}^{(n}\right| \ll e^{-x_{n}}+\int_{0}^{\infty} \tau^{\prime} n^{0} d \tau \int_{0}^{\infty} \rho^{\prime} n^{x-1} e^{-x_{n}} v^{1+\infty}+\sigma^{\sigma} \sigma^{\pi} d \rho= \\
& =e^{-x_{n}}+\int_{0}^{0} \frac{d \tau}{\tau^{\prime} n^{(x-0)}} \int_{\theta=1}^{\infty} \xi^{\prime} n^{x-1} e^{-x_{n} \sqrt{1+c}+\sigma^{x}} d \xi \leqslant
\end{aligned}
$$

$\left(r_{n}(\mathcal{H}-\sigma)<1 ; c_{1}, c_{2}, \sigma>0\right)$.
For the case $x_{n}<0$, the curve of $L_{u^{\prime}}^{*}(c f(1))$ if the complex plane u_{n} is taken as symmetrical with respect to the axis $u_{n}=0$; the proof in this case is analogous.

Thus, wo have proven inequalities (2) and (3); here we already noted that the constant in these expressions depends continuously on ρ.
9.4.7. In defining the function $\mu_{p}(x)=\mu_{p}^{(0)}$ by formula 9.4.3(8), the role of the variable u_{n} was emphasized. Bearing this in mind, let us set $\mu_{p}(x)=u_{p n}(x)$. Wo can with equal success introduce the function $u_{\rho j}(x)(j=1, \ldots, n)$, where the role of u_{n} is played by u_{j}. If $x=\left(x_{1}, \ldots\right.$, x_{n}) is a point of which $x_{i}+0, x_{j}+0$, then

$$
\mu_{\rho 1}(x)=\mu_{\rho \prime}(x),
$$

because this equality obtains in any case for large real P, then also for any complex $\rho \quad \lambda+i \mu(\lambda>0)$, owing to the analyticity of both functions with rospect to ρ for fired x. For a given j, function $\mu_{\rho j}(x)$ is defined
and the continuous (with respect to x) at any point x that has the coordinate $\lambda_{j} \neq 0$. From the foregoing it is clear that $\mu_{\rho j}(x)$ can be extended by continuity to any point $x+0$, and then

$$
\begin{equation*}
\mu_{\rho}(x)=\mu_{\rho 1}(x)=\ldots=\mu_{\rho n}(x) \quad(x \neq 0) . \tag{1}
\end{equation*}
$$

Here, there oxists for the vector $1 \geqslant 0$ such a $\sigma_{0}>0$ that for $\sigma>\sigma_{0}$ the function $\mu_{p}^{1}(x)$ is continuous and

$$
\begin{gather*}
\left|\mu_{\rho}^{(l)}(x)\right|< \begin{cases}\left|x_{j}\right|^{-r, x} & (x>0), \\
|\ln | x_{j}| |+1 & (x=0), \\
1 & (x<0)\end{cases} \tag{2}\\
\left(x=\sum_{1}^{n} \frac{1+l_{j}}{r}-\lambda,\left|x_{j}\right|<1, \rho=\lambda+i \mu, \lambda>0\right), \\
\left|\mu_{\rho}^{(f)}(x)\right|<e^{-c\left|x_{j}\right|} \quad\left(\left|x_{j}\right|>1, c>0\right) .
\end{gather*}
$$

Hence the estimates

(4)
follow at once, where the constants c and c apyearing in the inequalities depend continuously on p.

When $1=0$, it follows from the estimates that

$$
\mu_{p}(x)=\mu_{\rho}^{(1)}(x) \in L=L\left(R_{n}\right) .
$$

In fact, when $\mathcal{H} \leqslant 0$, this is obvious; but if $\mathcal{K}>0$, then by the fact that $\lambda>0$,

$$
\frac{1}{x} \sum_{1}^{n} \frac{1}{r}-1=\frac{\lambda}{x}>0
$$

and consequently (explanations as in 9.4.4),

$$
\begin{aligned}
& \int\left|\mu_{p}(x)\right| d x=\int_{|x|<1}\left\{\sum_{1}^{n}\left|x,| |^{\mu}\right\}^{-1} d x+\right. \\
& +\int_{|x|>1} e^{-c \mid z 1} d x \ll \int_{|| | \ll 0}\left(\sum_{1}^{n} z_{j}\right)^{-1} \prod_{1}^{n} z_{j}^{\frac{1}{j^{x}}-1} d \xi+1< \\
& <\int_{0}^{1} \rho \frac{1}{x} \sum_{1}^{\frac{n}{1} \frac{1}{7}-2} d \rho+1<1 .
\end{aligned}
$$

Now let $\varphi \in S$, then the expression ($\mu_{p} \in L$)

$$
\begin{equation*}
\left(\mu_{\rho}, \varphi\right)=\int \mu_{p}(x) \varphi(x) d x \quad(\lambda>0) . \tag{5}
\end{equation*}
$$

is meaningful.
Let $\mu(\lambda)$ stand for the right side of (3) without multiplier $c=c(p)$. It can easily be seen by virtue of the monotone properties of the function \mathcal{F} (with respect to λ) and the continuity of $c(p)$ (with reapect to p), that for ang $P_{0}=\lambda_{0}+1 \mu_{0}\left(\lambda_{0}>0,\left|\mu_{0}\right|<1\right)$ a $\delta>\dot{0}$ can be found such that if $\left|P-P_{0}\right|<\delta(P=\lambda+i \mu, \lambda>0,|\mu|<1)$, then

$$
\begin{align*}
& \left|\mu_{\nu}^{(1)}(x)\right| \leqslant c \mu_{\lambda_{-}-0.0}^{(n)}(x) \in L(|x|<1), \\
& \left|\mu_{\rho}^{(1)}(x)\right| \leqslant c e^{-c_{1} \mid}|\in| \in L(|x|>1), \tag{6}
\end{align*}
$$

where c and c do not depend on the specified f. Therefrre the Weierstrass characteristic of uniform convergence (locally with respect to p) of intogral
(5) is satisfied and ($\left.\mu_{p}, \Phi\right)$ depends continuously on the complex: $P(\lambda>0)$. The derivative with respect to $\phi \mu_{p}$ over P is also continuous over (P, x), and the same estimates as in (6) obtain for it (cf 9.4.6 (13) and (20)). This shows that the function ($\left.\mu_{p}, \phi\right)$ is differentiable, and so analytic with respect to P.
9.4.8. For any complex $P=\lambda+i \mu(\lambda>0)$ and consequently for $p=1$, given sufficiently large $\sigma\left(r_{n}(\zeta-\sigma)<1\right)$ the equality

$$
\begin{equation*}
\bar{\Lambda}_{p, 1, n}=\mu_{\nu}(x) . \tag{1}
\end{equation*}
$$

obtains. Actually, the functions

$$
\left(\dot{\lambda}_{\Gamma, \rho, \cdots} \cdots \varphi\right) \vee\left(\mu_{0}, \varphi\right) \quad(\varphi \in S)
$$

of analytic with respect to $\rho(\lambda>0)$ and coincide for real and aufficiently large P; therefore they coincide ans P, but also for any $\phi \in S$, which entails (1).
9.4.9. Other estimates of anisotropic kernols. In the lamma below the differences of the kernel G_{r} in the metric $L_{p}\left(R_{p-1}\right)$ are estimated. The estimate will be used in proving ambodding theorem. Let us introduce the notation:

$$
x=(\eta, 6), \quad \eta=\left(x_{1}, \ldots, x_{n-1}\right), \quad x_{n}=6 .
$$

Lemma*) Let $\mathrm{r}=\left(\mathrm{r}_{1}, \ldots, r_{\mathrm{n}}\right)>0,1<\mathrm{p}<\infty$, and let a nonintegral positive number L be given such that for a certain $j, j=1, \ldots, n-1$, the inequalitios
are fulfilled. Then

$$
\begin{equation*}
1-\frac{1}{r_{n}}<\frac{L}{r_{j}}<\min \left\{\sigma-\sum_{i}^{n} \frac{1}{r_{n}}-\frac{1}{r_{n}}\right\} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{R_{n-1}}\left|\Delta_{x_{j} / h}^{+1} \ddot{G}_{r}(\eta, \zeta)\right| d \eta \leqslant\left. c|h|\langle | \zeta\right|^{-r_{n}\left(\frac{1}{r_{n}}+\frac{L}{r_{j}}-1\right)}, \tag{2}
\end{equation*}
$$

where s is the integral part of L, i.e., $L=s+1,0 \leqslant 1<1$, s is an integer.
Without violating generality, we will take $h>0, j=1, G_{r}=G$ and introduce the kernal

$$
K_{v}(t)=\left(1+t^{2}\right)^{-v / 2} \quad(-\infty<t<\infty)
$$

We will write

$$
\left.\begin{array}{rl}
G(t) & =(j(t, \\
l_{-L} G(t) & =\|(t) ; \\
r_{2}, & .
\end{array}, x_{n}\right),
$$

We will underatand the s-th difference with pitch h of the function $\varphi(\zeta)$ in the sense

$$
\Delta_{h} \varphi=\varphi(\zeta+h)-\varphi(\zeta), \Delta_{h}^{\delta+1} \varphi=\Delta_{n} \Delta_{h}^{\prime} \varphi .
$$

From the following estimates it will be clear that ψ is a sumable function of t in any case for almost all x_{2}, \ldots, x_{n+1}.

We have
*) P. I. Lizorkin $[\overline{10} \bar{\jmath}$.

$$
\begin{align*}
\Delta_{h}^{s+1} G(t) & =\left\{\int_{-\infty}^{t}+\int_{t}^{G(t)=\int_{t+(s+1) h} K_{s+l}(t-\xi) \psi(\xi) d \xi,}+\right. \\
& +\int_{t+(s+1) h}^{\infty} \mid \Delta_{h}^{s+1} K_{s+1}(t-\xi) \psi(\xi) d \xi=I_{1}+I_{2}+I_{3}, \\
\int\left|I_{1}\right| d t & \leqslant \int_{-\infty}^{\infty}|\psi(\xi)| d \xi \int_{t}^{\infty}\left|\Delta_{h}^{s+1} K_{s+1}(t-\xi)\right| d t \leqslant \tag{3}\\
& \leqslant\|\psi\|_{L} \int_{0}^{\infty}\left|\Delta_{h}^{s+1} K_{s+l}(t)\right| d t, \quad L=L(-\infty, \infty) .
\end{align*}
$$

But (explanations below)

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\Delta_{h}^{s+1} K_{s+1}(t)\right| d t= \\
& =\int_{0}^{\infty} d t \int_{0}^{n} \ldots \int_{0}^{n} \mid K_{s+1}^{(s+1)}\left(t+\sum_{1}^{s+1} t_{k}\right) d t_{1} \ldots d t_{s+1} \ll \\
& <\int_{0}^{\infty} d t \int_{0}^{n} \ldots \int_{0}^{n} \frac{d t_{1} \ldots d t_{s+1}}{\left(t+\sum_{1}^{s+1} t_{k}\right)^{1-(s+l) s+1}} \ll \int_{0}^{\infty} d t \int_{0}^{c h} \frac{\rho^{s} d \rho}{(t+\rho)^{2-1}} \ll \\
& \ll \int_{0}^{c h} \rho^{t+t-1} d \rho \leqslant h^{s+1} .
\end{aligned}
$$

In the second relation (inequality), we used the (third) estimate 8.1(7); in the third relation, polar coordinates were introduced into the space t_{1}, \ldots, t_{s+1} and we consider that

$$
\sum_{1}^{s+1} t_{k} \geqslant\left(\sum_{1}^{s+1} t_{k}^{2}\right)^{\frac{1}{2}} ; \text { in the fourth, the order }
$$

of integration was changed.
The integral I_{3} is estimated analogously:

$$
\begin{equation*}
\int\left|I_{j}\right| d t \leqslant c h^{s+1}\|\psi\|_{L} \quad(j=1,3) . \tag{4}
\end{equation*}
$$

Further

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|I_{2}\right| d t=\int_{-\infty}^{\infty} d t\left|\int_{i}^{t+(s+1) n} \Delta_{h}^{t+1} K_{s+l}(t-\xi) \psi(\xi) d \xi\right| \leqslant \\
& \leqslant \int_{-\infty}^{\infty}|\psi(\xi)| d \xi \int_{t-(s+1) n}^{\}}\left|\Delta_{h}^{s+1} K_{s+1}(t-\xi)\right| d t= \\
& =\|\psi\|_{L} \int_{-(s+1)}\left|\Delta_{h}^{s+1} K_{s+1}(t)\right| d t= \\
& =\left.\|\psi\|_{L} \int_{-(s+1) h}^{0} d t\right|_{0} ^{-(s+1) h} \ldots \int_{0}^{h}\left\{K_{s+1}^{(s)}\left(t+\sum_{1}^{\infty} t_{k}+h\right)-\right. \\
& \left.-K_{s+1}^{(s)}\left(t+\sum_{i}^{s} t_{p}\right)\right\} d t_{1} \ldots d t_{s} \mid \leqslant \\
& \leqslant 2\|\boldsymbol{q}\|_{L} \int_{-(s+1) n}^{(b+1) n} d t \int_{0}^{n} \ldots \int_{\substack{0 \\
(s+1)}}^{n} k_{s+1}^{(s)}(\underbrace{}_{c h}\left(t+\sum_{1}^{s} t_{k}\right) \mid d t_{1} \ldots d t_{s} \ll \\
& \ll\|\psi\|_{L} \int_{-(s+1) h} d t \int_{0}^{c h} \frac{p^{p-1} d \rho}{|t+\rho|^{1-t}}= \\
& =\|\psi\|_{L} \int_{0}^{c h} \rho^{s+l-1} d \rho \int_{-(s+1) \frac{h}{\rho}}^{\frac{s+1}{\rho} n} \frac{d u}{|1+u|^{1-l}} \leqslant \\
& \leqslant 2\|\psi\|_{L} \int_{i}^{c h} \rho^{s+l-1} d \rho \int_{0}^{\frac{s+1}{p} h+1} \frac{d v}{v^{1-l}} \ll
\end{aligned}
$$

From (3) - (5) it follows after the additional integration of the inequality with respect tis $\left(x_{1}, \ldots, x_{n-1}\right)$ that

$$
\begin{gathered}
\int_{R_{n-1}}\left|\Delta_{x_{1} h}^{s} G_{r}(\eta, \xi)\right| d \eta \ll h^{s+1_{1}} \int_{R_{n-1}}\left|I_{x_{1},-(s+1)} G_{r}\right| d \eta \\
\quad(s=0,1, \ldots ; j=1, \ldots, n \div 1) .
\end{gathered}
$$

we get
Using estimates 9.4 .1 (2) (considering that $\left.\mathcal{K}=\frac{1+s+1_{1}}{r_{1}}+\sum_{2}^{n} \frac{1}{r_{j}}-1>0\right)$,

$$
\begin{aligned}
& \int_{a_{n-1}}| |_{x_{1}}-\left(s+x_{1}\right) G_{r} \left\lvert\, d \eta<\int_{1,>0} \frac{d \eta}{E_{1}^{\prime} n^{x}+\sum_{1}^{n-1} x_{j}^{\prime \prime} \eta^{k}} \ll\right. \\
& <\int \frac{\prod_{1}^{n-1} \lambda^{\frac{1}{r^{n}}-1} d \lambda}{f^{r} n^{x}+\sum_{1}^{n-1} \lambda_{j}}<\int \frac{e^{\frac{\sum_{1}}{n-1} \frac{1}{\prime^{x}}-1}}{f^{r} n^{x}+\rho} d \rho= \\
& =\frac{1}{\delta^{\prime} n^{x}} \int_{\rho<l^{\prime} n^{x}} \rho^{n-1} \frac{1}{r^{x}-1} d \rho+\int_{i^{\prime} \alpha^{x}<\rho} \sum_{\rho^{n-1}}^{n} \frac{1}{r^{\mu}-2} d \rho<
\end{aligned}
$$

The firat inequality follows from the firat inequality $9.4 .1(2)(\varkappa>0)$ and from the symentry of its right part; the substitution $\boldsymbol{r}_{\mathbf{j}}{ }^{\mathcal{K}}=\lambda_{j}$ was made
in the second inequality; polar coordinates are introduced in the third; and in the last must be considered that

$$
x-\sum_{1}^{n-1} \frac{1}{r 1}=\frac{s+1_{1}}{r_{1}}+\frac{1}{r_{n}}-1>0
$$

2.5. Pabedding Thaonem

9.5.1. Theorem of different measures. The embedding

$$
\begin{gather*}
L_{\rho}^{\prime}\left(R_{n}\right) \rightarrow B_{p}^{\prime}\left(R_{m}\right), \tag{1}\\
\rho=\left(\rho_{1}, \ldots, \rho_{m}\right), \quad \rho_{i}=r_{1} x(i=1, \ldots, m), \tag{2}\\
1<p \leqslant \infty, \quad B_{\infty}^{\prime}=H_{\infty}^{\prime} \quad 1 \leqslant m<n, \\
x=1-\frac{1}{p} \sum_{m+1}^{n} \frac{1}{r}>0 .
\end{gather*}
$$

is valid.
Given the condition $2 \leqslant p \leqslant \infty, L_{p}^{r} \rightarrow B_{p}^{r}$ obtains (cf 9.3(3)) and the theorem follows from the correaponding theorem for the B-classes (ci 6.5).

Therefore, it is essential to prove it for $1 \leqslant p<2$. However, the proof presented below is suitable for any finite p.

Proof. It is sufficient to conduct the proof for the case $m=n-1$, because if $m<n-1$, then we can proceed from n to $n-1$ by using embedding (1), and the transition from $n-1$ to m can be made by using the corresponding theorem for the B-classes (cf 6.5). This is possible owing to the transitivity of relations (2) (cf 7.1).

And thus, we need only prove the embedding

$$
\begin{gather*}
L_{p}^{r}\left(R_{n}\right) \rightarrow B_{p}^{p}\left(R_{n-1}\right), \tag{3}\\
\rho=\left(\rho_{1}, \ldots, \rho_{n-1}\right), \rho_{1}=r_{1} x, \tag{4}\\
x=1-\frac{1}{p r_{n}}>0 . \tag{5}
\end{gather*}
$$

Three relations (of 9.3(1))

$$
L_{p}^{r}\left(R_{n}\right) \rightarrow H_{p}^{r}\left(R_{n}\right) \rightarrow H_{p}^{\prime}\left(R_{n-1}\right) \rightarrow L_{p}\left(R_{n-1}\right) .
$$

obtain. This shows that the arbitrary function $f \subseteq L_{p}^{r}\left(R_{n}\right)$ has the trace $g(x)=\left.f\right|_{R_{n-1}}$ on R_{n-1}, belonging to $L_{p}\left(R_{n-1}\right)$, and that the inequality

$$
\begin{equation*}
\|g\|_{L_{, 1}\left(R_{n-1}\right)} \leqslant c\|f\|_{L_{p}^{r}\left(R_{n}\right)} . \tag{6}
\end{equation*}
$$

is satisfied. We will assume that $y=\left(x_{1}, \ldots, x_{n-1}\right) \in R_{n-1}, z=x_{n}$, and let (as always) \bar{P}_{1} be the largest integer less than P_{1}, and let $f \in L_{p}^{r}\left(R_{n}\right)$
by theorem 9.2 .2

$$
\frac{\partial_{\theta_{1}}}{\partial x_{1}^{\bar{p}_{1}^{\prime}}} \in L_{p}^{r^{\prime}}\left(R_{n}\right) .
$$

where

$$
r^{\prime}=x^{\prime} r, \quad x^{\prime}=1-\frac{\rho_{1}}{r_{1}}>0
$$

(in fact, $\bar{P}_{1}<P_{1}<r_{1}$) and

$$
\cdot\left|\frac{\partial^{\bar{\theta}_{1}}}{\partial x_{1}^{\bar{p}_{1}}}\right|_{L_{p}^{r^{\prime}}\left(R_{n}\right)} \leqslant c\|f\|_{L_{p}^{r}\left(R_{n}\right)} .
$$

Therefore the representation

$$
\begin{equation*}
\frac{\partial{\overline{Q_{1}}}^{\partial \alpha_{1}^{a_{1}}}=\int G_{r_{1}}\left(y-\eta_{1} z-\xi\right) v\left(\eta_{1} \zeta\right) d \eta d \xi\left(v \in L_{p}\left(R_{n}\right)\right), ~\left(\frac{1}{n}\right)}{} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|0\|_{L_{p}\left(R_{n}\right)}=\left|\frac{\partial \bar{a}_{1}}{\partial \bar{x}_{1}^{p_{1}}}\right|_{L_{p}^{\prime}\left(R_{n}\right)} \leqslant c\|f\|_{L_{p}^{p}\left(R_{n}\right)} . \tag{8}
\end{equation*}
$$

obtains. Let us auppose

$$
\begin{equation*}
w(y)=\int G_{r}\left(y-\eta_{1} \zeta\right) v(\eta, \zeta) d \eta d \xi=\frac{\delta_{\overline{a_{\eta}}}^{\partial \overline{\hat{R}}_{1}}}{\left.\right|_{R_{A-1}}} \tag{9}
\end{equation*}
$$

(considoring the evemness of $G_{r^{\prime}}$). The explanation of the fact that the formal change $z=0$ and (7) leads to the trace $\frac{\tilde{p}}{\partial x_{1} \bar{\rho}_{1}}$ on R_{m} will be made at the end of the proof.

Let

$$
\Lambda(y, z)=\Delta_{x, h}^{2} G_{r^{\prime}}(y, z)
$$

be the second difference G_{r} with pitch h in the direction of the x_{1} axis.
Then

$$
\begin{aligned}
\Delta_{x, n}^{2} w= & \int_{-\infty}^{\infty}\left(\int_{R_{n-1}} \Lambda(y-\eta, \zeta) v(\eta, \zeta) d \eta\right) d \zeta= \\
& =\int_{-\infty}^{\infty}\left(\int_{R_{n-1}} \Lambda(\eta, \xi) v(y-\eta, \zeta) d \eta\right) d \zeta .
\end{aligned}
$$

from whence, by using the Minkowaki inequality twice

$$
\begin{align*}
& \Delta_{x_{1}, n}^{2} w k_{p}\left(R_{n-1}\right)< \\
& <\int_{-\infty}^{\infty}\left\{\int_{R_{n-1}} d y\left|\int_{R_{n-1}} \Lambda(\eta, \zeta) v(y-\eta, \zeta) d \eta\right|^{p}\right\}^{1 / p} d \zeta \leqslant \\
& <\int_{-\infty}^{\infty} d \zeta \int_{R_{n-1}}\left|\Lambda\left(\eta_{0} \zeta\right)\right| d \eta\left(\int \mid v(y-\eta, \zeta) P d y\right)^{1 / p}= \\
& \quad-\int_{-\infty}^{\infty} I(h, \zeta)\|v(\eta, \zeta)\|_{L_{p}\left(R_{n-1}\right)} d \zeta \tag{10}
\end{align*}
$$

$$
\begin{equation*}
I(h, \zeta)=\int_{R_{n-1}}\left|\Delta_{x, h}^{2} G_{r^{\prime}}(\eta, \zeta)\right| d \eta . \tag{11}
\end{equation*}
$$

Let us set

$$
a_{1}=\rho_{1}-\bar{\rho}_{1}
$$

and let us note that

$$
\frac{1}{r_{n^{\prime}}}+\frac{a_{1}}{r_{1}^{\prime}}=\frac{1}{1-\frac{p_{1}}{r_{1}}}\left(\frac{1}{r_{n}}+\frac{a_{1}}{r_{1}}\right)=\frac{\frac{1}{r_{n}}+\frac{a_{1}}{r_{1}}}{\frac{1}{p r_{n}}+\frac{a_{1}}{r_{1}}}>1(p>1)
$$

therefore we can define I_{1} satisfying the inequality $0<I_{1}<\alpha_{1}$ and such
that

$$
\frac{1}{r_{n}^{\prime}}+\frac{1_{1}}{r_{1}^{\prime}}>1
$$

In this case, by virtue of estimates 9.4.9(2), for the kernel G_{r},

$$
\begin{align*}
& I(h, \zeta) \ll|h|^{1+h} \mid \zeta \beta^{\prime} \tag{12}\\
& I(h, \eta) \ll\left|h \beta^{\prime}\right| \zeta \beta^{\circ} \tag{13}
\end{align*}
$$

(the absolute magnitude of the second difference was replaced by the sum of the absolute magnitudes of the first differences exceeding it), where

$$
\begin{gathered}
\beta=-r_{n}^{\prime}\left(\frac{1}{r_{1}^{\prime}}+\frac{l_{1}^{\prime}}{r_{1}}-1\right), \\
\beta^{\prime}=-r_{n}^{\prime}\left(\frac{1}{r_{n}^{\prime}}+\frac{r_{1}+1}{r_{1}^{\prime}}-1\right)=\beta-\frac{r_{n}}{r_{1}} .
\end{gathered}
$$

Let us further introduce the numbers

$$
\begin{gathered}
a==\frac{r_{n}^{\prime}}{r_{1}^{\prime}} p\left(l_{1}-a_{1}\right)-1<-1, \\
a^{\prime}=\frac{r_{n}^{\prime}}{r_{1}^{\prime}} p\left(l_{1}-a_{1}+1\right)-1>-1, \quad a^{\prime}=\alpha+\frac{r_{n}}{r_{1}} p .
\end{gathered}
$$

The numbers $\alpha, \alpha^{\prime}, \beta$, and β^{\prime} are associated by the following relations:

$$
\begin{gathered}
a+p+p \beta=-1-\frac{r_{n}^{\prime} a_{1} p}{r_{1}^{\prime}}+r_{n}^{\prime} p=-1-\frac{r_{n} a_{1} p}{r_{1}}+r_{n} p\left(1-\frac{p_{1}}{r_{1}}\right)= \\
=-1-\frac{r_{n} a_{1} p}{r_{1}}+r_{n} p\left(1-\frac{p_{1}-a_{1}}{r_{1}}\right)=-1+r_{n} p\left(1-\frac{p_{1}}{r_{1}}\right)= \\
=-1+r_{n} p\left(1-1+\frac{1}{r_{n} p}\right)=0, \\
a^{\prime}+p+p N^{\prime}=0 .
\end{gathered}
$$

Ite proof, thus, reduces to the change of variable $\zeta=$ tu and thon to the use of Minkowaki's inequality"). The inequality

$$
\begin{aligned}
& \int_{0}^{\infty} t^{e}\left(\int_{1 \zeta \ll t} \varphi(t) d t\right)^{\rho} d t=\left\{\int_{0}^{\infty} d t\left(\int_{u<1<1} \varphi(t u)^{\frac{a}{0}+1} d u\right)^{\rho}\right\}^{1 / \rho} \leqslant \\
& <\int_{|u|<1}\left(\int_{0}^{\infty} \varphi(t u)^{p} t^{a+\rho} d t\right)^{1 / \rho} d u=c\left(\int_{-\infty}^{\infty} \varphi(t)^{\rho}|\zeta|^{a+5} d t\right)^{1 / \rho} \text {. } \\
& c=\int_{0}^{1} \frac{d u}{i+\frac{a+1}{p}}<\infty, \text { если } \quad a<-1, \quad 1<p<\infty .
\end{aligned}
$$

is aimilariy proven.
Now we have (setting $t=h^{r_{1} / r_{n}}$ in the third relation)

$$
\begin{aligned}
& \int_{0}^{\infty} t^{a}\left(\int_{|\zeta|>t} p(\xi) d \xi\right)^{\prime} d t \leqslant c_{1}^{x} \int_{-\infty}^{\infty} \varphi(\xi)^{p}|\zeta|^{a+p} d \xi ; \\
& c_{1}=\int_{1}^{\infty} \frac{d u}{u_{u}+\frac{a+1}{p}} \quad(a>-1,1 \leqslant p<\infty) .
\end{aligned}
$$

*) Cf book by Hardy, Littlewood, and Polya $\overline{\mathrm{T}} \overline{\mathrm{I}}$.

$$
\begin{aligned}
& \left.t=h^{r_{1}} / r_{a}\right) \\
& \|f\|_{x_{i, p} p_{1}\left(R_{n-1}\right)}=\int_{0}^{\infty} h^{-1-\rho a_{1}}\left\|\Lambda_{x_{1} h}^{2} w\right\|_{L_{p}\left(R_{n-1}\right)}^{p} d h= \\
& =\int_{0}^{\infty} h^{-1-\infty a_{1}} d h\left\{\left[\int_{|t|<h^{r^{\prime} \mid r_{n}}}+\int_{161>h^{n_{1}} \mid r_{n}}\right] \times\right. \\
& \left.\times I(\eta, \zeta)\|v(\eta, \zeta)\|_{L_{p}\left(R_{n-1}\right)} d \zeta\right\}^{p} \ll \\
& \ll \int_{0}^{\infty} h^{-1-p a_{1}} d h\left(\int_{|t|<h^{r} 1 / r_{n}} h_{p}^{L_{1}, \beta}\|v(\eta, \zeta)\|_{L_{p}\left(R_{n-1}\right)} d t+\right. \\
& \left.+\int_{1 \xi 1>R^{h_{1}} / r_{n}} h^{l_{1}+1 \zeta^{\prime}}\|v(\eta, \zeta)\|_{L_{j},\left(R_{n-1}\right)} d \xi\right)^{n}= \\
& =\int_{0}^{\infty} t^{a} d t\left(\int_{|\zeta|<t} \zeta^{\beta}\|v(\eta, \zeta)\|_{L_{p}\left(R_{n-1}\right)} d \zeta\right)^{p}+ \\
& +\int_{0}^{\infty} t^{a^{\prime}} d t\left(\int_{|\tau|>t} \zeta^{p^{\prime}}\|v(\eta, \zeta)\|_{L_{p}\left(R_{n-1}\right)} d t\right)^{p} \ll \\
& <\int_{-\infty}^{\infty}\|v(\eta, \xi)\|_{L_{p}\left(R_{n-1}\right)} d \xi=\|v\|_{L_{p}\left(R_{n}\right)}^{p} .
\end{aligned}
$$

Since in the inequality obtained x_{1} can be replaced with x_{j}, then we have
proven (cf also (8)) that proven (cf also (8)) that

$$
\|f\|_{b_{x_{i} p} p_{l}\left(R_{n}\right)} \ll\|v\|_{L_{p}\left(R_{n}\right)} \quad(j=1, \ldots, n-1)
$$

from whence (cf further (6)) for $z=0$, we have

$$
\begin{equation*}
\left\|_{1} f(y, z)_{u_{\nu\left(k_{n-1}\right)}^{p}} \leqslant\right\| f_{L_{\mu}^{\prime}\left(R_{a}\right)} . \tag{14}
\end{equation*}
$$

It obviously is valid for any z not necessarily equal to zero, which is similarly proven. By this we have proved (3).

The function $f \in L_{p}^{r}\left(R_{n}\right)$ can be written as

$$
\begin{gathered}
f(y, z)=\int G_{r}(y-\eta, z-\zeta) \lambda(\eta, \zeta) d \eta d \zeta_{1} \\
\|f\|_{L_{p}^{\prime}\left(R_{A}\right)}=\|\lambda\|_{L_{p}\left(R_{A}\right)} .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
f(y, z+h) & -f(y, z)= \\
& =\int O_{r}(y-\eta, z-\zeta)[\lambda(\eta, \zeta+h)-\lambda(\eta, \xi)] d \eta 甘 \zeta
\end{aligned}
$$

and by (14)

$$
\begin{aligned}
& \left\lvert\, \frac{\partial \dot{\theta}}{\partial x_{1}^{\dot{\beta}}}\left[f(y, z+h)-\left.f(y, z)\right|_{\varepsilon_{0}\left(R_{n-1}\right)}<\right.\right. \\
& <\|f(y, z+h)-f(y, z)\|_{s_{p}^{p}\left(n_{n-1}\right)}< \\
& <\|f(y, z+h)-f(y, z)\|_{L_{p}\left(R_{a}\right)}= \\
& =\|\lambda(\eta, \zeta+h)-\lambda(\eta, \zeta)\|_{\varepsilon_{p}\left(R_{n}\right)} \rightarrow 0 \quad(h \rightarrow 0) \quad(1 \leqslant p<\infty) .
\end{aligned}
$$

This ahows that if wo specify z in $\frac{\partial^{\bar{P}}}{\partial x_{1}} f\left(\overline{\bar{p}_{1}}, z\right)$, then we get a function of $J \in R_{n-1}$, which is the trace of $\frac{\partial^{\prime} f}{\partial x_{1} \bar{p}_{i}}$ on the subspace $x_{n}=2$.
9.5.2. Inverse theorem of different moasures. Suppose $1 \leqslant p<\infty$ and suppose that the positive numbers $r_{1}(i=1, \ldots, n)$ and possible vector with nonnogative integral coordinatês
for which

$$
\lambda=\left(\lambda_{n+1}, \ldots, \lambda_{n}\right)
$$

$$
\begin{gather*}
\rho_{i}^{\left(\lambda_{1}\right.}=r_{i}\left(1-\sum_{i=m+1}^{n} \frac{\lambda_{1}}{r_{1}}-\frac{1}{p} \sum_{1=m+1}^{n} \frac{1}{r_{1}}\right)=r_{i} x>0 \tag{1}\\
(i=1, \ldots, m) .
\end{gather*}
$$

be given.
Furtber let the function

$$
\Phi_{(a)}(\mu)=\Phi_{(\mu)}\left(x_{1}, \ldots, x_{m}\right) \in B_{p}^{(\alpha)}\left(R_{m}\right) .
$$

be brought into correspondence with each vector
Then we can construct the function $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ of n variables exhibiting the following properties:

$$
\begin{align*}
f & \in L_{\rho}^{p}\left(R_{n}\right), \tag{2}\\
\|f\|_{L_{p}^{p}\left(R_{n}\right)} & \leqslant c \sum_{\lambda}\left|\Phi_{(\alpha)}\right|_{s_{p}^{(\alpha)}\left(R_{m}\right)}{ }^{\prime} \\
\left.f^{(2)}\right|_{R_{m}} & =\Phi_{(\mu)}(\mu) .
\end{align*}
$$

Proof. Let us show that we can take the function

$$
\begin{equation*}
f=\sum_{2} f_{(2)} \tag{5}
\end{equation*}
$$

already defined in 6.8, where the sum is extended over all possible admissible vectors λ and

$$
\begin{equation*}
f_{(a)}=\sum_{s=0}^{\infty} \Phi_{(x)}^{s} \prod_{l=m+1}^{n} b^{-\frac{s \lambda_{j}}{r j^{x}}} \Phi_{\lambda_{l}}\left(b^{\frac{s}{r j^{\alpha}}} x_{\jmath}\right) \tag{6}
\end{equation*}
$$

as f .
If it is essential to note that the function

$$
q_{s}=\varphi_{(a)}^{f}=g{\underset{. b}{\frac{s}{r_{1} x}} \ldots \ldots, b^{\frac{s}{r_{m}^{x}}}} \quad(s=0,1, \ldots)
$$

are integral and of exponential type $b^{s / r_{j} \nmid r}$ with respect to $x_{j}(j=1, \ldots, m)$
and that

$$
\varphi_{(1)}=\sum_{s=0}^{\infty} \varphi_{(2)}^{s}
$$

$$
\| \Phi_{\left(2, \|_{p_{p}^{(p)}\left(R_{m}\right)}\right.}=\left(\sum_{s=0}^{\infty} b^{s p}\left\|q_{s}\right\|_{L_{p}\left(R_{m}\right)}\right)^{1 / p}<\infty .
$$

As for the functions $\phi_{\lambda_{j}}(t)$, they can be assumed to be equal to

$$
\begin{equation*}
(4) \quad(t)=\frac{r_{\lambda_{j}}(1, t)}{t^{j}}, \tag{7}
\end{equation*}
$$

whore $T_{\lambda_{j}}$ are suitably chosen trigonomotric polynomials and A_{j} are numbers. Here ϕ_{λ} are integral functions of the exponential type 1 . In contrast to $6.8, t^{3}$ (instead of t^{2}) is inserted in the denominator of (7), which is not essential; on the other hand, here the functions $\phi_{\lambda_{j}}$ together with their firat-order derivatives belong to $\mathrm{L}=\mathrm{L}(-\infty, \infty)$.

The fact that $f \in B_{p}^{r}\left(R_{n}\right)$ and that the boundary conditions (4) are satiafied is proven in theorem 6.8. It remains to prove the properties (2) and (3).

Let R_{n-1} stand for the subspace of points (x_{1}, \ldots, x_{n-1}). The inequality (explanations below)

$$
\begin{aligned}
& \left|\left.\right|_{x_{i}\left(-r_{1}\right)} f_{(n)}(x)\right|_{k_{p}\left(n_{n-1}\right)} \leqslant
\end{aligned}
$$

$$
\begin{align*}
& -\sum_{\varepsilon} \eta_{s} a^{3 / \rho}\left|\psi_{j}\left(x_{n}\right)\right|{ }_{0} \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda_{s}=\left\|a_{s}\right\|_{L_{p}\left(R_{m}\right)} b^{0}, \quad a=b^{\frac{1}{r_{n}}} \quad(a>1), \tag{9}\\
& \psi_{s}(t)=\Phi\left(a^{t} t\right) \quad \text { when } i=1, \ldots, n-1 \tag{10}\\
& \psi_{s}(t)=a^{-r n^{4}} l_{-r_{a}} \Phi\left(a^{f} t\right) \text { when } i=n, \phi=\Phi_{\lambda_{n}} . \tag{11}
\end{align*}
$$

is valid.
The norm in the metric $L_{p}\left(R_{n-1}\right)$ of each member of series (6) is equal to the product of L_{p} norms of the cofactors of which it is constituted (in the corresponding subspaces of the variable on which these cofactors depend). Here we must consider that

$$
\begin{gathered}
\left\|I_{r_{1}\left(-r_{i}\right)} q_{s}\right\|_{L_{p}\left(R_{m}\right)} \ll b^{s \%} q_{s} \|_{L_{p}\left(R_{m}\right)} \\
(i=1, \ldots, m ; s=0,1, \ldots)
\end{gathered}
$$

(of 8.7)

$$
\begin{aligned}
& \left|I_{x_{l}\left(-r_{l}\right)} \Phi_{\lambda_{l}}\left(b^{\frac{1}{r_{l}}} x_{1}\right)\right|_{L_{p}\left(R_{x_{l}}\right)}<b^{\frac{1}{x}}\left|\Phi_{\lambda_{l}}\left(b^{\frac{1}{r^{x}}} x_{l}\right)\right|_{L_{p}\left(R_{x_{l}}\right)} . \\
& \left|\Phi_{R_{i}}\left(\frac{\frac{1}{b^{\prime} l^{x}}}{x_{l}}\right)\right|_{L_{p}\left(R_{x_{1}}\right)}=c_{i} b^{-\frac{s}{p_{1} l^{x}}} \quad(i=m+1, \ldots, n-1),
\end{aligned}
$$

where $R_{x_{1}}$ is the x_{i} axis and c_{1} does not depend on $s=0,1,2, \ldots$
From (8) it follows (explanations below) that

$$
\begin{aligned}
& \left\lfloor\left. I_{x_{l}\left(-r_{l}\right)} f_{(x)}(x)\right|_{c_{p}\left(R_{n-1}\right)}<\left(\int_{-\infty}^{\infty}\left|\sum_{s} \lambda_{s} a^{s / p} \psi_{s}(y)\right|^{p} d y\right)^{1 / p} \ll\right. \\
& \therefore \quad<\left(\sum_{s} \lambda_{s}^{p}\right)^{1 / p}=\left(\sum_{s} b^{s \rho}\left\|q_{s}\right\|_{L_{p}\left(R_{m}\right)}\right)^{1 / p}=\left|\varphi_{(\alpha)}\right|_{s_{p}^{(L)}\left(R_{m}\right)} \text {. }
\end{aligned}
$$

which proves (2) and (3). But in these relations we must validate the second inequality.

Let us note the inequalities

$$
\begin{gather*}
\left|\psi_{s}(t)\right|<A \tag{12}\\
\left|\psi_{s}(t)\right|<\frac{A}{a^{s}|t|}\left(a^{s}|t|>1\right), \tag{13}\\
a^{s} \int_{-\infty}^{\infty}\left|\psi_{s}(t)\right| d t<A, \tag{14}
\end{gather*}
$$

where the constant A does not depend on the series of the standing multipliers. In the case (10) these inequalities follow at once from the fact that $\phi(t)$ is an integral function representable in the form (7). But in the case (11), this requires an explanation. The function $\phi(t)$ is integral and of the exponential type 1 and belongs to L together with its derivatives; therefore its Fourier transform $\sqrt{2 \pi \mu(x)}$ has a continuous derivative and a compact carrier on $(-1,+1)$.

Thus, $\mu(1)=\mu(-1)=0$ and, consequently $\left(r=r_{n}\right)$,

$$
\begin{align*}
& \Phi(t)=\int_{-1}^{+1} \mu(\lambda) e^{(\lambda t} d \lambda_{0} \tag{15}\\
& \Phi\left(a^{s} t\right)=\int_{-1}^{+1} \mu(\lambda) e^{i \lambda a^{s} t} d \lambda=a^{-s} \int_{-a^{s}}^{a^{4}} \mu\left(a^{-3} \xi\right) e^{\mu \lambda} d \xi \\
& \left|I_{t(-))} \Phi\left(a^{t} t\right)\right|=a^{-s}\left|\int_{-a^{s}}^{a_{0}^{s}}\left(1+\xi^{2}\right)^{r / 2} \mu\left(a^{-s} t\right) e^{n} d \xi\right|= \\
& =\left\lvert\, \frac{a^{-s}}{l} \int_{-e^{s}}^{a^{0}} \cdot\left[\mu^{\prime}\left(a^{-s} \xi\right) a^{-1}\left(1+\xi^{z}\right)^{1 / 2}+\right.\right. \\
& \left.+r\left(1+\xi^{2}\right)^{r / 2-1} \xi\left(a^{-a} \xi\right)\right] e^{14} d \xi \mid< \\
& <\frac{a^{-s}}{|t|} a^{s}\left(a^{-r} a^{r r}+a^{(r-2)} a^{r}\right)=\frac{\left.a^{(r-1)}\right)}{|f|} .
\end{align*}
$$

We have proven (13) (cf (11)). Further, if it is considered that $\phi\left(a^{a} t\right)$ is integral and of the exponential type a^{6}, we get

$$
\begin{gathered}
\left|\psi_{s}(t)\right| \leqslant a^{-r_{n} n^{2} a^{4}} \max \left|\Phi\left(a^{8} t\right)\right|<A, \\
\int\left|\psi_{d}(t)\right| d t \leqslant a^{-n^{8} a^{2} n^{8}} \int\left|\Phi\left(a^{s} t\right)\right| d t<A a^{-2},
\end{gathered}
$$

1.0., (12) and (14).

Now we have

$$
\begin{equation*}
\int_{0}^{\infty}\left|\sum_{1} \lambda_{1} n^{s / p} \psi_{s}(y)\right|^{p} d y \ll \Lambda_{1}+\Lambda_{2}+\Lambda_{3} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Lambda_{1}=\sum_{m=0}^{\infty} \int_{a^{-m-1}}^{a^{-m}}\left|\sum_{s=0}^{m} \lambda_{s} a^{s / \rho} \psi_{s}(y)\right|^{p} d y \\
& \Lambda_{2}=\sum_{m=0}^{\infty} \int_{a^{-m-1}}^{a^{-m}}\left|\sum_{s=-m+1}^{\infty} \lambda_{s} a^{s / /} \psi_{s}(y)\right|^{p} d y, \\
& \Lambda_{3}=\int_{i}^{\infty}\left|\sum_{s=0}^{\infty} \lambda_{s} a^{s / L} \psi_{s}(y)\right|^{p} d y .
\end{aligned}
$$

But (of (12), $1 / p+1 / q=1$)

$$
\begin{aligned}
& \Lambda_{1}<\sum_{m=0}^{\infty} a^{-m}\left(\sum_{s=0}^{m} \lambda_{s} a^{s(1-e)} a^{\frac{s e}{p}}\right)^{p}< \\
& \leqslant \sum_{m=0}^{\infty} a^{-m} \sum_{s=0}^{m} \lambda_{s}^{p} a^{s(1-e)}\left(\sum_{s=0}^{m} a^{s e q}\right)^{p / q} \leqslant \sum_{m=0}^{\infty} a^{-m} \sum_{s=0}^{m} \lambda_{s}^{p} a^{s(1-e)} a^{m \varepsilon}= \\
&-\sum_{s=0}^{\infty} \lambda_{s}^{p} a^{s(1-e)} \sum_{m=s}^{\infty} a^{-m(1-e)} \ll \sum_{s=0}^{\infty} \lambda_{s}^{p} a^{s(1-e)} a^{s(e-1)}-\sum_{0}^{\infty} \lambda_{i}^{p}
\end{aligned}
$$

(when $p=1$, the third member in this chain can be omitted).
Further (cf (14), explanations below)

$$
\begin{aligned}
& \Lambda_{2} \leqslant \sum_{m=0}^{\infty} \int_{a^{-m-1}}^{-m} \sum_{s=m+1}^{\infty} \lambda_{s}^{p} a^{s}\left|\psi_{s}(y)\right| \sum_{s=m+1}^{\infty}\left|\dot{\psi}_{s}(y)\right|^{p-1} d \dot{y} \ll \\
& \ll \sum_{m=0}^{\infty} \sum_{s=m+1}^{\infty} \lambda_{s}^{p} a^{s} \int_{a^{-m-1}}^{a^{-m}}\left|\psi_{s}(y)\right| d y=\sum_{s=0}^{\infty} \lambda_{s}^{p} a^{s} \sum_{m=0}^{s} \int_{a^{-m-1}}^{a^{-m}}\left|\psi_{s}\right| d y= \\
&=\sum_{s=0}^{\infty} \lambda_{s}^{p} a^{s} \int_{0}^{1}\left|\psi_{s}\right| d y \ll \sum_{s=0}^{\infty} \lambda_{s}^{p}
\end{aligned}
$$

because (of (13))

$$
\begin{equation*}
\left.\sum_{s=m+1}^{\infty}\left|\psi_{s}(y)\right| \ll \frac{1}{|!!|} \sum_{-\infty+n+1}^{\infty} a^{-3} \ll a^{m} a^{-m-1} \ll \right\rvert\,\left(a^{-m-1}<y\right) \tag{17}
\end{equation*}
$$

Finally (of (14))

$$
\begin{aligned}
& \Lambda_{3} \leqslant \int_{i}^{\infty} \sum_{s=0}^{\infty} \lambda_{s}^{p} a^{s}\left|\psi_{s}(y)\right|\left(\sum_{s=0}^{\infty}\left|\psi_{s}(y)\right|\right)^{p-1} d y \ll \\
& \ll \sum_{s=0}^{\infty} \lambda_{s}^{p} a^{s} \int_{i}^{\infty}\left|\psi_{s}\right| d y \ll \sum_{i} \lambda_{s}^{p}
\end{aligned}
$$

because

$$
\sum_{s=0}^{\infty}\left|\psi_{s}(y)\right|=\left|\psi_{0}(y)\right|+\sum_{1}^{\infty}\left|\psi_{s}(y)\right|<1 \quad(1 \leqslant y<\infty)
$$

(cf (12) and (17) when $m=0$).
We have proven that integral (16) does not excoed $\sum \lambda_{\mathrm{s}}^{\mathrm{p}}$. This fact is analogously proven also for the integral extended over $\{-\infty<y<0\}$.
9.5.3. If it is considered, as we have stipulated, that $\mathrm{B}_{\infty}^{\rho}=\mathrm{H}_{\infty}^{\rho}$, then theorem 9.5 .2 when $p=\infty$ ceases to be valid. In fact, the arbitrary function

$$
\begin{aligned}
f(x, y) \in W_{\infty}^{1.1}\left(R_{2}\right)= & L_{\infty}^{1,1}\left(R_{2}\right) \subset H_{\infty}^{1,1}\left(R_{2}\right) \subset H_{\infty}^{a_{,} a}\left(R_{2}\right), \\
& 0<a<1,
\end{aligned}
$$

is uniformiy continuous (after suitable modification by the multiplier of planar measures zero). It satisfies on R_{2}, therefore also on the R_{1} axis, the Lipshits condition of degree 1. However, the function $\varphi\left(x_{1}\right) \in H_{\infty}^{1}\left(R_{1}\right)$ not satisfying the Lipshits condition (it is even nowhere-differentiable, of note to $5.6 .2-5.6 .3$) can be def ined on the $R 1$ axis. So there does not exist the function $f\left(x_{1}, z_{2}\right) \in W_{\infty}^{1} 1\left(R_{2}\right)$ which ${ }_{1}$ would extend φ from R_{1} onto R_{2}.
9.5.4*) From theorem 9.5.1 and 9.5.2, as a consequence, we can get the embedding theorems:

$$
\begin{equation*}
B_{p}^{r}\left(R_{n}\right) \nleftarrow B_{p}^{\prime}\left(R_{m}\right), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
B_{p}^{r}\left(R_{n}\right) \rightarrow L_{p}^{\frac{r_{1}}{x_{1}}}, \cdots, \frac{r_{n}}{y_{1}}, r_{n+1}\left(R_{n+1}\right) \rightarrow B_{p}^{\frac{x_{n}}{x_{1}} r_{1}, \ldots, \frac{x_{1}}{x_{1}} r_{m}}\left(R_{m}\right)= \tag{2}
\end{equation*}
$$

where

$$
=B_{p}^{p}\left(R_{m}\right),
$$

$$
\begin{array}{r}
x_{1}=1-\frac{1}{p r_{n+1}}>0, x_{2}=1-\frac{1}{p} \sum_{m+1}^{m} \frac{x_{1}}{r_{j}}-\frac{1}{p P_{n+1}}=x_{1} x_{j} \\
B_{p}^{p}\left(R_{m}\right) \rightarrow L_{\rho}^{\frac{\rho_{1}}{x_{2}}, \cdots, \frac{\rho_{m}}{x_{2}}, \frac{r_{m+1}}{x_{1}}, \ldots, \frac{r_{n}}{x_{1}}, Y_{n+1}\left(R_{n+1}\right) \rightarrow B_{p}^{\prime}\left(R_{n}\right) .}
\end{array}
$$

The first embedding in (2), just as in (3), follows from theorem 9.5.2, and the second in (2) and (3) -- from theorem 9.5.1.

2.6. Eqbedding Theorem With Limiting Erponent

9.6.1. Lemma. Suppose $g \in L_{q^{1}}\left(K_{m}\right), f \in L_{p}\left(H_{n}\right)$,

$$
\begin{gather*}
1 \leqslant m \leqslant n, \quad 1<p<q<\infty, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad \frac{1}{q}+\frac{1}{q^{\prime}}=1, \\
x=\left(x_{1}, \ldots, x_{n}\right) \in R_{n}, \quad r(\xi)=\left\{\sum_{1}^{n}\left|\xi_{j}\right|^{2 / x_{1}}\right\}^{1 / 2}, \quad x_{j}>0, \\
\xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad \lambda=\frac{1}{p^{\prime}} \sum_{1}^{n} x_{1}+\frac{1}{q} \sum_{1}^{m} x_{j} . \tag{1}
\end{gather*}
$$

*) This remark is owed to V. I. Burenkov.

Then the inequality*)

$$
\begin{equation*}
\left|\int_{R_{m}} d x \int_{R_{n}} \frac{g(x) /(y) d y}{\lambda^{\lambda}(x-y)}\right| \leqslant c\|f\|_{L_{p}\left(R_{n}\right)}\|g\|_{L^{\prime},}\left(R_{m}\right)^{\prime} \tag{2}
\end{equation*}
$$

where c does not depend on f, g, end ($\left.x_{m+1}, \ldots, x_{n}\right) \in R_{n-m}$ is valid; from which it follows that

$$
\begin{equation*}
\left|\int_{R_{n}} \frac{f(y) d y}{r^{2}(x-y)}\right|_{L_{\rho}\left(R_{n}\right)} \leqslant c\|f\|_{L_{p}\left(R_{n}\right)} \tag{3}
\end{equation*}
$$

Proof'. In the one-dimensional case ($n=m=1, x_{1}=1$) (2) is the Hardy-Littlewood inequality

$$
\begin{equation*}
\left|\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{g(\xi) /(\eta) d \xi d \eta}{|\xi-\eta|^{\frac{1}{p^{p}}+\frac{1}{d}}}\right| \leqslant c\|f\|_{L_{p}\left(R_{1}\right)}\|g\|_{L_{p^{\prime}}\left(R_{1}\right)} . \tag{4}
\end{equation*}
$$

:le would not provo it here**)_ The fact that (3) follows from (2) is the F. Riecz theorem (cf Banach L1_/), stating that if a function F measurable on R_{m} is such that the Lebesgue integral

$$
\int_{R_{m}} F g d x
$$

c:ists for any $g \in L_{q^{\prime}}\left(f_{m^{\prime}}\right)$, then
ana

$$
\|F\|_{L_{\rho}\left(R_{m}\right)}=\sup _{1 \in 1_{L q^{\prime}}\left(R_{m}\right)} \int_{R_{m}} F g^{\prime} d x .
$$

 case. **) The proof is found in the book by Hardy, Littlowood, and Polya L1], page 346.

Let us write the integral estimated as

$$
\begin{equation*}
!=\cdot \int_{R_{m}} g(x) d x \int_{R_{m}} d y^{\prime}\left[\int_{R_{n-m}} \frac{f(y) d y^{\prime \prime}}{r^{\lambda}}\right] . \tag{5}
\end{equation*}
$$

where $\boldsymbol{J}^{\prime-}\left(y_{1}, \ldots, y_{m}\right), \mathbf{y}^{\prime \prime}-\left(y_{m+1}, \ldots, y_{n}\right)$. Hölder's inequality

$$
\|\cdot\| \left\lvert\, \leqslant\left(\int_{R_{n-m}}|f(y)|^{p} d y^{\prime \prime}\right)^{1 / p}\left(\int_{R_{n-m}} \frac{d y^{\prime \prime}}{r^{\prime \prime} p^{\prime}}\right)^{1 / p^{\prime}}=P\left(y^{\prime}\right) Q\left(y^{\prime}\right)\right.
$$

can be applied to the integral apnearing in the brackets. But (explanations
below) below)

$$
\begin{aligned}
& Q^{p^{\prime}}=\int_{R_{n-m}} \frac{d y_{m+1} \ldots d y_{n}}{\left\{H^{2}+\sum_{m+1}^{n}\left|y_{j}\right|^{2 / x_{1}}\right\}^{1 / 2}\left(\sum_{m+1}^{n} x_{j}+\varepsilon\right)}= \\
& =\frac{1}{H^{2}} \int_{R_{n-m}} \frac{d u_{m+1} \ldots d u_{n}}{\left\{1+\sum_{m+1}^{n}\left|u_{j}\right|^{2 / x_{1}}\right\}^{1 / 2}{\underset{m}{n+1}}_{\substack{n} x_{j}+\varepsilon}{ }_{c}}=\frac{c}{H^{2}}= \\
& =\frac{c}{\left\{\sum_{1}^{m}\left|x_{j}-y_{j}\right|^{2 / x_{j}}\right\}^{\frac{p^{\prime}}{2}} \sum_{i}^{m} x_{j}\left(\frac{1}{p^{\prime}}+\frac{1}{q}\right)} \leqslant \frac{c}{\left\{\prod_{j=1}^{m}\left|x_{j}-y_{j}\right|\right\}^{p^{\prime}\left(\frac{1}{p}+\frac{1}{q}\right)}} .
\end{aligned}
$$

Above we used the following notation:

$$
\begin{gathered}
H^{2}=\left\{\sum_{1}^{m}\left|x_{j}-y_{j}\right|^{2 / x_{j}}\right\}, \\
\varepsilon=\lambda \cdot p^{\prime}-\sum_{m+1}^{n} x_{j}=\sum_{1}^{m} x_{j}+\frac{p^{\prime}}{q} \sum_{1}^{m} x_{j}>0
\end{gathered}
$$

Tho substitution

$$
u_{j}=\frac{y_{l}}{H^{x_{j}}} \quad(j=1, \ldots, m-1)
$$

was introduced into the second equality; tho integral in the third term was denotud with c; its finiteness on the unit sphere B_{n-m} is obvious; but outside it, $1 f^{2}$ wo set $u_{j}^{2 / \mu_{j}}-\varepsilon_{j}$, confining ourselves to positive u_{j} ard introducing polar coordinates for $\xi=\left(\xi_{m+1}, \ldots, \xi_{n}\right)$, then the correspording integral is estimated thusly:

The last inequality is obtained from the obvious inequalities ($\xi_{j}=$ $\left.\left|x_{j}-y_{j}\right|\right)$

$$
\xi_{j}=\xi_{j}{ }^{\frac{2}{x_{1}} \frac{x_{1}}{2}} \leqslant\left(\sum_{s=1}^{n} \xi_{s}^{2 / x_{s}}\right)^{x_{1} / 2} \quad(j=1, \ldots, m)
$$

which remain to be multiplied and raised to the power $p^{\prime}\left(1 / p^{\prime}+1 / q\right)$.
Consequently,
from whonce follows (2) by successive m-fold application of the one-dimensional incquality (4).
9.6.2. Generalization of Sobolev embedding theorem*).

Theorem. Given the condition $1<p<q<\infty, 1 \leqslant m \leqslant n$,

$$
\begin{equation*}
r=\left(r_{1}, \ldots, r_{n}\right) \geqslant 0, \quad x=1-\left(\frac{1^{\prime}}{p}-\frac{1}{q}\right) \sum_{1}^{m} \frac{1}{r_{j}}-\frac{1}{p} \sum_{m+1}^{n} \frac{1}{r_{j}} \geqslant 0 \tag{1}
\end{equation*}
$$

the embedding

$$
\begin{gather*}
L_{\rho}^{r}\left(R_{n}\right) \rightarrow L_{\xi}^{p}\left(R_{m}\right), \tag{2}\\
\rho=\left(\rho_{1}, \ldots, \rho_{m}\right), \rho_{j}=x r_{j} \quad(j=1, \ldots, m) .
\end{gather*}
$$

obtains.
Proof. We will let I_{-r} stand for the operation that is the inverse of $I_{r}\left(r \geqslant 0, I_{0}\right.$ is the unit operator) and we will consider that operations I_{r}, $I_{r^{\prime}}, I_{-r}$, and $I_{-r^{\prime}}$ are commutative. Let $f \in L_{p}^{r}\left(R_{n}\right)(r>0)$, then

$$
i=\log \quad\left(g \in L_{p}\left(R_{n}\right)\right)
$$

and consequently,
where

$$
f=I_{p} I_{r}(1-x) h_{1}
$$

$$
h=I_{-n} I_{-r, 1-\alpha_{1} I r g} I_{r} \quad\|h\|_{L_{p},\left(R_{n}\right)} \leqslant c\|g\|_{l_{r}, p}\left(R_{n}\right)
$$

because the function

$$
\left\{\sum_{1}^{m}\left(1+u_{i}^{2}\right)^{\frac{\prime}{2 x}}\right\}^{\sigma}\left\{\sum_{1}^{n}\left(1+u_{i}^{z}\right)^{\frac{r(1-x)}{20}}\right\}^{0}\left\{\sum_{1}^{n}\left(1+u_{i}^{2}\right)^{r / 200}\right\}^{-\sigma}
$$

is a Marcinkievicz multiplier (cf 1.5.5, example 12 and note at end of 1.5 .5). And so

$$
\begin{equation*}
u=\int G_{(1-x) r}^{f=I_{o} u,}(x-y) h(y) d y \tag{3}
\end{equation*}
$$

*) Cf note to 6.1 and 9.6.2.
and for aufficiently large paramoter σ, the inequalities

$$
\begin{aligned}
& \left|G_{(1-x) r}(x)\right|<\left\{\sum_{1}^{n}|x,|^{\prime \prime(1-x)}\left(\sum_{n=1}^{n} \frac{1}{r_{s}(1-x)}-1\right)\right\}^{-1}- \\
& -\left\{\sum_{1}^{n}\left|x_{j}\right|^{\prime \prime}\left(\sum_{j=1}^{n} \frac{1}{r_{s}-1+x}\right)\right\}^{-1} \leqslant \\
& <\left\{\sum_{1}^{n}\left|x,\left.\right|^{2 r}\right|\right\}^{-1 / 2\left(\sum_{j=1}^{n} \frac{1}{r_{i}}-1+x\right)}=r(x)^{-\lambda} .
\end{aligned}
$$

are satisfied. Here we must bear in mind that $\}[<1$ and

$$
\begin{equation*}
\lambda=\sum_{i=1}^{n} \frac{1}{r_{1}}-1+x=\frac{1}{p^{\prime}} \sum_{1}^{n} \frac{1}{r_{l}}+\frac{1}{q} \sum_{1}^{m} \frac{1}{r_{j}}, \tag{6}
\end{equation*}
$$

and we can use the estimate (first) 9.4.1(2). In the last inequality we employed the ordinary eatimate
$\left(\sum_{1}^{n} \xi_{j}^{\beta}\right)^{1 / \beta} \leqslant c \sum_{1}^{n} \xi_{j}$, where $c=c_{n}$ is a constant).
From (4), (5), and (6) by virtue of lemma 9.6.1 (cf formula 9.6.1(3), where we muat asaume $\left.\kappa_{j}=1 / r_{j}\right)$, we got

$$
\|u\|_{L_{v}\left(P_{m}\right)} \leqslant c\|h\|_{l_{p}\left(R_{n}\right)} .
$$

But from (3) it follows that $f \in L_{q}\left(R_{n}\right)$ for and fixed x_{m+1}, \ldots, x_{n} and

$$
\begin{aligned}
&\|f\|_{L_{p}^{\prime}\left(R_{m}\right)}=\|u\|_{L_{d}\left(R_{m}\right)} \leqslant c_{2}\|h\|_{L_{p}\left(R_{n}\right)} \leqslant \\
& \leqslant c_{3}\|g\|_{L_{p}\left(R_{n}\right)}=c_{3}\|f\|_{L_{p}^{\prime}\left(R_{n}\right)} .
\end{aligned}
$$

and the theorem is proven.
9.6.3*) From theorem 9.6.2, if we take note of the theorem 9.5.1 and 9.5 .2 we can as a consequence obtain an analogous theorem with the spaces B:

$$
\begin{equation*}
B_{p}^{\prime}\left(R_{n}\right) \rightarrow B_{q}^{\prime}\left(R_{m}\right) \tag{1}
\end{equation*}
$$

given the conditions $1<p<q<\infty, 1 \leqslant m \leqslant n, r>0, p=\mu r, \mu>0$ (κ of 9.6.2(1)). In fact (explanations below),

$$
\begin{aligned}
& B_{p}^{r}\left(R_{n}\right) \rightarrow L_{p}^{\frac{r_{1}}{x_{1}}}, \cdots, \frac{r_{n}}{x_{1}} \cdot r_{n+1} \cdot r_{n+2} \\
&\left.\rightarrow R_{n+2}\right) \rightarrow \\
& \rightarrow L_{q}^{\frac{x_{1}}{x_{1}} r_{1} \cdots, \frac{x_{1}}{x_{1}} r_{n} \cdot x_{2} r_{n+1}}\left(R_{n+1}\right) \rightarrow \\
& B_{1}^{\frac{x_{1} x_{1}}{x_{1}} r_{1} \cdot \cdots, \frac{x_{1} x_{1}}{x_{1}} r_{m}}\left(R_{m}\right)=B_{q}^{n}\left(R_{m}\right) .
\end{aligned}
$$

where $r_{n+1}, r_{n+2}>0$ are selected sufficiently large that

$$
\begin{gathered}
x_{1}=1-\frac{1}{p}\left(\frac{1}{r_{n+1}}-\frac{1}{r_{n+2}}\right)>0, \\
x_{2}=1-\left(\frac{1}{p}-\frac{1}{q}\right)\left(\sum_{1}^{n} \frac{x_{1}}{r_{1}}+\frac{1}{r_{n+1}}\right)-\frac{1}{p r_{n+9}}>0 .
\end{gathered}
$$

Here

$$
x_{3}=1-\frac{1}{q}\left(\sum_{m+1}^{n} \frac{x_{1}}{x_{2}^{\prime} y_{1}}+\frac{1}{x_{2} f_{n+1}}\right)=\frac{x x_{1}}{x_{2}} .
$$

Embeddings (2) follow successively from 9.5.2, 9.6.2, and 9.5.1.

9.7. Nonequivalence of the Classes $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ and $\mathrm{L}_{\mathrm{p}}^{\mathrm{r}}$

*) This note belongs to V. I. Burenkov.

In concluaion let us show that the classea $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ and $\mathrm{L}_{\mathrm{p}}^{\mathrm{p}}$ for $1 \leqslant \mathrm{p}<\infty$, $p \neq 2$, are not equivalent (are essentiaily diatinct). Let us confine ourselves to considering the one-dimensional case.

First let $1<p<\infty$. Let us look at the sequence of functions

$$
\begin{gathered}
\Phi_{N}(t)=\sum_{0}^{N} \phi_{A}\left(n=x \sum_{0}^{N} \cos \left(\left(2^{n}+1\right) t\right] \frac{\sin t}{t} \quad(N-1,2, \ldots),\right. \\
\varphi_{k}(t)= \begin{cases}1 & \left(2^{n}<|t|<2^{n}+2\right), \\
0 & \text { for remaining } t\end{cases}
\end{gathered}
$$

(of $1.5 .7(10)$.
Let us note that provided $1<p<\infty$

$$
\begin{align*}
& \left.\int_{-\infty}^{\infty}\left|\phi_{n}(t) P d t<\int_{-\infty}^{\infty}\right| \frac{\sin t}{t} \right\rvert\, d t=A<\infty, \tag{1}\\
& \int_{-\infty}^{\infty}\left|\phi_{n}(t) P d t>\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\right| \cos \left(2^{n}+1\right) t P d t>B>0 \tag{2}
\end{align*}
$$

(on $(\pi / 3, \pi / 2)$, the function $\mid t^{-1}$ in $t \mid$ is restricted from below by the positive constant), where B does not dopend on k.

Obviousiy (of 1-5.6.1),

$$
\beta_{k}\left(\Phi_{N}\right)=(1)_{\Lambda_{k}} \Phi_{N}=\overparen{\Phi}_{A}(t), \quad \Lambda_{k}=\left\{2^{n} \leqslant 1 t \mid \leqslant 2^{n+1}\right\}
$$

and

$$
\begin{equation*}
\left|D_{N}\right|_{0}<\left|\left(\sum_{0}^{N} \phi_{n}^{2}\right)^{1 / 2}\right|_{0}<\left|\Phi_{N}\right|_{P} \tag{3}
\end{equation*}
$$

obtains, where the constants appearing in the inequalities here and below do not depend on N .

From the first inequality in (3) it follows that

$$
\begin{equation*}
\left\|\Phi_{N}\right\|_{\rho}<\left(\int_{-\infty}^{\infty} N^{p n}\left|\frac{\sin t}{t}\right|^{p} d t\right)^{1 / p} \ll N^{1 / 2} . \tag{4}
\end{equation*}
$$

Further, from the second inequality (3), when $2 \leqslant p<\infty$ (cf 3.3.3), it follows that

$$
\begin{align*}
\left\|\Phi_{N}\right\|_{\rho} \gg\left|\left(\sum_{0}^{N} \mid \hat{\phi}_{k} P^{\rho}\right)^{1 / \rho}\right|=\left(\int_{-\infty}^{\infty} \sum_{0}^{N} \mid \hat{\phi}_{k} P^{D} d t\right)^{1 / \rho}> \\
>(N B)^{1 / \rho} \gg N^{1 / \rho}> \tag{5}
\end{align*}
$$

and provided $1<p \leqslant 2$, by means of the generalized Minkowaki inequality 1.3.2 (1), with the exponent $\alpha=2 / p \geqslant 1$

$$
\begin{align*}
& \left.\left|\Phi_{N}\right|_{p}^{p} \gg\left(\sum_{0}^{N} \hat{\Phi}_{k}^{2}\right)^{1 / 2}\right|_{0} ^{p}=\int\left(\sum_{0}^{N} \hat{\Phi}_{k}^{2}\right)^{p / 2} d t \geqslant \\
& \quad \geqslant\left\{\sum_{0}^{N}\left(\int \mid \hat{\Phi}_{k}^{\mid p} d t\right)^{2 / p}\right\}^{p / 2} \gg\left(\sum_{0}^{N} B^{2 / p}\right)^{p / 2}=B N^{p / 2} . \tag{6}
\end{align*}
$$

From (4), (5), and (6) it follows that

$$
\begin{equation*}
N^{1 / 2}<\left\|\Phi_{N}\right\|_{p}<N^{1 / 2} \quad(1<p<\infty) . \tag{7}
\end{equation*}
$$

On the other hand (cf 8.9(5)), by virtue of (1) and (2) the quantity

$$
\begin{equation*}
\left\|\Phi_{N}\right\|_{B_{p}^{0}}=\left(\sum_{k=0}^{N}\left\|\phi_{k}\right\|_{p}\right)^{1 / p} \approx N^{1 / p}, \tag{8}
\end{equation*}
$$

i.e., has the rigorous order $\mathrm{N}^{1 / \mathrm{p}}$.

We have seen that the orders of the quantities (7) and (8) provided $p \neq 2$ are different. This shows that the zero classes $L_{p}^{0}=L_{p}$ and B_{p}^{0} and, consequently, the classes L_{p}^{r} and B_{p}^{r} for any r are not equivalent.

Using functions ϕ_{N}, we similarly prove that even for any $\theta \neq 2$, the class $B_{p 0}^{0}$ is not equivalent to L_{p} (cf 0 . V. Besov $\overline{L 5} \bar{J}$, to whom belongs the above argumentation), When $\theta=2, p \neq 2$, nonequivalency_also obtains, however it is proven in a different fashion (cf K. K. Colovkin L1』).

Let us proceed to the case $p=1$. The ono-dimensional de la ValledPoussin kernel (of 8.6(5), (10), and (11))

$$
V_{N}(t)=\frac{1}{N} \frac{\cos N t-\cos 2 N t}{t^{2}}
$$

has the Fourier transform $\tilde{V}_{N}=\sqrt{\pi / 2} \cdot \mu_{N}^{*}(t)$, where

$$
\mu_{N}^{\cdot}(t)=\sqrt{\frac{\pi}{2}} \begin{cases}1 & (|x|<N), \\ \frac{1}{N}(2 N-x) & (N<|x|<2 N), \\ 0 & (2 N<|x|) .\end{cases}
$$

If k and N are natural numbers and $k \leqslant N$, then

$$
\mu_{2^{k}}^{\dot{k}}(t){\dot{\mu} 2^{\bullet} \cdot}^{V}(t)=\mu_{2^{n}}^{\dot{n}}(t) .
$$

Therefore the k-th de la Valleb-Poussin sum of the function $V_{2} N$ is equal to
and, consequently, the expansion of $V_{2^{N}}$ in a series in de la Valled-Poussin
sums is of the form

From whence

$$
V_{2^{N}}=V_{2^{0}}+\sum_{1}^{N}\left(V_{2^{k}}-V_{2^{k-1}}\right) .
$$

$$
\left\|V_{2}\right\|_{B_{1}^{0}}=\left\|V_{2^{0}}\right\|_{L}+\sum_{k=1}^{N}\left\|V_{2^{k}}-V_{2^{k-1}}\right\|_{L} \rightarrow \infty, \quad(N \rightarrow \infty)
$$

because (after change of variable $u=2^{k-1} t$)

$$
\left.\left|V_{2^{k}}-V_{2^{k}-1} \|_{L}=\int\right| \frac{\cos 2 u-\cos 4 u}{2 u^{\frac{s}{2}}}-\frac{\cos u-\cos 2 u}{u^{\prime}} \right\rvert\, d u=c>0,
$$

where c does not depend on $k=1,2, \ldots$ On the other hand, the norm of $V_{2} N$ in the metric L

$$
\left\|V_{2^{N}}\right\|_{2}=\int \frac{|\cos u-\cos 2 u|}{u^{2}} d u=c_{1}<\infty
$$

is bounded. This shows that the embedding $B_{1}^{0} \rightarrow L$ is irreversible.

NOTES

To Chapter I

1．1－1．4．Familiar facts are presented，often without proof，from the theory of functions of a real variable and the theory of Banach spuces in order that reference can later be made then and that the reader familiarize himself with the notation adopted．These facts can be found in the books：P．＿S．Alok－ aandrov and A．N．Kolmogorov L1＿」，A．N．Kolmogorov and S．V．Fomin L1＿］，Banach L11，L．A．lyusternik and Y．I．Sobolev L1＿，I．P．Natanson＿1＿，V．I．Smirnov L1＿，and S．L．Sobolev［3」．

1．5．We presented with proof elementary background information（only that which is essential for this book）from the theory of generalized functions for the class S ，as this class is dofined by L．Schwartz L17．Let us note the articles by S．L．Sobolev $\angle 1 \& 2 /$ ，where the concept of the generalized function is introduced，and the Rusian－language books on the theory of general－ ized functions of Halperin L1」，V．S．Vladimirov L1」，and by I．M．Gel＇－ fand and G．E．Shilov L1」．

Lot us also mention the book by Hormander $\overline{\operatorname{I}} \bar{\jmath}$ ，where far－ranging results on multiplicators are derived．The multiplier $\mu \in S^{\prime}$ could not parly be de－ fined as a bounded measurable function，but it was assumed that $f \in S^{\prime}$ and diaplays the property that

$$
\left\|\tilde{I}_{\mu}\right\|_{p} \leqslant c_{p}\|f\|_{p} \text { for all } f \in S \text {. Hormander showed }
$$ that such a generalized μ function must be a bounded measurable function $\mu(x)$ ．

1．5．2．Inequalities（6）are proven in the works by Littiewood and Paley ［1］．The theorems presented for the periodic ono－dimensional case are found in Chapter XV of the book by Zigmund $L 2$ ，，and of Marcinkievicz for the two－dimensional case［1＿／．

1．5．3．The Marcinkievicz theorem in the periodic two－dimensional case was proven in his article＿cited［1］．The transition to the periodic case was made by＿S．G．Mikhlin L1＿．Further development is to be found in P．I．Lizor－ kin $25 \mathrm{~J} /$ ．The condition introduced in 1.5 .4 that $D^{k} \lambda$ in each coordinate closed juncture be continuous at any point x with $x_{i} \neq 0, i \in e_{x}$ ，is used，for example，
in example 1.5.5(5), which is employed in subsequent theory.
1.5.9. Operation I_{r} was studied_in a number of works, which_include those by L. Schyartz L9], Calderon [1], Aronazajn and Smith L2.], P. I. Lizorkin $\angle 1$ \& 8/, Nikol'skiy, Lions, and Lizorkin L1」], and Taibleson [1].
1.5.10. The concept of a generalized function that is regular in the L_{p}-sense is to be found in S. M. Nikol'skiy $\angle 17$ \& $18 /$.

To Chapter II

The information presented in 2.1-2.5 is familiar and is auxiliary in purpose. In particular, of, for example, the books by V. L. Goncharov [1] and A. F. Timan L1_/ about_interpolation. We also_note the books by N. I. Akhiezer L1]. A. ZIEmund L2], and I. P. Natanson $\left.L^{2}\right]$, where, just as in the above-cited books, detailed background of trigonometric polynomials of one variable is given.

To Chapter III

3.1. Cf the book by N. I. Akchiezer L̄̄] on integral functions of a single variable of the exponential type, bounded on a real axis. In particular, this book derives the criteria 3.1 (5), (6) for integral functions of the exponential type and a complete proof of the facts pertaining to the theory of Borel integrals, which we omitted in our exposition.
3.2. In deriving interpolation formula (4) for functions of the exponential type, we followed the approach presented in the article by Civin [1]. But the line of reasoning (cf 3.2.1) proceeds with the involvement of generalized functions as was done by P. I. Lizorkin [8]_]. We have somewhat imrpoved them.
3.2.2. Interpolation formula (2) for an arbitrary function $f(z)$ of the exponential types bounded on a real axis, is to be found in the proklem book of Polya and Sege [1_], on the assumption that it is already known that $|f(z)| \leq A e^{\sigma|y|}(z \equiv x+i y)$. A complete derivation is to be found in the book by N. I. Alchiezer L1_/, section 84 .
3.2.3. The approach used to obtain inequalities of the Bernshteyn inequality type for the case of general norms is indicated in the book ky N. I. Akhie2er L1_/(section 81, theorem 3). We add to the conditions 1) and 2) iisted there condition 3).
3.3-3.5. S. M. Nikol'skiy $\angle \overline{3} \bar{J}$ obtained the inequalities $3.4 .3(2)$, (3), and (4) for trigonometric polynomials, along with the analogous inequalities for integral functions of the exponential type (3.3.2(2), 3.3.5(1), and 3.4.2 (1)). The case 3.4.3(3) when $n=1, \mathrm{p}^{\prime}=\infty$ for trigonometric polynominls was known even to Jackson L2_. Inequailities 3.4.3(2) for trigonometric polynomials
in the caee $n=p \div 1$ derive from the results of s. M. Lozinskiy $\overline{11} \bar{\jmath}$.
The constants of the inequalities presented are exact in the sense of order, but they are not exact absolutely. In some cases more exact or absolutely exact values of these constants are known. Accordingly, we point to the book by I. I. Ibragimov L1/; see further N. K. Bari L1_/.

Inequality 3.4.1(1) on the assumption that $g_{v}(x)=g_{v}(u, y)$ is an integral function of the exponential type γ with respect to all x_{1}, \ldots, x_{n} is to be found in the work by S. M. Nikol'skiy $[\overline{3} \bar{\jmath}$. Here the more general case when g is an integral function only with respect to u is considered.
 of the numbers p_{1}, \ldots, p_{n} placed in nondescending order.

To Chaptor IV

4.1. In addition to the work by Beppo Levi [1]/_and S. L. Sobolev [1-5 $\overline{1}$, generalized deriyatives have been studied by Tonelli 11 , ivans $21,2 /$, Nikodym L1_, Calkin L1_, Morrey L1_1, S. M. Nikol'skiy L3, 5/, and Deny and Lions L1, 2/, whore a further bibliography on this topic are to be found.
4.2. Cf S. B. Stechkin $\overline{1} \overline{/}$ for formula (2) and inequality (6) for poriodic functions of a single variable.
4.3. Fractional classes $W_{p}^{r}(\Omega)=B_{p}^{r}(\Omega)$ (r is a fraction) emerged in a natural fashion as classos of $p_{\text {traces }} p$ of functions of integral classes $W_{0}^{l}(g)$ on the manifold $\Omega \subset g$ or the boundinry of g of moasure m less than the messure of domain g. First this problem on traces was solved for $p=2$ in the works by ironszajn L1_/, V N H. Babich and L. N. Slobodetskiy L1 M, and then for m - $n-1$ by Gagliardo L1 J, L. N. Slobotetskiy L1」, and for arbitrary m and 1 by 0.V. Besov L2_. In the litter case not only are fractional B classes, but :iso integral B classes required.

Zigmund $\overline{1} \bar{\jmath}$ diroctec! attention to the fact that from several standpoints, for example, from the viewpoint of the problom of the orier of the best approximations of functions using trigonometric polynomials, the class of period$i c$, with period 2π, measurable functions of one variable satisfying the condi.. tion

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|\Delta_{h^{k} f}(x)\right|^{p} d x\right)^{1 / p}<M|h| . \tag{1}
\end{equation*}
$$

where $k>1$ more naturally supnlements classes of functions of x with period 2π satisfying the condition

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+h)-f(x)|^{p} d x\right)^{1 / p} \leqslant M|h|^{a} \quad(0<a<1) \tag{2}
\end{equation*}
$$

then the class of functions for which (2) is satisfied when $\alpha=1$.
The theory of embeddings of H - and B -classes yields a number of new examples confirming this finding.
4.3.4. It present a good many equivalent methods of defining spaces $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ are known._ Many are collected in section 2 of the review by V. I. Burenkov [3].
4.3.6. Let us introduce the concept of the open set $g \subset R_{n}$ with Lipshits boundary. If the set g is bounded, then its boundary Γ is called a lipshits houndary if, whatever be the point $x^{0} \in \Gamma$, an orthogonal system of coordinates $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ can be found with origin at x^{0} and a cubo

$$
\begin{equation*}
\lambda=\left\{\left|\xi_{j}\right|<\eta ; i=1, \ldots, n\right\}, \tag{1}
\end{equation*}
$$

excising from Γ the portion $\nu=\Gamma ム$ described by the equation

$$
\begin{gather*}
\xi_{n}=\psi(\lambda) ; \lambda=\left(\xi_{1}, \ldots, \xi_{n-1}\right) . \tag{2}\\
\lambda \in \Delta^{\prime}=\left(\left|\xi_{j}\right| \leqslant \eta ; j=1, \ldots, n-1\right) .
\end{gather*}
$$

can be found, where $\psi(\lambda)$ satisfies on Δ^{\prime} the Lipshits condition, i.e., that there exists such a constant M that

$$
\begin{gather*}
\left|\psi\left(\lambda^{\prime}\right)-\psi(\lambda)\right| \leqslant M\left|\lambda^{\prime}-\lambda\right|, \tag{3}\\
\lambda, \lambda^{\prime} \in \Delta^{\prime} .
\end{gather*}
$$

If the set g is not bounded, then its boundary Γ is called a Lipshits boundary if there exist positive numbers η and i, not dependent on $x^{0} \in \Gamma$, and a finite set e of orthogonal coordinate system obtained by rotation of the given orthogonal system $\left(x_{1}, \ldots, x_{n}\right)$, such that whatever be the point $x^{0} \in \Gamma$, an orthogonal system of coordinates $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ with origin at x^{0} can be found, parallel to one of the systems in the set e, and cube (1) can be found, excising from Γ the portion $V=\Gamma \Delta$ described by equation (2), where $\psi(\lambda)$ satisfies the Lipshits condition (3) on Δ^{\prime}.

Theorem 1. Suppose the open set $\Omega \subset R_{n}$ has a Lipshits boundary. And of the classes $W_{p}^{l}(\Omega)$ (1 is an integer, $1<p<\infty$), $H_{p}^{r}(\Omega)(r>0,1 \leqslant p \leqslant \infty)$, $\mathrm{B}_{\mathrm{p} 0}^{r}(\Omega)(r>0,1 \leqslant \mathrm{p} \leqslant \infty, 1 \leqslant 0 \leqslant \infty)$ can be extended in linear fashion beyond the limits of Ω on R_{n} with norm preserved.

Domains Ω beyond whose limits the extension of functions of anisotropic classes is_possible depends essentially on the defining class of vectors Lillegible/, more exactly, on the proportion in which its components are found.

Let us assign the pceitive vector $r>0\left(r_{j}>0 ; j=1, \ldots, n\right), \delta>0$, and further the positive vector $a>0$. Let $P(r)=P(r, P, a, \delta)$ stand for the set (of horns with apex at the zero point) of points $x=\left(x_{1}, \ldots, x_{n}\right) \in R_{n}$ subject to the conditions

$$
\begin{gather*}
a_{i} h<x_{i}^{\prime} l<\left(a_{i}+\delta\right) h \quad\left(j=l_{1}, \ldots, n\right), \tag{4}\\
0<h<p
\end{gather*}
$$

or any set obtained from (4; by mirror mappings (possibly, several times) with respect to ($n-1$)-dimensional coordinate planes. Thus, an arbitrary horn $P(r)$ can be further described by the inequalities

$$
\begin{align*}
& 0<h<\rho . \tag{5}
\end{align*}
$$

Let the symbol $\quad g_{1}+g_{2}$
stand for the vactor sum of the set g_{1} and $g_{2} \subset R_{n}$, i.e., the set of all possible sum $x+y$, where $x \in g_{1}, \boldsymbol{J} \in g_{2}$.

We will state that the opon set $\Omega \in A(x)(\varepsilon>0)$, if : 1) it can be represented in the form of the twc sums

$$
\begin{equation*}
\Omega=\bigcup_{1}^{N} u^{k}=\bigcup_{1}^{N} u_{k}^{k}, \tag{6}
\end{equation*}
$$

where $U_{\mathcal{E}}^{k}$ is the set of points $x \in U^{k}$ located at a distance from the boundary $\Omega-U^{k}$ greater than \mathcal{E}, and 2) there exist \mathcal{P}, a, and δ such that the horn $\mathrm{p}^{k}=\mathrm{pk}(r, f, a, \delta)$ can be brought into correspondence with each k, such that

$$
\begin{equation*}
U^{k}+P^{k} \subset Q \quad(k=1, \ldots, N) . \tag{7}
\end{equation*}
$$

relation (7) expresses the situation that whatever the point $x \in U^{k}$, if the horn p^{k} is translated parallel to itself in order that its apex coincide with x, then the horn thus shifted belongs to Ω.

Let us note that for the case when $r_{1}=\ldots=r_{n}=r$, the horn p is a cone resting on some polyhedron with its apex at the zero point. It can be proved that in this case concepts of a domain with a Lipshits boundary and a domain of the class $A_{\varepsilon}(r, \ldots, r)$ coincide.

Theorem 2. Suppose that this domain $\Omega \in A_{\epsilon}(r)$ and the classes with norms

$$
\begin{equation*}
\|f\|_{w_{p}^{\prime}(\Omega)}=\|f\|_{L_{p}(\Omega)}+\sum_{i=1}^{n} \|\left.\frac{\partial^{\prime} / f}{\partial x_{j} /}\right|_{L_{p}(\Omega)} \tag{8}
\end{equation*}
$$

(1_{j} are integers, $\left.1<p<\infty\right)$,

$$
\begin{align*}
& \|f\|_{B_{p \theta}^{r}(\Omega)}=\|f\|_{L_{p}(\Omega)}+\sum_{i=1}^{n}\left(\int_{0}^{H}\left\|\Delta_{x j}^{k_{j}} \frac{\partial^{\rho} j}{\partial x_{j} j}\right\|_{L_{p(}\left(\alpha_{k j}\right)}^{\theta} \frac{d h}{\left.h^{1+\theta}\left(r_{j}\right)_{j}\right)}\right)^{1 / \theta} \text { (9) } \tag{9}\\
& \left(k_{j}>r_{j}-\rho_{j}>0, \quad 1 \leqslant i=\theta<\infty, 1 \leqslant p \leqslant \infty\right), \\
& \|f\|_{H_{p}^{r}(\Omega)}=\|f\|_{L_{p}(\Omega)}+\sum_{j=1}^{n} \sup \frac{\left\|\Delta x_{j_{j} h}^{h_{j}} \frac{\partial^{\rho} j f}{\partial x_{j} j}\right\|_{L_{p}\left(\Omega_{h_{j} h}\right)}}{(1 \leqslant p \leqslant \infty) .} \tag{10}
\end{align*}
$$

are given. Any of the classes can be extended beyond Ω on R_{n} inearly with
norm preserved. the stronger norm

$$
\|f\|_{L_{p}(\Omega)}^{\circ}+\sum_{|Q| \leqslant 1}\left\|f^{(a)}\right\|_{L_{p}(\Omega)}=\|/\|_{w_{p}^{\prime}}(\Omega)^{\circ}
$$

Here the embeddings

$$
\begin{align*}
w_{p}^{\prime}(\Omega) \rightarrow w_{p}^{\prime} \cdots, 1(\Omega) \rightarrow w_{p}^{\prime} & \cdots, 1\left(R_{n}\right) \rightarrow w_{p}^{\prime}\left(R_{n}\right) \rightarrow \\
& \rightarrow w_{p}^{\prime}\left(R_{n}\right) \rightarrow w_{p}^{\prime}(\Omega) \rightarrow w_{p}^{\prime}(\Omega) . \tag{11}
\end{align*}
$$

obtain, where the firat and the two last are trivial, the second has already been the results of Smith noted aboye, and the third is proven in 9.2. Thoorem 1 follows from (11) for the space $w_{p}(\Omega)$.

Given disoimilar natural l_{j}, this theorem was proven simultanegugly and independently for $\psi_{p}(\Omega)$ by 0 . V. Besov $\angle 9,10$ and by V. P. Il'yin $\angle 6$].

This theorem, and thus, also theorem 1) was proven for the norm $\mathrm{B}_{\mathrm{p}}^{r}$ $(1 \leqslant \theta \leqslant \infty)$ by 0 . V. Besov $\angle \overline{9}, 10 \overline{9}$, of also 0 . V. Besov and V. P. II'yin $\overline{19} \bar{d}$.
V. I. Burenkov $\overline{L 4}, 5 \overline{5}$ showed that a domain not belonging to $A_{E}(x)$ for which theorem 2 on extengion no longer satiafied can be specified for each $\mathbf{r}>0$. For example, any horn $\mathrm{P}(\mathrm{k})$, where $k \neq \mathrm{cs}$, is such a domain.

In this work cited it is also proven that if theorem 2 does obtain for the spaces $W_{p}^{r}(\Omega)$ and $B_{p}^{r}(\Omega)$ for classes of domains of the form $A_{e}(x)$, then this is true if and only if instead of the horn $P(x)$ the horn $P(x, p)=P(x, p$, P, α, δ) defined as the set of points $\Sigma \in R_{n}$ subject to the inequalities

$$
a_{i} h<x_{1}^{p_{l}}<\left(a_{1}+\delta\right) h \quad(l-1, \ldots, n), \quad 0<h<p_{1}
$$

where

$$
p_{1}=\frac{n_{1}}{x_{1}}, \quad x_{1}-1-\sum_{i=1}^{n} \frac{1}{r_{1}}\left(\frac{1}{p_{j}}-\frac{1}{p_{1}}\right) .
$$

is under consideration.
Let us note yet another theorem stemming from theorems 1 and 2.
Theorem 3. If $g \subset R_{n}$ is an arbitrary open set and $g_{1} \subset \bar{g}_{2} \subset g$ is another bounded open set, then functions of any class cited in theorems 1 and 2, which we represent by $\wedge(\mathrm{g})$, can be extended from g_{1} onto R_{n} linearly with norm (with respect to g) preserved. This must be understood in the sense that to each function $f \in \wedge(g)$ its extension $f \in \wedge\left(R_{n}\right)$ with g_{1} (not with g) can be brought into correspondence, such that

$$
\|/\|_{A\left(R_{n}\right)} \leqslant:\|/\|_{A(R)} .
$$

where c does not depend on f and the dependence of $\overline{\mathrm{f}}$ on f is linear.
In fact, let us assign the orthogonal grid dividing R into cubelets, and let Ω be a set consisting of the cubalats of the grid containing the points $\overline{\mathbf{g}}_{1}$. The boundary of Ω, obviously, satisfies the condition $A_{\varepsilon}(x)$
for any 5 and if the grid sufficiently dense, then $g_{1} \subset \Omega \subset-g$. Functions
$f \in \Lambda(g) \subset \Lambda(\Omega)$ can be extended by employing the theorem given above, with preservation of the norm from Ω onto R : for the corresponding extensions of ithe following relation obtains:

$$
\|/\|_{\Lambda\left(R_{n}\right)}<\|f\|_{\Lambda(\Omega)}<\|/\|_{\Lambda(\Omega)} .
$$

This theorem 3 can be proven by a aimpler approach, setting $\mathrm{I}:=\mathrm{f} \varphi$, where ϕ is the "cap", i.e., a function infinitely differentiable on R_{n}, equal to unity on g_{1} and to zero outside of g (for the class $H_{p}^{r}(g)$, of $S . M$. Nikol'skiy [5」.

Particular cases of theorems 1 and 2 pertaining to the extnesion beyond the domain with sufficiently smooth boundary and beyond the limits of a segment have been considered in_eariier work by S. M. Nikol'skiy L4, 7/, V. K. Dzyadyk L1_/, and O. V. Besov L4_/; of further V. M. Babich L1」.
4.4.1-4.4.3. Cf S. M. Nikol'skiy $\angle \overline{1} \overline{1} /$ for investigationg of this kind. Inequality $4.4 .3(4)$ is discussed in the book by S. L. Sobolev [4].
4.4.5. If the derivative $\partial \mathrm{f} / \partial \mathrm{x} 1$ is understood in the Sobolev sense, then this lemma is at once proven. In fact, let there be assigned on g two sequences of functions f_{k} and $\lambda_{k} \in I_{p}(g)$ such that

$$
\begin{equation*}
\int f_{k} \frac{\partial \Phi}{\partial x_{1}} d x=-\int \lambda_{k} \Phi d x \quad(k=1,2, \ldots) \tag{1}
\end{equation*}
$$

for all continuously differentiable functions \varnothing that are finite on g. If $\underset{\text { here } f_{k}}{\text { (1) that }} \rightarrow f, \lambda_{k} \rightarrow \lambda$ in the $L_{p}(g)$-sense, then it obviously follows from

$$
\text { - } \int f \frac{\partial \varphi}{\partial x_{1}} d x=-\int \lambda \varphi d x, \quad f, \quad \lambda \in L_{p}(g)
$$

for all specified φ, i.e., λ is a derivative of f with respect to x_{1} on g in the

Sobolev sense. S. L. Sobolev 14 d made extensive use of this lamma. Here it is proven, starting from the fundamental definition of the generelized derivative adopted in this book (cf beginning of section 4.1).

4．4．9．Cf S．M．Nikol＇skiy $\overline{[5} \bar{J} /$ on this theorem．

4．8．This theorem was proven in the periodic case by Hardy and Littlo－ wood $\angle 1$ ］；it was formulated without proof by A．A．Desin L1」；the proof for $p=2$ is presented in the dissertation of A．S．Folcht L1」．

To Chapter V

5．2．S．N．Bernshtoyn $[\overline{2} \overline{]}$ ，pages 421－432 studied the method of appro－ ximation 5．2．1（4）；he proved theorem 5．2．1（7）for $p=\infty, m=1$ ．Cf S．M． Nikol＇skiy $\angle \overline{3}$ 」 for the case $m=1,1 \leqslant p \leqslant \infty$ ．Here we consider the more general case $m \leqslant n$ of approximation by integral functions of the apherical exponential typo．

Inequality 5．2．1（7）in itself when $m=n=1,1 \leqslant p<\infty$ was obtained by another method by N．I．Akhiyezer［1』／．

The periodic inequalitios 5．3．2（2）were first＿derived（ $n=k=1, p=$ －）by Jackson［1＿．Cf investigations by quade［1］and N．I．Alchiyezer ［1］］for the case $n:=1,1 \leqslant p \leqslant \infty$ ．The representations 5．3．1（11）（analogous of 5．2．1（4））are to be found in S．B．Stechkin［1］．Inequality 5．3．2（5）in the case of functions satisfyipeLipshits condition for Fejer sums $(p=\infty)$ is to be found in A．Zigmund 13 ，section 4．7．9，and in the general case （ $\mathrm{p}=\infty$ ）in S．B．Stechkin L1」．

The theorem on approximation 5．2．4 and its periodic analos presenting in 5．3．3 for the case $p=p_{1}=\ldots=p_{n}=\infty$ is to be found in S．N．Bernshteyn
［इ̄］．pages 421－432，and if the numbers p_{1}, \ldots, p_{n} are generally different －－in S．M．Nikol＇skiy $\overline{\angle 10} \overline{0}$ ．Cf Nikol＇skiy $\angle \overline{6} \overline{/}$ for inequality 5．3．2（6）for exponential continuity modules．

5．4．The inverse theorem of S．N．Bernshtegn on approximation with adgebraic and trigonometric polynomials（ $p=\infty, n=1$ ）was proven in his work L1＿，pages 11－104．It ds＿refined in the＿periodic case（for nonintegral r） by dela Valled－Poussin L1」 and Zigmund L1』（for integral r）．

5．4．4．Ya．S．Bugrov $[\overline{3}, \bar{y}$ also obtained similar inequalities for polyharmonic functions in a circle and amiplane and appilied them in studying cifferontial properties of these functions all the way to the boundary．

5．5．3．The equivalence of the norms $\|\cdot\|_{\mathrm{H}}$ for different admissible pairs（ k, P ）can be provem directly，without resorting to apyroximation methods（cf Sarchoud L1』．Cf K．K．Golovkin LT，2／for more general investi． gations in this area．Equivalence was proven in the periodic one－dimensional case by the approximation method by 21 mund $\operatorname{L1}$ J．He emphasized equivalence for integral r of norms of the form $1\|\cdot\|_{H^{*}}$ with the norm $\left\|^{1}\right\| \|_{H^{*}}$ ，e：pressed
in terms of the best approximations. Cf S. N. Bernshteyn $\angle \overline{2} \bar{Z} /$, pages 421 432 in the aperiodic case. Here this problom is explored for approximations with integral functions of the exponential spherical type.
5.5.4. In the periodic one dimensional case when $p-\infty$, this is the classical_theorem proven in the works_of S. N. Bernshteyn L1_I, pages 11-104, Jackson $[1]$ of Quade $\left.\angle 1 _\right]$and Zigmund $\angle 1 _$. Cf \bar{N}. I. Akhiyezer L1』/ for the aperiodic one-dimensional case when $1 \leqslant p \leqslant \infty$. Here generalization to the case of approximation with integral functions of the exponential spherical type is given.
5.5.8. Mary results pertaining to this problem are available in the periodic case.
5.6-5.6.1. _ In presenting the sections, we made heavy use of the work of 0 . V. Besov $[\overline{5} \bar{\jmath}$, and in the caise of 5.6.1, even the work of T. I. Amanov L3-1. O. V. Besov made available to me a now (presented in the text) variant of the proof of the embedding $4^{\prime}{ }^{\prime} \rightarrow 5_{B}$. This procedure has its advantage that it is freely trangferable to more general cases of theorems of this kind (of K. K. Golovkin L2_/).

Among different equivalent norms $\|\cdot\|_{B}$ (in particular, $\|\cdot\|_{H}$), we introduced the norms ${ }^{2}\|\cdot\|_{B}$ and $4_{\|\cdot\|_{B}}$ expressed in terms of directionuise derivatives.
In the 1sotropic case there have an advantage, and in any case, a technical advantage -- instead of the sum of integrals corresponding to all possible particular derivatives of orders s with $|s|=P$, a single integral is taken. In the case $\rho=0$, these norms are used infrequently in the literature.

The equivalence of the classes $1_{B_{p}}^{r}\left(R_{n}\right)$ and ${ }^{5} B_{p \theta}^{r}\left(R_{n}\right)(1 \leqslant \theta<\infty)$ was proven by O. V. Besov $\overline{L 3}, 5 \overline{2}$; and by A. A. Konyoshkov $\overline{L 1} \overline{/}$ and P. L. Ul'yanov [1] in the periodic one-dimensional case. The equivalence of ${ }^{1}{ }^{r}{ }_{p \theta}\left(R_{n}\right)$ and $3_{\mathrm{B}}^{\mathrm{B}} \mathrm{r}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{n}}\right)$ was proven in the same wo.rks of 0 . V. Besov, and when $\theta=p, r_{i}$ are integers, in the work by S. V. Uspenskiy [3].

In particular case, $\theta=p=2$ (for the admissible pairs ($\bar{r}, 1$), ($p, 2$)), the norm 3. were introduced and was studied in the earlier works of aronshain $[1 \overline{1}$, V. M. Babich and_L. I. Slobodetskiy $[1]$, and for $p-\theta \neq 2$ for nonintegral r by Gagliardo [1]/ and L. I. Slobodetskiy [1』].

Expansions of functions f in the form of series 5.6(7) with norm ${ }^{6}\|\cdot\|_{B}$ are to be found in 0 . V. Besov $L^{3} \frac{1}{1}$; the norms $\|\cdot\|_{B}$ were used explicitily in the work by T. I. Amanov [3].

5.6.2-5.6.3. Suppose function $f(x)$ has the derivatives $\partial^{\bar{J}_{j}} f / \partial x_{j} \bar{F}_{j}$

 ($j=1, \ldots, n$), satisfying with respect to x_{j} on the bounded domain Ω the Lipshits condition of degree $\alpha_{j}\left(0<\alpha{ }_{j} \leqslant 1, r_{j}=\ddot{r}_{j}+\alpha_{j}\right)$ uniformly with respect to the remaining variables, and let $P=\left(P_{1}, \ldots, P_{n}\right)$ be a vector (integral) for which $\sum_{1}^{n} \frac{P_{j}}{r_{j}}<1$. S. N. Bernshteyn ($1911 r \ldots$ of $[1]$, $r_{j}>0$ shows that in this case a mixed continuous derivative $f(\rho)$ bound on any domain $\Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega$ exists on Ω. S. N. Bernshteyn showed further that the derivatives $f^{(P)}\left(|P|=F=r-\alpha, r=r_{j}\right)$ satisfy the Lipshits condition of degree $\alpha^{\prime}<\alpha$ on Ω_{1}.

Theorem 5.6 .3 amplifies these results, specifying exactly the class to which $f(P)$ belongs and extending (when $\Omega=R_{n}$) the result to the case of the metric $L_{p}(1 \leqslant p \leqslant \infty)$ of the B-classes as well. This theorem was proven by S. N. Bernshteyn for the H-classes when $p=\infty$ and $r=r_{1}=\ldots=r_{n}([\overline{2} \overline{/} /$, pages 426-432) and simultaneously independently for arbitrary $r_{j}(j=1, \ldots, n)$ by S. M. Nikol'skiy $\overline{L_{2}} \overline{/} /$, who even showed its unimprovability in terms of H-classes, and by this same author 15 ل in the metric L_{p}. It was proven for the B-classes by O. V. Besov [5].

The question of the extension of theorem 5.6.3 to the case of the domains $\Omega \subset A_{n}$ is solved by employing theorems on extension (cf 4.3.6). In the Montel
works cited above, a square with aldes parallel to the coordinate axes was actually considered as the $\Omega: P$ is not necessarily an integral vector, and then $f(\rho)$ is a mixed particular derivative in the Liouville sense.

Theorem 5.6 .2 on equivalence

$$
B_{p \theta}^{r} \cdots \cdot{ }^{\prime}\left(R_{n \prime}\right)=B_{p \theta}^{\prime}\left(R_{n}\right) .
$$

for nonintegral r follows from theorem 5.6.3. In the general case its proof is given(by other methods) by V. A._Solonnikov L1_/; cf further S. M. Nikol'skiy, G. Lions and P. I. Lizorkin (1_/ for the H-class. When R_{n} in (1) is replaced with Ω, property 5.6.2(1) is finitely preserved for $n_{\text {the domain }}$ $\Omega \subset R_{n}$ for which the theorem on the extension of functions of the classes
$\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}, \ldots, \mathrm{r}(\Omega)$ is valid (of 4.3 .6 and the note to 4.3.6). V. I. Burenkov
[$\overline{2} \overline{/}$ investigated domeins for which the equivalence 5.6.2(1) does not hold.
Suppose $B_{p}^{r}=B_{p p}^{r}\left(R_{n}\right), H_{p}^{r}=B_{p \infty}^{r}\left(R_{n}\right), L_{p}=L_{p}\left(R_{n}\right)$. The condition for theorem 5.6.3 when $\mathcal{K}=0$ and $1 \leqslant p \leqslant 2(\theta=p)$ entails $f^{(1)} \in L_{p}$. This
follows from 9.2.2 and $9,3(2)$. When $2 \leqslant p<\infty$, this no longer is the case: if, for example, $f \in B_{p}^{1}\left(R_{q}\right)$, then hence it in general does not follow that $f^{(1)}$ exists and belongs to L_{p} (cf 9.7).

Theorem 5.6.3 for the class $H_{p}^{r}=B_{p \infty}^{r}$ in the case $\mathcal{K}=0$ is also invalid. In fact, the function

$$
f(\theta)=\sum_{s=1}^{\infty} b^{-s} \cos b^{s} \theta \quad(b>1)
$$

nowhere has a derivative (Weierstrass, Hardy, and of zigmund $\overline{2} \overline{\bar{J}}$, Chapter II, sections 4.8-4.11), while at the same time it belongs to the periodic class H . The last assertion is proven thusly. It is easy to verify that

$$
\left\|\cos b^{5} x\right\|_{L_{p}}=\left\|\cos b^{5} x\right\|_{L_{p}(0,2 \pi)}<K_{1},
$$

where K does not depend on $s=1,2, \ldots$ Let us assign $h>0(0<h<1)$ and select a natural N such that
then

$$
b^{-(N+1)}<h<b^{-N} .
$$

$$
\begin{aligned}
\left\|\Delta_{h}^{2}\right\|_{L_{\dot{p}}} & <\sum_{s=1}^{N} b^{-s}\left\|\Delta_{h}^{2} \cos b^{s} \theta\right\|_{L_{\dot{p}}}+\sum_{N}^{\infty} b^{-s}< \\
& <h^{2} \sum_{s=1}^{N-1} b^{-s} b^{2 s}+b^{-N}<h^{2} b^{N}+b^{-N}<h_{1}
\end{aligned}
$$

where inequality $4.4 .4(3)$ is used for trigonometric polynomials (cf reference on text page 202 Llatter half of section $4.4 \bar{J}$.
5.6.4. The example is given by Yu. S. Nikol'skiy [彳亍/.
5.6.5. Propertjes 5.6 5(1), (2) expressed normwise continuity in the corresponding spaces W_{p} and $B_{p Q^{+}}$. P. I. Lizorkin directed my attention to this property in the case of B-classes.

To Chapter VI

6.1. The addition of V. P. Il'yin $\angle \overline{2} \overline{-} /$ to the ambedding theorem (1) applies to the case of the limiting exponent (when $P=0,1,2, \ldots$) for $m<n$. This assertion in individual cases of a limiting exponent was known to V. I. Kondrashov L1_; he also investigated several cases when $m<n$ and when ρ is nonintogral.
S. L. Sobolev also proved that in theorem (1) when $m=n$, we can assert that $p-1$.

In the one-dimensional case, the problem of traces does not arise and we can speak only about the "pure" theorem of different measures. It was proven by Hardy and Littlewood $\overline{\angle 1} \bar{\ldots}$; see further the book by Herdy, Littlewood, and Polya [1.」.
6.4. Suppose $\Gamma \subset R_{n}$ is a sufficiently smooth surface of measure $m<n$. The trace $f l_{\mathrm{f}}$ of the function $\mathrm{f} \in \sum_{n-m} X_{p}^{r}\left(R_{n}\right)$ is correctiy defined for it in any case given the condition $r->0$. Provided this condition holds, the direct embedding and the inverse embedding to it $H_{p}^{r}\left(R_{n}\right) \nRightarrow H_{p}^{r-\frac{n-m}{P}}(\Gamma)$ obtain (cf S. M. Nikol'skiy $[\overline{5} \bar{J}$). Cf 0 . V. Besov $[\overline{11} \overline{\text { I }}$ for the corresponding generalization to the B-classes.
6.7. Ia. S. Bugrov $\overline{4} \overline{/} /$ showed that the embedding

$$
H_{p}^{\prime}\left(R_{m}\right) \rightarrow H_{p}^{\prime}\left(R_{n}\right) . \quad i=r-\frac{n-m}{p},
$$

is valid not only when $r^{\prime}>0$, but also when $r^{\prime}=0$, if $H_{p}^{0}\left(R_{m}\right)$ in its left member is replaced with $L_{p}\left(R_{m}\right)$.

Different amplifications of the theorem on axtension can be obtained if we require that the extending theorem satisfies additional properties.
L. D. Kudryavtsev $\left[\overline{2} \bar{J}\right.$ showed that in theorem 6.6 the function $f \in H_{p}^{r}\left(R_{n}\right)$ extending on R_{n} the function

$$
\varphi \in H^{r-\frac{n-m}{p}}\left(R_{m}\right) \quad\left(1 \leqslant m<n_{n} r-\frac{n-m}{p}>0\right) .
$$

can be constructed so that it is infinitely differentiable on $R_{n}-R_{m}$ and that the properties

$$
\begin{align*}
& \quad \int_{R_{n}} p^{p(s-a)+e}\left|\frac{\partial^{\prime+s} f}{\partial x_{1}^{{ }_{1}^{1}} \ldots \partial x_{n}^{3 n}}\right| d R_{n}<\infty, \\
& e>0, \quad \sum_{1}^{n} s_{k}=i+s \quad(1 \leqslant \rho<\infty), \quad \rho^{2}-\sum_{2}^{n} x_{i}^{2} . \tag{1}
\end{align*}
$$

are satisfied. These inequalities ceased to be valid when $e^{-0} 0$. A similar result was obtained by him for $p=\infty$. These facts point to a certain relationship of the classes considered here with the so-called weighting classes of function whose derivatives (or their differences) are integrable in the p-th degree with weight. If we proceed not from H -, but the B-classes $(\theta<\infty)$, then similar findings obtain even when $\varepsilon=0$ (S. V. Uspenskiy [3-/).

Systamatic study of weighting classes was begun in the_wgrk by L. D. Kudrushoy $\overline{\overline{2}}$ / referred to above; cf further A. A. Vasharin $L \overline{1}]$, S. V. Uspenskiy L3_, I. A. Kipriyanov $\angle 1$, and A. Kufner $\angle 1 /$. Cf V. I. Burenkov L3_, L. D. Kudryartsev L3_/, I. Necas L1_/, and S. M. Nikol'skiy L12 for Bibliographies on this topic.

Iu. S. Bugrov $\overline{1} \overline{]}$ proved for the unit circle σ on the plane in terms of the classes H the limiting exact theorem.

Suppose functions with period 2π

$$
\varphi_{k}(\theta) \in H_{p^{\circ}}^{r_{0}}-k-1 . \quad(k=0,1, \ldots, l-1,1 \leqslant \rho \leqslant \infty, r>0) .
$$

Then the polyharmonic function $u(\rho, \theta)$ of polar coordinates $(0 \leqslant P \leqslant 1$, $0 \leqslant \theta \leqslant 2 \pi$) solving in unit circle σ the boundary-value problem

$$
\Delta^{\prime} u(p, \theta)=0,\left.\frac{\partial^{k} u}{\partial p^{k}}\right|_{p=1}=\Phi_{k}(\theta) \quad(k=0,1, \ldots, 1-1)
$$

(Δ is the Laplace operator) belong to the class $H_{p}^{r+i+\frac{1}{p}-1}(\sigma)$.
A similar result was obtained_for the semiplane_(Ya. S. Bugrov $\overline{\operatorname{3}} \overline{/} /$). The exact results of N. M. Gyunter $\angle 1]$ and Kellog 11$]$ for the three-immensional domain witn smooth boundary when_p $-\infty$ and when r is nonintegral precede these theorems; 0. V. Besov 11 / for the semispace when $1 \leqslant p \leqslant \infty$ and for nonintegral r; N. I. Mozzherova L1] for the three-dimensional domain with smooth boindary when $1 \leqslant p<\infty$ and nonintegral r; S. M. Nikol'skiy $44,9 /$ for a circle with $p=\hat{2}$ and any r. Cf, further, T. I. Amanov $\bar{L}_{\overline{2}}^{2} /$. At the present time there ure many rosults of this kind with estimates of solutions of diflerent boundary-value problems in terms of the classes

6.9. Suppose $k=\left(k_{1}, \ldots, k_{n}\right) \geqslant 0$ (i.e., $k_{j} \geqslant 0$ for all j) is an integral vector and $h=\left(h_{1}, \ldots, h_{n}\right)$ is an arbitrary vector $\left(h_{j} \neq 0, j=1, \ldots\right.$, n). By definition

$$
\Delta_{h}^{n_{n}}=\Delta_{h_{1}}^{h_{1}} \ldots \Delta_{h_{n}}^{k_{n}}
$$

where $\Delta_{x_{j} h_{j}}^{k_{j}}$ is the difference of f of order k_{j} with pitch h_{j} in the direction $x_{j}\left(\Delta_{x_{j} h_{j}}^{0} f=f\right)$. Let us assign the vector $r=\left(r_{1}, \ldots, r_{n}\right) \geqslant 0$ and assume that θ is any sub-set of the set of natural numbers $e_{n}=\{1, \ldots, n\}$, and $s^{e}=\left(r_{1}^{e}, \ldots, r_{n}^{e}\right)$ is a vector whose complnents are governed by the condition

$$
r_{i}-\left\{\begin{array}{lll}
1 & j \in 0_{1} \\
0, & i \neq e .
\end{array}\right.
$$

Let us set

$$
\begin{gathered}
\bar{r}-\left(\overline{r_{1}^{p}}, \ldots, \overline{r_{n}^{e}}\right\} . \\
u^{*}=r^{r}-\overline{r_{0}}-\left\{a_{1}^{n}, \ldots, a_{n}^{n}\right) .
\end{gathered}
$$

where, if $r_{j}^{e}>0$, then $r_{j}^{\bar{e}}$ is the Largest integer less than r_{j}^{e}, and if $r_{j}^{e}=0$, then $r_{j}^{\bar{e}}=0$.

Let us further introduce the vector $\omega=(1, \ldots, 1)$. By definition the function $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ belongs to the class $\dddot{S}_{p}^{r_{H}}=\dot{S}_{p}^{r}$ if the norm

$$
\|/\|_{s_{p}^{\prime} N}-\sum_{0} \sup \left|\frac{\Delta^{20 p}(\overline{r o s})}{n^{0^{x}}}(x)\right|_{L,\left(n_{a}\right)} .
$$

is finite, where the sum is extended over all sub-sets $e, h_{1}^{e} \ldots h_{n}^{e}$ and
$f^{\left(r^{\bar{e}}\right)}$ is a partial derivative of order $r^{\bar{e}}$. This sum contains the term
$\|f\|_{L_{p}}\left(R_{n}\right)$ corresponding to the empty set e.
Theorem on representation. Suppose $x>0$. For $f(x) \in S_{p}^{r}(H)$, it is necessary and sufficient that the representation

$$
\begin{equation*}
f(x)=\sum_{n=0} Q_{n}(x) . \tag{1}
\end{equation*}
$$

obtain, where $Q_{K}(x)=Q_{L_{1}, r_{1}} \ldots .^{k_{n} r_{n}}(x)$ are integral functions of the exponential type $2^{k_{j}}{ }^{r}{ }_{j}$, respectively, with respect to x_{j} for which

$$
\begin{equation*}
\left\|Q_{B}\right\|_{L}\left(R_{n}\right)<c 2^{-k r}\left(k r-\sum_{i=1}^{n} k r f\right) \tag{2}
\end{equation*}
$$

and c does not depend on \mathbf{k}.
The embeddings

$$
\begin{gather*}
S_{p}^{p}\left(R_{n}\right) \rightarrow S_{p}^{p}\left(R_{n}\right)\left(1<p<p^{\prime}<\infty, p=r-\left(\frac{1}{p}-\frac{1}{p}\right) \bullet>0\right) \tag{3}\\
S_{p}^{\prime}\left(R_{n}\right) \rightarrow S_{p}^{\prime m}\left(R_{m}\right)\left(e_{m}-(1, \ldots, m) ; 1<m<n_{i}\right. \\
\left.r-\frac{1}{p}>0_{1}, 1=m+1, \ldots, \bar{n}\right) . \tag{4}
\end{gather*}
$$

obtain. In fact, if $f \in S_{p}^{f}\left(R_{n}\right)$, then (1) and (2) are valid.

$$
\left\|Q_{R}\right\|_{L_{r}}\left(R_{n}\right)<c c_{1} 2^{-\mu \varphi} \quad(p>0)
$$

and $f \in S_{p^{\prime}}^{p}\left(R_{n}\right)$. Further

$$
\left\|Q_{n}\right\|_{L_{p}\left(R_{m}\right)}<c_{1} 2^{\left.-k r+\frac{1}{P} \sum_{m+1}^{n}{ }_{n} f\right\rangle}
$$

and if we set in (1) $x_{m+1}=\ldots=x_{n}=0$, then we obtain for the trace of f on i_{f} the representation

$$
\Phi\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)=\sum_{i_{m}, D_{0}} 0_{0} e_{m}^{\prime}
$$

where the sum is extended to m-dimensional vectors $\mathrm{k}^{(\mathrm{II})} \geqslant 0$ and

$$
q_{i}=\sum_{\substack{n j \geq 0 \\ m+1<1<n}} Q_{n}\left(x_{1}, \ldots, x_{m}, 0_{1}, \ldots, 0\right) .
$$

where $\left(r_{j}-1 / p>0\right)$
which entails (4) by virtue of the inverse thoorem on representation. Let us introduce the space
with the norm

$$
s^{r^{\prime}} \ldots, r^{N}=s_{p}^{\rho_{1}^{\prime}} \ldots, r^{N}=\bigcap_{1}^{N} s_{p}^{\prime}
$$

$$
\|/\|_{s_{p}^{\prime 1}, \ldots, r^{N}}=\sum_{j=1}^{N}\|/\|_{s_{p}^{r \prime}}
$$

for vectors r^{1}, \ldots, r^{N}, the theorem on interpolation is valid:

$$
\begin{equation*}
s^{\prime \prime}, \ldots,,^{N} \rightarrow S^{\sum^{N} \lambda_{n^{\prime}} r^{k}}\left(\lambda_{A}>0, \sum_{1}^{N} \lambda_{A}<1\right) \tag{5}
\end{equation*}
$$

If $N \quad n$ and $r^{i}=\left(0, \ldots, 0, r_{i}, 0, \ldots, 0\right)$, then

$$
s^{r^{\prime} \ldots, r^{N}}=s^{r^{1}} \ldots, r^{N} H=H_{p}^{r_{1}, \ldots, r_{n}} .
$$

These results were proven by S. M. Nikol' kkiy [15, $16 \overline{\text { I }}$.
Let us note the work of N. S. Bakhvalov [1].], where he independently proved one aspect (the necessity) of the theorem of representation of functions of the periodic class $S_{P}^{r} H$: if $f \in{\underset{p}{f}}^{f} H$, then (1) and (2) obtain, where Q are trigonometric polynomials. Extensions of these theorems from H - to B-clagses belong to T. I. Amanov $[3]$ and (by other methods) to A. D. Dzhabrailov [1].
6.10.2. This note on mean fiunctions was communicated to me by $0 . V$. Besov.

Te Chapter VII

7.2. Inequalities between the norms of partial derivatives with parameter ε and multiplicative inequalities are found in the work of V._P. Il'yin [7] and in his later works, V. A._Solonnikov L1_/, K. K. Golovkin L1_, V. P. Il'yin and V. A. Solonnikov L1」, and others.

Inequalities containing ε are employed in the theory of differential equations when it is desired that one of the terms of the form

$$
e^{a}\|f\|+\frac{1}{\delta}\left\|f^{(n)}\right\|
$$

be amaller than a pre-specified number.
It follows from the results of S. M. Nikol'skiy $\overline{\angle 1} \overline{1}$ pertaining to more general embedding theorems that the inequalities between the semi-norms

$$
\begin{align*}
& \left(1<p<p^{\prime} \leqslant \infty, r^{\prime}=r-\left(\frac{1}{p}-\frac{1}{p^{\prime}}\right) n>0,1<r^{\prime}\right) \tag{2}
\end{align*}
$$

obtain for the arbitrary domain $g \in R_{n}$, without the pre-assumption that $\|f\|_{L_{p}(g)}$ is finite, if and only if $\bar{r} \leqslant r^{\prime}<r$ (in the case of (1)) and $\bar{r}<l<r^{\prime}<r$ (in the case of (2)).

The inequality
follows from the work of L. D. Kudryavtsev $\overline{\angle 厶} \overline{]}$ and Yu. S. Nikol'skiy $[\overline{1} \overline{]}$ on weighting spaces, along with confirmation of the possibility of extending
functions $q^{\prime} \in w_{p}^{l-\frac{1}{p}}\left(R_{n-1}\right)$ onto k_{n}, so that for their extending functions, the following relation

$$
\|f\|_{w_{p}^{b}\left(R_{n}\right)} \leqslant c\|\Phi\|_{l-\frac{1}{p}} \quad(1<p<\infty)
$$

obtains without the presumption that the norms $\|f\|_{L_{p}}\left(G_{n}\right)$ and $\|q\|_{L_{p}}\left(R_{n-1}\right)$ are finite. In these two theorems, just as above, $0<1-1 / \mathrm{p}<1$.
7.3. Extrenum_functions are introduced and studied in the works of S. 1. Nikol'skiy $L \overline{2}, 3 /$, T. I. Amanov $[1]$, and P. Pilika $\angle 1]$. The accuracy (unimprovability) of the inequaliti.zs presented here between H-norms was established by means of these works.
7.7. Many investigations, baginning with the works of Ascoli [T] and Arueld $\lfloor 1 \AA$, deal with problem of tie compactness of classes of functions. The fundamental Arzela theorem on the compactness pertains to the class of continuous functions. In the L_{p} metric the Kolmogorov theorem $\angle 1$ (for $p>1$) corresponds to it, and the Tulaykov theorem $\angle 1 _(\text {for } p=1)$. Investigations on the problem of the compactness of classes of differentiable functions include the works of Rellich $\angle 1$, I. G. Petrovskiy and K. N. Smirnov L1, J, V. I. Kondrashov L1-/, Picone L1_, Pucci L1.J, L. D. Kudryavtsev L1_], 0. V. Besov L12 /, V. P. Il yin $[9]$, and others.

The theorem presented here for the classes H_{p}^{r} and W_{p}^{r} can be found in detail in S. M. Nikol'skiy [$\overline{8} \overline{]}$. In essence, here we are concerned with weak compactness: from a sequence bounded in the metric H_{p}^{r} or W_{p}^{r}, we can separate a subsequence convergent in the H_{p}^{r-} sense $' \varepsilon>0$) to some function $f \in H_{p}^{r}$, W_{p}^{r}.

The theorems 7.7.1-7.7.5 are already concerned with the compactness of a set in the metric of the space to which it belongs. In pgrticular, it encompasses the theorem on compactness in L_{p} (cf S. L. Sobolev (4_/, Chapter I,
section 4.3).

Theorems 7.7.2-7.7.5 were proven by P. I. Lizorkin and S. M. Nikol'skiy.
O. V. Besov $[\overline{1} \overline{2} \overline{]}$ studied problems of the compactness of sets of functions f in the H-classes by imposing additional conditions on f. For example, in the case $H_{p}^{r}(r<1)$ it is assumed that

$$
\begin{gathered}
\|f(x+h)-f(x)\| \leqslant a(h)|h|^{p} \\
(a(h) \rightarrow 0,|h| \rightarrow 0) .
\end{gathered}
$$

To Chapter VIII

8.1. Operation I_{1} corresponds to some extent to the Weyl operation (cf Zigmund $[\overline{2} \bar{\jmath}$, Chapter AII , page 8)

$$
\begin{gather*}
f(x)=l_{l}^{\infty} \varphi=\frac{1}{\pi} \int_{-\pi}^{\pi} K_{l}(x-t) \varphi(t) d t \tag{1}\\
K_{l}(t)= \\
\sum_{t=1}^{\infty} \frac{\cos \left(v t+\frac{l \pi}{2}\right)}{v^{t}} \quad(t>0), \\
\int_{-\pi}^{\pi} U(t) d t=0, \quad \varphi \in L .
\end{gather*}
$$

It is intimately involved with the (aperiodic) operation

$$
f(x)=\frac{1}{\Gamma(a)} \int_{a}^{x}(x-t)^{a-1} \varphi(t) d t
$$

of Liouville. Kernels I_{1}, I_{l}^{*} have for t the same singularity $|t,|^{\alpha-1}$ (we have in mind the one-dimensiopal case, compare 8.1 (6), (13) and Zigmund [1], Chapter V, section 2.1). The Liouvilile kernel $(x-t)^{\alpha-1}$ when $t=x$ has the same singularity.

Estimates of the form $8.1(7)$ for partial derivatives of $G_{r}(|x|)$ are found in Aronszajn and Smith $\angle 1 / 1$.
8.2. The theorem on the isomorphism of the classes $W_{p}^{J}\left(R_{n}\right)$ is proven in the works of Calderon [̄]/] and Lions and Magenes [1].
8.3. Estimates of differences of derivatives of $G_{r}(|x|)$ are to be found in Aronszajn and Smith [1], Nikol'skiy, Lions, and Lizorkin_1], Chapter I, and S. M. Nikol'skiy (with an addition by Ye. Nosilovskiy L98_/, lemma 6.
8.4. Inequality (2) cf. Nikol'akiy, Lions, and Lizorkin [1].], Chapter I, and S.M. Nikol'skiy L18/, Lemma 6.

In the periodic case when $n=1, p=\infty$, it was known to I. P. Natanson
 of the function f using trigonometric polynomials with a period-based mean equal to zero, and it was known to S. B. Stechkin $\left[2 _\right.$in the ordinary meaning of $E_{\nu}^{*}(f)_{\infty}$; see also Sung Yung-sheng [1].

Inequality (4) is an analog of the corresponding ono-dimensional Favard inequality $\left\lfloor 1 _\right.$in the periodic case. It is used in deriving inequality 8.6(16) ($r>0$) and here the counsel of my colleague S. A. Telyakovskiy proved useful to me.
8.6. N. I. Akhíyezer and B. M. Levitan studied kernels more general than $V_{N}(t)$ for other purposes; these kernels corresponded to the more general $\left.\begin{array}{l}\text { trigonometric dela Villed-Poussin sums } \\ \text { Dirichlet kernels. } \\ p+1 \\ \mathrm{p}_{\mathrm{N}}^{\mathrm{H}} \mathrm{p}\end{array}+\ldots+\mathrm{p}_{\mathrm{N}}^{*}\right)$, where $\mathrm{D}_{\mathrm{k}}^{*}$ are

Cf S. M. Nikol'skiy $\overline{L \bar{I} \bar{I}}$ on expansion of functions regular in the $\mathrm{L}_{\mathrm{p}}-$ sense in dela Valled-Poussin oums.
8.8-8.92. The findings presinted here, based on the understanding of a generalized function regular in the $L_{p}(1 \leqslant p \leqslant \infty)$-sense, and its expansion in weakly convergent dela Valleb-Poussin series can be found in S. M. Nikol'skiy L17, 18/. In themselves, the concepts of the zero classes $B_{p O}^{0}$, the isomorphism $\mathrm{B}_{\mathrm{p} \theta}^{r}$ for different r, and the integral representations $\mathrm{B}_{\mathrm{p} \theta}^{r}$ in terns of zero classes and negativo classes $\mathrm{B}_{\mathrm{p} \theta}^{r}$ where establiehed from different considerations in the works of Calderon $[\overline{3} \overline{]}$, Aronszajn, Mulla and Szeptycki $[\overline{1} \overline{]}$, Taibleson L1, 2/, S. II. Nikol'skiy, Lions, and P. I. Lizorkin L1_/.
8.9. The collection $S_{p}^{\prime}=S_{p}^{\prime}\left(R_{n}\right)$ of all generalized functions regular in the sense of $L_{p}(1 \leqslant p \leqslant \infty)($ of 1.5 .10$)$ can be further defined as the sum

$$
\begin{equation*}
s_{p}^{\prime}-\bigcup_{\theta} H_{p}^{\prime} \tag{1}
\end{equation*}
$$

($H_{p}^{r}={\underset{p}{r}}_{H_{n}}^{\left(R_{n}\right)}$), where $\left\{r_{k}\right\}$ is an arbitrary sequence of real numbers tending to - on. In fact, if $f \in S_{p}^{\prime}$, then for some $f \geqslant 0, I_{\rho} f \in L_{p}$ obtains (of 1.5.10),
 that $r_{k}<\cdots$. Conversely, if $f \in H_{p}^{r}$ for some k, then $I_{-r_{k}+1} f \in H_{p}^{r} \subset L_{p}$.

Clearly, in (1) H can be replaced by B or L (cf 6.1).
Let us agree to state that the function $f \in S_{p}^{\prime}$ has a spectrum in the domain $G \subset R_{n}$ if its Fourier transform F as a carrier on G, i.e., $\tilde{f}=0$ outside G.

From the foregoing it follows that if the function $f \in S_{p}^{\prime}$, then f also belongs to H_{p}^{r} for certain r and can be expanded in the series

$$
\begin{equation*}
1=\sum_{0}^{\infty} q_{1} \tag{2}
\end{equation*}
$$

with the followink properties: 1) $q_{s} \in L_{p}$ and has a spectrum in $\Delta_{s+1}-\Delta_{s-1}$ $(a=1,2, \ldots), \Delta_{0}$ (when $s=0$), where $\Delta_{s}=\left\{\left|x_{j}\right|<a^{s}, a>1 ; b\right)$ the in. equalities

$$
\begin{equation*}
\left\|\dot{q}_{s}\right\|_{L p} \leqslant M a^{-s r} \quad(s=0,1, \ldots) \tag{3}
\end{equation*}
$$

are satisfied where M does not depend on s.
In fact, we can take the corresponding dela Vallee-Poussin sums of the function f as the q_{s} (c f 8.9). In the case $1<p<\theta$ property a) can be replaced by the following: a) $q_{8} \in L_{p}$ and it has a spectrum in $\Delta_{s}-\Delta_{s-1}$ $(\mathrm{s}=1,2, \ldots), \Delta_{0}$ (when $\mathrm{s}=0$) (cf 8.10.1).

If the function f is represented in the form of the series (2) weakly convergent to it uith indicated properties a) and b) for some rea? r, then we ean state that the series is the regular expansion of f.

Lemma. An arbitrary formally constructed series

$$
\begin{equation*}
{\underset{v}{v}}_{n} \tag{4}
\end{equation*}
$$

whose mambers satisfy the properties: $\left.a^{*}\right) u_{s} \in L_{p}$ and which has a spectrun outside $\Delta_{n_{g}}\left(n_{s}=\mu[s, \mu>0\right.$, is a constant not dependent on s) and b)

$$
\begin{equation*}
\mid u_{s} I_{L}<a^{-s r} \quad(s=0,1, \ldots) \tag{5}
\end{equation*}
$$

weakly converges to some function $f \in S_{p}^{\prime}$. The functions u_{s} per se, thus, form a set convergent weakly to zero.

In particular, the series in the right side of (2) with properties a) and b) converges weakly to some function $\mathrm{f} \in \mathrm{S}_{\mathrm{p}}^{\prime}$, more exactiy, $\mathrm{f} \in \mathbb{H}_{\mathrm{p}}^{\prime}$.

Proof. Let $\mathcal{\mu} \cdot \rho>-r$, then (cf $8.4(4))\left\|I_{\rho} u_{s}\right\|_{L_{p}} \ll a^{-s(K(p+r)}$, and because the series

$$
\sum_{0}^{\infty} I_{p} u_{s}=F
$$

converges in the L_{p}-sense, and consequently, weakly to some $F \in L_{p}$, but then series (1) converges weakly to $f \in I_{-p} F \in S_{p}$.

Let us note that when $r>0$ series (1) converges to L_{p} on the assumption that condition b) is satisfied (without a*)).

The embeddings

$$
\begin{align*}
L_{p}^{\prime}\left(R_{n}\right) \rightarrow L_{p}^{p}\left(R_{n}\right) \quad\left(1<p<p^{\prime}<\infty\right), \tag{6}\\
B_{p \phi}^{\prime}\left(R_{n}\right) \rightarrow B_{p^{\prime} \theta}^{p}\left(R_{n}\right) \quad\left(1<p<p^{\prime}<\infty ; 1<\theta<\infty, B_{p \infty}^{\prime}=H_{p}^{r}\right), \\
p=r-n\left(\frac{1}{p}-\frac{1}{p^{\prime}}\right), \tag{7}
\end{align*}
$$

where r is an arbitrary real number are valid.
In fact, both Λ_{p}^{r} denotes one of the classes appearing in the left members of (1) and (2), and let k be such number that $k+P>0$, then (cf 8.2, 8.7, 9.62, and 6.2)
from whence

$$
\begin{aligned}
& I_{h}\left(\Lambda_{p}^{r}\right)-\Lambda_{p}^{+k+k} \rightarrow \Lambda_{p}^{p+k}, \\
& \Lambda_{p}^{\prime} \rightarrow I_{-h}\left(\Lambda_{p}^{p+k}\right)=\Lambda_{p}^{p}
\end{aligned}
$$

and we have proven (6) and (7).
The situation is more involved with theorems of embeddings of different measures, as will be clear below.

Let us set $x=(n, \nabla), n=\left(x_{1}, \ldots, x_{m}\right), v=\left(x_{m+1}, \ldots, x_{n}\right)(1 \leqslant m<n)$ and let $R_{m}\left(v^{0}\right)=R_{m}$ denote the linear sub-set R_{n} of points $\left(u, v^{0}\right)$, where v^{0} is fixed and a is arbitrary.

Definition. Suppose the function $f \in S_{p}^{\prime}=S_{p}^{\prime}\left(R_{n}\right), 1 \leqslant p \leqslant \infty$ and

$$
\begin{equation*}
f(u, v)=\sum_{s=0}^{\infty} q_{s}(u, v) \tag{8}
\end{equation*}
$$

is its regular expansion, displaying, the property that for any s, spectrum q_{s} belongs to the apectrum of f. (We rote that the terms in the dela ValledPoussin series are governed by this property).

If, whatever be the regular expansion of f defined above, the series

$$
\begin{equation*}
f\left(u, \nu^{0}\right)=\sum_{s=0}^{\infty} q_{s}(u, \infty) \tag{9}
\end{equation*}
$$

converges weakly with respect to a (in the sense of $S\left(R_{m}\right)$) to some function $f^{\prime}\left(u, v^{8}\right)$, not dependent on the expension of f, then this function (of u) is called the trace of f on R_{m}.

Let us note that if the function $f(u, v)$ is integral and the exponential type, then any recular expansion of it is a finite sum (8) and, obviousiy, its trace on R_{m} is $f\left(a, v^{0}\right)$.

Below we present several confirmations without proof.
Theorem. Traces of the function $f(n, v)$ on f_{m} in the sense of the definition given above and in the sense of the definition in 6.3 coincide.

Let m_{λ} stand for any set of points $x=(u, v)$ of the form

$$
m_{\lambda}=A+\left\{|0|<|m|^{\lambda}\right\} \quad(\lambda>0) .
$$

where A is a bounded set in R_{n} belonging to the cube $\Delta_{M}=\left\{\left|x_{j}\right|<a^{H}, a>1\right\}$.
Theorem. If the function $f(u, v) \in{\underset{p}{\prime}}_{\prime}\left(R_{n}\right)(1 \leqslant p \leqslant \infty)$ has a spectrum belonging to the set m_{λ}, then it has the trace $f\left(n, v^{0}\right) \models S_{p}^{\prime}\left(R_{m}\right)$.

More exactly, embeddings with constants dependent on M and λ obtain for classes of the functions $H_{p}^{T}\left(R_{n}\right)$ that have a spectrum in M_{λ} :

$$
H_{p}^{r}\left(R_{n}\right) \rightarrow \begin{cases}H_{p}^{\left(r-\frac{n-m}{p}\right)^{\lambda}}\left(R_{n}\right) & \left(r-\frac{n-m}{p}<0, \lambda>1\right) \tag{10}\\ H_{p}^{c}\left(R_{m}\right) & \left(r-\frac{n-m}{p}-0, \lambda \geqslant 1\right) \\ H_{p}^{\left(r-\frac{\lambda(n-m)}{p}\right)_{\left(R_{m}\right)}} \quad(0<\lambda \leqslant 1 \text { except for the case } \\ \left.r-\frac{n-m}{p}-0, \lambda-1\right) .\end{cases}
$$

Inverse theorem. The function

$$
\psi(u) \equiv H_{p}^{\left(-\frac{\lambda(n-m)}{p}\right)_{\left(R_{m}\right)} \quad(0<\lambda \leqslant 1)}
$$

or

$$
\psi(u) \in 11!_{p}^{\left(-\frac{n-m}{p}\right) \lambda}\left(R_{m}\right) \quad(\lambda>1)
$$

can be extended on R_{n} such that the extended function $f(n, v) \in H_{p}^{r}\left(R_{n}\right)$ has a spectrum belonging to the set of the form m_{λ}, and its trace is $f(u, 0)=$ 4 (u). Here the embeddings (with the corresponding inequalities, of $6.0(13)$)

$$
\begin{array}{ll}
H_{p}^{\left(-\frac{\lambda(n-m)}{n}\right)}\left(R_{m}\right) \rightarrow H_{p}^{\prime}\left(R_{n}\right) & (0<\lambda<1), \\
H_{1}^{\left(r-\frac{n-m}{n}\right){ }_{(}\left(R_{m}\right) \rightarrow H_{p}^{\prime}\left(R_{n}\right)} \quad & (\lambda>1) . \tag{12}
\end{array}
$$

obtain. mbedding (11), when $\lambda-1$ and $r-\frac{n-m}{p}>0$, is alroady familinr to us (cr 6.5), but here it is given a stronger formulation, including the \therefore :ssertion on the nature of these spectra of the standing function. When $\lambda>1$ and $r-n$ or.bediang ${ }^{\text {p }}(10)$ are no longer mutually inverse.

Lat us emphasize that in relations (11) and (12), no restrictions were imposed whatever on the spectrum of functions of the original (embedded) classes.

For the cases $0<\lambda \leqslant 1$, an ascending function $f(u, v)$ satisfying the condition of the thoorem can be defined in the form of the wakly convergent series

$$
\begin{gathered}
I(m, v)-\sum_{j=0}^{\infty} Q_{3}(m, \theta), \\
Q_{1}(m, \theta)=Q_{1}(\varepsilon) \prod_{l=m+1}^{m} F\left(2^{\left.(t-k) \lambda_{\nu j}\right), F(t)=4\left(\frac{\sin \frac{t}{2}}{t}\right)^{2},}\right.
\end{gathered}
$$

where

$$
\begin{aligned}
& \varphi(m)=\sum_{s=0}^{\infty} \varphi_{y}(m), \\
& \varphi_{0}(m)=\sigma_{y} f, \quad \varphi_{s}(k)=\left(\sigma_{y}-\eta_{z}-1\right) \varphi
\end{aligned}
$$

(er 8.9).
But in the case $\lambda>1$, the astonding function $f^{\prime}(u, v)$ is u efined by the weakly convergent serics

$$
\begin{aligned}
& \quad f(a, \theta)-\sum_{s=0}^{\infty} a_{n_{s}}(a, \theta), \\
& \left.a_{n_{s}}(\alpha, \theta)=q_{s}(\alpha) \prod_{1=m+1}^{M} a_{s}(\theta), \quad a_{s}(\xi)=\cos 3 \cdot 2^{n_{s}-1}\right\} F\left(2^{n_{j}-1} \xi\right) .
\end{aligned}
$$

where $n_{0}(s:=0,1, \ldots)$ is an ascencing sequence of naturol numbers such that $\underset{s}{n_{s}} \rightarrow 1(s \rightarrow \infty)$, and functions φ_{s} aro meaningful in their former sonse.

Function $\psi(x, y)$ of two varlables, with the Fourior trinsform

$$
\downarrow=\left\{\begin{array}{cc}
u^{-1} 0^{-1} & (u, u>2) . \\
0 & \text { for the reraining }(u, v)
\end{array}\right.
$$

belong to $H_{\grave{2}}^{(}\left(R_{2}\right)$ and at the same timo cio not havo a trace on the axis $v: 0$.
Proof. Let us adopt the series

$$
\theta=\sum_{s=1}^{\infty} d_{s}
$$

$$
a_{s}(x, y)=\frac{1}{2 \pi} \int_{\Delta_{z}-\Delta_{j-1}} \int_{-1} u^{-1} v^{-1} t(x u+y v) d u d v_{0}
$$

as its reguiar expansion and
therefore $\psi \in \mathrm{Hi}_{2}\left(\mathrm{~K}_{2}\right)$. Further

$$
\begin{aligned}
& S_{N}(x)=\sum_{1}^{N} q_{s}(x, 0)=\frac{1}{2 \pi} \int_{\Delta_{N}} \int_{u^{-1} v^{-1} e^{1 r u}} d u d v= \\
& =\frac{1}{2 \pi} \int_{i}^{9 N} v^{-1} d v \int_{i}^{g N} u^{-1} e^{2 \pi x} d u=c N \int_{i}^{g N} u^{-1} d x \theta d u .
\end{aligned}
$$

The function $S_{\| f}(x)$ does not converge weakly, because for example, the function ρ is such that $\tilde{\varphi}=e^{-x^{2}} \in S^{\prime}$ obtains:

$$
\left(S_{N^{\prime}}-\right)=\left(\xi_{N^{\prime}} \Phi\right)=c N \int_{2}^{2 N} u^{-1} e^{-u^{\prime}} d u \rightarrow \infty \quad(N \rightarrow \infty)
$$

It is possible to construct an example showing that in (10) $\varepsilon>0$ cannot be roplaced by $2=0$.

The assertions statod above can bo extonded from the classes H_{p}^{F} to $B_{p 0}^{P}$.
8.10-8.10.1. The fact presentod here, pertaining to the expansion of functions of the classes $B_{p e}^{r}$ in series in Dirichlet sums for the caso $1<p<c x$ are close to tho results of P. I. Lizorkin $\angle \overline{7} \bar{J}$, and also to those of \because. D. Finnzanov [1], who investigated classes of functions somewhat distinct from $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}$ from this point of view.

To Chaptor IX

9.1. Supposc

$$
\begin{gather*}
1<p<q<\infty, \tag{1}\\
1 \leqslant m<n, p=r-\frac{n}{p}+\frac{m}{q} \geqslant 0 \tag{2}
\end{gather*}
$$

and r is an integer. Then from 9.1(4) fol? 0 us the embedding

$$
W_{p}^{\prime}\left(R_{n}\right)=L_{p}^{r}\left(R_{n}\right) \rightarrow L_{q}^{\rho}\left(R_{m}\right) \rightarrow W_{p}^{[\rho]}\left(R_{m}\right)
$$

(S. L. Sobolev with addition by V. I. Kondrashov and V. I. Il'yin, of 6.1). When p is a noninteger and $p=q$, the following embedding is valid (cf 9.3 (1), 6.2(4), and 6.5(1')):

$$
L_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{p}^{\prime}\left(R_{n}\right) \rightarrow H_{p}^{p}\left(R_{m}\right) \rightarrow \psi_{p}^{p p}\left(R_{m}\right) .
$$

The case whon $p=0, p=1<q<\infty$ is interesting; here it was proven for a ngtural $r\left(L_{p}^{r} \cdots W^{r}\right)$ space (by S. L. Sobolev $44 /$ when in $=n$ and by E. Gagliardo L2] when $p \quad p_{m}<n$) that ombedding (3) also remains valid.
9.2.2. The theorem on derivatives was proven for the case $p=2$ by_S. N. Bernshtoyn L1, , pase 98, for $1_{1}=1_{2}=2$ and by L. N. Slobadrtiskiy 13] in the general caso; when $1<p<\infty$ and for integral $1-1_{1}=\ldots=l_{n}$, by A. i. Kosholev $\overline{1} \overline{1} \overline{/}$, and for any $1>0--$ by P. I. Lizorkin $\overline{110} \overline{9}$; and for arbitrary 1 in the periodic case, by Yu. L. Bessonov L1, 2/.
9.4-9.6. The results set for here, pertaining to anisotropic classes L_{p}^{F}, belongs generally to P. I. Lizorkin, who published them without proof in note $\angle \overline{10} \overline{9}$. He made avallable to me some manuscript materials that were used as the basis of ry exposition. Everywhere I reduced the issue to the I_{r} operation, while P. I. Lizorkin applied the "pure" Liouville derivatives in the corresponding cases (cf 9.2.3). The main goal of these investigatio.2s was to obtain intogral ropresentations for (functions) of anisotropic sinsses L^{r} for and $\mathrm{F} \geqslant 0$, and on the basis to construct a complate p theorems for these classes. Intogral representamplote systern of ambedding for isotropic alasees in the progral ropresontationsor this kind were obtained reached in this preceding the preceding chaptor. The necessary estimatos were Bessol-Macdonald keceding chapter from the facts applying to the thoory of becone more involved. in the anisotropic case, the corresponding kernels be nbtained from the correspondi, embeddine theorens in the isctropic caso can列 =r. For integral r, s, wo obtainod corrosponding results for the W-classes in particular, the ambedding theorems of S. L. Sobolev with which this multidimensional theory historicaily began.
9.4.1. estimates (2) and (3) for $I_{-1} G_{r}(x)$ are equivalent in the case $r_{1}=\ldots=r_{n}=r$ to the isotropic estimates 8.1(7).
9.5.1-9.5.2. Theorems_9.5.1 and 9.5.2 ignore their completeness where obtained by P. I. Lizorkin [10]. They include a number of antocedent results pertaining to the case of integral $r\left(W_{p}^{s}={\underset{p}{p}}_{L_{p}}\right.$) and arbitrary Σ when $p=2$ of
 Slobodetskiy L1 J), Gagliardo L1, , O. V. Besov L2 J, P. I. Lizorkin 29 . , and S. V. Uspenskiy $\overline{11}$ (cf review by S. M. Nikol'skiy [1] \bar{j}) for more details.

Hore we also include the corgeaponding results for the isotropic clagses $L_{p}^{r}=L_{p}^{r}, \ldots \ldots, r$ belonging to Stein L1 J, Aronszajn, Muile, and Szoptycki L1」, and to P. I. Lizorkin $\overline{\angle 3} \overline{]}$ (cf V. I. Buronkov $[\overline{3} \overline{]}$ for a more detailed treatment).

These results were obtained by different methods.
In this book, when a function was extended from $R_{\text {m }}$ to R_{n}, the method of expanding it in a series in integral functions of the exponentinl type and the succossive incrament of its term with apecial functiots (S. M. Nikol'skiy L5 J) was employed. Other authors also used another technique for_these purposes, based on Steklov averaging of the function (cf A. A. Dezin [1]/ and Coleyado [1].

Let us note if a vory simple direct proof of the theorem for the enbodding of different measures in the anisotropic case for integral classes $L_{p}^{r}=W_{p}^{r}$ belonging to V. A. Solonnikov [1].
9.6.2. The S. L. Sobolev embedding theorem (with additions by V. I. Kondrashov and V. P. II'yin) (cf 6.1 and denote 6.1) are part of theorem 9.6 .2 as of particular case and are maximaily accurate in terms of (integrai) classos W_{p}.

In the isotropic case_of fractional 1, theoren 2.6.2 was proven by Stein [1] and P. I. Lizorkin L5-], and by P. I. Lizorkin [10/ in the anisotropic case (presented in the text).

In_proofreadine, we becane acqunintod with an article by Sadosky and Cotlar [1 \rfloor, which define for rational vectors $5 \geqslant 0$ classos equivalent to tho clisses $L_{p} r$, and for which several embedding theorems are proven.

BIBLIOGRAPYY

Agmon, F.,

1. The L_{p} approach to the Dirichiet problem. Annall de Scuola Normale Sup. ${ }_{\text {di Pisa 3, }}$ 13, 4, 1959, 405-448.

Aleksundrov, P. S.,

1. Vvedeniye v obshchugu teorigu mnozhestv 1 funktsiy (Int roduction to the General Theory of Sets and Functions), Costekhisdat, 1948, pp 1411.

Aleksandrov, P. S. and A. N. Kolmogorov

1. Vvedeniye v teoriyu funktsiy deystvitel'nogo peremennogo (Introduction to the Thoory of Punctions of a Real Variable), Moscou-Leningrad, third edition, 1938, pp 1-268.

Amanov, T. I.,

1. "Boundary Functions of the Classes $H_{p}^{r_{1}}, \ldots, r_{n} \frac{r_{1}, \ldots, r_{n}}{H_{p}}$, Izv, AN SSSR, sor. matem. (News of the USSR Acadesy of Sciences, dathematice Seriea), 12, No 1, 1955, pp 17-32.
2. "Salving the Biharmonic Problem," DAN SSSR (Roports of the USSK Academy of Sciences), 87, 1953, pp 389-392.
3. "Theoreme of Bepresentation and Embedding for Punctional Spaces $S_{p 0}^{r} B\left(r_{n}\right)$ and $S_{p 0}^{r} B\left(R_{n}\right)\left(0 \leqslant x_{j} \leqslant 2 \pi\right), "$ Trudy MINN SSSR (Transactions of the Mathematice Institute of the USSR Acadery of Scionces), 77, 1967, pp 534.
4. (Doctoral Diseortation), Issledovaniyo svoystv klassov funktsiy a dominirupuahchind amachannini proiavodryini, teoseny predatavleniya, vlozhoniya, prodolshoniya i interpolyateli (Study of the Propertios of Classes of Punctions Lith Doninant MLxed Derivatives, Thoorems of Ropresentation, Enbedding; Extonaion, and Interpolation), Author's Abstract, Novoaiblrak, $19 \% 7$.

Asonehagn (Aronezajn N.)

1. Boundary value of functions with finite Dirichiot intogral, Confor.
partial diff. equat. Studies in eigenvalue problems. Univ. of Kansas, 1955.

Aronshayn and Smit (Aronszajn N. and Smith K. T.)

1. Functional spaces and functional complection, Ann. Inst. Fourier 6, 1955-1956 (1956), 125-185.
2. Theory of Bessel potentials, I, Ann. Inst. Fourier 11, 1961, 385-475.

Aroshayn, Mulla, and Sheptitskiy (Aronszajn N., Mulla F., Szoptycki P.)

1. On spaces of potentials connected with L_{p} classes, Ann. Inst. Fourier 13, No 2, 1963, 211-306.

Artsela (Arzela, C.)

1. Existenza degli integrali relle equazioni a derivate parziali, Acc. delle Science di Bologna 6, No 3, 1936.

Askoli (Ascoli G.)

1. Lo curve limiti di una varieta data di curve, Mamoria Acc. del. Lincei 3, No 18, 1884, 521-586.

Akhiyezer, N. I.

1. Loktsiy po teorii approksimatsii (Lectures on Approximation Theory), Moscow, Nauka Pub. House, 1967, pp 1-407.

Babich, V. A.,

1. "Problem of the Distribution of Functions," UMN (Advances in Mathomatical Sciences), 8, Vypusk (Issue) 2 (54), 1953, pp 111-113.

Babich, V. U. and Slobodatskiy, L. N.,

1. "Boundedness of the Dirichlet Integral," DAN SSSR, 106, 1956, pp 604606.

Banach (Banach S.)

1. Theories des operations linoaires, Marszawa, 1932, 1-254.
2. Kurs_funtsional'nogo analizu (Course on Functional Analysis LUkrainisny), Radyans'ka shikola Pub. House, Kiev, 1948, pp 1-216.

Bari, N. K.

1. "Goneralization of the S. N. Bernshteyn and A. A. Marko's Inequalities," Izv. AN SSSR, ser. natem., 18, 1954, pp 59-176.

Bathvalov, N. S.

1. "ambodding Thoorens for Classus of Functions With Several Bounded Varinbles," Vestnik :iGU, : :atem., makhan. (Horald of Moscow Stato University, $\because a t h o m a t!c s$ aud $:$:echanics), No 3, 1963, pp 7-16.

Boppo Lovi

1. Sul principio di Dirichlet, Kend. Palermo 22, 1906, 293-359.

Bernshteyn, S. N.,

1. Sobraniye sochineniy (Collected Works), Vol I, Moscow, USSR Academy of Sciences Pub. House, 1952, pp 1-581.
2. Ibid., Vol II, 1954, pp 1-628.

Besov, O. V.,

1. "Certain Properties of Hamonic Functions Given on a Half-Space," Izv. AN SSSR, ser. matem., 20, 1956, pp 469-484.
2. "A Cortain Family of Functional Spaces, Theorems of Embedding and Extension," DAN SSSR, 126, 1959, pp 1163-1165.
3. "Certain Conditions for the Membership in L_{p} of Derivatives of Periodic Functions," Nauchroye dokl. vyssh. shk. (Sclentific Reports of the Higher Schools), No 1, 1959, pp 12-17.
4. "Extension of Functions with the Preservation of Properties of Integral Nodule of Second-Crder Smoothness," Matem. sb. (Mathemetics Collection), 58, 1962, pp 673-684.
5. "Study of One Family of Functional Spaces in Relation to Theoroms of Embedding and Extension," Trudy MIAN SSSR 60 , 1961, pr 42-81.
i. "Theorems of Fmbedding of Spaces of Differentiable Funstions," UN, 16, No 5, 1961, pp 207-208.
6. "One Example in the Theory of Embedding Theorems," DAN SSSR, 143, 1962,
7. "Density of Finite Functions in $\mathcal{L}_{\text {p }, \theta \text { and the Distribution of Func- }}^{1014-1016 \text {. }}$ tions," Trudy MIiN SSSR, 89, 1967, pp 18-30.
8. "Extension of Functions from $\mathrm{L}_{\mathrm{p}}^{\frac{1}{2}}$ and $\mathrm{W}_{\mathrm{p}}^{1}$," or.. cit., 89, 1967, pp $5-17$.
9. "Theory of Embedaing and Extension of Classes of Diffarentiable Functions," Author's libstract of Doctoral Dissertation, ilatem, zanotki (l'athematicel Notes), 1, No 2, 1967, pp 235-244.
10. "One Family of Functional Spacos: Thooroms of Dmbedding and Extension," Autnor's Abstract of Candidato's Dissertation, 1960.
11. "Cortain Properties of the Spaces $\mathrm{H}_{\mathrm{p}}^{\mathrm{r}_{1}, \ldots, r_{n}, " \text { Izv. Vyssh. uch. zavec., }}$ ser. matom. (News of the lifghor Educational Institutions, Zathematics Series), No 1(14), 1960, pp 16-23.

Besov, O. V. and Il'yin, V. P.

1. "Natury Expansion of the Class of Domains in Embeduine Theorer.s," "nte:1. sb., 75 (117): 4, 1968, pp 483-498.

Rossonov, Yu. L.

1. "Approximntion of Periodic Functions Bolonging to the Classes rip $_{1}^{r_{1}}$

With Fourier Sums," DAN SSSR, 147, 1962, pp 519-522.
2. "Existonce of : i vea Fractionil-Ordor Dorivatives in L_{p}, " Ui.!, 19, iypuisk (Issuc) 4 (118), 1 $K 24$, pp 163-170.

3okhner (Bochner, S.)

1. Leitaly ob integr:lath rur'yo (Lenturos on Fourier Intograls), ":oscow, Fizmagiz, 1962, mp 1-360.

Bugrov, $Y_{n} .3$.

1. "Jiricluet Problems for the Circle," DAN SSSK, 115, 1957, pp 639-642.
2. "Properties of Polyhamonic Functions," Izv. AN SSSR, ser. matem., 22, 19,8, pp 491-514.
3. "Polyhamonic Functions in a Halr-Plane," latem. sb., 60, 1K.3, pp 48k'14.
4. "Mbedding Theorans for the H-Classes of S. M. Nikol'skiy," Sibirsk. maton. zh. (Siberian inathenaticnl Journal), 4, 1963, pp 1012-1028.

Buronkov, $\because \mathrm{T}$.

1. "Local Lonmac for Cortain Classes of Difforentiable Functions," Truily \because IRN SSSi, 77, 1965, pp 65-71.
2. "Cortain Propertios of tio Classes $w_{p}^{(r)}(\Omega)$ and $w_{p}^{(r, r)}(\Omega)$ When $0<r<1$," op. cit., 77, 196\%, pp 72-:3s.
3. "Theoroms of Embedding and Bitension for Classes of Difforentiable Functions of Scveral Variables Given for the Entire Space," Itogi nauki, "atenatichoskiy maliz (Progross in Science, dathematicil Analysis), :oscow, publishod by the VENITI of the USSR Acadery of jeiences, 1966, pp 71-155.
4. Nokotoryye svoystiva klassov diffortsiruyenykh funktsiy v svyazi s teoroitini vlozheniya i prodolaheniyn (Cortain Propertios of Classes of Differentiablo Functions in Re.ation to imbedding and Extension Theorens), Author's Abstract of Candidata's Dissertation, :!oscow, 1966.
\%. "Frbediding Theorems for the Donain $\mathbb{R}_{k}=\left\{\alpha, h<x_{i}{ }_{i}<\beta, h, 0<h<1\right\}$," Maten. sb., 75 (117): 4, 19xis8, pp 496-501.

Vinle-Pussen (Ch.-j to la Viallee Pousisin)

1. Lecons sur l'approximation cees fonctions d'une variable reelle, Paris, 1919, i-150.

Vatson, G.

1. Vedeniyo v teorigu integralov luar'yo. Tooriya besselevykh funktsiy (Introduction to the Theory of Fourier Integrals, Theory of Bessel Functions), 1, :'oscow, IL, 1949, pp 1-798.

Voklu, I. II.

1. Obobshchonryye analitichoskiye funktsii (Coneralized Anulytic Functions), : oscow, Fizmateiz, 1959, pp 1-628.
$\because 1$:
2. "ctoty toorli funktsiy mnogikh komploksixikh peramonngkh (fothods of the Theory of Functions of Several Complex Variables), : Noscow, Naukn Pub. Houso, 1964, 1964, pp 1-411.

G:L'perin, 1.

1. Jvodeniye v teorlyu oboshcheroykh funktsiy. Na osnove loktsiy L. Shvartsa (Introduction to the Theory of Conernlized Functions, Basod on Lectures by L. Schwnrtz), :Soscow, IL, pp 1-6h.

Gal'yardo (Gagliardo, E.)

1. Carattorizazioni delle trace sulla frontiera relative ad alcune classi di funzioni in n variabili, Rond. Semin. matem. un-ta di Padova 27, 1957, 284-305.

Gel'fand, I. M. and Shilov, G. Ye.

1. Obobshchennyye funktsii (Goneralized Functions), No 1, pp 1-439; No 2, pp 1-337, Moscow, 1959.

Golovkin, K. K.

1. "Impossibility of Several Inequalities Between Functional Norms," Trudy MIAN SSSR, 70, 1964, 00 5-25.
2. "Equivalent Normings of Fractional Spaces," op. cit., 66, 1962, pp 364383.

Goncharov, V. L.

1. Teoriya interpolirovaniya 1 priblizheniya funktsiy (Thyory of Interpolation and Approximation of Functions), second edition, (iostekhizdat, 1954, pp 1-328.

Counter, N. M.

1. Tooriya potentsiala i yeye primeneniye k osnoviym zadachan matematicheakoy fiziki (Potential Theory and Its Application to Basic Problens in Mathematical Physics), Costokhizdat, 1953, pp 1-416.

Dezin, A. A.

1. "Bmbedding Theorems and the Extension Problem," DAN ss3r, 88, 1953, pp 741-743.

Doni and Lions (Dons, J. and Lions, J. L.)

1. Eapacos de Beppo Leví et appilications, C. R. Acad. des. Sc. 239, 1954, 1174-1177.
2. Les espaces de type de Beppo Levi, Annales de 1 'institut Fourier 5, 1953-1954 (1955), 305-370.

Dehabrailiov, A. D.

1. "Several Functional Spaces, Direct and Inverse Bmbedding Theorems," DAN SSSR, 159, 1964, pp 254-257.

Dehafarov, A. S.

1. "Cortain Properties of Punctions of Several Variables," Issledovaniya po sovremennm probleman teoriyi funitsiy komplekanogo peravennogo (Studies on Modern Problems of the Theory of Functions of a Complex Variablo), Moscov, Fizmatgiz, 1960, pp 537-544.

Dahekson (Jackson, D.)

1. Uber die Gonauigkeit des Amiaberung stetiger Funktionen durch ganze rationale Punktionon gegeben Grades und trigonometrischen Summen gogobener Oramung. Diss., Cöttingen, 191i.
2. The theory of approximetion, Amer. Math. Soc. Calloquilum Publloations 11, 1930.

Deyadyk, V. K.

1. "Extenaion of Functiong Satiafying the Lipehite Conditions in the Motele Lp," Matan_Tb 10 (82), 1956, pp 239-242.

2Lmund, A.

1. Smooth functions, Duke Math. 12, 1945, 47-76.
2. Trisonometrichagkiye syady (Trigoncometric Saries), Mocoow, Mir Pab. Houee, 1965, Val. I, pp 1-615; Val. II, pp 1-537.
3. Op. cit. (ald edition), CONII, 1939, Pp 1-323.

Tbuagimo I. I.
 Propertios of Intaeral Pusctione of a Finite Dagreo), Balou, 1962, pp 1315.

Irons (Evans, G. C.)

1. Note on a theorem of Bochnor. Amer. J. of Math. 50, 1928, 123-12.
2. Complimente of potenticil theory, II, Mor. J. of Math. 55, 1933, 29-49.

In'yla, V. P.

1. "A Theoren of G. H. Handy and J. E. LIttiowood," ITud MINY sser, 53, 1959, pp 125-144.
2. "Pbedding thearm for a Linitine Eqpoment," DMY 898R, \%, 195t, pp 905908.
3. "Costain Inequalitios for Difformetiable Funotione of Sovaril Variables," Dull sssk, 159, 1963, pp 975-977.
4. "Problem of Inequalitios Botween Morese of Partial Dasivativos of Jupotican of Sovosel Verieblee," DM sask, 150, 1963, pp 975-977.
5. "Inoqualitice Botroen Noris of Partin Dapivatlives of Pusotione of Sovaral Variableo," Jrudy Mill sesa, st, 1\%55, pp 146-173.

 matem. sh., 7p 1967, pp 573-5\%.
 Huperplanes of Difformat Neameree" mill ssci, 23, 1951, pp 633-636.
6. "Cortain Integrel Inequalitiee and Thols Appisontion to the Ineory of
 pp 331-300.

II'Jin, V. P. and Salomaliov, V. A.

1. "Cortain Propestioe of Difformatiable Puootione of soveral Vasiabloo," DAM SSSR, 13., 1\%1, pp 53e-5h1.
2. "Cortain Propartiog of Difformentiale Pupotices of sovosil Vasiableo," Trudy MLAl SssR, 66, 1962, pp 205-206.
ralkin (Caibin, J. W.)
3. Functione of covaral variables and aboalute coutimesty, I, Dule Math. J. 6 , 1940, 176-186.

Kal'deron (Colderon, Λ. P.)

1. Singular integrals, Notes on a course taught at the Massachussetts Institute of Technology, 1959.
2. Lebesgue spaces of differential functions, Conference on partial diff. equations, Univ of California, 1960.
3. Lebesgue spaces of differentiable functions and distributions. Partial Diff. Equations, Providence, R. I. Amer. Math. Soc., 1961, 33-49.

Kvad (quade, E.)

1. Trigonometric approximation in the mean, Duke Math. J., 3, 1937.

Kollog, O. D.

1. On the derivatives of hamcinic funciicrs on the boundary, Trans. Amer. Math. Soc. 33, No 2, 1931.

Kipriyunov, I. A.

1. "One Class of Embedding Theorems With Weighting," DAN SSSR, 147, 1962, pp 540-543.

Kolmogerov (Kolnogoroff, A.)

1. Uber Komaktheit der Funktionenmengen bei der Konvergenz in ifittel, Götting. Nachr., 1931, 60-í3.

Kolmogorov, A. N. and Fomin, S. V.

1. Elementy teoril funktsiy i funktaional'nogo analiza (Elemonts of the Theory of Functions and Functional Anaiysis), Moscow, Nauka Pub. House, 1968, pp 1-49.

Kondrashov, V. I.

1. "Certain Proporties of Functions of the Spaces Lp," DAN SSSK, 48. 1945, pp 563-566.

Korgushikov, A. A.

1. "Best Approximations With Trigonometric Polynomials and Fourier Cooffi cients," Hatem. sb., 纨 (86), 1958, pp 53-84.

Koshalev, A. I.

1. "Difforentiability of Solutions of Several Problans in Potential Theory," Katem. sb. 32 (74), 1953, pp 653-664.

Kudryavtsev, L. D.

1. "One Ceneralization of the S. Z . Nikol'skiy Theoran on the Compactnoss of Classes of Differentinble Functions," UNN, 2, No 2 (59), 1954, pp 111120.
2. "Direct and Inverse imbedding Theorams, Applications to the Solution of Mliptical Equations by the Variational liethod," Trudy !!INI SSSh, 25, 1959, pp 1-181.
3. "Dabedding Theorems for Welghting Spaces and Their ipplications to the Solution of the Dirichlet Problem," Issledovaniya po sovrenenrym problemam konatruktivnoy teoril funktsiy (Studies on iiociern Problons
in the Constructive Theory of Functions), Baku, Azerbaydzhan SSR Academy of Scionces, 1965, pp 493-501.
4. "Embedding Theorems for Classes of Functions Defined on an Entire Space or on a Half-Space," II, Matem. sb., 70 (112); I, 1966, pp 3-35.

Lizorkin, P. I.

1. "Eabodding Theorems for Functions From the Space Lp," DAN SSSR, 143, 1962, pp 1042-1045.
2. "Lp $\mathrm{L}_{\mathrm{p}}(\Omega)$ Spaces, Extension and Embedding Thoorems," DAN SSSK, 142, 1962, pp 527-530.
3. "Characteristics of the Boundary Values of Functions From $L_{p}^{r}\left(E_{n}\right)$ on Hyperplanes," DAN SSSR, 150, 1963, pp 984-986.
4. "(L_{p}, L_{q}) as Fourier Integral :Hultiplcators," DAN SSSK, 152, 1963, pp 808-811.
5. "Genoralized Liouvilie Differontiadior. and Functional S;aces $L_{p}^{r}\left(k_{n}\right)$, smbedding Thoorems," i!ntem. sb., 60 (102), 1963, pp 325.353.
6. "Hirshman Type Formulas and Folationships Between the Spaces $\mathrm{B}_{\mathrm{p}}^{\mathrm{r}}\left(\mathrm{E}_{\mathrm{n}}\right)$ and $\mathrm{L}_{\mathrm{p}}^{\mathrm{r}}\left(\mathrm{E}_{\mathrm{n}}\right)$," :'atom. sb., 63, 1964, pp 505-r.35.
7. "Yourier Transform in Besov Spaces, zero Scale of $B_{p 9}^{0}$ "" DiN SSSK, 162, 1765, pp 1318-1321.
8. "sistinntes of Trigonometric Intograls and the Bernshteyn Inequality for Fractional !orivativos," !2v. AN SSSR, 22, 196ヶ, pp 109-126.
9. "Doundary Proportios of Functions Fron the doighting Classes," I2AN S 132, 1960, p, 514- 17.
10. "Honisotropic Bossol Potentinls, Embedting "'heorems for the Sobolev Space $L_{p}^{K 1}, \ldots, r_{n}$ with Eractional Dorivativos," DiN SSSR, 170, ${ }^{19}(6)$, pp fos-t11.

Lions and "aizhenes (iions, J. L. and :'agenes, f.)

1. Problems aux limites non homogenes (iII), finnals Scuola Nom. Sup. Pisi 1\%, 1061, 1966, 508: 11.

Littionood, さ. i. and P:loy, I. i.. 2. C.

1. Theoro.s on bourier sorics und power serien, l. J. Lonion 'iath. Sor. 6, 191, 230-233; II, Proc. London "ath. Soc. 42, 19\%, ;2-39; TII, op. cit., 43, 1937, 105-126.
josinstiy, S. \because
2. On convareonce ana sumability of Fourier sories and intorpol:tion пrocos3es, "x.tc7. sb., 1/4 (6), 19/4, 175-266.
3. "Generalization oi the S. N. Bernshteyn Thoorom on the Derivative of a Trigonometric Polynomial," DAN SSSR, 55, 1947, pp 9-12.

L'yusternik, L. A. and Sobalov, V. I.

1. Elemonty funktsional'nogo analiza (Elements of Functional inalysis), : ioscow, Nauka Pub. House, 1965, pp 1-520.
:!artsinkevich (:!arcinkievicz, J.)
2. Sur les multiplicateurs dea series de Fourier, Sludia Math. 8, 1939, 78-91.
liarshu (!archoud, A.)
3. Sur les derivees et sur les differences des fonctions de variables roelles, J. \because 'inth. pures ot appl. 6, 1927, 337-425.
:IStyagin, B. S.
4. "Cortain Properties of Functions of Tro Varinbles," Vestnik !:CU, ser. matom., mekh., astr., flz.: kchim. (Herald of Moscow State University, Nathomatics, Mechanics, Asi,ronomy, Physics, and Chemistry Series), No 5, 1959, pp 137-152.
!!ikhlin, S. G.
5. "Fourier Integrals and liultiple Singular Integrals," Vestnik LCU (Herald of Leningrad State University), Series llo 7, 1957, pp 143-155.
!lozzherova, N. I.
6. "Doundary Proporties of Harmonic Functions in Three-Dimensional Space," DAN SSSR, 118, 1958, pp 63í-638.

IIontel' (iontel, P.)

1. Sur les polyhomes d'approximation, Buil. Soc. !ath. de France, 1918, 151-192.
: $:$ orri (:lorrcy, C. B.)
2. Functions of several variables nnd absolute continuity, $I I$, Duke :iath. J. 6, No 1, 1940, 187-215.

Natanson, I. P.

1. Teoriyn funktsity veshchest vennoy peremennoy (Theory of Functions of a Real Varinble), Costekhizdat, 1957, pp 1-552.
2. Konstruktivnaya teoriya funktsiy (Constructive Theory of Functions), : Soscow-Loningrad, 1949, pp 1-688.

Nechad (Hocas, J.)

1. Sur les solutions des equations elliptiques aux cierivbes partielios du second ordre avec integrale de Dirichlet non bornde, Czechosiov, Math. J. 10, 1960, 283-298.
2. Los nethodes directos en theorie des equations elliptiques, Acadenia, editions de l'acadomic Tchecoslovaque des Sciences, Prague, 1967, 1-35.1.

Ilikodim (Nikodym. O. M.)

1. Sur une classe de fonctions considdrbes dans le probleme de Dirichlet, Fund. Kath. 21, 1933, 129-150.

Nikol'skiy, S. M.

1. Teoriya priblizheniya funktsiy, 4. I. Funktsional'my analiz (Theory of Function Approximation, I. Functional Analysis), Dnepropetrovsk University, 1947, pp 1-71.
2. "Ceneralization of a Suggostion of S. N. Bernshteyn on Differentiable Functions of Several Variables," DAN SSSR, 52, 1948, pp 1533-1536.
3. "Inequalities for Integral Functions of Finite Degree and their Application in the Theory of Differentiable Functions of Several Variables," Trudy MIAN SSSR, 38, 1951, pp 244-278.
4. "Problem on the Solution of the Polyharmonic Equation by the Variational Hethod," DAN SSSR, 32, 1953, pp 409-411.
5. "Properties of Certain Clesses of Functions of Several Variables on Differentiable Manifolds,' Matem. sb., 33 (75), No 2, 1953, pp 261-326.
6. "Ono Inequality for Perioclic Functions," UN, 11, No 1 (67), 1956, pp 219-222.
7. "Extension of Functions of Several Variabies With Pres :rvation of Differential Properties," Matam. sb fl 20 (82), 1956, pi 243-268.
 Izv. AN SSSR, 20, 1956, pp 611-622.
8. "Boundary Properties of Functions Defined on a Domain With Angular Points," Matom. sb.: I, 4! (82), 1956, pp 303-318; II, 44 (86), 1957, pp 127-144; III, 152 (87), 1958, pp 181-194.
9. "Embedding Theoram for Functions With Partial Derivatives Considered in Different Netrics," Izv. AN SSSR, sor. mat., 22, 1958, pp 321-336.
10. "Certain Properties of Differentiable Functions Assigned on an ndimensional Open Set," Izv. AN SSSR, ser. matem., 23, 1959, pp 213-242.
11. "Theorens of Embedding, Extension, and Approximation of Functions of Severnl Variables," UNN, 16, No 5 (101), 1961, pp 63-114.
12. "Correction to the Article, "Properties of Certain Classes of Functions of Several Variables on Differentiable Manifolds," Matem. sb., 57 (99), 1962, p 527.
13. "A Problem of S. L. Sobolev," Sibirsk. matem. zh., 3, 1962, pp 845851.
14. "Theorem on the Representation of a Class of Differentiable Functions of Soveral Variables With Integral Functions of the Exponential Type," DAN SSSR, 150, 1963, pp 484-487.
15. "Furctions With Dominant Mixed Derivative Satisfying the Holder Multiple Condition," Sibirsk. matem. zh., 4, 1963, pp 1342-1364.
16. "Constructive Representation of Zero Classes of Differentiable Functions of Several Variables," DAN SSSR, 170, 1966, pp 542-545.
17. "Integral Ropresentation and Isomorphism of Classes of Differontiable Functions of Several Variables," Tret'ya letnyaya matematicheskaya shkola (konstruktivnaya teoriya funktsiy), g. Katseveli, iyun'-iyul' 1965 (Third Sumnor Mathematical School (Constructive Theory of Functions), city of Katseveli, June-July 1965), Naukova dumka Pub. House, Kiev, 1966, pp 135-238.

Nikol'skiy, Lions, and Lizorkin (Nikolsky S. M., Lions J. L. and Lisorkin P. I.

1. Integral representation and isomorphism properties of some classes of functions, Ann. Scuola Norm. Super. Pisa. Sci. fis. e mat., Ser. III. vol. XIX, No 11, 1\%5, 127-178.

Nikol'skiy, Yu. S.

1. "Boundary Values of Functions from the Weighting Classes," DAN SSSR, 164, 1965, pp 503-506.

Petrovskiy, I. G. and Smirnov, K. N.

1. "Conditions of Equi-Continuity of Families of Functions," Byuil. MGJ, sokts. A (Bulletin of Moscow State University, Section A), No 10, 1938, pp 1-15.

Pikone (Picone, M.)

1. Sulla derivazione parziale per serie, Bol. Un. Mat. It. III, No 5, 1950, 24-33.

Pilika, P.

1. "Boundary Functions of the Classes $H\left(\begin{array}{l}\left.r_{1}, \ldots, r_{n}\right) \\ \left.p_{1}, \ldots, P_{n}\right)\end{array}\right.$ " DAN SSSR, 128, 1959, pp 677-679.

Plansherel' and Polia (Planshere, M. and Polya, G.)

1. Fonctions entieres et integrales de Fourier multiples, Coment. Math.Helvetici; I, 1937, 224-248; II, 1938, 110-163.

Polia and Soge (Polya and Soge)

1. Zadachi i teorery iz anailiza (Problams and Theorams From Analysis), I, Gostekhizdat, 1937.

Puchchi (Pucci, C.)

1. Compatezza du sucsesione di funrioni e derivabilita delle funzioni imita, Annali di Mathematica 37 (1954), 1-25.

Peli and Viner (Peley, H. E. A. C. and Weiner, N.)

1. Fourier transforms in the complex domain. 1934.

Mamazanov, M. D.

1. "A Priori Estimate of the L_{p} Type of Solutions of Parabolic Equations," DAN SSSR, 161, 1965, pp $530^{-2} 533$.

Rellikh (Rellich, F.)

1. Ein Satz über mittlere Konvergenz. Cótt. Nachr., 1930, 30-35.

Ris, M. (Riesz, M.)

1. Les fonctions conjuguees ot les series de Fourier. C. r. Acad. sci. 178, 1924, 1464-1467.
2. Sur les fonctions conjuguees. Math. Zeít. 27, 1927, 218-244.

Sayvin (Civin, P.)

1. Inequalities for trigonometric integrals. Duke Math. J. 8, 1941, 656665.

Slobodotskiy, L. N.

1. Fractional-Order S. L. Sobolev Spaces and Thoir Applications to BoundaryValue Problems for Differential Equations in Partial Derivatives," DAN SSSR, 118, 1958, pp 243-24i.
2. "Generalized S. L. Sobolev Spaces and Their Applications to BoundaryValue Problems for Differential Equations in Partial Derivatives," Uch. zap. Leningr. ped. in-ta im. A. I. Gertsena (Scientific Notes of Leningrad Pedagogical Institute imeni A. I. Hertzen), 197, 1958, pp 54-112.
3. "Estimates of Solutions of Elliptical and Parabolic Systems," DAN SSSR, 120, 1959, pp 468-471.

Smirnov, V. I.

1. Kurs vysshey matematiki (Course on Higher Mathomatics), Vol V, Gostekhiz. dat, 1947, pp 1-584.

Snit (Smith, K. T.)

1. Inequalities for formally positive integro-differential forms. Bull. Amer. Math. Soc. 67, 1961, 368-370.

Sobolev, S. L.

1. "Cauchy Problems in Functinnal Space," DAN SSSR, 3, 1935, pp 291-294.
2. Móthode nouvelle a resoudris le probleme de Cauchy pour les dquations linbaires hyperboliques normales, Matem. sb., 1 (43), 1936, 39-72.
3. "A Theorem of Functional Analysis," Matem. sb., 4 (46), 1938, pp 471497.
4. Nekotoryye primeneniya funktsional'nogo analiza v matematicheskoy fizike (Certain Applications of Functional Analysis in Mathamatical Physics), Leningrad State University Pub. House, 1950, pp 1-255; Novosibirsk, 1962, pp 1-255.
5. "Certain Generalizations of Embedding Theorems," Foundations of Mathematics, 47, 1959, 277-324.

Solntsev, Yu. K.

1. "An Estimate of a :Iixed Derivative in $L_{p}(g), "$ Trudy MIAN SSSR, 64, 1961, pp 211-238.

Solonnikov, V. A.

1. "A priori Estimates for Second-Order Equations of the Parabolic Type," Trudy IIIAN SSSR, 70, 1964, pp 132-212.

Sonin, N. Ya. (Sonin, N. Ja.)

1. Recherches sur les fonctions cylindriques et le development des fonctions continues on series, Math. Ann. 16, 1880, 1-80.

Steyn (Stein, E. M.)

1. The characterization of functions arising as potentials, Bull. Amer. iAath. Ann. Soc.; I 67, 1961, 102-104; II 68, 1962, 577-584.

Stechkin, S. B.

1. "Order of the Best Approximations of Continuous Functions," Izv. AN SSSR, ser. matem., 15, 1951, pp 219-242.
2. "Best Approximation of Adjoint Functions With Trigonometric Polynomials," Izv. AN SSSR, ser. matem., 20, 1956, pp 197-206.

Sun Yung-sheng

1. "Best Approximation of Classes of Functions Represented in Convolution Form," DAN SSSR, 118, 1958, pp 247-250.

Timan, A. F.

1. Teoriya priblizheniya funktsiy deystvitel'nogo peremennogo (Theory of Approximation of Functions of a Real Variable), Moscow, Gizmatgiz, 1960, pp 1-624.

Titchmarsh, E.

1. Vvedeneiye v teoriyn integralov Fur'ye (Introduction to the Theory of Fourier Integrals), Gostokhizdat, 1948, pp 1-479.

Tonelif, L.

1. Sulla quadratura dell superficie, Rend. R. Acad. Lincei. 6, No 3, 1926, 633-638.

Tulaykov, A. N.

1. Zur Kompaktheit in Raum L_{p} fiir $\mathrm{p}=1$, Gott. Nachr., 1933, 167-170.

Teyblson (Taibleson, M. N.)

1. Lipshitz classes of functions and distributions in $\mathrm{E}_{\mathrm{m}}, \mathrm{Bu}$ ill. Amer. Nath. Soc. 69, 1965, 487-493.
2. On the theory of Lipshitz spaces of distributions on Euclidean n-space, I, Principal properties, J. Meth. and Mech. 13, No 3, 1964, 407-479.

Uitni (Whitney, H.)

1. Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., I, 36, 1943, 63-89; II, 40, 194́, 309-317.

Ul'yanov, P. L.

1. "Certain Equivalent Conditions of the Convergence of Series and Integrals," U.N, 8, No 6 (58), 1953, pp 133-141.

Uspenskiy, S. V.

1. "Properties of the Classes $W_{p}^{(r)}$ with Fractional Derivatives on Differential :lanifolds," DAN SSSR, 132, 1960, pp 60-62.
2. "Theorem on Embedding of S. L. Sobolev Fractional-Order Classos," DaN SSSR, $130,1960$.
\therefore "Fanbedding Theorens for Weighting Classes," Trudy :IIAN SSSR, 20, 1961.

Favar (Fivard, J.)

1. Application de la formule sommatoier d'Euler a la denonstration de qualques proprietes exrremales des integrales des fonctions periodiques ou prosque-periodiques. "atematisk Tidskrift (D), 1936, 81-94.

Fokht, A. S.

1. Otsenki reshoniy uravneniy ellipticheskogo tipa vblizi granitsy ohlasti ilch cadaniya (Estimates of Solutions of Elliptical Type Equations Near the Boundary of the Domain of Thoir Definition), Author's Abstract of Candidate's Dissertation, Moscow, 1963.
2. "Cortain Inequalities for Solutions of Eliptical Type Equations and Their jorivatives Closo to the Boundary of the Domain in the L_{2} :Hetric," Tructy :IIAN SSSR, 77, 1965, pp 168.191.

Khardi, Littlvud, and Polya (Hardy, Littlewood, and Polya)

1. Neravenstva (Inequalities), :Ioscow, 1948, pp 1-456.

Khard \downarrow and Littlvud (Hardy, G. H. and Littlewood, J. L.)

1. Some properties of fractional integrals, I. lath. Zeit. 27, 1928, 565606.
2. A convorgence criterion for Fourier series, Math. Zeit. 28, 1928, 122147.

Khausdorf (Harsdorff, F.)

1. Teoriya mnozhestv (Theory of Sets), ONTI, 1936, pp 1-304.

Whermander (Hormander)

1. Otsonki dlya operatorov invariantrykh otnositel'no sdviga (istimates for Operators That Are Shift-Invariant), Moscow, $\amalg, ~ 1962, ~ p p ~ 1-71 . ~$

Shagiryan, A. L.

1. "Best Apnroximations With Harmonic Polynomials in Space," DAN SSSR, 20, 1953, p 141.

Shvarts, L. (Schwartz, L.)

1. Theorio des distributions, I, II, Paris, 1957.

Yakovlev, G. N.

1. "Boundary Properties of Functions of the Class $W_{p}^{(1)}$ on Domains With Angular Points," DAN SSSR, 140, 1961, pp 73-76.
2. "Boundary Properties of a Certain Class of Functions," Trudy UAIN SSSR, 60, 1961, pp 325-349.

Additional Literature
lasharin, A. A.

1. "Eoundary Properties of Functions of the Class $W_{2}^{1}(\alpha)$ and Their Application to the Solution of a Boundary-Value Problem in ilathematical Physics," Izv. AN SSSR, ser. matem., 23, 1959, pp 421-454.

Il'yin, V. P.
3. "Total Continuity of the Embedding Theorem for the Case of an Unbounded Domain," DAN SSSR, 135, 1960, pp 517-519.

Kondrashov, V. I.
2. "Behavior of Functions From L_{p}^{y} on Manifolds of Different Measures," DAN SSSR, 6, 1950, pp 1005-1012.

Kurner, A.

1. Einige Eigenshaften der Sobolevschen Räume mit Belegungs-function, Chekhoslov. matem. zhurnal (Czechosl. Math. J.) 15, 1965, pp 597-620.

Matveyev, I. V. and Nikol'skiy, S. M.

1. "Joining of Functions of tiae Class $H_{p}^{(\alpha)}$, "UMN, 18, No 5, 1963, pp 175180.

Lions and Madzhenes (Lions, J. L. and Magenes, E.)
2. Problemes aux limits non homogenes et applications I, 1-372, 11, 1-251, Dund, Paris, 1968.

Sadoski and Kotlyar (Sadosky, C. and Cotlar, M.)

1. On quasihomogeneous Bessel potential Operators. Procoedings of Symposium in pure mathematics. Singular Integrals, Providenco, vol X, 1967, 275287.

[^0]: M) Mr the smallest number among the numbers M possessing the property that a sot of all $x \in E$ for which $/ f(x)!>M$ has the measure zero. It is easy to ere that it does exist.

[^1]: ") ihos. . © , it is assumen tant 1/p 0 .

[^2]: *) Wo direct the reader's attention to the fact that in the integrand \mathbb{Z} is taken without the aign of complex conjugation (cf. V. S. Vladinirov [1」).

[^3]: ") Here the word "abeolutely" can be omitted, alnce ve can show that from the convergibility of eorlos (4) for all (1) $\eta, 5$, and with $|\eta|<f_{1}$ and $|\zeta|-\Gamma_{2}$ follows its absolute convergence for ail speciried η and 5 .

[^4]: *) S. L. Sobolev L 3, 4 .

[^5]: \#) S. N. Bernshteyn $\angle \overline{2} \bar{W}$, page 371, when $n=1$.

 $$
 \leqslant|h| v \sup _{z}\left|g_{v}(x)\right| \leqslant \lambda v|h|
 $$

[^6]: *) on following page.

