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CHAPTER ONE

Physiological impacts of ocean
acidification on marine
invertebrates
Guangxu Liu and Wei Shi
College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China

Introduction

Due to anthropogenic activities such as deforestation, fossil fuel uti-
lization, cement production, and biomass burning since the Industrial
Revolution in the mid-eighteenth century, the concentration of atmo-
spheric carbon dioxide (CO2) has increased approximately from 280 to
387 parts per million (ppm), which is higher now than it has been for
more than 800,000 years (Booth et al., 2012; Caldeira & Wickett, 2003;
Feely et al., 2004; Orr et al., 2005). Being the earth’s largest carbon sink,
the ocean plays an extremely important role in the global carbon cycle
(Doney et al., 2009; Le Quéré et al., 2009). Approximately 30%�50% of
the CO2 released into the atmosphere has been absorbed by the earth’s
ocean, which thus resulted in reductions in seawater pH, a process termed
“ocean acidification” (OA) (Caldeira & Wickett, 2003; Sabine et al.,
2004). Over the past two centuries, the global average surface seawater
pH has already decreased by more than 0.1 units, from approximately pH
8.21 to pH 8.10, which is equivalent to a 30% increase in the hydrogen
ion (H1) concentration in the seawater (Ellis et al., 2017; Sabine et al.,
2004). According to the prediction made by the Intergovernmental Panel
on Climate Change, if fossil fuel emissions and carbon-sequestration
efforts continue at the present rate, the surface seawater pH will drop
another 0.3�0.4 units by the end of the 21st century and by 0.7 units
around the year 2300 (Pachauri et al., 2014). Besides, oceanic uptake of
atmospheric CO2 also lowers the carbonate concentration and reduces the
saturation state of calcium carbonate in seawater, especially aragonite and
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calcite, which are critical for many marine invertebrates in creating their
skeletal structures or shells (Caldeira & Wickett, 2003; Fitzer et al., 2016;
Thomsen et al., 2013; Zhao et al., 2017). Therefore theoretically, OA
will affect a diversity of marine invertebrate species by altering seawater
chemistry (Andersson & Gledhill, 2013; Gibson et al., 2011; Mollica
et al., 2018).

Invertebrates, which make up about 95% of all animal species, are the
largest group of animals on earth. In the ocean, marine invertebrates are
not only functionally important in the marine ecosystem but also have sig-
nificant commercial value worldwide (Marinelli & Williams, 2003). Since
living in an acidified environment would constitute stress to marine inhabi-
tants, OA could have profound ramifications on the physiological perfor-
mance of marine invertebrates (Gallo et al., 2019; Gazeau et al., 2010;
Kurihara, 2008; Shi, Han, et al., 2017; Shi et al., 2019). To date, OA is
projected to impact marine invertebrates such as mollusks, crustaceans, and
echinoderms present in various areas, from the open sea to estuaries and
coastal areas (Bechmann et al., 2011; Holcomb et al., 2014). The present
chapter focuses on the physiological impacts of OA on marine inverte-
brates, including gametic traits, fertilization success, embryonic develop-
ment, biomineralization, metabolism, growth, and immune responses.

Impacts of ocean acidification on gametes and
fertilization success of invertebrates

Fertilization, in its simplest form, is the fusion of two specialized
gametes to form a single viable cell, which is known as the zygote. The
release of gametes into the natural seawater column for external fertiliza-
tion is an ancestral mating strategy commonly employed by various
marine invertebrates (Lotterhos & Levitan, 2010). Once discharged, these
gametes are in direct contact with the surrounding seawater. In this
regard, the gametes and the subsequent fertilization of these marine
broadcast spawners may be particularly vulnerable to OA (Table 1.1).

Sperm velocity is theoretically related to the probability of collision of
gametes, and studies have shown that sperm with high velocity would be
more effective in fertilizing the egg (Kupriyanova & Havenhand, 2005;
Levitan, 2000). For example, as compared to faster sperm of the sea
urchin Lytechinus variegatus, sperm with 0.01 mm/s decrease in velocity
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Table 1.1 Effects of ocean acidification on the gametic traits and fertilization success of marine invertebrates.
Taxon Species pH/pCO2 Objectives Effects References

Coelenterata Acropora digitifera pH 8.03�6.55
(400�21,100 ppm)

Sperm kSperm flagellar motility Morita et al. (2010)

pH 7.74
(1000 ppm)

Sperm kSperm motility Nakamura and Morita
(2012)

pH 7.99�7.60
(438�1111 ppm)

Sperm Unaffected Iguchi et al. (2015)

A. palmata pH 7.7 (998 ppm) Sperm kFertilization success Albright et al. (2010)
Mollusca Crassostrea gigas pH 8.12�7.85 Sperm and

egg
Unaffected Havenhand and Schlegel

(2009)
pH 8.09�7.73

(580�3573 ppm)
Sperm and

egg
kSperm motility;

kFertilization rate
Barros et al. (2013)

Saccostrea glomerata 600, 750, and
1000 ppm

Sperm and
egg

kFertilization success Parker et al. (2009)

Mytilus galloprovincialis pH 7.6 (1000 ppm) Sperm kSperm swimming speed;
kPercentage of motile sperm

Vihtakari et al. (2013)

Tegillarca granosa pH 8.1�7.4
(589�3582 ppm)

Sperm and
egg

kSperm swimming speed;
kFertilization success;
kGamete fusion probability;

Shi et al. (2017)

pH 8.1�7.4 Sperm and
egg

mPolyspermy risk Han et al. (2021)

Arthropoda Acartia tonsa pH 8.23�7.15
(385�6000 ppm)

egg kFertilization success Cripps et al. (2014)

Urochordata Ciona robusta pH 8.1�7.8 Sperm kSperm motility;
kSperm viability.

Gallo et al. (2019)

(Continued )



Table 1.1 (Continued)
Taxon Species pH/pCO2 Objectives Effects References

Echinodermata Hemicentrotus
pulcherrimus

pH 7.35 and 6.83
(2000 and
10,000 ppm)

Sperm and
egg

kFertilization success Kurihara and Shirayama
(2004)

pH 8.06�7.55 Sperm and
egg

Unaffected Zhan et al. (2016)

Heliocidaris
erythrogramma

pH 7.7 Sperm kSperm swimming speed;
kPercent sperm motility;
kFertilization success

Havenhand et al. (2008)

Strongylocentrotus
franciscanus

pH 7.81 and 7.55
(800 and
1800 ppm)

Sperm and
egg

kFertilization success;
mPolyspermy risk

Reuter et al. (2011)

S. purpuratus pH 8.03�7.61 Sperm and
egg

Unaffected Kapsenberg et al. (2017)

Centrostephanus
rodgersii

pH 8.1�7.6
(435�1558 ppm)

Sperm kSperm mitochondrial membrane
potential;
kSperm swimming speed

Schlegel et al. (2015)

Acanthaster planci pH 8.11�7.61
(520�1658 ppm)

Sperm kSperm swimming speed;
kSperm motility;
kFertilization success

Uthicke et al. (2013)

Holothuria spp. pH 8.03�6.55
(400�21,100 ppm)

Sperm kSperm flagellar motility Morita et al. (2010)

Glyptocidaris crenularis pH 7.98�7.48
(453�1674 ppm)

Sperm and
egg

kFertilization success;
kpercentage of abnormal
fertilized eggs

Zhan et al.(2016)

Lytechinus variegatus pH 7.8 Sperm and
egg

Unaffected Lenz et al. (2019)


