Ocean Acidification and Marine Wildlife Physiological and Behavioral Impacts Guangxu Liu

Ocean Acidification and Marine Wildlife

This page intentionally left blank

OCEAN ACIDIFICATION AND MARINE WILDLIFE Physiological and Behavioral Impacts

GUANGXU LIU

College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-822330-7

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Charlotte Cockle Acquisitions Editor: Anna Valutkevich Editorial Project Manager: Megan Ashdown Production Project Manager: Maria Bernard Cover Designer: Matthew Limbert

Typeset by MPS Limited, Chennai, India

Contents

List	of contributors	ix
1.	Physiological impacts of ocean acidification on marine invertebrates Guangxu Liu and Wei Shi	1
	-	1
	Introduction Impacts of ocean acidification on gametes and fertilization success of	1
	invertebrates	2
	Impacts of ocean acidification on embryonic development of invertebrates	12
	Impacts of ocean acidification on biomineralization of invertebrates	21
	Impacts of ocean acidification on metabolism and growth of invertebrates	29
	Impacts of ocean acidification on immune responses of invertebrates	33
	References	40
-		
2.	Physiological impacts of ocean acidification on marine vertebrates	53
	Shiguo Li	
	Introduction	53
	Impacts of ocean acidification on acid—base and ion regulation of marine vertebrates	56
	Impacts of ocean acidification on fertilization and embryonic development of marine vertebrates	73
	Impacts of ocean acidification on metabolism and growth of marine	
	vertebrates	78
	Other physiological impacts of ocean acidification on marine vertebrates	82
	Effects of ocean acidification on predation and escape behavior	82
	Effect of ocean acidification on behavioral lateralization	83
	Effects of ocean acidification on habitat recognition and selection Influence of ocean acidification on other behaviors	84 88
	Case studies	00 89
	Case studies Case study 1—lon and acid—base regulation	89
	Case study 2—Metabolism	91
	Case study 3—Escape behavior	95
	Summary	97
	References	99

3.	Behavioral impacts of ocean acidification on marine animals	109
	Youji Wang and Ting Wang	
	Introduction	109
	Impacts of ocean acidification on foraging	111
	Impacts of ocean acidification on antipredation	115
	Impacts of ocean acidification on habitat selection	120
	Impacts of ocean acidification on the social hierarchy	123
	Case studies	126
	Case study 1—foraging	126
	Case study 2—antipredation	130
	Case study 3—habitat selection	134
	Case study 4—social hierarchy	138
	References	142
4.	Potential mechanisms underpinning the impacts of ocean	
	acidification on marine animals	155
	Wei Shi and Guangxu Liu	
	Introduction	155
	Acid—base homeostasis and energy reallocation	156
	Neurotransmitter disturbance and signaling transduction	162
	Potential molecular mechanisms revealed by omics technologies	166
	Examples of case studies	171
	Case study 1—Fertilization success	171
	Case study 2—Feeding behavior	174
	Case study 3—Defense capacity	176
	Case study 4—Chemical communication	179
	Case study 5—Immune responses	181
	References	184
5.	Interactive effects of ocean acidification and other	
	environmental factors on marine organisms	193
	Tianyu Zhang, Qianqian Zhang, Yi Qu, Xin Wang and Jianmin Zhao	
	Introduction	193
	Interaction of ocean acidification with global warming	195
	Interaction of ocean acidification with hypoxia	205
	Interaction of ocean acidification with salinity fluctuation	213
	Interaction of ocean acidification with heavy metal pollution	218
	References	226

6.	A brief summary of what we know and what we do not know about the impacts of ocean acidification on marine animals	247
	Guangxu Liu and Wei Shi	
	Introduction	247
	A general summary of what we know about the impacts of ocean acidification on marine animals	248
	A summary of limitations and knowledge gaps that currently exist	251
	Directions for future studies	256
	References	258
Ind	lex	265

This page intentionally left blank

List of contributors

Shiguo Li

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, P.R. China

Guangxu Liu

College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China

Yi Qu

Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; University of Chinese Academy of Sciences, Beijing, P.R. China

Wei Shi

College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China

Ting Wang

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, P.R. China

Xin Wang

Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; University of Chinese Academy of Sciences, Beijing, P.R. China

Youji Wang

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, P.R. China

Qianqian Zhang

Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China

Tianyu Zhang

Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; University of Chinese Academy of Sciences, Beijing, P.R. China

Jianmin Zhao

Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, P.R. China

Physiological impacts of ocean acidification on marine invertebrates

Guangxu Liu and Wei Shi

College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China

Introduction

Due to anthropogenic activities such as deforestation, fossil fuel utilization, cement production, and biomass burning since the Industrial Revolution in the mid-eighteenth century, the concentration of atmospheric carbon dioxide (CO2) has increased approximately from 280 to 387 parts per million (ppm), which is higher now than it has been for more than 800,000 years (Booth et al., 2012; Caldeira & Wickett, 2003; Feely et al., 2004; Orr et al., 2005). Being the earth's largest carbon sink, the ocean plays an extremely important role in the global carbon cycle (Doney et al., 2009; Le Quéré et al., 2009). Approximately 30%-50% of the CO₂ released into the atmosphere has been absorbed by the earth's ocean, which thus resulted in reductions in seawater pH, a process termed "ocean acidification" (OA) (Caldeira & Wickett, 2003; Sabine et al., 2004). Over the past two centuries, the global average surface seawater pH has already decreased by more than 0.1 units, from approximately pH 8.21 to pH 8.10, which is equivalent to a 30% increase in the hydrogen ion (H⁺) concentration in the seawater (Ellis et al., 2017; Sabine et al., 2004). According to the prediction made by the Intergovernmental Panel on Climate Change, if fossil fuel emissions and carbon-sequestration efforts continue at the present rate, the surface seawater pH will drop another 0.3-0.4 units by the end of the 21st century and by 0.7 units around the year 2300 (Pachauri et al., 2014). Besides, oceanic uptake of atmospheric CO₂ also lowers the carbonate concentration and reduces the saturation state of calcium carbonate in seawater, especially aragonite and

calcite, which are critical for many marine invertebrates in creating their skeletal structures or shells (Caldeira & Wickett, 2003; Fitzer et al., 2016; Thomsen et al., 2013; Zhao et al., 2017). Therefore theoretically, OA will affect a diversity of marine invertebrate species by altering seawater chemistry (Andersson & Gledhill, 2013; Gibson et al., 2011; Mollica et al., 2018).

Invertebrates, which make up about 95% of all animal species, are the largest group of animals on earth. In the ocean, marine invertebrates are not only functionally important in the marine ecosystem but also have significant commercial value worldwide (Marinelli & Williams, 2003). Since living in an acidified environment would constitute stress to marine inhabitants, OA could have profound ramifications on the physiological performance of marine invertebrates (Gallo et al., 2019; Gazeau et al., 2010; Kurihara, 2008; Shi, Han, et al., 2017; Shi et al., 2019). To date, OA is projected to impact marine invertebrates such as mollusks, crustaceans, and echinoderms present in various areas, from the open sea to estuaries and coastal areas (Bechmann et al., 2011; Holcomb et al., 2014). The present chapter focuses on the physiological impacts of OA on marine invertebrates, including gametic traits, fertilization success, embryonic development, biomineralization, metabolism, growth, and immune responses.

Impacts of ocean acidification on gametes and fertilization success of invertebrates

Fertilization, in its simplest form, is the fusion of two specialized gametes to form a single viable cell, which is known as the zygote. The release of gametes into the natural seawater column for external fertilization is an ancestral mating strategy commonly employed by various marine invertebrates (Lotterhos & Levitan, 2010). Once discharged, these gametes are in direct contact with the surrounding seawater. In this regard, the gametes and the subsequent fertilization of these marine broadcast spawners may be particularly vulnerable to OA (Table 1.1).

Sperm velocity is theoretically related to the probability of collision of gametes, and studies have shown that sperm with high velocity would be more effective in fertilizing the egg (Kupriyanova & Havenhand, 2005; Levitan, 2000). For example, as compared to faster sperm of the sea urchin *Lytechinus variegatus*, sperm with 0.01 mm/s decrease in velocity

Taxon	Species	pH/pCO ₂	Objectives	Effects	References
Coelenterata	Acropora digitifera	pH 8.03-6.55 (400-21,100 ppm)	Sperm	↓Sperm flagellar motility	Morita et al. (2010)
		pH 7.74 (1000 ppm)	Sperm	↓Sperm motility	Nakamura and Morita (2012)
		pH 7.99–7.60 (438–1111 ppm)	Sperm	Unaffected	Iguchi et al. (2015)
	A. palmata	pH 7.7 (998 ppm)	Sperm	↓ Fertilization success	Albright et al. (2010)
Mollusca	Crassostrea gigas	рН 8.12-7.85	Sperm and egg	Unaffected	Havenhand and Schlegel (2009)
		рН 8.09-7.73	Sperm and	↓Sperm motility;	Barros et al. (2013)
		(580–3573 ppm)	egg	↓ Fertilization rate	
	Saccostrea glomerata	600, 750, and 1000 ppm	Sperm and egg	↓Fertilization success	Parker et al. (2009)
	Mytilus galloprovincialis	pH 7.6 (1000 ppm)	Sperm	↓Sperm swimming speed; ↓Percentage of motile sperm	Vihtakari et al. (2013)
	Tegillarca granosa	pH 8.1–7.4 (589–3582 ppm)	Sperm and egg	↓ Sperm swimming speed; ↓ Fertilization success; ↓ Gamete fusion probability;	Shi et al. (2017)
		pH 8.1-7.4	Sperm and egg	↑Polyspermy risk	Han et al. (2021)
Arthropoda	Acartia tonsa	pH 8.23-7.15 (385-6000 ppm)	egg	↓ Fertilization success	Cripps et al. (2014)
Urochordata	Ciona robusta	pH 8.1–7.8	Sperm	↓Sperm motility; ↓Sperm viability.	Gallo et al. (2019)

 Table 1.1 Effects of ocean acidification on the gametic traits and fertilization success of marine invertebrates.

(Continued)

Table 1.1 (Cont Taxon	Species	pH/pCO ₂	Objectives	Effects	References
Echinodermata	Hemicentrotus pulcherrimus	pH 7.35 and 6.83 (2000 and 10,000 ppm)	Sperm and egg	↓Fertilization success	Kurihara and Shirayama (2004)
		рН 8.06-7.55	Sperm and egg	Unaffected	Zhan et al. (2016)
	Heliocidaris erythrogramma	рН 7.7	Sperm	↓Sperm swimming speed; ↓Percent sperm motility; ↓Fertilization success	Havenhand et al. (2008)
	Strongylocentrotus franciscanus	pH 7.81 and 7.55 (800 and 1800 ppm)	Sperm and egg	↓Fertilization success; ↑Polyspermy risk	Reuter et al. (2011)
	S. purpuratus	pH 8.03-7.61	Sperm and egg	Unaffected	Kapsenberg et al. (2017)
	Centrostephanus rodgersii	pH 8.1-7.6 (435-1558 ppm)	Sperm	↓ Sperm mitochondrial membrane potential; ↓ Sperm swimming speed	Schlegel et al. (2015)
	Acanthaster planci	pH 8.11-7.61 (520-1658 ppm)	Sperm	↓ Sperm swimming speed; ↓ Sperm motility; ↓ Fertilization success	Uthicke et al. (2013)
	Holothuria spp.	pH 8.03-6.55 (400-21,100 ppm)	Sperm	↓Sperm flagellar motility	Morita et al. (2010)
	Glyptocidaris crenularis	pH 7.98–7.48 (453–1674 ppm)	Sperm and egg	↓ Fertilization success; ↓ percentage of abnormal fertilized eggs	Zhan et al.(2016)
	Lytechinus variegatus	рН 7.8	Sperm and egg	Unaffected	Lenz et al. (2019)