
Graphon-aided Graphical Lasso with Structured Sparsity

Anton Banta * 1 Madeline Navarro * 1 Nicolas Zilberstein * 1

Abstract
In this paper, we consider the problem of inferring
a graphical representation of complex data with
specific interdependencies. The classic approach
involves the graphical lasso method which aims
to reconstruct a sparse graph using the ℓ1-norm
penalty. We build upon this framework by incor-
porating prior knowledge of the graph structure to
guide the pruning process during graph inference.
Specifically, we assume the underlying graph is
drawn from a specific random graph model via the
graphon. We provide a generalized method with
user-defined structural characteristics for graph
inference. Furthermore, we provide convergence
guarantees of the algorithm and experimental re-
sults on synthetic data which demonstrate an im-
provement in graph inference when utilizing our
proposed spectral penalty. This improvement was
observed when the true graphon distribution was
both known or approximated by the user.

1. Introduction
Estimating interdependencies among multiple measured
variables allows us to structurally describe complex sys-
tems of many variables. For example, brain networks or
gene-to-gene networks provide identifiers for individuals,
applicable for improved diagnoses or personalized treat-
ments (Yang et al., 2015). We represent dyadic statistical
relationships via undirected graphs G = (V, E) with vertices
V corresponding to observed variables and edges E ⊆ V×V
corresponding to conditional dependence between pairs of
variables. Edges exist between variables i and j if and
only if two variables are conditionally dependent given all
other variables. These networks are called Markov random
fields, and in the case of Gaussian random variables, we
have Gaussian graphical models (GGMs).

We consider the common method of graphical lasso (Fried-

*Equal contribution 1Department of Electrical and Computer
Engineering, Rice University, Houston, Texas, United States. Cor-
respondence to: Madeline Navarro <nav@rice.edu>.

Project report for COMP414/514, Rice CS. Copyright 2021 by the
author(s).

man et al., 2008), which estimates GGMs via maximum
likelihood estimation with a penalty encouraging sparsity.
The classic graphical lasso method estimates a sparse graph
structure via a ℓ1-norm penalty. Encouragement of a parsi-
monious structure mitigates computational burdens of po-
tential downstream tasks and provides a more interpretable
representation. However, some kind of prior knowledge
about the underlying graph structure may be available. For
example, in webpage, brain, or gene networks, certain nodes
may be hubs, that is, a small number of nodes are densely
connected to many other nodes (Barabási & Albert, 1999;
Hao et al., 2012; Luo, 2014). Indeed, application of an ℓ1
sparsity regularizer as with graphical lasso assumes that all
edges must be equally penalized. Consider implementa-
tion of prior structural knowledge in a generalized setting
of probabilistic structural information rather than expected
families of graphs. In particular, we wish to encourage
graph structure based on a known random graph model.
With the probabilistic graph information, we can implement
structured sparsity in place of the ℓ1 sparsity regularizer.

Several ways of incorporating structured sparsity have been
proposed. In general, it is done by combining different
norms. Slawski et al. (2010) propose a structured elastic
net, where the ℓ1-norm is combined with ∥ · ∥Θ, where Θ is
the graph Laplacian matrix. The latter penalty is equivalent
to the forward operator defined for fused lasso (Tibshirani
et al., 2005) for time-varying signals, and it captures the a
priori association structure. Bach et al. (2012) demonstrate
selecting groups of variables in a fine-tuned way if the vari-
ables form a union-closed set. They also mention that this
form of structured sparsity can be applied to graphical lasso
as long as the union closed set property is satisfied. In ad-
dition to enforcing structure by selecting specific edges for
group lasso terms, we can also consider encouraging struc-
tural behavior over the entire graph. Vizuete et al. (2021)
assume prior knowledge of a family of graphs whose spec-
tra are expressive of the structural characteristics. They
introduce a set of types of graphs that can be estimated by
applying particular spectral constraints, which are detailed
in the paper.

We introduce a modified graphical lasso method with in-
duced structured sparsity based on prior statistical knowl-
edge of the network structure. In particular, we assume
that the underlying graph is sampled from a known random

Submission and Formatting Instructions for ICML 2021

graph model (Diaconis & Janson, 2007; Erdős & Rényi,
1959; Holland et al., 1983; Lovász, 2012). The above meth-
ods of structured sparsity are designed for specific structures
to be encouraged. We propose a generalized method with
user-defined structural characteristics that encompasses the
previous methods and permits arbitrary families of networks.
By careful choice of random graph model, a desired struc-
ture can be encouraged. Additionally, our proposed method
allows use of prior knowledge of the family to which the
estimated graph belongs to aid estimation performance.

2. Problem Formulation
The graphical lasso formulation (Friedman et al., 2008) for
estimating the precision matrix Θ ∈ Rp×p given a sample
covariance matrix S is

min
Θ

− log detΘ+ tr(SΘ) + αϕ(Θ)

s.to Θ ∈ Rp×p
++

where ϕ(·) is a function inducing sparsity. We observe
the effects of choosing the ℓ0 pseudo-norm and its convex
relaxation, the ℓ1 norm to encourage sparsity. The precision
matrix is positive definite, hence the constraint that Θ is in
the set of p× p positive definite matrices Rp×p

++ . However,
we can instead implement the constraint Θ ∈ Rp×p

+ , where
Rp×p

+ denotes the set of p×p positive semidefinite matrices,
and we replace the generalized determinant gdet(Θ), i.e.,
the product of the nonzero eigenvalues of Θ (Kumar et al.,
2020). Then, the generalized graphical lasso formulation
can be presented as

min
Θ

− log gdet Θ+ tr(SΘ) + αϕ(Θ)

s.to Θ ∈ Rp×p
+

We may also reduce the feasible set by requiring that Θ be
a graph Laplacian matrix by the constraint Θ ∈ SL, where

SL=

{
Θ ∈ Rp×p : Θij = Θji ∀ i ̸= j,

Θij ≤ 0 ∀ i ̸= j, Θii = −
∑
j ̸=i

Θij

}
,

thus Θ is positive semidefinite with k zero eigenvalues,
where k is the number of connected components in the
graph corresponding to the support of Θ (Kumar et al.,
2020). Then, we rewrite the graphical lasso problem as

min
Θ

− log gdetΘ+ tr(SΘ) + αϕ(Θ)

s.to Θ ∈ SL.

The graph Laplacian is symmetric with diagonal entries as
linear combinations of the off-diagonal entries, thus there

are p(p − 1)/2 degrees of freedom for estimating Θ. We
introduce the graph Laplacian operator L : Rp(p−1)/2 →
Rp×p (Kumar et al., 2020) to convert a vector to a matrix
with graph Laplacian structure, where we have that

[Lx]ij =

{ −xi+dj
i > j,

[Lx]ji i < j,
−
∑

j ̸=i[Lx]ij i = j

where dj = −j + j−1
2 (2p − j). We let the adjoint L∗ :

Rp×p → Rp(p−1)/2 be defined by

[L∗Y]k = Yii − Yij − Yji + Yjj

where k = i− j + j−1
2 (2p− j), and i > j. Note that L∗ is

defined to satisfy ⟨Lx,Y⟩ = ⟨x,L∗Y⟩ ∀x,Y. Finally, we
also have that the operator norm ∥L∥2 =

√
2p.

We consider the case where we have prior knowledge about
eigenvalues of Θ. If we let Θ = Udiag(λ)U⊤ be the
eigendecomposition of Θ, consider the case where we have
an approximation of λ that we will denote as µ. Then,
we can include the eigendecomposition in the optimization
problem and include the prior knowledge of the eigenvalues
while retaining graph Laplacian characteristics, i.e., at least
one zero-valued eigenvalue. Then, the problem formulation
is

min
w,U,λ

−
∑

i:λi ̸=0

log λi + tr(SLw) + αϕ(w)

s.to w ≥ 0, Lw = Udiag(λ)U⊤, U⊤U = I,

λ1 = 0, λi = µi, i > 1.

However, if we know that µ is an approximation of λ, we
can relax the equality constraints. What follows is the for-
mulation with relaxed equality constraints.

min
w,U,λ

−
∑

i:λi ̸=0

log λi + tr(SLw) + αϕ(w)

+
β

2
∥Lw −Udiag(λ)U⊤∥2F +

γ

2
∥λ− µ∥22

s.to w ≥ 0, U⊤U = I, λ1 = 0 (1)

3. Statistical assumptions
Consider the case where prior statistical knowledge about
the graph structure may be known. Graphs associated
with random graph models exhibit characteristics based
on the model. For example, stochastic blockmodels can be
designed for structures containing communities (Holland
et al., 1983). In our case, we consider the more general ran-
dom graph model, the graphon (Diaconis & Janson, 2007;
Lovász, 2012), which provides a general form for many com-
mon exchangeable distributions on networks. For example,

Submission and Formatting Instructions for ICML 2021

Erdos-Renyi graph models and stochastic blockmodels can
be represented by graphons that are constant or piecewise-
constant, respectively (Erdős & Rényi, 1959; Holland et al.,
1983).

A graphon is a bounded symmetric measurable function
W : [0, 1]2 → [0, 1] whose domain behaves as edges in an
infinitely large adjacency matrix and whose range represents
edge probabilities. Undirected graphs can be generated from
a graphon by (i) assigning each node a random label between
0 and 1, and (ii) assigning an edge between nodes with prob-
ability equal to the value of the graphon at their randomly
sampled labels. The steps can be presented formally as

ζi ∼ Unif([0, 1]) ∀ i ∈ V, (2a)
Sij = Sji ∼ Bern (W (ζi, ζj)) ∀ (i, j) ∈ V × V, (2b)

where the latent variables ζi ∈ [0, 1] are i.i.d. samples
drawn for each node i. The function W can be designed
to be equivalent to existing popular exchangeable graph
models but can also encompass a wider range of graph
structures. Thus, graphons present a flexible model for
families of graphs with similar structural characteristics.
Figure 1 presents examples of families of graphs that can be
described by proper choice of graphon.

Returning to the problem (1), we assume some prior in-
formation about the eigenvalues of the graph Laplacian.
Consider the assumption that the graph to be estimated is
sampled from a graphon W . Then, we have the following
results associating the graph Laplacian spectrum with the
graphon from which the graph is sampled.

Theorem 1 (From (Vizuete et al., 2021)) Let W be a non-
decreasing piecewise-Lipschitz graphon that is bounded
away from zero. Specifically, we have that

|W (x1, y1)−W (x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|)

for constant L and sequence of K non-overlapping intervals
Ik = [αk−1, αk), where 0 = α0 < · · · < αK+1 = 1,
and (x1, y1), (x2, y2) ∈ Ik × Il for any k, l. Furthermore,
we have W (x1, y) ≤ W (x2, y) when x1 ≤ x2, and the
infimum of W is bounded away from zero, W (x, y) ≥ η > 0
for x, y. Then, for a graph G of size p sampled from W ,
where the eigenvalues of the Laplacian matrix of G are
0 = λ1 ≤ · · · ≤ λn, with probability at least 1− 3ν,

∥λ(x)− d(x)∥2 ≤ C0 +
4

√
2

p

√
|||W |||+ C1 + C1

where λ(x) is a piecewise-constant function on x ∈ [0, 1),
i.e., λ(x) = λi/p on x ∈ [i−1

p , i
p) and λ(1) = λp/p,

d(x) =
∫ 1

0
W (x, y)dy, and C0, C1 are constants depen-

dent on ν, L, and η.

Theorem 1 (Vizuete et al., 2021) demonstrates the relation-
ship between the piecewise constant function containing
the sorted eigenvalues of the graph Laplacian and the de-
gree distribution of the nondecreasing graphon. Specifically,
what this result describes is that the Laplacian eigenvalues
become closer to the graphon degree function as the graph
size grows. With this result, we can let the degree distri-
bution of the graphon be µ(x) and apply it in the problem
(1). Application of this result was performed in a similar
manner in (Roddenberry et al., 2021). However, the authors
assume a different graph signal model, and they do not pro-
vide theoretical results. In this work, we investigate the
solution to the optimization problem along with its conver-
gence guarantees for the case of Gaussian graphical model
estimation.

We consider the case where the underlying graphon and
the latent points ζ from (2a) are known and apply the prior
statistical knowledge for graph Laplacian estimation in (1).
In particular, we use the vector µ whose entries correspond
to the value of µ(x) when x takes values of the latent points
ζi in (2b), that is, µi = µ(ζi) for all i.

Remark. Note that in real-world applications, it is unrealis-
tic to assume that the underlying graph family is known. The
graph family may be estimated from empirical observations,
e.g., senate networks that strongly exhibit clustering behav-
ior of nodes based on political party (Navarro et al., 2020;
Zhu et al., 2020). However, in the case where the underlying
graph model cannot be known or estimated, the proposed
method is still feasible via an approximation of the graphon
characteristics. In particular, if a similar graph is available,
i.e., a graph sampled from the same graphon, its degree
vector can be applied in problem (1) as an approximation of
the degree distribution of the graphon. Indeed, as the size
of a sampled graph grows larger, the graph converges to the
underlying graphon in the limit (Lovász, 2012), thus for a
large enough similar graph, the graphon degree distribution
can be approximated adequately based on the application.
For graphical lasso applied to estimate the brain functional
network of a patient who possesses a disease known to al-
ter structural characteristics, the proposed penalty may be
applied via the known brain network of a patient with the
same disease.

4. Algorithm
Problem (1) can be solved by a block majorization-
minimization (MM) algorithm (Kumar et al., 2020), where
each variable w, U, and λ is updated sequentially. We also
show that the proposed update steps converge to the optimal
solution of (1).

Submission and Formatting Instructions for ICML 2021

Figure 1. Examples of graph families generated (and thus represented) by graphons. (Left) Constant graphon to represent Erdős-Rényi
random graphs, where edges between any pair of nodes are equally probable. (Middle) Piecewise-constant graphons represent graphs
associated with stochastic blockmodels, where clusters of nodes are expected. (Right) Graphs with regular-like behavior can be represented
by the graphon W (x, y) = e−ϕ(x−y)2 for a constant ϕ to tune the approximate degree of each node.

4.1. Update for w

We let U and λ be constants and solve the optimization
problem for w. We first consider the case where ϕ(·) =
∥ · ∥1. The problem can be written as

min
w

tr(SLw) +
β

2
∥Lw −Udiag(λ)U⊤∥2F + α1⊤w

s.to w ≥ 0

which is equivalent to

min
w

f(w) =
1

2
∥Lw∥2F − c⊤w

s.to w ≥ 0 (3)

where c = L∗(Udiag(λ)U⊤ − 1
βS) −

α
β1. We optimize

a majorization function of the objective function in (3) to
account for the inequality constraint (Kumar et al., 2020).
Because the objective in (3) is strongly convex, we can write
the majorizer of the objective in (3) as

g(w|w(t))=f(w(t)) + (w −w(t))⊤∇f(w(t))

+
L1

2
∥w −w(t)∥22

where f(w) corresponds to the objective in (3), and L1 =
∥L∥22 = 2p. We can then write the majorized version of the
w update problem as

min
w

1

2
w⊤w −w⊤a

s.to w ≥ 0

where a = w(t) − 1
L1

∇f(w(t)). Then, we can obtain the
optimal solution to the w update via Karush–Kuhn–Tucker
(KKT) conditions as

w(t+1) =

(
w(t) − 1

L1
∇f(w(t))

)
+

(4)

where (x)+ := max{0,x} and ∇f(w) corresponds to the
gradient of the objective in (3).

If we let ϕ(·) = ∥ · ∥0, we can consider an iterative hard
thresholding (IHT) algorithm. In particular, we let α = 0
in (3), obtain the solution (4), and project the result onto
the k-sparse vector via the sparse projection Hk(w) where
[Hk(w)]i = wi when i corresponds to k elements in w
with the largest magnitude, and [Hk(w)]i = 0 otherwise.
We leave implementation of this sparsity penalty and inves-
tigation of its convergence for future work.

4.2. Update for U

For the U-update problem formulation

min
U

β

2
∥Lw −Udiag(λ)U⊤∥2F

s.to U⊤U = I

on the orthogonal Stiefel manifold (Kumar et al., 2020), we
have the solution as the eigenvectors of Lw, that is, U(t+1)

satisfies

U(t+1)diag (λ̄)U(t+1) = Lw(t+1)

where λ̄ is a vector consisting of the eigenvalues of the
current value of Lw(t+1).

4.3. Update for λ

Given the update problem for λ

min
λ

−
∑

i:λi ̸=0

log λi +
β

2
∥Lw −Udiag(λ)U⊤∥2F

+
γ

2
∥λ− µ∥22,

we can rewrite the problem as

min
λ

−
∑

i:λi ̸=0

log λi +
β + γ

2
∥λ− d∥22 (5)

where d = β
β+γU

⊤LwU+ γ
β+γµ. We update λ as

λ
(t+1)
i =

1

2

(
di +

√
d2i +

4

β + γ

)
∀i = 2, 3, . . . , p

and we have that λ(t+1)
1 = 0 as required by the graph Lapla-

cian structure.

Submission and Formatting Instructions for ICML 2021

101 102 103 104

No. of samples

0.3

0.4

0.5

0.6

F
ro
b
en
iu
s
E
rr
or

γ = 0.001

γ = 0.01

γ = 0.1

γ = 1

γ = 10

(a)

102 103 104

No. of samples

0.3

0.4

0.5

0.6

0.7

F
ro
b
en
iu
s
E
rr
or

γ = 0.001

γ = 0.01

γ = 0.1

γ = 1

γ = 10

(b)

Figure 2. (a) Recovery error for 30-node graph sampled from the graphon W (x, y) = 1
2
(x2 + y2) and recovered with the proposed

structured graphical lasso (1) using the true graphon degree distribution. (b) Recovery error for 30-node graph sampled from the graphon
W (x, y) = 1

2
(x2 + y2) and recovered with the proposed structured graphical lasso (1) using an approximation of the graphon degree

distribution obtained from a graph sampled from the same graphon.

5. Convergence results
In this section, we prove that the proposed algorithm up-
dating w(t), U(t), and λ(t) converges to the optimal set of
solutions to (1).

Proof. The proof in this section follows the proof in (Kumar
et al., 2020).

We demonstrate that the points w(∞), U(∞), and λ(∞)

satisfy the KKT conditions of problem (1). First, to apply
the KKT conditions we show that the linear independence
constraint qualification (LICQ) is satisfied for the nonconvex
unitary constraint (U(t))⊤U(t) = I. Consider the set SU =
{U ∈ Rm×n|U⊤U = I}. The set can be rewritten as

SU=

{
U ∈ Rm×n|gij(U) =

p∑
k=1

UkiUkj − δij

∀1 ≤ i ≤ j ≤ n

}

where δij = 1 when i = j and 0 otherwise. Then we ob-
serve that ∇gii(U) has all zero columns except the ith col-
umn, which is Ui, the ith column of U. However, ∇gij(U)
for i ̸= j has all zero columns except the ith and jth, which
are Uj and Ui, respectively. This, each ∇gij(U) is not
able to be expressed as a linear combination of any of the
others, so each ∇gij(U) is linearly independent.

We can then say that a solution to (1) exists and is
bounded because the level set {(w,U,λ)|f(w,U,λ) ≤
f(w(0),U(0),λ(0))} is compact, i.e., closed and bounded.

Each limit of the sequence (w(t),U(t),λ(t)) satisfies the
KKT conditions of problem (1). The Lagrangian function

of (1) is

−
∑

i:λi ̸=0

log λi + tr(SLw) + αϕ(w) +
γ

2
∥λ− µ∥22

+
β

2
∥Lw −Udiag(λ)U⊤∥2F

−m⊤w + tr(M⊤(U⊤U− I))

where m and M are dual variables.

The KKT conditions of (1) with respect to w are

L∗Lw − L∗(Udiag(λ)U⊤ − β−1S)− β−1m = 0

m⊤w = 0

w ≥ 0

m ≥ 0.

Furthermore, the update for w that solves (3) is derived
from the KKT conditions of (3)., which is equivalent to the
KKT conditions above for w.

For λ, the update is derived by the KKT conditions of (5),
which are equivalent to the KKT conditions of (1).

The KKT conditions for U are

Udiag(λ)2 − LwUdiag(λ) +
1

2β
(M+M⊤) = 0

U⊤U = I.

Furthermore, we have from (Kumar et al., 2020) that

LwUdiag(λ)−U

(
U⊤LwUdiag(λ)

− 1

2

(
U⊤LwUdiag(λ)− diag(λ)U⊤LwU

))

Submission and Formatting Instructions for ICML 2021

due to U admitting the first order optimality condition on the
orthogonal Stiefel manifold. Since U⊤LwU is a diagonal
matrix from the update of U, there must be a M such that U
satisfies the KKT conditions. Therefore, all three variables,
and thus the tuple of iterates (w(t),U(t),λ(t)) satisfy the
KKT conditions for (1).

6. Numerical Experiments
We demonstrate the efficacy of our proposed method for in-
ferring a synthetic Gaussian graphical model with prior sta-
tistical information. We generate networks from the graphon
W (x, y) = 1

2 (x
2 + y2) of p = 30 nodes. First, we con-

sider the effects of applying the spectral penalty given the
underlying graphon. Figure 2 (a) demonstrates the results
of applying (1) with the known graphon degree distribution.
We observe that the applying the spectral penalty exhibits
improved performance in estimation.

Note that the underlying graphon may not be available in
practice. We also demonstrate the application of our method
with an approximation of the graphon degree distribution,
i.e., the degree vector of a similar graph. In Figure 2 (b),
the application of the spectral penalty with an approxima-
tion of the graphon degree distribution also demonstrates
improved performance, validating our proposed method in
more realistic circumstances.

7. Conclusion
In this paper we demonstrate a modification to the clas-
sic graphical lasso algorithm to incorporate prior structural
information for improved graph estimation error. We pro-
vided an algorithm for solving the objective with spectral
constraints via a block MM method and presented a proof
of convergence. Numerical experiments were conducted
to evaluate the efficacy of the method in practice and ob-
served an improved inference error when the true graphon
is known a priori and in a more realistic scenario with an
approximated graphon distribution.

We plan to conduct more numerical experiments to better
understand the efficacy of the algorithm with different num-
bers of nodes. Also, we plan to use the algorithm on real
datasets to test the practical benefits of our method. Lastly,
we plan to extend the algorithm to encompass a joint in-
ference scheme, meaning we infer a set of graphs sampled
from the same graphon rather than a single graph.

References
Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Struc-

tured sparsity through convex optimization. Statistical
Science, 27(4):450–468, 2012.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Diaconis, P. and Janson, S. Graph limits and exchangeable
random graphs. arXiv preprint arXiv:0712.2749, 2007.

Erdős, P. and Rényi, A. On random graphs I. Publicationes
Mathematicae, 1959.

Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse
covariance estimation with the graphical lasso. Biostatis-
tics, 9(3):432–441, 2008.

Hao, D., Ren, C., and Li, C. Revisiting the variation of
clustering coefficient of biological networks suggests new
modular structure. BMC Systems Biology, 6(1):1–10,
2012.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social Networks, 5(2):109–137,
1983.

Kumar, S., Ying, J., de Miranda Cardoso, J. V., and Palomar,
D. P. A unified framework for structured graph learning
via spectral constraints. J. Mach. Learn. Res., 21(22):
1–60, 2020.

Lovász, L. Large networks and graph limits, volume 60.
American Mathematical Soc., 2012.

Luo, X. A hierarchical graphical model for big inverse
covariance estimation with an application to fMRI. arXiv
preprint arXiv:1403.4698, 2014.

Navarro, M., Wang, Y., Marques, A. G., Uhler, C., and
Segarra, S. Joint inference of multiple graphs from matrix
polynomials. arXiv preprint arXiv:2010.08120, 2020.

Roddenberry, T. M., Navarro, M., and Segarra, S. Network
topology inference with graphon spectral penalties. In
ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
5390–5394. IEEE, 2021.

Slawski, M., zu Castell, W., and Tutz, G. Feature selection
guided by structural information. The Annals of Applied
Statistics, 4(2):1056–1080, 2010.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight,
K. Sparsity and smoothness via the fused lasso. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1):91–108, 2005.

Vizuete, R., Garin, F., and Frasca, P. The Laplacian spec-
trum of large graphs sampled from graphons. IEEE Trans-
actions on Network Science and Engineering, 8(2):1711–
1721, 2021. doi: 10.1109/TNSE.2021.3069675.

Submission and Formatting Instructions for ICML 2021

Yang, S., Sun, Q., Ji, S., Wonka, P., Davidson, I., and Ye,
J. Structural graphical lasso for learning mouse brain
connectivity. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 1385–1394, 2015.

Zhu, Y., Schaub, M. T., Jadbabaie, A., and Segarra, S. Net-
work inference from consensus dynamics with unknown
parameters. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 6:300–315, 2020.

Accelerated Methods for Non-Convex Optimization in Machine Learning

Xiaochen Long * 1 Yangfan Ren * 1 Peng Yang * 1

Abstract
Non-convex problems have received considerable
attention in optimization and machine learning
in recent years. However, solving non-convex
problems could be NP-hard and computation-
ally challenging. Therefore, acceleration for non-
convex optimization has become an interesting
topic. This report reviews two papers about accel-
erated methods (momentum) for non-convex opti-
mization. The first paper explores a general non-
convex optimization setting and proposes a first-
order method that converges to a second-order
stationary point with acceleration compared to
gradient descent. The second paper focuses on
two specific deep neural networks and theoret-
ically proves an accelerated linear convergence
rate using Polyak’s momentum gradient descent.

1. Introduction
A non-convex optimization problem is any problem where
either the objective or any of the constraints are non-convex
and it involves a wide range of study (e.g. machine learning,
signal processing, etc.). However, the most common opti-
mizers (e.g. gradient descent) for minimizing a non-convex
optimization problem is challenging, due to the fact the
objective function may have multiple local minimas, sad-
dle points, very flat regions and widely varying curvatures.
Moreover, it is computationally intractable to find a global
solution for this kind of problems, hindering the application
to large-scale datasets. In general, there is no method that
can solve this problem effectively in all cases, but several
methods published in the literature are trying to address it in
different scenarios and improve the learning rate (Carmon
et al., 2018; Wang et al., 2021b; Kim et al., 2021).

There are substantial work on the convergence properties of
optimization methods for non-convex problems in machine

*Equal contribution 1Department of Statistics, Rice Uni-
versity, Houston, USA. Correspondence to: Xiaochen Long
<xl81@rice.edu>, Yangfan Ren <yr14@rice.edu>, Peng Yang
<py11@rice.edu>.

Project report for COMP414/514, Rice CS. Copyright 2021 by the
author(s).

learning. Some recent work focuses on achieving stronger
local optima than the simple first-order stationary points
(Anandkumar & Ge, 2016; Ge et al., 2015; Lee et al., 2016).
Other research investigates the acceleration on convergence
rate (Allen-Zhu & Hazan, 2016; Reddi et al., 2016) and one
of the most popular techniques is to incorporate momentum
(Ghadimi & Lan, 2016; Li & Lin, 2015). Nesterov and
Polyak (Nesterov & Polyak, 2006) introduce the Hessian
information to achieve a better convergence rate by the
cubic-regularized Newton method.

The main motivation of our review is to introduce two state-
of-the-art theoretical analysis of accelerated methods for
non-convex optimization. In particular, we will cover the
two papers:

• Carmon, Yair, et al. ”Accelerated methods for noncon-
vex optimization.” SIAM Journal on Optimization 28.2
(2018): 1751-1772.

• Wang, Jun-Kun, Chi-Heng Lin, and Jacob D. Aber-
nethy. ”A Modular Analysis of Provable Accelera-
tion via Polyak’s Momentum: Training a Wide ReLU
Network and a Deep Linear Network.” International
Conference on Machine Learning. PMLR, 2021.

2. Accelerated gradient methods for
non-convex optimization

This paper considers a general optimization problem

min
x∈Rd

f (x) (1)

where f has both Lipschitz continuous gradient and Hes-
sian, but is not limited to convex functions. Since finding
a global optimizer is NP hard, the authors can instead look
for stationary points with small enough gradient.

The accelerated method from this paper leverages two com-
peting techniques. The first one is based on the knowledge
that moving along the direction of negative curvature for a
locally non-convex function will reduce the objective. This
technique is widely used in cubic regularization(Nesterov &
Polyak, 2006) and escaping from saddle points(Anandkumar
& Ge, 2016; Ge et al., 2015). The second one is to apply
proximal point techniques(Parikh & Boyd, 2014) and ac-
celerated gradient descent to an almost-convex function

Submission and Formatting Instructions for ICML 2021

to obtain acceleration. This is the more important part to
achieve faster convergence rates for this method. In addition,
the authors use PCA to approximate eigenvector faster.

2.1. Two structured non-convex problems

Roughly, the overall algorithm will be to alternate between
finding directions of negative curvature of f and solving
structured sub-problems that are nearly convex, meaning
that the smallest eigenvalue of the Hessian has a lower bound
γ, γ > 0, where γ ≪ L1. This paper turn to each of these
pieces in turn.

2.1.1. EXPLOITING NEGATIVE CURVATURE

The idea of exploiting the negative curvature is to find a
neighborhood where f is almost convex.

Definition 1 (Almost convexity) A function f is σ1-
strongly convex if σ1

2 ∥y−x∥2 ≤ f (y)− f (x)−∇ f (x)T (y−x) for
some σ1 ∈ R. For γ = max{−σ1, 0}, we call such functions
γ-almost convex.

Lemma 2.1 Suppose f is (−σ1)-strongly convex, where
σ1 ≥ 0. Then for any x0 ∈ R

d the function g(x) =
f (x) + σ1∥x − x0∥

2 is (σ1)-strongly convex.

By these definitions, one can easily know that
λmin(∇2 f (x)) ≤ −α =⇒ α-almost convexity. Using
this property, this paper developed an algorithm to reach
almost convex neighborhood.

Algorithm 1 Negative-Curvature-Descent
Input: z1, f , L2, α, ∆ f , δ
Set δ′ = δ/(1 + 12L2

2∆ f /α
3)

for i = 1, 2, . . . do
Find a vector v j such that ∥v j∥ = 1 and, with probability
at least 1 − δ′,

λmin(∇2 f (z j)) ≥ vT
j ∇

2 f (z j)v j − α/2

using a leading eigenvector computation
if vT

j ∇
2 f (z j)v j ≤ −α/2 then

Let

z j+1 ← z j −
2|vT

j ∇
2 f (z j)v j|

L2
sign(vT

j ∇ f (z j))v j

else
Return z j

end if
end for

For the leading eigenvector computation, the Lanczos
method(Kuczynski & Wozniakowski, 1992) achieves the
following guarantee:

Lemma 2.2 (Accelerated top eigenvector computation)
Let H ∈ Rd×d be symmetric and PSD. There exists an algo-
rithm that on input ε, δ ∈ (0, 1) runs in O(L2 log(d/δ)ε−1/2)
time and, with probability at least 1 − δ, returns a relative
ε-approximate leading eigenvector v̂.

Furthermore, the time complexity of the Negative-
Curvature-Descent is given below in this lemma:

Lemma 2.3 Let the function f be L1-smooth and have L2-
Lipschitz continuous Hessian, α > 0, 0 < δ < 1 and z1 ∈ R

d.
If we call Negative-Curvature-Descent(z1, f , L2, α, ∆ f , δ)
then the algorithm terminates at iteration j for some

j ≤ 1 +
12L2

2(f (z1) − f (z j))
α3 ≤ 1 +

12L2
2∆ f

α3 , (2)

and with probability at least 1 − δ

λmin(∇2 f (z j)) ≥ −α. (3)

Furthermore, each iteration requires time at most

O

Tgrad

1 + √
L1

α
log

d
δ

1 + 12
L2

2∆ f

α3

 . (4)

where Tgrad is defined below:

Assumption 1 The following operations take O(Tgrad)
time:

1. The evaluation ∇ f (x) for a point x ∈ Rd.

2. The evaluation of ∇2 f (x)v for some vector v ∈ Rd and
point x ∈ Rd.

3. Any arithmetic operation (addition, subtraction or mul-
tiplication) of two vectors of dimension at most d.

Therefore, by applying the Negative-Curvature-Descent
method, the algorithm can find a neighborhood around z j

where f is α-almost convex with complexity guaranteed by
the bound above. The next step is to find a stationary point
in the α-almost convex neighborhood.

2.1.2. ACCELERATED GRADIENT DESCENT FOR ALMOST
CONVEX FUNCTIONS

This paper uses the Nesterov’s accelerated momentum
method:

Submission and Formatting Instructions for ICML 2021

Algorithm 2 Accelerated-Gradient-Descent
Input: f , y1, ϵ, L1, σ1
Set κ = L1/σ1 and z1 = y1
for j = 1, 2, . . . do

if ∥∇ f (y j)∥ ≤ ϵ then
Return y j

end if
Let

y j+1 = z j −
1
L1
∇ f (z j)

z j+1 =

(
1 +
√
κ − 1
√
κ + 1

)
y j+1 −

√
κ − 1
√
κ + 1

y j

end for

Note that this is a nonconvex case (although almost con-
vex), so the authors don’t directly implement the method
for optimization. Instead of miniming f , given the α-almost
convexity, the paper considered the convex optimization
problem:

min
z

g j(z) := f (z) + γ∥z − z j∥
2

where z j is the jth iteration. When g j(z) converges, the
authors show that ∥∇ f (z)∥ also converges. The algorithm
for convergence in almost convex neighborhood is named
Almost Convex AGD:

Algorithm 3 Almost-Convex-AGD
Input: f , z1, ϵ, γ, L1
for j = 1, 2, . . . do

if ∥∇ f (z j)∥ ≤ ϵ then
Return z j

end if
Let g j(z) = f (z) + γ∥z − z j∥

2

ϵ′ = ϵ
√
γ/(50(L1 + 2γ))

z j+1 ← Accelerated-Gradient-Descent(g j, z j, ϵ′, L1, γ)

end for

Lemma 2.4 Let f be be min{σ1, 0}-almost convex and L1-
smooth. Let γ ≥ σ1 and let 0 < γ ≤ L1. Then ALMOST-
CONVEX-AGD(f ,z1,ϵ,γ,L1) returns a vector z such that
∥∇ f (z)∥ ≤ ϵ and

f (z1) − f (z) ≥ min
{
γ∥z − z1∥

2,
ϵ
√

10
∥z − z1∥

}
(5)

in time

O

Tgrad

√

L1

γ
+

√
γL1

ϵ2
(f (z1) − f (z))

 log
2 + L3

1∆ f

γ2ϵ2

 .
(6)

With these tools above with the guarantee of convergence,
the paper proposes a leveraging method for smooth non-
linear optimization.

2.2. Acceleration of smooth non-linear optimization

Given the two subroutines, the idea of the accelerated
method for non-convex optimization can be illustrated by
the following steps :

• Use NEGATIVE-CURVATURE-DESCENT to find a
point x̂k where the function is locally α-almost convex.

• Add a convex penalty ρα(x) := L1

[
∥x∥ − α

L2

]
+

on the
function f (x) where [t]+ = max{t, 0} and obtain fk(x) =
f (x) + ρα(x − x̂k) which is proved to be globally 3α-
almost convex and 5L1-smooth.

• Apply ALMOST-CONVEX-AGD on the function fk(x)
to reduce f (x) efficiently.

The procedure is iterated until reaching a point with our
desired accuracy. The detailed steps are shown in Algorithm
4.

The parameter α controls the extent of non-convexity which
can be chosen specifically to obtain an accelerated conver-
gence rate compared with gradient descent on non-convex
function. Theorem 2.5 indicates that this algorithm can con-
verge to a second-order stationary point in time polynomial
in the desired accuracy with logarithmic dependence on the
problem dimension.

Theorem 2.5 Assume function f : Rd → R has L1-
Lipschitz continuous gradient and L2-Lipschitz continu-
ous Hessian, but may be non-convex. Then with prob-
ability at least 1 − δ, ACCELERATED-NON-CONVEX-
METHOD (x1, f , ϵ, L1, L2, α,∆ f , δ) returns a second-order
stationary point in desired accuracy ϵ with α =

min{L1,max{ϵ2∆−1
f , ϵ

1/2L1/2
2 } and δ ∈ (0, 1). Specifically,

the stationary point x satisfies

∥∇ f (x)∥ ≤ ϵ and λmin(∇2 f (x)) ≥ −2ϵ1/2L1/2
2

where λmin is the smallest eigenvalue. The convergence rate
is

O
(
Tgrad

(
∆ f L1/2

1 L1/4
2 ϵ

−7/4 + ∆
1/2
f L1/2

1 ϵ
−1 + 1

)
logτ

)
,

where τ = 1 + 1/ϵ + 1/δ + d + L1 + L2 + ∆ f and Tgrad is
defined in Assumption 1.

If the accuracy ϵ is small enough, i.e., smaller or equal to
(∆2

f /L2)−1/3, then the result can be simplified with conver-

gence rate to be at most Õ(Tgrad∆ f
L1/2

1 L1/4
2

ϵ7/4
).

Submission and Formatting Instructions for ICML 2021

Algorithm 4 Acceleration of smooth non-linear optimiza-
tion (ACCELERATED-NON-CONVEX-METHOD)

Input: x1, f , ϵ, L1, L2, α,∆ f , δ

Set K := ⌈1 + ∆ f (12L2
2/α

3 +
√

10L2/(αϵ))⌉
Set δ: = δ

K
for k = 1, 2, . . . do

if α < L1 then
x̂k ← NCD(xk, f , L2, α,∆ f , δ

)

else
x̂k ← xk

end if
if ∥∆ f (x̂k) ≤ ϵ then

return x̂k {guarantees w.h.p., λmin(∇2 f (x̂k)) ≥
−2α}

end if
Set fk(x) = f (x) + L1([∥x − x̂k∥ − α/L2]+)2

x̂k+1 ← ALMOST-CONVEX-AGD(fk, x̂k, ϵ/2, 3α, 5L1)
end for

where NCD denotes NEGATIVE-CURVATURE-
DESCENT.

Table1 compares the running time with related algorithms.
Among five algorithms, three of them could target non-
convex functions. Algorithm4 has an obvious acceleration
compared to gradient descent. Although the convergence
rate of cubic-regularized Newton method is faster in terms
of number of gradient calculations, it requires either explic-
itly or approximately calculation of Hessian matrix in each
iteration which increases computational cost. Although a
number of researchers work on approximate Hessian meth-
ods which provide satisfied empirical results(Bianconcini
et al., 2015; Cartis et al., 2011), they do not improve on the
complexity of gradient descent.

In summary, there are two main advantages of
ACCELERATED-NON-CONVEX-METHOD. The first
one is the acceleration on the complexity of gradient de-
scent in terms of number of gradient calculations with only
first-order information. Therefore, the method is Hessian
free which avoids the computational cost from Hessian cal-
culations that second-order methods normally require. The
second one is the convergence to second-order stationary
points which are better approximations of local minimizers.
Another notable result is the modification on strict-saddle
functions (Lee et al., 2016; Ge et al., 2015) which achieves
linear convergence rates.

3. Acceleration via Polyak’s Momentum for
deep neural network

Incorporating a so-called ”momentum” dynamic in gradient
descent methods is widely used in training neural networks
in various applications (He et al., 2016; Vaswani et al., 2017;

Algorithm 5 Gradient descent with Polyak’s momentum
Required: step size η and momentum parameter β.
Init: w0 = w−1 ∈ R

d

for t = 0 to T do
Given current iterate wt, obtain graident ∇l(wt)
update iterate wt+1 = wt − η∇l(wt) + β(wt − wt−1)

end for

Krizhevsky et al., 2012). The most popular one, among all
the momentum methods, seems to be Polyak’s momentum
(Polyak, 1964) as shown in Algorithm 5, which is the de-
fault choice of momentum in PyTorch and Tensorflow. In
the algorithm, if β = 0, it essentially performs a gradient
descent. When β , 0, the momentum accelerate the opti-
mization process by the direction from the pervious step to
the current. The success of Polyak’s momentum has been
widely recognized and been adopted to many recently devel-
oped adaptive gradient methods like Adam(Kingma & Ba,
2014), AMSGrad (Reddi et al., 2019), and AdaBound(Luo
et al., 2019).

However, despite its popularity, little is known in theory that
explains why Polayk’s momentum would result in accelera-
tion of training deep neural network. Recent work (Wang
et al., 2021a) shows that Polyak’s momentum helps escape
saddle points faster compared with the case without momen-
tum, which seems the only provable advantage of Polyak’s
momentum in non-convex optimization. Therefore, we are
focusing on the understand of theoretical performance of
Polyak’s momentum method on a specific non-convex prob-
lem, which is deep neural network.

3.1. One-layer ReLU network

To maintain consistency, we follow the same framework as
previous results(Du et al., 2018; Arora et al., 2019; Song
& Yang, 2019) of studying one-hidden layer ReLU neural
network and it follows the form,

NReLU
W (x) :=

1
√

m

m∑
r=1

arσ(⟨w(r), x⟩), (7)

where σ(z) := z · 1{z ≥ 0} is the ReLU activation function,
w(1), . . . ,w(m) ∈ Rd are the weights of m neurons on the
fist layer, a1, . . . , am ∈ R are weights on the second layer,
and NReLU

W (x) is the output predicted on input x. Assume n
number of samples {xi ∈ R}

n
i=1 is given. Following previous

work(Du et al., 2018; Arora et al., 2019; Song & Yang,
2019), we define a Gram matrix H ∈ Rn×n for the weights
W and its expectation H̄ ∈ Rn×n over the random draws

Submission and Formatting Instructions for ICML 2021

Table 1. Running time comparisons for finding a first-order stationary point.

OF ITERATIONS HESSIAN
FREE?

GRADIENT
LIPSCHITZ?

HESSIAN
LIPSCHITZ?

CONVEX f ?

GRADIENT DESCENT
(NON-CONVEX CASE)

O(∆ f L1ϵ
−2) YES YES NO NO

GRADIENT DESCENT
(CONVEX CASE)

O(RL1ϵ
−1) YES YES NO YES

PROXIMAL ACCELERATED
GRADIENT DESCENT

Õ((RL1)
1
2 ϵ−

1
2) YES YES NO YES

CUBIC-REGULARIZED
NEWTON METHOD

Õ(∆ f L
1
2
2 ϵ
− 3

2) NO YES YES NO

ALGORITHM 1 Õ(∆fL
1
2
1 L

1
4
2 ϵ
− 7

4) YES YES YES NO

w(r) ∼ N(0, Id) ∈ Rd whose i, j entries are defined as follow,

H(W)i, j :=
m∑

r=1

xT
i x j

m
1{⟨w(r), xi⟩ ≥ 0 & ⟨w(r), x j⟩}

H̄i, j := Ew(r) [xT
i x j1{⟨w(r), xi⟩ ≥ 0 & ⟨w(r), x j⟩}].

Previous work (Du et al., 2018) shows the dynamics of pre-
diction space is governed by the spectral property of Gram
matrix (which can vary in each iteration) and as long as the
least eigenvalue is lower bounded, gradient descent enjoys
a linear rate. Further, the Gram matrix at later iterations is
close to that in the initialization phase. Along with the ob-
servation that Gram matrix is only related to the activation
patterns (1{wT

r wi}), the Gram matrix is close to its initial-
ization. Then this property give us the insights to prove the
convergence results on ReLU activated neural networks.

Prior work (Du et al., 2018; Wu et al., 2019) showed that
using vanilla gradient descent for one-layer wide ReLU
network with a step size η = 1

c1λmin(H̄) leads to a convergence
rate (1 − 1

c2κ
′) for some quantities c1, c2 > 0, where κ

′

is the
condition number of a Gram matrix. However, the quantities
c1 and c2 are not universal constants and actually depend on
the problem parameter (e.g. λmin(H̄), n, δ). Therefore, we
aim to improve this dependency in this work.

Theorem 3.1 Assume that λ := 3λmin(H̄)
4 > 0 and that w(r)

0 ∼

N(0, Id) and ar uniformly sampled from {−1, 1}. Denote
λmax := λmax(H̄) + λmin(H̄)

4 , κ := λmax(H̄)
λmin(H̄) , and denote κ̂ :=

λmax/λ = 4(κ + 1)/2. Set a constant step size η = 1
λmax

, fix
momentum parameter β = (1 − 1

2κ̂)
2, and the final set the

number of network nodes m = Ω(λ−4n4κ2log3(n/δ)). Then,
with probability at least 1− δ over the random initialization
gradient descent with Polyak’s momentum staisfies for any
t,

||ξt, ξt−1|| ≤ (1 −
1

4
√
κ̂

)t8
√
κ̂||ξ0, ξ−1||. (8)

Therefore, Theorem 3.1 essentially shows an accelerated
linear rate (1 − Θ(1

√
κ
)) and this rate has an improved depen-

dency on the condition number.

3.2. Deep linear Network

In this paper, following previous work(Du & Hu, 2019; Hu
et al., 2020), we studied training a L−layer linear network
of the form,

NL−linear
W (x) :=

1√
mL−1dy

W (L)W (L−1) . . .W (1)x, (9)

where W (l) ∈ Rdl×dl−1 is the weight matrix of the layer l ∈ [L],
and d0 = d, dL = dy and dl = m for l , 1, L. Therefore,
except the fist layer W (1) ∈ Rm×d and the last layer W (L) ∈

Rdy×m, all the intermediate layers are m × m square matrics.

Similarly, prior work(Hu et al., 2020) shows with proper
choice of step size η = dy

2Lσ2
max(X) , it leads to a linear conver-

gence rate with error decays (1 − 1
κ
)t after t iterations. In

this work, we aim to investigate the theoretical performance
of Polay’s momentum method on deep linear network.

Theorem 3.2 Denote λ := Lσ2
min(X)
dy

and κ := σ2
max

σ2
min(X) . Set a

constant step size η = dy

2Lσ2
max(X) , fix momentum parameter

β = (1 − 1
2
√
κ
)2, and finally set a parameter m that controls

the width m ≥ C κ5

σ2
max(X) (dy(1 + ||W∗||22 + log(r̄/δ))) and m ≥

max{dx, dy} for some constant C > 0. Then, with probability
at least 1 − δ over the random orthogonal initialization,
gradient descent with Polyak’s momentum satisfies for any
t,

||ξt, ξt−1|| ≤ (1 −
1

4
√
κ

)t8
√
κ||ξ0, ξ−1||. (10)

Therefore, Theorem 3.2 essentially shows an accelerated
linear rate (1 − Θ(1

√
κ
)) and this result also suggests that the

depth does not hurt optimization.

Submission and Formatting Instructions for ICML 2021

4. Discussion
In this report, we review two papers about theoretical anal-
ysis of accelerated methods (momentum) for non-convex
problems. Non-convex optimization is an interesting topic
as it provides flexibility and modeling power. On the one
hand, higher demands of high dimensional spaces in appli-
cations require some structural constraints on the learning
models such as sparsity and low-rank which are often non-
convex. On the other hand, the objective of some learning
tasks is naturally a non-convex function including training
deep neural networks and tensor decomposition problems.
The simplest method for obtaining a stationary point of non-
convex objective is gradient descent. In recent years, there
are substantial literature working on accelerated techniques
which are successful in practice. However, it is challeng-
ing to provide theoretical guarantees for their convergence
properties.

The first paper we review carefully combines of two subrou-
tines to achieve a better convergence rate. The crux of the
fast algorithm is a variant of Nesterov’s classical acceler-
ated gradient descent (momentum) under the almost-convex
assumption. The significance of the method lies in the
acceleration convergence rates for finding a second-order
stationary point with first-order information. Nevertheless,
the updating rule in negative curvature descent might not
have been sufficiently studied and optimized. Moreover,
as the method is Hessian-free on the ALMOST-CONVEX-
AGD step, it still requires information from the Hessian
matrix while calculating the negative curvature. The space
for improvements from better descent methods in this part
remains to be explored in the future.

The second paper we reviewed mainly discusses why the
momentum-based method would result in accelerated con-
vergence results for training the deep neural networks. Pre-
vious work only shows linear convergence rate by using
vanilla gradient for training one-layer ReLU network and
deep linear network (without activation function). By prop-
erly choosing learning rate and momentum parameter, the
paper theoretically proved an accelerated linear convergence
rate using Polyak’s momentum gradient descent. Even
though these two networks are perhaps the most popular
canonical models for studying optimization and deep learn-
ing in the literature, the theoretical performance remains
unknown for deep networks (with activation functions).
Besides, there are more widely used adaptive gradient de-
scent methods like Adam (Kingma & Ba, 2014), AMSGrad
(Reddi et al., 2019) and AdaBound (Luo et al., 2019) for
training deep neural network. However, the theoretical guar-
antees of these methods are only worse if the momentum
parameter is non-zero and it deteriorates as the momentum
parameter increase for convex problem (Alacaoglu et al.,
2020). Therefore, it is worth investigating the convergence

performance of adaptive related gradient descent methods
for non-convex cases.

In addition to the methods we present in this report, there
is also literature discussing other accelerated methods on
non-convex problems. For methods applied to general
non-convex smooth functions, Agarwal et al. (Agarwal
et al., 2016) propose FastCubic algorithm, a second-order
method based on the cubic-regularized Newton method.
The convergence rate is proved to be identical to that from
the ACCELERATED-NON-CONVEX-METHOD(Carmon
et al., 2018). However, Jin et al (Jin et al., 2018) mentions
that these methods (Agarwal et al., 2016; Carmon et al.,
2018) both rely on more complex mechanisms and propose
a simple momentum-based algorithm (PAGD for “perturbed
AGD”) which achieves the same convergence rates.

Besides the effort in general non-convex situations, some
non-convex accelerated methods are developed for specific
problems. Kim et al (Kim et al., 2021) proposed Momentum-
Inspired Factored Gradient Descent (MiFGD), which ex-
tends the applicability of quantum tomography for larger
systems. The method converges ”provably” to the true den-
sity matrix at a linear rate, in the absence of experimen-
tal and statistical noise, and under common assumptions.
Allen-Zhu (Allen-Zhu, 2017) proposed Katyusha momen-
tum, a novel “negative momentum” on top of Nesterov’s
momentum for non-convex optimization in stochastic set-
tings (SGD), which can also be incorporated into a variance-
reduction based algorithm and speed it up, both in terms of
sequential and parallel performance. This also sheds light
on the spaces for improvement by combining momentum
and SGD.

References
Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and Ma,

T. Finding local minima for nonconvex optimization in
linear time. arXiv preprint arXiv:1611.01146, 2016.

Alacaoglu, A., Malitsky, Y., Mertikopoulos, P., and Cevher,
V. A new regret analysis for adam-type algorithms. In
International Conference on Machine Learning, pp. 202–
210. PMLR, 2020.

Allen-Zhu, Z. The first direct acceleration of stochastic
gradient methods. Journal of Machine Learning Research,
18(1):8194–8244, 2017.

Allen-Zhu, Z. and Hazan, E. Variance reduction for faster
non-convex optimization. In International conference on
machine learning, pp. 699–707. PMLR, 2016.

Anandkumar, A. and Ge, R. Efficient approaches for escap-
ing higher order saddle points in non-convex optimization.
In Conference on learning theory, pp. 81–102. PMLR,
2016.

Submission and Formatting Instructions for ICML 2021

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-grained
analysis of optimization and generalization for overpa-
rameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR,
2019.

Bianconcini, T., Liuzzi, G., Morini, B., and Sciandrone, M.
On the use of iterative methods in cubic regularization for
unconstrained optimization. Computational Optimization
and Applications, 60(1):35–57, 2015.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Ac-
celerated methods for nonconvex optimization. SIAM
Journal on Optimization, 28(2):1751–1772, 2018.

Cartis, C., Gould, N. I., and Toint, P. L. Adaptive cubic
regularisation methods for unconstrained optimization.
part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

Du, S. and Hu, W. Width provably matters in optimization
for deep linear neural networks. In International Con-
ference on Machine Learning, pp. 1655–1664. PMLR,
2019.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from sad-
dle points—online stochastic gradient for tensor decom-
position. In Conference on learning theory, pp. 797–842.
PMLR, 2015.

Ghadimi, S. and Lan, G. Accelerated gradient methods
for nonconvex nonlinear and stochastic programming.
Mathematical Programming, 156(1-2):59–99, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, W., Xiao, L., and Pennington, J. Provable benefit of or-
thogonal initialization in optimizing deep linear networks.
arXiv preprint arXiv:2001.05992, 2020.

Jin, C., Netrapalli, P., and Jordan, M. I. Accelerated gra-
dient descent escapes saddle points faster than gradient
descent. In Conference On Learning Theory, pp. 1042–
1085. PMLR, 2018.

Kim, J. L., Kollias, G., Kalev, A., Wei, K. X., and Kyrillidis,
A. Fast quantum state reconstruction via accelerated non-
convex programming. arXiv preprint arXiv:2104.07006,
2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:
1097–1105, 2012.

Kuczynski, J. and Wozniakowski, H. Estimating the largest
eigenvalue by the power and lanczos algorithms with
a random start. SIAM journal on matrix analysis and
applications, 13(4):1094–1122, 1992.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Con-
ference on learning theory, pp. 1246–1257. PMLR, 2016.

Li, H. and Lin, Z. Accelerated proximal gradient meth-
ods for nonconvex programming. Advances in neural
information processing systems, 28:379–387, 2015.

Luo, L., Xiong, Y., Liu, Y., and Sun, X. Adaptive gradient
methods with dynamic bound of learning rate. arXiv
preprint arXiv:1902.09843, 2019.

Nesterov, Y. and Polyak, B. T. Cubic regularization of
newton method and its global performance. Mathematical
Programming, 108(1):177–205, 2006.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in optimization, 1(3):127–239, 2014.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. Ussr computational mathematics
and mathematical physics, 4(5):1–17, 1964.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A.
Stochastic variance reduction for nonconvex optimization.
In International conference on machine learning, pp. 314–
323. PMLR, 2016.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237,
2019.

Song, Z. and Yang, X. Quadratic suffices for over-
parametrization via matrix chernoff bound. arXiv preprint
arXiv:1906.03593, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, J.-K., Lin, C.-H., and Abernethy, J. Escaping saddle
points faster with stochastic momentum. arXiv preprint
arXiv:2106.02985, 2021a.

Wang, J.-K., Lin, C.-H., and Abernethy, J. D. A modular
analysis of provable acceleration via polyak’s momentum:
Training a wide relu network and a deep linear network.
In International Conference on Machine Learning, pp.
10816–10827. PMLR, 2021b.

Submission and Formatting Instructions for ICML 2021

Wu, X., Du, S. S., and Ward, R. Global convergence of adap-
tive gradient methods for an over-parameterized neural
network. arXiv preprint arXiv:1902.07111, 2019.

A Brief Survey of Random Features for Kernel Approximations

Boyuan Deng * 1 Erin Liu * 1

Abstract
This literature review gives a survey of the vari-
ous methods to approximate kernel functions us-
ing random features. Since Rahimi and Racht
published their paper to introduce the method of
Random Fourier Feature (RFF) in 2007 (Rahimi
& Recht, 2007), it has attracted huge amount of
attention in the field. Starting from there, there
are so many developments coming out of RFF
that it merit a detailed record of the motivation,
background and contributions of these random
approximation methods. We use the categoriza-
tion suggested by (Liu et al., 2021a) to divide
all RFF variants into two broad categories based
on whether training data is taken into account in
the training procedure, and introduce two repre-
sentatives in each category. The highlights and
comparisons of these methods will be discussed,
and overall this paper seeks to serve as a gentle in-
troduction to this intriguing sub-field of machine
learning.

1. Introduction
Kernel method is a well-studied, powerful tool to learn non-
linear decision boundaries in supervised machine learning
algorithms like Support Vector Machine. The natural solu-
tion to the problem of non-linearity is to project the data to
another, often much higher-dimensional, space in the hope
that they will be linearly separable there. This procedure
would easily incur large computation and storage cost in
the algorithm: a huge amount of computation is required to
project the data, higher-dimensional data become compu-
tationally infeasible in vanilla training procedure, and the
transformed data require much larger storage space. This
easily becomes a problem as the size of the dataset grows.

Another way to view the problem at higher dimensional
space is that the information included in inner product of

*Equal contribution 1Department of Computer Science, Rice
University, Houston, Texas, United States. Correspondence to:
Anastasios Kyrillidis <anastasios@rice.edu>.

Project report for COMP414/514, Rice CS. Copyright 2021 by the
author(s).

the points, instead of the exact location of the point itself,
could be exploited. More specifically, let the projection
function be Φ, define the corresponding kernel function
k(x, y) = ⟨Φ(x), Φ(y)⟩, with ⟨·, ·⟩ being certain valid in-
ner product in the higher dimensional space related to ϕ.
The result of an inner product is a real number, which is
much easier to deal with in machine learning algorithms.
Another great news is that the projection function Φ be-
come implicit. Instead, inner product in higher-dimensional
space is directly calculated by the explicit form of the kernel
function k(x, y). In prediction phase, input points also go
through the kernel function, and its category is determined
by its relative positions to each of the points in the train-
ing set, which is also indicated by its inner product with
them. In other words, the prediction function looks like
f(x) =

∑
i αik(xi, x) with x being the incoming points

for prediction and xi’s the points in training set. The theo-
retical support of this formulation will be explained in later
sections.

Some drawbacks are still present, especially when the size
of the dataset is extremely large. In the training phase of
kernel ridge regression, a covariance matrix is used. This
matrix stores the inner product for every two points in the
training set, hence would take O(n2) in storage, and O(n3)
in running time, with n being the number of points in the
training set. One intuition to proceed is that, since there is
a plethora of information present, an approximation of the
kernel function could be carried out, so reasonable results
could be produced in a more reasonable time.

Many attempts had been made to train large-scale kernel
machines more efficiently. Pure mathematical tools like
decomposition-based method (Platt, 1999) has been tried,
but with poor scalability. Then people started to notice
the power of randomized algorithms, attempting to throw
away entries (Achlioptas et al., 2001) or rows (Drineas &
Mahoney, 2005) in the covariance matrix. These attempts
finally inspired the brilliant idea of Random Fourier Features
(RFF), which won the NeurIPS Test-of-Time award in 2017
and the ICML Best Paper Finalist in 2019 (Rahimi & Recht,
2007). The authors of the abovementioned paper came up
with the excellent idea of drawing random features from the
fourier expansion of the kernel function for approximation,
gaining huge success and inspiring a flurry of papers in the
next decade. In this literature review, the contributions and

A Brief Survey of Random Features for Kernel Approximations

methods of this RFF paper is throughly analysed.

After the Random Fourier Features has been published,
many researchers has attempted to improve or build upon
that idea. With the categorization criteria suggested by
(Liu et al., 2021b), the methods are divided into two big
categories, data independent or data dependent, based on
whether they take training data into consideration in their
procedures.

In this reivew, we first defines the key mathematical con-
cepts used in the kernel method and introduce some relevant
math and statistical ideas for readers to fully appreciate the
random feature method. We then discuss the theoretical
basis and complexity of the RFF algorithm. Finally, we
introduce four representative variants of RFF and compare
their theoretical performance.

2. Problem Definition
2.1. Kernel Function

We first give a formal definition of kernel functions. Sup-
pose we are given the empirical data points

(x1, y1), (x2, y2), ..., (xn, yn) ∈ X × Y

where X is some nonempty set from which the inputs xi

(random variables) are taken and yi ∈ Y are the classifica-
tion labels of its corresponding input xi. Since we set no
restriction on the set X , the observed data points (xi, yi)
might not be linearly separable. Thus, we project these
points to a higher dimension space for easier separation.
Then, to avoid the heavy vector computation in higher di-
mensional spaces, we resort to kernel functions that measure
the similarity of the projected points. Notice the space into
which we project the data points must be a dot product space,
otherwise we won’t be able to compute similarity of points
by taking their inner products. The projection function is
defined as:

Φ : X → H

whereH is the projection space, or more commonly known
as the feature space. Finally, the kernel function k is defined
as:

k : X × X → R

and
k(xi, xj) = ⟨Φ(xi),Φ(xj)⟩ (1)

2.2. Properties of Kernel Functions

2.2.1. POSITIVE DEFINITE KERNEL

Definition 2.1 A kernel function k is positive definite if

n∑
i,j=1

cicjk(xi, xj) ≥ 0

For arbitrary n ∈ N, xi, xj ∈ X and ci, cj ∈ R.

Another interpretation of positive definite kernels involves
the concept of a Gram matrix:

Definition 2.2 Given a kernel function k and inputs
x1, x2, ..., xn ∈ X , the n × n matrix matrix K where
Ki,j = k(xi, xj) is called the Gram matrix of k with respect
to x1, x2, ..., xn.

A kernel function k is positive definite if its Gram matrix
K with respect to the data points x1, x2, ..., xn is positive
definite.

It has been proved by (Hofmann et al., 2008) that a kernel
function k satisfies (1) if and only if k is positive definite. In
other words, a kernel function that is not positive definite is
not qualified to measure similarities of points in the feature
space.

2.2.2. SHIFT INVARIANT KERNEL

A kernel that is shift invariant only measures the relative
distance of 2 points in X . Mathematically, this means:

∀x, y ∈ X , k(x, y) = k(x− y, 0) = k(x− y)

2.3. The Representer Theorem

We have defined kernel functions to assist the measurement
of data point similarities in feature space. But how do we
train a classifier using the kernel function? The representer
theorem tells us exactly this.

Definition 2.3 Let k be a kernel defined on Xand F be
its reproducing kernel hilbert space. If we are given
x1, x2, ..., xn ∈ X and y1, y2, ..., yn ∈ Y and consider
the optimization problem:

min
f∈F

λ∥f∥2F +

n∑
i=1

l(f(xi), yi) (2)

where l is some arbitrary loss function. If (2) has a mini-
mizer, then it can be written in the form:

f(x) =

n∑
i=1

αik(x, xi) (3)

2.4. The Kernel Method

Since equation (2) is exactly the learning objective in a
classification problem, we can use the training data points
to learn the weights αi in (3) with gradient descent. Then,
to predict the label of an unseen data x, we may simply
evaluate (3) on x.

A Brief Survey of Random Features for Kernel Approximations

2.5. Example Kernel Functions

We also introduce a few commonly used kernel functions in
classification problems (Liu et al., 2021b).

1. Gaussian kernel: one of the most preferred shift invari-
ant kernel function.

k(xi, xj) = exp(−∥xi − xj∥2

2σ2
)

where σ is the kernel width.

2. Polynomial kernel

k(xi, xj) = (xT
i xj + c)d, c ≥ 0

where c is some arbitrary constant and d is the degree
of the polynomial.

3. Mathematical Background
In this section, we keep on introducing a few more important
mathematical concepts that are fundamental to understand-
ing the random feature approximation methods.

3.1. Bochner’s Theorem

Theorem 1 If the function f : Rm → is a positive definite
and continuous function, then there is some nonnegative
Borel measure p on Rm such that f is the Fourier transform
of p.

There are 2 terms in it that need a little more explanation.
The Fourier Transform is a mathematical transform that
decomposes a function into sine waves. Mathematically, the
Fourier Transform of f , defined on Rm can be written as:

f̂(ξ) =

∫
Rm

f(x)e−2πixξ dξ (4)

The Borel measure is a measure defined on an open set, in
this case, the set Rm. We may think of the Borel measure p
as a probability distribution defined on Rm.

Now consider some positive definite and shift invariant ker-
nel function k : Rm → R. Bochner’s Theorem tells us that
there exists a probability distribution p defined on Rm such
that:

k(x− y) = p̂(ω) =

∫
Rm

p(ω)e−2πiω(x−y) dω (5)

3.2. Importance Sampling

Suppose there is a function f(x) where the input x follows
a probabilistic distribution p. Then the expectation of the
function could be calculated as:

E[f(x)] =

∫
f(x)p(x) dx

Suppose we wish to produce an estimate of the expectation,
Ê[f(x)], we could geneate n samples, x1, . . . , xn, and the
estimation could be calculated by

Ê[f(x)] =

n∑
i=1

f(xi)

n

It is an unbiased estimation for E[f(x)].

However, there will be problems if the original dis-
tribution, p, have some undesirable properties, such as
high variance and/or is hard to compute. To address such
problems, we can construct another simpler probability
distribution q and perform a trick to the original expectation
equation:

E[f(x)] =

∫
f(x)p(x) dx =

∫
f(x)

p(x)

q(x)
q(x) dx

Now we sample from the new distribution q and calculate
the following:

Ê[f(x)] =

n∑
i=1

f(xi)
p(xi)

q(x)

n

This is still an unbiased estimator of f(x) under p. This
time, each one of the samples we draw from q are weighted
by a factor p(xi)

q(xi)
, which is called the likelihood ratio, and

the whole process is called importance sampling.

4. Random Fourier Features (RFF)
The theoretical foundation of using random fourier features
to approximate kernels that are both positive definite and
shift invariant is a direct result of Bochner’s Theorem. If we
do a little more transformation on equation (5), we will get:

k(x− y) =

∫
Rm

p(ω)e−2πiωxe2πiωy dω

=

∫
Rm

p(ω)e−2πiωx(e−2πiωy)∗ dω

=

∫
Rm

p(ω)Fω(x)Fω(y)
∗ dω

= E [Fω(x)Fω(y)
∗] (6)

where Fω(x) = e−2πiωx.

Equation (6) tells us that Fω(x)Fω(y)
∗ is an unbiased es-

timation of the kernel function if ω is randomly sampled
from the probability distribution p(ω).

(Rahimi & Recht, 2007) shows in their paper that equation
(6) converges if the complex exponential term is replaced

A Brief Survey of Random Features for Kernel Approximations

with cosine functions and that a real-valued Fω(x) satisfying
the equation can be defined as:

Fω(x) =
√
2 cos(ωTx+ b)

where ω ∼ p(ω) and b ∼ [0, 2π].

We are now ready to describe the full algorithm for gener-
ating the Random Fourier Features proposed in (Rahimi &
Recht, 2007):

We are given a positive definite and shift invariant kernel
function k(x, y) = k(x−y) as input. Our goal is to obtain a
random feature map z(x) : Rm → RD so that z(x)T z(y) ≈
k(x− y).

1. Compute the Fourier inverse transformation of k(δ) as
p(ω)

p(ω) =
1

2π

∫
Rm

k(δ)e−2πiδω dδ

2. Draw D iid samples from p(ω) as ω1, ω2, ..., ωD ∈
Rm and D iid samples from [0, 2π] as b1, b2, ..., bD ∈
R.

3. Compute z(x) as

z(x) =

√
2

D
(cos(ωT

1 x+ b1), ..., cos(ω
T
Dx+ bD))

(7)

The z(x) vector obtained in step 3 is called the Random
Fourier Feature of a data point x. The space and time com-
plexity of this algorithm is O(nD) and O(nmD) as the
major step is computing z(xi) ∈ RD,∀1 ≤ i ≤ n, i ∈ Z+.
I.e. the space and time complexity to compute RFF is linear
respect to the size of train data, while the traditional kernel
methods is quadratic w.r.t to n in time and cubic in space.

In the actual implementation of RFF to approximate Gaus-
sian kernels, we don’t ever need to do step 1 because the
Fourier inverse transformation of a Gaussian kernel is also
a Gaussian kernel. Thus we might substitute step 1 with
randomly initializing a Gaussian kernel as p(ω).

5. Variants of Random Fourier Features
5.1. Overview

We have shown that the key step in random feature based
algorithm lies in selecting the weights ωi in equation (7)
and αi in equation (3). And variants of random feature
based algorithms differ exactly in how they select these
weights. (Liu et al., 2021a) As mentioned earlier, they can
be separated into two categories, data independent methods
and data dependent methods, depending on whether the
training data is used to guide the selection of weights ωi and
αi.

Data independent methods can be further split into acceler-
ation focused method, eg. Fastfood (Le et al., 2014), and
variance reduction focused method eg. Normalized RFF
(NRFF) (Li, 2017). While data dependent methods can be
further classified according to how weights are sampled or
learned. The two main categories are leverage score sam-
pling based methods, eg. Leverage Score-RFF (LS-RFF)
(Li et al., 2021) and those that re-weight the random fea-
tures, eg. Weighted Random Kitchen Sinks (RKS) (Rahimi
& Recht, 2009).

In the next few sections, we explain these four most rep-
resentative algorithms and compare them with the RFF
method.

5.2. Data Independent Methods

5.2.1. FASTFOOD

As mentioned earlier, in (Rahimi & Recht, 2007), when
approximating a Gaussian RBF kernel, the weight samples
ωi ∈ Rm are drawn from a Gaussian/Normal distribu-
tion. If we slightly modify the last line of the vanilla
RFF algorithm (7) by stacking the ωi’s into a matrix, we get:

z(x) =

√
2

D
[cos(ω1x+ b), . . . , cos(ωDx+ b)]

=

√
2

D
cos(V x+ b)

where V = [ω1, . . . , ωD]T . In practice, the matrix V is
usually a dense Gaussian matrix, thus the multiplication
step V x takes O(mD) time. A reminder that D is the
number of random features.

It is then noticed that the workings of this dense Gaussian
operator could be simulated with Hardamard matrices and a
diagonal Gaussian operator (Le et al., 2014). Le et al. pro-
posed the following decomposition of the dense Gaussian
matrix V :

V =
1

σ
√
D
SHGΠHB

In this equation, Π ∈ {0, 1}D×D is a random permutation
matrix, S and B are diagonal matrices. More specifically,
S is a random scaling matrix and B has random entries in
{−1, 1} on its main diagonal. G is the diagonal Gaussian
operator, with its main diagonal entries randomly drawn
from a Gaussian distribution.

The key for this method is the matrix H , the Walsh-
Hardamard matrix. It is recursively defined, with the base

case: H2 =

[
1 1
1 −1

]
, and the recursive case: H2k =[

Hk Hk

Hk −Hk

]
. It can be defined this way because all

A Brief Survey of Random Features for Kernel Approximations

Hardamard matrices are square and have dimensions 2k

for some k ∈ N.

With the the Walsh-Hardamard matrix H , the Fast
Hardamard Transform, a well-known variant of Fast Fourier
Transform, could be utilized to expedite the calculation.
With the Fast Hardamard Transform, we can calculate Hx
in O(m logD) time, instead of O(mD), as in the normal
matrix-vector multiplication. The multiplications between
all other matrices and the vector x can all be done in lin-
ear time. Hence, this method brings the computational
cost of (7) from O(mD) down to O(m logD) and the
overall time complexity of the algorithm from O(nmD)
to O(nm logD).

Additionally, the storage cost could be brought down to
O(m) as well. The Walsh-Hardmard matrix requires no stor-
age at all, since its workings are within the Fast Hardmard
Transform. All other diagonal matrices and the permutation
matrix requires O(m) storage. Hence, the Fastfood method
also enjoys storage benefit as compared to the RFF method.

5.2.2. NORMALIZED RANDOM FOURIER FEATURE
(NRFF)

The ultimate goal of Random Fourier Features is to produce
random feature vectors z(x), z(y) such that

z(x)z(y) ≈ k(x, y)

Since the features z(x) are constructed based on randomly
sampled weights, the accuracy of the approximation might
fluctuate heavily. A group of researchers (Li, 2017) noticed
the problem and proposed a technique to reduce the variance
of the approximation. In the field of statistics, a procedure
called normalized linear kernel or correlation is often used
to reduce variance. It is calculated as below:

p(x, x′) =

D∑
i=1

xix
′
i√√√√ D∑

i=1

x2
i

√√√√ D∑
j=1

x′
j
2

Now, if this is applied to any two random feature vectors
instead of the inner product to estimate the kernel function,
we will have:

z(x)z(y) ≈ k(x, y)→ p(z(x), z(y)) ≈ k(x, y) (8)

The authors claimed that this additional step (8) would lead
to great reduction in variance for the prediction results. This
means the results of the Random Fourier Features would be
more stable, and the authors gave their method the name:
Normalized Random Fourier Features, due to the use of the
correlation procedure.

The authors of NRFF did not compare the time and space
complexity of this method to vanilla RFF. However, since it
adds an additional step to the estimation of kernel function,
it has no hope in reducing the time complexity. However, as
the L-2 norm of each data point xi can be pre-computed and
stored, the additional step (8) only takes an extra O(1) to
complete. It is thus able to bring the benefit of low variance
without affecting running time too much. Storage-wise, the
L-2 norm could be stored alongside each random feature
vectors after they are generated, hence NRFF incurs a small
storage increase. Overall, it is worthy to preform such an
additional procedure.

5.3. Data Dependent Methods

5.3.1. LEVERAGE SCORE RANDOM FOURIER FEATURES
(LS-RFF)

Ridge leverage score (Alaoui & Mahoney, 2015) is essen-
tially extending the idea of leverage score to kernel ridge
regression. Over the years, researchers came back and forth
about this topic, and one function people widely agreed on
is (Avron et al., 2017):

lλ(ω) = p(ω)zω(x)
T (K + nλI)zω(x) (9)

Here, λ is a regularization parameter, ω’s are the random
features being sampled, l is the leverage score of ω. zω(x)
is the Random Fourier Feature generated, and K ∈ Rn×n

is the kernel matrix defined as:

Ki,j = k(xi, xj)

Now, if we integrate the leverage score over the entire space
of ω, we will get: ∫

Rm

lλ(ω) dω = dλK

where dλK is the number of effective degrees of freedom.
If we then divide the leverage score of ω, lω, by dλK , we
effectively have a probability distribution:

q∗(ω) =
lλ(ω)

dλK

which is called the empirical ridge leverage score distribu-
tion (Li et al., 2021).

In section 3.2 we introduced the idea of importance sam-
pling. Instead of sampling directly from the initial distribu-
tion p(ω) as in the vanilla RFF procedure, we can sample
ωi’s from q∗(ω) as defined above. Then weight each sample
by the likelihood ratio, p(ω)

q∗(ω) . In this way, less samples are
be needed. In fact, the number of samples needed could
be reduced from Ω(

√
m), as in original RFF procedure, to

Ω(1) in the leverage-score based importance sampling pro-
cedure, which we call LS-RFF, if the spectrum is of finite
rank together with certain other conditions (Li et al., 2021).

A Brief Survey of Random Features for Kernel Approximations

Now, with fewer samples, it is expected that the time and
storage complexity would decrease. However, this perfor-
mance improvement relies on the computation of q∗(w),
essentially lλ(ω) in (9), which is very costly. Thus the
researches that proposed LS-RFF also proposed a fast ap-
proximation algorithm of sampling from q∗(ω), which we
describe below (Li et al., 2021):

We are given empirical data points (x1, y1), ..., (xm, ym),
the kernel function to approximate k(x, y), and a regularizer
parameter λ. We want to output k(k < D) new random
features sampled from q∗(ω):

1. Sample {ω1, . . . , ωD} from p(ω).

2. Create feature matrix ZD ∈ Rm×D such that its ith

row is [zω1
(xi), . . . , zωD

(xi)]
T .

3. Associate each ωi with a real number pi such that pi
is equal to the ith diagonal element of the following
matrix:

ZT
DZD((

1

D
)ZT

DZD +mλI)−1

4. K ← {(ωi,
pi

k) : k =
∑m

i=1 pi}Di=1

5. Finally, sample k features from K using the multino-
mial distribution given by the vector (p1

k , . . . , pD

k).

This requires a time complexity of O(mD2 +D3) for each
data point and O(nmD2 + nD3) for the entire dataset.
Clearly, LS-RFF is slower than RFF. But since D ≪ m,
the time complexity increase isn’t too much. In addition,
LS-RFF algorithm has been proven to have much better
empirical prediction accuracy by (Li et al., 2021). Thus,
LS-RFF stands as a very strong variant of RFF, even though
one might want to consider the trade-off between speed and
accuracy before deciding if to use LS-RFF.

5.3.2. WEIGHTED RANDOM KITCHEN SINKS (RKS)

Following from RFF that was published in 2008, Rahimi
and Recht generalized their ideas of using randomness in
machine learning. In traditional kernel method, we choose a
kernel function k(x, y) and construct the objective function
f(x) by learning αi in equation (3). And random features
facilitates the evaluation of the kernel function k. However,
why do we have to use a precise kernel to project the training
data at all? Why can’t we randomize the feature functions
and just learn the weights α? That is exactly the essence of
the weighted sums of random kitchen sink method proposed
in (Rahimi & Recht, 2009).

The algorithm is very simple. It takes as input a set of n
points x1, x2, ..., xn ∈ Rm and their labels y1, y2, ..., yn,
some arbitrary non-linear function ϕ(x,w), a scalar C, and
some k ∈ Z+:

1. Randomly initialize k weight vector w where each wi

is sampled iid from some pre-specified distribution
p(ω).

2. Compute the feature vectors of every point xi

z(xi) = (ϕ(xi, w1), ϕ(xi, w2), ..., ϕ(xi, wk))

3. With ω fixed, solve the following minimization prob-
lem w.r.t. α

min
α∈Rk

1

n

n∑
i=1

l(αT z(xi), yi) (10)

such that |αi| ≤ Cp(ωi). l is the loss function and
(Rahimi & Recht, 2009) uses the quadratic loss.

4. Output the learned prediction function

f(x) =

k∑
i=1

αiϕ(x, ωi)

This method is linear in storage cost w.r.t to n, similar to
RFF and other variants. However, without using a kernel
function, nor to say approximating it, this method is much
faster than RFF. The authors also compared this method
to Adaboost, another population learning method that uses
weighted sums of weak classifier. Due to the difficulty of
comparing the two’s time complexity theoretically, their
empirical performances were discussed. RKS and Adaboost
were used to learn 3 different datasets (size 3200 × 123,
5000000× 127, 200000× 223, in the form: the number of
samples × the dimension size). In all three datasets, RKS
is between one and three orders of magnitude faster than
Adaboost, at a similar error rate.

Even though this method is much less guided than the tradi-
tional kernel method and RFF, its accuracy is still compara-
ble with them. The constraint on α in (10) guarantees that a
feature function ϕ(xi, ωi) will not get a high weight (αi) if
it is (represented by ωi) unlikely to be sampled from p(ω).
And it has been proven mathematically in (Rahimi & Recht,
2009) that the test error of RKS is linear w.r.t. 1√

m
+ 1√

k
.

An interesting observation is that this method is essentially
a randomly initialized neural network, except that it has
an extra constraint of the weights α, which gives it a nice
theoretical error bound.

6. Discussion and Conclusion
Ever since the vanilla RFF method was published, numerous
researchers were inspired and attempted to improve it by
modifying the weight sampling scheme, compressing the
weight matrix etc. As the training dataset for machine learn-
ing today is getting ever larger, approximation is a great way

A Brief Survey of Random Features for Kernel Approximations

to get reasonable results in reasonable time. The competi-
tion for the best method in the field is multi-dimensional,
with criteria ranging over speed, storage, learning rate, vari-
ance, prediction accuracy and so on. It is impossible to
say which one is the best, as different methods are better
at different places. What we discussed above showed ex-
actly this: Fastfood and RKS improve on speed and storage,
NRFF on variance, LS-RFF on prediction accuracy. With
its strong theoretical support in Mathematics and Statistics,
the random features method for kernel approximation is an
interesting digression from today’s popular machine learn-
ing algorithms. The popular algorithms like convolutional
neural networks and deep learning models feature a mas-
sive amount of parameters, but suffer badly from criticisms
against their explanability. Not every research laboratory or
company have comparable computing resources as technol-
ogy giants like Google, hence lightweight models like those
introduced in this paper can get on the table. Research in
random features to approximate kernel functions has also
sparked new discussions outside the field, one notable exam-
ple being the Lottery Ticket Hypothesis which also achieved
great success. In the future, it can be speculated that more
methods would be developed in this field, and for the users,
the most important thing would be to choose the one that is
most suited for their task.

References
Achlioptas, D., McSherry, F., and Schölkopf, B. Sampling

techniques for kernel methods. In Proceedings of the
14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, pp.
335–342, Cambridge, MA, USA, 2001. MIT Press.

Alaoui, A. E. and Mahoney, M. W. Fast randomized kernel
ridge regression with statistical guarantees. In Proceed-
ings of the 28th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’15, pp.
775–783, Cambridge, MA, USA, 2015. MIT Press.

Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker,
A., and Zandieh, A. Random fourier features for kernel
ridge regression: Approximation bounds and statistical
guarantees. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17,
pp. 253–262. JMLR.org, 2017.

Drineas, P. and Mahoney, M. W. On the nyström method for
approximating a gram matrix for improved kernel-based
learning. J. Mach. Learn. Res., 6:2153–2175, dec 2005.
ISSN 1532-4435.

Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel meth-
ods in machine learning. The Annals of Statistics, 36(3):
1171 – 1220, 2008. doi: 10.1214/009053607000000677.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Le, Q. V., Sarlos, T., and Smola, A. J. Fastfood: Approxi-
mate kernel expansions in loglinear time, 2014.

Li, P. Linearized gmm kernels and normalized random
fourier features, 2017.

Li, Z., Ton, J.-F., Oglic, D., and Sejdinovic, D. Towards a
unified analysis of random fourier features, 2021.

Liu, F., Huang, X., Chen, Y., and Suykens, J. A. K. Ran-
dom features for kernel approximation: A survey on algo-
rithms, theory, and beyond. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2021a. doi:
10.1109/TPAMI.2021.3097011.

Liu, F., Huang, X., Chen, Y., and Suykens, J. A. K. Ran-
dom features for kernel approximation: A survey on algo-
rithms, theory, and beyond. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2021b. doi:
10.1109/TPAMI.2021.3097011.

Platt, J. Using analytic qp and sparseness to speed training of
support vector machines. Advances in Neural Information
Processing Systems, 11, 02 1999.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Proceedings of the 20th International
Conference on Neural Information Processing Systems,
NIPS’07, pp. 1177–1184, Red Hook, NY, USA, 2007.
Curran Associates Inc. ISBN 9781605603520.

Rahimi, A. and Recht, B. Weighted sums of random kitchen
sinks: Replacing minimization with randomization in
learning. In Koller, D., Schuurmans, D., Bengio, Y.,
and Bottou, L. (eds.), Advances in Neural Information
Processing Systems, volume 21. Curran Associates, Inc.,
2009.

Empirical Review of GAN training

Bhargav Ghanekar Camille Little Lucy Liu

Abstract
Recent work in games in deep learning has lead to
a popular adversarial framework called generative
adversarial networks (GANs). The GAN frame-
work tries to solve a zero-sum, two-player game in
an attempt to find a local Nash equilibrium. Com-
pared to a single-objective optimization problem,
the two-player game introduces more complex-
ity and challenges to the training process. In this
work, we investigate the challenges in success-
fully training GANs and explore existing solu-
tions to address the challenges. We describe the
algorithms of the proposed approaches, discuss
why they should address some of the difficulties
in GAN training, and empirically study and com-
pare the success of the algorithms with respect to
training GANs using the MNIST dataset.

1. Introduction
Generative adversarial networks (GANs) have recently be-
come an extremely hot topic in deep learning research. Their
ability to generate new data based on training data proves
them useful in several areas, including computer vision, nat-
ural language processing, and medicine (Wu et al., 2017).
GANs, proposed in 2014 by (Goodfellow et al., 2014), con-
sist of two neural networks: a generator and a discriminator.
The generator attempts to capture the distribution of the true
data samples and generate new data samples. The discrim-
inator, on the other hand, attempts to distinguish between
the true data samples and the generated data samples. The
optimization of GANs is a mini-max optimization problem
where the goal is to reach the Nash equilibrium (Ratliff et al.,
2013). This occurs when a saddle point is at a maximum
with respect to the discriminator and a minimum with re-
spect to the generator. GANs are traditionally trained using
stochastic gradient descent with backpropagation (Goodfel-
low et al., 2014).

The growing popularity of GANs has lead to the exposure
of common issues in GAN training. The mini-max opti-
mization problem often makes GAN training very fickle and
unstable. One issue that arises is mode collapse. This occurs
when the generator network learns to generate samples from
only a few modes of the data distribution, but misses others

present in the true data (Srivastava et al., 2017). Vanish-
ing gradients are another common reason why GAN train-
ing fails. This occurs when the generator updates become
vanishingly small, making it impossible for the GAN to
converge to a satisfying solution (Li et al., 2018). Addition-
ally, it has been shown that zero-sum games often lead to
limit oscillatory behavior, rather than reaching equilibrium
(Mertikopoulos et al., 2017).

Several methods have been proposed to address the common
challenges in GAN training. In this work, we aim to em-
pirically study these methods to understand which methods
work in practice in successfully addressing the instability
of training GANs. Our contributions are as follows: We
first formalize the definition of GANs and their traditional
training methods. We then discuss three methods that alter
the GAN optimization formulation in an attempt to improve
instability during GAN training. Next, we empirically evalu-
ate and compare each method on the MNIST dataset. Lastly,
we summarize our findings and conclusions.

2. GAN Formulation
In 2014, (Goodfellow et al., 2014) proposed a framework
for estimating generative models via an adversarial process.
To achieve this, they simultaneously train two models: a
generator and a discriminator. The generative model G
captures the data distribution and the discriminative model
D estimates the probability that the sample came from the
true data or from the generator. The goal of the generator is
to maximize the discriminator’s error. The GAN framework
is a zero-sum, two-player game. It’s easiest when G and
D are defined as multi-layer perceptions so the system can
be trained with back-propagation. The GAN formulation is
formalized as follows

min
G

max
D

V (D,G) = Ex Pdata(x)[logD(x)]+

Ez Pz(z)[log(1−D(G(z)))],

where Pz(z) represents the prior on input noise variables
and G(z; θg) represents a mapping to data space. G is a
multi-layer perceptron with parameters θg and D(x, θd) is
a multi-layer perception with parameters θd that outputs a
single scalar. The traditional GAN framework is typically
solved via stochastic gradient descent with backpropoga-
tion. The GAN training methodology is formalized in the

Empirical Review of GAN training

Figure 1. GAN training algorithm from (Goodfellow et al., 2014)

Algorithm 1.

2.1. Wasserstein GANs

First introduced in 2017 by (Arjovsky et al., 2017), Wasser-
stein GANs (WGANs) were proposed to improve stability
in GAN training and deal with issues such as mode collapse.
The WGAN formulation modifies the discriminator’s loss
function. Specifically, instead of treating the discriminator
as a classifier, it tries to approximate the earth-mover metric
between the true distribution and the distribution of the gen-
erator. As a result, the discriminator function for WGANs
can be summarized as follows:

V (D,G) = ∇θd
1

m

m∑
1=1

[D(x(i)) +D(G(z(i)))].

2.2. Difficulties in training GANs

Training GANs properly is notoriously difficult in practice.
In general, all the gradient descent-based techniques are
based on the objective of minimizing a cost function. Thus,
to simply use them directly for a mini-max GAN objective to
find a Nash equilibrium point is bound to not work properly.
This is due to a variety of reasons -

• Vanishing gradients: In gradient-based learning meth-
ods, neural network (NN) weight updates are computed
through backpropagation. Thus in NNs with many hid-
den layers, the gradients get “vanishingly” small for the
initial layers, which prevents the weight from changing
after update.

• Mode Collapse: This occurs when many points/noise
instances in the latent space map to the exact same
output, the generator does generate realistic images,
but only of one kind, and lacking diversity.

• Failure to Converge: Converging can be challenging
as the generator and the discriminator compete against
one another during training. The vector field associated
with the update step could be non-conservative, leading
to cyclic/rotational behaviors.

3. Training with Optimism
Training GANs with optimism was first introduced in 2017
by (Daskalakis et al., 2017). The goal of training with op-
timism is to address the limit cycling behavior present in
GAN training. They propose training WGANs via a vari-
ant called Optimistic Mirror Decent (OMD). They do this
because it has been shown that using OMD leads to faster
convergence rates than gradient descent in convex-concave
zero-sum games (Rakhlin & Sridharan, 2013). They employ
this method by applying a small change in the update step
within the general mirror decent framework. To begin, they
first consider the loss function in the WGAN framework

L(θ, φ) = Ex Q[Dφ(x)]− Ez F [Dφ(Gθ(z))],

where the the generator G controls θ and the discrimina-
tor D controls φ. Additionally, Q represents the true data
distribution. When training standard WGAN, the typical
approach to solve the game is to run gradient descent for
each player

φt+1 = φt + η · ∇φ,t
θt+1 = θt + η · ∇θ,t

where ∇φ,t = ∇φL(θt, φt) and ∇θ,t = ∇θL(θt, φt). The
Optimistic Mirror Decent algorithm proposed by (Rakhlin
& Sridharan, 2013) uses the previous iteration’s gradient
as a predictor for the next iteration’s gradient. In 2015, it
was shown by (Syrgkanis et al., 2015) that this leads to
faster convergence of each individual player in normal form
games. To apply this to the WGAN formulation, a small
tweak is made to the update rules for φ and θ:

φt+1 = φt + 2η · ∇φ,t − η · ∇φ,t−1

θt+1 = θt + 2η · ∇θ,t − η · ∇θ,t−1

The predictor of the next iteration’s gradient is either by the
previous gradient or an average of a window of previous
gradients. OMD exhibits a last iteratation rate of O(1

T),
where T is the number of iterations. This method presents a
very small adaptation of normal gradient descent within the
WGAN framework that largely improves convergence rates
and addresses the limit oscillatory behavior often found in
GANs.

Because of the success of the Adam algorithm on training
images WGANs, (Daskalakis et al., 2017) propose an opti-
mistic version of Adam. We examine how well this method
works in practice on the MNIST dataset in the empirical
studies section.

Empirical Review of GAN training

Figure 2. Optimistic Adam algorithm from (Goodfellow et al.,
2014)

Figure 3. Decreasing trend in the value of momentum used in GAN
literature. Use the figure from (Gidel et al., 2019)

4. Training with Negative Momentum
The paper by (Gidel et al., 2019) explored the effects of neg-
ative momentum in Min-Max zero-sum Game Formulation
(i.e. GANs), inspired by a decreasing trend of momentum
values over time for GAN training, as shown in Figure 3.

We can interpret GAN training as a differentiable two-player
game – the discriminator Dφ with its loss function LD and
the generator Gθ with LG. Both of them want to minimize
their own loss function, so the GAN objective can be written
as

θ∗ ∈ argmin
θ∈Θ

LG(θ , φ
∗)

φ∗ ∈ argmin
φ∈Φ

LD(θ
∗ , φ)

From a game theory point of view, GAN training aims to
find a local Nash Equilibrium (φ∗, θ∗), where neither dis-
criminator nor generator can improve their loss by training
more epochs. The dynamics of gradient-based methods
near a Nash Equilibrium can be analyzed using the gradient
vector field:

v(φ, θ) = [∇φLD(φ, θ) ∇θLG(φ, θ)]T

Then for the gradient update, it is defined as

Fη(φ, θ) = [φ θ]T − η v(φ, θ) (1)

where (φ, θ) ∈ Rm, η is the step-size. For simplic-
ity, we denote w := (φ, θ) ∈ Rm. Then for t ∈ N,
wt = (φt, θt) is the tth point from the gradient update,
such that wt = Fη ◦ · · · ◦ Fη(w0)︸ ︷︷ ︸

t

= F
(t)
η (w0). If the gra-

dient method converges and w∗ = (φ∗, θ∗) is a fixed-point
of Fη such that ∇v(w∗) is positive-definite, then w∗ is a
local Nash Equilibrium and a stationary point of the gradient
dynamics (i.e. v(w∗) = 0).

From Equation 1, we can get

∇Fη(w∗) = Im − η∇v(w∗)

Sp(∇Fη(w∗)) = {1− ηλ|λ ∈ Sp(∇v(w∗))}

If the eigenvalues of ∇v(w∗) all have positive real parts
and η is small enough, the eigenvalues of ∇Fη(w∗) are
inside a convergence circle of radius ρmax < 1, as shown in
Figure 4. Hence, Prop. 4.4.1 in (Bertsekas, 1997) guarantees
the existence of an optimal η∗ which yields a non-trivial
convergence rate ρmax < 1. The spectral radium ρmax(η)
of∇Fη(w∗) is the solution of a convex quadratic problem
and satisfies

max
1≤k≤m

sin(ψk)
2 ≤ ρmax(η∗)2 ≤ 1−ℜ(1

λ1
)δ (2)

with δ := min
1≤k≤m

|λk|2(2ℜ(
1

λk
)−ℜ(1

λ1
)) (3)

and ℜ(1

λ1
) ≤ η∗ ≤ 2ℜ(1

λ1
) (4)

where (λk = rke
iψk)1≤k≤m = Sp(∇v(w∗)) are sorted

such that 0 < ℜ(1
λ1
) ≤ · · · ≤ ℜ(1

λm
). (ℜ means the real

part). Hence we have δ > 0 since ℜ(1
λk

) ≥ ℜ(1
λ1
) for

∀ 1 ≤ k ≤ m.

From Figure 4, we know that η∗ exists when∇v is positive-
definite because of one or more limiting eigenvalues. Then
from Equation 2, if the Jacobian of v has a large imaginary
value rjeψj , then sin(ψj) becomes close to 1, which means
the convergence rate of the gradient may be arbitrarily close
to 1. (Zhang & Mitliagkas, 2017) analyzes the performance
of momentum method for quadratic functions, and claims
that adding momentum that makes the Jacobian eigenvalues
turn from positive reals into complex conjugate pairs achieve
the best model condition.

From above, we know eigenvalues with large imaginary
parts only works with small step-size, thus leading to slow
convergence rates, so the authors consider adding a neg-
ative momentum value. Intuitively, negative momentum

Empirical Review of GAN training

Figure 4. An illustration of Eigenvalues λi of the Jacobian ∇v(w∗)
and their trajectories 1 − ηλi for growing η. The unit circle is
in black, the red circle has radius of the largest eigenvalue µmax.
Smaller red circles mean better convergence rates. Top: The red
circle is limited by the tangent trajectory line 1−ηλ1. It means the
best convergence rate is limited only by the eigenvalue which will
pass furthest from the origin as η grows.(i.e., λi = argminℜ(1

λi
)

Bottom: The red circle is cut (not tangent) by the trajectories at
points 1−ηλ1 and 1−ηλ3. The η is optimal because any increase
will push λ1 out of the red circle, while any decrease will retract
λ3 out of the red circle. Use the figure from (Gidel et al., 2019)

can be seen as friction that can damp oscillations. Fol-
lowing (Zhang & Mitliagkas, 2017), let (wt, wt−1) =
(φt, θt, φt−1, θt−1) ∈ R2m, then Equation 1 can be updated
to

Fη,β(wt, wt−1) = (wt+1, wt)

where wt+1 := wt − ηv(wt) + β(wt − wt−1)

in which, β ∈ R is the momentum parameter. When β = 0,
we obtain the original gradient method.

Then we can derive the eigenvalues of the Jacobian of
Fη,β(w

∗):

µ±(β, η, λ) = (1− ηλ+ β)
1±∆

1
2

2

where ∆ := 1− 4β
(1−ηλ+β)2 , λ ∈ Sp(∇v(w∗)), and ∆

1
2 is

the complex square root of ∆ with positive real part (if ∆
has negative real part, ∆

1
2 = i

√
−∆).

Then we apply Taylor Expansion and get an approximation:

µ+(β, η, λ) = 1− ηλ− β ηλ

1− ηλ
+O(β2)

µ−(β, η, λ) =
β

1− ηλ
+O(β2)

In this case, when β is small, ∆ gets close to 1. As a result,
µ+ is close to 1− ηλ, the original eigenvalue for gradient
method, and µ− is close to 0. Then the authors formalize an
intuition that in some situations, if β < 0 is suited well, it
can pushing the eigenvalues of Jacobian towards the origin,
thus improving the convergence rate to a local stationary
point.

In order to prove this intuition, the paper explores the effect
of β on the eigenvalues of Fη,β(w∗) with relatively large
magnitude. Then they define the eigenvalues’ magnitude as
ρλ,η(β) for optimization:

ρλ,η(β) := max{|µ+(β, η, λ)|2, |µ−(β, η, λ)|2} (5)

For ∀λ ∈ Sp(∇v(w∗)) such that ℜ(λ) > 0, we can get

ρ′λ,η(0) > 0⇔ η ∈ I(λ) :=
(
|λ| − |ℑ(λ)|
|λ|ℜ(λ)

,
|λ|+ |ℑ(λ)|
|λ|ℜ(λ)

)

where ℜ and ℑ means the real and imaginary parts respec-
tively. Particularly, ρ′λ,η(0) = 2ℜ(λ)ℜ(1λ) > 0.

This theorem shows that a properly adjusted small β de-
creases ρλ,η which corresponds to faster convergence. In
this case, a small negative momentum can improve the mag-
nitude eigenvalues when it satisfies one of the two condi-
tions:

1. When there is only one limiting eigenvalue λ1, the
optimal step-size η∗ = ℜ(1

λ1
) ∈ I(λ1).

2. When there are several limiting eigenvalues
λ1, · · · , λk and their intersection λ1 ∩ · · · ∩ λk is
not empty. If the absolute value of the argument of
λ1 > π

4 then by Equation 4, the optimal step-size
η∗ ∈ I(λ1)

The above theorem only provides a local result of β, so it
could not guarantees on large negative values of momentum.
They, nevertheless, claimed that by numerically optimizing
Equation 5 with respect to β and η, the optimal momentum
is negative for any non-imaginary fixed eigenvalue λ, and
the corresponding optimal η∗ > η̂(λ).

In Empirical Study Section, we analyzed the performance
of negative momentum for GAN training with real dataset.

Empirical Review of GAN training

5. Consensus Optimization
Training GANs can be thought of as a two-player zero-sum
game, where the generator and discriminator are the two
players with utility functions f(θ, φ), g(θ, φ) respectively.
One player (generator) controls the parameters θ (corre-
sponding to the weights of the generator network), while the
other (discriminator) controls the parameters φ (correspond-
ing to the weights of the discriminator network). While
training GANs, the objective is to achieve Nash equilibrium,
i.e. to find weights (θ̄, φ̄) such that

θ̄ = argmax
θ

f(θ, φ̄)

φ̄ = argmax
φ

g(θ̄, φ)

One way to perform the above optimizations is to perform
simultaneous gradient ascent on both parameters θ, φ i.e.

xt+1 = xt + hv(xt) (6)

where xt =
[
θt
φt

]
and v(x) corresponds to the gradients i.e.

v(x) =

[
∇θf(θ, φ)
∇φg(θ, φ)

]
(7)

In a standard gradient ascent setting, such a vector field v(x)
is conservative, i.e. it is simply a gradient of some scalar
function. However, in the case of simultaneous gradient as-
cent, that is not the case, and thus the vector field v(x) could
be non-conservative. If a vector field is non-conservative,

updating the parameters x =

[
θ
φ

]
as per Equation 6 might

not work - the updates may diverge or just simply go about
cyclically around a stationary point of the vector field.

In the work by (Mescheder et al., 2017), the authors explain
the same in a theoretical sense. Let x̄ be a point of local
Nash equilibrium. They show that local convergence of the
iterates expressed in Equation 6 for simultaneous gradient
ascent is guaranteed provided that the Jacobian v′(x̄) has
eigenvalues with negative real parts, and furthermore, show
that the step size h has to be smaller than

h <
1

ℜ(λ)
2

1 + (ℑ(λ)
ℜ(λ))

2

where λ is the largest eigenvalue of the Jacobian v′(x̄).
This bound highlights the issue with simultaneous gradient
ascent – for a Jacobian with a very small eigenvalue real part,
and/or when the ratio of the imaginary to the real part of
eigenvalues is very high – the step size becomes vanishingly
small and leads to very slow convergence.

The way (Mescheder et al., 2017) solved this problem was
by adding a regularizer term to the vector field v(x). The

quantity L := 1
2∥v(x)∥

2
2 corresponds the norm of the gradi-

ents of f and g. At local Nash equilibrium points, v(x) = 0,
implying L = 0 as well. Thus minimizing L is useful while
finding local Nash equilibrium points. However, simply
minimizing L is not correct - since it does not distinguish
between unstable points, maxima, minima, saddle points.
(Mescheder et al., 2017) shows that adding ∇L to the vec-
tor field v(x) is useful, and leads to regularization of the
vector field v(x), making the problem less ill-posed. The
consensus optimization update step, thus, as outlined in
(Mescheder et al., 2017) is as follows:

xt+1 = xt + hw(x) (8)
where w(x) = v(x)− γ∇L (9)

This amounts to the following procedure for consensus opti-
mization:

Algorithm 1 Consensus Optimization
while not converged do
vθ ← ∇θ(f(θ, φ)− γL(θ, φ))
vφ ← ∇φ(g(θ, φ)− γL(θ, φ))
θ ← θ + hvθ
φ← φ+ hvφ

end while

(Mescheder et al., 2017) show that the ratio ℑ(λ)/ℜ(λ)
can be controlled/reduced by increasing the value of the
hyperparameter γ, thus making the problem better posed by
allowing larger values of the step size h and achieving faster
convergence.

We analysed how the consensus optimization procedure
performs in practice, the details for the same have been
outlined in Section 6.

6. Empirical Studies
We perform empirical studies of GAN training with opti-
mization methods mentioned in the previous sections on
MNIST dataset (Deng, 2012), which contains 60,000 la-
beled images of digits.

6.1. Experiments

6.1.1. TRAINING GANS

We first train Vanilla GAN, Deep Convolutional GAN (DC-
GAN) (Radford et al., 2015) and WGAN as the baseline
models for comparisons with our explored optimization
methods. For Vanilla GAN and DCGAN, we use learn-
ing rate of 0.0002, while for WGAN, the learning rate is
0.00005. Given the success of Adam Optimizer (Kingma
& Ba, 2014) in neural networks, we use it with parameter
β1 = 0.5 and β2 = 0.999. In Figure 5, we can see the plot
of loss function and generated digits after 200 epochs.

Empirical Review of GAN training

Figure 5. GANs loss function for GANs training (Top) as well as generated digit images after 200 epochs (Bottom). Left: Vanilla GAN,
Middle: DCGAN, Right: WGAN.

Figure 6. GANs loss function for training with Optimistic Adam (Top) as well as generated digit images after 200 epochs (Bottom). Left:
Vanilla GAN, Middle: DCGAN, Right: WGAN.

6.1.2. OPTIMISM

We implement an optimistic variant of Adam optimizer
(OAdam). In (Daskalakis et al., 2017), the authors claim
that Optimistic Adam could be of independent interest even

beyond training WGANs, so we examine its performance
on Vanilla GAN, DCGAN and WGAN. We adopt the same
hyperparameters as the baseline models. Figure 6 shows
the plots of loss function for three GANs as well as the
generated digits after running 200 epochs.

Empirical Review of GAN training

Figure 7. GANs loss function and generated digit images after 200 epochs for training with SGD with positive (Left) and negative
momentum (Right). Top: Vanilla GAN, Bottom: DCGAN.

Figure 8. GANs loss function for training with Adam with negative momentum (Top) as well as generated digit images after 200 epochs
(Bottom). Left: Vanilla GAN, Middle: DCGAN, Right: WGAN.

6.1.3. NEGATIVE MOMENTUM

We apply negative momentum on both Stochastic Gradient
Descent (SGD) (Robbins & Monro, 1951) with momentum
and Adam optimizer. For SGD with momentum, we use
learning rate of 0.001, momentum value β+ = 0.9 for reg-
ular momentum and β− = −0.5 for negative momentum.
For Adam optimizer, we follow the learning rate from the
baseline models, with β1− = −0.5 for negative momentum.

We choose the specific negative momentum value based on
the experiments conducted in (Gidel et al., 2019). In Fig-
ure 7, we present the loss function and generated images of
SGD with momentum (both positive and negative). After ex-
periments, we realize that WGAN could not converge with
SGD, so we omit that from the results. Figure 8 shows the
loss function and generated images of Negative Momentum
with Adam on three types of GANs.

Empirical Review of GAN training

6.1.4. CONSENSUS OPTIMIZATION

We implement Consensus Optimization method for gener-
ating MNIST digit images using the DCGAN architecture.
Training was performed with the Adam optimizer, with
learning rate 0.001 and β1 = 0.5, β2 = 0.999, and the reg-
ularization parameter γ was set to 0.01. We report that in
practice consensus optimization did not work well. While
the images generated after early stopping during training
looked good, the final result after full result was poor - all
the generated images looked the same. Figure 9 shows the
loss curves plot, while Figures 10, 11 show a sample of
generated images for the early stopping and final training
cases.

Figure 9. Generator and discriminator loss curves for consensus
optimization method.

Figure 10. Generated MNIST images for consensus optimization
method, after early stopping (50 epochs)

6.2. Inception Score

Inception Score (IS) (Salimans et al., 2016) is one of the
most common ways to evaluate the quality of images gener-
ated by GANs. It uses an Inception Network (Szegedy et al.,
2015) pre-trained on ImageNet to calculates the statistic of

Figure 11. Generated MNIST images for consensus optimization
method, after full training (100 epochs)

generated images. The score is evaluated with the equation:

IS(G) = exp(Ex∼pgDKL(p(y|x) ∥ p(y)))

where x ∼ pg means that x is a generated image sampled
from the learned generator distribution pg , E is the expected
value over the set of generated images. DKL is the KL-
divergence between the conditional class distribution p(y|x)
(y is the class label) and the marginal class distribution p(y)
=
∫
x
p(y|x)pg(x). It exponentiates the results so the values

are easier to compare, and it can be ignored without loss of
generality when we use log(IS(G)) for evaluation.

In the original paper which proposed the Inception Scores
(Salimans et al., 2016), p(y|x) measures whether the gen-
erated images are clear or blurry. That is, if the Incep-
tion Network is confident that there is a single object in
the image, p(y|x) would be high entropy. Also, p(y) in-
dicates if the generative models could output a diverse
set of images for all the classes in ImageNet. Images
with high diversity means a lower entropy of p(y). Since
DKL(p(y|x) ∥ p(y)) = p(y|x) log(p(y|x)p(y)), if a generative
network could generate diverse images with clear objects,
we expect a large KL-divergence, resulting in a large Incep-
tion Score.

Tables 1, 2 present a comparison of the Inception Score on
GAN training with explored optimizing strategies.

7. Discussion and Conclusions
In this work, we explored existing ideas surrounding training
GANs. GANs are notoriously hard to train, and thus there
have been many developments focusing on the GAN min-
max optimization problem. We specifically focused on three
methods, namely, training GANs with optimism, training
with negative momentum, and consensus optimization. We
empirically tested out each of these methods by training
GANs to generate MNIST images, and we compared the

Empirical Review of GAN training

Model IS Model IS Model IS
GAN 1.878 +/- 0.012 DCGAN 2.412 +/- 0.021 WGAN 2.355 +/- 0.017

GAN + OAdam 3.085 +/- 0.033 DCGAN + OAdam 2.453 +/- 0.018 WGAN + OAdam 2.026 +/- 0.009
GAN + AdamNM 3.148 +/- 0.019 DCGAN + AdamNM 2.427 +/- 0.010 WGAN + AdamNM 2.459 +/- 0.015

GAN + SGD 2.691 +/- 0.019 DCGAN + SGD 2.208 +/- 0.017 WGAN + SGD 1.007 +/- 0.000*
GAN + SGDNM 1.547 +/- 0.006 DCGAN + SGDNM 1.100 +/- 0.001* WGAN + SGDNM 1.018 +/- 0.000*

Table 1. Inception Score of various GAN optimization experiments for training with optimism and negative momentum. IS: higher is
better. Note: * means GAN not able to generate reasonable images.

Model IS
DCGAN+ConsenusOpt (early stopping) 2.453 +/- 0.018

DCGAN+ConsensusOpt (final) 1.202 +/- 0.002

Table 2. Inception Score of Consensus Optimization method ex-
periments. IS: higher is better.

results to standard GANs. Our conclusions are as follows -

• We can see from the Vanilla GAN baseline results that
there is not a smooth convergence. Additionally, the
images produced from the Vanilla GAN are a bit blurry.
The DCGAN trains relatively well and produces clear
images. The WGAN images produced are hardly legi-
ble.

• For training with Optimistic Adam, we theoretically ex-
pect a faster convergence rate than baseline methods, as
optimistic mirror descent typically leads to faster con-
vergence. We empirically validate theoretical claims
using the MNIST dataset and can see that it converges
a bit faster than the Vanilla GAN. Also, we see that the
images produced from the Vanilla GAN and DCGAN
are slightly clearer than the baseline results.

• For negative momentum, we theoretically and exper-
imentally explore its effects in a GAN training setup.
Theoretically, negative momentum could push the
eigenvalues of the Jacobian appropriately into a smaller
convergence region, thus improving the convergence
rate of gradient-based methods. Experimentally, we
validate the performance of negative momentum on
Adam optimizer for GAN training with MNIST dataset.
From Figure 8, we can see that the loss function be-
comes smoother and converges slightly faster than the
original GAN setting. This supports the intuition that
in simple yet intuitive examples, using negative mo-
mentum makes convergence to the Nash Equilibrium
easier. However, we were unable to make negative mo-
mentum with SGD performing as well after a relatively
thorough hyperparameter tuning, as shown in Figure
7, despite the fact that the original paper (Gidel et al.,
2019) claimed it to be working.

• For consensus optimization, we were unable to
reproduce the quality of results as shown in the
original work (Mescheder et al., 2017), inspite of best
efforts. Moreover, the code provided by (Mescheder
et al., 2017) was not in a working state, and thus, we
had to write our own code to perform the experiments
related to this method. Initial training of GANs with
this method seemed stable, the loss curves were
showing the correct trend, and were also smooth
and not wildly fluctuating as seen in standard GANs.
However, beyond a point the results got worse and
ultimately the method failed to converge properly.
Initial results of images generated from the GANs
also were of good quality, with a high Inception
Score of 2.45, but then it seems like the training
suffered from a mode collapse and eventually started
generating a constant blob, and the loss curve seemed
to have stabilized (See Figures 9-11, and Table 2).
One guess as to why this happened may be that the
hyperparameter γ which controls the regularization
may be too sensitive, or that it might be stuck in a
spurious minima due to introduction of the regularizer
term (See https://www.inference.vc/
my-notes-on-the-numerics-of-gans/).
Overall, although the method was justified well
through theory by the authors, we failed to reproduce
this is in practice.

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein

generative adversarial networks. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 214–223. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.
press/v70/arjovsky17a.html.

Bertsekas, D. P. Nonlinear programming. Journal of the
Operational Research Society, 48(3):334–334, 1997.

Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng, H.
Training gans with optimism. arXiv 1711.00141,

https://www.inference.vc/my-notes-on-the-numerics-of-gans/
https://www.inference.vc/my-notes-on-the-numerics-of-gans/
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html

Empirical Review of GAN training

abs/1711.00141, 2017. URL http://arxiv.org/
abs/1711.00141.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Denton, E., Chintala, S., Szlam, A., and Fergus, R. Deep
generative image models using a laplacian pyramid of
adversarial networks. arXiv preprint arXiv:1506.05751,
2015.

Gidel, G., Hemmat, R. A., Pezeshki, M., Le Priol, R., Huang,
G., Lacoste-Julien, S., and Mitliagkas, I. Negative mo-
mentum for improved game dynamics. In The 22nd Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 1802–1811. PMLR, 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger,
K. Q. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V.,
and Courville, A. C. Improved training of wasser-
stein gans. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
892c3b1c6dccd52936e27cbd0ff683d6-Paper.
pdf.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, J., Madry, A., Peebles, J., and Schmidt, L. On the
limitations of first-order approximation in GAN dy-
namics. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 3005–3013. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
li18d.html.

Mertikopoulos, P., Papadimitriou, C. H., and Piliouras,
G. Cycles in adversarial regularized learning. CoRR,
abs/1709.02738, 2017. URL http://arxiv.org/
abs/1709.02738.

Mescheder, L., Nowozin, S., and Geiger, A. The numerics
of gans. arXiv preprint arXiv:1705.10461, 2017.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Rakhlin, S. and Sridharan, K. Optimization, learning,
and games with predictable sequences. In Burges,
C. J. C., Bottou, L., Welling, M., Ghahramani, Z.,
and Weinberger, K. Q. (eds.), Advances in Neural
Information Processing Systems, volume 26. Curran As-
sociates, Inc., 2013. URL https://proceedings.
neurips.cc/paper/2013/file/
f0dd4a99fba6075a9494772b58f95280-Paper.
pdf.

Ratliff, L. J., Burden, S. A., and Sastry, S. S. Characteriza-
tion and computation of local nash equilibria in continu-
ous games. In 2013 51st Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp.
917–924, 2013. doi: 10.1109/Allerton.2013.6736623.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. Advances in neural information processing
systems, 29:2234–2242, 2016.

Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U.,
and Sutton, C. Veegan: Reducing mode collapse in
gans using implicit variational learning. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
44a2e0804995faf8d2e3b084a1e2db1d-Paper.
pdf.

Syrgkanis, V., Agarwal, A., Luo, H., and Schapire, R. E.
Fast convergence of regularized learning in games.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama,
M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.

http://arxiv.org/abs/1711.00141
http://arxiv.org/abs/1711.00141
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.mlr.press/v80/li18d.html
https://proceedings.mlr.press/v80/li18d.html
http://arxiv.org/abs/1709.02738
http://arxiv.org/abs/1709.02738
https://proceedings.neurips.cc/paper/2013/file/f0dd4a99fba6075a9494772b58f95280-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f0dd4a99fba6075a9494772b58f95280-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f0dd4a99fba6075a9494772b58f95280-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f0dd4a99fba6075a9494772b58f95280-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf

Empirical Review of GAN training

neurips.cc/paper/2015/file/
7fea637fd6d02b8f0adf6f7dc36aed93-Paper.
pdf.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Wu, X., Xu, K., and Hall, P. A survey of image synthesis and
editing with generative adversarial networks. Tsinghua
Science and Technology, 22(6):660–674, 2017. doi: 10.
23919/TST.2017.8195348.

Zhang, J. and Mitliagkas, I. Yellowfin and the art of mo-
mentum tuning. arXiv preprint arXiv:1706.03471, 2017.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf

Course project report for COMP 514

CORESET SELECTION
FOR DATA-EFFICIENT TRAINING

Xinyu Yao, Kejia Ren, Tianyi Zhang
Department of Computer Science
Rice University
6100 Main St, Houston, TX 77005, USA
{xy38,kr43,tz21}@rice.edu

ABSTRACT

As machine learning datasets become larger and models become deeper to reach
higher accuracy, the high financial costs and substantial environmental impact as-
sociated with training machine learning models have become a more prominent
problem. As a result, methods for data-efficient training of machine learning mod-
els have become a popular research area. One of the best solutions to the problem
is coreset, which is a weighted subset of the data that can be used to train a model
with negligible loss in accuracy. In our project, we review previous works that led
to the development of coreset for deep learning, and analyze the three state-of-
the-art coreset selection methods GLISTER, CRAIG, and GRAD-MATCH, and
compare their performance empirically along with random selection and full gra-
dient descent baselines. We improve GLISTER by associating weights with each
element in the coreset, and show that the modified algorithm outperforms the orig-
inal algorithm.

1 INTRODUCTION

Over the past two decades, the field of deep learning has made remarkable progress on various
tasks, including objection recognition, language translation, product recommendation, etc (Schwartz
et al., 2020). As a result, more and more efforts and resources are being expended on machine
learning research every year. A problem emerged as more sophisticated machine learning models
were developed: training machine learning models incur significant financial and environmental
impact (Schwartz et al., 2020). Large-scale machine learning models are data-hungry, so training
relies on specialized hardware such as powerful GPUs. Training consumes an enormous amount
of energy and has a large carbon footprint. To make matters worse, training a single model often
requires multiple runs due to hyper-parameter tuning.

One idea for tackling this problem is to find a relatively small subset of the training data that captures
the “essence” of the entire training set. Training the model on that smaller subset of data can reduce
the reliance on dedicated hardware and the carbon footprint of the training process while maintaining
comparable model accuracy. A justification for the possibility of reducing the size of the training set
while maintaining model accuracy comes from the fact that many modern image datasets have been
shown to contain significant redundancies (Birodkar et al., 2019).

1.1 CORESETS

Over the past few decades, various coreset selection algorithms have been developed for areas such
as machine learning, computer vision, graphics, databases, and theoretical computer science (Jubran
et al., 2019). At the start of this century, coreset selection algorithms were developed and used
for linear learning algorithms such as k-Means clustering (Har-Peled & Kushal, 2007) and kernel
methods such as SVM (Tsang et al., 2005). More recently, as deep learning starts to gain popularity,
coreset selection algorithms for training neural networks are developed to mitigate the voracity for
data of deep learning models.

1

Course project report for COMP 514

Coresets are weighted subsets of the data which approximate specific characteristics of the full
data (Killamsetty et al., 2021). Coresets enable efficient learning at multiple levels. To begin with,
learning on coresets is performed on low computational resources without requiring high numbers
of GPU and CPU servers. Moreover, coresets significantly reduce the end-to-end turnaround time
for multiple training runs on hyper-parameter tuning (Killamsetty et al., 2021). Coreset algorithms
have broad applications for many problems, such as clustering problems (k-means and k-median
clustering).

All existing coreset selection algorithms for deep learning are a form of adaptive data subset selec-
tion. While gradient descent leverages the gradients of all training instances, adaptive data subset
selection produces a weighted subset of training data on which the model is trained. Furthermore,
the subset is incrementally refined as learning proceeds. This iterative refinement to the training
subset enables the data selection to be tailored to the learning process and the weaknesses of the
model’s current state.

There are four challenges in finding coresets: firstly, there is no clear guiding principle for sub-
set selections. Selecting training points close to the decision boundary (fine tuning the decision
boundary) or picking the most diverse set of data points are two ideal guiding principles (better
comprehension of data distribution). Moreover, finding this coreset has to be fast since the purpose
of using coreset is to speed up. In addition, one has to decide the gradient step size for each data
point in the coreset. Last but not least, the method might not be well-performed on all datasets,
which is saying the method has to have theoretical understanding and mathematical convergence
guarantee (Mirzasoleiman et al., 2020).

1.2 IMPORTANCE SAMPLING

Importance Sampling is a technique that focuses on informative data and disregards the data that do
not contribute to the final results. This technique aims at increasing the convergence speed of SGD
by focusing computation on samples that induce a change in the model parameters. The selection
of coreset perform importance sampling for sensitivity score to provide high-probability solutions
for different problems, like k-means and k-median clustering (Har-Peled & Mazumdar, 2004).

The current importance sampling methods can be categorized into methods applied to con-
vex problems and methods designed for deep neural networks (Katharopoulos & Fleuret, 2018).
For methods applied to convex problems, LASVM (Bordes et al., 2005) is an online algorithm
that trains kernelized support vector machines using importance sampling. Another application
on convex problems is to connect importance sampling and variance of the gradient estimates of
stochastic gradient descent. For the problems on Deep learning, Bengio & Senécal (2008) designed
a sampling scheme, and Schaul et al. (2015) used the loss to create the sampling distribution.

1.3 INCREMENTAL GRADIENT METHODS

The incremental gradient method is an algorithm that minimizes a finite sum of a convex function.
This incremental gradient method is applied to many fields, including large-scale data processing
and distributed optimization over networks (Gurbuzbalaban et al., 2019). Furthermore, mathemati-
cal optimization lies at the center of large-scale machine learning training, like maximizing a sub-
modular function, minimizing loss function, or optimizing empirical risk functions. Applying IG to
the selected coreset is guaranteed to converge to the (near)optimal solution with the same conver-
gence rates as for convex optimization (Gurbuzbalaban et al., 2019).

The optimization problem is stated as the following: Given a convex loss L, and a µ-strongly convex
regularizer r, one aims to find model parameter vector θ∗ over the parameter space Θ that minimizes
the loss f over the training data V:

θ∗ ∈ argminθ∈Θ f(θ),

f(θ) :=
∑
i∈V

fi(θ) + r(θ), fi(θ) = L(θ, (xi, yi)),

where V = {1,...,n} is an index set of the training data, and functions fi : Rd → R are associ-
ated with training examples (xi, yi), where xi ∈ Rd is the feature vector, and yi is the point i’s

2

Course project report for COMP 514

label. Standard Gradient Descent could be used to solve this optimization problem which requires
abundant computations of the full gradient ∇f(θ).

1.4 CONNECTION TO ACTIVE LEARNING

Sener & Savarese (2017) formulated the active learning problem as a coreset selection problem.
In an active learning problem, the model iteratively selects data points from a pool of unlabelled
examples for labeling and training since the labeling process may be prohibitively expensive or
time-consuming for the entire dataset. Previous works (Settles, 2009) have shown that there exist
many heuristics that are computationally efficient while being capable of selecting training instances
that lead to high model accuracy. Sener & Savarese (2017) observe that previous active learning
methods are inefficient when applied to convolutional neural network models due to batch sampling
and propose to adapt the active learning problem to batch sampling by proposing to formulate it as
a coreset selection problem.

1.5 SELECTION VIA PROXY

Coleman et al. (2019) proposed selection via proxy (SVP), which works in conjunction with existing
data selection methods such as active learning and coreset selection, and offers computational sav-
ings. The idea of SVP is inspired by heterogeneous uncertainty sampling (Lewis & Catlett, 1994),
which leverages a less computationally expensive model to select training instances for a more com-
putationally expensive model (e.g. using a Naive Bayes model to select training instances for a
decision tree). SVP extends that idea to deep learning by scaling down large neural networks with
methods such as removing layers, switching to a simpler architecture, and reducing training epochs.
These simpler deep learning models, albeit much less accurate for the intended task, perform well
empirically as proxy models to select training instances for their much more computationally ex-
pensive counterparts. Furthermore, Coleman et al. (2019) discover that there are high Spearman’s
and Pearson’s correlations between the smaller model and its larger counterpart on multiple metrics.
Empirical evidence suggests that when employed together with existing active learning and core-
set selection methods, SVP greatly reduces the computational costs of training sophisticated deep
learning models.

2 LITERATURE REVIEW

Inspired by previous works, multiple coreset selection algorithms that are suited for training deep
learning models were developed in recent years, such as GLISTER (Killamsetty et al., 2020),
CRAIG (Mirzasoleiman et al., 2020), and GRAD-MATCH (Killamsetty et al., 2021). Each of them
either selects a subset or a weighted subset from the entire training dataset by optimizing over an
objective function, which can be approximated by some sort of similarity between the gradients
of the subset loss and the full training loss with respect to the model parameters. Some details of
these three methods are briefly introduced in Sec. 2.1, Sec. 2.1, and Sec. 2.3, respectively, under the
supervised-learning context. To unify the notations, we denote the entire train set as X = {Xi}, the
subset as S = {Sj} whose cardinality is a natural number k, the model parameters as a vector θ,
and the loss as L(·, ·), given a differentiable model and some training instances with corresponding
labels.

2.1 GLISTER

The GLISTER strategy was initially proposed with a bi-level discrete optimization formulation,
where the algorithm selects a subset such that the loss of the entire training dataset is minimized by
the model trained with this subset. However, due to the complexity of the inner-optimization, the
authors of GLISTER adopted an online approximation to the inner-optimization solution by one-
step gradient descent. Additionally, to further reduce computation, the outer-optimization is also
approximated by the first-order Taylor expansion. Mathematically, such approximation process can

3

Course project report for COMP 514

be described by the following derivations, where η is the step size of the gradient update.

min
S⊆X,|S|≤k

L(argminθL(θ, S), X)

≈ min
S⊆X,|S|≤k

L(θ − η∇θL(θ, S), X)

≈ min
S⊆X,|S|≤k

L(θ,X)− η∇θL(θ, S)
⊤∇θL(θ,X)

= max
S⊆X,|S|≤k

∇θL(θ, S)
⊤∇θL(θ,X)

After the above approximation, it is apparent that the original bi-level optimization is reduced to
maximizing the similarity of the subset gradient and the full gradient represented by their inner-
product, which can be solved easily by a naive greedy selection algorithm. Unlike CRAIG and
GRAD-MATCH which use a weighted subset, GLISTER uses a unweighted subset as the coreset.
In other words, each data sample in the coreset computed with GLISTER takes equal importance in
updating the model.

2.2 CRAIG

Unlike GLISTER, CRAIG measures the gradient similarity between the subset and training set by
Euclidean distances, and its objective takes the form of the following expression:

min
S⊆X,|S|≤k

∑
Xi∈X

min
Sj∈S

∥∇θL(θ, Sj)−∇θL(θ,Xi)∥

The above optimization problem is categorized as a Facility Location problem which is a well-
studied generic submodular optimization problem. In a general form, the Facility Location problem
looks for a selector for optimizing a function F (U, V) =

∑
u∈U maxv∈V ϕ(u, v), where V is the

subset, U is the groundset, and ϕ(u, v) evaluates a score to reflect the similarity between u and v.
Fortunately, the Facility Location problem can be efficiently solved in many ways, which mitigates
the implementation difficulty of CRAIG.

One important characteristic of CRAIG is that it implicitly uses a weighted coreset for training.
Concretely, CRAIG associates an element in the coreset with each instance in the training set based
on the highest similarity. Then, for each instance in the coreset, CRAIG counts the number of train-
ing instances it is associated with, and uses that number as the weight of the gradient for updating
the model, as expressed by the following equations:∑

Sj∈S

wj∇θL(θ, Sj),

wj =

∑
Xi∈X I

[
Sj = argmins∈S∥∇θL(θ, s)−∇θL(θ,Xi)∥

]
|X|

2.3 GRAD-MATCH

Instead of counting assignments to weight coreset data, GRAD-MATCH directly optimize the value
of weights w in a continuous space. Its objective takes the following form, which has been proved
to be upper-bounded by the objective of CRAIG (Killamsetty et al., 2021).

min
w,S⊆X,|S|≤k

∑
Sj∈S

∥wj∇θL(θ, Sj)−∇θL(θ,X)∥

The above objective of GRAD-MATCH is sovled using the Orthogonal Matching Pursuit (OMP) al-
gorithm (Elenberg et al., 2018), which is an iterative algorithm for matrix recovery. Breifly speaking,
at each iteration, OMP greedily selects one data to be added into the coreset based on its correlation
with the current residuals and optimizes the weight vector based on the current coreset selection
until the coreset cardinality constraint becomes active.

4

Course project report for COMP 514

Figure 1: Data selection for every R epochs (Killamsetty et al., 2021).

(a) MNIST (b) Fashion-MNIST

Figure 2: Experimental results of GRAD-MATCH on the MNIST and Fashion-MNIST datasets, by
using last-layer or all-layer gradients to select the coreset. The first row and the second row are
respectively the plots for train loss and train accuracy with respect to the training time in seconds.

2.4 TECHNIQUES FOR SPEEDING UP CORESET SELECTION

Last-layer gradients: Using gradients of all parameters of a model to compute coresets is compu-
tationally expensive. Since the variation of the gradient norm is mostly captured by the gradients of
the last layer, we only use the last-layer gradients to compute coresets (Killamsetty et al., 2021).

Per-class and per-batch approximations: Storing gradients of all instances leads to high memory
requirements. Instead, we solve the gradient matching problem for each class individually. Alterna-
tively, we can consider only the gradients of entire batches (Killamsetty et al., 2021).

Warm-starting: Initially, we train the model with full gradients for T epochs without adaptive data
selection, in order to stabilize gradients (Killamsetty et al., 2021).

Perform data selection every R epochs: For any adaptive data selection algorithm, the data selec-
tion is performed every R epochs and the (stochastic) gradient descent updates are performed on the
subsets obtained by the data selection, as illustrated in Fig. 1 (Killamsetty et al., 2021).

To verify the effectiveness of the speed-up technique of using only the last-layer gradients, we run
experiments of training a neural network classifier on the MNIST and Fashion-MNIST datasets, and
comparing using gradients from the last layer with using all gradients for the GRAD-MATCH algo-
rithm. The results are shown in Fig. 2. The results show that using only the last-layer gradients could
potentially stabilize the training. We hypothesize that it is because the gradients from all layers have
greater variance and thus make training more sensitive to factors such as noise. More importantly,
when running the experiments, we discovered that using all-layer gradients is not practical since
the computation of such high-dimensional gradients is not only slow but requires much memory
especially for a deep model.

5

Course project report for COMP 514

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 3: Experimental results of the performance evaluations on each algorithm. (a) and (b) show
the results on the MNIST and Fashion-MNIST dataset using a LeNet model; (c) shows the result on
the CIFAR-10 dataset using a ResNet18 model. The first row and the second row are respectively
the plots for train loss and train accuracy with respect to the training time in seconds.

3 CONTRIBUTIONS AND RESULTS

In this project, we are especially interested in understanding the connections and differences of
GLISTER, CRAIG and GRAD-MATCH, analytically and empirically. We first evaluate to compare
the performance of these three methods in Sec. 3.1. Based on the experimental results, we propose
a modification to the original algorithms for tentative improvements in Sec. 3.2.

3.1 PERFORMANCE EVALUATION

The performance of the three algorithms are evaluated individually by our experiments, with com-
parison to a baseline “Random” strategy and the “Full” strategy. The “Random” strategy simply
selects coresets by uniformly random sampling, and the “Full” strategy means train using the en-
tire dataset rather than a subset. We test all the strategies on three well-known image classifica-
tion datasets: MNIST, Fashion-MNIST, and CIFAR-10. For a fair comparison, we set the hyper-
parameters unchanged across all the trials discussed in this section. Specifically, we set the batch-
size to 20, the selection fraction to 0.1 (ie. k = 0.1 · |X|), and a coreset re-selection for every 5
epochs. The models are all trained with a stochastic gradient descent optimizer scheduled by co-
sine annealing. In almost all the experiment runs, the model is trained for 40 epochs; however, for
the “Full” strategy on CIFAR-10, we truncate the training time to be only 20 epochs due to its low
speed. The results are summarized in Fig. 3, where the slope of the curve indicates the efficiency of
an algorithm.

From the results, the “Full” strategy can completely capture all the underlying information in the
train dataset, and thus it achieves the best performance in terms of train metrics and serves as a
standard in our experiments. In practice, the “Full” strategy runs more iterations in one epoch than
the other coreset algorithms by |X|/k times. For the coreset strategies, GRAD-MATCH is the
optimal in all experiments. CRAIG and GLISTER performs similarly well, but GLISTER requires
significantly more computation time for subset re-selection than CRAIG and GRAD-MATCH.

3.2 TENTATIVE IMPROVEMENT

As described in the previous section, one major difference of these three methods is that GLISTER
uses an unweighted subset while GRAIG and GRAD-MATCH use weighted subsets. Additionally,

6

Course project report for COMP 514

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 4: Experimental results on evaluating the weighted GLISTER by comparison to the other
three coreset algorithms. (a) and (b) show the results on the MNIST and Fashion-MNIST dataset
using a LeNet model; (c) shows the result on the CIFAR-10 dataset using a ResNet18 model. The
first row and the second row are respectively the plots for train loss and train accuracy with respect
to the training time in seconds.

unlike CRAIG which counts the discrete data assignments as weights, GRAD-MATCH directly
optimizes the weights in the continuous space. Theoretically, the solution found by GRAD-MATCH
or CRAIG should be much more optimal than GLISTER since the use of the weights enlarges
the possible solution space for search and the speed of GLISTER is slow due to its computational
complexity.

However, from the experimental results shown above, we find GLISTER performs much better than
we expected in many scenarios. This observation led us to a hypothesis, that the weighted subsets are
more optimal while the inner-product approximation used by GLISTER still has some advantages
for alleviating errors. Therefore, we tentatively modify the original GLISTER by adding weights
into coreset data in the following way, where the modified objective function takes the form of a
weighted sum of inner-products:

max
S⊆X,|S|≤k

∇θL(θ, S)
⊤∇θL(θ,X) = max

S⊆X,|S|≤k

∑
Sj∈S

∇θL(θ, Sj)
⊤∇θL(θ,X)

−→ max
w,S⊆X,|S|≤k

∑
Sj∈S

wj∇θL(θ, Sj)
⊤∇θL(θ,X)

To simplify the implementation, we further approximate the above weighted objective by a Facility
Location function in a similar way as in CRAIG:

max
w,S⊆X,|S|≤k

∑
Sj∈S

wj∇θL(θ, Sj)
⊤∇θL(θ,X) ≈ max

S⊆X,|S|≤k

∑
Xi∈X

max
Sj∈S

∇θL(θ, Sj)
⊤∇θL(θ,Xi)

In other words, the weights used by the modified GLISTER are approximately optimized by the
following equation, where Sj and wj denote the j-the data point in the coreset and its associated
weight value.

wj =

∑
Xi∈X I

[
Sj = argmaxs∈S∇θL(θ, s)

⊤∇θL(θ,Xi)∥
]

|X|
,

s.t. S ⊆ X, |S| ≤ k

7

Course project report for COMP 514

We test the weighted GLISTER algorithm by the same experimental setting. The results are shown in
Fig. 4. We can observe from our experiments that the performance is improved relative to the original
GLISTER algorithm. Thanks to the speed-up by a Facility Location approximation, the efficiency
is also improved a lot. However, our modified version of GLISTER still cannot outperform GRAD-
MATCH in whichever case since the weights are optimized in a discrete space which is intuitively
more sub-optimal.

4 CONCLUSIONS

In this project, we reviewed previous works that led to the development of coreset selection algo-
rithms for deep learning, and the three current state-of-the-art coreset algorithms for deep learning:
GLISTER, CRAIG, and GRAD-MATCH. We verified with experiments that the last-layer gradient
updates speed-up is effective for GRAD-MATCH in practice. Not only does it reach much lower
training loss than the baseline in the same amount of time, the gradients of the last-layer parameters
are much more stable.

Moreover, by empirically comparing the performance of the three algorithms on training models
for popular image classification benchmark datasets, we conclude that GRAD-MATCH is the best
performing coreset selection algorithm, since it reaches the lowest loss and the highest accuracy
among all coreset selection algorithms in the same span of time. Furthermore, we noticed that
GLISTER uses an unweighted subset as the coreset and hypothesize that its performance can be
improved by simply associating each element in the subset with a weight, similar to the best per-
forming GRAD-MATCH algorithm. We show that empirically, the modified version of GLISTER,
GLISTER-weighted, performs better than the original algorithm, confirming our hypothesis, albeit
it does not reach the efficiency of GRAD-MATCH.

Another important observation is that, surprisingly, the “Full” strategy works better than all coreset
selection methods considered in our experiments, demonstrated by lower training loss and higher
accuracy than other methods for fixed training time. We hypothesize that this is because full gradient
descent gives more stable gradients at the start of the training process, and the size of the models
and datasets we considered are not sufficiently large to demonstrate the efficiency advantages of
coresets.

8

Course project report for COMP 514

REFERENCES

Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate training of
a neural probabilistic language model. IEEE Transactions on Neural Networks, 19(4):713–722,
2008.

Vighnesh Birodkar, Hossein Mobahi, and Samy Bengio. Semantic redundancies in image-
classification datasets: The 10% you don’t need. arXiv preprint arXiv:1901.11409, 2019.

Antoine Bordes, Seyda Ertekin, Jason Weston, Léon Botton, and Nello Cristianini. Fast kernel
classifiers with online and active learning. Journal of Machine Learning Research, 6(9), 2005.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019.

Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, and Sahand Negahban. Restricted strong
convexity implies weak submodularity. The Annals of Statistics, 46(6B):3539–3568, 2018.

M Gurbuzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Convergence rate of incremental gradient
and incremental newton methods. SIAM Journal on Optimization, 29(4):2542–2565, 2019.

Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering. Discrete
& Computational Geometry, 37(1):3–19, 2007.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. pp.
291–300, 2004.

Ibrahim Jubran, Alaa Maalouf, and Dan Feldman. Introduction to coresets: accurate coresets. arXiv
preprint arXiv:1910.08707, 2019.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glis-
ter: Generalization based data subset selection for efficient and robust learning. arXiv preprint
arXiv:2012.10630, 2020.

Krishnateja Killamsetty, Durga Sivasubramanian, Baharan Mirzasoleiman, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: A gradient matching based data subset selection for
efficient learning. arXiv preprint arXiv:2103.00123, 2021.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Machine learning proceedings 1994, pp. 148–156. Elsevier, 1994.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54–63, 2020.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning literature survey. 2009.

Ivor W Tsang, James T Kwok, Pak-Ming Cheung, and Nello Cristianini. Core vector machines:
Fast svm training on very large data sets. Journal of Machine Learning Research, 6(4), 2005.

9

Literature Review for Neural Network Training and Convex Optimization

Debolina Halder Lina * 1 Yufeng Yang * 1

Abstract
This literature review aims to discover existing
techniques of convex optimization in Neural Net-
works. The first two papers are summarized by
Debolina Halder Lina, and the last three are sum-
marized by Yufeng Yang. The first two papers ap-
plies L1 regularization to make the problem finite.
Convex neural network solves an exact or approx-
imate linear classifier at each step. Global conver-
gence bound can be achieved for L1 regularization
with Frank Wolfe algorithm. The third paper in-
troduced a modified convex objective function for
neural network, which preserve the same optimal
value but converges much faster. The forth and
fifth paper uses the convexity in dual problem to
compute the layer weight via standard convex op-
timization technique, which can achieve higher
accuracy than stochastic gradient descent(SGD).
Related Numerical experiments are also summa-
rized to support the role convex optimization tak-
ing in neural network training.

1. Introduction:
With the increasing demand for automated systems, deep
neural networks (NN) are taking over a variety of aspects
like text mining, recommendation system, image processing,
speech recognition, bioinformatics, etc. Neural networks
are a collection of nodes commonly called neurons stacked
into layers consisting of one input layer, one or multiple
hidden layers, and one output layer. Figure 1 shows the
structure of a neural network. The neurons receive a signal
from another neuron, processes it, and transmit the signal to
another layer. The output of each neuron is the linear sum of
its input and a non-linear activation of the linear summation.
The output of a neural network can thereby be written like
the following-

f(wTx+ w0) (1)

*Equal contribution 1George Brown School of Engineering,
Rice University. Correspondence to: Debolina Halder Lina
<dl73@rice.edu>, Yufeng Yang <yy94@rice.edu>.

Project report for COMP414/514, Rice CS. Copyright 2021 by the
author(s).

Here x is the input vector, w is the input weights and w0 is
the bias term. f is the nonlinear activation function. ReLU,
Sigmoid, tanh, etc. are some widely used activation func-
tions for neural networks. Features at the input layer of the
NN propagate through the network. They first go through an
affine transformation and then a non-linear activation. Due
to this non-linear activation function, the optimization of
the neural network is non-convex. One major concern of op-
timizing neural networks is that it has infinitely many local
optimal values. Another issue is exploding and vanishing
gradient due to sharp and flat valleys of the loss function.
Despite being a non-convex problem, if sufficiently large
neural networks are used then the local optimal incurs a
very low loss. Then they can be considered as a global
minimum if the loss is sufficiently low. So, if infinitely
large neural networks are considered, then we can say that
they are asymptotically convex. The goal of this study is
to summarize different techniques of convex optimization
of neural networks. We have mainly focused on how the
authors are modifying the neural networks to construct a
convex optimization function and what approaches they are
taking to optimize the loss function. Many mathematical
details are excluded from the summary to ensure brevity.

Figure 1. Deep Neural Networks

2. Convex Optimization of Neural Network:
2.1. Convex Neural Network

Training multi-layer neural network involves infinitely many
variables. Bengio et. al (Bengio et al., 2006) showed that

Neural Network Training and Convex Optimization

this infinite variable problem can be converted to a convex
optimization problem if the output loss function is convex in
the neural network(NN) output and the output layer weights
are regularized by a convex penalty. If precision limitations
are imposed on all hidden units of a NN, a countable or even
a finite set can be obtained. For such a NN, at the end what
we get is an ordinary feedforward NN. This can be achieved
by using a regularization penalty on the output weights that
yield sparse solutions, such as the L1 penalty. Let x ∈ Rd

be the data matrix. x̄ ∈ Rd+1 be an extension of the data
matrix with one element 1. Let hi(x) = s(vi.x̄) where s
is the nonlinear activation function. Then the prediction is
ŷ =

∑m
i=1 wihi(x). The goal is to learn m, w′

is and vi’s.
Let Q be a convex regularization function and Ω(w) =
λ∥w∥1. Then the cost function becomes-

C = λ∥w∥1 +Q(w.h(xi), yi) (2)

So, Q and ∆ is convex in w and C is a summation of both
of them. So, C is convex in w. NN can be seen as a convex
optimization problem for infinite-dimensional space as long
as the number of hidden units can be selected by the learning
algorithm(Bengio et al., 2006). have chosen a regularizer
that generates a sparse solution to control the number of
active hidden units and to transfer the problem into infinite
dimensions. They have proved this in the case of hinge loss.
In terms of hinge loss, Q(y, ŷ) = max(0, 1− yŷ). For this
case the cost function is-

C(w) = K∥w∥1 +
n∑

t=1

max(0, 1− ytw.h(xt)) (3)

As constrained optimization problem, the cost function can
be rewritten as the following-

minξ,w K∥w∥1 +
∑n

t=1 ξt
s.t. yt[w.h(xt)] ≥ 1− ξt (C1)
ξt ≥ 0, for t = 1, 2.....n (C2)

(4)

By taking the Lagrange multipliers of the constraints and
the dual of this problem (max

∑
t qthi(xt)), according to

(Hettich & Kortanek, 1993), the solution of the dual can be
attained with constraints C2 and only n + 1 con- straints
C1. Their incremental ConvexNN algorithm is summarized
in Algorithm- 1 They have proved that at termination the
algorithm reaches global optima but it needs solving a sub-
linear problem involving a linear classifier with weighted
errors. Another property of the algorithm is it behaves like
boosting in the case of sign function when a linear classifier
that minimizes the weighted cost is selected. In step 6, the
algorithm requires to find the linear classifier. This is an
NP-hard problem. They have mathematically proved that
finding the linear classifier can be achieved in O(n3) steps
when the input dimension is 2. It can also be extended to
multidimensional setting (d) where the complexity becomes

Algorithm 1 ConvexNN
Input: training set D = (x1, y1), ..., (xn, yn), con-
vex loss function Q, and scalar regularization penalty
λ. s is either the sign function or the tanh func-
tion.

1: Set v1 = (0, 0, ..., 1) and select w1 =
minw1

∑
t Q(w1s(1), yt) + λ∥w1∥

2: i = 2
3: repeat
4: Let qt = Q′(

∑
j = 1i−1wjhj(xt), yt))

5: if s = sign then
6: train linear classifier hi(x) = sign(vi.x̄) with

examples (xt, sign(qt)) and errors weighted by
mod qt, for t = 1...n (i.e maximize

∑
t qthi(xt))

7: else if s = tanh then
8: train linear classifier hi(x) = tanh(vi.x̄) to maxi-

mize
∑

t qthi(xt)
9: end if

10: until
∑

t qthi(xt) ≤ λ
11: Select w1, ..., wi (and optionally v2, ..., vi) minimizing

C = λ∥w∥1 +Q(w.h(xi), yi)
12: return the predictor ŷi =

∑
j = 1iwjhj(x)

O(log(n)nd). However, for higher dimensions, finding the
exact minimizer is not a practical idea. Step 8 trains an
approximation instead of an exact minimizer. Popular ap-
proximation techniques to find a linear classifier with the
weighted cost is linear SVM, logistic regression, and the
Perceptron algorithm. Considering the hinge loss doesn’t
generate a solution close to the exact minimum which is
proved by their experimental results. In step 13, both w and
v is optimized simultaneously. At the end of each stage,
with a few training iterations of the whole NN using an
ordinary gradient descent mechanism, one optimizes wj’s
and the vj’s. Then vj’s are fixed and wj’s are optimized for
that vj’s. They have tested the algorithm with an exact and
approximate linear classifier using a 2-d double moon toy
dataset. The approximate algorithm has yielded an average
test classification error of 3.68% and the exact algorithm
has yielded an average test classification error of 5.3%.

2.2. Global Convergence of Frank Wolfe on One Hidden
Layer Networks

Conditional gradients Frank-Wolfe algorithm is one of the
well-known incremental algorithms for training one sin-
gle hidden layer network. In a constrained minimization
problem where projection on a set is hard, solving a Lin-
ear Minimization Oracle (LMO) is often easy using Frank
Wolfe. Aspremont at. al (d’Aspremont & Pilanci, 2020)
have shown that the LMO for one hidden layer NN can
efficiently be solved under overparameterized and mild pre-
conditioning assumptions. They have also shown that the

Neural Network Training and Convex Optimization

overparameterized setting has a convex epigraph and no du-
ality gap. They have focused on training the infinitely wide
NN which is asymptotically convex. Like (Bengio et al.,
2006) they have also considered a L1 penalty to decide the
locations of active neurons via the LMO. Each LMO adds
a fixed number of neurons to the solution (In the case of
(Bengio et al., 2006), each iteration added a single neuron
to the solution. 1. The objective function can be written as
follows-

minimize
∑n

i=1(f(ai)− yi)
2

subject to γ1(f) ≤ δ
(5)

Here γ1is the variation norm(an extension to L1 norm in
infinite dimension). A ∈ Rn×d is the input data matrix, y is
the output, and

f(ai) =

∫
σθ(ai)dµ(θ) (6)

Though equation 5 is non-convex, for a large number of
neurons and higher dimension, the objective becomes very
close to convex. If started from one single unit, then the
objective function becomes-

minimize ∥z − y∥22
subject to σ(θTai) = zi, for i = 1, .., n

(7)

Though this is non-convex, it’s epigraph is convex when the
number of neurons are greater than the number of sample.
After taking the convex hull of its epigraph, the objective
becomes-

minimize ∥z − y∥22
subject to

∑n+2
j=1 αjσ(θ

T
j ai) = zi, for i = 1, .., n

(8)
So, in the case of training one single hidden layer network,
the problem can be treated as convex when the number of
neurons exceeds the sample size. The activation function σθ

is parameterized by θ ∈ V where V is a compact topological
vector space. f(ai) =

∫
σθ(ai)dµ(θ) is an action of the

Radon measure µ on the activation function. This is an
infinite dimension problem that can be solved by Frank
Wolfe where the LMO is solved over a γ1 ball. The Frank
Wolfe invokes the LMO using the gradient at each iteration.
Then the algorithm takes convex combinations of iterations.
If the loss function if L(f), then

L(f) =

n∑
i=1

(f(ai)− yi)
2 (9)

L′(f) =

n∑
i=1

giδ (10)

where,

gi = 2(

∫
σθ(ai)dµ(θ)− yi) (11)

So the LMO that the Frank Wolfe solves becomes-

minimize

n∑
i=1

gif(ai) (12)

By switching sums-

inf
γ1(

∫
σθ()dµ(θ)≤1

n∑
i=1

gi(

∫
σθ(ai)dµ(θ))

= inf
γ1(

∫
σθ()dµ(θ)≤1

(

∫
(

n∑
i=1

giσθ(ai))dµ(θ))

≥ −max
θ∈v

n∑
i=1

giσθ(ai),

(13)

if and only if µ = µ− − µ+. So, the key of solving
the LMO is solving max

θ∈v

∑n
i=1 giσθ(ai) The authors

have solved this maximization problem for ReLU activa-
tion function. The overall algorithm is described in Al-
gorithm 2. After T iterations, L(

∫
σθ()dµT (θ)) − L⋆ ≤

Algorithm 2 Frank-Wolfe Algorithm
Input: A target precision ϵ > 0

1: Set t := 1, µ1(θ) = 0.
2: repeat
3: Get µd(θ) solving (LMO) for gi
4: gi = 2(

∫
σθ(ai)dµt(θ)− yi) for i = 1,n

5: Set µt+1(θ) := (1 − λt)µt(θ) + λtµd(θ) for λ :=
2/(t+ 1)

6: Set t:= t+1
7: until gapt ≤ ϵ

Output: µ(θ)tmax

4R2δ2

T+1 where R2 = sup
θ∈V

{
∑n

i=1 σθ(ai)
2}. Frank Wolfe

also gives an upper bound of the duality gap gapt =∑n
i=1 gi(

∫
σθ(ai)dµt(θ) −

∫
σθ(ai)dµd(θ)) where µt(θ)

is the current state and µd(θ) is the solution of the linear
minimization oracle. When the number of sample n is
greater than the dimension d, the minimization objective
becomes a finite sum problem. For this scenario, the au-
thors have proposed a stochastic Frank Wolfe algorithm
which solves a linear minimization oracle at each iteration
on a subset of the samples. The sample size mt is equal to
(G(t+1)

LD)2. Here L is the Lipschitz constant and G is the
upper bound of the Lipschitz constant of the gradient of
the objective function. For small mt, the stochastic Frank
Wolfe is similar to Algorithm 2. The authors have tested
the convergence of Frank Wolfe and Stochastic Frank Wolfe
algorithms using toy examples. In the first case, the ground
truth is generated using ten neurons in dimension 25 using
Gaussian weights, observing 20 data points. In the case of
Stochastic Frank Wolfe, the ground truth is generated by ten

Neural Network Training and Convex Optimization

neurons, in dimension 20 using 25 samples. The empirical
results show that overparameterized networks are inherently
easier to train.

2.3. Convex Relaxation for shallow neural networks

In this paper, the neural network model the author considers
is shallow network, which only contains one hidden layer.it
is much easier to analyze. Also, with the number of neu-
rons increases, shallow neural network can approximate any
functions,which has important practical significance. In the
following part, the derivation of convex relaxation will be
shown from the simplest case (i.e. one neuron in hidden
layers) to multiple neuron case. The author shows such
generalization is always held.
For single neuron case, assume there exists planted parame-
ter x∗, the model considered here is:

y = g(Ax∗) (14)

the objective function is:

min
x

1

2
f(x) = min

x

1

2
∥g(Ax)− y∥22 (15)

Where g(.) is the ReLU activation function: g(x) =
max(0, x), A ∈ Rn×d is the input data matrix, x ∈ Rd

is the parameter vector for first layer and y is considered
from the planted model such that y = g(Ax∗)
Taking gradient of f(x):

▽f(x) = ATD(g(Axt)− y) (16)

Where Dt is the diagonal matrix and its ith diagonal entry
is computed as 1 if aTi x ≥ 0, 0 otherwise.
The objective above function may not be a convex function
because of the existence of ReLU.However, if we expand
Objective function f(x) and relax it as:

fr(x) = ∥g(Ax)∥22 − 2yTAx+ ∥y∥22 (17)

The author shows that fr(x) is convex (Proposition 1.) and
also holds the same optimal value as f(x). (Theorem 1.)(Er-
gen & Pilanci, 2019). Thus, by convex function property,
fr(x) will only have one global minimum. Gradient descent
with proper step size will converge to the global minimum.
When it comes to the hidden layer with multiple neurons,
instead of considering the model y = g(Ax∗), the model is:

yi =

m∑
1

g(aTi x
∗
j)∀i ∈ 1....n (18)

x∗
j is the planted parameter vector of each neuron. Similarly

as single neuron case, the objective function is defined as:

min
X

fm(X) = min
X

1

2

∥∥∥∥∥∥
m∑
j=1

g(Axj)− y

∥∥∥∥∥∥
2

2

(19)

Where g(.) is still the ReLU activation function, A ∈ Rn is
input matrix.
The objective function has multiple global minimum points,
because if we permute xj from different orders, they are
all global optimum solutions. If n > d,we can obtain more
equations than true parameters, thus, gradient descent still
works in this case. If n ≤ d, in this case, we cannot com-
pute all the true parameters. Gradient descent may fail to
converge to the global optimum. Thus, the importance of
convex relaxation will show up.
If we denote the residual as r =

∑m
j=1 g(Axj) − y, the

gradient can be denoted as:

▽xjfm(X) = 2ATDjr (20)

Apply first-order condition (i.e ▽xjfm(X) = 2ATDjr =
0 ∀j = 1..m), if A is assumed to be full rank, then the
optimal condition is achieved if and only if Djr = 0 ∀j =
1..m. However, Dj is a low rank diagonal matrix, if the
corresponding element is 0, then the corresponding index in
r can be arbitrary number, which indicates gradient descent
may fail to converge to the optimal value.
In order to overcome the problem taken by the low rankness
of Dj , the modified gradient descent algorithm is:

▽xjfm(X) = 2ATDjr + 2AT
m∏
j=1

Dc
jr (21)

Where Dc
j = In −Dj . With this modification, we can guar-

antee that each index of residual has a positive multiplicative
factor so that ▽xj

fm(X) = 0 implies r = 0.
The corresponding function satisfies the modified gradient
is:

fmp(X) =

∥∥∥∥∥∥
m∑
j=1

g(Axj)− y

∥∥∥∥∥∥
2

2

− 2yT
m∏
j=1

Dc
jA

m∑
j=1

xj

(22)
It is proved that the relaxation of original objective func-
tion is convex (Ergen & Pilanci, 2019) and it preserve the
same optimal value as the original objective function fm.
Thus, applying gradient descent with proper step size, it can
guarantee modified gradient descent converge to the unique
optimal value.

2.3.1. NUMERICAL EXPERIMENTS

The author generates the input and output data and initialize
the parameter vector/matrix according to standard normal
distribution. Then, the author uses shallow network with
single neuron and multiple neurons to show the training and
test performance,which are in Figure 1 and Figure 2 (Ergen
& Pilanci, 2019).When the number of sample (n) is larger
than d, during training process, both objective value of orig-
inal function and relaxed function will achieve to 0, which

Neural Network Training and Convex Optimization

confirms the property that convex relaxation doesn’t change
the optimal value. When n is smaller than or equal to d, it
indicates the regularized gradient descent converges faster
than gradient descent algorithm. It possibly confirms the rea-
son why gradient descent may fail even in shallow network
with non-convex objective function. However, this convex
relaxation only applies to shallow network, which is quite
limited. Further research can be done to test whether we can
achieve such convex relaxation on Deep ReLU network.

2.4. Revealing the Structure of Deep Neural Networks
via Convex Duality

This paper mainly uses the existing convexity of dual prob-
lem for objective function and uses the extreme point condi-
tion in constraint to compute the explicit solution of each
layer weight matrix of neural networks. As a result, the
strong duality holds for regularized training problem and its
weight coincides with the iterative methods such as SGD.
Recall the general optimization problem:

min
x

f0(x)

s.t. fi(x) ≤ 0
hi(x) = 0

(23)

The lagrangian function is defined as:

L(x, λ, ν) = f(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (24)

And the dual problem is D∗ = max inf L(x, λ, ν). No
matter whether f(x) is convex or not, the inf L(x, λ, ν) is
a concave function. Thus, maximize a concave function is
a convex optimization problem. (Boyd & Vandenberghe,
2004). This is why idea how to connect duality with convex-
ity and apply them into neural network training problem.

2.4.1. TWO-LAYER LINEAR NETWORK

In order to give a more precise explanation for how to use
duality to compute the weight matrix of neural network. The
minimum norm variant problem is first considered as the
following:

min
θ∈Θ

∥W1∥2F + ∥w2∥22 s.t. fθ,2(X) = y (25)

Where W1 ∈ Rd×m is the weight matrix connecting input
layer and hidden layer, w2 ∈ Rm is the weight vector con-
necting hidden layer and output layer. X ∈ Rn×d is the
input matrix and y ∈ Rn is the output respectively. By
Lemma A.1 (Tolga Ergen, 2020), it is equivalent as:

P ∗ = min
θ∈Θ

∥w2∥1 s.t fθ,2(X) = y, w1,j ∈ B2,∀j (26)

Using duality scenario, the dual problem (with strong duality
holds) is given by:

P ∗ = D∗

= max
λ

λT y s.t.
∥∥(XW1)

Tλ
∥∥ ≤ 1 ∀ ∥w1,j∥22 ≤ 1∀j

= max
λ∈Rn

λT y s.t. max
w1∈B2

∣∣λTXw1

∣∣ ≤ 1

(27)

Here B2 is the unit ball constraint with squared norm (i.e
∥u∥2 ≤ 1.The optimal solution is obtained on the boundary
of the constraint maxw1∈B2

∣∣λ∗TXw1

∣∣ ≤ 1.
Assume that there exists a planted parameter w∗ such that
Xw∗ = y holds, then apply Singluar Value Decomposi-
tion(SVD) on original input matrix X, the problem can be
reformulated as:

max
λ̃

λ̃Σxw̃
∗

s.t.
∥∥∥Σxλ̃

∥∥∥
2
≤ 1

(28)

Where λ̃ = UT
x λ and w̃∗ = V T

x w∗. When ΣT
x λ̃ = c1w̃

∗,
the optimal neuron (i.e, each column of W1) should satisfy
the following condition:

w∗
1 =

VxΣxλ̃∥∥∥VxΣxλ̃
∥∥∥
2

=
Vxw̃

∗
r

∥w̃∗
r∥2

=
PXT (w∗)

∥PXT (w∗)∥2
(29)

The above scenario can be summarized as: first, derive
the dual problem, which has strong duality property and
it is also a standard convex optimization problem; second,
the optimal solution should be the extreme points of the
constraint.
Following this scenario, the primal and dual regularized
training problem for two-layer linear network are:

P ∗ = min
θ∈Θ

∥fθ,2(X)− y∥22 + β ∥w2∥22 s.t. w1,j ∈ B2

D∗ = −1

2
∥λ− y∥22 +

1

2
∥y∥22 s.t. max

w1∈B2

∣∣λTXw1

∣∣ ≤ β

(30)
Strong duality also holds in this case(Theorem 2.2 (Tolga Er-
gen, 2020). Solving above dual objective function by op-
timal condition (λ = y) and plug it into the constraint to
satisfy the extreme point condition, the explicit for w1 is:

w∗
1 =

XTPX,β(y)

∥XTPX,β(y)∥22
(31)

Where PX,β projects to
{
u ∈ Rn|

∥∥XTu
∥∥
2
≤ β

}
2.4.2. TWO-LAYER LINEAR NETWORK WITH VECTOR

OUTPUTS

Unlike the weight vector w2 for previous problem, in
this case, W2 ∈ Rm×n will become a matrix satisfying

Neural Network Training and Convex Optimization

fθ,2(X) = XW1W2, Y ∈ Rn×K , the primal and dual of
the minimum norm variant problem is:

P ∗ = min
θ∈Theta

∥W1∥2F + ∥W2∥2F s.t. fθ,2(X) = Y

= min
θ∈Theta

m∑
j=1

∥w2,j∥2 s.t. fθ,2(X) = Y, w1,j ∈ B2

D∗ = max
Λ

tr(ΛY) s.t
∥∥ΛTXw1

∥∥
2
≤ 1,∀w1 ∈ B2

(32)
Strong duality holds for above equation(Theorem
2.3(Tolga Ergen, 2020)).Suppose there exists a planted
parameter W ∗ such that Y = XW ∗,The solution
for optimal neuron is still the extreme points of
constraint

∥∥ΛTXw1

∥∥
2

≤ 1,∀w1 ∈ B2, which is the
subset of first rank(W ∗) largest right singular vectors of
ΛTX .
Similarly, for the regularized training problem with vector
output, the primal and dual problem is:

P ∗ = min
θ∈Θ

1

2
∥fθ,2(X)− Y ∥2F + β

m∑
j=1

∥w2,j∥2 s.tw1,j ∈ B2

D∗ = max
Λ

−1

2
∥Λ− Y ∥2F +

1

2
∥Y ∥2F s.tσmax(Λ

TX) ≤ β

(33)
Strong duality holds for above problems(Theorem 2.4
(Tolga Ergen, 2020)).The optimal solutions for dual prob-
lem is the subset of maximal right singular vectors of
PX,β(Y

T)X , where PX,β(.) projects vector into the set{
U ∈ Rn×K |σmax(U

TX) ≤ β
}

.

2.4.3. DEEP LINEAR NETWORKS

Unlike the usual expression for deep linear networks (i.e
fθ,L = XW1W2...wL−1wL, the layer weight matrix is
setting as: fθ,L =

∑m
j=1 XW1,j ...wL,j ,then for the training

problem:

min
{θl}L

1

1

2

m∑
j=1

L∑
l=1

∥Wl,j∥2F s.t. fθ,L = y (34)

Theorem 1 Optimal layer weights for (33) is:

W ∗
l,j =

t∗j

Vxw̃
∗

∥w̃r
∗∥2

ρT1,j , l = 1

t∗jρl−1,jρ
T
l,j , 1 < l ≤ L− 2

ρL−2,j , l = L− 1

Where ρl,j ∈ Rml such that ∥ρl,j∥2 = 1 ⟨ρl,j , ρl,k⟩ =
0 ∀l ∈ {1....L− 2} ∀j, k ∈ {1....m}. w∗

r preserve the
first r element and the rest equals to 0, where r is the rank of
X.Besides, the strong duality also holds for dual of (34).
However, if plugging first layer weight, we can
find:XW1ρ1 = cy holds. Thus, the rest layer actually
contributes nothing to the expressive power of the network.

Similarly, for regularized training problem:

min
{θ}L

1

1

2
∥fθ,L(X)− y∥22 +

β

2

m∑
j=1

L∑
l=1

∥Wl,j∥2F (35)

Theorem 2 Optimal layer weights for (34) is:

W ∗
l,j =

t∗j

XTPX,β(y)
∥XTPX,β(y)∥2

ρT1,j , l = 1

t∗jρl−1,jρ
T
l,j , 1 < l ≤ L− 2

ρL−2,j , l = L− 1

Where PX,β projects to the set{
u ∈ Rn|

∥∥XTu
∥∥
2
≤ βt∗2−L

j

}
. Strong duality also

holds for (35) (Tolga Ergen, 2020).

2.4.4. DEEP LINEAR NETWORK WITH VECTOR OUTPUT

In this case, the L-layer deep linear network model should
be described as:fθ,L(X) =

∑m
j=1 XW1,jw

T
L,j.

Strong duality also holds in this case and the optimal neuron
can be computed explicitly similarly as deep linear network
with scalar output. The key difference in expression is the
first layer weight matrix. For regularized training prob-
lem, instead using XTPX,β(y)

∥XTPX,β(y)∥2
, we need to compute the

maximal right singular vector of PX,β(Y)TX , which is ex-
tremely similar as the analysis for two-layer linear network
with vector output.

2.4.5. DEEP RELU NETWORKS

Here, we consider a L-layer ReLU network with the
output function fθ,L(X) = AL−1wL, where Al,j =
(Al−1,jWl,j)+, A0,j = X, ∀l, j and (x)+ = max(0, x)
(definition of ReLU). The minimum norm variant problem
can be formulated as:

min
{θl}L

1

m∑
j=1

L∑
l=1

∥Wl,j∥2F s.t fθ,L(X) = y (36)

Theorem 3 Let X be rank-one matrix such that X = caT0 ,
where c ∈ Rn

+ and a0 ∈ Rd, then strong duality holds and
optimal weights are:
Wl,j =

ϕl−1,j

∥ϕl−1,j∥ϕ
T
l,j , ∀l ∈ [L− 2], wL−1,j =

ϕL−2,j

∥ϕL−2,j∥2

where ϕ0,j = a0 and {ϕl,j}L−2
l=1 a set of vectors such that

ϕl,j ∈ Rml
+ and ∥ϕl,j∥2 = t∗j

2.4.6. REGULARIZED PROBLEM WITH VECTOR OUTPUT

Now, the last layer has multiple neurons thus the shape of
output matrix Y ∈ Rn×K . if we focus on the minimum
norm variant problem, the results stated in last theorem still
holds for vector output case. However, from above results,

Neural Network Training and Convex Optimization

when the model has L layers, we can only compute L-1
layers explicitly.
In order to compute the full layer weights explicitly, addi-
tional assumptions are needed:

Theorem 4 Let {X,Y } be a dataset such that XXT = In
and Y is one-hot encoded, then a set of optimal solutions for
the following regularization training problem:

min
θ∈Θ

1

2
∥fθ,L(X)− Y ∥2F +

β

2

m∑
j=1

L∑
l=1

∥Wl,j∥2F (37)

can be formulated as:

Wl,j =

{
ϕl−1,j

∥ϕl−1,j∥2
ϕT
l,j , if l ∈ [L− 1](

∥ϕ0,j∥2 − β
)
+
ϕl−1,je

T
r , if l = L

where ϕ0,j = XT yj , {ϕl,j}L−2
l=1 is set of vectors such that

ϕl,j ∈ Rml
+ ,

∥∥ϕl,j = t∗j
∥∥ and ϕT

l,iϕl,j = 0, ∀i ̸= j, More-
over, ϕL−1,j = ej is the jth ordinary basis vector.

Strong duality also holds for optimization problem (37).

2.4.7. NUMERICAL EXPERIMENTS AND CONCLUSION

During the mathematical deduction, there are some interest-
ing properties which are not covered in previous part. The
first is for deep linear network, the rank of first (L-1) layer
weight matrix is dependent on β. The second is for deep
linear network, the Frobenius norm of first (L-2) layers is
the same.At first, the author uses the data generated from
standard normal distribution to verify above claims and also
test the strong duality property. Then, the author use real
dataset CIFAR-10 (Krizhevsky et al.) and MINIST to test
the computed parameter with layer L=3,4,5. From Figure
4(Tolga Ergen, 2020), as the epoch increases, the training
and test error computed by SGD will finally converge to the
result computed by convex duality, which proves the result
in theory part. However, this paper has strict assumptions
for input data and output data when the structure comes into
deep ReLU case, which is not practical in reality. It still
needs to be expanded into more general assumptions.

2.5. Global Optimality Beyond Two layers: Training
Deep ReLU Networks via Convex Programs

In this paper, the idea for ”Convex Program” is still from the
convexity in duality. However, unlike deep linear network
or deep ReLU network considered in the last paper. In this
paper, the neural network structure consists of K L-layer
sub-networks. In particular, 3-layer structure is used in
sub-network structure for deduction(Figure2).

Figure 2. Architecture of sub-networks

In this article, the author uses X ∈ Rn×d to denote the

input matrix. θ =
{
{Wlk}Ll=1

}K

k=1
, where l represents the

lth layer in sub-network, k represents the kth sub-network
respectively. Wlk is the weight matrix of layer l in kth sub-
network.
A natural question arises why this type of structure is impor-
tant. Consider the structure of Residual block (Figure 2 in
(He et al., 2015)), its structure can be characterized in sub-
network form:W11 = W1, W21 = W2, W12 = W22 = I ,
W31 = W32 = w3. Thus, once the results of training deep
ReLU networks can be achieved by convex optimization,
it has important applications in many neural network struc-
tures.
Given dataset {X,y} with L = 3, the regularized training
problem can be formulated as:

P ∗ = min
θ∈Θ

1

2
∥fθ(X)− y∥22+

β

2

K∑
k=1

(∥w2k∥22+w2
3k) (38)

Where Θ = {θ : ∥W1k∥F ≤ 1 ∀k ∈ [K]} and fθ(X) =∑K
k=1 fθ,k(X). The above problem is equivalent as:

P ∗ = min
θ∈Θp

1

2
∥fθ(X)− y∥22 + β ∥w3∥1 (39)

Where θp = {θ : ∥W1k∥F ≤ 1, ∥W2k∥F ≤ 1,∀k ∈ [K]}.
Take the dual with respect to w3 and change the order of
min-max to obtain the dual problem:

P ∗ ≥ D∗ = max
v

−1

2
∥v − y∥22 +

1

2
∥y∥22

s.t max
θ∈Θp

∣∣vT ((XW1)+w2)+
∣∣ ≤ β

(40)

Where (.)+ is the representation of ReLU activation. Then,
we also derive the bidual of (39), that is, taking dual form
with respect to v in (40), the bidual can be formulated as:

P ∗
B = min

µ

1

2

∥∥∥∥∥
∫
θ∈Θp

((XW1)+w2)+

∥∥∥∥∥
2

2

+ β ∥µ∥TV

= min
θ∈Θp

1

2

∥∥∥∥∥
K∗∑
i=1

fθ,i(X)− y

∥∥∥∥∥
2

2

+ β ∥w3∥1 .

(41)

Neural Network Training and Convex Optimization

The above equivalence can be shown by Caratheodory’s
theorem. And (Ergen & Pilanci, 2021) shows that strong
duality holds for P ∗

B = D∗. Because (41) is the same
as (39) with K∗ ≥ K. Thus, strong duality also holds
P ∗
B = P ∗ = D∗. However, due to the existing of ReLU

function in constraint of D∗, this problem cannot be solved
by standard convex optimization solver directly. It needs
to be represented into a standard convex constraint. Fol-
lowing the results in the paper(Ergen & Pilanci, 2021), the
constraint maxθ∈Θp

∣∣vT ((XW1)+w2)+
∣∣ ≤ β is equivalent

as :

Where D1ij ∈ Rn×n and D2l ∈ Rn×n are the sequence of
diagonal mask matrix, which aims to simulate the behavior
of ReLU. If the value after ReLU activation is still itself,
then the corresponding diagonal value of D1ij or D2l is 1,
otherwise it is 0.(see (Ergen & Pilanci, 2021) for details, the
deduction for notation is omitted here.) w′

1j =
√
w′

2jw1j

and w′
2j = w2

2j , they are all the jth column of W1 and W2

respectively. Use this constraint, the derived bidual form
P ∗
B can be formulated as:

Theorem 5 The non-convex training problem (38) can be
equivalent stated as a convex problem as follows:

min
w,w′∈C

1

2

∥∥∥X̃(w′ − w)− y
∥∥∥2
2
+ β(∥w∥2,1 + ∥w′∥2,1)

(42)
where ∥.∥ is a dimensional group norm operator such that
given a vector u ∈ Rdp, ∥u∥2,1 =

∑P
i=1 ∥ui∥2, where

ui’s are ordered d dimensional partitions of u. Moreover,
X̃ ∈ Rn×2dm1P1P2 and C are defined as:

where w,w′ ∈ R2dm1P1P2 are the vectors constructed

by concatenating

{{{

w±
ijl

}P1

i=1

}m1

j=1

}P2

l2=1

±

and
{{{

w′
ijl

±
}P1

i=1

}m1

j=1

}P2

l2=1

±

respectively, and

X̃s = [D21D111X...D2lD1ijX...D2P2
D1P1m1

X]

In order to solve the problem stated in Theorem 5. We

need first to simulate the series of
{
{D1ij}P1

i=1

}m1

j=1
and

{D2l}P2

l=1, where P1 is the number of positive sign after
(Xw), w ∈ Rd(w is the connecting layer between input
data and first layer of sub-networks), P2 is the number of
positive sign after ((XW1)+w2).They are all in polynomial
time complexity with respect to input dimension n and d
(Ergen & Pilanci, 2021).
To achieve simulation, generate uij from N(0, Id) for
P1 times and let Dijl = diag(1[Xuij ≥ 0). Similarly,
generate U1 ∈ Rd×m1 and u2 ∈ Rm1P2 times and set
D2l = diag(1[(XU1l)+u2l] ≥ 0), Then, use the standard
solver CVX to solve this problem. According to the
complexity of interior point methods, the paper (Ergen &
Pilanci, 2021) also proves that this problem can be trained
in polynomial time with respect to n and d,which indicates
this problem is a practical problem for computing.
After introducing the formulation of the solution, from
the series of diagonal matrix, it leads us to rethink
about the role of ReLU.For this subnetwork, it has
two ReLU-layer, which can be interpreted as a high-
dimensional feature selection method due to convex group
sparsity regularization (Ergen & Pilanci, 2021).Thus,
this results reveals the impact of having additional lay-
ers and its implication on the expressive power of a network.

2.5.1. NUMERICAL EXPERIMENT

The author first conducts experiment to verify the strong
duality holds between (38) and (42). Input data matrix
X is generated by standard Gaussian distribution with
(n,d)=(5,2). The 3-layer sub-network has structure m1 = 3
and K = 2, 5, 15.Then, the author uses SGD to train (38)
and use convex program to train (42). It is found that when
K is small, the SGD may be easily get stuck in local min-
imum. However, with K increases, this phenomena will
disappear, SGD will converge to the optimal value, which
is same as the optimal value obtained by convex program.
The result is shown in Figure 4 (Ergen & Pilanci, 2021)
At last, the author conduct experiment on CIFAR-
10(Krizhevsky et al.) and Fashion-MNIST dataset (Xiao
et al., 2017). The sub-network structure is L = 3, m1 =
100,K = 40. The result is shown in Figure 5 (Ergen & Pi-

Neural Network Training and Convex Optimization

lanci, 2021). It is shown that the accuracy obtained by con-
vex program is higher than SGD training. For details,please
see Figure 5 in (Ergen & Pilanci, 2021).

3. Conclusion
The goal of this literature is to discover different existing
techniques of convex optimization of neural network. Op-
timization of infinitely wide neural networks is asymptoti-
cally convex. The first two papers apply L-1 regularization
to make this infinite variable problem finite. Convex neu-
ral network solves an exact or approximate linear classifier
at each step. Global convergence bound can be achieved
for L1 regularized neural network using Frank Wolfe algo-
rithm.The third paper utilize one global minimum property
of convex function, which eliminate the possible failure of
gradient descent in non-convex setting. The fourth and fifth
paper utilize the convexity in dual problem and transform the
original non-convex problem into a convex problem, which
is practical in time complexity and also applicable because
of its better performance. There are also many interest-
ing convex problems in Neural Network training that don’t
contain in this literature review. For example, one can use
convex optimization to compute the sparse representation of
original weight matrix, which will improve the efficiency of
training a neural network, using dual convexity to describe
the mechanism of back-propagation. Further combination
of convex optimization and neural network may be focused
more on generalizing these results into more complicated
neural network structures with less restrictive assumptions.
Hopefully, with the assistance of convex optimization, train-
ing neural network will not be a ”black-box” problem soon.

References
Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O., and

Marcotte, P. Convex neural networks. Advances in neural
information processing systems, 18:123, 2006.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

d’Aspremont, A. and Pilanci, M. Global convergence of
frank wolfe on one hidden layer networks. arXiv preprint
arXiv:2002.02208, 2020.

Ergen, T. and Pilanci, M. Convex optimization for shallow
neural networks. pp. 79–83, 2019.

Ergen, T. and Pilanci, M. Global optimality beyond two
layers: Training deep relu networks via convex programs,
2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Hettich, R. and Kortanek, K. O. Semi-infinite programming:
theory, methods, and applications. SIAM review, 35(3):
380–429, 1993.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar(canadian
institute for advanced research). URL http://www.
cs.toronto.edu/˜kriz/cifar.html.

Tolga Ergen, M. P. Revealing the structure of deep
neural networks via convex duality. arXiv preprint
arXiv:2002.09773, 2020.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

http://arxiv.org/abs/1512.03385
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

