MATH 431 - REAL ANALYSIS SOLUTIONS TO HOMEWORK DUE SEPTEMBER 5

Question 1. Let $a, b \in \mathbb{R}$.

- (a) Show that if a + b is rational, then a is rational or b is irrational.
- (b) Use (a) to show that if a + b is rational, then a and b are both rational or both irrational.

Solution 1.

(a) We will instead prove the contrapositive statement, which is "if a is irrational and b is rational, then a+b is irrational. Assume, to the contrary, that a+b is rational. Then, since b is rational, we have that -b is also rational. Since the sum or rational numbers is rational, we get that

$$a = (a+b) - b \in \mathbb{Q}.$$

This, of course contradicts that a is irrational. Since we have arrived at a contradiction, then our claim that a+b is rational is false. Thus, a+b is irrational. Having proven the contrapositive, our original statement "if a+b is rational, then a is rational or b is irrational" is true.

(b) Assuming that a+b is rational, (a) tells us that we have two cases: (1) a is rational or (2) b is irrational. For the first case, we assume that a is rational. Thus $-a \in \mathbb{Q}$ and therefore

$$b = (a+b) - a \in \mathbb{Q}.$$

Therefore, b is irrational and therefore a and b are both rational. In the second case we have that b is irrational. We wish to show that a is also irrational. Assume, to the contrary, that a is rational. Then, $-a \in \mathbb{Q}$ as well. Thus,

$$b = (a+b) - a \in \mathbb{Q},$$

which, of course, contradicts that b is irrational. Thus, a must be irrational. So, a and b are irrational. \Box

In class on Monday, we learned of boundedness, the supremum/infimum, and the Completeness Axiom. Given a bounded set $S \subset \mathbb{R}$, a number b is called a *supremum* or *least upper bound* for S if the following hold:

- (i) b is an upper bound for S, and
- (ii) if c is an upper bound for S, then b < c.

Similarly, given a bounded set $S \subset \mathbb{R}$, a number b is called an *infimum* or *greatest lower bound* for S if the following hold:

- (i) b is a lower bound for S, and
- (ii) if c is a lower bound for S, then c < b.

If b is a supremum for S, we write that $b = \sup S$. If it is an infimum, we write that $b = \inf S$.

We were also introduced to our tenth and final axiom, the *Completeness Axiom*. This axiom states that any non-empty set $S \subset \mathbb{R}$ that is bounded above has a supremum; in other words, if S is a non-empty set of real numbers that is bounded above, there exists a $b \in \mathbb{R}$ such that $b = \sup S$.

Question 2. Show that if a set $S \subset \mathbb{R}$ has a supremum, then it is unique. Thus, we can talk about *the* supremum of a set, instead of the *a* supremum of a set.

Solution 2. Let S be a set and assume that b is a supremum for S To show equality, assume as well that c is also a supremum for S and show that b=c. Since c is a supremum, it is an upper bound for S. Since b is a supremum, then it is the least upper bound and thus $b \le c$. Similarly, since b is a supremum, it is an upper bound for S; since c is a supremum, it is a least upper bound and therefore $c \le b$. Thus, $c \le b$ and $b \le c$, giving us that b = c. Thus, a supremum for a set is unique if it exists.

Question 3. Let S be a non-empty subset of \mathbb{R} .

- (a) Let $-S = \{-x \in \mathbb{R} \mid x \in S\}$. Show that S has a supremum b if and only if -S has an infimum -b.
- (b) Use (a) to show that if T is a non-empty set that is bounded below, then T has an infimum.

Solution 3.

(a) Assume that $b = \sup S$. Then, $x \le b$ for all $x \in S$. Multiplying both sides by -1, we get that $-b \le -x$ for all $x \in S$. Thus, -b is a lower bound for the set S. Now, assume that c is another lower bound for -S; we will show that $c \le -b$. If not, then -b < c. Multiplying by -1, this would give us that -c < b. Notice that since c is a lower bound for -S, then $c \le y$ for all $y \in -S$. Since $y \in -S$, then y = -x where $x \in S$. So, we have taht $c \le -x$ for all $x \in S$ and therefore x < -c for all $x \in S$. So, -c is an upper bound for S. Thus, -c is an upper bound for S and -c < b, contradicting that b is a supremum for S.

The converse direction is an almost identical argument.

(b) Since T is bounded below, say by a, then $a \le x$ for all $x \in T$. Multiplying by -1, we get that $-x \le -a$ for all $x \in T$. This is equivalence to $y \le -a$ for all $y \in -T$. Thus, -T is non-empty and bounded above. Thus, by the Completeness Axiom, -T has a supremum b. By (a), we have that -(-T) = T has an infimum -b, as desired.

Question 4. Prove the following *Comparison Theorem*: Let $S,T \subset \mathbb{R}$ be non-empty sets such that $s \leq t$ for every $s \in S$ and $t \in T$. If T has a supremum, then so does S and,

$$\sup S \leq \sup T$$
.

Solution 4. Let $\tau = \sup T$. Since τ is a supremum for T, then $t \leq \tau$ for all $t \in T$. Let $s \in S$ and choose any $t \in T$. Then, since $s \leq t$ and $t \leq \tau$, then $s \leq t$. Thus, τ is an upper bound for S. By the Completeness Axiom, S has a supremum, say $\sigma = \sup S$. We will show that $\sigma \leq \tau$. Notice that, by the above, τ is an upper bound for S. Since σ is the least upper bound for S, then $\sigma \leq \tau$. Therefore,

$$\sup S \leq \sup T$$
.

Question 5. Consider the set

$$S = \left\{ \left. \frac{1}{n} \right| n \in \mathbb{Z}_+ \right\}.$$

(a) Show that $\max S = 1$.

- (b) Show that if d is a lower bound for S, then $d \le 0$. [Hint: A proof by contradiction might be helpful, as well as the Archimedean Property.]
- (c) Use (b) to show that $0 = \inf S$.

Solution 5.

- (a) Let $x = \frac{1}{n} \in S$, where $n \ge 1$. Since $1 \le n$, we have that $x = \frac{1}{n} \le 1$. Thus, fore very $x \in S$, $x \le 1$ and 1 is an upper bound. Notice as well that $1 = \frac{1}{1} \in S$. Thus, $1 = \max S$.
- (b) Let d be a lower bound for S. Thus, for every $s \in S$, $d \le s$. Assume, to the contrary, that d > 0. Using the Archimedean property, we know that there exists an $n \in \mathbb{Z}_+$ such that 1 < dn. Since n > 0, this gives us that $\frac{1}{n} < d$. But, $\frac{1}{n} \in S$, and this contradicts the fact that d is a lower bound for S. Thus, we must conclude that $d \le 0$.
- (c) Clearly 0 is a lower bound for S since $0 \le \frac{1}{n}$ for all $n \in \mathbb{Z}_+$. If d is any other lower bound, then by (b), $d \le 0$. Thus, 0 is greatest lower bound and so $0 = \inf S$.

Question 6. Consider the set

$$T = \left\{ (-1)^n \left(1 - \frac{1}{n} \right) \middle| n \in \mathbb{Z}_+ \right\}.$$

- (a) Show that 1 is an upper bound for T.
- (b) Similar to 5b, show that if d is an upper bound for T, then $d \ge 1$.
- (c) Use (a) and (b) to show that $\sup T = 1$.

Solution 6.

- (a) We will show that for any $x \in T$, $x \le 1$. Since $x \in T$, then $x = (-1)^n (1 1/n)$ for some $n \in \mathbb{Z}_+$. Since $\frac{1}{n} > 0$, then $1 \frac{1}{n} < 1$. We argue our desired inequality in two cases. If n is even, then $x = (-1)^n (1 1/n) = 1 1/n < 1$. If n is odd, then $x = (-1)^n (1 1/n) = 1 1/n < 0 < 1$. In either case, $x \le 1$ (in fact, $x \le 1$) and $x \le 1$ is an upper bound for $x \le 1$.
- (b) Let d be an upper bound for T. Thus, $(-1)^n \left(1 \frac{1}{n}\right) \le d$ for all $n \in \mathbb{Z}_+$. Assume, to the contrary that d < 1. Thus, 1 d > 0. By the Archimedean Property, there exists an $n \in \mathbb{Z}_+$ such that 1 < (1 d)n. Since n > 0, we can re-write this as $\frac{1}{n} < 1 d$, which is equivalent to

$$d < 1 - \frac{1}{n}.$$

If n is even, then $(-1)^n = 1$ and we have that

$$d < (-1)^n \left(1 - \frac{1}{n}\right) \in T,$$

contradicting the fact that d is an upper bound. If n is odd, then consider instead n+1, which is even. Then, $(-1)^{n+1} = 1$ and

$$d < 1 - \frac{1}{n} < (-1)^{n+1} \left(1 - \frac{1}{n+1} \right) \in T.$$

This again contradicts that d is an upper bound for T. Either way, we reach a contradiction and therefore conclude that $d \ge 1$.

(c) By (a), 1 is an upper bound for T. By (b), if d is any other upper bound, then $1 \le d$. Thus, $\sup T = 1$.