MATH 431 - REAL ANALYSIS
SOLUTIONS TO HOMEWORK DUE SEPTEMBER 5

Question 1. Let a,b € R.

(a) Show that if a + b is rational, then a is rational or b is irrational.

(b) Use (a) to show that if a + b is rational, then a and b are both rational or both irrational.

Solution 1.

(a) We will instead prove the contrapositive statement, which is “if a is irrational and b is rational, then
a+0b is irrational. Assume, to the contrary, that a + b is rational. Then, since b is rational, we have that
—b is also rational. Since the sum or rational numbers is rational, we get that

a=(a+b)—beqQ.

This, of course contradicts that a is irrational. Since we have arrived at a contradiction, then our claim
that a + b is rational is false. Thus, a + b is irrational. Having proven the contrapositive, our original
statement “if a + b is rational, then a is rational or b is irrational” is true. O]

(b) Assuming that a+b is rational, (a) tells us that we have two cases: (1) a is rational or (2) b is irrational.
For the first case, we assume that a is rational. Thus —a € Q and therefore

b=(a+b)—a€cqQ.

Therefore, b is irrational and therefore a and b are both rational. IN the second case we have that b is
irrational. We wish to show that a is also irrational. Assume, to the contrary, that a is rational. Then,
—a € Q as well. Thus,

b=(a+b)—acQ,

which, of course, contradicts that b is irrational. Thus, a must be irrational. So, @ and b are irrational. [

In class on Monday, we learned of boundedness, the supremum/infimum, and the Completeness Axiom.
Given a bounded set S C R, a number b is called a supremum or least upper bound for S if the following
hold:

(i) b is an upper bound for S, and
(ii) if ¢ is an upper bound for S, then b < c.

Similarly, given a bounded set S C R, a number b is called an infimum or greatest lower bound for S if the
following hold:

(i) b 1is a lower bound for S, and
(ii) if ¢ is a lower bound for S, then ¢ < b.

If b is a supremum for S, we write that b = sup S. If it is an infimum, we write that b = inf S.

We were also introduced to our tenth and final axiom, the Completeness Aziom. This axiom states that any
non-empty set S C R that is bounded above has a supremum; in other words, if S is a non-empty set of real
numbers that is bounded above, there exists a b € R such that b = sup S.

Question 2. Show that if a set S C R has a supremum, then it is unique. Thus, we can talk about the
supremum of a set, instead of the ¢ supremum of a set.



Solution 2. Let S be a set and assume that b is a supremum for S To show equality, assume as well that
c is also a supremum for S and show that b = c¢. Since c¢ is a supremum, it is an upper bound for S. Since
b is a supremum, then it is the least upper bound and thus b < ¢. Similarly, since b is a supremum, it is an
upper bound for S; since c¢ is a supremum, it is a least upper bound and therefore ¢ < b. Thus, ¢ < b and
b < ¢, giving us that b = ¢. Thus, a supremum for a set is unique if it exists.

Question 3. Let S be a non-empty subset of R.

(a) Let =S ={—z € R|z € S}. Show that S has a supremum b if and only if —S has an infimum —b.

(b) Use (a) to show that if T' is a non-empty set that is bounded below, then T has an infimum.

Solution 3.

(a) Assume that b =supS. Then, < b for all x € S. Multiplying both sides by —1, we get that —b < —x
for all x € S. Thus, —b is a lower bound for the set S. Now, assume that c¢ is another lower bound for
—S; we will show that ¢ < —b. If not, then —b < ¢. Multiplying by —1, this would give us that —c < b.
Notice that since ¢ is a lower bound for —S, then ¢ < y for all y € —S. Since y € —5, then y = —x
where x € S. So, we have taht ¢ < —z for all x € S and therefore x < —c for all x € S. So, —c is an

upper bound for S. Thus, —c is an upper bound for S and —c < b, contradicting that b is a supremum
for S.

The converse direction is an almost identical argument.

(b) Since T is bounded below, say by a, then a < x for all z € T. Multiplying by —1, we get that —z < —a
for all z € T. This is equivalence to y < —a for all y € —T'. Thus, —T is non-empty and bounded above.
Thus, by the Completeness Axiom, —T has a supremum b. By (a), we have that —(—7) = T has an
infimum —b, as desired.

Question 4. Prove the following Comparison Theorem: Let S,T C R be non-empty sets such that s < ¢
for every s € S and t € T. If T has a supremum, then so does S and,

sup S <supT.
Solution 4. Let 7 = sup 7. Since 7 is a supremum for 7', then ¢t < 7 for all t € T. Let s € S and choose
any t € T. Then, since s <t and t < 7, then s < ¢. Thus, 7 is an upper bound for S. By the Completeness

Axiom, S has a supremum, say ¢ = sup.S. We will show that ¢ < 7. Notice that, by the above, 7 is an
upper bound for S. Since o is the least upper bound for S, then ¢ < 7. Therefore,

supS <supT.

Question 5. Consider the set

s={3
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(a) Show that max S = 1.



(b) Show that if d is a lower bound for S, then d < 0. [Hint: A proof by contradiction might be helpful, as
well as the Archimedean Property.|

(c¢) Use (b) to show that 0 = inf S.

Solution 5.
1 1
(a) Let x = — € S, where n > 1. Since 1 < n, we have that = — < 1. Thus, fore very x € S, z < 1 and 1
n n
1
is an upper bound. Notice as well that 1 = 1 € S. Thus, 1 = max S. O

(b) Let d be a lower bound for S. Thus, for every s € S, d < s. Assume, to the contrary, that d > 0. Using
the Archimedean property, we know that there exists an n € Z, such that 1 < dn. Since n > 0, this

1 1

gives us that — < d. But, — € S, and this contradicts the fact that d is a lower bound for S. Thus, we
n n

must conclude that d < 0. O

1

(c) Clearly 0 is a lower bound for S since 0 < — for all n € Zy. If d is any other lower bound, then by (b),
n

d < 0. Thus, 0 is greatest lower bound and so 0 = inf S. O

Question 6. Consider the set

- (o3

(a) Show that 1 is an upper bound for 7'
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(b) Similar to 5b, show that if d is an upper bound for T, then d > 1.
(c) Use (a) and (b) to show that supT = 1.

Solution 6.

(a) We will show that for any « € T, x < 1. Since z € T, then x = (—=1)"(1 — 1/n) for some n € Z,.
Since %L > 0, then 1 — % < 1. We argue our desired inequality in two cases. If n is even, then
zr=(-1)"1-1/n)=1-1/n<1. If nis odd, then z = (-1)"(1 —1/n) =1—1/n < 0 < 1. In either

case, <1 (in fact, < 1) and 1 is an upper bound for T'. O
(b) Let d be an upper bound for 7. Thus, (—1)" (1 — 1) < d for all n € Z,.. Assume, to the contrary that

d < 1. Thus, 1 —d > 0. By the Archimedean Property, there exists an n € Z such that 1 < (1 — d)n.
Since n > 0, we can re-write this as % < 1 —d, which is equivalent to

1
d<1l——.
n

If n is even, then (—1)" = 1 and we have that

d< (-1 (1 ;) €T,

contradicting the fact that d is an upper bound. If n is odd, then consider instead n + 1, which is even.
Then, (—1)"*! =1 and

1 1
d<1—<(—1)”+1<1— )eT.
n n+1

This again contradicts that d is an upper bound for T'. Either way, we reach a contradiction and therefore
conclude that d > 1. O

(¢) By (a), 1 is an upper bound for T. By (b), if d is any other upper bound, then 1 < d. Thus, sup7T = 1.



