## Review from yesterday

Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start.
"It takes $3.0 \mu \mathrm{~J}$ to move a 15 nC charge from A to B..."

## Review from yesterday

Please answer PROBLEM 17 in Knight on page 717 while we are waiting to start.
"What is the potential of an ordinary AA or AAA battery?..."

## Electric Potential

- Electric potential energy
- Electric potential
- Electric potential and electric field
- Capacitors
- Dielectrics
- Electric energy stored in capacitors


## Potential Energy

- Energy stored in a system
- Different types of potential energy
- Gravitational
- Elastic
- Electrical



## Electric Potential Energy

- Moving an electric charge in an electric field requires or releases energy, U (Joules).
- (Note we use U for energy because the electric field is E)
- The energy, $U$, is proportional to charge - just as the force is proportional to charge.


## Electric Potential

- We define an Electric Potential, V, as the energy per unit charge, $q$ :
- $\mathrm{V}=\mathrm{U} / \mathrm{q}$
- Describes what would happen to a charge if it was placed in the electric field
- This electrical potential is a property of the system of the surrounding charges
- It has units of Joules/Coulomb, or Volts


## Electric Potential

- Electric potential is a concept we use to be able to predict and calculate energies to move charges
- The energy needed to move a charge from one potential $\mathrm{V}_{1}$ to another, $\mathrm{V}_{2}$, is simply
- $\Delta U=q\left(V_{2}-V_{1}\right)$
- It is the same physical quantity on batteries



## Electric Potential


-The electric potential is a property of the source charges, we exclude the charge we are moving.

- A contour map of points of equal potentials will give us lines where the potential energy of a charge is constant
-Electric potential has magnitude but no direction - it is a scalar


## electronVolts

- $\mathrm{U}=\mathrm{qV}$, units are usually Joules
- Sometimes (especially in Atomic Physics) it is useful to express the energy in units of electrons*Volts
- $1 \mathrm{eV}=$ Charge on electron * 1 Volt
- $1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules
- The energy required to move an electron or proton through a potential of 1 V


## Electric Potential in a Parallel Plate Capacitor

- Recall Energy or Work = Force x Distance
- From yesterday, F=qE
- From today, Work = Electric Potential, U
- To move a distance $x$ in constant field between plates : $\mathrm{U}=\mathrm{q}|\mathbf{E}| x$
- The electric potential will be

$$
V=\frac{U}{q}=|\mathbf{E}| x=\frac{Q}{\varepsilon_{0} A} x
$$

## Potential inside a Parallel Plate Capacitor

## $V(x)=\frac{Q}{\varepsilon_{0} A} x$ <br> $V_{\text {Capacitor }}=\frac{Q}{\varepsilon_{0} A} d$

-Electric potential is proportional to the distance, $x$, from the bottom plate
-Total Voltage across capacitor


# Field inside a Parallel Plate Capacitor 

## $|\mathbf{E}|=\frac{V}{d}$

- Electric field inside the plates is constant.
- inversely proportional to the plate separation



## Potential of a Point Charge

- The potential, V , is defined by $\mathrm{V}=\mathrm{U} / \mathrm{q}$ (Energy per unit charge)
- Energy is Force times distance
- For parallel plates, the field and force are constant, but near a point charge, force is inversely proportional to $r^{2}$.
$|\mathbf{F}|=q|\mathbf{E}|=\frac{q Q}{r^{2}}$


$$
|\mathbf{F}|=q|\mathbf{E}|=\frac{q Q}{\varepsilon_{0} A}
$$

## Potential of a Point Charge

- It can be shown that when a force is inversely proportional to $r^{2}$, the potential energy will be inversely proportional to $r$.
- Remember, U is the potential energy required to place q next to $Q$

$$
U=K \frac{q Q}{r} \quad \neq
$$

$$
U=\frac{q Q d}{\varepsilon_{0} A}
$$

## Potential of a Point Charge

- Now we apply the definition of potential: $\mathrm{V}=\mathrm{U} / \mathrm{q}$. Energy per unit charge
- The potential of a point charge is therefore

$$
\begin{gathered}
V=K \frac{Q}{r}=\frac{Q}{4 \pi \varepsilon_{0} r} \\
V=K \frac{Q}{r} \quad V=\frac{Q d}{\varepsilon_{0} A}
\end{gathered}
$$

## Electric Potential of a Charged Sphere

- For a point source we have
- Replacing with a metal

$$
\begin{gathered}
V=K \frac{Q}{r} \\
V=K \frac{Q}{R_{\text {sphere }}} \\
Q=V \frac{R_{\text {sphere }}}{K}
\end{gathered}
$$ sphere, the field outside the sphere stays the same.

- And we can calculate the charge on a sphere from its potential


## Electric Potential is a scalar

- Potential has magnitude but no direction
- The potential at a point is the sum of the potentials from all charges in the system



## Electric Potential in a Conductor

We know that

- Excess charge in a conductor moves to the surface
- Electric field inside is Zero
- Exterior field is perpendicular to the surface
- Field strength is largest at sharp corners

We can add

- The entire conductor is at the same potential
- The surface is an equipotential surface


## Capacitance

- Experimentally, the voltage across a capacitor, V , is proportional to the amount of charge on the plates, Q :
- $Q=C V$
- $C$ is the capacitance and has units Coulombs/Volt or Farads


## Parallel Plate Capacitor in a vacuum

- From the definition of Capacitance
- And the equations for the electric field
- We can find the capacitance of parallel plates

$$
\begin{aligned}
& Q=C V \\
& E=\frac{V}{d}=\frac{Q}{\varepsilon_{0} A}
\end{aligned}
$$

$$
C=\frac{\varepsilon_{0} A}{d}
$$

## Dielectrics

- Dielectrics can be used to increase the effects of a capacitor
- The dipoles align (polarize) to reduce the electric field inside the material
- The electric fields of the dipoles counteract the field
 from the plates


## Dielectrics

- This property k is expressed as the dielectric constant and is a property of the material
- Vacuum and Air = 1, deionized water=80

$$
\kappa=\frac{E_{\text {vacuum }}}{E_{\text {material }}}
$$



## Dielectrics

- This will increase the capacitance - by factors of 100 for the best dielectric materials




## Energy stored in capacitors

- When we charge a capacitor to a voltage V , work is being done against a voltage difference
- Starting Voltage $=0$
- Ending Voltage $=\mathrm{V}$
- Average Voltage $\mathrm{V}_{\mathrm{ave}}=\mathrm{V} / 2$
- Energy is $U=Q V_{a v e}=C V^{2} / 2$


## Energy stored in the field

The energy in the capacitor can be expressed as an energy density, $\mathrm{u} / \mathrm{m}^{3}$, inside the capacitor

$$
\begin{gathered}
U=\frac{1}{2} C V^{2}=\frac{1}{2} \kappa \varepsilon_{0}(A d) E^{2} \\
u=\frac{U}{A d}=\frac{1}{2} \kappa \varepsilon_{0} E^{2}
\end{gathered}
$$

## Summary

- Electric potential energy
- Electric potential
- Electric potential and electric field
- Capacitors
- Dielectrics
- Electric energy stored in capacitors


## Homework

Knight Problems
$51,52,61,65,68,71,74,77$.

