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CHAPTER 1

BACKGROUND: CONVEX SETS
AND POSITIVE SEMIDEFINITE

MATRICES

A set C is called convex if, given any two points x and y in C, the straight line
segment connecting x and y lies completely inside of C. For instance, cubes,
balls or ellipsoids are convex sets whereas a torus is not. Intuitively, convex sets
do not have holes or dips.

Usually, arguments involving convex sets are easy to visualize by two-dim-
ensional drawings. One reason being that the definition of convexity only in-
volves three points which always lie in some two-dimensional plane. On the
other hand, convexity is a very powerful concept which appears (sometimes
unexpected) in many branches of mathematics and its applications. Here are
a few areas where convexity is an important concept: mathematical optimiza-
tion, high-dimensional geometry, analysis, probability theory, system and con-
trol, harmonic analysis, calculus of variations, game theory, computer science,
functional analysis, economics, and there are many more.

Our aim is to work with convex sets algorithmically. So we have to discuss
ways to represent them in the computer, in particular which data do we want
to give to the computer. Roughly speaking, there are two convenient possibil-
ities to represent convex sets: By an implicit description as an intersection of
halfspaces or by an explicit description as the convex combination of extreme
points. The goal of this chapter is to discuss these two representations. In the
context of functional analysis they are connected to two famous theorems, the
Hahn-Banach theorem and the Krein-Milman theorem. Since we are only work-
ing in finite-dimensional Euclidean spaces (and not in the more general setting
of infinite-dimensional topological vector spaces) we can derive the statements
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using simple geometric arguments.
Later we develop the theory of convex optimization in the framework of

conic programs. For this we need a special class of convex sets, namely convex
cones. The for optimization most relevant convex cones are at the moment two
involving vectors in Rn and two involving symmetric matrices in Rnˆn, namely
the non-negative orthant, the second order cone, the cone of positive semidefi-
nite matrices, and the cone of copositive matrices. Clearly, the cone of positive
semidefinite matrices plays the main role here. As background information we
collect a number of basic properties of positive semidefinite matrices.

1.1 Some fundamental notions

Before we turn to convex sets we recall some fundamental geometric notions.
The following is a brief review, without proofs, of some basic definitions and
notations appearing frequently in the sequel.

1.1.1 Euclidean space

Let E be an n-dimensional Euclidean space which is an n-dimensional real vector
space having an inner product. We usually use the notation x ¨ y for the inner
product between the vectors x and y. This inner product defines a norm on E
by }x} “

?
x ¨ x and a metric by dpx, yq “ }x´ y}.

For sake of concreteness we will work with coordinates most of the time:
One can always identify E with Rn where the inner product of the column
vectors x “ px1, . . . , xnqT and y “ py1, . . . , ynqT is the usual one: x ¨ y “ xTy “
řn
i“1 xiyi. This identification involves a linear transformation T : E Ñ Rn

which is an isometry, i.e. x ¨ y “ Tx ¨ Ty holds for all x, y P E. Then the norm is
the Euclidean norm (or `2-norm): }x}2 “

a

ř

i x
2
i and dpx, yq “ }x´ y}2 is the

Euclidean distance between two points x, y P Rn.

1.1.2 Topology in finite-dimensional metric spaces

The ball with center x P Rn and radius r is

Bpx, rq “ ty P Rn : dpx, yq ď ru.

Let A be a subset of n-dimensional Euclidean space. A point x P A is an interior
point of A if there is a positive radius ε ą 0 so that Bpx, εq Ď A. The set
of all interior points of A is denoted by intA. We say that a set A is open
if all points of A are interior points, i.e. if A “ intA. The set A is closed if
its complement RnzA is open. The (topological) closure A of A is the smallest
(inclusion-wise) closed set containing A. One can show that a set A in Rn is
closed if and only if every converging sequence of points in A has a limit which
also lies in A. A point x P A belongs to the boundary BA of A if for every ε ą 0
the ball Bpx, εq contains points in A and in RnzA. The boundary BA is a closed

3



set and we have A “ AY BA, and BA “ Az intA. The set A is compact if every
sequence in A contains a convergent subsequence. The set A is compact if and
only if it is closed and bounded (i.e. it is contained in a ball of sufficiently large,
but finite, radius).

Figure 1.1: A compact, non-convex set A. Which points lie in intA, A, BA?

For instance, the boundary of the ball with radius 1 and center 0 is the unit
sphere

BBp0, 1q “ ty P Rn : dp0, yq “ 1u “ tx P Rn : xTx “ 1u.

Traditionally, it is called the pn ´ 1q-dimensional unit sphere, denoted as Sn´1,
where the superscript n´ 1 indicates the dimension of the manifold.

1.1.3 Affine geometry

A subset A Ď Rn is called an affine subspace of Rn if it is a translated linear
subspace: One can write A in the form

A “ x` L “ tx` y : y P Lu

where x P Rn and where L is a linear subspace of Rn. The dimension of A
is defined as dimA “ dimL. Affine subspaces are closed under affine linear
combinations:

@N P N @x1, . . . , xN P A @α1, . . . , αN P R :
N
ÿ

i“1

αi “ 1 ùñ
N
ÿ

i“1

αixi P A.

The smallest affine subspace containing a set of given points is its affine hull.
The affine hull of A Ď Rn is the set of all possible affine linear combinations

aff A “

#

N
ÿ

i“1

αixi : N P N, x1, . . . , xN P A,α1, . . . , αN P R,
N
ÿ

i“1

αi “ 1,

+

.
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A fact which requires a little proof (exercise). The dimension of an arbitrary set
A is dimA “ dimpaff Aq. One-dimensional affine subspaces are lines and pn´1q-
dimensional affine subspaces are hyperplanes. A hyperplane can be specified as

H “ tx P Rn : cTx “ βu,

where c P Rnzt0u is the normal of H (which lies orthogonal to H) and where
β P R. Sometimes we write Hc,β for it.

• 

Figure 1.2: Determine (as accurate as possible) the coefficients α1, α2, α3 of the
affine combination y “ α1x1 ` α2x2 ` α3x3 with α1 ` α2 ` α3 “ 1.

If the dimension of A Ď Rn is strictly smaller than n, then A does not have
an interior, intA “ H. In this situation one is frequently interested in the
interior points of A relative to the affine subspace aff A. We say that a point
x P A belongs to the relative interior of A when there is a ball Bpx, εq with
strictly positive radius ε ą 0 so that aff A X Bpx, εq Ď A. We denote the set of
all relative interior points of A by relintA. Of course, if dimA “ n, then the
interior coincides with the relative interior: intA “ relintA.

1.2 Convex sets

A subset C Ď Rn is called a convex set if for every pair of points x, y P C also
the entire line segment between x and y is contained in C. The line segment
between the points x and y is defined as

rx, ys “ tp1´ αqx` αy : 0 ď α ď 1u.

Convex sets are closed under convex combinations:

@N P N @x1, . . . , xN P C @α1, . . . , αN P Rě0 :
N
ÿ

i“1

αi “ 1 ùñ
N
ÿ

i“1

αixi P C.

The convex hull of A Ď Rn is the smallest convex set containing A. It is

convA “

#

N
ÿ

i“1

αixi : N P N, x1, . . . , xN P A,α1, . . . , αN P Rě0,
N
ÿ

i“1

αi “ 1

+

,
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which requires an argument. We can give a mechanical interpretation of the
convex hull of finitely many point convtx1, . . . , xNu: The convex hull consists
of all centres of gravity of point masses α1, . . . , αN at the positions x1, . . . , xN .

The convex hull of finitely many points is called a polytope. Two-dimensional,
planar, polytopes are polygons. Other important examples of convex sets are
balls, halfspaces, and line segments. Furthermore, arbitrary intersections of
convex sets are convex again. The Minkowski sum of convex sets C,D given by

C `D “ tx` y : x P C, y P Du

is a convex set.

Figure 1.3: Exercise: What is the Minkowski sum of a square and a disk?

Here are two useful properties of convex sets. The first result gives an al-
ternative description of the relative interior of a convex set and the second one
permits to embed a convex set with an empty interior into a lower dimensional
affine space.

Lemma 1.2.1. Let C Ď Rn be a convex set. A point x P C lies in the relative
interior of C if and only if

@y P C Dz P C,α P p0, 1q : x “ αy ` p1´ αqz,

where p0, 1q denotes the open interval 0 ă α ă 1.

Theorem 1.2.2. Let C Ď Rn be a convex set. If intC “ H then the dimension of
its affine closure is at most n´ 1.

1.3 Implicit description of convex sets

In this section we show how one can describe a closed convex set implicitly as
the intersection of halfspaces (Theorem 1.3.7). For this we show the intuitive
fact that through every of its boundary points there is a hyperplane which has
the convex set on only one of its sides (Lemma 1.3.5). We also prove an impor-
tant fact which we will need later: Any two convex sets whose relative interiors
do not intersect can be properly separated by a hyperplane (Theorem 1.3.8).
After giving the definitions of separating and supporting hyperplanes we look
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at the metric projection which is a useful tool to construct these separating hy-
perplanes.

The hyperplane at a point x P Rn with normal vector c P Rnzt0u is

H “ ty P Rn : cTy “ cTxu.

It is an affine subspace of dimension n ´ 1. The hyperplane H divides Rn into
two closed halfspaces

H` “ ty P Rn : cTy ě cTxu, H´ “ ty P Rn : cTy ď cTxu.

A hyperplane H is said to separate two sets A Ď Rn and B Ď Rn if they lie on
different sides of the hyperplane, i.e., if A Ď H` and B Ď H´ or conversely. In
other words, A and B are separated by a hyperplane if there exists a non-zero
vector c P Rn and a scalar β P R such that

@x P A, y P B : cTx ď β ď cTy.

The separation is said to be strict if both inequalities are strict, i.e.,

@x P A, y P B : cTx ă β ă cTy.

The separation is said to be proper when H separates A and B but does not
contain both A and B.

A hyperplane H is said to support A at x P A if x P H and if A is contained in
one of the two halfspacesH` orH´, sayH´. ThenH is a supporting hyperplane
of A at x and H´ is a supporting halfspace.

Figure 1.4: The hyperplane H supports A and separates A and B.

1.3.1 Metric projection

Let C P Rn be a non-empty closed convex set. One can project every point
x P Rn onto C by simply taking the point in C which is closest to it. This fact is
very intuitive and in the case when C is a linear subspace we are talking simply
about the orthogonal projection onto C.
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Lemma 1.3.1. Let C be a non-empty closed convex set in Rn. Let x P RnzC be a
point outside of C. Then there exists a unique point πCpxq in C which is closest to
x. Moreover, πCpxq P BC.

Proof. The argument for existence is a compactness argument: AsC is not empty,
pick z0 P C and consider the intersection C 1 of C with the ball Bpz0, rq centered
at z0 and with radius r “ }z0 ´ x}. Then C 1 is closed, convex and bounded.
Moreover the minimum of the distance }y´x} for y P C is equal to the minimum
taken over C 1. As we minimize a continuous function over a compact set, the
minimum is attained. Hence there is at least one closest point to x in C.

The argument for uniqueness requires convexity: Let y and z be two distinct
points in C, both having minimum distance to x. In this case, the midpoint
of y and z, which lies in C, would even be closer to x, because the distance
dpx, 12 py ` zqq is the height of the isosceles triangle with vertices x, y, z.

Hence there is a unique point in C which is at minimum distance to x, which
we denote by πCpxq. Clearly, πCpxq P BC, otherwise one would find another
point in C closer to x lying in some small ball BpπCpxq, εq Ď C.

Thus, the map πC : Rn Ñ C defined by the property

@y P C : dpy, xq ě dpπCpxq, xq

is well-defined. This map is called metric projection and sometimes we refer to
the vector πCpxq as the best approximation of x in the set C.

The metric projection πC is a contraction:

Lemma 1.3.2. Let C be a non-empty closed and convex set in Rn. Then,

@x, y P Rn : dpπCpxq, πCpyqq ď dpx, yq.

In particular, the metric projection πC is a Lipschitz continuous map.

Proof. We can assume that dpπCpxq, πCpyqq ‰ 0. Consider the line segment
rπCpxq, πCpyqs and the two parallel hyperplanes Hx and Hy at πCpxq and at
πCpyq both having normal vector πCpxq ´ πCpyq. The points x and πCpyq are
separated by Hx because otherwise there would be a point in rπCpxq, πCpyqs Ď
C which is closer to x than to πCpxq, which is impossible. In the same way, y
and πCpxq are separated by Hy. Hence, x and y are on different sides of the
“slab” bounded by the parallel hyperplanes Hx and by Hy. So their distance
dpx, yq is at least the width of the slab, which is dpπCpxq, πCpyqq.

The metric projection can reach every point on the boundary of C:

Lemma 1.3.3. Let C be a non-empty closed and convex set in Rn. Then, for every
boundary point y P BC there is a point x lying outside of C so that y “ πCpxq.

Proof. First note that one can assume that C is bounded (since otherwise re-
place C by its intersection with a ball around y). Since C is bounded it is
contained in a ball B of sufficiently large radius. We will construct the desired
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point x which lies on the boundary BB by a limit argument. For this choose a
sequence of points yi P RnzC such that dpy, yiq ă 1{i, and hence limiÑ8 yi “ y.
Because the metric projection is a contraction (Lemma 1.3.2) we have

dpy, πCpyiqq “ dpπCpyq, πCpyiqq ď dpy, yiq ă 1{i.

By intersecting the line afftyi, πCpyiqu with the boundary BB one can determine
a point xi P BB so that πCpxiq “ πCpyiq. Since the boundary BB is compact
there is a convergent subsequence pxij q having a limit x P BB. Then, because
of the previous considerations and because πC is continuous

y “ πCpyq “ πC

ˆ

lim
jÑ8

yij

˙

“ lim
jÑ8

πCpyij q

“ lim
jÑ8

πCpxij q “ πC

ˆ

lim
jÑ8

xij

˙

“ πCpxq,

which proves the lemma.

Figure 1.5: The construction which proves Lemma 1.3.3.

1.3.2 Separating and supporting hyperplanes

One can use the metric projection to construct separating and supporting hy-
perplanes:

Lemma 1.3.4. Let C be a non-empty closed convex set in Rn. Let x P RnzC be a
point outside C and let πCpxq its closest point in C. Then the following holds.

(i) The hyperplane through x with normal x´ πCpxq supports C at πCpxq and
thus it separates txu and C.

(ii) The hyperplane through px` πCpxqq{2 with normal x´ πCpxq strictly sepa-
rates txu and C.
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Proof. It suffices to prove (i) and then (ii) follows directly. Consider the hyper-
plane H through x with normal vector c “ x´ πCpxq, defined by

H “ ty P Rn : cTy “ cTπCpxqu.

As cTx ą cTπCpxq, x lies in the open halfspace ty : cTy ą cTπCpxqu. We
show that C lies in the closed halfspace ty : cTy ď cTπCpxqu. Suppose for a
contradiction that there exists y P C such that cTpy ´ πCpxqq ą 0. Then select a
scalar λ P p0, 1q such that 0 ă λ ă 2cTpy´πCpxqq

}y´πCpxq}2
ă 1 and setw “ λy`p1´λqπCpxq

which is a point C. Now verify that }w´ x} ă }πCpxq ´ x} “ }c}, which follows
from

}w ´ x}2 “ }λpy ´ πCpxqq ´ c}
2 “ }c}2 ` λ2}y ´ πCpxq}

2 ´ 2λcTpy ´ πCpxqq

and which contradicts the fact that πCpxq is the closest point in C to x.

Figure 1.6: A separating hyperplane constructed using πC .

Combining Lemma 1.3.3 and Lemma 1.3.4 we deduce that one can construct
a supporting hyperplane at every boundary point.

Lemma 1.3.5. Let C Ď Rn be a closed convex set and let x P BC be a point lying
on the boundary of C. Then there is a hyperplane which supports C at x.

One can generalize Lemma 1.3.4 (i) and remove the assumption that C is
closed.

Lemma 1.3.6. Let C Ď Rn be a non-empty convex set and let x P RnzC be a
point lying outside C. Then, txu and C can be separated by a hyperplane.

Proof. In view of Lemma 1.3.1 we only have to show the result for non-closed
convex setsC. We are left with two cases: If x R C, then a hyperplane separating
txu and the closed and convex set C also separates txu and C. If x P C, then
x P BC. By Lemma 1.3.5 there is a hyperplane supporting C at x. In particular,
it separates txu and C.
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As a direct application of the strict separation result in Lemma 1.3.4 (ii),
we can formulate the following fundamental structural result for closed convex
sets.

Theorem 1.3.7. A non-empty closed convex set is the intersection of its supporting
halfspaces.

This is an implicit description as it gives a method to verify whether a point
belongs to the closed convex set in question: One has to check whether the
point lies in all these supporting halfspaces. If the closed convex set is given as
an intersection of finitely many halfspaces, then it is called a polyhedron and the
test we just described is a simple algorithmic membership test.

We conclude with the following result which characterizes when two convex
sets can be separated properly. When both sets are closed and one of them is
bounded, one can show a strict separation. These separation results will be the
basis in our discussion of the duality theory of conic programs.

Theorem 1.3.8. Let C,D Ď Rn be non-empty convex sets.

(i) C and D can be properly separated if and only if their relative interiors do
not have a point in common: relintC X relintD “ H.

(ii) Assume that C and D are closed and that at least one of them is bounded. If
C XD “ H, then there is a hyperplane strictly separating C and D.

Proof. (i) The “only if” part (ùñ): Let Hc,β be a hyperplane properly separating
C and D with C Ď H´ and D Ď H`, i.e.,

@x P C, y P D : cTx ď β ď cTy.

Suppose there is a point x0 P relintC X relintD. Then cTx0 “ β, i.e., x0 P H.
Pick any x P C. By Lemma 1.2.1 there exists x1 P C and α P p0, 1q such that
x0 “ αx` p1´ αqx1. Now

β “ cTx0 “ αcTx` p1´ αqcTx1 ď αβ ` p1´ αqβ “ β,

hence all inequalities have to be tight and so cTx “ β. Thus C is contained in
the hyperplane H. Similarly, D Ď H. This contradicts the assumption that the
separation is proper.

The “if part” (ðù): Consider the set

E “ relintC ´ relintD “ tx´ y : x P relintC, y P relintDu,

which is convex. By assumption, the origin 0 does not lie in E. By Lemma 1.3.6
there is a hyperplane H separating t0u and E which goes through the origin.
Say H “ Hc,0 and

@x P relintC, y P relintD : cTpx´ yq ě 0.
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Define
β “ inftcTx : x P relintCu.

Then,
C Ď tx P Rn : cTx ě βu,

and we want to show that

D Ď ty : cTy ď βu.

For suppose not. Then there is a point y P relintD so that cTy ą β. Moreover,
by definition of the infimum there is a point x P relintC so that β ď cTx ă cTy.
But then we find cTpx ´ yq ă 0, a contradiction. Thus, C and D are separated
by the hyperplane Hc,β .

If C Y D lies in some lower dimensional affine subspace, then the argu-
ment above gives a hyperplane in the affine subspace affpC YDq which can be
extended to a hyperplane in Rn which properly separates C and D.

(ii) Assume that C is bounded and C XD “ H. Consider now the set

E “ C ´D

which is closed (check it) and convex. As the origin 0 does not lie in E, by
Lemma 1.3.4 (ii), there is a hyperplane strictly separating txu and E: There is
a non-zero vector c and a positive scalar β such that

@x P C, y P D : cTpx´ yq ą β ą 0.

This implies

inf
xPC

cTx ě β ` sup
yPD

cTy ą
β

2
` sup
yPD

cTy ą sup
yPD

cTy.

Hence the hyperplane Hc,α with α “ β
2 `sup

yPD
cTy strictly separates C and D.

1.4 Explicit description of convex sets

Now we turn to an explicit description of convex sets. An explicit description
gives an easy way to generate points lying in the convex set.

We say that a point x P C is extreme if it is not a relative interior point
of any line segment in C. In other words, if x cannot be written in the form
x “ p1´ αqy ` αz with y, z P C and 0 ă α ă 1. The set of all extreme points of
C we denote by extC.

Theorem 1.4.1. Let C Ď Rn be a compact and convex set. Then,

C “ convpextCq.
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Proof. We prove the theorem by induction on the dimension n. If n “ 0, then C
is a point and the result follows.

Let the dimension n be at least one. If the interior of C is empty, then C lies
in an affine subspace of dimension at most n´ 1 and the theorem follows from
the induction hypothesis. Suppose that intC ‰ H. We have to show that every
x P C can be written as the convex hull of extreme points of C. We distinguish
between two cases:

First case: If x lies on the boundary of C, then by Lemma 1.3.5 there is a
supporting hyperplane H of C through x. Consider the set F “ H X C. This is
a compact and convex set which lies in an affine subspace of dimension at most
n ´ 1 and hence we have by the induction hypotheses x P convpextF q. Since
extF Ď extC, we are done.

Second case: If x does not lie on the boundary of C, then the intersection of
a line through x with C is a line segment ry, zs with y, z P BC. By the previous
argument we have y, z P convpextCq. Since x is a convex combination of y and
z, the theorem follows.

1.5 Convex cones

We will develop the theory of convex optimization using the concept of conic
programs. Before we can say what a “conic program” is, we have to define
convex cones.

Definition 1.5.1. A non-empty subset K of Rn is called a convex cone if it is
closed under non-negative linear combinations:

@α, β P Rě0 @x, y P K : αx` βy P K.

Moreover, K is pointed if

x,´x P K ùñ x “ 0.

One can easily check that convex cones are indeed convex sets. Furthermore,
the direct product

K ˆK 1 “ tpx, x1q P Rn`n
1

: x P K,x1 P K 1u

of two convex cones K Ď Rn and K 1 Ď Rn1 is a convex cone again.
A pointed convex cone in Rn defines a partial order on Rn by

x ľ y ðñ x´ y P K

for x, y P Rn. This partial order satisfies the following conditions:

reflexivity:
@x P Rn : x ľ x
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antisymmetry:
@x, y P Rn : x ľ y, y ľ x ùñ x “ y

transitivity:
@x, y, z P Rn : x ľ y, y ľ z ùñ x ľ z

homogenity:
@x, y P Rn @α P Rě0 : x ľ y ùñ αx ľ αy

additivity:
@x, y, x1, y1 P Rn : x ľ y, x1 ľ y1 ùñ x` x1 ľ y ` y1.

In order that a convex cone is useful for practical algorithmic optimization
methods we will need two additional properties to eliminate undesired degen-
erate conditions: A convex cone should be closed and full-dimensional, that is,
it has a non-empty interior. Then, we define strict inequalities by:

x ą y ðñ x´ y P intK.

Let pxiqiPN and pyiqiPN be sequences of elements in Rn which have limits x and
y, then we can pass to limits in the inequalities:

pDN P N @i ě N : xi ľ yiq ðñ x ľ y.

The separation result from Lemma 1.3.4 specializes to convex cones in the
following way.

Lemma 1.5.2. Let C Ď Rn be a closed convex cone and let x P RnzC be a
point outside of C. Then there is a linear hyperplane separating txu and C. Even
stronger, there is a non-zero vector c P Rn such that

@y P C : cTy ě 0 ą cTx,

thus with the strict inequality cTx ă 0.

1.6 Examples

The convex cone generated by a set of vectors A Ď Rn is the smallest convex
cone containing A. It is

coneA “

#

N
ÿ

i“1

αixi : N P N, x1, . . . , xN P A,α1, . . . , αN P Rě0

+

.

Furthermore, every linear subspace of E is a convex cone, however a somewhat
boring one. More interesting are the following examples. We will use them,
especially cone of positive semidefinite matrices, very often.
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1.6.1 The non-negative orthant and linear programming

The convex cone which is connected to linear programming is the non-negative
orthant. It lies in the Euclidean space Rn with the standard inner product. The
non-negative orthant is defined as

Rně0 “ tx “ px1, . . . , xnq
T P Rn : x1, . . . , xn ě 0u.

It is a pointed, closed and full-dimensional cone. A linear program is an opti-
mization problem of the following form

maximize c1x1 ` ¨ ¨ ¨ ` cnxn

subject to a11x1 ` ¨ ¨ ¨ ` a1nxn ě b1

a21x1 ` ¨ ¨ ¨ ` a2nxn ě b2

...

am1x1 ` ¨ ¨ ¨ ` amnxn ě bm.

One can express the above linear program more conveniently using the partial
order defined by the non-negative orthant Rně0:

maximize cTx

subject to Ax ľ b,

where c “ pc1, . . . , cnq
T P Rn is the objective vector, A “ paijq P Rmˆn is the

matrix of linear constraints, x “ px1, . . . , xnqT P Rn is the optimization variable,
and b “ pb1, . . . , bmqT P Rm is the right hand side. Here, the partial order x ľ y
means inequality coordinate-wise: xi ě yi for all i P rns.

1.6.2 The second-order cone

While the non-negative orthant is a polyhedron, the following cone is not. The
second-order cone is defined in the Euclidean space Rn`1 “ Rn ˆ R with the
standard inner product. It is

Ln`1 “

"

px, tq P Rn ˆ R : }x}2 “
b

x21 ` ¨ ¨ ¨ ` x
2
n ď t

*

.

Sometimes it is also called ice cream cone (make a drawing to convince yourself)
or Lorentz cone. The second-order cone will turn out to be connected to conic
quadratic programming.

1.6.3 The cone of semidefinite matrices

The convex cone which will turn out to be connected to semidefinite program-
ming is the cone of positive semidefinite matrices. It lies in the npn ` 1q{2-
dimensional Euclidean space of n ˆ n-symmetric matrices Sn with the trace
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inner product. Namely, for two matrices X,Y P Rnˆn,

xX,Y y “ TrpXTY q “
n
ÿ

i“1

n
ÿ

j“1

XijYij , where TrX “

n
ÿ

i“1

Xii.

Here we identify the Euclidean space Sn with Rnpn`1q{2 by the isometry T :
Sn Ñ Rnpn`1q{2 defined by

T pXq “ pX11,
?

2X12,
?

2X13, . . . ,
?

2X1n, X22,
?

2X23, . . . ,
?

2X2n, . . . , Xnnq

where we only consider the upper triangular part (in good old FORTRAN 77
tradition) of the matrix X.

The cone of semidefinite matrices is

Snľ0 “ tX P Sn : X is positive semidefiniteu,

where a matrix X is positive semidefinite if

@x P Rn : xTXx ě 0.

More characterizations are given in Section 1.7 below.

1.6.4 The copositive cone

The copositive cone is a cone in Sn which contains the semidefinite cone. It is
the basis of copositive programming and it is defined as the set of all copositive
matrices:

Cn “ tX P Sn : xTXx ě 0 @x P Rně0u.

Unlike for the semidefinite cone no easy characterization (for example in terms
of eigenvalues) of copositive matrices is known. Even stronger: Unless the
complexity classes P and NP coincide no easy characterization (meaning one
which is polynomial-time computable) exists.

1.7 Positive semidefinite matrices

1.7.1 Basic facts

A matrix P is orthogonal if PPT “ In or, equivalently, PTP “ In, i.e. the
rows (resp., the columns) of P form an orthonormal basis of Rn. By Opnq we
denote the set of nˆ n orthogonal matrices which forms a group under matrix
multiplication.

The spectral decomposition theorem is probably the most important theorem
about real symmetric matrices.
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Theorem 1.7.1. (Spectral decomposition theorem) Any real symmetric matrix
X P Sn can be decomposed as

X “

n
ÿ

i“1

λiuiu
T
i ,

where λ1, . . . , λn P R are the eigenvalues of X and where u1, . . . , un P Rn are
the corresponding eigenvectors which form an orthonormal basis of Rn. In matrix
terms, X “ PDPT, where D is the diagonal matrix with the λi’s on the diagonal
and P is the orthogonal matrix with the ui’s as its columns.

Theorem 1.7.2. (Positive semidefinite matrices) Let X P Sn be a symmetric
matrix. The following assertions are equivalent.

(1) X is positive semidefinite, written asX ľ 0, which is defined by the property:
xTXx ě 0 for all x P Rn.

(2) The smallest eigenvalue of X is non-negative, i.e., the spectral decomposition
of X is of the form X “

řn
i“1 λiuiu

T
i with all λi ě 0.

(3) X “ LLT for some matrix L P Rnˆk (for some k ě 1), called a Cholesky
decomposition of X.

(4) There exist vectors v1, . . . , vn P Rk (for some k ě 1) such that Xij “ vTi vj
for all i, j P rns; the vectors vi’s are called a Gram representation of X.

(5) All principal minors of X are non-negative.

The set Snľ0 of all positive semidefinite matrices is a pointed, closed, convex,
full-dimensional cone in Sn. Moreover, it is generated by rank one matrices, i.e.

Snľ0 “ conetxxT : x P Rnu.

Matrices lying in the interior of the cone Snľ0 are called positive definite. The
above result extends to positive definite matrices. A matrix X is positive defi-
nite (denoted as X ą 0) if it satisfies any of the following equivalent properties:
(1) xTXx ą 0 for all x P Rnzt0u, (2) all eigenvalues are strictly positive, (3)
in a Cholesky decomposition the matrix L is non-singular, (4) any Gram repre-
sentation has full rank n, and (5) all the principal minors are positive (in fact
already positivity of all the leading principal minors implies positive definite-
ness; Sylvester’s criterion).

1.7.2 The trace inner product

The trace of an n ˆ n matrix A is defined as TrpAq “
řn
i“1Aii. The trace is

a linear form on Rnˆn and satisfies the following properties: TrpAq “ TrpATq,
TrpABq “ TrpBAq. Moreover, if A is symmetric then the trace of A is equal to
the sum of the eigenvalues of A.
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One can define an inner product on Rnˆn by setting

xA,By “ TrpATBq “
n
ÿ

i,j“1

AijBij .

This defines the Frobenius norm on Rnˆn by setting }A} “
a

xA,Ay. For a vector
x P Rn we have xTAx “ xA, xxTy. For positive semidefinite matrices we have
the following result.

Lemma 1.7.3. For a symmetric matrix A P Sn,

A ľ 0 ðñ @B P Snľ0 : xA,By ě 0.

In other words, the cone Snľ0 is self-dual: pSnľ0q
˚ “ Snľ0.

Proof. Direct verification using the conditions (1) and (2) in Theorem 1.7.2.

1.7.3 Hoffman-Wielandt inequality

Here is a nice inequality to know about eigenvalues.

Theorem 1.7.4. (Hoffman, Wielandt (1953)) Let A,B P Sn be symmetric ma-
trices with respective eigenvalues α1, . . . , αn and β1, . . . , βn ordered as follows:
α1 ď . . . ď αn and β1 ě . . . ě βn. Then,

n
ÿ

i“1

αiβi “ mintTrpAXBXT q : X P Opnqu. (1.1)

In particular,

TrpABq ě
n
ÿ

i“1

αiβi.

Proof. Write A “ PDPT and B “ QEQT where P,Q P Opnq and D (resp., E)
is the diagonal matrix with diagonal entries αi (resp. βi). As TrpAXBXTq “

TrpDY EY Tq where Y “ PTXQ P Opnq, the optimization problem (1.1) is
equivalent to

mintTrpDXEXTq : X P Opnqu.

We want to prove that the minimum is TrpDEq, which is attained X “ I. For
this consider the linear program1

max
x,yPRn

#

n
ÿ

i“1

xi `
n
ÿ

j“1

yj : αiβj ´ xi ´ yj ě 0 @i, j P rns

+

(1.2)

1We now use only the dual linear program (1.3), but we will use also the primal linear program
(1.2) in Chapter 2 for reformulating program (1.1) as a a semidefinite program.

18



and its dual linear program

min
ZPRnˆn

#

n
ÿ

i,j“1

αiβjZij :
n
ÿ

i“1

Zij “ 1 @j P rns,
n
ÿ

j“1

Zij “ 1 @i P rns, Z ě 0

+

.

(1.3)
Note that the feasible region of the linear program (1.3) is the set of all doubly-
stochastic matrices, i.e., the matrices with non-negative entries where all rows
and all columns sum up to one. By Birkhoff’s theorem the set of doubly-
stochastic matrices is equal to the convex hull of all permutation matrices. In
other words, the minimum of (1.3) is equal to the minimum value of

řn
i“1 αiβσpiq

taken over all permutations σ of rns. It is an easy exercise to verify that this min-
imum is attained for the identity permutation. This shows that the optimum
value of (1.3) (and thus of (1.2)) is equal to

ř

i αiβi “ TrpDEq.
Now pick any X P Opnq. Observe that the matrix Z “ ppXijq

2qni,j“1 is
doubly-stochastic (by the definition that X is orthogonal) and that

TrpDXEXTq “

n
ÿ

i,j“1

αiβjpXijq
2,

which implies that TrpDXEXTq is at least the minimum TrpDEq of program
(1.3). This shows that the minimum of (1.1) is at least TrpDEq, which finishes
the proof of the theorem.

1.7.4 Schur complements

The following notion of Schur complement can be very useful for showing posi-
tive semidefiniteness.

Definition 1.7.5. (Schur complement) Consider a symmetric matrix X in block
form

X “

ˆ

A B
BT C

˙

, (1.4)

with A P Rnˆn, B P Rnˆl and C P Rlˆl. Assume that A is non-singular. Then,
the matrix C ´BTA´1B is called the Schur complement of A in X.

Lemma 1.7.6. Let X P Sn be in block form (1.4) where A is non-singular. Then,

X ľ 0 ðñ A ľ 0 and C ´BTA´1B ľ 0.

Proof. The following identity holds:

X “ PT

ˆ

A 0
0 C ´BTA´1B

˙

P, where P “
ˆ

I A´1B
0 I

˙

.

As P is non-singular, we deduce that X ľ 0 if and only if pP´1qTXP´1 ľ 0
which is thus equivalent to A ľ 0 and C ´BTA´1B ľ 0.
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1.7.5 Block-diagonal matrices

Given matrices X1 P Sn1 , . . . , Xr P Snr , X1 ‘ ¨ ¨ ¨ ‘ Xr denotes the following
block-diagonal matrix X P Sn, where n “ n1 ` ¨ ¨ ¨ ` nr,

X “ X1 ‘ ¨ ¨ ¨Xr “

¨

˚

˚

˚

˝

X1 0 . . . 0
0 X2 . . . 0
...

. . .
...

0 0 . . . Xr

˛

‹

‹

‹

‚

. (1.5)

Then, X is positive semidefinite if and only if all the blocks X1, . . . , Xr are
positive semidefinite.

Given two sets of matrices A and B, A ‘ B denotes the set of all matrices
X ‘ Y , where X P A and Y P B. Moreover, for an integer m ě 1, mA denotes
A‘ ¨ ¨ ¨ ‘A, the m-fold sum.

From an algorithmic point of view it is much more economical to deal with
positive semidefinite matrices in block-form like (1.5).

For instance, if we have a set A of matrices that pairwise commute, then it
is well known that they admit a common set of eigenvectors. In other words,
there exists an orthogonal matrix P P Opnq such that the matrices PTXP are
diagonal for all X P A.

In general one may use the following powerful result about C˚-algebras
which permits to show that certain sets of matrices can be block-diagonalized.

Consider a non-empty setA Ď Cnˆn of matrices. A is said to be a C˚-algebra
if it satisfies the following conditions:

1. A is closed under matrix addition and multiplication, and under scalar
multiplication.

2. For any matrix A P A, its conjugate transpose A˚ also belongs to A.

For instance, the full matrix algebra Cnˆn is a simple instance of C˚-algebra,
and the algebra

Àr
i“1miCniˆni as well, where ni,mi are integers. The follow-

ing fundamental result shows that up to an orthogonal transformation this is
the general form of a C˚-algebra.

Theorem 1.7.7. (Wedderburn-Artin theorem) Assume A is a C˚-algebra of
matrices in Cnˆn containing the identity matrix. Then there exists a unitary matrix
P (i.e., such that PP˚ “ In) and integers r, n1,m1, . . . , nr,mr ě 1 such that the
set P˚AP “ tP˚XP : X P Au is equal to

m1Cn1ˆn1 ‘ . . .‘mrCnrˆnr .

See e.g. the thesis of Gijswijt [4] for a detailed exposition and its use for
bounding the size of error correcting codes in finite fields.
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1.7.6 Kronecker and Hadamard products

Given two matrices A “ pAijq P Rnˆm and B “ pBhkq P Rpˆq, their Kronecker
product is the matrix AbB P Rnpˆmq with entries

Aih,jk “ AijBhk @i P rns, j P rms, h P rps, k P rqs.

It can also be seen as the nˆm block matrix whose ij-th block is the pˆq matrix
AijB for all i P rns, j P rms.

This includes in particular defining the Kronecker product u b v P Rnp of
two vectors u P Rn and v P Rp, with entries pub vqih “ uivh for i P rns, h P rps.

Given two matrices A,B P Rnˆm, their Hadamard product is the matrix
A ˝B P Rnˆm with entries

pA ˝Bqij “ AijBij @i P rns, j P rms.

Note that A ˝B coincides with the principle submatrix of AbB indexed by the
subset of all ‘diagonal’ pairs of indices of the form pii, jjq for i P rns, j P rms.

Here are some (easy to verify) facts about these products, where the matrices
and vectors have the appropriate sizes.

1. pAbBqpC bDq “ pACq b pBDq.

2. In particular, pAbBqpub vq “ pAuq b pBvq.

3. Assume A P Sn and B P Sp have, respectively, eigenvalues α1, . . . , αn and
β1, . . . , βp. Then Ab B P Snp has eigenvalues αiβh for i P rns, h P rps. In
particular,

A,B ľ 0 ùñ AbB ľ 0 and A ˝B ľ 0,

A ľ 0 ùñ A˝k “ ppAijq
kq ľ 0 @k P N.

1.8 Historical remarks

The history of convexity is astonishing: On the one hand, the notion of convexity
is very natural and it can be found even in prehistoric arts. For instance, the
Platonic solids are convex polyhedra and carved stone models of some of them
were crafted by the late neolithic people of Scotland more than 4,000 years
ago. For more information on the history, which unearthed some good hoax,
see also John Baez’ discussion of “Who discovered the icosahedron?” http:

//math.ucr.edu/home/baez/icosahedron/.
On the other hand, the first mathematician who realized how important con-

vexity is as a geometric concept was the brilliant Hermann Minkowski (1864–
1909) who in a series of very influential papers “Allgemeine Lehrsätze über
die konvexen Polyeder” (1897), “Theorie der konvexen Körper, insbesondere
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Begründung ihres Oberflächenbegriffs” (published posthumously) initiated the
mathematical study of convex sets and their properties. All the results in this
chapter on the implicit and the explicit representation of convex sets can be
found there (although with different proofs).

Not much can be added to David Hilbert’s (1862–1943) praise in his obituary
of his close friend Minkowski:

Dieser Beweis eines tiefliegenden zahlentheoretischen Satzes2 ohne rech-
nerische Hilfsmittel wesentlich auf Grund einer geometrisch anschau-
lichen Betrachtung ist eine Perle Minkowskischer Erfindungskunst. Bei
der Verallgemeinerung auf Formen mit n Variablen führte der Minkowski-
sche Beweis auf eine natürlichere und weit kleinere obere Schranke für
jenes Minimum M , als sie bis dahin Hermite gefunden hatte. Noch
wichtiger aber als dies war es, daß der wesentliche Gedanke des Mink-
owskischen Schlußverfahrens nur die Eigenschaft des Ellipsoids, daß
dasselbe eine konvexe Figur ist und einen Mittelpunkt besitzt, benutzte
und daher auf beliebige konvexe Figuren mit Mittelpunkt übertragen
werden konnte. Dieser Umstand führte Minkowski zum ersten Male
zu der Erkenntnis, daß überhaupt der Begriff des konvexen Körpers ein
fundamentaler Begriff in unserer Wissenschaft ist und zu deren frucht-
barsten Forschungsmitteln gehört.

Ein konvexer (nirgends konkaver) Körper ist nach Minkowski als ein
solcher Körper definiert, der die Eigenschaft hat, daß, wenn man zwei
seiner Punkte in Auge faßt, auch die ganze geradlinige Strecke zwischen
denselben zu dem Körper gehört.3

Until the end of the 1940s convex geometry was a small discipline in pure
mathematics. This changed dramatically when in 1947 the breakthrough of
general linear programming came. Then Dantzig formulated the linear pro-
gramming problem and designed the simplex algorithm for solving it. Nowa-
days, convex geometry is an important toolbox for researchers, algorithm de-
signers and practitioners in mathematical optimization.

2Hilbert is refering to Minkowski’s lattice point theorem. It states that for any invertible matrix
A P Rnˆn defining a lattice AZn and any convex set in Rn which is symmetric with respect to the
origin and with volume greater than 2n detpAq2 contains a non-zero lattice point.

3It is not easy to translate Hilbert’s praise into English without losing its poetic tone, but here is
an attempt. This proof of a deep theorem in number theory contains little calculation. Using chiefly
geometry, it is a gem of Minkowski’s mathematical craft. With a generalization to forms having n
variables Minkowski’s proof lead to an upper boundM which is more natural and also much smaller
than the bound due to Hermite. More important than the result itself was his insight, namely that
the only salient features of ellipsoids used in the proof were that ellipsoids are convex and have a
center, thereby showing that the proof could be immediately generalized to arbitrary convex bodies
having a center. This circumstances led Minkowski for the first time to the insight that the notion of
a convex body is a fundamental and very fruitful notion in our scientific investigations ever since.

Minkowski defines a convex (nowhere concave) body as one having the property that, when one
looks at two of its points, the straight line segment joining them entirely belongs to the body.
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1.9 Further reading

Two very good books which emphasize the relation between convex geometry
and optimization are by Barvinok [1] and by Gruber [5] (available online).
Less optimization but more convex geometry is discussed in the little book of
Bonnesen, Fenchel [3] and the encyclopedic book by Schneider [7]. The first
one is now mainly interesting for historical reasons. Somewhat exceptional, and
fun to read, is Chapter VII in the book of Berger [2] (available online) where
he gives a panoramic view on the concept of convexity and its many relations
to modern higher geometry.

Let us briefly mention connections to functional analysis. Rudin in his clas-
sical book “Functional analysis” discusses Theorem 1.3.8 and Theorem 1.4.1 in
an infinite-dimensional setting. Although we will not need these more general
theorems, they are nice to know.

The Hahn-Banach separation theorem is Theorem 3.4 in Rudin.

Theorem 1.9.1. Suppose A and B are disjoint, nonempty, convex sets in a topo-
logical vector space X.

(a) If A is open there exist Λ P X˚ and γ P R such that

<Λx ă γ ď <Λy

for every x P A and for every y P B. (Here, <z is the real part of the complex
number z.)

(b) If A is compact, B is closed, and X is locally convex, there exist Λ P X˚,
γ1 P R, γ2 P R, such that

<Λx ă γ1 ă γ2 ă <Λy

for every x P A and for every y P B.

The Krein-Milman theorem is Theorem 3.23 in Rudin.

Theorem 1.9.2. Suppose X is a topological vector space on which X˚ separates
points. If K is a nonempty compact convex set in X, then K is the closed convex
hull of the set of its extreme points.

In symbols, K “ convpextpKqq.

In his blog “What’s new?” Terry Tao [8] gives an insightful discussion of the
finite-dimensional Hahn-Banach theorem.

The book “Matrix analyis” by Horn and Johnson [6] contains a wealth of
very useful information, more than 70 pages, about positive definite matrices.

1.10 Exercises

1.1. Give a proof for the following statement:

Let C Ď Rn be a convex set. If C ‰ H, then relintC ‰ H
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1.2. Give a proof for the following statement:

Let C Ď Rn be a closed convex set and let x P RnzC a point lying outside
of C. A separating hyperplane H is defined in Lemma 1.3.4. Consider
a point y on the line afftx, πCpxqu which lies on the same side of the
separating hyperplane H as x. Then, πCpxq “ πCpyq.

1.3. (a) Prove or disprove: Let A Ď Rn be a subset. Then,

convA “ convA.

(b) Construct two convex sets C,D Ď R2 so that they can be separated
by a hyperplane but which cannot be properly separated.

1.4. Show that the lnp unit ball
$

&

%

px1, . . . , xnq
T P Rn : }x}p “

˜

n
ÿ

i“1

|xi|
p

¸1{p

ď 1

,

.

-

is convex for p “ 1, p “ 2 and p “ 8 (}x}8 “ maxi“1,...,n |xi|). Deter-
mine the extreme points and determine a supporting hyperplane for every
boundary point.

(*) What happens for the other p?

24



BIBLIOGRAPHY

[1] A. Barvinok, A Course in Convexity, American Mathematical Society,
2002.

[2] M. Berger, Geometry revealed, a Jacob’s ladder to modern higher geometry,
Springer, 2010.

http://www.springerlink.com/content/978-3-540-71132-2

[3] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer, 1934.

[4] D.C. Gijswijt, Matrix algebras and semidefinite programming techniques
for codes, Ph.D. thesis, University of Amsterdam, 2005.

http://arxiv.org/abs/1007.0906

[5] P.M. Gruber, Convex and Discrete Geometry, Springer, 2007.

http://www.springerlink.com/content/978-3-540-71132-2

[6] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,
1985.

[7] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge
University Press, 1993.

[8] T. Tao, What’s new? The Hahn-Banach theorem, Mengers theorem, and
Hellys theorem, 2007.

http://terrytao.wordpress.com/2007/11/30/

the-hahn-banach-theorem-mengers-theorem-and-hellys-theorem/

25

http://www.springerlink.com/content/978-3-540-71132-2
http://arxiv.org/abs/1007.0906
http://www.springerlink.com/content/978-3-540-71132-2
http://terrytao.wordpress.com/2007/11/30/the-hahn-banach-theorem-mengers-theorem-and-hellys-theorem/
http://terrytao.wordpress.com/2007/11/30/the-hahn-banach-theorem-mengers-theorem-and-hellys-theorem/


CHAPTER 2

SEMIDEFINITE PROGRAMS:
BASIC FACTS AND EXAMPLES

In this chapter we introduce semidefinite programs, give some basic properties,
and we present several problems that can be modeled as instances of semidefi-
nite programs, arising from optimization, geometry and algebra.

For convenience we briefly recall some notation that we will use in this chap-
ter. Most of it has already been introduced in Section 1.7. Sn denotes the set of
symmetric nˆn matrices. For a matrix X P Sn, X ľ 0 means that X is positive
semidefinite and Snľ0 is the cone of positive semidefinite matrices. Analogously,
X ą 0 means that X is positive definite and Sną0 is the open cone of positive
definite matrices.

Throughout In (or simply I when the dimension is clear from the con-
text) denotes the n ˆ n identity matrix, e denotes the all-ones vector, i.e.,
e “ p1, . . . , 1qT P Rn, and Jn “ eeT (or simply J) denotes the all-ones ma-
trix. The vectors e1, . . . , en are the standard unit vectors in Rn, and the matrices
Eij “ peie

T
j ` eje

T
i q{2 form the standard basis of Sn. Opnq denotes the set

of orthogonal matrices, where A is orthogonal if AAT “ In or, equivalently,
ATA “ In.

We consider the trace inner product: xA,By “ TrpATBq “
řn
i,j“1AijBij for

two matrices A,B P Rnˆn. Here TrpAq “ xIn, Ay “
řn
i“1Aii denotes the trace

of A. Recall that TrpABq “ TrpBAq; in particular, xQAQT, QBQTy “ xA,By if
Q is an orthogonal matrix. A well known property of the positive semidefinite
cone Snľ0 is that it is self-dual: for a matrix X P Sn, X ľ 0 if and only if
xX,Y y ě 0 for all Y P Snľ0.

For a matrix A P Sn, diagpAq denotes the vector in Rn with entries are the
diagonal entries of A and, for a vector a P Rn, Diagpaq P Sn is the diagonal
matrix with diagonal entries the entries of a.
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2.1 Primal and dual semidefinite programs

2.1.1 Primal form

The typical form of a semidefinite program (often abbreviated as SDP) is a
maximization problem of the form

p˚ “ sup
X
txC,Xy : xAj , Xy “ bj pj P rmsq, X ľ 0u. (2.1)

Here A1, . . . , Am P Sn are given nˆn symmetric matrices and b P Rm is a given
vector, they are the data of the semidefinite program (2.1). The matrix X is the
variable, which is constrained to be positive semidefinite and to lie in the affine
subspace

W “ tX P Sn | xAj , Xy “ bj pj P rmsqu

of Sn. The goal is to maximize the linear objective function xC,Xy over the
feasible region

F “ Snľ0 XW,

obtained by intersecting the positive semidefinite cone Snľ0 with the affine sub-
spaceW.

A feasible solution X P F is said to be strictly feasible if X is positive definite.
The program (2.1) is said to be strictly feasible if it admits at least one strictly
feasible solution.

One can also handle minimization problems, of the form

inf
X
txC,Xy : xAj , Xy “ bj pj P rmsq, X ľ 0u

since they can be brought into the above standard maximization form using the
fact that infxC,Xy “ ´ supx´C,Xy.

Note that we write a supremum in (2.1) rather than a maximum. This is
because the optimum value p˚ might not be attained in (2.1). In general, p˚ P
R Y t˘8u, with p˚ “ ´8 if the problem (2.1) is infeasible (i.e., F “ H) and
p˚ “ `8 might occur in which case we say that the problem is unbounded.

We give a small example as an illustration. Consider the problem of mini-
mizing/maximizing X11 over the feasible region

Fa “
!

X P S2 : X “

ˆ

X11 a
a 0

˙

ľ 0
)

where a P R is a given parameter.

Note that detpXq “ ´a2 for any X P Fa. Hence, if a ‰ 0 then Fa “ H (the
problem is infeasible). Moreover, if a “ 0 then the problem is feasible but not
strictly feasible. The minimum value of X11 over F0 is equal to 0, attained at
X “ 0, while the maximum value of X11 over F0 is equal to 8 (the problem is
unbounded).

As another example, consider the problem

p˚ “ inf
XPS2

"

X11 :

ˆ

X11 1
1 X22

˙

ľ 0

*

.
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Then the infimum is p˚ “ 0 which is reached at the limit when X11 “ 1{X22

and letting X22 tend to 8. So the infimum is not attained.

In the special case when the matrices Aj , C are diagonal matrices, with di-
agonals aj , c P Rn, then the program (2.1) reduces to the linear program (LP):

max
 

cTx : aTj x “ bj pj P rmsq, x ě 0
(

.

Indeed, let x denote the vector consisting of the diagonal entries of the ma-
trix X, so that x ě 0 if X ľ 0, and xC,Xy “ cTx, xAj , Xy “ aTj x. Hence
semidefinite programming contains linear programming as a special instance.

2.1.2 Dual form

The program (2.1) is often referred to as the primal SDP in standard form. One
can define its dual SDP, which takes the form:

d˚ “ inf
y

#

m
ÿ

j“1

bjyj “ bTy :
m
ÿ

j“1

yjAj ´ C ľ 0

+

. (2.2)

Thus the dual program has variables yj , one for each linear constraint of the
primal program. The positive semidefinite constraint arising in (2.2) is also
named a linear matrix inequality (LMI). The following facts relate the primal
and dual SDP’s. They are simple, but very important.

Lemma 2.1.1. Let pX, yq be a primal/dual pair of feasible solutions, i.e., X is a
feasible solution of (2.1) and y is a feasible solution of (2.2).

1. (weak duality) We have that xC,Xy ď bTy and thus p˚ ď d˚.

2. (complementary slackness) Assume that the primal program attains its
supremum at X, that the dual program attains its infimum at y, and that
p˚ “ d˚. Then the equalities xC,Xy “ bTy and xX,

řm
j“1 yjAj ´ Cy “ 0

hold.

3. (optimality criterion) If equality xC,Xy “ bTy holds, then the supremum
of (2.1) is attained at X, the infimum of (2.2) is attained at y and p˚ “ d˚.

Proof. If pX, yq is a primal/dual pair of feasible solutions, then

0 ď xX,
ÿ

j

yjAj´Cy “
ÿ

j

xX,Ajyyj´xX,Cy “
ÿ

j

bjyj´xX,Cy “ bTy´xC,Xy.

The left most inequality follows from the fact that both X and
ř

j yjAj ´C are
positive semidefinite and we use the fact that xAj , Xy “ bj to get the second
equality. This implies that

xC,Xy ď p˚ ď d˚ ď bTy.

The rest of the lemma follows by direct verification.

28



The quantity d˚ ´ p˚ is called the duality gap. In general there might be
a positive duality gap between the primal and dual SDP’s. When there is no
duality gap, i.e., p˚ “ d˚, one says that strong duality holds, a very desirable
sitiuation. This topic and criteria for strong duality will be discussed in detail
in the next chapter. For now we only quote the following result on strong du-
ality which will be proved in the next chapter (in the general setting of conic
programming).

Theorem 2.1.2. (Strong duality: no duality gap) Consider the pair of primal
and dual programs (2.1) and (2.2).

1. Assume that the dual program (2.2) is bounded from below (d˚ ą ´8)
and that it is strictly feasible. Then the primal program (2.1) attains its
supremum (i.e., p˚ “ xC,Xy for some X P F) and there is no duality gap:
p˚ “ d˚.

2. Assume that the primal program (2.1) is bounded from above (p˚ ă 8) and
that it is strictly feasible. Then the dual program (2.2) attains its infimum
(i.e., d˚ “ bTy for some dual feasible y) and there is no duality gap: p˚ “ d˚.

In the rest of this chapter we discuss several examples of semidefinite pro-
grams.

2.2 Eigenvalue optimization

Given a matrix C P Sn, let λminpCq (resp., λmaxpCq) denote its smallest (resp.,
largest) eigenvalue. One can express them (please check it) as follows:

λmaxpCq “ max
xPRnzt0u

xTCx

}x}2
“ max
xPSn´1

xTCx, (2.3)

where Sn´1 “ tx P Rn | }x}x “ 1u denotes the unit sphere in Rn, and

λminpCq “ min
xPRnzt0u

xTCx

}x}2
“ min
xPSn´1

xTCx. (2.4)

(This is known as the Rayleigh principle.) As we now see the largest and small-
est eigenvalues can be computed via a semidefinite program. Namely, consider
the semidefinite program

p˚ “ sup txC,Xy : TrpXq “ xI,Xy “ 1, X ľ 0u (2.5)

and its dual program
d˚ “ inf

yPR
ty : yI ´ C ľ 0u . (2.6)

In view of (2.3), we have that d˚ “ λmaxpCq. The feasible region of (2.5)
is bounded (all entries of any feasible X lie in r0, 1s) and contains a positive
definite matrix (e.g., the matrix In{n), hence the infimum is attained in (2.6).
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Analogously, the program (2.6) is bounded from below (as y ě λmaxpCq for
any feasible y) and strictly feasible (pick y large enough), hence the infimum
is attained in (2.6). Moreover there is no duality gap: p˚ “ d˚. Here we have
applied Theorem 2.1.2. Thus we have shown:

Lemma 2.2.1. The largest and smallest eigenvalues of a symmetric matrix C P Sn
can be expressed with the following semidefinite programs:

λmaxpCq “ max xC,Xy “ min y
s.t. TrpXq “ 1, X ľ 0 s.t. yIn ´ C ľ 0

λminpCq “ min xC,Xy “ max y
s.t. TrpXq “ 1, X ľ 0 s.t. C ´ yIn ľ 0

More generally, also the sum of the k largest eigenvalues of a symmetric
matrix can be computed via a semidefinite program.

Theorem 2.2.2. (Fan’s theorem) Let C P Sn be a symmetric matrix with eigen-
values λ1 ě . . . ě λn. Then the sum of its k largest eigenvalues is given by any of
the following two programs:

λ1 ` ¨ ¨ ¨ ` λk “ max
XPSn

txC,Xy : TrpXq “ k, In ľ X ľ 0u , (2.7)

λ1 ` ¨ ¨ ¨ ` λk “ max
Y PRnˆk

 

xC, Y Y Ty : Y TY “ Ik
(

. (2.8)

There is a simple, elegant proof for this result which relies on a geometric
insight about the feasible regions of the two programs (2.7) and (2.8):

K1 “ tX P Sn | I ľ X ľ 0, TrpXq “ ku, (2.9)

K2 “ tY Y
T | Y P Rnˆk, Y TY “ Iku. (2.10)

The (non-convex) set K2 consists of all projection matrices of rank k and is
clearly contained in the (convex) setK1. As the next lemma shows, K1 coincides
with the convex hull of K2.

Lemma 2.2.3. K2 is the set of extreme points of the convex set K1. Therefore
equality K1 “ convpK2q holds.

Proof. The proof uses the following simple observation: For any orthogonal
matrix P P Opnq, X P K1 if and only if PXPT P K1 and, moreover, X is
an extreme point of K1 if and only if PXPT is an extreme point of K1. This
observation allows us to deal with diagonal matrices and to reduce the lemma
to a claim about the extreme points of the following polytope:

P “ tx P r0, 1sn : eTx “ ku. (2.11)

Indeed, consider X P Sn, written as X “ PDPT, where P P Opnq, D is the
diagonal matrix with the eigenvalues of X as diagonal entries, and define the
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vector d “ diagpDq P Rn. Then, X belongs to (resp., is an extreme point of) K1

if and only if D belongs to (resp., is an extreme point of) K1 or, equivalently, d
belongs to (resp., is an extreme point of) P.

Now it suffices to observe that the extreme points of the polytope P are the
vectors d P t0, 1un with eTd “ k. This implies that X is an extreme point of
K1 if and only if it has k non-zero eigenvalues, all equal to 1, which precisely
means that X P K2.

We can now conclude the proof of Theorem 2.2.2.

Proof. (of Theorem 2.2.2). In program (2.8), we maximize the linear objective
function xC,Xy over the set K2, while in (2.7) we maximize it over the set K1.
In (2.7) we may assume that the maximum is attained at an extreme point of
K1 which, by Lemma 2.2.3, belongs to K2. Therefore, both programs have the
same optimum value, denoted as p˚. We now show that p˚ “ λ1 ` . . .` λk.

Let u1, . . . , un be an orthonormal set of eigenvectors corresponding to the
eigenvalues λ1, . . . , λn ofC and let Y be the nˆk matrix with columns u1, ¨ ¨ ¨ , uk.
Then Y Y T P K2 and xC, Y Y Ty “

řk
i“1 λi, thus showing λ1 ` . . .` λk ď p˚.

Denote by Q the orthogonal matrix with columns u1, . . . , un and by D the
diagonal matrix with the λi’s on the diagonal, so that C “ QDQT. Then
xQ,Y Y Ty “ xD,ZZTy after setting Z “ Y TQ; note that ZTZ “ Ik and thus
ZZT P K2. Hence p˚ is the maximum value of xD,My “

řn
i“1 λiMii taken over

M P K2. The constraints for M P K2 imply that the vector diagpMq belongs to
the polytope P from (2.11). Therefore the maximum of

ř

i λiMii is at most the
maximum of

ř

i λixi taken over x P P. Now the latter maximum is attained at
an extreme point of P, from which one derives that it is equal to λ1 ` . . .` λk.
This gives the reverse inequality: p˚ ď λ1 ` . . .` λk.

We mention another result of the same flavor: Given two symmetric matrices
A,B, one can reformulate as a semidefinite program the following optimization
problem over orthogonal matrices:

min
 

TrpAXBXTq : X P Opnq
(

. (2.12)

We already considered this problem in Section 1.7.2 in relation with the Hoffman-
Wielandt inequality for eigenvalues (recall Theorem 1.7.4). The semidefinite re-
formulation uses Kronecker products of matrices (introduced in Section 1.7.6).

Theorem 2.2.4. Let A,B P Sn. Then the program (2.12) is equivalent to the
semidefinite program

max tTrpSq ` TrpT q : AbB ´ In b T ´ S b In ľ 0u . (2.13)

Moreover its optimum value is
n
ÿ

i“1

αiβi,

where the αi’s are the eigenvalues of A ordered in ascending order: α1 ď . . . ď αn,
and the βi’s are the eigenvalues of B ordered in descending order: β1 ě . . . ě βn.
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Proof. Let D be the diagonal matrix whose diagonal entries are the αi’s and let
E be the diagonal matrix whose diagonal entries are the βi’s. As in the proof of
Theorem 1.7.4, the program (2.12) is equivalent to

min
 

TrpDXEXT : X P Opnq
(

(2.14)

which in turn is equivalent to the linear program (1.2), repeated here for con-
venience:

max
s,tPRn

#

n
ÿ

i“1

si `
n
ÿ

j“1

tj : αiβj ´ si ´ tj ě 0 @i, j P rns

+

. (2.15)

We now show that the linear program (2.15) is equivalent to the following
semidefinite program

max
S,TPSn

tTrpSq ` TrpT q : E b F ´ In b T ´ S b In ľ 0u . (2.16)

To see it, let S, T be feasible for (2.16) and define the vectors s “ diagpSq, t “
diagpT q. Then, as EbF is a diagonal matrix, the diagonal matrices Diagpsq and
Diagptq are feasible for (2.16) with the same objective value: TrpSq ` TrpT q “
TrpDiagpsqq ` TrpDiagptqq. Now, program (2.16) with the additional condition
that S, T are diagonal matrices can be reformulated as (2.15). Finally, write
A “ PDPT and B “ QEQT where P,Q P Opnq and observe that

pPbQqpEbF´InbT´SbInqpPbQq
T “ AbB´InbpQTQ

Tq´pPSPTqbIn.

Hence S, T is feasible for (2.16) if and only if S1 “ PSPT, T 1 “ QTQT is
feasible for (2.13), and TrpSq ` TrpT q “ TrpS1q ` TrpT 1q. From this follows the
desired equivalence of (2.12) and (2.13). The fact that the optimum value is
ř

i αiβi was computed in Theorem 1.7.4.

2.3 Convex quadratic constraints

Consider a quadratic constraint for a vector x P Rn of the form

xTAx ď bTx` c, (2.17)

where A P Sn, b P Rn and c P R. In the special case when A ľ 0, then the
feasible region defined by this constraint is convex and it turns out that it can
be equivalently defined by a semidefinite constraint.

Lemma 2.3.1. Assume A ľ 0. Say, A “ LLT, where L P Rnˆk. Then, for any
x P Rn,

xTAx ď bTx` c ðñ

ˆ

Ik LTx
xTL bTx` c

˙

ľ 0.
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Proof. The equivalence follows as a direct application of Lemma 1.7.6: Choose
here A “ Ik, B “ LTx P Rkˆ1 and C “ bTx ` c P R1ˆ1. And take the Schur
complement of the submatrix Ik in the block-matrix on the right hand side.

As a direct application, the Euclidean unit ball can be represented by an LMI:

tx P Rn : }x} ď 1u “
!

x P Rn :

ˆ

1 xT

x In

˙

“

ˆ

1 0
0 In

˙

`

n
ÿ

i“1

xi

ˆ

0 eTi
ei 0

˙

ľ 0
)

as well as its homogenization:

Ln`1 “ tpx, tq P Rn`1 : }x} ď tu “
!

x P Rn :

ˆ

t xT

x tIn

˙

ľ 0
)

.

So at t “ t0, we have in the x-space the ball of radius t0. The set Ln`1 is a cone,
known as the second-order cone (or Lorentz cone), to which we will come back
in the next chapter.

The fact that one can reformulate linear optimization over the Euclidean ball
as a maximization or minimization semidefinite program can be very useful as
we will see in the next section.

Corollary 2.3.2. Given c P Rn, the following holds:

min
}x}ď1

cTx “ min
xPRn

cTx s.t.
ˆ

1 xT

x In

˙

ľ 0

“ max
XPSn`1

´TrpXq s.t. X0i “ ci pi P rnsq, X ľ 0.
(2.18)

Proof. Apply Lemma 2.3.1 combined with the duality theorem (Theorem 2.1.2).

2.4 Robust optimization

We indicate here how semidefinite programming comes up when dealing with
some robust optimization problems.

Consider the following linear programming problem:

maxtcTx : aTx ě bu,

where c, a P Rn and b P R are given data, with just one constraint for simplicity
of exposition. In practical applications the data a, b might be given through ex-
perimental results and might not be known exactly with 100% certainty, which
is in fact the case in most of the real world applications of linear programming.
One may write a “ apzq and b “ bpzq as functions of an uncertainty parameter
z assumed to lie in a given uncertainty region Z Ď Rk. Then one wants to find
an optimum solution x that is robust against this uncertainty, i.e., that satisfies
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the constraints apzqTx ě bpzq for all values of the uncertainty parameter z P Z.
That is, solve

maxtcTx : apzqTx ě bpzq @z P Zu. (2.19)

Depending on the set Z this problem might have infinitely many constraints.
However, for certain choices of the functions apzq, bpzq and of the uncertainty
regionZ, one can reformulate the problem as a semidefinite programming prob-
lem, thus tractable.

Suppose that the uncertainty region Z is the unit ball and that apzq, bpzq are
linear functions in the uncertainty parameter z “ pζ1, ¨ ¨ ¨ , ζkq P Rk, of the form

apzq “ a0 `
k
ÿ

j“1

ζjaj , bpzq “ b0 `
k
ÿ

j“1

ζjbj (2.20)

where aj , bj P Rn are known. Then the robust optimization problem (2.19) can
be reformulated as a semidefinite programming problem involving the variable
x P Rn and a new matrix variable Z P Sk. The proof relies on the result from
Corollary 2.3.2, where we made use in a crucial manner of the duality theory
for semidefinite programming, for showing the equivalence of both problems in
(2.18).

Theorem 2.4.1. Suppose that the functions apzq and bpzq are given by (2.20) and
that Z “ tz P Rm : }z} ď 1u. Then problem (2.19) is equivalent to the problem:

max
xPRn,ZPSk`1

cTx such that aTj x´ Z0j “ bj pj P rksq

aT0x´ TrpZq ě b0, Z ľ 0.
(2.21)

Proof. Fix x P Rn, set αj “ aTj x ´ bj for j “ 0, 1, . . . , k, and define the vector
α “ pαjq

k
j“1 P Rk (which depends on x). Then the constraints: apzqTx ě bpzq

@z P Z can be rewritten as

αTz ě ´α0 @z P Z.

Therefore, we find the problem of deciding whether p˚ ě ´α0, where

p˚ “ min
}z}ď1

αTz.

Now the above problem fits precisely within the setting considered in Corollary
2.3.2. Hence, we can rewrite it using the second formulation in (2.18) – the
one in maximization form – as

p˚ “ max
ZPSm`1

t´TrpZq : Z0j “ αj pj P rksq, Z ľ 0u .

So, in problem (2.19), we can substitute the condition: apzqTx ě bpzq @z P Z
by the condition:

DZ P Sm`1
ľ0 s.t. ´ TrpZq ě ´α0, Z0j “ αj pj P rksq.
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The crucial fact here is that the quantifier “@z” has been replaced by the exis-
tential quantifier “DZ”. As problem (2.19) is a maximization problem in x, it is
equivalent to the following maximization problem in the variables x and Z:

max
xPRn,ZPSm`1

 

cTx : aT0x´ TrpZq ě b0, a
T
j x´ Z0j “ bj pj P rksq

(

(after substituting back in αj their expression in terms of x).

2.5 Examples in combinatorial optimization

Semidefinite programs provide a powerful tool for constructing useful convex
relaxations for combinatorial optimization problems. We will treat this in detail
in a later chapter. For now we illustrate the main idea on the following two
examples: finding a maximum independent set and a maximum cut in a graph.

2.5.1 The maximum independent set problem

Consider a graph G “ pV,Eq with vertex set V “ rns, the edges are unordered
pairs of distinct vertices. A set of nodes (or vertices) S Ď V is said to be inde-
pendent (or stable) if it does not contain an edge and the maximum cardinality
of an independent set is denoted as αpGq, known as the stability number of G.
The maximum independent set problem asks to compute αpGq. This problem is
NP -hard.

Here is a simple recipe for constructing a semidefinite programming upper
bound for αpGq. It is based on the following observation: Let S be an indepen-
dent set in G and let x P t0, 1un be its incidence vector, with xi “ 1 if i P S and
xi “ 0 otherwise. Define the matrix X “ xxT{|S|. Then the matrix X satisfies
the following conditions: X ľ 0, Xij “ 0 for all edges ti, ju P E, TrpXq “ 1,
and xJ,Xy “ |S|. It is therefore natural to consider the following semidefinite
program

ϑpGq “ max
XPSn

txJ,Xy : TrpXq “ 1, Xij “ 0 pti, ju P Eq, X ľ 0u, (2.22)

whose optimum value ϑpGq is known as the theta number of G. It follows from
the above discussion that ϑpGq is an upper bound for the stability number. That
is,

αpGq ď ϑpGq.

The dual semidefinite program reads

min
yPRE ,tPR

$

&

%

t : tI `
ÿ

ti,juPE

yijEij ´ J ľ 0

,

.

-

, (2.23)

and its optimum value is equal to ϑpGq (because (6.13) is strictly feasible and
bounded – check it). Here we have used the elementary matrices Eij introduced
in the abstract of the chapter.
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We will come back to the theta number in a later chapter. As we will see
there, there is an interesting class of graphs for which αpGq “ ϑpGq, the so-
called perfect graphs. For these graphs, the maximum independent set problem
can be solved in polynomial time. This result is one of the first breakthrough
applications of semidefinite programming obtained in the early eighties.

2.5.2 The maximum cut problem

Consider again a graph G “ pV,Eq where V “ rns. Given a subset S Ď V ,
the cut δGpSq consists of all the edges ti, ju of G that are cut by the partition
pS, V zSq, i.e., exactly one of the two nodes i, j belongs to S. The maximum
cut problem (or max-cut) asks to find a cut of maximum cardinality. This is an
NP -hard problem.

One can encode the max-cut problem using variables x P t˘1un. Assign
xi “ 1 to the nodes i P S and ´1 to the nodes i P V zS. Then the cardinality
of the cut δGpSq is equal to

ř

ti,juPEp1 ´ xixjq{2. Therefore max-cut can be
formulated as

max-cut “ max
xPRn

$

&

%

ÿ

ti,juPE

p1´ xixjq{2 : x P t˘1un

,

.

-

. (2.24)

Again there is a simple recipe for constructing a semidefinite relaxation for
max-cut: Pick a vector x P t˘1un (arising in the above formulation of max-
cut) and consider the matrix X “ xxT. This matrix X satisfies the following
conditions: X ľ 0 and Xii “ 1 for all i P rns. Therefore, it is natural to consider
the following semidefinite relaxation for max-cut:

sdp “ max
XPSn

$

&

%

ÿ

ti,juPE

p1´Xijq{2 : X ľ 0, Xii “ 1 pi P rnsq

,

.

-

. (2.25)

As we will see later this semidefinite program provides a very good approx-
imation for the max-cut problem: sdp ď 1.13 ¨ max-cut . This is a second
breakthrough application of semidefinite programming, obtained in the early
nineties.

Let LG P Sn denote the Laplacian matrix of G: its pi, iqth diagonal entry is
the degree of node i in G, and the pi, jqth off-diagonal entry is ´1 if ti, ju is an
edge and 0 otherwise. Note that

xTLGx “
ÿ

ti,juPE

pxi´xjq
2 @x P Rn,

1

4
xTLGx “

1

2

ÿ

ti,juPE

p1´xixjq @x P t˘1un.

The first item shows that LG ľ 0, and the second item shows that one can refor-
mulate max-cut using the Laplacian matrix. Analogously one can reformulate
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the semidefinite program (2.25) as

sdp “ max

"

1

4
xLG, Xy : X ľ 0, Xii “ 1 pi P rnsq

*

. (2.26)

Given a positive semidefinite matrix A, consider the following quadratic
problem

opt “ maxtxTAx : }x}8 ď 1u. (2.27)

where }x}8 “ maxi |xi| is the `8-norm. As we maximize a convex function over
the convex set r´1, 1sn, the maximum is attained at a vertex, i.e., at a point of
t˘1un. This shows that (2.27) is equivalent to

opt “ maxtxTAx : x P t˘1unu. (2.28)

This problem is NP -hard – indeed it contains the max-cut problem, obtained
when choosing A “ LG{4.

Note that if we would replace in (2.27) the cube r´1, 1sn by the Euclidean
unit ball, then we find the problem of computing the largest eigenvalue of A
which, as we saw earlier, can be modeled as a semidefinite program.

Just as for max-cut one can formulate the following semidefinite relaxation
of (2.28) (and thus of (2.27)):

sdp “ maxtxA,Xy : X ľ 0, Xii “ 1 @i P rnsu. (2.29)

We will see later that this semidefinite program too gives a good approximation
of the quadratic problem (2.27): sdp ď π

2 opt .

2.6 Examples in geometry

Given vectors u1, . . . , un P Rk, let d “ pdijq denote the vector consisting of their
pairwise squared Euclidean distances, i.e., dij “ }ui´uj}2 for all i, j P rns. Thus
dii “ 0 for all i. Now, think of the vectors ui as representing the locations of
some objects (atoms of a molecule, or sensors in a sensor network). One might
be able to determine the pairwise distances dij by making some measurements.
However, in general, one can determine these distances dij only for a subset
of pairs, corresponding to the edges of a graph G. Then the problem arises
whether one can reconstruct the locations of the objects (the vectors ui) from
these partial measurements (the distances dij for the edges ti, ju of G).

In mathematical terms, given a graph G “ pV “ rns, Eq and d P REě0, decide
whether there exist vectors u1, . . . , un P Rk such that

}ui ´ uj}
2 “ dij for all ti, ju P E.

Of course, this problem comes in several flavors. One may search for such
vectors ui lying in a space of prescribed dimension k; then typically k “ 2, 3 or
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4 would be of interest. This is in fact a hard problem. However, if we relax the
bound on the dimension and simply ask for the existence of the ui’s in Rk for
some k ě 1, then the problem can be cast as the problem of deciding feasibility
of a semidefinite program.

Lemma 2.6.1. Given d P REě0, there exist vectors u1, . . . , un P Rk (for some
k ě 1) if and only if the following semidefinite program is feasible:

X ľ 0, Xii `Xjj ´ 2Xij “ dij for ti, ju P E.

Moreover, such vectors exist in the space Rk if and only if the above semidefinite
program has a feasible solution of rank at most k.

Proof. Directly, using the fact that X ľ 0 if and only if X admits a Gram rep-
resentation u1, . . . , un P Rk (for some k ě 1), i.e., Xij “ uTi uj for all i, j P rns.
Moreover, the rank of X is equal to the rank of the system tu1, . . . , unu.

Thus arises naturally the problem of finding low rank solutions to a semidef-
inite program. We will come back to this topic in a later chapter.

2.7 Examples in algebra

Another, maybe a bit unexpected at first sight, application of semidefinite pro-
gramming is for testing whether a multivariate polynomial can be written as a
sum of squares of polynomials.

First recall a bit of notation. Rrx1, . . . , xns (or simply Rrxs for simplicity)
denotes the ring of polynomials in n variables. A polynomial p P Rrxs can
be written as p “

ř

α pαx
α, where pα P R and xα stands for the monomial

xα1
1 ¨ ¨ ¨xαnn . The sum is finite and the maximum value of |α| “

řn
i“1 αi for which

pα ‰ 0 is the degree of p. For an integer d, rxsd denotes the vector consisting
of all monomials of degree at most d, which has

`

n`d
d

˘

entries. Denoting by
p “ ppαq the vector of coefficients of p, we can write

p “
ÿ

α

pαx
α “ pTrxsd. (2.30)

Definition 2.7.1. A polynomial p is said to be a sum of squares (SOS) if p can be
written as a sum of squares of polynomials, i.e., p “

řm
j“1pqjq

2 for some polyno-
mials qj .

It turns out that checking whether p is SOS can be reformulated via a semidef-
inite program. Clearly, we may assume that p has even degree 2d (else p is not
SOS) and the polynomials qj arising in a SOS decomposition will have degree
at most d.

Let us now make the following simple manipulation, based on (2.30):
ÿ

j

q2j “
ÿ

j

rxsTdqjqj
Trxsd “ rxs

T
d

`

ÿ

j

qjqj
Tqrxsd “ rxs

T
dQrxsd,
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after setting Q “
ř

j qjqj
T. Having such a decomposition for the matrix Q

amounts to requiring that Q is positive semidefinite. Therefore, we have just
shown that the polynomial p is SOS if and only if

p “ rxsTdQrxsd for some matrix Q ľ 0.

Linear conditions on Q arise by equating the coefficients of the polynomials on
both sides in the above identity.

Summarizing, one can test whether p can be written as a sum of squares by
checking the feasibility of a semidefinite program. If p has degree 2d, this SDP
involves a variable matrix Q of size

`

n`d
d

˘

(the number of monomials of degree
at most d) and

`

n`2d
2d

˘

(the number of monomials of degree at most 2d) linear
constraints.

One can sometimes restrict to smaller matrices Q. For instance, if the poly-
nomial p is homeogeneous (i.e, all its terms have degree 2d), then we may
assume without loss of generality that the polynomials qj appearing in a SOS
decomposition are homogeneous of degree d. Hence Q will be indexed by the
`

n`d´1
d

˘

monomials of degree equal to d.

Why bother about sums of squares of polynomials? A good reason is that
they can be useful to recognize and certify positive polynomials and to approxi-
mate optimization problems dealing with polynomials. Let us just give a glimpse
on this.

Suppose that one wants to compute the infimum pmin of a polynomial p
over the full space Rn. In other words, one wants to find the largest scalar λ for
which ppxq´λ ě 0 for all x P Rn. This is in general a hard problem. However, if
we relax the positivity condition on p´λ and instead require that p´λ is a sum
of squares, then it follows from the above considerations that we can compute
the maximum λ for which p ´ λ is SOS using semidefinite programming. This
gives a tractable bound p˚ satisfying: p˚ ď pmin.

In general p˚ might be distinct from pmin. However in the univariate case
(n “ 1), equality holds: pmin “ p˚. (This will follow from the result in Problem
2.2.) Equality holds also in the quadratic case: d “ 2, and in one exceptional
case: n “ 2 and d “ 4. This was shown by Hilbert in 1888.

We will return to this topic in a later chapter.

2.8 Further reading

A detailed treatment about Fan’s theorem (Theorem 2.2.2) can be found in
Overton and Womersley [8] and a detailed discussion about Hoffman-Wielandt
inequality, Theorem 2.2.4 and applications (e.g. to quadratic assignment) can
be found in Anstreicher and Wolkowicz [2].

The recent monograph of Ben-Tal, El Ghaoui and Nemirovski [3] offers a de-
tailed treatment of robust optimization. The result presented in Theorem 2.4.1
is just one of the many instances of problems which admit a robust counterpart
which is a tractable optimization problem. Although we formulated it in terms
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of semidefinite programming (to fit our discussion), it can in fact be formulated
in terms of second-order conic optimization, which admits faster algorithms.

The theta number ϑpGq was introduced in the seminal work of Lovász [3].
A main motivation of Lovász was to give good bounds for the Shannon capacity
of a graph, an information theoretic measure of the graph. Lovász succeeded
to determine the exact value of the Shannon capacity of C5, the circuit on five
nodes, by computing ϑpC5q “

?
5. This work of Lovász can be considered as

the first breakthrough application of semidefinite programming, although the
term semidefinite programming was coined only later. Chapter 33 of [1] gives
a beautiful treatment of this result. The monograph by Grötschel, Lovász and
Schrijver [1] treats in detail algorithmic questions related to semidefinite pro-
gramming and, in particular, to the theta number. Polynomial time solvability
based on the ellipsoid method is treated in detail there.

Using semidefinite programming to approximate max-cut was pioneered by
the work of Goemans and Williamson [5]. This novel approach and their result
had a great impact on the area of combinatorial optimization. It indeed spurred
a lot of research activity for getting tight approximations for various problems.
This line of research is now also very active in theoretical computer science,
where the unique games conjecture has been formulated that is directly relevant
to the basic semidefinite relaxation (2.25) for max-cut – cf. e.g. the survey by
Trevisan [10].

Sums of squares of polynomials are a classical topic in mathematics and they
have many applications e.g. to control theory and engineering. In the late 1800s
David Hilbert classified the parameters degree/number of variables for which
any positive polynomial can be written as a sum of squares of polynomials. He
posed the question whether any positive polynomial can be written as a sum of
squares of rational functions, known as Hilbert’s 17th problem. This was solved
by Artin in 1927, a result which started the field of real algebraic geometry. The
survey by Reznick [6] gives a nice overview and historical perspective and the
monograph by Delzell and Prestell [4] gives an in-depth treatment of positivity.

2.9 Exercises

2.1. (a) Formulate the dual SDP of the program (2.7).
(b) Give a semidefinite programming formulation for the following prob-

lem:

mintλ1pXq ` . . .` λkpXq : xAj , Xy “ bj pj P rmsqu,

which asks for a matrix X P Sn satisfying a system of linear con-
straints and for which the sum of the k largest eigenvalues of X is
minimum.

2.2. Let p be a univariate polynomial.

(a) Show that p can be written as a sum of squares if and only if p is
non-negative over R, i.e., ppxq ě 0 @x P R.

40



(b) Show that if p is non-negative over R then it can be written as sum
of two squares.

2.3**. (a) Build the dual of the semidefinite programming (2.26) and show that
it is equivalent to

n

4
min
uPRn

tλmaxpDiagpuq ` LGq : eTu “ 0u,

where Diagpuq is the diagonal matrix with diagonal entries u1, . . . , un.

(b) Show that the maximum cardinality of a cut is at most

n

4
λmaxpLGq,

where λmaxpLGq is the maximum eigenvalue of the Laplacian matrix
of G.

(c) Show that the maximum cardinality of a cut in G is at most

1

2
|E| ´

n

4
λminpAGq

where AG is the adjacency matrix of G.

(d) Show that both bounds in (b) and (c) coincide when G is a regular
graph (i.e., all nodes have the same degree).

2.4. Consider the polynomial in two variables x and y

p “ x4 ` 2x3y ` 3x2y2 ` 2xy3 ` 2y4.

(a) Build a semidefinite program permitting to recognize whether p can
be written as sum of squares.

(b) Describe all possible sums of squares decompositions for p.

(c) What can you say about the number of squares needed?
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CHAPTER 3

DUALITY IN CONIC
PROGRAMMING

Traditionally, convex optimization problems are of the form

minimize f0pxq

subject to f1pxq ď 0, . . . , fN pxq ď 0,

aT1x “ b1, . . . , a
T
Mx “ bM ,

where the objective function f0 : D Ñ R and the inequality constraint functions
fi : D Ñ R which are defined on a convex domain D Ď Rn are convex, i.e. their
epigraphs

epi fi “ tpx, αq : D ˆ R : fipxq ď αu, i “ 0, . . . , N,

are convex sets in D ˆ R Ď Rn`1. Equivalently, the function fi is convex if and
only if

@x, y P D @α P r0, 1s : fipp1´ αqx` αxq ď p1´ αqfipxq ` αfipyq.

The equality constraints are given by vectors aj P Rnzt0u and right hand sides
bj P R. The convex set of feasible solutions is the intersection of N convex sets
with M hyperplanes

N
č

i“1

tx P D : fipxq ď 0u X
M
č

j“1

tx P Rn : aTj x “ bju.

The set-up for conic programming is slightly different. We start by consider-
ing a fixed convex cone K lying in the n-dimensional Euclidean space Rn. The

43



task of conic programming is the following: One wants to maximize (or mini-
mize) a linear function over the feasible region which is given as the intersection
of the convex cone K with an affine subspace:

maximize cTx

subject to x P K,

aT1x “ b1, . . . , a
T
mx “ bm.

This differs only slightly from a traditional convex optimization problem:
The objective function is linear and feasibility with respect to the inequality
constraint functions is replaced by membership in the fixed convex cone K. In
principle, one can transform every convex optimization problem into a conic
program. However, the important point in conic programming is that it seems
that a vast majority of convex optimization problems which come up in practice
can be formulated as conic programs using the three standard cones:

1. the non-negative orthant Rně0 – giving linear programming (LP),

2. the second-order cone Ln`1 – giving second-order cone programming
(CQP),

3. or the cone of positive semidefinite matrices Snľ0 – giving semidefinite
programming (SDP).

As we will see in the next lecture, these three cones have particular nice analytic
properties: They have a self-concordant barrier function which is easy to evalu-
ate. This implies that there are theoretically (polynomial-time) and practically
efficient algorithms to solve these standard problems.

In addition to this, the three examples are ordered by their “difficulty”, which
can be pictured as

LP Ď CQP Ď SDP.

This means that one can formulate every linear program as a conic quadratic
program and one can formulate every conic quadratic program as a semidefinite
program.

Why do we care about conic programming in general and do not focus on
these three most important special cases?

The answer is that conic programming gives a unifying framework to design
algorithms, to understand the basic principles of its geometry and duality, and
to model optimization problems. Moreover this offers the flexibility of dealing
with new cones obtained e.g. by taking direct products of the three standard
types of cones.
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3.1 Fundamental properties

3.1.1 Local minimizers are global minimizers

A first fundamental property of convex optimization problems is that every local
minimizer is at the same time a global minimizer. A local minimizer of the
convex optimization problem is a feasible solution x P D having the property
that there is a positive ε so that

f0pxq “ inftf0pyq : y is feasible and dpx, yq ď εu.

Here and throughout we use the notation dpx, yq to denote the Euclidean dis-
tance }x ´ y}2 between x, y P Rn. To see that local optimality implies global
optimality assume that x is a local but not a global minimizer, then there is a
feasible solution y so that f0pyq ă f0pxq. Clearly, dpx, yq ą ε. Define z P rx, ys
by setting

z “ p1´ αqx` αy, α “
ε

2dpx, yq
,

which is a feasible solution because of convexity. Then, dpx, zq “ ε{2 and again
by convexity

f0pzq ď p1´ αqf0pxq ` αf0pyq ă f0pxq,

which contradicts the fact that x is a local minimizer.

3.1.2 Karush-Kuhn-Tucker condition

A second fundamental property of convex optimization problems is that one has
necessary and sufficient conditions for x being a local (and hence a global) min-
imizer. Stating and analyzing these kind of conditions is central to the theory
of non-linear programming and convex analysis. We just state one fundamental
result here without proving it. A proof can be found for instance in the book [2,
Chapter 5] by Boyd and Vandenberghe.

We assume that the convex optimization problem satisfies the following con-
dition, known as Slater’s condition:

There exists a point x P relintD such that fipxq ă 0 for all i “ 1, . . . , N and
such that aTj x “ bj for all j “ 1, . . . ,M .

This point is called a strictly feasible solution since the inequality constraints
hold with strict inequality. Furthermore, we assume that the objective function
and that the inequality constraint functions are differentiable. Under these con-
ditions a feasible solution is a global minimizer if and only if the Karush-Kuhn-
Tucker (KKT) condition holds: There are λ1, . . . , λN P Rě0 and µ1, . . . , µM P R
so that the following equations are satisfied:

λ1f1pxq “ 0, . . . , λNfN pxq “ 0,

∇f0pxq `
N
ÿ

i“1

λi∇fipxq `
M
ÿ

j“1

µjaj “ 0.
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The KKT-condition is an extension of the method of Lagrange multipliers where
one also can consider inequalities instead of only equalities.

3.2 Primal and dual conic programs

When defining conic programming we need a “nice” cone K, satisfying the fol-
lowing properties: K is closed, convex, pointed, and has a non-empty interior
or, equivalently, it is full-dimensional.

3.2.1 Primal conic programs

Let K Ď Rn be a pointed, closed, convex cone with non-empty interior.

Definition 3.2.1. Given c P Rn, a1, . . . , am P Rn, and b1, . . . , bm P R, a primal
conic program (in standard form) is the following maximization problem:

suptcTx : x P K, aT1x “ b1, . . . , a
T
mx “ bmu,

which can also be written in a more compact form as

suptcTx : x P K, Ax “ bu,

where A is the mˆ n matrix with rows aT1 , . . . , a
T
m and b “ pb1, . . . , bmqT P Rm.

We say that x P Rn is a feasible solution (of the primal) if it lies in the cone
K and if it satisfies the equality constraints. It is a strictly feasible solution if it
additionally lies in the interior of K.

Note that we used a supremum here instead of a maximum. The reason is
simply that sometimes the supremum is not attained. We shall see examples in
Section 3.5.

3.2.2 Dual conic programs

The principal problem of duality is to find upper bounds for the primal conic
program (a maximization problem), in a systematic, or even mechanical way.
This is helpful e.g. in formulating optimality criteria and in the design of effi-
cient algorithms. Duality is a powerful technique, and sometimes translating
primal problems into dual problems gives unexpected benefits and insights. To
define the dual conic program we need the dual cone K˚.

Definition 3.2.2. Let K Ď Rn be a cone. The dual cone K˚ of K is

K˚ “ ty P Rn : yTx ě 0 for all x P Ku.

Lemma 3.2.3. If K is a pointed, closed, convex cone with non-empty interior, then
the same holds for its dual cone K˚.
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You will prove this in Exercise 3.1. The following property of cones will be
useful — you will prove it in Exercise 3.2.

Lemma 3.2.4. Let K be a closed convex full-dimensional cone. Then we have the
equivalence

x P int K ðñ @y P K˚zt0u : yTx ą 0.

Definition 3.2.5. Let

suptcTx : x P K, aT1x “ b1, . . . , a
T
mx “ bmu “ suptcTx : x P K, Ax “ bu

be a primal conic program. Its dual conic program is the following minimization
problem

inf

#

m
ÿ

j“1

yjbj : y1, . . . , ym P R,
m
ÿ

j“1

yjaj ´ c P K
˚

+

,

or more compactly,

inftbTy : y P Rm, ATy ´ c P K˚u.

We say that y P Rm is a feasible solution (of the dual) if
řm
j“1 yjaj ´ c P K

˚.
It is a strictly feasible solution if

řm
j“1 yjaj ´ c P intK˚.

3.2.3 Geometric interpretation of the primal-dual pair

At first sight, the dual conic program does not look like a conic program, i.e.
optimizing a linear function over the intersection of a convex cone by an affine
subspace. Although the expression z “

řm
i“1 yiai´c ranges over the intersection

of the convex cone K˚ with an affine subspace, it might be less clear a priori
why the objective function

řm
i“1 yibi has the right form (a linear function in

z “
řm
i“1 yiai ´ c).

The following explanation shows how to view the primal and the dual conic
program geometrically. This also will bring the dual program into the right
form. For this consider the linear subspace

L “ tx P Rn : aT1x “ 0, . . . , aTmx “ 0u,

and its orthogonal complement

LK “

#

m
ÿ

j“1

yjaj P Rn : y1, . . . , ym P R

+

.

We may assume that there exists a point x0 P Rn satisfying Ax0 “ b for, if not,
the primal conic program would not have a feasible solution. Note then that

bTy “ xT0A
Ty “ xT0

˜

m
ÿ

j“1

ajyj

¸

“ xT0

˜

m
ÿ

j“1

ajyj ´ c

¸

` xT0 c.
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Therefore, the primal conic program can be written as

suptcTx : x P K X px0 ` Lqu

and the dual conic program as

cTx0 ` inftxT0 z : z P K˚ X p´c` LKqu.

Now both the primal and the dual conic programs have the right form and the
symmetry between the primal and the dual conic program becomes more clear.

What happens when one builds the dual of the dual? Then one gets a conic
program which is equivalent to the primal. This is due to the following lemma.

Lemma 3.2.6. Let K Ď Rn be a closed convex cone. Then, pK˚q˚ “ K.

Proof. The inclusion K Ď pK˚q˚ is easy to verify using the definition only. For
the reverse inclusion, one needs the separation theorem (Lemma 1.5.2). Let
x P RnzK. Then txu and K can be separated by a hyperplane of the form
H “ tz P Rn : cTz “ 0u for some c P Rnzt0u. Say, K Ď H` “ tz : cTz ě 0u
and cTx ă 0. The inclusion K Ď H` shows that c P K˚ and then the inequality
cTx ă 0 shows that x R pK˚q˚

3.3 Examples

Now we specialize the cone K to the first three examples of Section 1.5. These
three examples are useful for a huge spectrum of applications.

3.3.1 Linear programming (LP)

A conic program where K is the non-negative orthant Rně0 is a linear program.
We write a primal linear program (in standard form) as

suptcTx : x ě 0, aT1x “ b1, . . . , a
T
mx “ bmu “ suptcTx : x ě 0, Ax “ bu.

The non-negative orthant is self-dual: pRně0q
˚ “ Rně0. The dual linear program

is

inf

#

m
ÿ

j“1

bjyj : y1, . . . , ym P R,
m
ÿ

j“1

yjaj ´ c ě 0

+

“ inftbTy : ATy ´ c ě 0u.

In the case when the problems are not unbounded we could replace the supre-
mum/infimum by maximum/minimum. This is because we are optimizing a
linear function over a polyhedron, which is equivalent to optimizing over its set
of extreme points, and any polyhedron has finitely many extreme points.
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3.3.2 Conic quadratic programming (CQP)

A conic program where K is the second-order cone Ln`1 is a conic quadratic
program. We write a primal conic quadratic program (in standard form) as

suptpc, γqTpx, tq : px, tq P Ln`1, pa1, α1q
Tpx, tq “ b1, . . . pam, αmq

Tpx, tq “ bmu.

Here px, tq stands for the (column) vector in Rn`1 obtained by appending a new
entry t P R to x P Rn, we use this notation to emphasize the different nature of
the vector’s components. Recall the definition of the second-order cone Ln`1:

px, tq P Ln`1 if and only if }x}2 ď t.

The second-order cone is self-dual, too — you will show this in Exercise 3.3

pLn`1q˚ “ Ln`1.

The dual conic quadratic program is

inf

#

m
ÿ

j“1

yjbj : y1, . . . , ym P R,
m
ÿ

j“1

yjpaj , αjq ´ pc, γq P Ln`1

+

.

This can be written in a nicer and more intuitive form using the Euclidean norm.
Define the matrix B P Rnˆm which has ai as its i-th column, and the vectors
b “ pbjq

m
j“1, α “ pαjqmj“1 and y “ pyjqmj“1 in Rm. Then the dual conic quadratic

program can be reformulated as

inf
 

bTy : y P Rm, }By ´ c}2 ď αTy ´ γ
(

.

3.3.3 Semidefinite programming (SDP)

A conic program where K is the cone of semidefinite matrices Sně0 is a semidef-
inite program. We write a primal semidefinite program (in standard form) as

suptxC,Xy : X ľ 0, xA1, Xy “ b1, . . . , xAm, Xy “ bmu.

We have already seen earlier that the cone of semidefinite matrices is self-dual:

pSnľ0q
˚ “ Snľ0.

The dual semidefinite program is

inf

#

m
ÿ

j“1

yjbj : y1, . . . , ym P R,
m
ÿ

j“1

yjAj ´ C ľ 0

+

.

Engineers and applied mathematicians like to call an inequality of the form
řm
i“1 yiAi ´ C ľ 0 a linear matrix inequality (LMI) between the parameters

y1, . . . , ym. It is a convenient way to express a convex constraint posed on the
vector y “ py1, . . . , ymqT.
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3.4 Duality theory

Duality is concerned with understanding the relation between the primal conic
program and the dual conic program. We denote the supremum of the primal
conic program by p˚ and the infimum of the dual conic program by d˚. What
is the relation between p˚ and d˚? As we see in the next theorem it turns out
that in many cases one has equality p˚ “ d˚ and that the supremum as well
as the infimum are attained. In these cases duality theory can be very useful
because sometimes it is easier to work with the dual problem instead of the
primal problem.

Theorem 3.4.1. Suppose we are given a pair of primal and dual conic programs.
Let p˚ be the supremum of the primal and let d˚ be the infimum of the dual.

1. (weak duality) Suppose x is a feasible solution of the primal conic program,
and y is a feasible solution of the dual conic program. Then,

cTx ď bTy.

In particular p˚ ď d˚.

2. (complementary slackness) Suppose that the primal conic program attains
its supremum at x, and that the dual conic program attains its infimum at
y, and that p˚ “ d˚. Then

˜

m
ÿ

i“1

yiai ´ c

¸T

x “ 0.

3. (optimality criterion) Suppose that x is a feasible solution of the primal
conic program, and y is a feasible solution of the dual conic program, and
equality

˜

m
ÿ

i“1

yiai ´ c

¸T

x “ 0

holds. Then the supremum of the primal conic program is attained at x and
the infimum of the dual conic program is attained at y.

4. (strong duality; no duality gap) If the dual conic program is bounded from
below and if it is strictly feasible, then the primal conic program attains its
supremum and there is no duality gap: p˚ “ d˚.

If the primal conic program is bounded from above and if it is strictly feasible,
then the dual conic programs attains its infimum and there is no duality gap.

Before the proof one more comment about the usefulness of weak duality:
Suppose you want to solve a primal conic program. If the oracle of Delft, gives
you y, then it might be wise to check whether

řm
i“1 yiai ´ c lies in K˚. If so,

then this gives immediately an upper bound for p˚.

50



The difference d˚´p˚ is also called the duality gap between the primal conic
program and dual conic program.

One last remark: If the dual conic program is not bounded from below:
d˚ “ ´8, then weak duality implies that p˚ “ ´8, i.e., the primal conic
program is infeasible.

Proof. The proof of weak duality is important and simple. It reveals the origin
of the definition of the dual conic program: We have

m
ÿ

j“1

yjbj “
m
ÿ

j“1

yjpa
T
j xq “

˜

m
ÿ

j“1

yjaj

¸T

x ě cTx,

where the last inequality is implied by
řm
i“1 yiai ´ c P K

˚ and x P K.

Now complementary slackness and the optimality criterion immediately
follow from this.

Strong duality needs considerably more work. It suffices to prove the first
statement (since the second one follows using the symmetry between the primal
and dual problems). So we assume that d˚ ą ´8 and that the dual program
has a strict feasible solution. Using these assumptions we will construct a primal
feasible solution x˚ with cTx˚ ě d˚. Then, weak duality implies p˚ “ d˚ and
hence x˚ is a maximizer of the primal conic program.

Consider the set

M “

#

m
ÿ

j“1

yjaj ´ c : y P Rm, bTy ď d˚

+

.

If b “ 0 then d˚ “ 0 and setting x˚ “ 0 proves the result immediately. Hence
we may assume that there is an index i so that bi is not zero, and then M is not
empty. We first claim that

M X intK˚ “ H.

For suppose not. Then there exists y P Rm such that
řm
j“1 yjaj ´ c P intK˚

and yTb ď d˚. Assume without loss of generality that b1 ă 0. Then for a
small enough ε ą 0 one would have py1 ` εqa1 `

řm
j“2 yjaj ´ c P K˚ with

py1 ` εqb1 `
řm
j“2 yjbj ă yTb ď d˚. This contradicts the fact that d˚ is the

infimum of the dual conic program.
Since M and K˚ are both convex sets whose relative interiors do not inter-

sect, we can separate them by an affine hyperplane, according to Theorem 1.3.8.
Hence, there is a non-zero vector x P Rn so that

suptxTz : z PMu ď inftxTz : z P K˚u. (3.1)

We shall use this point x to construct a maximizer of the primal conic pro-
gram which we do in three steps.

First step: x P K.
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To see it, it suffices to show that

inf
zPK˚

xTz ě 0, (3.2)

as this implies that x P pK˚q˚ “ K. We show the inequality by contradiction.
Suppose there is a vector z P K˚ with xTz ă 0. Then, for any positive λ, the
vector λz lies in the convex cone K˚. Making λ extremely large drives xTλz
towards ´8. But we reach a contradiction since, by (3.1), the infimum of xTz
over z P K˚ is lower bounded since M ‰ H.

Second step: There exists µ ą 0 so that aTj x “ µbj (j P rms) and xTc ě µd˚.

Since 0 P K˚ we also have that the infimum of (3.2) is at most 0. So
we have shown that the infimum of (3.2) is equal to 0. Therefore, by (3.1),
supzPM xTz ď 0. In other words, by the definition of M , for any y P Rm,

yTb ď d˚ ùñ xT
´

m
ÿ

j“1

yjaj ´ c
¯

ď 0

or, equivalently,

yTb ď d˚ ùñ
m
ÿ

j“1

yjpx
Tajq ď xTc.

This means that the halfspace ty : yTb ď d˚u is contained into the halfspace
ty : yTpxTajqj ď xTcu. Hence their normal vectors b and pxTajqj point in the
same direction. In other words there exists a scalar µ ě 0 such that

xTaj “ µbj pj “ 1, . . . ,mq, µd˚ ď xTc.

It suffices now to verify that µ is positive. Indeed suppose that µ “ 0. Then, on
the one hand, we have that xTc ě 0. On the other hand, using the assumption
that the conic dual program is strictly feasible, there exists ȳ P Rm such that
ř

j ȳjaj ´ c P intK. This implies

0 ă
´

m
ÿ

j“1

ȳjaj ´ c
¯T

x “ ´cTx,

where strict inequality follows from
ř

j ȳjaj ´ c P intK and x P Kzt0u (use
here Lemma 3.2.4). This gives cTx ă 0, a contradiction.

Third step: x˚ “ x{µ is a maximizer of the primal conic program.

This follows directly from the fact that x˚ is a primal feasible solution (since
we saw above that x˚ P K and aTj x

˚ “ bj for j P rms) with cTx˚ ě d˚.
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3.5 Some pathological examples

If you know linear programming and its duality theory you might wonder why
do we always write sup and inf instead of max and min and why do we care
about strictly feasibility in Theorem 3.4.1. Why doesn’t strong duality always
hold? Here are some examples of semidefinite programs showing that we in-
deed have to be more careful.

3.5.1 Dual infimum not attained

Consider the semidefinite program

p˚ “ sup

"Bˆ

0 ´1
´1 0

˙

, X

F

: X ľ 0,

Bˆ

1 0
0 0

˙

, X

F

“ 1,

Bˆ

0 0
0 1

˙

, X

F

“ 0

*

and its dual

d˚ “ inf

"

y1 : y1

ˆ

1 0
0 0

˙

` y2

ˆ

0 0
0 1

˙

´

ˆ

0 ´1
´1 0

˙

“

ˆ

y1 1
1 y2

˙

ľ 0

*

.

In this example, p˚ “ d˚ “ 0 and the supremum is attained in the primal,
but the infimum is not attained in the dual. Note indeed that the primal is not
strictly feasible (since X22 “ 0 for any feasible solution).

3.5.2 Positive duality gap

There can be a duality gap between the primal and the dual conic programs.
Consider the primal semidefinite program with data matrices

C “

¨

˝

´1 0 0
0 ´1 0
0 0 0

˛

‚, A1 “

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚, A2 “

¨

˝

0 0 1
0 1 0
1 0 0

˛

‚,

and b1 “ 0, b2 “ 1. It reads

p˚ “ supt´X11 ´X22 : X11 “ 0, 2X13 `X22 “ 1, X ľ 0u

and its dual reads

d˚ “ inf

$

&

%

y2 : y1A1 ` y2A2 ´ C “

¨

˝

y1 ` 1 0 y2
0 y2 ` 1 0
y2 0 0

˛

‚ľ 0

,

.

-

.

Then any primal feasible solution satisfies X13 “ 0, X22 “ 1, so that the primal
optimum value is equal to p˚ “ ´1, attained at the matrix X “ E22. Any dual
feasible solution satisfies y2 “ 0, so that the dual optimum value is equal to
d˚ “ 0, attained at y “ 0. Hence there is a positive duality gap: d˚ ´ p˚ “ 1.
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3.6 Strong and weak infeasibility

Consider the following two conic programming systems

Ax “ b, x P K, (3.3)

m
ÿ

j“1

yjaj “ ATy P K˚, bTy ă 0. (3.4)

Clearly, if (3.3) has a solution then (3.4) has no solution: If x is feasible for
(3.3) and y is feasible for (3.4) then

0 ď pATyqTx “ yTAx “ yTb ă 0,

giving a contradiction. When K is the non-negative orthant then the converse
also holds: If (3.3) has no solution then (3.4) has a solution. This fact follows by
applying the separation theorem (Lemma 1.5.2). Indeed, assume that (3.3) has
no solution. Then b does not belong to the cone generated by the columns of A.
By Lemma 1.5.2, there exists a hyperplane, having normal y P Rm, separating
tbu and this cone spanned by column vectors. So we have the inequalitiesATy ě
0 and yTb ă 0. This shows that y is feasible for (3.4). We just proved Farkas’
lemma for linear programming.

Theorem 3.6.1. (Farkas’ lemma for linear programming)
Given A P Rmˆn and b P Rm, exactly one of the following two alternatives

holds:

(1) Either the linear system Ax “ b, x ě 0 has a solution,

(2) Or the linear system ATy ě 0, bTy ă 0 has a solution.

For general conic programming, it is not true that infeasibility of (3.3) im-
plies feasibility of (3.4). As an illustration, consider the following semidefinite
systems:

xE11, Xy “ 0, xE12, Xy “ 1, X ľ 0, (3.5)

y1E11 ` y2E12 ľ 0, y2 ă 0, (3.6)

which are both infeasible.
However, one can formulate the following analogous, although weaker, the-

orem of alternatives, which needs some strict feasibility condition.

Theorem 3.6.2. Let K Ď Rn be a full dimensional, pointed, closed and convex
cone, let A P Rmˆn with rows aT1 , . . . , a

T
m and let b P Rm. Assume that the system

Ax “ b has a solution x0. Then exactly one of the following two alternatives holds:

(1) Either there exists x P intK such that Ax “ b.

(2) Or there exists y P Rm such that
řm
j“1 yjaj “ ATy P K˚zt0u, bTy ď 0.
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Proof. Again one direction is clear: If x P intK satisfies Ax “ b and y satisfies
ATy P K˚zt0u and bTy ď 0, then we get 0 ď pATyqTx “ yTAx “ yTb ď 0,
implying pATyqTx “ 0. This gives a contradiction since x P intK and ATy P
K˚zt0u (recall Lemma 3.2.4).

Assume now that the system in (1) has no solution. By assumption, the
affine space L “ tx : Ax “ bu is not empty, as x0 P L. Define the linear space

L “ tx : Ax “ 0u “ tx : aT1x “ 0, . . . , aTmx “ 0u

so that L “ L` x0. By assumption, LX intK “ H. By the separation theorem
(Theorem 1.3.8), there exists a hyperplane separating L and intK: There exists
a non-zero vector c P Rn and a scalar β such that

@x P K : cTx ě β and @x P L : cTx ď β.

Then β ď 0 (as 0 P K) and c P K˚ (as cTtx ě β for all x P K and t ą 0,
which implies that cTx ě 0). Moreover, for any x P L and any scalar t P R,
we have that cTptx ` x0q ď β which implies cTx “ 0. Therefore c P LK and
thus c is a linear combination of the aj ’s, say c “

řm
j“1 yjaj “ ATy for some

y “ pyjq P Rm. So we already have that ATy P K˚zt0u. Finally, yTb “ yTAx0 “
cTx0 ď β ď 0 (as x0 P L).

Consider again the above example: the system (3.5) is not strictly feasible,
and indeed there is a feasible solution to (3.6) after replacing the condition
y2 ă 0 by y2 ď 0 and adding the condition y1E11 ` y2E12 ‰ 0.

We now further investigate the situation when the primal system (3.3) is
infeasible. According to the above discussion, there are two possibilities:

1. Either (3.4) is feasible: There exists y P Rm such that
řm
j“1 yjaj P K

˚ and
bTy ă 0. Then we say that the system (3.3) is strongly infeasible.

2. Or (3.4) is not feasible.

As we will show below, this second alternative corresponds to the case when
the system (3.3) is “weakly infeasible”, which roughly means that it is infeasible
but any small perturbation of it becomes feasible. Here is the exact definition.

Definition 3.6.3. The system Ax “ b, x P K is weakly infeasible if it is infeasible
and, for any ε ą 0, there exists x P K such that }Ax´ b} ď ε.

For instance, the system (3.5) is weakly infeasible: For any ε ą 0 the per-
turbed system xE11, Xy “ ε, xE12, Xy “ 1, X ľ 0 is feasible.

Theorem 3.6.4. Consider the two systems (3.3) and (3.4). Assume that the sys-
tem (3.3) is infeasible. Then exactly one of the following two alternatives holds.

(1) Either (3.3) is strongly infeasible: There exists y P Rm such that bTy ă 0
and

řm
j“1 yjaj P K

˚.
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(2) Or (3.3) is weakly infeasible: For every ε ą 0 there exists x P K satisfying
}Ax´ b} ď ε.

Proof. Assume that (3.3) is not strongly infeasible. Then the two convex sets
ty : ATy P K˚u and ty : bTy ă 0u are disjoint. By the separation theorem
(Theorem 1.3.8) there exists a non-zero vector c P Rm such that

inftcTy : ATy P K˚u ě suptcTy : bTy ă 0u.

As 0 P K˚ the infimum is at most 0. Hence, bTy ă 0 implies cTy ď 0. This
implies that c “ λb for some positive λ and, up to rescaling, we can assume that
c “ b. Therefore,

m
ÿ

j“1

ajyj P K
˚ ùñ bTy ě 0. (3.7)

We show that (3.3) is weakly infeasible. For this consider the following pro-
gram, where we have two new variables z, z1 P Rm:

p˚ “ inf
xPRn,z,z1PRm

teTz ` eTz1 : Ax` z ´ z1 “ b, x P K, z, z1 P Rmě0u, (3.8)

where e “ p1, . . . , 1qT is the all-ones vector. It suffices now to show that the
infimum of (3.8) is equal to 0, since this implies directly that (3.3) is weakly
infeasible. For this consider the dual program of (3.8), which can be written as
(check it)

d˚ “ sup
yPRm

tbTy : ´ATy P K˚, ´e ď y ď eu. (3.9)

Clearly the primal (3.8) is strictly feasible and d˚ ě 0 (since y “ 0 is feasible).
Moreover, d˚ ď 0 by (3.7). Hence d˚ “ 0 and thus p˚ “ d˚ “ 0 since there is
no duality gap (applying Theorem 3.4.1).

Of course the analogous result holds for the dual conic program (which
follows using symmetry between primal/dual programs).

Theorem 3.6.5. Assume that the system

m
ÿ

j“1

yjaj ´ c P K
˚ (3.10)

is infeasible. Then exactly one of the following two alternatives holds.

(1) Either (3.10) is strongly infeasible: There exists x P K such that Ax “ 0 and
cTx ą 0.

(2) Or (3.10) is weakly infeasible: For every ε ą 0 there exist y P Rm and
z P K˚ such that }p

řm
j“1 yjaj ´ cq ´ z} ď ε.
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3.7 More on the difference between linear and conic
programming

We have already seen above several differences between linear programming
and semidefinite programming: there might be a duality gap between the pri-
mal and dual programs and the supremum/infimum might not be attained even
though they are finite. We point out some more differences regarding rationality
and bit size of optimal solutions.

In the classical bit (Turing machine) model of computation an integer num-
ber p is encoded in binary notation, so that its bit size is log p` 1 (logarithm in
base 2). Rational numbers are encoded as two integer numbers and the bit size
of a vector or a matrix is the sum of the bit sizes of its entries.

Consider a linear program

maxtcTx : Ax “ b, x ě 0u (3.11)

where the dataA, b, c is rational-valued. From the point of view of computability
this is a natural assumption and it would be desirable to have an optimal solu-
tion which is also rational-valued. A fundamental result in linear programming
asserts that this is indeed the case: If program (3.11) has an optimal solution,
then it has a rational optimal solution x P Qn, whose bit size is polynomially
bounded in terms of the bit sizes of A, b, c.

On the other hand it is easy to construct instances of semidefinite program-
ming where the data are rational valued, yet there is no rational optimal solu-
tion. For instance, the following program

max

"

x :

ˆ

1 x
x 2

˙

ľ 0

*

attains its maximum at x “ ˘
?

2.

Consider now the semidefinite program, with variables x1, . . . , xn,

inf

"

xn :

ˆ

1 2
2 x1

˙

ľ 0,

ˆ

1 xi´1

xi´1 xi

˙

ľ 0 for i “ 2, . . . , n

*

.

Then any feasible solution satisfies xn ě 22
n

. Hence the bit-size of an optimal
solution is exponential in n, thus exponential in terms of the bit-size of the data.

3.8 Further reading

Conic programs, especially linear programs, conic quadratic programs, and
semidefinite programs are the central topic in the text book of Ben-Tal and Ne-
mirovski [3]. There also many interesting engineering applications (synthesis
of filters and antennas, truss topology design, robust optimization, optimal con-
trol, stability analysis and synthesis, design of chips) are covered. This book
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largely overlaps with Nemirovski’s lecture notes [5] which are available online.
A nutshell version of these lecture notes is Nemirovski’s plenary talk “Advances
in convex optimization: conic programming” at the International Congress of
Mathematicians in Madrid 2006 for which a paper and a video is available on-
line: [6]. It is astonishing how much material Nemirovski covers in only 60
minutes.

A second excellent text book on convex optimization is the book by Boyd
and Vandenberghe [2] (available online). Here the treated applications are: ap-
proximation and fitting, statistical estimation, and geometric problems. Videos
of Boyd’s course held at Stanford can also be found there.

The duality theory for linear programming which does not involve duality
gaps is explained in every book on linear programming. For example, Schrijver
[7, Chapter 7] is a good source.

3.9 Historical remarks

The history of conic programming is difficult to trace. Only recently researchers
recognized that they give a unifying framework for convex optimization.

In 1956, Duffin in a short paper “Infinite programs” [3] introduced conic pro-
grams. His approach even works in infinite dimensions and he focused on these
cases. However, the real beginning of conic programming seems to be 1993
when the book “Interior-Point Polynomial Algorithms in Convex Optimization”
by Yurii Nesterov and Arkadi Nemirovski was published. There they described
for the first time a unified theory of polynomial-time interior point methods for
convex optimization problems based on their conic formulations. Concerning
the history of conic programs they write:

Duality for convex program involving “non-negativity constraints” de-
fined by a general-type convex cone in a Banach space is a relatively
old (and, possibly, slightly forgotten by the mathematical programming
community) part of convex analysis (see, e.g. [ET76]). The correspond-
ing general results, as applied to the case of conic problems (i.e., finite-
dimensional problems with general-type non-negativity constraints and
affine functional constraints), form the contents of §3.2. To our knowl-
edge, in convex analysis, there was no special interest to conic problems,
and consequently to the remarkable symmetric form of the aforemen-
tioned duality in this particular case. The only previous result in spirit
of this duality known to us it the dual characterization of the Lovasz
capacity number θpΓq of a graph (see [Lo79]).

3.10 Exercises

3.1 Let K Ď Rn be a cone and let K˚ be its dual cone.

(a) Show that K˚ is a closed convex cone.
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(b) If K is pointed, closed, convex and full-dimensional, show that the
same holds for K˚.

3.2 Let K be a closed convex full dimensional cone. Show that

x P intK ðñ yTx ą 0 @y P K˚zt0u.

3.3 (a) For the Lorentz cone, show that pLn`1q˚ “ Ln`1.

(b) Determine the dual cone of the cone of copositive matrices.

3.4 Consider the following location problem: We are given N locations in the
plane x1, . . . , xN P R2. Find a point y P R2 which minimizes the sum of
the distances to the N locations:

min
yPR2

N
ÿ

i“1

dpxi, yq.

(a) Formulate this problem as a conic program using the cone

L2`1 ˆ L2`1 ˆ ¨ ¨ ¨ ˆ L2`1.

(b) Determine its dual.

(c) Is there a duality gap?
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CHAPTER 4

INTERIOR POINT METHODS

In this lecture we consider the problem of solving a conic program numerically.
First, we recall the situation. LetK Ď Rn be a pointed, closed, convex cone with
non-empty interior. Given are c P Rn, a1, . . . , am P Rn, and b1, . . . , bm P R. The
primal conic program in standard form is the following maximization problem:

suptcTx : x P K, aT1x “ b1, . . . , a
T
mx “ bmu.

Since the beginning of the 1990’s the theory of efficient interior point meth-
ods was developed which basically says that if the cone K is “nice” (this can be
made mathematically precise: a sufficient condition is the existence of a self-
concordant barrier function which is computable in polynomial time; for the
details we refer to the literature), then there exists a polynomial time algorithm
which solves the conic program. Solving in polynomial time means that one can
in polynomially many steps approximate an optimal solution within any desired
precision where the precision is part of the input.

Here we only sketch the rough idea of interior point methods. The idea is to
provide only some some background knowledge without giving many details.
[This is just enough to implement a program which solves a small conic pro-
gram with a few variables for instance.] We will ignore many, many technical
details: How to guarantee a polynomial time running time? How to implement
a method which is numerically stable? Going through all the details (very fas-
cinating applied mathematics!) fills a complete advanced course, namely the
LNMB course “Interior point methods”.

For the details we refer to the comprehensive books of Nesterov and Ne-
mirovski [5] and of Boyd and Vandenberghe [2] and to the literature given in
Section 4.5.

First we present the classical barrier method. The principal ideas developed
there form the backbone of the modern polynomial time interior point methods.
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Then, we look at the most important properties of the central path of the primal-
dual pair of a semidefinite program.

4.1 Classical barrier methods

To explain the basic idea of interior point method we need two ingredients:
Newton’s method for equality constrained minimization and barrier functions.

4.1.1 Newton’s method

We start by recalling Newton’s method for unconstrained minimization. New-
ton’s method is an iterative method for finding roots of equations in one or more
dimensions. It is one of the most important algorithms in numerical analysis and
scientific computing. In convex optimization it can be used to find minimizers
of convex differentiable functions. The Newton method is also the fundamental
algorithm for the design of fast interior point algorithms.

Unconstrained minimization

Newton’s method is quite general. It is natural to define it in the setting of Ba-
nach spaces. Chapter XVIII of the book “Functional analysis in normed spaces”
by L.V. Kantorovich and G.P. Akilov is a classical resource for this which also
includes the first thorough analysis of the convergence behavior of Newton’s
method. Nowadays every comprehensive book on numerical analysis contains
a chapter stating explicit conditions for the convergence speed of Newton’s
method.

To keep it as simple and concrete as possible we define it here only for Rn.
Let Ω be an open set of Rn and let f : Ω Ñ R be a strictly convex, differentiable
function. The Taylor approximation of the function f around the point a is

fpa` xq “

ˆ

fpaq `∇fpaqTx` 1

2
xT∇2fpaqx

˙

` h.o.t.,

where ∇fpaq P Rn is the gradient of f at a with entries

∇fpaq “
ˆ

B

Bx1
fpaq, . . . ,

B

Bxn
fpaq

˙T

,

and where ∇2fpaq P Rnˆn is the Hessian matrix of f at a with entries

r∇2fpaqsij “
B2

BxiBxj
fpaq,

and where h.o.t. stands for “higher order terms”. Since the function is strictly
convex, the Hessian matrix is positive definite, ∇2fpaq P Sną0. By q : Rn Ñ R
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we denote the quadratic function which we get by truncating the above Taylor
approximation

qpxq “ fpaq `∇fpaqTx` 1

2
xT∇2fpaqx.

This is a strictly convex quadratic function and so it has a unique minimizer
x˚ P Rn which can be determined by setting the gradient of q to zero:

0 “ ∇qpx˚q

“

ˆ

B

Bx1
qpx˚q, . . . ,

B

Bxn
qpx˚q

˙T

“ ∇fpaq `∇2fpaqx˚.

Hence, we find the unique minimizer x˚ of q by solving a system of linear
equations

x˚ “ ´
`

∇2fpaq
˘´1∇fpaq.

Now Newton’s method is based on approximating the function f locally at a
starting point a by the quadratic function q, finding the minimizer (the Newton
direction) x˚ of the quadratic function, updating the starting point to a`x˚ and
repeating this until the desired accuracy is reached:

repeat

x˚ Ð ´
`

∇2fpaq
˘´1∇fpaq

aÐ a` x˚

until a stopping criterion is fulfilled.

The following fact about Newton’s method are important.
First the good news: If the starting point is close to the minimizer, then

the Newton method converges quadratically (for instance the series n ÞÑ 1
102n

converges quadratically to its limit 0), i.e. in every step the number of accurate
digits is multiplied by a constant number.

However, if the starting point is not close to the minimizer or if the function
is close to being not strictly convex, then Newton’s method does not converge
well. Consider for example the convex but not strictly convex univariate func-
tion fpzq “ 1{4z4 ´ z. Then f 1pzq “ z3 ´ 1 and f2pzq “ 3z2. So if one starts
the Newton iteration at a “ 0, one immediately is in trouble: division by zero.
If one starts at a “ ´ 3

a

1{2, then one can perform a Newton step and one is
in trouble again, etc. Figure 4.1.1 shows the fractal structure which is behind
Newton’s method for solving the equation f 1pzq “ z3 ´ 1 “ 0 in the complex
number plane. One has similar figures for other functions.

This pure Newton method is an idealization and sometimes it cannot be
performed at all because it can very well happen, that a ` x˚ R Ω. One can
circumvent these problems by replacing the Newton step a Ð a ` x˚ by a
damped Newton step a Ð a ` θx˚ with some step size θ ą 0 which is chosen
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Figure 4.1: Newton fractal of z3 ´ 1 “ 0. The three colors indicate the region
of attraction for the three roots. The shade of the color indicates the number of
steps needed to come close to the corresponding root. (Source: wikipedia).

to ensure e.g. that a ` θx˚ P Ω. Choosing the right θ using a line search can
be done in many ways. A popular choice is backtracking line search using the
Armijo-Goldstein condition.

Let us discuss stopping criteria a bit: One possible stopping criterion is for
example if the the norm of the gradient is small, i.e. for some predefined positive
ε we do the iteration until

}∇fpaq}2 ď ε. (4.1)

We now derive a stopping criterion in the case when the function f is not only
strictly convex but also strongly convex. This means that there is a positive
constant m so that the smallest eigenvalue of all Hessian matrices of f is at
least m:

@a P Ω : λminp∇2fpaqq ě m.

By the Lagrange form of the Taylor expansion we have

@a, a` x P Ω Dξ P ra, a` xs : fpa` xq “ fpaq `∇fpaqTx` 1

2
xT∇2fpξqx

and the strong convexity of f together with the variational characterization of
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the the smallest eigenvalue, which says that

λminp∇2fpξqq “ min
xPRnzt0u

xT∇2fpξqx

}x}2
,

gives

fpa` xq ě fpaq `∇fpaqTx` 1

2
m}x}2.

Consider the function of the right hand side

x ÞÑ fpaq `∇fpaqTx` 1

2
m}x}2.

It is a convex quadratic function with gradient

x ÞÑ ∇fpaq `mx,

hence its minimum is attained at

x˚ “ ´
1

m
∇fpaq.

So we have for the minimum µ˚ of f

µ˚ ě fpaq `∇fpaqTp´ 1

m
∇fpaqq ` 1

2
m

›

›

›

›

1

m
∇fpaq

›

›

›

›

2

“ fpaq ´
1

2m
}∇fpaq}2,

which says that whenever the stopping criterion (4.1) is fulfilled we know that
fpaq and µ˚ are at most ε{p2mq apart. Of course, the drawback of this consid-
eration is that one has to know or estimate the constant m in advance which is
often not easy. Nevertheless the consideration at least shows that the stopping
criterion is sensible.

Equality-constrained minimization

In the next step we show how to modify Newton’s method if we want to find
the minimum of a strictly convex, differentiable function f : Ω Ñ R in an affine
subspace given by the equations

aT1x “ b1, a
T
2x “ b2, . . . , a

T
mx “ bm,

where a1, . . . , am P Rn and b1, . . . , bm P R.
We define the Lagrange function

Lpx, λ1, . . . , λmq “ fpxq `
m
ÿ

i“1

λia
T
i x,
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and the method of Lagrange multipliers says that if a point y˚ lies in the affine
space

aT1 y
˚ “ b1, . . . , a

T
my

˚ “ bm,

then it is the unique minimizer of f if and only if

∇Lpy˚q “ 0.

To find this point y˚ we approximate the function f using the Taylor approxi-
mation around the point a by

qpxq “ fpaq `∇fpaqTx` 1

2
xT∇2fpaqx

and solve the linear system (in the variables x˚ and λ1, . . . , λm)

aT1 pa` x
˚q “ b1, . . . , a

T
mpa` x

˚q “ bm

∇fpaq `∇2fpaqx˚ `
m
ÿ

i“1

λiai “ 0

to find the Newton direction x˚. Then we can do the same Newton iterations
using damped Newton steps as in the case of unconstrained optimization.

4.1.2 Barrier method

In this section it will be more convenient to consider the following minimiza-
tion problem instead of the original maximization problem (which is completely
equivalent to the maximization problem by switching the sign of the vector c)

inftcTx : x P K, aT1x “ b1, . . . , a
T
mx “ bmu.

Using Newton’s method for equality constrained minimization we know how to
deal with the minimization problem

inftcTx : aT1x “ b1, . . . , a
T
mx “ bmu.

Now we have to answer the question: How do we deal with the constraint
x P K? The idea will be to start with a point x lying in the interior of K
and lying in the affine subspace defined by the m equations and then apply
Newton’s method for equality constrained minimization always assuring that
the next point will lie in the interior of K. For this we add to the objective
function cTx a barrier function φpxq so that we want to minimize

cTx` φpxq (4.2)

instead of cTx. The ideal barrier function would be

φpxq “

"

0, if x P K,
8, otherwise.
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When we minimize (4.2) we will never consider points not lying in K. This
“almost” works, but Newton’s method is not applicable. The solution is to re-
place the ideal barrier function by a barrier function φ which is a function that
is strictly convex and has the property that

xÑ BK ùñ φpxq Ñ 8.

Then, Newton’s method becomes applicable.

Example 4.1.1. Examples for barrier functions:

• K “ Rně0: φpxq “ ´ lnpx1 ¨ ¨ ¨xnq.

• K “ Ln`1: φpx, tq “ ´ lnpt2 ´ x21 ´ ¨ ¨ ¨ ´ x
2
nq.

• K “ Sně0: φpXq “ ´ ln detX.

We have ∇φpXq “ ´X´1 and p∇2φpXqqH “ X´1HX´1.

So for a positive parameter t ą 0 we can solve

infttpcTxq ` φpxq : aT1x “ b1, . . . , a
T
mx “ bmu.

using Newton’s method. The optimal solution xptq of this minimization problem
is called the central path. One can show that if t tends to infinity then xptq
tends to an optimal solution of the original problem. In the next section we
show this in the case of semidefinite programming. Solving xptq for large t
is computationally expensive since Newton’s method does not converge fast
enough when we start from a point which is not close to the optimal solution.
Now the idea of the barrier method is to find xptq’s successively for increasing
values of t. Then one can use the old xptq as a starting point for the next Newton
method and making use of it’s quadratic convergence.

In summary the barrier method has the following scheme:

input:

objective function c, constraints a1, . . . , am, b1, . . . , bm,

interior point x P intK with aT1x “ b1, . . . , a
T
mx “ bm,

parameter t, parameter µ (for example µ “ 10)

repeat

compute xptq by Newton’s method starting from x

xÐ xptq

tÐ µt

until a stopping criterion is fulfilled.

4.1.3 Finding a starting point

We are still left with the problem of finding a first interior point xwhich we need
as the input for the previous algorithm. In the case of semidefinite programs the
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following approach works: We simply solve another semidefinite program (this
is called Phase 1 of the algorithm) for which every symmetric matrix which lies
in the affine subspace provides an interior point

inftλ : X ` λI P Sně0, xA1, Xy “ b1, . . . , xAm, Xy “ bmu,

where I denotes the identity matrix. For this problem it is easy to find a strictly
feasible solution: One computes a matrix Y in the affine subspace xY,Ajy “ bj
and determines its smallest eigenvalue λminpY q. Hence, the matrix X “ Y `
pε ´ λminpY qq is a strictly feasible solution for every ε ą 0. Then we can start
to minimize λ. If we find a matrix X is so that λ is negative, it can be used as
a starting point for Phase 2, the original problem. If no such negative λ exists,
the original problem is infeasible.

4.2 Central path of a semidefinite program

In this section we want to study the central path of a semidefinite program in
more detail. These properties give the first ideas for developing a polynomial
time interior point algorithm. They also show that the barrier method indeed
converges to the right values when t tends to infinity and they even give the
rate of convergence.

In the following we consider a primal-dual pair of a semidefinite program
where both the primal and the dual are strictly feasible. Then by strong duality
in Theorem 3.4.1 the primal attains the supremum, the dual attains the infimum
and there is no duality gap. Let us recall the geometric formulation of the
primal-dual pair of a semidefinite program

maxtxC,Xy : X ľ 0, xA1, Xy “ b1, . . . , xAm, Xy “ bmu

“min

#

m
ÿ

i“1

yibi : y1, . . . , ym P R,
m
ÿ

i“1

yiAi ´ C ľ 0

+

.

which is (see Section 3.2.3)

maxtxC,Xy : X ľ 0, X P X0 ` Lu

“xX0, Cy `mintxX0, Y y : Y ľ 0, Y P ´C ` LKu,

with linear subspace

L “ tX P Sn : xA1, Xy “ 0, . . . , xAm, Xy “ 0u,

and matrix X0 P Sn with xAi, X0y “ bi for i “ 1, . . . ,m.
Let t ą 0 be a positive parameter. Consider the strictly convex functions

PtpXq “ ´txC,Xy ´ ln detX,

DtpY q “ txX0, Y y ´ ln detY.
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Because the original primal-dual pair is strictly feasible one can show (with
some effort) that Pt attains a unique minimizer Xptq on the affine subspaces
X0 ` L which is strictly feasible for the primal, and that Dt attains a unique
minimizer Y ptq on ´C ` LK which is strictly feasible for the dual. Hence, this
defines the primal-dual central path pXptq, Y ptqq.

This primal-dual central path has many nice properties. Some of them are
given in the following theorem.

Theorem 4.2.1. For every t ą 0 we have the augmented optimality condition

XptqY ptq “
1

t
I. (4.3)

Furthermore, the primal dual central path measures the duality gap between the
solutions Xptq and Y ptq:

xX0, Cy ` xX0, Y ptqy ´ xC,Xptqy “
n

t
.

Proof. Using Lagrangian multipliers we see (write down the condition explic-
itly) that a matrix X˚ is the unique minimizer of the strictly convex function Pt
if and only if

X˚ ą 0, X˚ P X0 ` L, and ´ tC ´ pX˚q´1 P LK.

In the same way, Y ˚ is the unique minimizer of Dt if and only if

Y ˚ ą 0, Y ˚ P ´C ` LK, and tX0 ´ pY
˚q´1 P L.

Hence, 1
tXptq

´1 is a strictly feasible solution of the dual, and 1
tY ptq

´1 is a
strictly feasible solution of the primal. The gradient of Dt at 1

tXptq
´1 equals

∇Dt

ˆ

1

t
Xptq´1

˙

“ tX0 ´

ˆ

1

t
Xptq´1

˙´1

“ tX0 ´ tXptq P L,

Hence, by the characterization of the unique minimizer of Pt we have Y ptq “
1
tXptq

´1. In the same way one shows symmetrically that Xptq “ 1
tY ptq

´1. This
implies the first statement.

The second statement follows easily from the first: Let y1, . . . , ym be so that
řm
i“1 yibi “ xX0, Cy ` xX0, Y ptqy, then

xX0, Cy ` xX0, Y ptqy ´ xC,Xptqy

“

m
ÿ

i“1

yibi ´ xC,Xptqy

“

m
ÿ

i“1

yixAi, Xptqy ´ xC,Xptqy

“ xY ptq, Xptqy

“ Tr
ˆ

1

t
I

˙

“
n

t
.
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Compare (4.3) to the optimality condition in Theorem 3.4.1. In particular, it
shows that if tÑ8, then Xptq converges to a primal optimal solution and Y ptq
converges to a dual optimal solution. Another important point for the analysis
of interior point algorithms is that the theorem gives the rate of convergence
which is proportional to 1

t .

4.3 Software

One very good thing about conic programs such as linear programs, convex
quadratic programs, and semidefinite programs is that they can be solved effi-
ciently in theory and in practice. That they can be solved efficiently in theory
means that they can be solved in polynomial time to any given precision. That
they can be solved efficiently in practice means that there are software packages
available which can be used to solve these problems up to some decent sizes.

ILOG CPLEX is known to be a high-performance mathematical programming
solver for linear programming, mixed integer programming and quadratic pro-
gramming. It can be used to solve very large, real-world optimization problems.
ILOG CPLEX contains interior point methods for linear programming as well as
for convex quadratic programming (but no semidefinite programming). It is
free for academic use.

http://www.ibm.com/software/integration/optimization/cplex-optimizer/

Semidefinite program solvers are currently slightly less powerful but at least
they can solve problems of moderate size involving matrices having size 1000ˆ
1000.

One semidefinite programming solver which is easy to use is CVXOPT by
Joachim Dahl and Lieven Vandenberghe:

http://abel.ee.ucla.edu/cvxopt/userguide/index.html

It is also part of sage. Sage is a free open-source mathematics software
system licensed under the GPL. It combines the power of many existing open-
source packages into a common python-based interface. In particular it is not
difficult to install.

http://www.sagemath.org/

Many more software packages for semidefinite programs can be found for
example on the NEOS server for optimization:

http://neos.mcs.anl.gov/neos/solvers/sdp:csdp/SPARSE_SDPA.html

Here one can also submit the optimization problem online. This has the
advantage that one does not have to install the software locally. The input
format is explained here:

http://plato.asu.edu/ftp/sdpa_format.txt
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Essentially one has to specify the matrix sizes and the nonzero entries of the
matrices C, Ai and the values of bi. One important hint! Note that the role of
the primal and dual are “switched” in the documentation.

4.4 Historical remarks

Looking at the milestones of the history of mathematical programming shows
that interior point methods for conic programs can be seen as the result of the
development of efficient, polynomial-time algorithms.

1947 Dantzig invented the simplex algorithm for linear programming. The sim-
plex algorithm works extremely good in practice, but until today nobody
really understands why (although there are meanwhile good theoretical
indications). It is fair to say that the simplex algorithm is one of the most
important algorithms invented in the last century.

1972 Klee and Minty found a linear program for which the simplex algorithm
is extremely slow (when one uses Dantzig’s most-negative-entry pivoting
rule): It uses exponentially many steps.

1979 Khachian invented the ellipsoid method for linear programming which
runs in polynomial time. It is a great theoretical algorithm but until today
it did not have any practical impact.

1984 Karmakar showed that one can use interior-point methods for designing
a polynomial-time algorithm for linear programming. Nowadays, interior-
point methods can compete with the simplex algorithm.

1994 Nesterov and Nemirovski generalized Karmarkar’s result to conic pro-
gramming with the use of self-concordant barrier functions.

since 1994 Every day conic programming becomes more useful (in theory and
practice).

It is fair to say that during the last twenty years there has been a revolution in
mathematical optimization based on the development of efficient interior point
algorithms for convex optimization problems.

Margaret H. Wright begins her survey “The interior-point revolution in opti-
mization: History, recent developments, and lasting consequences” [10] with:

REVOLUTION:

(i) a sudden, radical, or complete change;

(ii) a fundamental change in political organization, especially the over-
throw or renunciation of one government or ruler and the substitution
of another.

It can be asserted with a straight face that the field of continuous op-
timization has undergone a revolution since 1984 in the sense of the
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first definition and that the second definition applies in a philosophi-
cal sense: Because the interior-point presence in optimization today is
ubiquitous, it is easy to lose sight of the magnitude and depth of the
shifts that have occurred during the past twenty years. Building on the
implicit political metaphor of our title, successful revolutions eventually
become the status quo.

The interior-point revolution, like many other revolutions, includes old
ideas that are rediscovered or seen in a different light, along with gen-
uinely new ideas. The stimulating interplay of old and new contin-
ues to lead to increased understanding as well as an ever-larger set of
techniques for an ever-larger array of problems, familiar and heretofore
unexplored. Because of the vast size of the interior-point literature, it
would be impractical to cite even a moderate fraction of the relevant ref-
erences, but more complete treatments are mentioned throughout. The
author regrets the impossibility of citing all important work individually.

4.5 Further reading

There are quite some books on interior point methods. The classical barrier
method is developed in the book [3] by Fiacco and McCormick. The standard
reference is the book [5] by Nesterov and Nemirovski which is not completely
easy to read. Boyd and Vandenberghe [2] and Ye [11] as well as [3, Chapter 6]
are very helpful. Then, the books [6] by Renegar and [7] by Roos, Terlaky, Vial
consider interior point methods for linear programs. There are some surveys
available: Nemirovski, Todd [4], Vandenberghe, Boyd [9], Todd [8].
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Part II

Applications in combinatorics

75



CHAPTER 5

0{1 OPTIMIZATION

Linear optimization problems in which the variables only can attain the values
0 or 1 are called 0{1 linear optimization problems. A 0{1 linear optimization
problem in standard form is of the form

max cTx

x P t0, 1un,

Ax ď b,

(5.1)

with A P Rmˆn, b P Rm, c P Rn.
Many problems in combinatorial optimization can be written as 0{1 linear

optimization problems. One example is finding the independence number αpGq
of a graph G “ pV,Eq:

αpGq “ max
ÿ

vPV

xv

x P t0, 1uV ,

xu ` xv ď 1 for all tu, vu P E.

Another example is finding the domination number of a graph G. A dominating
set of the graph G is a subset U Ď V of its vertices so that every vertex in V is
connected to at least one vertex in U . The cardinality of a smallest dominating
set is the domination number γpGq:

γpGq “ min
ÿ

vPV

xv

x P t0, 1uV ,
ÿ

u:tu,vuPE

xu ě 1 for all v P V .
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These two problems, like many other problems in combinatorial optimiza-
tion, are difficult to solve computationally. They are NP-hard. So we do not
expect that there is an efficient algorithm solving them which runs in polyno-
mial time.

One possibility to deal with NP-hard optimization problems is to relax them.
The set of feasible solutions

F “ tx P Rn : x P t0, 1un, Ax ď bu

of a 0{1 linear optimization problem is a subset of the vertices of the cube r0, 1sn.
We denote the convex hull of all feasible solutions, which is a polytope, by
P “ conv F . So solving (5.1) is equivalent to solving maxtcTx : x P P u be-
cause the maximum of the linear function cTx is attained at an extreme point
of the polytope P . By relaxing (5.1) we mean that we replace P by a larger set
P 1, not necessarily a polytope, which contains P and for which we can solve
maxtcTx : x P P 1u efficiently. This maximum value provides an upper bound
for the original maximization problem (5.1).

In Section 5.1 we explain a simple method how to construct such a set P 1

using semidefinite optimization. Here the theta number and the semidefinite
relaxation of max cut of a graph will be important examples.

In Section 5.2 we will go much further. We will consider 0{1 polynomial op-
timization problems which are much more general than 0{1 linear optimization
problems. We explain a hierarchy of stronger and stronger relaxations which
even converges to the original problem. This method is one of the strongest
general purpose techniques to attack difficult combinatorial optimization prob-
lems.

5.1 Relaxations using quadratic optimization

Another standard class of optimization problems are quadratic optimization
problems. They are of the form

max xTQ0x` b
T
0x` α0

x P Rn,
xTQjx` b

T
j x` αj “ 0 for all j P rms,

(5.2)

where Qj P Sn are symmetric matrices, bj P Rn vectors, and αj P Rn scalars.
It is easy to see that one can transform 0{1 linear optimization problems into

quadratic optimization problems. The constraint

x2i ´ xi “ 0

forces feasible solutions to be 0{1-valued. For inequality constraints aTj x ď bj
we introduce a slack variable sj and the quadratic equality constraint

s2j ` a
T
j x´ bj “ 0.
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Example 5.1.1. The independence number can be formulated as

αpGq “ max
ÿ

vPV

xv

x P RV , s P RE ,
x2v ´ xv “ 0 for all v P V ,

s2e ` xu ` xv ´ 1 “ 0 for all e “ tu, vu P E.

Sometimes problems in combinatorial optimization also come naturally as quadratic
optimization problems. One example which we already saw is the max-cut problem

MAXCUTpGq “ max
ÿ

tu,vuPE

p1´ xuxvq{2

x P RV ,
x2v “ 1 for all v P V .

The ´1{ ` 1-constraint xv “ ˘1 is equivalent to the quadratic constraint x2v “ 1.
Also the independence number has a natural quadratic formulation

αpGq “ max
ÿ

vPV

x2v

x P RV ,
x2v ´ xv “ 0 for all v P V ,
xuxv “ 0 for all tu, vu P E.

Now we would like to relax the quadratic optimization problem by a semidef-
inite program. For this we rewrite quadratic expressions as trace inner products
of symmetric matrices with n` 1 rows and columns

xTQjx` b
T
j x` αj “

Bˆ

αj
1
2b

T
j

1
2bj Qj

˙

,

ˆ

1 xT

x xxT

˙F

.

Note that the optimization variable has the following special structure: The
matrix

Y “

ˆ

1 xT

x xxT

˙

is a semidefinite matrix of rank 1. In 0{1 linear programming, the constraint
x2i ´ xi “ 0 translates into Yi0 “ Yii. When we are dealing with ´1{ ` 1-valued
variables, the constraint x2i “ 1 translates into Yii “ 1.

One can get a semidefinite relaxation of the quadratic optimization problem
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(5.2) if one simply ignores that the optimization variable Y has rank 1

max

Bˆ

α0
1
2b

T
0

1
2b0 Q0

˙

, Y

F

Y P Sn`1
ě0 ,

Y00 “ 1,
Bˆ

αj
1
2b

T
j

1
2bj Qj

˙

, Y

F

“ 0 for all j P rms.

(5.3)

It is clear, as we now longer impose rank-1 constraint of the solution, that the
optimal values of this maximization problem (5.3) is an upper bound of the
original quadratic optimization problem (5.2). The set of feasible solutions of
(5.2)

tx P Rn : xTQjx` b
T
j x` αj “ 0, j P rmsu

is contained in
"

pY11, . . . , Ynnq
T P Rn : Y P Sn`1

ě0 , Y00 “ 1,

Bˆ

αj
1
2b

T
j

1
2bj Qj

˙

, Y

F

“ 0, j P rms

*

.

Geometrically this means that we first lift the n-dimensional situation of the
quadratic optimization problem into a space of dimension

`

n`2
2

˘

´ 1 in which
the relaxed semidefinite optimization problem lives. The matrix Y has

`

n`2
2

˘

´1
variable entries. We associate with variable xi the variable Yi0 and with the
product xixj the variable Yij . In the higher dimensional space the quadratic
equalities translate into linear inequalities. Then we project the (convex) feasi-
ble region of semidefinite program back to n dimensions.

Dualizing (5.3) yields

min y0

y0, . . . , ym P R,

y0

ˆ

1 0
0 0

˙

`

m
ÿ

j“1

yj

ˆ

αj
1
2b

T
j

1
2bj Qj

˙

´

ˆ

α0
1
2b

T
0

1
2b0 Q0

˙

ľ 0.

By weak duality every feasible solution of the dual provides an upper bound of
the original quadratic optimization problem. Thus this provides a rather simple
way to prove upper bounds of the original problem. So we can certify the quality
of solutions by this.

Example 5.1.2. Let us apply this relaxation to the quadratic formulations of α
and MAXCUT. For the independence number we get

αpGq ď max
ÿ

vPV

Yvv

Y P SVYt0uě0 ,

Y00 “ 1,

Y0v “ Yvv for all v P V ,
Yuv “ 0 for all tu, vu P E.
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The matrix variable Y has one row/column more than the number of vertices of
the graph. This extra row/column is indexed by the index 0. In Exercise 5.1 you
will show that this semidefinite optimization problem is equivalent to the theta
number ϑpGq. For MAXCUT one gets that MAXCUTpGq is upper bounded by
the semidefinite optimization problem

max

C˜

|E| 0T

0 ´ 1
2

ř

tu,vuPE

Euv

¸

, Y

G

Y P SVYt0uě0 ,

Y00 “ 1,

Yvv “ 1 for all v P V .

(recall Euv “ 1
2 peue

T
v ` eve

T
uq). Here it is obvious that this optimization problem

is equivalent to the semidefinite relaxation sdp from Chapter 2.

5.2 A hierarchy of semidefinite programs

Now we consider 0{1 polynomial optimization problems where the constraints
are allowed to be polynomial inequalities rather than linear inequalities

max cTx

x P t0, 1un,

pjpxq ď bj for all j P rms.

with polynomials p1, . . . , pm P Rrx1, . . . , xns. An optimal solution of this 0{1
polynomial optimization problem is attained at a vertex of the polytope

P “ conv ptx P Rn : p1pxq ď b1, . . . , pmpxq ď bmu X t0, 1u
nq

The following standard form of a 0{1 polynomial optimization problems will
become handy

max cTx

x P t0, 1un,

pjpxq ě 0, for all j P rms.

(5.4)

The goal of the lecture is to construct a hierarchy of relaxations of P consist-
ing out of convex bodies which are projections of feasible regions of semidefinite
programs (known as spectrahedra) and which find the exact polytope P after at
most n steps:

K1 Ě K2 Ě K3 Ě . . . Ě Kn “ P.

One attractive feature of this construction will be that one can optimize a linear
function cTx over each step of the hierarchy Kt in polynomial time once t is a
fixed, which is independent of the input size.

We start by giving the construction of the last step in the hierarchy Kn. For
this we need some facts from combinatorics.
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5.2.1 Harmonic analysis on power sets

Let X be a finite set. For many applications this will be simply X “ rns “
t1, . . . , nu. By 2X we denote the set of all subsets of X, the power set of X. The
space

L2p2Xq “ tf : 2X Ñ Ru

of real-valued functions is a Euclidean space with inner product

pf, gq “
ÿ

AP2X

fpAqgpAq, with f, g P L2p2Xq.

If X “ rns then the space L2p2Xq is simply the vector space R2n and pf, gq
is the standard inner product between vectors, and fpti1, . . . , ijuq is the compo-
nent of the vector f with index ti1, . . . , iju.

We like to write L2p2Xq nevertheless because then resemblance with con-
cepts in harmonic (Fourier) analysis, like Fourier coefficients, convolutions,
functions of positive type, will become more pronounced.

Biorthogonal bases

Two explicit bases of L2p2Xq will play an important role for us.
The first one is defined as follows: For B P 2X we define χB P L2p2Xq by

χBpAq “

"

1 if A Ď B,
0 otherwise.

The fact that the function χB , withB P 2X , forms a basis of L2p2Xq can be easily
seen: If one considers the function χB as column vectors in R2X where we order
the elements of 2X by increasing cardinality, then the matrix pχBqBP2X is an up-
per triangular matrix in which all diagonal elements are not zero. Note that the
value χBpAq coincides with ξpA,Bq where ξ is the zeta-function of the Boolean
lattice 2X , see for instance Aigner [1, Chapter IV.1]. From the definition it is
immediate, but extremely important, that this basis is multiplicative:

χBpAYA
1q “ χBpAqχBpA

1q.

The second basis is the dual basis χ˚B of χB which is defined by the biorthog-
onality relation

pχB , χ
˚
B1q “

"

1 if B “ B1,
0 otherwise.

Although we will not need it here, one can write down the second basis χ˚B
explicitly using the Möbius function µ of the Boolean lattice 2X , namely

χ˚BpAq “ µpA,Bq “

"

p´1q|B|´|A| if A Ď B,
0 otherwise.
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Example 5.2.1. For the set X “ t1, 2, 3u the matrix with column vectors χB is

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

H 1 2 3 12 13 23 123

H 1 1 1 1 1 1 1 1
1 0 1 0 0 1 1 0 1
2 0 0 1 0 1 0 1 1
3 0 0 0 1 0 1 1 1
12 0 0 0 0 1 0 0 1
13 0 0 0 0 0 1 0 1
23 0 0 0 0 0 0 1 1
123 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and its inverse contains as row vectors χ˚B

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

H 1 2 3 12 13 23 123

H 1 ´1 ´1 ´1 1 1 1 ´1
1 0 1 0 0 ´1 ´1 0 1
2 0 0 1 0 ´1 0 ´1 1
3 0 0 0 1 0 ´1 ´1 1
12 0 0 0 0 1 0 0 ´1
13 0 0 0 0 0 1 0 ´1
23 0 0 0 0 0 0 1 ´1
123 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Every function f P L2p2Xq comes in this way with two basis expansions:

fpAq “
ÿ

BP2X

pfpBqχBpAq “
ÿ

BP2X

qfpBqχ˚BpAq,

where
pfpBq “ pf, χ˚Bq, and qfpBq “ pf, χBq.

Here again we use the notation pf to pronounce the similarity to har-
monic analysis. One can think as pf as the “Fourier coefficient” of f .
Classically Fourier coefficients of a function f P L2

pr0, 2πsq is given by
the expansion

fpxq “
8
ÿ

n“´8

pfpnqe2πinx

In our case the basis functions χB play the role of the exponential basis
functions and the multiplicativity

χBpAYA
1
q “ χBpAqχBpA

1
q

corresponds to
e2πipn`mqx “ e2πinxe2πimx.

Formally we are doing harmonic analysis on the semigroup p2X ,Yq.
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We have Plancherel’s identity

pf, gq “
ÿ

BP2X

pfpBqqgpBq “
ÿ

BP2X

qfpBqpgpBq.

For a subset A P 2X we define the shifted function fA P L2p2Xq by

fApA
1q “ fpAYA1q.

Then,
pfApBq “ pfpBqχBpAq

because

fApA
1q “ fpAYA1q “

ÿ

BP2X

pfpBqχBpAYA
1q “

ÿ

BP2X

pfpBqχBpAqχBpA
1q.

The convolution between two functions f, g P L2p2Xq is

pf ˚ gqpAq “ pf, gAq “
ÿ

BP2X

qfpBqpgpBqχBpAq,

and so
zf ˚ gpBq “ qfpBqpgpBq.

Note that the convolution is not commutative.

Functions of positive type

Definition 5.2.2. We say that a function f P L2p2Xq is of positive type if the
symmetric matrix Mf P S2

X

defined by

Mf pA,Bq “ fpAYBq

is positive semidefinite.

Because of the special structure of the matrix Mf , the entry Mf pA,Bq only
depends on the union A Y B, it is sometimes called the moment matrix of f .
The following theorem gives a characterization of functions of positive type.

A side remark: The theorem is in the spirit of Bochner’s theorem in har-
monic analysis which says that functions of positive type are the Fourier
transform of nonnegative measures.

Theorem 5.2.3. A function f P L2p2Xq is of positive type if and only if it is of the
form

fpAq “
ÿ

BP2X

pfpBqχBpAq, pfpBq ě 0.

In other words, the cone of all positive semidefinite moment matrices is a polyhedral
cone, even simplicial cone, with extreme rays

MBpA,A
1q “ χBpAYA

1q, B P 2X .
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Proof. One direction follows immediately from the multiplicativity of χB . For
the other direction suppose that f P L2p2Xq has the expansion

fpAq “
ÿ

BP2X

pfpBqχBpAq,

where pfpB1q ă 0 for some B1 P 2X . Then,
ÿ

A,A1P2X

Mf pAYA
1qχ˚B1pAqχ

˚
B1pA

1q “
ÿ

A,A1,BP2X

pfpBqχBpAYA
1qχ˚B1pAqχ

˚
B1pA

1q

“
ÿ

BP2X

pfpBq

˜

ÿ

AP2X

χBpAqχ
˚
B1pAq

¸2

“ pfpB1q

ă 0,

hence Mf is not positive semidefinite and f is not of positive type.

5.2.2 Lasserre’s hierarchy

Now we are ready to construct the hierarchy and prove that it converges.

Equivalent reformulation

Since we are dealing with 0{1 problems we can assume that the polynomials
p1, . . . , pm are square free, i.e. if one considers the polynomial pi as the univari-
ate polynomial in the variable xj then its degree is at most one.

We identify square free monomials

m “ xi1xi2 ¨ ¨ ¨xij P Rrx1, . . . , xns

with elements in L2p2Xq by

m “ eti1,i2,...,iju “
ÿ

A:AĚti1,i2,...,iju

χ˚A P L
2p2Xq,

where eti1,i2,...,iju denotes an element of the standard basis in L2pXq (so we
even work with a third basis of L2p2Xq here) and we extend this by linearity to
every square free polynomial.

Let a P t0, 1uX be a binary vector and let A P 2X be the corresponding
subset, i.e. we have ax “ 1 iff x P A. Warning: We will switch between 0{1
vectors and subsets without (another) warning.

Then we can evaluate a square free polynomial p by

ppaq “ pp, χAq “ qppAq,

since

pm,χAq “

"

1 if ti1, . . . , iju Ď A,
0 otherwise.
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Example 5.2.4. Given are the setX “ t1, 2, 3u and the polynomial ppx1, x2, x3q “
2x1 ` 3x1x2. Then

pp1, 1, 0q “ pp, χ12q “ p2pχ
˚
1 ` χ

˚
12 ` χ

˚
13 ` χ

˚
123q ` 3pχ˚12 ` χ

˚
123q, χ12q “ 5.

Theorem 5.2.5. Let

F “ tx P t0, 1un : p1pxq ě 0, . . . , pmpxq ě 0u

be the set of feasible solutions of the 0{1 polynomial optimization problem. Then a
function f P L2p2rnsq is of the form

fpAq “
ÿ

bPF

pfpBqχBpAq, with pfpBq ě 0

if and only if

a) f is of positive type,

b) pj ˚ f is of positive type for all j “ 1, . . . ,m.

The geometric content of this theorem is actually pretty easy: Every
feasible solution b P F which is a 0{1-vectors corresponds to a subset
B Ď t1, . . . , nu. Now we consider the cone 2rns which is spanned by all
feasible solutions, meaning it is spanned by basis vectors χB where B
corresponds to b P F . This is a polyhedral cone with |F | extreme rays
Rě0χB . Now the Theorem says that f P L2

p2rnsq is an element of this
polyhedral cone iff conditions a) and b) are fulfilled. The advantage
of these two conditions is that they have an equivalent formulation in
terms of semidefinite matrices, namely that the moment matrices Mf

and Mpj˚f are positive semidefinite.

Proof. We have
ppj ˚ fqpAq “

ÿ

BP2X

qpjpBq pfpBqχBpAq.

Suppose conditions a) and b) are satisfied. By Theorem 5.2.3 the function f can
be represented as

fpAq “
ÿ

BP2X

pfpBqχBpAq

with pfpBq ě 0. If strict inequality pfpBq ą 0 holds for some B then for every
j P t1, . . . ,mu we have again by Theorem 5.2.3

qpjpBq pfpBq “ pjpbq pfpBq ě 0,

because pj ˚ f is of positive type. Thus, pjpbq ě 0 for all j and hence b P F . The
other implication follows with the same arguments.
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Corollary 5.2.6. The 0{1 polynomial optimization problem (5.4) is equivalent to
the linear optimization problem

max
n
ÿ

i“1

cifptiuq

f P L2p2Xq is of positive type,
fpHq “ 1,

pj ˚ f is of positive type for all j P rms,

which is equivalent to the semidefinite program

max
n
ÿ

i“1

ciMf ptiu, tiuq

Mf P S2
X

ě0 ,

Mf pH,Hq “ 1,

Mpj˚f P S2
X

ě0 for all j P rms.

Proof. The fact that these two optimization problems are equivalent follows
immediately from the definition of positive type functions.

Since we are maximizing a linear function we can assume that the optimum
f0 of the first problem is attained at the extreme ray of the cone of positive type
functions. So it is of the form

f0 “ αχB

for some α ě 0 and by the previous theorem for some b with pjpbq ě 0 for all
j P rms. Furthermore,

1 “ f0pHq “ αχBpHq “ α

makes sure that one can recover an optimal 0{1 solution from f0. The objective
value is

n
ÿ

i“1

cifptiuq “
n
ÿ

i“1

ciχBptiuq.

Probabilistic interpretation

The two conditions fpHq “ 1 and f is of positive type have a simple probabilis-
tic interpretation: The second condition says that f is the Fourier transform of
a positive measure whereas the first condition says that the positive measure is
in fact a probability measure

1 “ fpHq “
ÿ

BP2X

pfpBqχBpHq “
ÿ

BP2X

pfpBq.

Hence, f determines a probability distribution on the power set 2X . The set B
is picked with probability pfpBq.
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Relaxation

Computationally, the equivalent reformulation in Corollary 5.2.6 is a rather use-
less statement: We exponentially increased the dimension of the problem and
so in a sense we are enumerating all feasible solutions. However, the reformu-
lation can be used to generate systematically valid non-linear inequalities, i.e.
projected LMI inequalities, for the 0{1 polytope P “ convF .

Instead of working with full moment matrices lying in S2Xě0 we only consider
in the t-th step/round of Lasserre’s hierarchy truncated moment matrices where
the rows/columns are indexed by all subsets with cardinality at most t ` 1;
Notation:

`

X
ďt`1

˘

.

For f P Rp
X

ď2t`2q define the truncated moment matrix M t`1
f P Sp

X
ďt`1q by

M t`1
f pA,Bq “ fpAYBq

with A,B P
`

X
ďt`1

˘

. Let p be a squarefree polynomial of degree d

p “
ÿ

I

pImI

with coefficients pI and monomials mI where I runs through a subset J of 2X

where every I P J has cardinality at most d. Then,

M
t`1´rd{2s

p˚f pA,Bq “ pp ˚ fqpAYBq “
ÿ

I

pIfpI YAYBq

with A,B P
`

X
ďt`1´rd{2s

˘

.

Definition 5.2.7. Let p1, . . . , pm P Rrx1, . . . , xns be polynomials with degrees
d1, . . . , dm. Furthermore, let

v “ max trdj{2s : j P rmsu .

We define for t ě v ´ 1 the t-th step in Lasserre’s hierarchy by

Kt “ tpfpt1uq, . . . , fptnuqq
T P Rn : f P Rp

X
ď2t`2q,

fpHq “ 1,

M t`1
f ľ 0,

M
t`1´rdj{2s

pj˚f
ľ 0, j P rms

)

.

Optimizing over Kt can be done in polynomial time once t ě v´ 1 is a fixed
constant, i.e. independent of the input size. By the previous considerations we
have

Kv´1 Ě Kv Ě Kv`1 Ě . . . Ě Kn`v´1 “ P.
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5.2.3 Example: Independence number

Let us apply Lasserre’s hierarchy to the problem of finding the independence
number.

For this we consider the polynomials

puvpxq “ 1´ xu ´ xv P Rrxv : v P V s for all tu, vu P E.

The 0{1 polytope

P “ STpGq “ convtx P t0, 1uV : puv ě 0 for all tu, vu P Eu

is called the stable set polytope1.
The following theorem says that one can simplify the conditions of Kt here.

In fact the semidefinite conditions on the matrices M t
puv˚f

can be replaced by
the conditions fptu, vuq “ 0 in the moment matrix M t`1

f .

Theorem 5.2.8. For t ě 1 and f P
`

V
ď2t`2

˘

the following three statements are
equivalent:

a) M t`1
f ľ 0 and M t`1

puv˚f
ľ 0 for all tu, vu P E,

b) M t`1
f ľ 0 and fptu, vuq “ 0 for every tu, vu P E,

c) M t`1
f ľ 0 and fpUq “ 0 for every subset U P

`

V
ď2t`2

˘

of the vertex set which
is not an independent set.

Proof. From M t`1
f ľ 0 we can conclude that fpUq ě 0 for all U P

`

V
ď2t`2

˘

because fpUq is a diagonal element of the positive semidefinite matrix M t`1
f .

a) implies b): Consider the ptuu, tuuq-entry of M t
puv˚f

. It equals (check this
identity!)

puv ˚ fptuuq “ ´fptu, vuq

Since it is a diagonal entry, it has to be non-negative. So fptu, vuq “ 0.

b) implies c): Suppose u, v P U are connected by an edge.
First case: |U | ď t ` 1, then the ptu, vu, tu, vuq-entry of M t`1

f equals 0, and
so the ptu, vu, Uq-entry, too (why?). Hence also fpUq “M t`1

f pU,Uq “ 0.
Second case: |U | ą t` 1. Split U into U “ U1YU2 with U1, U2 P

`

V
ďt`1

˘

and
assume tu, vu Ď U1. Then,

M t`1
f pU1, U1q “ 0 ùñM t`1

f pU1, U2q “ 0 ùñ fpUq “M t`1
f pU,Uq “ 0.

c) implies a): We shall prove that the matrix M t
puv˚f

is positive semidefinite.
Define P0 “

`

V ztu,vu
ďt

˘

and Pw “ tU Y twu : U P P0u for w P tu, vu. Then, the

1Sometimes independent sets are called stable sets, but who prefers stability over independence?
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principal submatrix of M t`1
f indexed by P0 Y Pu Y Pv is of the form

¨

˝

P0 Pu Pu

P0 C A B
Pu A A 0
Pv B 0 B

˛

‚.

Since this matrix is positive semidefinite by assumption it follows that the matrix
C ´A´B is positive semidefinite because

¨

˝

´x
x
x

˛

‚

T¨

˝

C A B
A A 0
B 0 B

˛

‚

¨

˝

´x
x
x

˛

‚“ xTpC ´A´Bqx.

Now consider the matrix M t
puv˚f

where we partition the rows/columns into P0

and its complement P 10 “
`

V
ďt`1

˘

zP0. It has the form

ˆ

P0 P 10
P0 C ´A´B 0
P 10 0 0

˙

and the result follows.

One can show (Exercise 5.1.c)) that Lasserre’s hierarchy already converges
at step αpGq ´ 1 to STpGq:

Theorem 5.2.9. For a graph G with αpGq ě 2 we have

STpGq “ KαpGq´1.

5.3 Further reading

Shor [4] was the first who realized that one can use semidefinite programming
to relax quadratic optimization problems. Meanwhile there are many different
possibilities available to construct semidefinite programming hierarchies for 0{1
polynomial optimization problems. The one we studied in Section 5.2 is due
to Lasserre [2]. Lasserre’s hierarchy and other hierarchies are presented and
compared by Laurent in [3].
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5.4 Exercises

5.1.** a) Show that the following two semidefinite programs give the same
optimal value:

max
ÿ

vPV

Yvv

Y P SVYt0uě0 ,

Y00 “ 1,

Y0v “ Yvv for all v P V ,

Yuv “ 0 for all tu, vu P E,

and

ϑpGq “ max xJ,Xy

X P SVě0,

xI,Xy “ 1,

Xuv “ 0 for all tu, vu P E.

b) Prove that the theta number of the cycle graph with five vertices C5

is exactly
?

5.

c) Show that KαpGq´1 “ STpGq.

d) True or false? For all graphs G “ pV,Eq the following equality holds

ϑpGq “ max

#

ÿ

vPV

xv : x P K1

+

.

5.2. (Computer exercise)

a) Do the following two ellipsoids intersect?

E1 “

$

&

%

x P R3 : xT

¨

˝

1{9 1{9 1{9
1{9 13{36 13{36
1{9 13{36 49{36

˛

‚x ď 1

,

.

-

,

E2 “

$

’

&

’

%

x P R3 : xT

¨

˝

?
2

?
2

?
2

?
2 2

?
2 2

?
2

?
2 2

?
2 2

?
2` 1

˛

‚x`

¨

˝

´6
?

2

´10
?

2

´10
?

2

˛

‚

T

x ď 1´ 13
?

2

,

/

.

/

-

Solve a semidefinite program to justify your answer.

b) Let x1, . . . , xN be N points in R2. Find a point x P R2 which min-
imizes the maximum Euclidean distance to these points. Compute
the point x for the cities Amsterdam, Athens, Berlin, Copenhagen,
Lisbon, Moscow, Prague, Warsaw. For this assume that Europe is part
of flatland. . .
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CHAPTER 6

GRAPH COLORING AND
INDEPENDENT SETS

In this chapter we revisit in detail the theta number ϑpGq, which has already
been introduced in earlier chapters. In particular, we present several equivalent
formulations for ϑpGq, we discuss its geometric properties, and present some
applications: for bounding the Shannon capacity of a graph, and for comput-
ing in polynomial time maximum stable sets and minimum colorings in perfect
graphs.

Here are some additional definitions used in this chapter. Let G “ pV,Eq be
a graph. Then, E denotes the set of pairs ti, ju of distinct nodes that are not
adjacent in G. The graph G “ pV,Eq is called the complementary graph of G. G
is self-complementary if G and G are isomorphic graphs. Given a subset S Ď V ,
GrSs denotes the subgraph induced by S: its node set is S and its edges are all
pairs ti, ju P E with i, j P S. The graph Cn is the circuit (or cycle) of length n,
with node set rns and edges the pairs ti, i`1u (for i P rns, indices taken modulo
n). For a set S Ď V , its characteristic vector is the vector χS P t0, 1uV , whose
i-th entry is 1 if i P S and 0 otherwise. As before, e denotes the all-ones vector.

6.1 Preliminaries on graphs

6.1.1 Stability and chromatic numbers

A subset S Ď V of nodes is said to be stable (or independent) if no two nodes
of S are adjacent in G. Then the stability number of G is the parameter αpGq
defined as the maximum cardinality of an independent set in G.
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A subset C Ď V of nodes is called a clique if every two distinct nodes in C
are adjacent. The maximum cardinality of a clique in G is denoted ωpGq, the
clique number of G. Clearly,

ωpGq “ αpGq.

Computing the stability number of a graph is a hard problem: Given a graph
G and an integer k, deciding whether αpGq ě k is an NP -complete problem.

Given an integer k ě 1, a k-coloring of G is an assignment of numbers (view
them as colors) from t1, ¨ ¨ ¨ , ku to the nodes in such a way that two adjacent
nodes receive distinct colors. In other words, this corresponds to a partition of
V into k stable sets: V “ S1 Y ¨ ¨ ¨ Y Sk, where Si is the stable set consisting of
all nodes that received the i-th color. The coloring (or chromatic) number is the
smallest integer k for which G admits a k-coloring, it is denoted as χpGq.

Again it is anNP -complete problem to decide whether a graph is k-colorable.
In fact, it is NP -complete to decide whether a planar graph is 3-colorable. On
the other hand, it is known that every planar graph is 4-colorable – this is the
celebrated 4-color theorem. Moreover, observe that one can decide in polyno-
mial time whether a graph is 2-colorable, since one can check in polynomial
time whether a graph is bipartite.

Figure 6.1: The Petersen graph has αpGq “ 4, ωpGq “ 2 and χpGq “ 3

Clearly, any two nodes in a clique of G must receive distinct colors. There-
fore, for any graph, the following inequality holds:

ωpGq ď χpGq. (6.1)

This inequality is strict, for example, when G is an odd circuit, i.e., a circuit
of odd length at least 5, or its complement. Indeed, for an odd circuit C2n`1

(n ě 2), ωpC2n`1q “ 2 while χpC2n`1q “ 3. Moreover, for the complement
G “ C2n`1, ωpGq “ n while χpGq “ n ` 1. For an illustration see the cycle of
length 7 and its complement in Figure 6.2.

6.1.2 Perfect graphs

It is intriguing to understand for which graphs equality ωpGq “ χpGq holds.
Note that any graph G with ωpGq ă χpGq can be embedded in a larger graph Ĝ
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Figure 6.2: For C7 and its complement C7: ωpC7q “ 2, χpC7q “ 3, ωpC7q “

αpC7q “ 3, χpC7q “ 4

with ωpĜq “ χpĜq, simply by adding toG a clique of size χpGq. This justifies the
following definition, introduced by C. Berge in the early sixties, which makes
the problem well posed.

Definition 6.1.1. A graph G is said to be perfect if equality

ωpHq “ χpHq

holds for all induced subgraphs H of G (including H “ G).

For instance, bipartite graphs are perfect. It follows from the definition and
the above observation about odd circuits that if G is a perfect graph then it does
not contain an odd circuit of length at least 5 or its complement as an induced
subgraph. Berge already conjectured that all perfect graphs arise in this way.
Resolving this conjecture has haunted generations of graph theorists. It was
finally settled in 2004 by Chudnovsky, Robertson, Seymour and Thomas who
proved the following result, known as the strong perfect graph theorem:

Theorem 6.1.2. (The strong perfect graph theorem) A graph G is perfect if
and only if it does not contain an odd circuit of length at least 5 or its complement
as an induced subgraph.

This implies the following structural result about perfect graphs, known as
the perfect graph theorem, already proved by Lovász in 1972.

Theorem 6.1.3. (The perfect graph theorem) If G is a perfect graph, then its
complement G too is a perfect graph.

We will mention below some other, more geometric, characterizations of
perfect graphs.

6.2 Linear programming bounds

Let STpGq denote the polytope in RV defined as the convex hull of the charac-
teristic vectors of the stable sets of G:

STpGq “ convtχS : S Ď V, S is a stable set in Gu,
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called the stable set polytope of G. Hence, computing αpGq is linear optimization
over the stable set polytope:

αpGq “ maxteTx : x P STpGqu.

We have now defined the stable set polytope by listing explicitly its extreme
points. Alternatively, it can also be represented by its hyperplanes representa-
tion, i.e., in the form

STpGq “ tx P RV : Ax ď bu

for some matrix A and some vector b. As computing the stability number is
a hard problem one cannot hope to find the full linear inequality description
of the stable set polytope (i.e., the explicit A and b). However some partial
information is known: several classes of valid inequalities for the stable set
polytope are known. For instance, if C is a clique of G, then the clique inequality

xpCq “
ÿ

iPC

xi ď 1 (6.2)

is valid for STpGq: any stable set can contain at most one vertex from the clique
C. The clique inequalities define the polytope

QSTpGq “
 

x P RV : x ě 0, xpCq ď 1 @C clique of G
(

(6.3)

and maximizing the linear function eTx over it gives the parameter

α˚pGq “ maxteTx : x P QSTpGqu, (6.4)

known as the fractional stability number of G. Clearly, QSTpGq is a relaxation of
the stable set polytope:

STpGq Ď QSTpGq. (6.5)

The parameter α˚pGq is nested between αpGq and χpGq, and it can also be
interpreted in terms of fractional colorings of G.

Lemma 6.2.1. For any graph G, we have

αpGq ď α˚pGq ď χpGq, (6.6)

and α˚pGq is equal to the optimal value of the linear program

min

$

&

%

ÿ

C clique of G

yC :
ÿ

C clique of G

yCχ
C “ e, yC ě 0 @C clique of G

,

.

-

. (6.7)

Proof. The left most inequality in (6.6) follows from the inclusion (6.5) and the
right most one from the definitions: If x P QSTpGq and V “ C1 Y ¨ ¨ ¨ Y Ck is a
partition into k cliques, then

xTe “ xT

˜

k
ÿ

i“1

χCi

¸

“

k
ÿ

i“1

xpCiq ď
k
ÿ

i“1

1 “ k.
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We now show that the optimal value of (6.7) is equal to α˚pGq. For this, first
note that in the linear program (6.4) the condition x ě 0 can be removed
without changing the optimal value; that is,

α˚pGq “ maxteTx : xpCq ď 1 @C clique of Gu.

Now, applying linear programming duality to this linear program, we obtain the
linear program (6.7).

For instance, for an odd circuit C2n`1 (n ě 2), α˚pC2n`1q “
2n`1

2 (check it)
lies strictly between αpC2n`1q “ n and χpC2n`1q “ n` 1.

Assume that G is a perfect graph. Then equality holds throughout in relation
(6.6). Hence, when w P RV is the all-ones vector, maximizing the objective
function wTx over the stable set polytope STpGq or over its linear relaxation
QSTpGq gives the same optimal values. The same holds if w is 0{1 valued since
this amounts to replacing G by its subgraph induced by the set of nodes with
wv “ 1, which is again perfect. One can show that the same holds for any
integer vector w P ZVě0, which implies that the two polytopes STpGq and QSTpGq
coincide. Moreover, this property characterizes perfect graphs.

Theorem 6.2.2. A graph G is perfect if and only if STpGq “ QSTpGq.

Although an explicit linear inequality description is known for the stable
set polytope of a perfect graph (given by the clique inequalities), it is not clear
how to use this information in order to give an efficient algorithm for optimizing
over the stable set polytope. As we see later in Section 6.5.2 there is yet another
description of STpGq – in terms of semidefinite programming, using the theta
body THpGq – that allows to give an efficient algorithm.

6.3 Semidefinite programming bounds

6.3.1 The theta number

Definition 6.3.1. Given a graph G “ pV,Eq, consider the following semidefinite
program

max
XPSn

txJ,Xy : TrpXq “ 1, Xij “ 0 @ti, ju P E, X ľ 0u . (6.8)

Its optimal value is denoted as ϑpGq, and called the theta number of G.

This parameter was introduced by Lovász [3]. He proved the following sim-
ple, but crucial result – called the Sandwich Theorem by Knuth [2] – which
shows that ϑpGq provides a bound for both the stability number of G and the
chromatic number of the complementary graph G.

Theorem 6.3.2. (Lovász’ sandwich theorem) For any graph G, we have that

αpGq ď ϑpGq ď χpGq.

96



Proof. Given a stable set S of cardinality |S| “ αpGq, define the matrix

X “
1

|S|
χSpχSqT P Sn.

Then X is feasible for (6.8) with objective value xJ,Xy “ |S| (check it). This
shows the inequality αpGq ď ϑpGq.

Now, consider a matrix X feasible for the program (6.8) and a partition of V
into k cliques: V “ C1Y¨ ¨ ¨YCk. Our goal is now to show that xJ,Xy ď k, which
will imply ϑpGq ď χpGq. For this, using the relation e “

řk
i“1 χ

Ci , observe that

Y :“
k
ÿ

i“1

`

kχCi ´ e
˘ `

kχCi ´ e
˘T
“ k2

k
ÿ

i“1

χCipχCiqT ´ kJ.

Moreover,
C

X,
k
ÿ

i“1

χCipχCiqT

G

“ TrpXq.

Indeed the matrix
ř

i χ
CipχCiqT has all its diagonal entries equal to 1 and it

has zero off-diagonal entries outside the edge set of G, while X has zero off-
diagonal entries on the edge set of G. As X,Y ľ 0, we obtain

0 ď xX,Y y “ k2TrpXq ´ kxJ,Xy

and thus xJ,Xy ď k TrpXq “ k.

An alternative argument for the inequality ϑpGq ď χpGq, showing an even
more transparent link to coverings by cliques, will be given in the paragraph
after the proof of Lemma 6.4.2.

6.3.2 Computing maximum stable sets in perfect graphs

Assume that G is a graph satisfying αpGq “ χpGq. Then, as a direct applica-
tion of Theorem 6.3.2, αpGq “ χpGq “ ϑpGq can be computed by solving the
semidefinite program (6.8), it suffices to solve this semidefinite program with
precision ε ă 1{2 as one can then find αpGq by rounding the optimal value to
the nearest integer. In particular, combining with the perfect graph theorem
(Theorem 6.1.3):

Theorem 6.3.3. If G is a perfect graph then αpGq “ χpGq “ ϑpGq and ωpGq “
χpGq “ ϑpGq.

Hence one can compute the stability number and the chromatic number in
polynomial time for perfect graphs. Moreover, one can also find a maximum
stable set and a minimum coloring in polynomial time for perfect graphs. We
now indicate how to construct a maximum stable set – we deal with minimum
graph colorings in the next section.
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Let G “ pV,Eq be a perfect graph. Order the nodes of G as v1, ¨ ¨ ¨ , vn. Then
we construct a sequence of induced subgraphsG0, G1, ¨ ¨ ¨ , Gn ofG. Hence each
Gi is perfect, also after removing a node, so that we can compute in polynomial
time the stability number of such graphs. The construction goes as follows: Set
G0 “ G. For each i “ 1, ¨ ¨ ¨ , n do the following:

1. Compute αpGi´1zviq.

2. If αpGi´1zviq “ αpGq, then set Gi “ Gi´1zvi.

3. Otherwise, set Gi “ Gi´1.

By construction, αpGiq “ αpGq for all i. In particular, αpGnq “ αpGq. Moreover,
the node set of the final graph Gn is a stable set and, therefore, it is a maximum
stable set of G. Indeed, if the node set of Gn is not stable then it contains a node
vi for which αpGnzviq “ αpGnq. But then, asGn is an induced subgraph ofGi´1,
one would have that αpGnzviq ď αpGi´1zviq and thus αpGi´1zviq “ αpGq, so
that node vi would have been removed at Step 2.

Hence, the above algorithm permits to construct a maximum stable set in
a perfect graph G in polynomial time – namely by solving n ` 1 semidefinite
programs for computing αpGq and αpGi´1zviq for i “ 1, ¨ ¨ ¨ , n.

More generally, given integer weights w P ZVě0 on the nodes, one can com-
pute in polynomial time a stable set S of maximum weight wpSq. For this, one
can apply the algorithm just described for computing a maximum cardinality
stable set in the new graph G1 defined in the following way: Replace each node
i P V by a set Wi of wi nodes pairwise non-adjacent, and make two nodes
x P Wi and y P Wj adjacent if i and j are adjacent in G. One can verify that G1

is perfect and that αpG1q is the maximum weight wpSq of a stable set S in G.

6.3.3 Minimum colorings of perfect graphs

We now describe an algorithm for computing a minimum coloring of a perfect
graph G in polynomial time. This will be reduced to several computations of
the theta number which we will use for computing the clique number of some
induced subgraphs of G.

Let G “ pV,Eq be a perfect graph. Call a clique of G maximum if it has
maximum cardinality ωpGq.

The crucial observation is that it suffices to find a stable set S in G which
meets all maximum cliques. Indeed, if such S is found then one can recursively
color GzS with ωpGq ´ 1 colors (in polynomial time), and thus G with ωpGq
colors. (Clearly, such a stable set S exists: any color class S in a ωpGq-coloring
must meet all maximum cliques as ωpGzSq “ χpGzSq “ ωpGq ´ 1.)

The algorithm goes as follows: For t ě 1, grow a list L of t maximum cliques
C1, ¨ ¨ ¨ , Ct. Suppose C1, ¨ ¨ ¨ , Ct have been found. Then do the following:

1. We find a stable set S meeting each of the cliques C1, ¨ ¨ ¨ , Ct (see below).
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2. Compute ωpGzSq.

3. If ωpGzSq ă ωpGq then S meets all maximum cliques and we are done.

4. Otherwise, compute a maximum clique Ct`1 in GzS, which is thus a new
maximum clique of G, and we add it to the list L.

The first step can be done as follows: Set w “
řt
i“1 χ

Ci P ZVě0 and compute
a stable set S having maximum possible weight wpSq, then wpSq “ t and S
meets C1, ¨ ¨ ¨ , Ct.

The above algorithm has polynomial running time, since the number of iter-
ations is bounded by |V |. To see this, define the affine space Lt Ď RV defined
by the equations xpC1q “ 1, ¨ ¨ ¨ , xpCtq “ 1 corresponding to the cliques in the
current list L. Then, Lt contains strictly Lt`1, since χS P LtzLt`1 for the set S
constructed in the first step, and thus the dimension decreases at least by 1 at
each iteration.

6.4 Other formulations of the theta number

6.4.1 Dual formulation

We now give several equivalent formulations for the theta number obtained by
applying semidefinite programming duality and some further elementary ma-
nipulations.

Lemma 6.4.1. The theta number can be expressed by any of the following pro-
grams:

ϑpGq “ min
tPR,APSn

tt : tI `A´ J ľ 0, Aij “ 0 pi “ j or ti, ju P Equ, (6.9)

ϑpGq “ min
tPR,BPSn

 

t : tI ´B ľ 0, Bij “ 1 pi “ j or ti, ju P Eq
(

, (6.10)

ϑpGq “ min
tPR,CPSn

tt : C ´ J ľ 0, Cii “ t pi P V q, Cij “ 0 pti, ju P Equ, (6.11)

ϑpGq “ min
BPSn

 

λmaxpBq : Bij “ 1 pi “ j or ti, ju P Eq
(

. (6.12)

Proof. First we build the dual of the semidefinite program (6.8), which reads:

min
tPR,yPRE

$

&

%

t : tI `
ÿ

ti,juPE

yijEij ´ J ľ 0

,

.

-

. (6.13)

As both programs (6.8) and (6.13) are strictly feasible, there is no duality gap:
the optimal value of (6.13) is equal to ϑpGq, and the optimal values are attained
in both programs – here we have applied the duality theorem (Theorem 3.4.1).

Setting A “
ř

ti,juPE yijEij , B “ J ´A and C “ tI `A in (6.13), it follows
that the program (6.13) is equivalent to (6.9), (6.10) and (6.11). Finally the
formulation (6.12) follows directly from (6.10) after recalling that λmaxpBq is
the smallest scalar t for which tI ´B ľ 0.
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6.4.2 Two more (lifted) formulations

We give here two more formulations for the theta number. They rely on semidef-
inite programs involving symmetric matrices of order 1`n which we will index
by the set t0u Y V , where 0 is an additional index that does not belong to V .

Lemma 6.4.2. The theta number ϑpGq is equal to the optimal value of the follow-
ing semidefinite program:

min
ZPSn`1

tZ00 : Z ľ 0, Z0i “ Zii “ 1 pi P V q, Zij “ 0 pti, ju P Equ. (6.14)

Proof. We show that the two semidefinite programs in (6.9) and (6.14) are
equivalent. For this, observe that

tI `A´ J ľ 0 ðñ Z :“

ˆ

t eT

e I ` 1
tA

˙

ľ 0,

which follows by taking the Schur complement of the upper left corner t in the
block matrix Z. Hence, if pt, Aq is feasible for (6.9), then Z is feasible for (6.14)
with same objective value: Z00 “ t. The construction can be reversed: if Z is
feasible for (6.14), then one can construct pt, Aq feasible for (6.9) with t “ Z00.
Hence both programs are equivalent.

From the formulation (6.14), the link to the chromatic number is even more
transparent. Indeed, let k “ χpGq and consider a partition V “ C1Y ¨ ¨ ¨YCk of
the node set into k cliques. For each clique Ci define the extended characteristic
vector zi “ p1 χCiq P R1`n obtained by appending an entry 1 to the character-
istic vector of Ci. Define the matrix Z “

řk
i“1 ziz

T
i P S1`n. Then one can easily

check that the matrix Z is feasible for the program (6.14) with objective value
Z00 “ k. Hence this shows again the inequality ϑpGq ď χpGq.

Applying duality to the semidefinite program (6.14), we obtain1 the follow-
ing formulation for ϑpGq.

Lemma 6.4.3. The theta number ϑpGq is equal to the optimal value of the follow-
ing semidefinite program:

max
Y PSn`1

#

ÿ

iPV

Yii : Y ľ 0, Y00 “ 1, Y0i “ Yii pi P V q, Yij “ 0 pti, ju P Eq

+

.

(6.15)

Proof. One can verify that the dual program of (6.14) reads

max

#

´
ÿ

iPV

Yii ` 2Y0i : Y ľ 0, Y00 “ 1, Yij “ 0 pti, ju P Eq

+

(6.16)

1Of course there is more than one road leading to Rome: one can also show directly the equiva-
lence of the two programs (6.8) and (6.15).
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(check it). As (6.14) is strictly feasible (check it) there is no duality gap, the
optimal value of (6.16) is attained and it is equal to ϑpGq. Note that the pro-
gram (6.15) amounts to adding the constraints Yii “ Y0i (i P V ) to the program
(6.16). In order to show that both programs (6.15) and (6.16) are equivalent,
it suffices to show that (6.16) admits an optimal solution satisfying these addi-
tional constraints.

For this pick an optimal solution Y to (6.16). In a first step, we show that
Y0i ` Yii “ 0 for all i P V . Indeed, assume that Y0i ` Yii ‰ 0 for some i P V .
Then, Yii ‰ 0. Let us multiply the i-th column and the i-th row of the matrix Y
by the scalar ´X0i

Xii
. In this way we obtain a new matrix Y 1 which is still feasible

for (6.16), but with a better objective value: Indeed, Y 1ii “ Yii

´

´Y0i

Yii

¯2

“
Y 2
0i

Yii

and Y 10i “ ´
Y 2
0i

Yii
, so that the i-th term in the new objective value is

´pY 1ii ` 2Y 10iq “
Y 2
0i

Yii
ą ´pYii ` 2Y0iq.

Hence, Y0i “ ´Yii for all i P V . Now, we can change the signs on the first row
and column of Y (indexed by the index 0). In this way we obtain a new optimal
solution of (6.16) which now satisfies the conditions: Yii “ Y0i for i P V .

As explained in Chapter 5 one can define a hierarchy of semidefinite bounds
for αpGq, strengthening the theta number ϑpGq. While ϑpGq is defined using
matrices indexed by t0uYV , these stronger bounds are obtained by considering
matrices indexed by larger index sets, thus lifting the problem in even larger
dimensions – see Section 5.2.3 for details.

6.5 Geometric properties of the theta number

6.5.1 Orthonormal representations

Definition 6.5.1. An orthonormal representation ofG, abbreviated as ONR, con-
sists of a set of unit vectors tu1, . . . , unu Ď Rd (for some d ě 1) satisfying

uTi uj “ 0 @ti, ju P E.

If S is a stable set in G and the ui’s form an ONR of G of dimension d, then
the vectors ui labeling the nodes of S are pairwise orthogonal, which implies
that d ě αpGq. It turns out that the stronger lower bound: d ě ϑpGq holds.

Lemma 6.5.2. The minimum dimension d of an orthonormal representation of a
graph G satisfies: ϑpGq ď d.

Proof. Let u1, ¨ ¨ ¨ , un P Rd be an ONR of G. Define the matrices U0 “ Id,
Ui “ uiu

T
i P Sd for i P rns. Now we define a symmetric matrix Z P Sn`1 by

setting Zij “ xUi, Ujy for i, j P t0uYrns. One can verify that Z is feasible for the
program (6.14) defining ϑpGq (check it) with Z00 “ d. This gives ϑpGq ď d.
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6.5.2 The theta body THpGq

It is convenient to introduce the following set of matrices X P Sn`1, where
columns and rows are indexed by the set t0u Y V :

MG “ tY P Sn`1 : Y00 “ 1, Y0i “ Yii pi P V q, Yij “ 0 pti, ju P Eq, Y ľ 0u,
(6.17)

which is thus the feasible region of the semidefinite program (6.15). Now let
THpGq denote the convex set obtained by projecting the setMG onto the sub-
space RV of the diagonal entries:

THpGq “ tx P RV : DY PMG such that xi “ Yii @i P V u, (6.18)

called the theta body of G. It turns out that THpGq is nested between STpGq and
QSTpGq.

Lemma 6.5.3. For any graph G, we have that STpGq Ď THpGq Ď QSTpGq.

Proof. The inclusion STpGq Ď THpGq follows from the fact that the characteris-
tic vector of any stable set lies in THpGq (check it). We now show the inclusion
THpGq Ď QSTpGq. For this pick a vector x P THpGq and a clique C of G; we
show that xpCq ď 1. Say xi “ Yii for all i P V , where Y PMG. Consider the
principal submatrix YC of Y indexed by t0u Y C, which is of the form

YC “

ˆ

1 xTC
xC DiagpxCq

˙

,

where we set xC “ pxiqiPC . Now, YC ľ 0 implies that DiagpxCq ´ xCx
T
C ľ 0

(taking a Schur complement). This in turn implies: eTpDiagpxCq´xCxTCqe ě 0,
which can be rewritten as xpCq ´ pxpCqq2 ě 0, giving xpCq ď 1.

In view of Lemma 6.4.3, maximizing the all-ones objective function over
THpGq gives the theta number:

ϑpGq “ max
xPRV

teTx : x P THpGqu.

As maximizing eTx over QSTpGq gives the LP bound α˚pGq, Lemma 6.5.3 im-
plies directly that the SDP bound ϑpGq dominates the LP bound α˚pGq:

Corollary 6.5.4. For any graph G, we have that αpGq ď ϑpGq ď α˚pGq.

Combining the inclusion from Lemma 6.5.3 with Theorem 6.2.2, we deduce
that THpGq “ STpGq “ QSTpGq for perfect graphs. It turns out that these
equalities characterize perfect graphs.

Theorem 6.5.5. For any graph G the following assertions are equivalent.

1. G is perfect.

2. THpGq “ STpGq

3. THpGq “ QSTpGq.

4. THpGq is a polytope.
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6.5.3 More on the theta body

There is a beautiful relationship between the theta bodies of a graph G and of
its complementary graph G:

Theorem 6.5.6. For any graph G,

THpGq “ tx P RVě0 : xT z ď 1 @z P THpGqu.

In other words, we know an explicit linear inequality description of THpGq;
moreover, the normal vectors to the supporting hyperplanes of THpGq are pre-
cisely the elements of THpGq. One inclusion is easy:

Lemma 6.5.7. If x P THpGq and z P THpGq then xTz ď 1.

Proof. Let Y PMG and Z PMG such that x “ pYiiq and z “ pZiiq. Let Z 1 be
obtained from Z by changing signs in its first row and column (indexed by 0).
Then xY,Z 1y ě 0 as Y,Z 1 ľ 0. Moreover, xY, Z 1y “ 1 ´ xTz (check it), thus
giving xTz ď 1.

Next we observe how the elements of THpGq can be expressed in terms of
orthonormal representations of G.

Lemma 6.5.8. For x P RVě0, x P THpGq if and only if there exist an orthonormal
representation v1, . . . , vn of G and a unit vector d such that x “ ppdTviq2qiPV .

Proof. Let d, vi be unit vectors where the vi’s form an ONR of G; we show that
x “ ppdTviq

2q P THpGq. For this, let Y P Sn`1 denote the the Gram matrix of the
vectors d and pvTi dqvi for i P V , so that x “ pYiiq. One can verify that Y PMG,
which implies x P THpGq.

For the reverse inclusion, pick Y P MG and a Gram representation w0, wi
(i P V ) of Y . Set d “ w0 and vi “ wi{}wi} for i P V . Then the conditions
expressing membership of Y in MG imply that the vi’s form an ONR of G,
}d} “ 1, and Yii “ pdTviq2 for all i P V .

To conclude the proof of Theorem 6.5.6 we use the following result, which
characterizes which partially specified matrices can be completed to a positive
semidefinite matrix – you will prove it in Exercise 6.1.

Proposition 6.5.9. Let H “ pW,F q be a graph and let aij (i “ j P W or
ti, ju P F ) be given scalars, corresponding to a vector a P RWYF . Define the
convex set

Ka “ tY P SW : Y ľ 0, Yij “ aij @i “ j PW and ti, ju P F u (6.19)

(consisting of all possible positive semidefinite completions of a) and the cone

CH “ tZ P SW : Z ľ 0, Zij “ 0 @ti, ju P F u (6.20)

(consisting of all positive semidefinite matrices supported by the graph H). Then,
Ka ‰ H if and only if

ÿ

iPW

aiiZii ` 2
ÿ

ti,juPF

aijZij ě 0 @Z P CH . (6.21)
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Proof. (of Theorem 6.5.6). Let x P RVě0 such that xTz ď 1 for all z P THpGq;
we show that x P THpGq. For this we need to find a matrix Y P MG such
that x “ pYiiqiPV . In other words, the entries of Y are specified already at the
following positions: Y00 “ 1, Y0i “ Yii “ xi for i P V , and Yti,ju “ 0 for all
ti, ju P E, and we need to show that the remaining entries (at the positions of
non-edges of G) can be chosen in such a way that Y ľ 0.

To show this we apply Proposition 6.5.9, where the graph H is G with an
additional node 0 adjacent to all i P V . Hence it suffices now to show that
xY,Zy ě 0 for all Z P St0uYVľ0 with Zij “ 0 if ti, ju P E. Pick such Z, with Gram
representation w0, w1, ¨ ¨ ¨ , wn. Then wT

i wj “ 0 if ti, ju P E. We can assume
without loss of generality that all wi are non-zero (use continuity if some wi
is zero) and up to scaling that w0 is a unit vector. Then the vectors wi{}wi}
(i P V ) form an ONR of G. By Lemma 6.5.8 (applied to G), the vector z P RV
with zi “ pwT

0wiq
2{}wi}

2 belongs to THpGq and thus xTz ď 1 by assumption.
Therefore, xY,Zy is equal to

1` 2
ÿ

iPV

xiw
T
0wi `

ÿ

iPV

xi}wi}
2 ě

ÿ

iPV

xi

ˆ

pwT
0wiq

2

}wi}2
` 2wT

0wi ` }wi}
2

˙

“
ÿ

iPV

xi

ˆ

wT
0wi
}wi}

` }wi}

˙2

ě 0.

6.6 The theta number for vertex-transitive graphs

First we mention an inequality relating the theta numbers of a graph and its
complement.

Proposition 6.6.1. For any graph G “ pV,Eq, we have that ϑpGqϑpGq ě |V |.

Proof. Using the formulation of the theta number from (6.11), we obtain ma-
trices C,C 1 P Sn such that C ´ J,C 1 ´ J ľ 0, Cii “ ϑpGq, C 1ii “ ϑpGq for
i P V , Cij “ 0 for ti, ju P E and C 1ij “ 0 for ti, ju P E. Then, we have that
xC, Jy, xC 1, Jy ě xJ, Jy “ n2, and xC,C 1y “ nϑpGqϑpGq. Combining these facts
yields the desired inequality.

We now show that equality ϑpGqϑpGq “ |V | holds for certain symmetric
graphs, namely for vertex-transitive graphs. In order to show this, one exploits
in a crucial manner the symmetry of G, which permits to show that the semidef-
inite program defining the theta number has an optimal solution with a special
(symmetric) structure. We need to introduce some definitions.

Let G “ pV,Eq be a graph. A permutation σ of the node set V is called an
automorphism of G if it preserves edges, i.e., ti, ju P E implies tσpiq, σpjqu P E.
Then the set AutpGq of automorphisms of G is a group. The graph G is said to
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be vertex-transitive if for any two nodes i, j P V there exists an automorphism
σ P AutpGq mapping i to j: σpiq “ j.

The group of permutations of V acts on symmetric matrices X indexed by
V . Namely, if σ is a permutation of V and Pσ is the corresponding permutation
matrix (with Pσpi, jq “ Pσpiq,σpjq for all i, j P V ), then one can build the new
symmetric matrix

σpXq :“ PσXP
T
σ “ pXσpiq,σpjqqi,jPV .

If σ is an automorphism of G, then it preserves the feasible region of the
semidefinite program (6.8) defining the theta number ϑpGq. This is an easy,
but very useful fact.

Lemma 6.6.2. If X is feasible for the program (6.8) and σ is an automorphism
of G, then σpXq is again feasible for (6.8), moreover with the same objective value
as X.

Proof. Directly from the fact that xJ, σpXqy “ xJ,Xy, TrpσpXqq “ TrpXq and
σpXqij “ Xσpiqσpjq “ 0 if ti, ju P E (since σ is an automorphism of G).

Lemma 6.6.3. The program (6.8) has an optimal solution X˚ which is invariant
under action of the automorphism group of G, i.e., satisfies σpX˚q “ X˚ for all
σ P AutpGq.

Proof. Let X be an optimal solution of (6.8). By Lemma 6.6.2, σpXq is again an
optimal solution for each σ P AutpGq. Define the matrix

X˚ “
1

|AutpGq|

ÿ

σPAutpGq

σpXq,

obtained by averaging over all matrices σpXq for σ P AutpGq. As the set of
optimal solutions of (6.8) is convex, X˚ is still an optimal solution of (6.8).
Moreover, by construction, X˚ is invariant under action of AutpGq.

Corollary 6.6.4. If G is a vertex-transitive graph then the program (6.8) has an
optimal solution X˚ satisfying X˚ii “ 1{n for all i P V and X˚e “ ϑpGq

n e.

Proof. By Lemma 6.6.3, there is an optimal solution X˚ which is invariant
under action of AutpGq. As G is vertex-transitive, all diagonal entries of X˚

are equal: Indeed, let i, j P V and σ P AutpGq such that σpiq “ j. Then,
Xjj “ Xσpiqσpiq “ Xii. As TrpX˚q “ 1 we must have X˚ii “ 1{n for all i. Analo-
gously, the invariance of X˚ implies that

ř

kPV X
˚
ik “

ř

kPV X
˚
jk for all i, j, i.e.,

X˚e “ λe for some scalar λ. Combining with the condition xJ,X˚y “ ϑpGq we
obtain that λ “ ϑpGq

n .

Proposition 6.6.5. If G is a vertex-transitive graph, then ϑpGqϑpGq “ |V |.
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Proof. By Corollary 6.6.4, there is an optimal solution X˚ of the program (6.8)
defining ϑpGq which satisfies X˚ii “ 1{n for i P V and X˚e “ ϑpGq

n e. Then
n2

ϑpGqX
˚ ´ J ľ 0 (check it). Hence, t “ n

ϑpGq and C “ n2

ϑpGqX
˚ define a feasible

solution of the program (6.11) defining ϑpGq, which implies ϑpGq ď n{ϑpGq.
Combining with Proposition 6.6.1 we get the equality ϑpGqϑpGq “ |V |.

For instance, the cycle Cn is vertex-transitive, so that

ϑpCnqϑpCnq “ n. (6.22)

In particular, as C5 is isomorphic to C5, we deduce that

ϑpC5q “
?

5. (6.23)

For n even, Cn is bipartite (and thus perfect), so that ϑpCnq “ αpCnq “
n
2

and ϑpCnq “ ωpCnq “ 2. For n odd, one can compute ϑpCnq using the above
symmetry reduction:

Proposition 6.6.6. For any odd n ě 3,

ϑpCnq “
n cospπ{nq

1` cospπ{nq
and ϑpCnq “

1` cospπ{nq

cospπ{nq
.

Proof. As ϑpCnqϑpCnq “ n, it suffices to compute ϑpCnq. We use the formulation
(6.12). As Cn is vertex-transitive, there is an optimal solution B whose entries
are all equal to 1, except Bij “ 1 ` x for some scalar x whenever |i ´ j| “ 1
(modulo n). In other words, B “ J ` xACn , where ACn is the adjacency
matrix of the cycle Cn. Thus ϑpCnq is equal to the minimum value of λmaxpBq
for all possible x. The eigenvalues of ACn are known: They are ωk ` ω´k

(for k “ 0, 1, ¨ ¨ ¨ , n ´ 1), where ω “ e
2iπ
n is an n-th root of unity. Hence the

eigenvalues of B are

n` 2x and xpωk ` ω´kq for k “ 1, ¨ ¨ ¨ , n´ 1. (6.24)

We minimize the maximum of the values in (6.24) when choosing x such that

n` 2x “ ´2x cospπ{nq

(check it). This gives ϑpCnq “ λmaxpBq “ ´2x cospπ{nq “ n cospπ{nq
1`cospπ{nq .

6.7 Bounding the Shannon capacity

The theta number was introduced by Lovász [3] in connection with the problem
of computing the Shannon capacity of a graph, a problem in coding theory
considered by Shannon. We need some definitions.
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Definition 6.7.1. (Strong product) Let G “ pV,Eq and H “ pW,F q be two
graphs. Their strong product is the graph denoted as G ¨H with node set V ˆW
and with edges the pairs of distinct nodes tpi, rq, pj, squ P V ˆW with (i “ j or
ti, ju P E) and (r “ s or tr, su P F ).

If S Ď V is stable in G and T Ď W is stable in H then S ˆ T is stable in
G ¨ H. Hence, αpG ¨ Hq ě αpGqαpHq. Let Gk denote the strong product of k
copies of G, we have that

αpGkq ě pαpGqqk.

Based on this, one can verify that

ΘpGq :“ sup
kě1

k

b

αpGkq “ lim
kÑ8

k

b

αpGkq. (6.25)

The parameter ΘpGq was introduced by Shannon in 1956, it is called the Shan-
non capacity of the graph G. The motivation is as follows. Suppose V is a finite
alphabet, where some pairs of letters could be confused when they are trans-
mitted over some transmission channel. These pairs of confusable letters can
be seen as the edge set E of a graph G “ pV,Eq. Then the stability number of
G is the largest number of one-letter messages that can be sent without dan-
ger of confusion. Words of length k correspond to k-tuples in V k. Two words
pi1, ¨ ¨ ¨ , ikq and pj1, ¨ ¨ ¨ , jkq can be confused if at every position h P rks the two
letters ih and jh are equal or can be confused, which corresponds to having an
edge in the strong product Gk. Hence the largest number of words of length k
that can be sent without danger of confusion is equal to the stability number of
Gk and the Shannon capacity of G represents the rate of correct transmission of
the graph.

For instance, for the 5-cycle C5, αpC5q “ 2, but αppC5q
2q ě 5. Indeed,

if 1, 2, 3, 4, 5 are the nodes of C5 (in this cyclic order), then the five 2-letter
words p1, 1q, p2, 3q, p3, 5q, p4, 2q, p5, 4q form a stable set in G2. This implies that
ΘpC5q ě

?
5.

Determining the exact Shannon capacity of a graph is a very difficult prob-
lem in general, even for small graphs. For instance, the exact value of the
Shannon capacity of C5 was not known until Lovász [3] showed how to use the
theta number in order to upper bound the Shannon capacity: Lovász showed
that ΘpGq ď ϑpGq and ϑpC5q “

?
5, which implies that ΘpC5q “

?
5. For in-

stance, although the exact value of the theta number of C2n`1 is known (cf.
Proposition 6.6.6), the exact value of the Shannon capacity of C2n`1 is not
known, already for C7.

Theorem 6.7.2. For any graph G, we have that ΘpGq ď ϑpGq.

The proof is based on the multiplicative property of the theta number from
Lemma 6.7.3 – which you will prove in Exercise 6.2 – combined with the fact
that the theta number upper bounds the stability number: For any integer k,
αpGkq ď ϑpGkq “ pϑpGqqk implies k

a

αpGkq ď ϑpGq and thus ΘpGq ď ϑpGq.
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Lemma 6.7.3. The theta number of the strong product of two graphs G and H
satisfies ϑpG ¨Hq “ ϑpGqϑpHq.

As an application one can compute the Shannon capacity of any graph G
which is vertex-transitive and self-complementary (e.g., like C5).

Theorem 6.7.4. If G “ pV,Eq is a vertex-transitive graph, then ΘpG ¨Gq “ |V |.
If, moreover, G is self-complementary, then ΘpGq “

a

|V |.

Proof. We have ΘpG ¨ Gq ě αpG ¨ Gq ě |V |, since the set of diagonal pairs
tpi, iq : i P V u is stable in G ¨ G. The reverse inequality follows from Lemma
6.7.3 combined with Proposition 6.6.5: ΘpG ¨Gq ď ϑpG ¨Gq “ ϑpGqϑpGq “ |V |.
If G is isomorphic to G then ΘpG ¨Gq “ ΘpG2q “ pΘpGqq2 (check the rightmost
equality). This gives ΘpGq “

a

|V |.

6.8 Further reading

In his seminal paper [3], Lovász gives several equivalent formulations for the
theta number, and relates it to the Shannon capacity and to some eigenvalue
bounds. It is worth noting that Lovász’ paper was published in 1979, thus be-
fore the discovery of polynomial time algorithms for semidefinite programming.
In 1981, together with Grötschel and Schrijver, he derived the polynomial time
algorithms for maximum stable sets and graph colorings in perfect graphs, based
on the ellipsoid method for solving semidefinite programs. As of today, this is
the only known polynomial time algorithm – in particular, no purely combina-
torial algorithm is known.

Detailed information about the theta number can also be found in the survey
of Knuth [2] and a detailed treatment about the material in this chapter can be
found in Chapter 9 of Grötschel, Lovász and Schrijver [1]. In particular, proofs
of the geometric characterizations of perfect graphs in Theorems 6.2.2 and 6.5.5
can be found there. Weighted versions of the theta number are considered there,
replacing the all-ones objective function eTx by wTx where w P ZVě0. One can
give equivalent characterizations, analogue to those we have given for the all-
ones weight function. We have restricted our exposition to the all-ones weight
function for the sake of simplicity.

6.9 Exercises

6.1 Show the result of Proposition 6.5.9.

6.2** The goal is to show the result of Lemma 6.7.3 about the theta number of
the strong product of two graphs G “ pV,Eq and H “ pW,F q:

ϑpG ¨Hq “ ϑpGqϑpHq.

(a) Show that ϑpG ¨Hq ě ϑpGqϑpHq.
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(b) Show that ϑpG ¨Hq ď ϑpGqϑpHq.

Hint: Use the primal formulation (6.8) for (a), and the dual formulation
(6.9) for (b), and think of using Kronecker products of matrices in order
to build feasible solutions.

6.3 Let G “ pV “ rns, Eq be a graph. Consider the graph parameter

ϑ1pGq “ min
c,ui

max
iPV

1

pcTuiq2
,

where the minimum is taken over all unit vectors c and all orthonormal
representations u1, ¨ ¨ ¨ , un of G.

Show that ϑpGq “ ϑ1pGq.

Hint: For the inequality ϑpGq ď ϑ1pGq think of using the properties of the
theta body from Section 6.5.2. For the inequality ϑ1pGq ď ϑpGq, use an
optimal solution B of the dual formulation (6.10) for ϑpGq to build the
vectors c, ui.
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CHAPTER 7

APPROXIMATING MAX CUT
AND THE CUT NORM

The maximum cut problem (MAX CUT) is the following problem in combina-
torial optimization. Let G “ pV,Eq be an undirected graph with vertex set V
and edge set E Ď

`

V
2

˘

, where edges e “ tu, vu P E are two-element subsets of
the vertex set. With every edge e “ tu, vu we associate a nonnegative weight
wuv. Since the graph is undirected we assume that the weights are symmetric
wuv “ wvu. Furthermore, wuv “ 0 whenever tu, vu R E. We incorporate all
the weights into a symmetric matrix W “ pwuvq P SV . The MAX CUT problem
seeks for a partition of the vertex set V into two parts V ´, V `, cutting the graph
into two pieces, so that the sum of edges connecting V ´ and V `, the weight of
the cut wpV ´, V `q, is maximized:

wpV ´, V `q “
ÿ

uPV ´,vPV `

wuv.

It is known that the maximum cut problem is an NP-complete problem. So
unless the complexity classes P and NP coincide there is no efficient polynomial-
time algorithm which solves MAX CUT exactly. In fact, MAX CUT was one of
the first problems which were proved to be NP-complete: It is one of Karp’s 21
NP-complete problems. Even stronger, Håstad in 2001 showed that it is NP-hard
to approximate MAX CUT within a factor of 16

17 “ 0.941 . . . This is in sharp
contrast to the MIN CUT problem, where we want to minimize the weight of a
non-trivial cut. The MIN CUT problem (and its dual, the MAX FLOW problem)
can be solved using linear programming.

On the positive side, one can compute an 0.878 . . . -approximation of MAX
CUT in polynomial time, using semidefinite programming. This algorithm, due
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to Goemans and Williamson [2], is one of the most influential approximation
algorithms which are based on semidefinite programming.

A problem which is related to (in fact a generalization of) MAX CUT is find-
ing the cut norm of a matrix. Let A “ pAijq P Rmˆn be a real matrix. The cut
norm of A is

}A}l “ max
IĎrms,JĎrns

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

ÿ

jPJ

Aij

ˇ

ˇ

ˇ

ˇ

ˇ

.

Computing the cut norm of a matrix has many applications in combinatorics, es-
pecially in graph theory. Examples are finding Szemerédi partitions in graphs, or
finding maximum acyclic subgraphs. As the cut norm is a generalization of the
MAX CUT problem we only can hope for efficient approximations. Today in this
lecture we link the cut norm with Grothendieck’s inequality, a famous inequality
in functional analysis from an even more famous mathematician. Thereby we
will derive another approximation algorithm based on semidefinite program-
ming which is due to Krivine from 1979 (although this connection was only
found in 2006).

7.1 The algorithm of Goemans and Williamson

7.1.1 Semidefinite relaxation

We now want to describe the Goemans-Williamson algorithm. For this we first
reformulate MAX CUT as a (non-convex) quadratic optimization problem hav-
ing quadratic equality constraints. We start by recalling the construction of
the semidefinite relaxation of the MAX CUT problem which we already saw in
Chapter 2 and Chapter 5.

With every vertex of the graph u P V we associate a binary variable xu P
t´1,`1u which indicates whether u lies in V ´ or V `, i.e. u P V ´ if xu “ ´1
and u P V ` if xu “ `1. We model the binary constraint xu P t´1,`1u as a
quadratic equality constraint

x2u “ 1, u P V.

For two vertices u, v P V we have

1´ xuxv P t0, 2u.

This value equals to 0 if u and v lie on the same side of the cut and the value
equals to 2 if u and v lie on different sides of the cut. Hence, one can express
the weight of a cut, which is defined by the variables xu P t´1,`1u, by

wpV ´, V `q “
1

2

˜

1

2

ÿ

u,vPV

wuvp1´ xuxvq

¸

.
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Now, the MAX CUT problem can be equivalently formulated as

MAXCUTpW q “ max

#

1

4

ÿ

u,vPV

wuvp1´ xuxvq : x2u “ 1, u P V

+

.

If we replace in this optimization problem the scalar variables xu P t´1,`1u
by vector variables yu P R|V | lying in |V |-dimensional Euclidean space, and the
product xuxv by the inner product yu ¨ yv “ yTuyv, then the we get the following
vector optimization problem:

SDPpW q “ max

#

1

4

ÿ

u,vPV

wuvp1´ yu ¨ yvq : yu ¨ yu “ 1, u P V

+

.

Because yu ¨yu “ 1, we see that the vectors yu lie on the unit sphere S|V |´1. Note
also, that every feasible solution xu of the original problem can be transformed
into a feasible solution of the vector optimization problem. We simply set yu “
pxu, 0, . . . , 0q

T. This means that the maximum value of the vector optimization
problem is at least the value of MAX CUT, thus SDPpW q ě MAXCUTpW q.

We proceed by showing two things: First, it is not difficult to realize that the
vector optimization problem can be reformulated as a semidefinite program.
Second, we shall prove that the maximum of the vector optimization problem is
not too far from the optimal value of the original MAX CUT problem. We show
that the inequality

SDPpW q ě MAXCUTpW q ě 0.878 . . . ¨ SDPpW q

holds for all symmetric weight matricesW “ pwuvqwith nonnegative entrieswuv.
To show that the vector optimization problem is a semidefinite program we

introduce the inner product matrix of the vectors yu:

Y “ pyu ¨ yvqu,vPV .

The matrix Y is a positive semidefinite matrix whose diagonal elements are all
equal to one. Furthermore,

1

4

ÿ

u,vPV

wuvp1´ yu ¨ yvq “
1

4

ÿ

u,vPV

wuv ´
1

4
xW,Y y.

So it suffices to minimize the trace inner product xW,Y y in order to solve the
vector optimization problem. Hence, solving the following semidefinite pro-
gram gives the value of SDPpW q:

SDPpW q “
1

4

ÿ

u,vPV

wuv ´
1

4
min txW,Y y : Y ľ 0, xEuu, Y y “ 1, u P V u ,

where Euu denotes the matrix which has a one at position pu, uq and zeros in
all other positions.
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Figure 7.1: Views on spectrahedron behind the semidefinite relaxation.

The figure above illustrates the set of feasible solutions in the case of 3 ˆ 3
matrices. It is an inflated tetrahedron. These figures were generated by the
program jSurfer (http://www.imaginary-exhibition.com/).

Y “

¨

˝

1 x y
x 1 z
y z 1

˛

‚ľ 0 ðñ 1` 2xyz ´ x2 ´ y2 ´ z2 ě 0, x, y, z P r´1, 1s.

7.1.2 Analysis of the algorithm

Theorem 7.1.1. For all matrices W “ pwuvq with nonnegative weights we have
the inequality

SDPpW q ě MAXCUTpW q ě 0.878 . . . ¨ SDPpW q.

Proof. The proof is algorithmic and it gives an approximation algorithm which
approximates the MAX CUT problem within a ratio of 0.878 . . . . The Goemans-
Williamson algorithm has five steps:

1. Solve SDPpW q obtaining an optimal solution Y .

2. Perform a Cholesky decomposition of Y to find yu P S|V |´1, with u P V .

3. Choose a random vector r P S|V |´1 according to the rotationally invariant
probability distribution on the unit sphere.

4. Define a cut by xu “ signpyu ¨ rq, for u P V .

5. Check whether 1
4

ř

u,vPV wuvp1 ´ xuxvq ě 0.878 . . . ¨ SDPpW q. If not, go
to step 3.

The following lemma, also known as Grothendieck’s identity, is the key to the
proof of the theorem.
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Lemma 7.1.2. Let x, y be unit vectors and let r be a random unit vector chosen
according to the rotationally invariant probability distribution on the unit sphere.
Then, the expectation of the random variable signpx ¨ rq signpy ¨ rq P t´1,`1u
equals

Ersignpx ¨ rq signpy ¨ rqs “
2

π
arcsinx ¨ y.

Proof. By definition, the expectation can be computed as

Ersignpx ¨ rq signpy ¨ rqs “p`1q ¨ Prsignpx ¨ rq “ signpy ¨ rqs

` p´1q ¨ Prsignpx ¨ rq ‰ signpy ¨ rqs.

Note that

Prsignpx ¨ rq ‰ signpx ¨ rqs “ 1´ Prsignpx ¨ rq “ signpy ¨ rqs,

so that we only have to compute the probability that the signs of x ¨ r and y ¨ r
are the same. Since the probability distribution from which we sample the unit
vector r is rotationally invariant we can assume that x, y and r lie in a common
plane and hence on a unit circle and that r is chosen according to the uniform
distribution on this circle. Then the probability that the signs of x ¨ r and y ¨ r
are the same only depends on the angle between x and y. Using a figure (draw
one!) it is easy to see that

Prsignpx ¨ rq “ signpy ¨ rqs “ 2 ¨
1

2π
arccosx ¨ y “

1

π
arccosx ¨ y.

Now,

Ersignpx ¨ rq signpy ¨ rqs “
1

π
arccosx ¨ y ´ p1´

1

π
arccosx ¨ yq

“
2

π
arcsinx ¨ y,

where we used the trigonometric identity

arcsin t` arccos t “
π

2
,

to get the desired result.

Let us apply Grothendieck’s identity: Using elementary univariate calculus
one can show that

1´ Ersignpx ¨ rq signpy ¨ rqs

1´ x ¨ y
“

1´ 2
π arcsin t

1´ t
ě 0.878 . . . , (7.1)

holds, where t “ x ¨ y P r´1, 1s. To “see” this one can also plot the function
using SAGE:
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-1 -0.5 0 0.5 1

2

4

6

8

10

-0.73 -0.72 -0.71 -0.7 -0.69 -0.68 -0.67 -0.66 -0.65

8.786e-1

8.787e-1

8.788e-1

8.789e-1

8.79e-1

8.791e-1

plot((1-2/pi*arcsin(x))/(1-x), (x,-1,1))

plot((1-2/pi*arcsin(x))/(1-x), (x,-0.73,-0.62))

This can be used to estimate the ratio between MAXCUTpW q and SDPpW q.
Clearly,

MAXCUTpW q ě E

«

1

4

ÿ

u,vPV

wuvp1´ xuxvq

ff

.

By linearity of expectation,

E

«

1

4

ÿ

u,vPV

wuvp1´ xuxvq

ff

“
1

4

ÿ

u,vPV

wuvp1´ Erxuxvsq.

Since wuv is nonnegative we can go on by estimating

1´ Erxuxvs “ 1´ Ersignpyu ¨ rq signpyv ¨ rqs

in every summand using (7.1) getting

Erp1´ xuxvqs ě 0.878 . . . p1´ yu ¨ yvq.

Putting it together,

MAXCUTpW q ě E

«

1

4

ÿ

u,vPV

wuvp1´ xuxvq

ff

ě 0.878 . . .
1

4

ÿ

u,vPV

wuvp1´ yu ¨ yvq

“ 0.878 . . . ¨ SDPpW q,

which proves the theorem.

We finish the explanation of the Goemans-Williamson algorithm by some
further remarks. The steps 3. and 4. in the algorithm are called a randomized
rounding procedure because a solution of a semidefinite program is “rounded”
(or better: projected) to a solution of the original combinatorial problem with
the help of randomness.
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Note also that because the expectation of the constructed solution is at least
0.878 ¨ ¨ ¨ ¨ SDPpW q the algorithm eventually terminates; it will pass step 5 and
without getting stuck in an endless loop. One can show that with high proba-
bility we do not have to wait long until the condition in step 5 is fulfilled.

7.1.3 Remarks on the algorithm

One can modify the Goemans-Williamson algorithm so that it becomes an al-
gorithm which runs deterministically (without the use of randomness) in poly-
nomial time and which gives the same approximation ratio. This was done by
Mahajan and Ramesh in 1995.

It remains to give a procedure which samples a random vector from the unit
sphere. This can be done if one can sample random numbers from the standard
normal (Gaussian) distribution (with mean zero and variance one) which has
probability density

fpxq “
1
?

2π
e´x

2
{2.

Many software packages include a procedure which produces random numbers
from the standard normal distribution. SAGE:

sage: T = RealDistribution(’gaussian’, 1)

sage: T.get_random_element()

0.818610064197

If we sample n real numbers x1, . . . , xn independently uniformly at random
from the standard normal distribution, then, the vector

r “
1

a

x21 ` ¨ ¨ ¨ ` x
2
n

px1, . . . , xnq
T P Sn´1

is distributed according to the rotationally invariant probability measure on the
unit sphere.

7.2 Cut norm and Grothendieck’s inequality

7.2.1 Cut norm of a matrix

The cut norm of a matrix A “ pAijq P Rmˆn is

}A}l “ max
IĎrms,JĎrns

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

ÿ

jPJ

Aij

ˇ

ˇ

ˇ

ˇ

ˇ

Related to the cut norm is the following norm which is given as a quadratic
optimization problem

}A}8Ñ1 “ max

#

m
ÿ

i“1

n
ÿ

j“1

Aijxiyj : x2i “ y2j “ 1, i P rms, j P rns

+

.
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The notation }A}8Ñ1 indicates that this is an operator norm of an op-
erator mapping the space `n8 to the space `m1 . We will not use this fact
here.

Lemma 7.2.1. Let A P Rmˆn be a matrix.

a) We have the relation

4}A}l ě }A}8Ñ1 ě }A}l.

b) If the row sum and the column sum of A are both 0, we have

}A}l “
1

4
}A}8Ñ1.

c) There exists a matrix B P Rpm`1qˆpn`1q with row sum and column sum
equal to zero such that

}A}l “ }B}l.

Proof. a) For xi, yj P t˘1u we split

m
ÿ

i“1

n
ÿ

j“1

Aijxiyj “
ÿ

pi,jq:xi“1,yj“1

Aij `
ÿ

pi,jq:xi“´1,yj“´1

Aij

´
ÿ

pi,jq:xi“1,yj“´1

Aij ´
ÿ

pi,jq:xi“´1,yj“1

Aij

and every term is bounded in absolute value from above by }A}l, hence the
first inequality 4}A}l ě }A}8Ñ1 follows.

For the other inequality let I Ď rms and J Ď rns be given so that

}A}l “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI,jPJ

Aij

ˇ

ˇ

ˇ

ˇ

ˇ

.

Define xi “ 1 if i P I and xi “ ´1 if i R I and similarly yj “ ˘1. Then,

}A}l “
ÿ

i,j

Aij
1` xi

2

1` yj
2

“
1

4

˜

ÿ

i,j

Aij `
ÿ

i,j

Aijxi `
ÿ

i,j

Aijyj `
ÿ

i,j

Aijxiyj

¸

.

(7.2)

This proves the second inequality }A}l ď }A}8Ñ1 because the absolute value
of every of the four summands is at most }A}8Ñ1.

b) The second statement of the lemma follows by looking at (7.2) and ap-
plying the additional assumption.

c) Simply construct B by adding a row and a column to A such that the row
sum and the column sum are equal to 0. Checking that }A}l equals }B}l is an
exercise.
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The following construction shows that computing the cut norm of a matrix
is at least as difficult as computing the MAX CUT of a graph. Let G “ pV,Eq be
a graph with n vertices v1, . . . , vn and m edges e1, . . . , em, and let W “ pwjkq P
SV be a weight matrix with nonnegative weights. Now we define a matrix
A P R2mˆn whose cut norm coincides with MAXCUTpW q. For this orient the
edges of the graph in some arbitrary way. If ei is arc from vj to vk then we set

A2i´1,j “ A2i,k “ wjk, A2i´1,k “ A2i,j “ ´wjk.

All other entries of A are zero.

Lemma 7.2.2. Using the construction above we have

MAXCUTpW q “
1

4
¨ }A}8Ñ1 “ }A}l.

Proof. Exercise 7.3 (a).

7.2.2 Grothendieck’s inequality

The semidefinite relaxation of }A}8Ñ1 is

SDP8Ñ1pAq “ max

#

m
ÿ

i“1

n
ÿ

j“1

Aijuivj : }ui} “ }vj} “ 1, i P rms, j P rns

+

,

where we optimize over m ` n unit vectors ui, vj P Rm`n. Note that this opti-
mization problem is indeed a semidefinite program (why?).

Theorem 7.2.3 (Grothendieck’s inequality). There is a constant K so that for all
matrices A P Rmˆn the inequality

}A}8Ñ1 ď SDP8Ñ1pAq ď K}A}8Ñ1

holds.

The smallest constant K for which the second inequality holds, is called the
Grothendieck constant KG. It is known to lie between 1.676 . . . and 1.782 . . . but
its exact value is currently not known. In the following we will prove that

KG ď
π

2 lnp1`
?

2q
“ 1.782 . . .

The argument will also rely on an approximation algorithm which uses random-
ized rounding (in a tricky way).

Thereby, and using Lemma 7.2.1, we find an algorithm which approximates
the cut norm within a factor of p1.782 . . .q´1 “ 0.561 . . .
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7.2.3 Proof of Grothendieck’s inequality

1. Solve SDP8Ñ1pAq. This gives optimal unit vectors

u1, . . . , um, v1, . . . , vn P S
m`n´1.

2. Use these unit vectors to construct new unit vectors

u11, . . . , u
1
m, v

1
1, . . . , v

1
n P S

m`n´1

according to Krivine’s trick presented in Lemma 7.2.4 below.

3. Choose a random vector r P Sm`n´1 according to the rotationally invari-
ant probability distribution on the unit sphere.

4. Randomized rounding: Set

xi “ signpu1i ¨ rq, yj “ signpv1j ¨ rq.

We analyze the expected quality of the solution xi, yj . By linearity of expec-
tation we have

SDP8Ñ1pAq ě E

«

m
ÿ

i“1

m
ÿ

j“1

Aijxi ¨ yj

ff

“

m
ÿ

i“1

m
ÿ

j“1

AijE
“

signpu1i ¨ rq signpv1j ¨ rq
‰

.

Now by Lemma 7.2.4 the last expectation will turn out to be βui ¨ vj . Then the
total sum will be equal β SDP8Ñ1pAq and hence KG ď β´1.

Now the following lemma, Krivine’s trick, finishes the proof of Theorem 7.2.3.

Lemma 7.2.4. Let u1, . . . , um and v1, . . . , vn be unit vectors in Rm`n. Then there
exist unit vectors u11, . . . , u

1
m and v11, . . . , v

1
n in Rm`n such that

E
“

signpu1i ¨ rq signpv1j ¨ rq
‰

“ βui ¨ vj ,

holds with
β “

2

π
lnp1`

?
2q “ 0.561 . . .

Proof. Define the function E : r´1,`1s Ñ r´1,`1s by Eptq “ 2
π arcsin t. Then

by Grothendieck’s identity, Lemma 8.2.2,

E
“

signpu1i ¨ rq signpv1j ¨ rq
‰

“ Epu1i ¨ v
1
jq.

Now the idea is to invert the function E so that we have

u1i ¨ v
1
j “ E´1pβui ¨ vjq

and use the series expansion

E´1ptq “
8
ÿ

r“0

g2r`1t
2r`1,
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which is valid for all t P r´1, 1s to define u1i and v1j .
For this define the infinite dimensional Hilbert space

H “

8
à

r“0

pRm`nqb2r`1,

and the vectors u1i, v
1
j P H componentwise by

pu1iqr “ signpg2r`1q
a

|g2r`1|β2r`1ub2r`1
i

and
pv1jqr “

a

|g2r`1|β2r`1vb2r`1
j .

Then

u1i ¨ v
1
j “

8
ÿ

r“0

g2r`1β
2r`1pui ¨ vjq

2r`1 “ E´1pβui ¨ vjq

and

1 “ u1i ¨ u
1
i “ v1j ¨ v

1
j “

8
ÿ

r“0

|g2r`1|β
2r`1,

which defines the value of β uniquely.
It’s a fun exercise to work out β explicitly: We have

Eptq “
2

π
arcsin t,

and so

E´1ptq “ sin
´π

2
t
¯

“

8
ÿ

r“0

p´1q2r`1

p2r ` 1q!

´π

2
t
¯2r`1

.

Hence,

1 “
8
ÿ

r“0

ˇ

ˇ

ˇ

ˇ

p´1q2r`1

p2r ` 1q!

ˇ

ˇ

ˇ

ˇ

´π

2
β
¯2r`1

“ sinh
´π

2
β
¯

,

which implies

β “
2

π
arsinh 1 “

2

π
lnp1`

?
2q

because arsinh t “ lnpt`
?
t2 ` 1q.

Last concern: How to find/approximate u1i, v
1
j in polynomial time? Answer:

we approximate the inner product matrix

`

u1i ¨ v
1
j

˘

“

8
ÿ

r“0

g2r`1β
2r`1

`

pui ¨ vjq
2r`1

˘

by its series expansion which converges fast enough and then we use its Cholesky
decomposition.
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7.3 Further reading

How good is the MAX CUT algorithm? Are there graphs where the value of the
semidefinite relaxation and the value of the maximal cut are a factor of 0.878 . . .
apart or is this value 0.878 . . ., which maybe looks strange at first sight, only an
artefact of our analysis? It turned out that the value is optimal. In Exercise 7.1
(b) you will see that already for the 5-cycle C5 the gap is close to 0.878 . . .. In
2002 Feige and Schechtmann gave an infinite family of graphs for which the
ratio MAXCUT {SDP converges to exactly 0.878 . . .. This proof uses a lot of
nice mathematics (continuous graphs, Voronoi regions, isoperimetirc inequal-
ity) and it is explained in detail in the Chapter 8 of the book Approximation
Algorithms and Semidefinite Programming of Gärtner and Matoušek.

Rather recently in 2007, Khot, Kindler, Mossel, O’Donnell showed that the
algorithm is optimal in the following sense: If the unique games conjecture is
true, then there is no polynomial time approximation algorithm achieving a bet-
ter approximation ratio than 0.878 . . . unless P “ NP. Currently, the validity
and the implications of the unique games conjecture are under heavy investi-
gation. The topic of the unique games conjecture is too hot for this course,
although it is very fascinating. The book of Gärtner and Matoušek also contains
an introduction to the unique games conjecture.

How good is the upper bound KG? Finding the value of KG is an long-
standing open problem. The best-known lower bound is 1.676 . . . by unpub-
lished work of Davie and Reeds.

It was widely believed that Krivine’s analysis gives the right value of KG.
So it came as a shock (at least to the author of these notes) when Braverman,
Makarychev, Makarychev, and Naor proved in 2011 that one can improve it
slightly, by a clever modification of Krivine’s trick and much more complicated
computations.

Alon and Naor [2] discovered the connection between the cut norm and
Grothendieck’s inequality in 2006. Since then Grothendieck’s inequality became
a unifying concept in combinatorial optimization; see the survey [3] of Khot and
Naor.

7.4 Historical remarks and anecdotes

In 2000, Goemans and Williamson won the Fulkerson prize (sponsored jointly
by the Mathematical Programming Society and the AMS) which recognizes out-
standing papers in the area of discrete mathematics for this result.

About the finding of the approximation ratio 0.878 . . . Knuth writes in the
article “Mathematical Vanity Plates”:
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Winfried Scharlau tries to answer the question: Who is Alexander Grothendieck?

http://www.ams.org/notices/200808/tx080800930p.pdf

7.5 Questions

7.1** (a) Find an approximation algorithm which approximates MAX CUT with-
out using semidefinite programming: (Hint: What happens if one
assigns xu P t´1,`1u uniformly at random with probability 1{2?)

(b) Let Wn be the adjacency matrix of the n-cycle Cn. Find a closed
formula for SDPpWnq. How does this compare to MAXCUTpWnq?

(c) Let A P Snľ0 be a positive semidefinite matrix. Consider the quadratic
optimization problem

BQPpAq “ max

#

n
ÿ

i“1

n
ÿ

j“1

Aijxixj : x2i “ 1, i P rns

+

and its semidefinite relaxation

SDPBQPpAq “ max

#

n
ÿ

i“1

n
ÿ

j“1

Aijui ¨ uj : }ui}
2 “ 1, i P rns

+

Show that
SDPBQPpAq ě BQPpAq ě

π

2
SDPBQPpAq
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Hint: Let X “ pXijq P Snľ0 be a positive semidefinite matrix. Then
the matrix

`

2
π arcsinXij

˘

1ďi,jďn
´

2

π
X

is positive semidefinite as well (recall: Taylor series of arcsin and
Hadamard product from Chapter 1).

7.2** Define the Erdős-Rényi random graph model Gpn, pq with p P r0, 1s as fol-
lows: Choose a graph with n vertices uniformly at random by connecting
two vertices with probability p. Define accordingly the random weight
matrix W “ pwuvq P Rnˆn by setting wuv “ 1 if tu, vu P E and wuv “ 0 if
tu, vu R E.

Implement the Goemans-Williamson algorithm in SAGE. Use it to estimate
numerically for n “ 100 and p “ m

10 with m “ 1, 2, . . . , 9 the average value
of SDPpW q and the average value of the Goemans-Williamson algorithm.

7.3 (a) Prove Lemma 7.2.2.

(b) Prove

}A}8Ñ1 “ max

#

m
ÿ

i“1

n
ÿ

j“1

Aijxiyj : xi, yj P r´1, 1s, i P rms, j P rns

+

.
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CHAPTER 8

GENERALIZATIONS OF
GROTHENDIECK’S
INEQUALITY AND

APPLICATIONS

In the second part of the last lecture we considered Grothendieck’s inequality:
There is a constant K so that for all matrices A P Rmˆn the inequality

}A}8Ñ1 ď SDP8Ñ1pAq ď K}A}8Ñ1

holds, where:

}A}8Ñ1 “ max

#

m
ÿ

i“1

n
ÿ

j“1

Aijxiyj : x2i “ y2j “ 1, i P rms, j P rns

+

.

and where the semidefinite relaxation equals

SDP8Ñ1pAq “ max

#

m
ÿ

i“1

n
ÿ

j“1

Aijui ¨ vj : }ui} “ }vj} “ 1, i P rms, j P rns

+

.

We saw that }A}8Ñ1 is closely related to the cut norm which is useful in many
graph theoretic applications.

The number }A}8Ñ1 also has a meaning in theoretical physics. It can be
used to find ground states in the Ising model. The Ising model (named after the
physicist Ernst Ising), is a mathematical model of ferromagnetism in statistical
mechanics. The model consists of discrete variables called spins that can be in
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one of two states, namely `1 or ´1, UP or DOWN. The spins are arranged in a
graph, and each spin only interacts with its neighbors.

In many cases, the interaction graph is a finite subgraph of the integer lat-
tice Zn where the vertices are the lattice points and where two vertices are
connected if their Euclidean distance is one. These graphs are bipartite since
they can be partitioned into even and odd vertices, corresponding to the parity
of the sum of the coordinates. Let G “ pV,Eq be a bipartite interaction graph.
The potential function is given by a symmetric matrix A “ pAuvq P SV . Auv “ 0
if u and v are not adjacent, Auv is positive if there is ferromagnetic interaction
between u and v, and Auv is negative if there is antiferromagnetic interaction.
The particles possess a spin x P t´1,`1uV . In the absence of an external field,
the total energy of the system is given by

´
ÿ

tu,vuPE

Auvxuxv.

The ground state of this model is a configuration of spins x P t´1,`1uV which
minimizes the total energy. So computing the xu P t´1,`1u which give }A}8Ñ1

is equivalent to finding the ground state and computing SDP8Ñ1 amounts to
approximate this ground state energy.

In this lecture we consider two generalizations of this bipartite Ising model.
We start by studying the Ising model for arbitrary interaction graphs and we

find approximations of the ground state energy. The quality of this approxima-
tion will clearly depend on properties of the interaction graph. In particular, the
theta number will appear here in an unexpected way.

Figure 8.1: Spins in the XY model
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Another generalization will be the consideration of more complicated spins.
Instead of looking only at spins attaining the values ´1 and `1 as in the Ising
model, the r-vector model considers spins which are vectors in the unit sphere
Sr´1 “ tx P Rr : x ¨ x “ 1u. The case r “ 1 corresponds to the Ising model, the
case r “ 2 to the XY model, the case r “ 3 to the Heisenberg model, and the
case r “ |V | to the Berlin-Kac spherical model. We will derive approximations
of ground state energies

´max
ÿ

tu,vuPE

Au,vxu ¨ xv, for xu P Sr´1 and u P V

for fixed r and for bipartite graphs.
In principle a mixture of both generalizations is possible. We do not give it

here as it would require adding even more technical details.

8.1 The Grothendieck constant of a graph

The Grothendieck constant of an undirected graph G “ pV,Eq is the smallest
constant1 KpGq “ K so that for every symmetric matrix A P SV the inequality

max

$

&

%

ÿ

tu,vuPE

Auvfu ¨ fv : fu P RV , u P V, }fu} “ 1

,

.

-

ď K max

$

&

%

ÿ

tu,vuPE

Auvxuxv : xu “ ˘1, u P V

,

.

-

holds true. The left hand side is the semidefinite relaxation of the right hand
side. Furthermore, the original Grothendieck constant which we studied in the
last lecture is equal to the supremum of KpGq over all bipartite graphs G; see
Exercise 8.1 (a).

The following theorem gives a surprising connection between the Grothendieck
constant of a graph and the theta number.

Theorem 8.1.1. There is a constant C so that for any graph G we have

KpGq ď C lnϑpGq,

where ϑpGq is the theta number of the complementary graph of G.

The proof of this theorem will again be based on an approximation algo-
rithm which performs randomized rounding of the solution of the semidefinite
relaxation.

1Do not confuse the KpGq with KG of the last lecture.
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8.1.1 Randomized rounding by truncating

In the algorithm we use the constant M “ 3
b

1` lnϑpGq. The meaning of it
will become clear when we analyze the algorithm.

1. Solve the semidefinite relaxation

Γmax “ max

$

&

%

ÿ

tu,vuPE

Auvfu ¨ fv : fu P RV , u P V, }fu} “ 1

,

.

-

2. Choose a random vector z “ pzuq P RV so that every entry zu is distributed
independently according to the standard normal distribution with mean 0
and variance 1: zu „ Np0, 1q.

3. Round to real numbers yu “ z ¨ fu for all u P V .

4. Truncate yu by setting

xu “

"

yu if |yu| ďM ,
0 otherwise

We denote by ∆ the optimal value of the ˘1-constrained problem

∆ “ max

$

&

%

ÿ

tu,vuPE

Auvxuxv : xu “ ˘1, u P V

,

.

-

.

Important note. The solution xu which the algorithm determines does not
satisfy the ˘1-constraint. It only lies in the interval r´M,M s by construction.
However, it is easy to show (how? see Exercise 7.3 (b)) that

M2∆ “ max

$

&

%

ÿ

tu,vuPE

Auvxuxv : xu P r´M,M s, u P V

,

.

-

holds. Similarly,

Γmax “ max

$

&

%

ÿ

tu,vuPE

Auvfu ¨ fv : fu P RV , u P V, }fu} ď 1

,

.

-

In the remainder of this section we shall prove the theorem by giving an
explicit bound on the ratio Γmax{∆.
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8.1.2 Quality of expected solution

The expected quality of the solution xu is
ÿ

tu,vuPE

AuvErxuxvs

“
ÿ

tu,vuPE

AuvpEryuyvs ´ Eryupyv ´ xvqs

´ Eryvpyu ´ xuqs ` Erpyu ´ xuqpyv ´ xvqsq

“ Γmax ´ E

»

–

ÿ

tu,vuPE

Auvppyupyv ´ xvq ` yvpyu ´ xuqq

fi

fl

` E

»

–

ÿ

tu,vuPE

Auvpyu ´ xuqpyv ´ xvq

fi

fl

(8.1)

because Eryuyvs “ fu ¨ fv (Exercise 8.1 (b)).

8.1.3 A useful lemma

To estimate the second and third summand in (8.1) we use the following lemma.

Lemma 8.1.2. Let Xu, Yu be random variables with u P V . Assume

ErX2
us ď A and ErY 2

u s ď B.

Then,

E

»

–

ÿ

tu,vuPE

AuvpXuYv `XvYuq

fi

fl ď 2
?
ABpΓmax ´ Γminq,

where

Γmin “ min

$

&

%

ÿ

tu,vuPE

Auvfu ¨ fv : fu P RV , u P V, }fu} ď 1

,

.

-

.

Proof. If ErX2
us ď 1, then

E

»

–

ÿ

tu,vuPE

AuvXuXv

fi

fl P rΓmin,Γmaxs. (8.2)

This follows from the fact we can write
`

ErXuXvs
˘

u,vPV
“
`

fu ¨ fv
˘

u,vPV

because the matrix on the left hand side is positive semidefinite (Exercise 8.1
(c)) and thus has a Cholesky factorization.
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We introduce new variables Uu and Vu to be able to apply (8.2). The new
variables are

Uu “
1

2

´

Xu{
?
A` Yu{

?
B
¯

, Vv “
1

2

´

Xu{
?
A´ Yu{

?
B
¯

.

Then ErU2
us ď 1 and ErV 2

u s ď 1 (verify it). So we can apply (8.2)

E

»

–

ÿ

tu,vuPE

AuvpXuYv `XvYuq

fi

fl

“ 2
?
AB

¨

˝E

»

–

ÿ

tu,vuPE

AuvUuUv

fi

fl´ E

»

–

ÿ

tu,vuPE

AuvVuVv

fi

fl

˛

‚

ď 2
?
ABpΓmax ´ Γminq.

8.1.4 Estimating A and B in the useful lemma

It is clear, that Ery2us “ 1. We find an upper bound for Erpyu ´ xuq
2s in the

following lemma.

Lemma 8.1.3.

Erpyu ´ xuq2s “ 2
1
?

2π

ż 8

M

t2e´t
2
{2dt ďMe´M

2
{2.

Proof. The equation follows from the definition of yu and xu and the normal
distribution. The inequality is coming from the following simple but noteworthy
trick to estimate the integrand by an expression which can be integrated:

t2e´t
2
{2 ď pt2 ` t´2qe´t

2
{2.

Then,
ż

pt2 ` t´2qe´t
2
{2dt “ ´

t2 ` 1

t
e´t

2
{2 ` constant of integration,

and the lemma follows by

2
1
?

2π

ż 8

M

t2e´t
2
{2dt ď

c

2

π
pM ` 1{Mqe´M

2
{2 ďMe´M

2
{2

because the fact M ě 2 implies that
c

2

π
pM ` 1{Mq ď

4

5
pM ` 1{Mq ďM.
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8.1.5 Applying the useful lemma

In (8.1) we estimate the second summand by applying the useful lemma with
Xu “ yu, Yu “ yu ´ xu. We get

´E

»

–

ÿ

tu,vuPE

Auvppyupyv ´ xvq ` yvpyu ´ xuqq

fi

fl ě ´2
a

Me´M2{2pΓmax ´ Γminq.

The third summand in (8.1) we estimate by applying the useful lemma with
Xu “ yu ´ xu, Yu “ ´pyu ´ xuq. We get

E

»

–

ÿ

tu,vuPE

Auvpyu ´ xuqpyv ´ xvq

fi

fl ě ´Me´M
2
{2pΓmax ´ Γminq.

Altogether,
ÿ

tu,vuPE

AuvErxuxvs ě Γmax ´

´

2
a

Me´M2{2 `Me´M
2
{2
¯

pΓmax ´ Γminq.

8.1.6 Connection to the theta number

The connection to the theta number comes in the following lemma.

Lemma 8.1.4.
Γmax ´ Γmin

Γmax
ď ϑpGq.

Proof. Exercise 8.2.

In particular, we have

M ě M̃ “ 3
a

1` lnppΓmax ´ Γminq{Γmaxq.

Furthermore (lnx ď x´ 1),

M̃ ď 3
a

pΓmax ´ Γminq{Γmax

From this it follows that

Me´M
2
{2 ď M̃e´M̃

2
{2 ď

1

10

ˆ

Γmax

Γmax ´ Γmin

˙2

.

So,
ÿ

tu,vuPE

AuvErxuxvs ě Γmax ´
2
?

10
Γmax ´

1

10

Γmax

Γmax ´ Γmin
Γmax,

since Γmax ´ Γmin ě Γmax this leads to
ÿ

tu,vuPE

AuvErxuxvs ě
1

4
Γmax.
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Finally we can put everything together: There is a positive constant C (which is
not difficult to estimate) so that

∆ ě
1

M2

ÿ

tu,vuPE

AuvErxuxvs ě
1

C lnϑpGq
Γmax,

which finishes the proof of Theorem 8.1.1.

8.2 Higher rank Grothendieck inequality

Now we model finding ground states in the r-vector model. Given positive
integers m, n, r and a matrix A “ pAijq P Rmˆn, the Grothendieck problem with
rank-r-constraint is defined as

SDPrpAq “ max

" m
ÿ

i“1

n
ÿ

j“1

Aij xi ¨ yj : x1, . . . , xm P S
r´1, y1, . . . , yn P S

r´1

*

,

where Sr´1 “ tx P Rr : x ¨ x “ 1u is the unit sphere; the inner product matrix
of the vectors x1, . . . , xm, y1, . . . , yn has rank at most r. When r “ 1, then
SDP1pAq “ }A}8Ñ1 because S0 “ t´1,`1u.

When r is a constant that does not depend on the matrix size m, n there
is no polynomial-time algorithm known which solves SDPr. However, it is not
known if the problem SDPr is NP-hard when r ě 2. On the other hand the
semidefinite relaxation of SDPrpAq defined by

SDPm`npAq “ max

" m
ÿ

i“1

n
ÿ

j“1

Aij ui ¨ vj : u1, . . . , um, v1, . . . , vn P S
m`n´1

*

can be computed in polynomial time using semidefinite programming.

Theorem 8.2.1. For all matrices A P Rmˆn we have

SDPrpAq ď SDPm`npAq ď
1

2γprq ´ 1
SDPrpAq,

where

γprq “
2

r

ˆ

Γppr ` 1q{2q

Γpr{2q

˙2

,

and where Γ is the usual Gamma function, which is the extension of the factorial
function.

The first three values of 1
2γprq´1 are:

1

2γp1q ´ 1
“

1

4{π ´ 1
“ 3.65979 . . . ,

1

2γp2q ´ 1
“

1

π{2´ 1
“ 1.75193 . . . ,

1

2γp3q ´ 1
“

1

16{p3πq ´ 1
“ 1.43337 . . .
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For r Ñ 8 the values 1
2γprq´1 converge to 1. In particular, the proof of the

theorem gives another proof of the original Grothendieck’s inequality albeit with
a worse constant KG ď

1
4{π´1 .

8.2.1 Randomized rounding by projecting

The approximation algorithm which we use to prove the theorem is the follow-
ing three-step process.

1. By solving SDPm`npAqwe obtain the vectors u1, . . . , um, v1, . . . , vn P Sm`n´1.

2. Choose Z “ pZijq P Rrˆpm`nq so that every matrix entry Zij is distributed
independently according to the standard normal distribution with mean 0
and variance 1: Zij „ Np0, 1q.

3. Project xi “ Zui{}Zui} P S
r´1 with i “ 1, . . . ,m, and yj “ Zvj{}Zvj} P

Sr´1 with j “ 1, . . . , n.

8.2.2 Extension of Grothendieck’s identity

The quality of the feasible solution x1, . . . , xm, y1, . . . , yn for SDPr is measured
by the expectation

SDPrpAq ě E
„ m
ÿ

i“1

n
ÿ

j“1

Aij xi ¨ yj



.

Lemma 8.2.2. Let u, v be unit vectors in Rm`n and let Z P Rrˆpm`nq be a ran-
dom matrix whose entries are distributed independently according to the standard
normal distribution with mean 0 and variance 1. Then,

E
„

Zu

}Zu}
¨
Zv

}Zv}



“
2

r

ˆ

Γppr ` 1q{2q

Γpr{2q

˙2 8
ÿ

k“0

p1 ¨ 3 ¨ ¨ ¨ p2k ´ 1qq2

p2 ¨ 4 ¨ ¨ ¨ 2kqppr ` 2q ¨ pr ` 4q ¨ ¨ ¨ pr ` 2kqq
pu ¨ vq2k`1.

The case r “ 1 specializes to Grothendieck’s identity from the previous chap-
ter:

ErsignpZuqsignpZvqs “
2

π
arcsinpu ¨ vq

“
2

π

ˆ

u ¨ v `

ˆ

1

2

˙

pu ¨ vq3

3
`

ˆ

1 ¨ 3

2 ¨ 4

˙

pu ¨ vq5

5
` ¨ ¨ ¨

˙

.

The proof of Lemma 8.2.2 requires quite some integration. The computation
starts of by

E
„

Zu

}Zu}
¨
Zv

}Zv}



“ p2π
a

1´ t2q´r
ż

Rr

ż

Rr

x

}x}
¨
y

}y}
exp

ˆ

´
x ¨ x´ 2tx ¨ y ` y ¨ y

2p1´ t2q

˙

dxdy,
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where t “ u ¨v. We will omit the tedious calculation here. For those who cannot
resist a definite integral (like G.H. Hardy): it can be found in [4].

The only three facts which will be important is that the power series expan-
sion

E
„

Zu

}Zu}
¨
Zv

}Zv}



“

8
ÿ

k“0

f2k`1pu ¨ vq
2k`1

has the following three properties:

1. the leading coefficient f1 equals γprq

2. all coefficients f2k`1 are nonnegative

3.
ř8

k“0 f2k`1 “ 1.

8.2.3 Proof of the theorem

Now we have

E
„ m
ÿ

i“1

n
ÿ

j“1

Aij xi ¨ yj



“

m
ÿ

i“1

n
ÿ

j“1

AijE
„

Zui
}Zui}

¨
Zvj
}Zvj}



“ f1

m
ÿ

i“1

n
ÿ

j“1

Aijui ¨ vj `
m
ÿ

i“1

n
ÿ

j“1

Aij

8
ÿ

k“1

f2k`1pui ¨ vjq
2k`1.

The first summand equals f1SDPm`npAq. The second summand is bounded in
absolute value by p1´ f1qSDPm`npAq as you will prove in Exercise 8.1 (d).

Thus for the second sum we have

m
ÿ

i“1

n
ÿ

j“1

Aij

8
ÿ

k“1

f2k`1pui ¨ vjq
2k`1 ě pf1 ´ 1qSDPm`npAq,

which finishes the proof.

8.3 Further reading

Section 8.1: The result is from [1] and the presentation of the proof is closely
following Chapter 10 of the book Approximation Algorithms and Semidefinite
Programming of Gärtner and Matoušek, which mostly follows K. Makarychev’s
thesis.

Section 8.2: The proof is from [3] and it follows the idea of Alon and Naor
[2, Section 4] which in turn relies on ideas of Rietz.

More on the definite integral: When working with power series expansions
it is sometimes useful to use hypergeometric functions for this. For instance we
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have

8
ÿ

k“0

p1 ¨ 3 ¨ ¨ ¨ p2k ´ 1qq2

p2 ¨ 4 ¨ ¨ ¨ 2kqppr ` 2q ¨ pr ` 4q ¨ ¨ ¨ pr ` 2kqq
pu ¨ vq2k`1

“ pu ¨ vq 2F1

ˆ

1{2, 1{2
r{2` 1

; pu ¨ vq2
˙

,

where 2F1 is a hypergeometric function. Hypergeometric functions are a clas-
sical subject in mathematics. In fact, many (all?) functions you know, are hy-
pergeometric functions. However the topic of hypergeometric functions seems
somehow to be too classical for many modern universities.
In case you want to know more about them: The book ”A=B” by Petkovsek,
Wilf and Zeilberger

http://www.math.upenn.edu/~wilf/AeqB.html

is a good start.

8.4 Exercises

8.1** (a) Why does Theorem 8.1.1 give a proof of the original Grothendieck
inequality? Which explicit upper bound for KG does it provide? (De-
termine a concrete number.)

(b) Show that Eryuyvs “ fu ¨ fv holds.

(c) Prove that the matrix
`

ErXuXvs
˘

u,vPV

is positive semidefinite.

(d) Show that
ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

n
ÿ

j“1

Aij

8
ÿ

k“1

f2k`1pui ¨ vjq
2k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ď p1´ f1qSDPm`npAq.

8.2 Let G “ pV,Eq be a graph. A vector k-coloring of G is a collection of unit
vectors fu P RV so that

fu ¨ fv “ ´
1

k ´ 1
if tu, vu P E.

(a) Show that if G is colorable with k colors, then it also has a vector
k-coloring.

(b) Find a connection between vector k-colorings and the theta number.

(c) Prove Lemma 8.1.4.
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Part III

Applications in geometry
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CHAPTER 9

OPTIMIZING WITH
ELLIPSOIDS AND
DETERMINANTS

What is an ellipsoid?

There are two convenient ways to represent an ellipsoid.

1. We can define ellipsoids explicitly as the image of the unit ball under an
invertible affine transformation

EA,c “ tAx` c : x P Bu, where B “ tx P Rn : }x} ď 1u,

is the unit ball, where A P Rnˆn is an invertible matrix, and where c P Rn is a
translation vector.

From linear algebra it is known that every invertible matrix A has a factor-
ization of the form A “ XP where X P Sną0 is a positive definite matrix and
P P Opnq is an orthogonal matrix. So we may assume in the following that the
matrix A which defines the ellipsoid EA,c is a positive definite matrix.

In fact one can find this factorization (also called polar factorization) from
the singular value decomposition of A

A “ UTΣV, U, V P Opnq, Σ “ diagpσ1, . . . , σnq,

where σi ě 0 are the singular values of A. Then,

A “ XP with X “ UTΣU, P “ UTV.
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The singular values of A are at the same time the lengths of the semiaxis of the
ellipsoid EA,c.

The volume of the ellipsoid equals

vol EA,c “ detA volB where volB “
πn{2

Γpn{2` 1q
.

2. We can define ellipsoids implicitly by a strictly convex quadratic inequal-
ity: Let A P Sną0 be a positive definite matrix, then

EA,c “ tAx` c : }x} ď 1u

“ tx` c : }A´1x} ď 1u

“
 

x P Rn : px´ cqTA´2px´ cq ď 1
(

.

Ellipsoids are important geometric objects partially due to their simple de-
scriptions. They can be used for instance to approximate other more compli-
cated convex sets. In this lecture we will use ellipsoids to approximate poly-
topes. In particular we will answer the questions:

• Inner approximation: How can we determine an ellipsoid contained in a
polytope which has largest volume?

• Outer approximation: How can we determine an ellipsoid containing a
polytope which has smallest volume?

• Can we estimate the quality of this inner and of this outer approximation?

9.1 Determinant maximization problems

To be able to maximize the volume of ellipsoids we want to maximize the de-
terminant of positive definite matrices. In the next section we will see that the
logarithm of the determinant is a concave function so that determinant maxi-
mization can be dealt with tools from convex optimization.

In fact one can reformulate determinant maximization problems as semidef-
inite programs but we will not do this here; dealing directly with determinant
maximization problem is generally easier and more efficient.

Here we give the primal-dual pair of a determinant maximization problem
together with the corresponding duality theory. All in all it is very similar to
semidefinite programming, only the objective function is not linear.

The primal determinant maximization problem is defined as

sup n` xC,Xy ` ln detX

X P Sną0

xAj , Xy “ bj , j “ 1, . . . ,m,
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and its dual is

inf bTy ´ ln det

˜

m
ÿ

j“1

yjAj ´ C

¸

y P Rm
m
ÿ

j“1

yjAj ´ C P Sną0

We have statements for weak duality and strong duality, which are very sim-
ilar to Theorem 3.4.1. A slight difference is complementary slackness and the
optimality criterion. The optimality criterion says: Suppose that X is feasible
for the primal, y is feasible for the dual and the equality

X

˜

m
ÿ

j“1

yjAj ´ C

¸

“ In

holds. Then X and y are both optimal (see Exercise 9.1 (a)).
In many cases it is useful to combine determinant maximization problems

with linear conic programs. In these cases we want to work with the following
primal-dual pair.

Primal:

sup n` xC,Xy ` ln detX ` cTx

X P Sną0

x P K

xAj , Xy ` a
T
j x “ bj , j “ 1, . . . ,m

Dual:

inf bTy ´ ln det

˜

m
ÿ

i“1

yjAj ´ C

¸

y P Rm
m
ÿ

j“1

yjAj ´ C P Sną0

m
ÿ

j“1

yjaj ´ c P K
˚

9.2 Convex spectral functions

In this section we shall prove that the function X ÞÑ ´ ln detX is a (strictly)
convex function. For this we will give two proofs. One simple adhoc proof and
one which is conceptual. The second proof will characterize all convex functions
on symmetric matrices which only depend on the eigenvalues.
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9.2.1 Minkowski’s determinant inequality

Theorem 9.2.1. The function

F : Sną0 Ñ R, X ÞÑ ´ ln detX

is a strictly convex function on the set of positive definite matrices.

Proof. It suffices to show that the function X ÞÑ ´ ln detX is strictly convex on
any line segment

rX,Y s “ ttX ` p1´ tqY : t P r0, 1s, X ‰ Y u

in Sną0. Therefore, we compute the second derivative of the one-dimensional
function fptq “ ´ ln detptX`p1´ tqY q and see that it is always strictly positive:
From linear algebra we know that there is a matrix T with determinant 1 whose
inverse simultaneously diagonalizes X and Y . Hence,

X “ TT diagpx1, . . . , xnqT and Y “ TT diagpy1, . . . , ynqT

and

fptq “ ´ lnpy1 ` tpx1 ´ y1qq ´ ¨ ¨ ¨ ´ lnpyn ` tpxn ´ ynqq,

Bf

Bt
ptq “ ´

x1 ´ y1
y1 ` tpx1 ´ y1q

´ ¨ ¨ ¨ ´
xn ´ yn

yn ` tpxn ´ ynq
,

B2f

Bt2
ptq “

ˆ

x1 ´ y1
y1 ` tpx1 ´ y1q

˙2

` ¨ ¨ ¨ `

ˆ

xn ´ yn
yn ` tpxn ´ ynq

˙2

ą 0.

With the same argument we can derive Minkowski’s determinental inequality:

pdetpX ` Y qq1{n ě pdetXq1{n ` pdetY q1{n

which holds for all X,Y P Sną0.
Geometrically, this means that in the cone of positive semidefinite matrices,

the set of matrices having determinant greater or equal than a given constant is
a convex set.

9.2.2 Davis’ characterization of convex spectral functions

The function F pXq “ ´ ln detX is an example of a convex spectral function.

Definition 9.2.2. A convex spectral function is a convex function

F : Sn Ñ RY t8u

where F pXq only depends on the spectrum (the collection of the eigenvalues λ1pXq,
. . . , λnpXq) of the matrix X. In other words, by the spectral theorem,

F pXq “ fpAXATq for all A P Opnq.

Hence, there is a function f : Rn Ñ R Y t8u which defines F by the following
equation

F pXq “ fpλ1pXq, . . . , λnpXqq.
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Note that this implies that the function f is symmetric, i.e. its value stays the
same if we permute its n arguments; it is invariant under permutation of the
variables.

In our example

fpλ1, . . . , λnq “

$

&

%

´ ln
n
ś

i“1

λi if all λi ą 0,

8 otherwise.

The following theorem is due to Davis (1957). It gives a complete charac-
terization of convex spectral functions.

Theorem 9.2.3. A function F : Sn Ñ R Y t8u is a convex spectral function if
and only if the function f : Rn Ñ RY t8u defined by

F pXq “ fpλ1pXq, . . . , λnpXqq

is symmetric and convex. In particular,

F pXq “ max
APOpnq

fppAXATq11, . . . , pAXA
Tqnnq

holds.

Proof. One implication follows without any work.
Let F be a convex spectral function. Then f is symmetric by definition. It

is convex since F and f “coincide” on diagonal matrices. Let Λ “ pλ1, . . . , λnq,
M “ pµ1, . . . , µnq and t P r0, 1s be given. Then

fptΛ` p1´ tqMq “ F pdiagptΛ` p1´ tqMqq

“ F ptdiagpΛq ` p1´ tqdiagpMqq

ď tF pdiagpΛqq ` p1´ tqF pdiagpMqq

“ tfpΛq ` p1´ tqfpMq.

The proof of the other implication is more interesting. It is an application of
Birkhoff’s theorem (cf. Chapter 1.7.3), see also the geometric interpretation at
the end of this section.

If we show that

F pXq “ max
APOpnq

fppAXATq11, . . . , pAXA
Tqnnq

holds, then it follows that F is convex because it is a maximum of a family of
convex functions.

For this consider the spectral decomposition of X

X “

n
ÿ

j“1

λjuju
T
j .
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with orthonormal basis u1, . . . , un. If we assemble these vectors as row vectors
in the orthogonal matrix A we see that

fppAXATq11, . . . , pAXA
Tqnnq “ fpλ1, . . . , λnq “ F pXq

holds. Thus,

F pXq ď max
APOpnq

fppAXATq11, . . . , pAXA
Tqnnq.

The other inequality. For A P Opnq define Y “ AXAT. Then,

Yii “ eTi Y ei “ eTi

˜

n
ÿ

j“1

λjAujpAujq
T

¸

ei “
n
ÿ

j“1

λjppAujq
Teiq

2.

Here is the trick: The matrix

S “ pSijq1ďi,jďn with Sij “ ppAujq
Teiq

2

is doubly stochastic (why?). So by Birkhoff’s theorem S is a convex combination
of permutation matrices Pσ.

S “
ÿ

σPSn

µσP
σ, where µσ ě 0,

ÿ

σPSn

µσ “ 1.

Hence by the convexity and the symmetry of f , we have

fpY11, . . . , Ynnq “ f

˜

ÿ

σPSn

µσ

n
ÿ

j“1

Pσ1jλj , . . . ,
ÿ

σPSn

µσ

n
ÿ

j“1

Pσnjλj

¸

ď
ÿ

σPSn

µσf

˜

n
ÿ

j“1

Pσ1jλj , . . . ,
n
ÿ

j“1

Pσnjλj

¸

“
ÿ

σPSn

µσfpλσ´1p1q, . . . , λσ´1pnqq

“
ÿ

σPSn

µσfpλ1, . . . , λnq

“ fpλ1, . . . , λnq

“ F pXq.

Hence, for all A P Opnq

fppAXATq11, . . . , pAXA
Tqnnq ď F pXq,

and the theorem is proved.

We conclude this excursion with a geometric observation which unifies
some of our previous considerations. If we project matrices in the Schur-
Horn orbitope of X which is defined by

convtAXAT : A P Opnqu
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on the diagonal elements, then we get the permutahedron given by the
eigenvalues λ1, . . . , λn of X which is defined as

convtpλσp1q, . . . , λσpnqq : σ P Snu.

From this the Hoffman-Wielandt inequality and the characterization of
Davis follow.

Another side remark: Davis’ characterization together with Fan’s theo-
rem (Theorem 2.2.2) can be used to determine an explicit linear matrix
inequality modeling the condition F pXq ď t for many functions F . See
Ben-Tal, Nemirovski [3][Proposition 4.2.1] for the complete statement.
A similar argument also works for functions depending only on singular
values.

9.3 Approximating polytopes by ellipsoids

Now we are ready to describe how ellipsoids can be used to approximate poly-
topes.

Recall that one can represent a polytope in two ways. Either as a convex
hull of finitely many points

P “ convtx1, . . . , xNu P Rn,

or as a bounded intersection of finitely many halfspaces

P “ tx P Rn : aT1x ď b1, . . . , a
T
mx ď bmu.

The first representation, also called the V-representation, is an explicit pa-
rameterization whereas the second one, also called the H-representation, is
implicit. In general it is computationally demanding to transform one represen-
tation into the other.

9.3.1 Inner approximation

To formulate the condition that an ellipsoid EA,c is contained in a polytope P
we will use the explicit representation of the ellipsoid and the implicit represen-
tation of the polytope.

Proposition 9.3.1. The ellipsoid

EA,c “ tAx` c : }x} ď 1u

is contained in the polytope

P “ tx P Rn : aT1x ď b1, . . . , a
T
mx ď bmu

if and only if the inequality
}Aai} ď bi ´ a

T
i c

holds for all i “ 1, . . . ,m.
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Proof. We have

aTi pAx` cq ď bi @x P Rn : }x} ď 1

ðñ max
x:}x}ď1

pAaiq
Tx ď bi ´ a

T
i c

ðñ }Aai} ď bi ´ a
T
i c,

because by the Cauchy-Schwarz inequality maxx:}x}ď1pAaiq
Tx “ }Aai}.

The inequality }Aai} ď bi ´ aTi c can be directly modeled by a second order
cone programming constraint or, using the Schur complement, by a semidefinite
constraint.

9.3.2 Outer approximation

To formulate the condition that an ellipsoid EA,c is containing a polytope P we
will use the implicit representation of the ellipsoid and the explicit representa-
tion of the polytope.

Proposition 9.3.2. The ellipsoid

EA´1{2,c “ tx P Rn : px´ cqTApx´ cq ď 1u

contains the polytope
P “ convtx1, . . . , xNu

if and only if the matrix
ˆ

s dT

d A

˙

is positive semidefinite with Ac “ d and the inequality

xTi Axi ´ 2xTi d` s ď 1

holds for all i “ 1, . . . , N .

Proof. The point xi lies in the ellipsoid EA´1{2,c if and only if

pxi ´ cq
TApxi ´ cq ď 1

ðñ xTi Axi ´ 2xTi Ac` c
TAc ď 1

ðñ xTi Axi ´ 2xTi d` d
TA´1d ď 1

ðñ xTi Axi ´ 2xTi d` s ď 1, where s ě dTA´1d.

Because the matrix A is positive definite we can express s ě dTA´1d using the
Schur complement as

ˆ

s dT

d A

˙

ľ 0.
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The constraint
xTi Axi ´ 2xTi d` s ď 1

can be expressed by the linear matrix inequality
Bˆ

1 xTi
xi xix

T
i

˙

,

ˆ

s dT

d A

˙F

ď 1.

9.4 The Löwner-John ellipsoids

Using Proposition 9.3.1 and Proposition 9.3.2 one can find the ellipsoid of
largest volume contained in a polytope P as well as the ellipsoid of smallest vol-
ume containing P by solving determinant maximization problems. In both cases
one maximizes the logarithm of the determinant of A. Because the logarithm of
the determinant is a strictly concave function both optimization problems have
a unique solution. The ellipsoids are called the Löwner-John ellipsoids1 of P .
Notation: EinpP q for the ellipsoid giving the optimal inner approximation of P
and EoutpP q for the ellipsoid giving the optimal outer approximation of P .

The following theorem can be traced back to John (1948). Historically, it is
considered to be one of the first theorems involving an optimality condition for
nonlinear optimization.

Theorem 9.4.1. (a) Let P be a polytope. The Löwner-John ellipsoid EoutpP q is
equal to the unit ball if and only if P is contained in the unit ball and there
is are positive numbers λ1, . . . , λN and vertices x1, . . . , xN of P having unit
length so that

N
ÿ

i“1

λixi “ 0 and
N
ÿ

i“1

λixix
T
i “ In

holds.

(b) Let P be a polytope. The Löwner-John ellipsoid EinpP q is equal to the unit
ball if and only if P is containing the unit ball and if there are unit vectors
x1, . . . , xN on the boundary of P and there are positive numbers λ1, . . . , λN
so that

N
ÿ

i“1

λixi “ 0 and
N
ÿ

i“1

λixix
T
i “ In

holds.

Before we give the proof we comment on the optimality conditions. The
first equality makes sure that not all the vectors x1, . . . xN lie on one side of
the sphere. The second equality shows that the vectors behave similar to an

1In the literature the terminology seems to differ from author to author.
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orthonormal basis in the sense that we can compute the inner product of two
vectors x and y by

xTy “
N
ÿ

i“1

λipx
T
i xqpx

T
i yq.

Proof. Statement (a) follows from the optimality conditions of the underlying
determinant maximization problem. See Exercise 9.1 (b).

Statement (b) follows from (a) by polarity:

Let C Ď Rn be a convex body. Its polar body C˚ is

C˚ “ tx P Rn : xTy ď 1 for all y P Cu.

The unit ball is self-polar, B˚ “ B. Furthermore, for every ellipsoid E we have

vol E vol E˚ ě pvolBq2,

because direct verification yields

pEA,cq˚ “ EA1,c1 with A1 “

ˆ

ATA

p1` 1
4c

TpATAq´1cq

˙´1{2

, c1 “ ´
1

2
pATAq´1c,

and so
detAdetA1 ě 1.

Let P be a polytope and assume that EinpP q “ B. We will now prove by
contradiction that B “ EoutpP˚q. For suppose not. Then the volume of EoutpP˚q
is strictly smaller than the volume of B since P˚ Ď B. However, by taking the
polar again we have

EoutpP˚q˚ Ď P,

and vol EoutpP˚q˚ ą volpBq a contradiction. So by (a) we have for vertices
x1, . . . , xN of P , which are of unit length, the conditions

N
ÿ

i“1

λixi “ 0 and
N
ÿ

i“1

λixix
T
i “ In,

for positive λ1, . . . , λN . Then the unit vectors xi also lie on the boundary of the
polytope P because

P “ pP˚q˚ “ tx P Rn : xTi x ď 1, i “ 1, . . . , Nu.

Now let
EinpP q “ tx P Rn : px´ cqTA´2px´ cq ď 1u

be the optimal inner approximation of P . We want to derive from the optimality
conditions that detA ď 1 holds.
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First we realize that the second optimality condition implies that the equa-
tion

řN
i“1 λi “ n holds; simply take the trace.

The points
yi “ c` pxTi A

2xiq
´1{2A2xi

lie in EinpP q and so yTi xi ď 1 holds because this inequality determines a sup-
porting hyperplanes of P . Then,

n ě
N
ÿ

i“1

λiy
T
i xi “

N
ÿ

i“1

λipx
T
i A

2xiq
1{2

where we used the first equality when simplifying
řN
i“1 λic

Txi “ 0. The trace
of A can be estimated by using the second equality

xA, Iny “
@

A,
N
ÿ

i“1

λixix
T
i

D

“

N
ÿ

i“1

λix
T
i Axi ď

N
ÿ

i“1

λipx
T
i A

2xiq
1{2 ď n,

where we used in the first inequality the spectral factorization of A “ PTDP ,
with orthogonal matrix P and diagonal matrix D, together with the Cauchy-
Schwarz inequality

pxTi P
TDqpPxiq ď px

T
i P

TD2Pxiq
1{2ppPxiq

TPxiq
1{2 “ pxTi P

TD2Pxiq
1{2.

Now we finish the proof by realizing that (lnx ď x´ 1)

ln detA ď TrpAq ´ n ď 0,

and so detA ď 1.

This optimality condition is helpful in surprisingly many situation. For ex-
ample one can use them to prove an estimate on the quality of the inner and
outer approximation.

Corollary 9.4.2. Let P Ď Rn be an n-dimensional polytope, then there are invert-
ible affine transformations Tin and Tout so that

B “ TinEinpP q Ď TinP Ď nTinEinpP q “ nB

and
1

n
B “

1

n
ToutEoutpP q Ď ToutP Ď ToutEoutpP q “ B

holds.

Proof. We only prove the first statement, the second follows again by polarity.
It is clear that we can map EinpP q to the unit ball by an invertible affine

transformation. So we can use the equations

N
ÿ

i“1

λixi “ 0 and
N
ÿ

i“1

λixix
T
i “ In
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to show TinP Ď nEinpP q. By taking the trace on both sides of the second
equations we also have

N
ÿ

i“1

λi “ n.

The supporting hyperplane through the boundary point xi of P is orthogonal
the unit vector xi (draw a figure). Hence,

B Ď P Ď Q “ tx P Rn : xTi x ď 1, i “ 1, . . . , Nu.

Let x be in Q, then because xTxi P r´}x}, 1s we have

0 ď
N
ÿ

i“1

λip1´ x
Txiqp}x} ` x

Txiq

“ }x}
N
ÿ

i“1

λi ` p1´ }x}q
N
ÿ

i“1

λix
Txi ´

N
ÿ

i“1

λipx
Txiq

2

“ }x}n` 0´ }x}2,

and so }x} ď n.

If P is centrally symmetric, i.e. P “ ´P , then in the above inequalities n
can be replaced by

?
n. See Exercise 9.1 (c).

Another nice mathematical application of the uniqueness Löwner-John el-
lipsoids is the following.

Proposition 9.4.3. Let P be a polytope and consider the group G of all affine
transformations which map P into itself. Then there is an affine transformation T
so that TGT´1 is a subgroup of the orthogonal group.

Proof. Since the volume is invariant under affine transformations with determi-
nant equal to 1 or ´1 (only those affine transformations can be in G) and since
the Löwner-John ellipsoid is the unique maximum volume ellipsoid contained
in a polytope we have

AEinpP q “ EinpAP q “ EinpP q

for all A P G.
Let T be the affine transformation which maps the Löwner-John ellipsoid

EinpP q to the unit ball B. Then for every A P G

TAT´1B “ TAEinpP q “ TEinpP q “ B.

So TAT´1 leaves the unit ball invariant, hence it is an orthogonal transforma-
tion.
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9.5 Further reading

Many examples of determinant maximization problems are in Vandenberghe,
Boyd and Wu [5]. They treat matrix completion problems, risk-averse linear
estimation, experimental design, maximum likelihood estimation of structured
covariance matrices, and Gaussian channel capacity. Next to this, they also de-
velop the duality theory and an interior point algorithm for determinant maxi-
mization problems.

For more information on convex spectral functions and general eigenvalue
optimization problems the survey [4] by Lewis is a good start.

Many more examples of computing ellipsoidal approximations are in the
book [3][Chapter 4.9], especially ellipsoidal approximations of unions and in-
tersections of ellipsoids and approximating sums of ellipsoids.

The Löwner-John ellipsoid is an important and useful concept in geometry,
optimization, and functional analysis. For instance, Lenstra’s polynomial time
algorithm for solving integer programs in fixed dimension is based on it (see
LNMB course: Integer programming methods).

Another excellent and very elegant source on applications of the Löwner-
John ellipsoid in geometry and functional analysis is by Ball [2]. He uses John’s
optimality criterion to give a reverse isoperimetric inequality (the ratio between
surface and volume is maximized by cubes) and to prove Dvoretsky’s theorem
(high dimensional convex bodies have almost ellipsoidal slices). The proof of
the second part of Theorem 9.4.1 (b) is from the beautiful note of Ball [1].

One general strategy when working with convex sets is to find an affine
transformation of the convex set so that the unit ball and the convex set are
as close as possible. Here the notion of closeness depends of course on the
question. In many cases these affine transformations can be found by solving
an optimization problem involving positive definite matrices.

9.6 Exercises

9.1** (a) Prove weak duality of determinant maximization problems: Let X be
a solution of the primal and let y be a solution of the dual. Then,

bTy ´ ln det

˜

m
ÿ

j“1

yjAj ´ C

¸

´ pn` xC,Xy ` ln detXq ě 0.

Hint: lnx ď x´ 1.

(b) Prove Theorem 9.4.1 (a).

(c) Show the strengthening of Corollary 9.4.2

B “ TinEinpP q Ď TinP Ď
?
nTinEinpP q “

?
nB

in the case of centrally symmetric polytopes P .
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(d) Find a polytope P for which the inclusion

B Ď P Ď nB

cannot be improved. Find a centrally symmetric polytope for which

B Ď P Ď
?
nB

cannot be improved.

9.2 (a) Show that the sum of the largest k eigenvalues of a symmetric matrix
is a convex spectral function.

(b) True or false: The second largest eigenvalue of a symmetric matrix is
a convex spectral function.

9.3 Compute the gradient of the function

F : Sną0 Ñ R, X ÞÑ ´ ln detX.
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CHAPTER 10

EUCLIDEAN EMBEDDINGS:
LOW DIMENSION

In many situations one is interested in finding solutions to semidefinite pro-
grams having a small rank. For instance, if the semidefinite program arises
as relaxation of a combinatorial optimization problem (like max-cut or max
clique), then its rank one solutions correspond to the solutions of the underly-
ing combinatorial problem. Finding an embedding of a weighted graph in the
Euclidean space of dimension d, or finding a sum of squares decomposition of
a polynomial with d squares, amounts to finding a solution of rank at most d
to some semidefinite program. As another example, the minimum dimension of
an orthonormal representation of a graph G “ pV,Eq (introduced in Chapter 6)
is the minimum rank of a positive semidefinite matrix X satisfying Xij “ 0 for
all non-edges.

This chapter is organized as follows. First we show some upper bounds on
the rank of solutions to semidefinite programs. For this we have to look into
the geometry of the faces of the cone of positive semidefinite matrices. Then we
discuss several applications: Euclidean embeddings of weighted graphs, hidden
convexity results for images of quadratic maps, and the S-lemma which deals
with quadratic inequalities. We also discuss complexity issues related to the
problem of determining the smallest possible rank of solutions to semidefinite
programs.
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10.1 Geometry of the positive semidefinite cone

10.1.1 Faces of convex sets

We begin with some preliminary facts about faces of convex sets which we will
use to study the faces of the positive semidefinite cone Snľ0.

Let K be a convex set in Rn. A set F Ď K is called a face of K if for all x P F
the following holds:

x “ ty ` p1´ tqz with t P p0, 1q, y, z P K ùñ y, z P F.

Clearly any intersection of faces is again a face. Hence, for x P K, the smallest
face containing x is well defined (as the intersection of all the faces of K that
contain x), let us denote it by FKpxq.

A point z P Rn is called a perturbation of x P K if x˘ εz P K for some ε ą 0;
then the whole segment rx´ εz, x` εzs is contained in the face FKpxq.

Lemma 10.1.1. Given a convex set K and x P K, let FKpxq be the smallest face
of K containing x. The following properties hold.

(i) x belongs to the relative interior of FKpxq.

(ii) FKpxq is the unique face of K containing x in its relative interior.

Proof. (i) Assume for a contradiction that x R relint FKpxq. Then, by applying
the separation theorem from Theorem 1.3.8 (i), there exists a hyperplane

Hc,γ “ ty : cTy “ γu

separating the two convex sets txu and FKpxq properly: There exist a nonzero
vector c P Rn and γ P R such that

cTx ě γ, cTy ď γ @y P FKpxq, and FKpxq Ę Hc,γ .

Then the set FKpxq XHc,γ is a face of K, which contains x and is strictly con-
tained in FKpxq (check it). This contradicts the fact that FKpxq is the smallest
face containing x.

(ii) Let F be a face ofK containing x in its relative interior. Then FKpxq Ď F .
To show the reverse inclusion, pick y P F , y ‰ x. As x lies in the relative interior
of F , Lemma 1.2.1 implies that there exists a point z P F and a scalar t P p0, 1q
such that x “ ty ` p1 ´ tqz. As FKpxq is a face, we deduce that y, z P FKpxq.
This shows that F Ď FKpxq.

Hence, x lies in the relative interior of K precisely when FKpxq “ K and x
is an extreme point of K, i.e.,

x “ ty ` p1´ tqz with y, z P K and t P p0, 1q ùñ y “ z “ x,

precisely when FKpxq “ txu. Recall that if K does not contain a line then it has
at least one extreme point.
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10.1.2 Faces of the positive semidefinite cone

Here we describe the faces of the positive semidefinite cone Snľ0. We show that
each face of Snľ0 can be identified to a smaller semidefinite cone Srľ0 for some
0 ď r ď n.

Proposition 10.1.2. Let A P Snľ0, r “ rankpAq, and let F pAq “ FSnľ0
pAq denote

the smallest face of Snľ0 containing A. Let u1, ¨ ¨ ¨ , un be an orthonormal set of
eigenvectors of A, where u1, ¨ ¨ ¨ , ur correspond to its nonzero eigenvalues, and let
U (resp., U0) be the matrix with columns u1, ¨ ¨ ¨ , un (resp., u1, ¨ ¨ ¨ , ur). The map

φA : Sr Ñ Sn

Z ÞÑ U

ˆ

Z 0
0 0

˙

UT “ U0ZU
T
0

(10.1)

is a rank-preserving isometry, which identifies F pAq and Srľ0:

F pAq “ φpSrľ0q “

"

U

ˆ

Z 0
0 0

˙

UT “ U0ZU
T
0 : Z P Srľ0

*

.

Moreover, F pAq is given by

F pAq “ tX P Snľ0 : KerX Ě KerAu (10.2)

and its dimension is equal to
`

r`1
2

˘

.

Proof. Set D “ diagpλ1, ¨ ¨ ¨ , λr, 0, ¨ ¨ ¨ , 0q P Snľ0, D0 “ diagpλ1, ¨ ¨ ¨ , λrq P Srą0,
where λi is the eigenvalue for eigenvector ui, C “ diagp0, ¨ ¨ ¨ , 0, 1, ¨ ¨ ¨ , 1q P
Snľ0, where the first r entries are 0 and the last n ´ r entries are 1. Finally,
set Q “ UCUT “

řn
i“r`1 uiu

T
i . Then, A “ UDUT and xC,Dy “ 0. Moreover,

xQ,Ay “ 0, as the vectors ur`1, ¨ ¨ ¨ , un span the kernel of A.
As Q ľ 0, the hyperplane

H “ tX P Sn : xQ,Xy “ 0u

is a supporting hyperplane for Snľ0 and the intersection

F “ Snľ0 XH “ tX P Snľ0 : xQ,Xy “ 0u

is a face of Snľ0 containing A. Moreover,

F “ tX P Snľ0 : KerX Ě KerAu.

Indeed, the condition xQ,Xy “ 0 reads
ř

i“r`1 u
T
i Xui “ 0. For X ľ 0,

uTi Xui ě 0 for all i, so that xQ,Xy “ 0 if and only if uTi Xui “ 0 or, equiv-
alently, Xui “ 0 for all i P tr ` 1, ¨ ¨ ¨ , nu, i.e., KerA Ď KerX.

We now show that F “ F pAq. In view of Lemma 10.1.1, it suffices to show
that A lies in the relative interior of the face F .
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For this, consider the linear bijection X ÞÑ Y “ UTXU . It maps Snľ0 onto
itself, Q onto C, and A onto D, and the face F onto the face

F 1 “ tUTXU : X P F u.

Hence, F 1 contains D and F 1 is equal to

F 1 “ tY P Snľ0 : xC, Y y “ 0u.

Any matrix Y P F 1 has its last n ´ r diagonal entries equal to 0 and thus it has
the block form:

Y “

ˆ

Z 0
0 0

˙

where Z P Srľ0.

Therefore, the faces F 1 and F are given by

F 1 “

"ˆ

Z 0
0 0

˙

: Z P Srľ0

*

, F “

"

U

ˆ

Z 0
0 0

˙

UT : Z P Srľ0

*

.

As D0 ą 0, D0 lies in the interior of Srľ0. This implies that D lies in the relative
interior of F 1 and, in turn, that A belongs to the relative interior of F . Thus,
F “ F pAq.

Summarizing, we have shown that F pAq can be identified with Srľ0 via the
rank-preserving isometry:

Z ÞÑ Y “

ˆ

Z 0
0 0

˙

ÞÑ X “ UY UT

D0 ÞÑ D ÞÑ A
Srľ0 Ñ F 1 Ñ F pAq

and the dimension of F is equal to dimSrľ0 “
`

r`1
2

˘

.

As a direct application, the possible dimensions for the faces of the cone Snľ0

are
`

r`1
2

˘

for r “ 0, 1, ¨ ¨ ¨ , n. Moreover there is a one-to-one correspondence
between the lattice of faces of Snľ0 and the lattice of subspaces of Rn:

U subspace of Rn ÞÑ FU “ tX P Snľ0 : KerX Ě Uu, (10.3)

with U1 Ď U2 ðñ FU1 Ě FU2 .

10.1.3 Faces of spectrahedra

Consider an affine subpsace A in the space of symmetric matrices, of the form

A “ tX P Sn : xAj , Xy “ bj pj P rmsqu, (10.4)

whereA1, ¨ ¨ ¨ , Am are given symmetric matrices and b1, ¨ ¨ ¨ , bm are given scalars.
The codimension of A is

codim A “ dimSn ´ dimA “ dimxA1, ¨ ¨ ¨ , Amy.

157



If we intersect the cone of positive semidefinite matrices with the affine space
A, we obtain the convex set

K “ Snľ0 XA “ tX P Sn : X ľ 0, xAj , Xy “ bj pj P rmsqu. (10.5)

This is the feasible region of a typical semidefinite program (in standard primal
form). Such a convex set is called a spectrahedron – this name is in the analogy
with polyhedron, which corresponds to the feasible region of a linear program
and spectra reflects the fact that the definition involves spectral properties of
matrices.

An example of a spectrahedron is the elliptope

En “ tX P Snľ0 : Xii “ 1 @i P rnsu, (10.6)

which is the feasible region of the semidefinite relaxation for Max-Cut consid-
ered in earlier chapters.

As an application of the description of the faces of the positive semidefinite
cone in Proposition 10.1.2, we can describe the faces of K.

Proposition 10.1.3. Let K be the spectrahedron (15.2). Let A P K, r “ rankpAq,
and let U,U0 be as in Proposition 10.1.2. Define the affine space in Sr:

AA “ tZ P Sr : xUT
0 AjU0, Zy “ bj @j P rmsu, (10.7)

and the corresponding linear space:

LA “ tZ P Sr : xUT
0 AjU0, Zy “ 0 @j P rmsu. (10.8)

The map φ from (10.1) identifies FKpAq and Srľ0 XAA: FKpAq “ φpSrľ0 XAAq.
Moreover, FKpAq is given by

FKpAq “ tX P K : KerX Ě KerAu (10.9)

and its dimension is equal to

dimFKpAq “ dimAA “
ˆ

r ` 1

2

˙

´ dimxUT
0 AjU0 : j P rmsy. (10.10)

Finally, a matrix B P Sn is a perturbation of A if and only if B P U0LAUT
0 .

Proof. As K “ Snľ0 X A, we have that FKpAq “ F pAq X A, where F pAq is the
smallest face of Snľ0 containing A, and (10.9) follows from (10.2). If X “ φpZq
is the image of Z P Sr under the map φ from (10.1) then

xAj , Xy “ xU
TAjU,U

TXUy “

B

UTAjU,

ˆ

Z 0
0 0

˙F

“ xUT
0 AjU0, Zy.

Therefore, the face FKpAq is the image of Srľ0 X AA under the map φ and its
dimension is equal to dimAA. Finally, B is a perturbation of A if and only if
A˘ εB P FKpAq for some ε ą 0, which is equivalent to B P U0LAUT

0 using the
description of FKpAq.
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Corollary 10.1.4. Let K be defined as in (15.2). Let A P K and r “ rankpAq. If
A is an extreme point of K then

ˆ

r ` 1

2

˙

ď codim A ď m (10.11)

In particular, K contains a matrix A whose rank r satisfies

r ď
´1`

?
8m` 1

2
. (10.12)

Proof. If A is an extreme point of K then dimFKpAq “ 0 and (15.15) follows
directly from (10.10). As K contains no line, K has at least one extreme point.
Now (10.12) follows directly from

`

r`1
2

˘

ď m for any matrix A which is an
extreme point of K.

Remark 10.1.5. The codimension of the affine space AA can be expressed from
any Cholesky decomposition: A “WWT, where W P Rnˆr, by

codim AA “ dimxWAjW
T : j P rmsy.

Indeed, the matrix P “ WTU0D
´1
0 is nonsingular, since PTP “ D´1

0 using the
fact that UT

0 U0 “ Ir. Moreover, WP “ U0, and thus

dimxWTAjW : j P rmsy “ dimxPTWTAjWP : j P rmsy “ dimxUT
0 AjU0 : j P rmsy.

As an illustration, for the elliptope K “ En, if A P En is the Gram matrix of vectors
ta1, ¨ ¨ ¨ , anu Ď Rk, then codim AA “ dimxa1a

T
1 , ¨ ¨ ¨ , ana

T
ny.

As an illustration we discuss a bit the geometry of the elliptope En. As a
direct application of Corollary 10.1.4, we obtain the following bound for the
rank of extreme points:

Corollary 10.1.6. Any extreme point of En has rank r satisfying
`

r`1
2

˘

ď n.

A matrix X P En has rank 1 if and only if it is of the form X “ xxT for
some x P t˘1un. Such matrix is also called a cut matrix (since it corresponds to
a cut in the complete graph Kn). There are 2n´1 distinct cut matrices. They are
extreme points of En and any two of them form an edge (face of dimension 1)
of En. While for n ď 4, these are the only faces of dimension 1, the elliptope
En for n ě 5 has faces of dimension 1 that are not an edge between two cut
matrices. You will see an example in Exercise 10.3.

Figure 10.1 shows the elliptope E3 (more precisely, its bijective image in R3

obtained by taking the upper triangular part ofX). Note the four corners, which
correspond to the four cuts of the graph K3. All the points on the boundary of
E3 - except those lying on an edge between two of the four corners – are extreme
points. For instance, the matrix

A “

¨

˝

1 0 1{
?

2

0 1 1{
?

2

1{
?

2 1{
?

2 1

˛

‚

is an extreme point of E3 (check it), with rank r “ 2.
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Figure 10.1: The elliptope E3

10.1.4 Finding an extreme point in a spectrahedron

In order to find a matrix A in a spectrahedron K whose rank satisfies (10.12),
it suffices to find an extreme point A of K. Algorithmically this can be done as
follows.

Suppose we have a matrix A P K with rank r. Observe that A is an extreme
point of K precisely when the linear space LA (in (10.8)) is reduced to the zero
matrix. Assume that A is not an extreme point of K. Pick a nonzero matrix C P
LA, so that B “ U0CU

T
0 is a nonzero perturbation of A. Hence A˘ tB ľ 0 for

some t ą 0. Moreover, at least one of the supremums: suptt ą 0 : A` tB ľ 0u
and suptt ą 0 : A ´ tB ľ 0u is finite, since K contains no line. Say, the first
supremum is finite, and compute the largest scalar t ą 0 for which A` tB ľ 0
(this is a semidefinite program). Then the matrixA1 “ A`tB still belongs to the
face FKpAq, but it now lies on its border (by the maximality of t). Therefore, A1

has a larger kernel: KerA1 Ą KerA, and thus a smaller rank: rankA1 ď rankA´1.
Then iterate, replacing A by A1, until finding an extreme point of K.

Therefore, one can find an extreme point of K by solving at most n semidef-
inite programs. However, finding the smallest possible rank of a matrix in K is
a hard problem – see Proposition 10.2.4.

10.1.5 A refined bound on ranks of extreme points

The upper bound on the rank of an extreme point from Corollary 10.1.4 is tight
– see Example 10.2.3 below. However, there is one special case when it can be
sharpened, as we explain here. Consider again the affine space A from (10.4)
and the spectrahedron K “ Snľ0 XA. From Corollary 10.1.4, we know that any
extreme point A of K has rank r satisfying

ˆ

r ` 1

2

˙

ď codim A.

Hence, r ď s` 1 if codim A “
`

s`2
2

˘

. Under some assumptions, Barvinok shows
that r ď s for at least one extreme point of K.
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Proposition 10.1.7. Assume that K is nonempty bounded and codim A “
`

s`2
2

˘

for some integer s ě 1 satisfying n ě s ` 2. Then there exists A P K with
rank A ď s.

The proof uses the following topological result.

Theorem 10.1.8. Consider the projective space Pn´1, consisting of all lines in Rn
passing through the origin, and let Sn´1 be the unit sphere in Rn. For n ě 3 there
does not exist a continuous map Φ : Sn´1 Ñ Pn´1 such that Φpxq ‰ Φpyq for all
distinct x, y P Sn´1.

The following lemma deals with the case n “ s`2, it is the core of the proof
of Proposition 10.1.7.

Lemma 10.1.9. Let n “ s ` 2 with s ě 1 and let A Ď Ss`2 be an affine space
with codim A “

`

s`2
2

˘

. If K “ Ss`2
ľ0 XA is nonempty and bounded, then there is

a matrix A P K with rank A ď s.

Proof. Assume first that AXSs`2
ą0 “ H. Then A lies in a hyperplane H support-

ing a proper face F of Ss`2
ľ0 . (This can be checked using the separating theorem

from Theorem 1.3.8 (i).) By Proposition 10.1.2, F can be identified with Stľ0

for some t ď s` 1 and thus an extreme point of K has rank at most t´ 1 ď s.
Suppose now that AX Ss`2

ą0 ‰ H. By (10.10), dimK “
`

s`3
2

˘

´ codim A “
s ` 2. Hence, K is a ps ` 2q-dimensional compact convex set, whose boundary
BK is (topologically) the sphere Ss`1. We now show that the boundary of K
contains a matrix with rank at most s.

Clearly every matrix in BK has rank at most s ` 1. Suppose for a contra-
diction that no matrix of BK has rank at most s. Then, each matrix X P BK
has rank s` 1 and thus its kernel KerX has dimension 1, it is a line though the
origin. We can define a continuous map Φ from BK to Ps`1 in the following
way: For each matrix X P BK, its image ΦpXq is the line KerX. The map Φ
is continuous (check it) from Ss`1 to Ps`1 with s ` 1 ě 2. Hence, applying
Theorem 10.1.8, we deduce that there are two distinct matrices X,X 1 P BK
with the same kernel: KerX “ KerX 1. Hence X and X 1 are two distinct points
lying in the same face of K: FKpXq “ FKpX

1q. Then this face has an extreme
point A, whose rank satisfies rankA ď rankX ´ 1 ď s.

We can now conclude the proof of Proposition 10.1.7.

Proof. (of Proposition 10.1.7). By Corollary 10.1.4 there exists a matrix A P K
with rank A ď s ` 1. Pick a vector space U Ď KerA with codim U “ s ` 2. By
Proposition 10.1.2, there is a rank-preserving isometry between FU and Ss`2

ľ0 .
Moreover, A P FU XA. Hence the result follows by applying Lemma 10.1.9.

Example 10.1.10. Consider the three matrices

A “

ˆ

1 0
0 ´1

˙

, B “

ˆ

0 1
1 0

˙

, C “

ˆ

1 1
1 0

˙
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and the affine space

A “ tX P S2 : xA,Xy “ 0, xB,Xy “ 0, xC,Xy “ 1u.

Then S2ľ0 X A “ tIu thus contains no rank 1 matrix, and codim A “ 3 “
`

s`2
2

˘

with s “ 1. This example shows that the condition n ě s` 2 cannot be omitted in
Lemma 10.1.9.

Example 10.2.3 below shows that the assumption that K is bounded cannot be
omitted as well.

10.2 Applications

10.2.1 Euclidean realizations of graphs

The graph realization problem can be stated as follows. Suppose we are given
a graph G “ pV “ rns, Eq together with nonnegative edge weights w P RE`,
viewed as ‘lengths’ assigned to the edges. We say that pG,wq is d-realizable if
one can place the nodes of G at points v1, ¨ ¨ ¨ , vn P Rd in such a way that their
Euclidean distances respect the given edge lengths:

Dv1, ¨ ¨ ¨ , vn P Rd }vi ´ vj}2 “ wij @ti, ju P E. (10.13)

(We use here the squares of the Euclidean distances as this makes the notation
easier). Moreover, pG,wq is realizable if it is d-realizable for some d ě 1. In
dimension 3, the problem of testing d-realizability arises naturally in robotics
or computational chemistry (the given lengths represent some known distances
between the atoms of a molecule and one wants to reconstruct the molecule
from these partial data).

Testing whether a weighted graph is realizable amounts to testing feasibility
of a semidefinite program:

Lemma 10.2.1. pG,wq is realizable if and only if the following semidefinite pro-
gram (in matrix variable X P Sn):

Xii `Xjj ´ 2Xij “ wij @ti, ju P E, X ľ 0 (10.14)

has a feasible solution. Moreover, pG,wq is d-realizable if and only if the system
(10.14) has a solution of rank at most d.

Proof. If v1, ¨ ¨ ¨ , vn P Rd is a realization of pG,wq, then their Gram matrix X “

pvTi vjq is a solution of rank at most d of (10.14). Conversely, if X is a solution
of (10.14) of rank ď d and v1, ¨ ¨ ¨ , vn P Rd is a Gram decomposition of X, then
the vi’s form a d-realization of pG,wq.

As a direct application of Corollary 10.1.4, any realizable graph pG,wq is
d-realizable in dimension d satisfying

ˆ

d` 1

2

˙

ď |E|, i.e., d ď
´1`

a

8|E| ` 1

2
. (10.15)
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When G “ Kn is a complete graph, checking whether pKn, wq is d-realizable
amounts to checking whether a suitable matrix is positive semidefinite and com-
puting its rank:

Lemma 10.2.2. Consider the complete graph G “ Kn with edge weights w, and
define the matrix X P Sn´1 by

Xii “ win pi P rn´ 1sq, Xij “
win ` wjn ´ wij

2
pi ‰ j P rn´ 1sq.

Then, pKn, wq is d-realizable if and only if X ľ 0 and rankX ď d.

Proof. The proof relies on the observation that if a set of vectors v1, ¨ ¨ ¨ , vn P
Rd satisfies (10.13), then one can translate it and thus assume without loss of
generality that vn “ 0.

Example 10.2.3. Consider the complete graph G “ Kn with weights wij “ 1 for
all edges. Then pKn, wq is pn ´ 1q-realizable but it is not pn ´ 2q-realizable (easy
to check using Lemma 10.2.2).

Hence, the upper bound (10.15) is tight on this example. This shows that the
condition that K is bounded cannot be omitted in Proposition 10.1.7. (Note that
the set of feasible solutions to the program (10.14) is indeed not bounded).

On the other hand, for any fixed d ě 1, deciding whether a graph pG,wq
is d-realizable is a hard problem. Therefore, deciding whether the semidefinite
program (10.14) has a solution of rank at most d is a hard problem.

We show this for d “ 1. Then there is a simple reduction from the partition
problem: Decide whether a given sequence of integers a1, ¨ ¨ ¨ , an P N can be
partitioned, i.e., whether there exists ε P t˘1un such that ε1a1 ` ¨ ¨ ¨ ` εnan “ 0.

Proposition 10.2.4. Given a graph pG,wq with integer lengths w P NE , deciding
whether pG,wq is 1-embeddable is an NP-complete problem, already when G is
restricted to be a circuit.

Proof. Let a1, ¨ ¨ ¨ , an P N be an instance of the partition problem. Consider the
circuit G “ Cn of length n, with edges ti, i`1u for i P rns (indices taken modulo
n). Assign the length wi,i`1 “ ai`1 to edge ti, i` 1u for i “ 1, ¨ ¨ ¨ , n. It is now
an easy exercise to show that pCn, wq is 1-realizable if and only if the sequence
pa1, ¨ ¨ ¨ , anq can be partitioned.

Indeed, assume that v1, ¨ ¨ ¨ , vn´1, vn P R is a 1-realization of pCn, wq. With-
out loss of generality we may assume that vn “ 0. The condition wn,1 “ a1 “
|v1| implies that v1 “ ε1a1 for some ε1 P t˘1u. Next, for i “ 1, ¨ ¨ ¨ , n ´ 1, the
conditions wi,i`1 “ ai`1 “ |vi ´ vi`1| imply the existence of ε2, ¨ ¨ ¨ , εn P t˘1u
such that vi`1 “ vi` εi`1ai`1. This implies 0 “ vn “ ε1a1` ¨ ¨ ¨` εnan and thus
the sequence a1, ¨ ¨ ¨ , an can be partitioned.

These arguments can be reversed to show the reverse implication.

On the other hand:
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Lemma 10.2.5. If a circuit pCn, wq is realizable, then it is 2-realizable.

This can be shown (Exercise 10.1) using the following basic geometrical fact.

Lemma 10.2.6. Let u1, ¨ ¨ ¨ , uk P Rn and v1, ¨ ¨ ¨ , vk P Rn two sets of vectors
representing the same Euclidean distances, i.e., satisfying

}ui ´ uj} “ }vi ´ vj} @i, j P rks.

Then there exists an orthogonal matrix A P Opnq and a vector a P Rn such that
vi “ Aui ` a for all i P rks.

But the above shows: Any realizable weighted circuit can be embedded in
the line or in the plane, but deciding which one of these two possibilities holds
is an NP-complete problem!

10.2.2 Hidden convexity results for quadratic maps

As a direct application of Proposition 10.1.4, we obtain the following result for
systems of two quadratic equations.

Proposition 10.2.7. Consider two matrices A,B P Sn and a, b P R. Then the
system of two quadratic equations

n
ÿ

i,j“1

Aijxixj “ a,
n
ÿ

i,j“1

Bijxixj “ b (10.16)

has a real solution x “ px1, ¨ ¨ ¨ , xnq P Rn if and only if the system of two linear
matrix equations

xA,Xy “ a, xB,Xy “ b (10.17)

has a positive semidefinite solution X ľ 0.

Proof. If x is a solution of (10.16), then X “ xxT is a solution of (10.17).
Conversely, assume that the system (10.17) has a solution. Applying Corollary
10.1.4, we know that it has a solution of rank r satisfying

`

r`1
2

˘

ď m “ 2, thus
with r ď 1. Now, if X has rank 1, it can be written in the form X “ xxT, so that
x is a solution of (10.16).

This result does not extend to three equations: The affine space from Exam-
ple 10.1.10 contains a positive semidefinite matrix, but none of rank 1. As we
now observe, the above result can be reformulated as follows: The image of Rn
under a quadratic map into R2 is a convex set.

Proposition 10.2.8. (Dines 1941) Given two matrices A,B P Sn, the image of
Rn under the quadratic map qpxq “ pxTAx, xTBxq:

Q “ tpxTAx, xTBxq : x P Rnu, (10.18)

is a convex set in R2.
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Proof. Set
Q1 “ tpxA,Xy, xB,Xyq P R2 : X P Snľ0u.

Clearly, Q Ď Q1 and Q1 is convex. Thus it suffices to show equality: Q “ Q1.
For this, let pa, bq P Q1. Then the system (10.17) has a solution X ľ 0. By
Proposition 10.2.7, the system (10.16) too has a solution, and thus pa, bq P
Q.

While it is not obvious from its definition that the setQ is convex, it is obvious
from its definition that the above set Q1 is convex. For this reason, such a result
is called a hidden convexity result.

Here is another hidden convexity result, showing that the image of the unit
sphere Sn´1 (n ě 3) under a quadratic map in R2 is convex. We show it using
the refined bound from Proposition 10.1.7.

Proposition 10.2.9. (Brickman 1961) Let n ě 3, A,B P Sn and a, b P R. Then
the image of the unit sphere under the quadratic map qpxq “ pxTAx, xTBxq:

C “ tpxTAx, xTBxq :
n
ÿ

i“1

x2i “ 1u

is a convex set in R2.

Proof. It suffices to show that, if the set

K “ tX P Snľ0 : xA,Xy “ a, xB,Xy “ b, TrpXq “ 1u

is not empty then it contains a matrix of rank 1. Define the affine space

A “ tX P Sn : xA,Xy “ a, xB,Xy “ b, TrpXq “ 1u.

Then the existence of a matrix of rank 1 in K follows from Corollary 10.1.4 if
codim A ď 2, and from Proposition 10.1.7 if codim A “ 3 (as K is bounded,
codim A “

`

s`2
3

˘

, n ě s` 2 for s “ 1).

The assumption n ě 3 cannot be omitted in Proposition 10.2.9: Consider
the quadratic map q defined using the matrices A and B from Example 10.1.10.
Then, qp1, 0q “ p1, 0q, qp0, 1q “ p´1, 0q, but p0, 0q does not belong to the image
of S1 under q.

We conclude with the following application of Proposition 10.2.9, which
shows that the numerical range RpMq of a complex matrix M P Cnˆn is a
convex subset of C (viewed as R2). Recall that the numerical range of M is

RpMq “ tz˚Mz “
n
ÿ

i,j“1

ziMijzi : z P Cn,
n
ÿ

i“1

|zi|
2 “ 1u.

Proposition 10.2.10. (Toeplitz-Hausdorff) The numerical range of a complex
matrix is convex.
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Proof. Write z P Cn as z “ x` iy where x, y P Rn, so that
ř

i |zi|
2 “

ř

i x
2
i ` y

2
i .

Define the quadratic map qpx, yq “ pq1px, yq, q2px, yqq by

z˚Mz “ q1px, yq ` iq2px, yq.

Then, the numerical range of M is the image of the unit sphere S2n´1 under
the map q, and the result follows from Proposition 10.2.9.

10.2.3 The S-Lemma

In the preceding section we dealt with systems of quadratic equations. We now
discuss systems of quadratic inequalities.

Recall Farkas’ lemma for linear programming: If a system of linear inequali-
ties:

$

’

&

’

%

aT1x ď b1
...

aTmx ď bm

implies the linear inequality cTx ď d, then there exist nonnegative scalars
λ1, ¨ ¨ ¨ , λm ě 0 such that c “ λ1a1 ` ¨ ¨ ¨ ` λmam and λ1b1 ` ¨ ¨ ¨ ` λmbm ď d.

This type of inference rules does not extend to general nonlinear inequali-
ties. However such an extension does hold in the case of quadratic polynomials,
in the special case m “ 1 (and under some strict feasibility assumption).

Theorem 10.2.11. (The homogeneous S-lemma) Given matrices A,B P Sn,
assume that xTAx ą 0 for some x P Rn. The following assertions are equivalent.

(i) tx P Rn : xTAx ě 0u Ď tx P Rn : xTBx ě 0u.

(ii) There exists a scalar λ ě 0 such that B ´ λA ľ 0.

Proof. The implication (ii) ùñ (i) is obvious. Now, assume (i) holds, we show
(ii). For this consider the semidefinite program (P):

inftxB,Xy : xA,Xy ě 0, TrpXq “ 1, X ľ 0u

and its dual (D):
supty : B ´ zA´ yI ľ 0, z ě 0u.

First we show that (P) is strictly feasible. By assumption, there exists a unit
vector x for which xTAx ą 0. If TrpAq ě 0 then X “ xxT{2 ` I{2n is a
strictly feasible solution. Assume now that TrpAq ă 0. Set X “ αxxT ` βI,
where we choose α ě 0, β ą 0 in such a way that 1 “ TrpXq “ α ` βn and
0 ă xA,Xy “ αxTAx` βTrpAq, i.e.,

xTAx

nxTAx´ TrpAq
ă β ď

1

n
.

Then X is strictly feasible for (P).
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Next we show that the optimum value of (P) is nonnegative. For this, con-
sider a feasible solution X0 of (P) and consider the set

K “ tX P Snľ0 : xA,Xy “ xA,X0y, xB,Xy “ xB,X0yu.

As K ‰ H, applying Corollary 10.1.4, there is a matrix X P K with rank 1.
Say X “ xxT. Then, xTAx “ xA,X0y ě 0 which, by assumption (i), implies
xTBx ě 0, and thus xB,X0y “ xTBx ě 0.

As (P) is bounded and strictly feasible, applying the duality theorem, we
deduce that there is no duality gap and that the dual problem has an optimal
solution py, zq with y, z ě 0. Therefore, B ´ zA “ pB ´ zA´ yIq ` yI ľ 0, thus
showing (ii).

This extends to non-homogeneous quadratic polynomials (Exercise 10.2):

Theorem 10.2.12. (The non-homogeneous S-lemma)
Let fpxq “ xTAx ` 2aTx ` α and gpxq “ xTBx ` 2bTx ` β be two quadratic
polynomials where A,B P Sn, a, b P Rn and α, β P R. Assume that fpxq ą 0 for
some x P Rn. The following assertions are equivalent.

(i) tx P Rn : fpxq ě 0u Ď tx P Rn : gpxq ě 0u.

(ii) There exists a scalar λ ě 0 such that
ˆ

β bT

b B

˙

´ λ

ˆ

α aT

a A

˙

ľ 0.

(iii) There exist a nonnegative scalar λ and a polynomial hpxq which is a sum of
squares of polynomials such that g “ λf ` h.

10.3 Notes and further reading

Part of the material in this chapter can be found in the book of Barvinok [1].
In particular, the refined bound (from Section 10.1.5) on the rank of extreme
points of a spectrahedron is due to Barvinok. Details about the geometry of the
elliptope can be found in [3].

The structure of the d-realizable graphs has been studied by Belk and Con-
nelly [2]. It turns out that the class of d-realizable graphs is closed under taking
minors, and it can be characterized by finitely many forbidden minors. For d ď 3
the forbidden minors are known: A graph G is 1-realizable if and only if it is a
forest (no K3-minor), G is 2-realizable if and only if it has no K4-minor, and G
is 3-realizable if and only if it does not contain K5 and K2,2,2 as a minor. (You
will show some partial results in Exercise 10.1.) Saxe [5] has shown that testing
whether a weighted graph is d-realizable is NP-hard for any fixed d.

The S-lemma dates back to work of Jakubovich in the 1970s in control the-
ory. There is a rich history and many links to classical results about quadratic
systems of (in)equations (including the results of Dines and Brickman presented
here), this is nicely exposed in the survey of Polik and Terlaky [4].
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10.4 Exercises

10.1** A graph G is said to be d-realizable if, for any edge weights w, pG,wq is
d-realizable whenever it is realizable. For instance, the complete graph
Kn is pn´ 1q-realizable, but not pn´ 2q-realizable (Example 10.2.3).

(a) Given two graphs G1 “ pV1, E1q and G2 “ pV2, E2q such that V1XV2 is
a clique in G1 and G2, their clique sum is the graph G “ pV1YV2, E1YE2q.

Show that if G1 is d1-realizable and G2 is d2-realizable, then G is d-
realizable where d “ maxtd1, d2u.

(b) Given a graph G “ pV,Eq and an edge e P E, Gze “ pV,Ezteuq
denotes the graph obtained by deleting the edge e in G.

Show that if G is d-realizable, then Gze is d-realizable.

(c) Given a graph G “ pV,Eq and an edge e “ ti1, i2u P E, G{e denotes
the graph obtained by contracting the edge e in G, which means: Identify
the two nodes i1 and i2, i.e., replace them by a new node, called i0, and
replace any edge ti1, ju P E by ti0, ju and any edge ti2, ju P E by ti0, ju.

Show that if G is d-realizable, then G{e is d-realizable.

(d) Show that the circuit Cn is 2-realizable, but not 1-realizable.

(e) Show that G is 1-realizable if and only if G is a forest (i.e., a disjoint
union of trees).

(f) Show that K2,2,2 is 4-realizable, but not 3-realizable.

NB: A minor of G is a graph that can be obtained from G by deleting and
contracting edges and by deleting nodes. So the above shows that if G
is d-realizable then any minor of G is d-realizable. Moreover, if G is 3-
realizable then G has no K5 and K2,2,2 minor. The reverse implication
holds but requires more work [2].

10.2** (a) Let A,B,C P Sn, a, b, c P R and let

Q “ tqpxq “ pxTAx, xTBx, xTCxq : x P Rnu Ď R3

denote the image of Rn under the quadratic map q. Assume that n ě 3
and that there exist α, β, γ P R such that αA` βB ` γC ą 0.

Show that the set Q is convex.

(b) Show Theorem 10.2.12.

10.3 (a) Consider the two cut matrices J (the all-ones matrix) and X “ xxT

where x P t˘1un, distinct from the all-ones vector. Show that the segment
F “ rJ,Xs is a face of the elliptope En.
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(b) Consider the matrix

A “

¨

˚

˚

˚

˚

˝

1 0 0 1{
?

2 1{
?

2

0 1 0 1{
?

2 0

0 0 1 0 1{
?

2

1{
?

2 1{
?

2 0 1 1{2

1{
?

2 0 1{
?

2 1{2 1

˛

‹

‹

‹

‹

‚

P E5.

What is the dimension of the face FE5pAq? What are its extreme points?

10.4 Let p be a polynomial in two variables and with (even) degree d. Show
that if p can be written as a sum of squares, then it can be written as a
sum of at most d` 1 squares.

NB: For d “ 4, Hilbert has shown that p can be written as sum of at most
three squares but this is a difficult result.

169



BIBLIOGRAPHY

[1] A. Barvinok. A Course in Convexity. AMS, 2002.

[2] M. Belk and R. Connelly. Realizability of graphs. Discrete and Computa-
tional Geometry, 37:125–137, 2007.

[3] M. Laurent and S. Poljak. On the facial structure of the set of correlation
matrices. SIAM Journal on Matrix Analysis, 17:530–547, 1996.

[4] I. Polik and T. Terlaky. A survey of the S-lemma. SIAM Review, 49(3):
371–418, 2007.

[5] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-
hard. In Proc. 17-th Allerton Conf. Comm. Control Comp., 480–489, 1979.

170



CHAPTER 11

EUCLIDEAN EMBEDDINGS:
LOW DISTORTION

11.1 Motivation: Embeddings of finite metric spaces

Definition 11.1.1. A finite metric space is a pair pX, dq where X is a finite set
and where the function d : X ˆ X Ñ R defines a metric: For all x, y, z P X we
have

(non-negativity) dpx, yq ě 0, and dpx, yq “ 0 if and only if x “ y,

(symmetry) dpx, yq “ dpy, xq,

(triangle inequality) dpx, zq ď dpx, yq ` dpy, zq.

One important example is the shortest path metric of a connected graph G “
pV,Eq. There we measure the distance dpx, yq between two vertices x, y in G by
the length of a shortest path connecting x and y. Here the length of a path is
the number of its edges.

In computational phylogenetics one frequently deals with genetic distance
matrices. See Table 11.1.

To work with finite metric spaces one wants to perform data analysis or one
wants to visualize them. For these tasks there are many geometric algorithms
available which are based on the Euclidean metric but which are not available
for arbitrary metric spaces. So it is an obvious method to map the points of the
finite metric space into a Euclidean space, preferably one of low dimension.

A Euclidean embedding f : X Ñ Rn is an injective map from X to n-
dimensional Euclidean space. We want to embed X isometrically into Euclidean
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Ban E.Af. W.Af. San Ind. N.E. Kor. S.C. Eng. Aus.
Bantu 0

E. Africa 658 0
W. Africa 188 697 0

San 94 776 885 0
India 2202 1078 1748 1246 0

Near East 1779 709 1454 880 229 0
Korea 2668 1475 1807 1950 681 933 0

S. China 2963 1664 1958 2231 847 983 498 0
English 2288 1163 1487 1197 280 236 982 1152 0

Australia 3272 2131 2694 2705 1176 1408 850 1081 1534 0

Table 11.1: Genetic distance matrix due to Cavalli-Sforza (1994). (What is
“wrong” with this matrix?)

space Rn, so that for all x, y P X we have

dpx, yq “ }fpxq ´ fpyq} “

g

f

f

e

n
ÿ

i“1

pfpxqi ´ fpyqiq2,

where fpxqi denotes the i-th component of the vector fpxq P Rn.
There are two problems with isometric embeddings into Euclidean spaces:

If we insist on finding an isometric embedding into Euclidean space with a fixed
dimension n, independent of the cardinality of X, then finding such an embed-
ding is a semidefinite optimization problem with a rank constraint; indeed an
NP-hard problem. If we relax the rank constraint, then we are dealing with a
semidefinite feasibility problem. However, in general it will not be feasible.

Example 11.1.2. Consider for instance the shortest path metric of the star graph

X “ t1, 2, 3, 4u, with dp1, 4q “ dp2, 4q “ dp3, 4q “ 1, and dpi, jq “ 2, otherwise.

To embed pX, dq isometrically into Euclidean space, one needs that each of the
triplets t1, 2, 4u, t1, 3, 4u and t2, 3, 4u lie on a single line, which is impossible.

In this lecture we propose to use Euclidean embedding having low distortion
instead of (non-existing) isometric Euclidean embeddings.

Definition 11.1.3. Let pX, dq be a finite metric space and let f : X Ñ Rn be an
embedding into Euclidean space. We define the expansion, contraction and the
distortion of f by

expansionpfq “ max
x,yPX

}fpxq ´ fpyq}

dpx, yq

contractionpfq “ max
x,yPX

dpx, yq

}fpxq ´ fpyq}

distortionpfq “ expansionpfq ¨ contractionpfq
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Definition 11.1.4. The optimal distortion of pX, dq is given by

c2pX, dq “ min
f :XÑR|X|

distortionpfq.

In the case when pX, dq is the shortest path metric of a graph G we write c2pGq.

11.2 Computing optimal Euclidean embeddings

Let pX, dq be a finite metric space with X “ tx1, . . . , xnu. Then we can find a
Euclidean embedding of X which minimizes the distortion by solving a semidef-
inite optimization problem. For this let f : X Ñ Rn be an embedding. Then
we can assume by scaling that contractionpfq “ 1. So we have to minimize
expansionpfq to minimize the distortion. The following optimization problem
does this:

minimize γ2

γ P R, f : X Ñ Rn

dpxi, xjq
2 ď }fpxiq ´ fpxjq}

2 ď γ2dpxi, xjq
2

By considering the inner product matrix Z “ pfpxiq
Tfpxjqq1ďi,jďn, which is

positive semidefinite, and by noting that

}fpxiq ´ fpxjq}
2 “ Zii ´ 2Zij ` Zjj “ xeie

T
i ` eje

T
j ´ peie

T
j ` eje

T
i q, Zy

we get a semidefinite optimization problem

minimize τ

τ P R, Z P Snľ0

xeie
T
i ` eje

T
j ´ peie

T
j ` eje

T
i q, Zy ě dpxi, xjq

2

xeie
T
i ` eje

T
j ´ peie

T
j ` eje

T
i q, Zy ď τdpxi, xjq

2

for which
?
τ “ c2pX, dq holds.

By using strong duality of conic programming (Exercise 11.1 (a)) we arrive
at the following theorem.

Theorem 11.2.1. The least distortion of a finite metric space pX, dq, with X “

tx1, . . . , xnu, into Euclidean space is given by

c2pX, dq “ max
Y PSnľ0,Y e“0

g

f

f

e

ř

ij:Yiją0 Yijdpxi, xjq
2

´
ř

ij:Yijă0 Yijdpxi, xjq
2
.

The condition Y e “ 0 says that the all-ones vector e lies in the kernel of Y .

We will use this theorem to find lower bounds for the optimal distortion
embeddings of several graphs.
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11.2.1 Least distortion embedding of the cube

To warm up we consider the graph of the r-dimensional unit cube Qr “ pVr, Erq
with Vr “ t0, 1ur. Here two vertices are adjacent whenever their Euclidean dis-
tance equals 1. Clearly (check it), the usual Euclidean embedding has distortion
?
r. In fact, as the following theorem shows, one cannot improve it.

Theorem 11.2.2.
c2pQrq “

?
r.

Proof. Define the matrix Y P RVrˆVr by

Y pi, jq “

$

’

’

&

’

’

%

´1 if dpi, jq “ 1,
r ´ 1 if i “ j,
1 if dpi, jq “ r,
0 otherwise.

It satisfies the properties of Theorem 11.2.1. We clearly have Y e “ 0. The
fact that Y is positive semidefinite follows from the fact that for y P t0, 1ur the
vectors fy P RVr defined by fypxq “ p´1qx

Ty form a basis of eigenvectors of
Y . One directly verifies that the corresponding eigenvalues are nonnegative. To
end the proof we only have to evaluate Y ’s objective value:

ÿ

ij:Yiją0

Yijdpi, jq
2 “ 2rr2

and
´

ÿ

ij:Yijă0

Yijdpi, jq
2 “ 2rr.

Hence,

c2pQrq ě

c

2rr2

2rr
“
?
r.

11.3 Corner stones of metric embeddings

11.3.1 Bourgain’s theorem

Bourgain showed in 1985 that every finite metric space embeds into Euclidean
space with low distortion. This theorem is according to Hoory, Linial, and
Wigderson the “grand ancestor” of the area of metric embeddings.

Theorem 11.3.1. There is a constant C so that any finite metric space pX, dq can
be embedded into Euclidean space with distortion at most C log |X|:

c2pX, dq “ Oplog |X|q.
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In particular it shows that the optimal solution of the semidefinite optimiza-
tion problem in Theorem 11.2.1 is bounded by C log |X|. The proof is presented
in Chapter 15.7 of the book by Matoušek [5]. However, currently, there is no
proof known which is based on semidefinite optimization. In fact, Goemans [3]
writes: “it would be nice to prove this result from semidefinite programming
duality.”

11.3.2 Johnson-Lindenstrauss flattening lemma

Another major result in the area of metric embeddings with many applications
is by Johnson and Lindenstrauss from 1984. It says that one can reduce the
dimension of Euclidean embeddings significantly.

Theorem 11.3.2. Let pX, dq be a finite metric space which isometrically embeds
into Euclidean space of dimension |X|. Then there is an embedding of X into a
Euclidean space of dimension Oplog |X|{ε2q with distortion at most 1` ε.

The construction behind the proof (see Theorem 15.2.1 in Matoušek [5])
is very simple: One uses a random linear projection onto a low dimensional
subspace.

11.4 Embeddings of expanders

An expander is a graph which is sparse but at the same time highly connected.
Expanders are remarkable graphs which have many applications in mathematics
and computer science. In the last forty years they were subject of a huge amount
of research.

Here we will use them to show that Bourgain’s theorem is tight in the sense
that the shortest path metric on expander graphs can only be embedded into
Euclidean space with distortion Ωplog nq.

For this we start by defining the edge expansion ratio. Although this defini-
tion gives some intuition how expander graphs look like it is frequently much
easier to work with expanders algebraically using spectral properties of their
adjacency matrix. These spectral properties will then be useful for proving that
expanders embed rather badly into Euclidean space.

11.4.1 Edge expansion

Let G “ pV,Eq be a graph. We assume that in G every vertex has exactly d
neighbors, i.e. that G is d-regular. Let S Ď V be a subset of the vertices and let
S “ V zS be its complement. The edge boundary of S is

BS “ ttu, vu P E : u P S, v P Su.

For the edges which stay in S or S define

EpSq “ ttu, vu P E : u, v P Su, EpSq “ ttu, vu P E : u, v P Su.
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Definition 11.4.1. The edge expansion ratio of a graph G is

hpGq “ min
SĎV :|S|ď|V |{2

|BS|

|S|

Definition 11.4.2. Let d ě 3 be an integer. A family of d-regular graphs Gn “
pVn, Enq with |Vn| Ñ 8 when n tends to infinity is called a family of d-regular
expander graphs if there exists ε ą 0 with hpGnq ą ε.

In the following two sections we will prove a fundamental inequality due to
Dodziuk (1984) and independently Alon and Milman (1985) and Alon (1986).
It relates the edge expansion ratio hpGq of a d-regular graph with the spectral
gap of a graph, the difference d´λ2 between the largest and the second largest
eigenvalue of its adjacency matrix

d´ λ2
2

ď hpGq ď
a

2dpd´ λ2q

This shows that Gn is a family of d-regular expander graphs if and only if
there exists an ε ą 0 so that d´ λ2pGnq ą ε for all n.

11.4.2 Large spectral gap implies high expansion

Theorem 11.4.3. Let G “ pV,Eq be a connected, d-regular graph. Let λ1 “ d
and λ2 be the largest and the second largest eigenvalue of the adjacency matrix of
G. Then,

d´ λ2
2

ď hpGq.

Proof. The largest eigenvalue of the adjacency matrixA of the d-regular graphG
equals d and the corresponding eigenvector is the all-ones vector e (see Exercise
11.2). So the second largest eigenvalue λ2 of A is given by

λ2 “ max
fPRV zt0u,fKe

fTAf

fTf

because of the Rayleigh principle. If we would find a vector f which is perpen-
dicular to e so that

fTAf

fTf
ě d´ 2hpGq

holds, then we would prove the desired inequality. Let S Ď V be a set attaining
the edge expansion ratio

hpGq “
|BS|

|S|
, with |S| ď |V |{2.

Define the vector
f “ |S|χS ´ |S|χS P RV
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where χS P RV denotes the characteristic vector of the set S. This vector is
perpendicular to e. The denominator of the Rayleigh quotient equals

fTAf “ 2
ÿ

tu,vuPE

fpuqfpvq

“ 2
`

|EpSq||S|2 ` |EpSq||S|2 ´ |S||S||BS|
˘

“ pd|S| ´ |BS|q|S|2 ` pd|S| ´ |BS|q|S|2 ´ 2|S||S||BS|

“ dp|S| ` |S|q|S||S| ´ p|S| ` |S|q2|BS|

“ d|V ||S||S| ´ |V |2|BS|,

where we first split the sum into tu, vu P EpSq, tu, vu P EpSq, and tu, vu P BS,
and then use the identities

d|S| “ 2|EpSq| ` |BS|, d|S| “ 2|EpSq| ` |BS|, |V | “ |S| ` |S|.

The numerator of the Rayleigh quotient equals

fTf “ |S|2|S| ` |S|2|S| “ |S||S|p|S| ` |S|q “ |V ||S||S|.

Together,

fTAf

fTf
“
d|V ||S||S| ´ |V |2|BS|

|V ||S||S|
“ d´

n|BS|

|S||S|
ě d´ 2hpGq,

where we use that hpGq “ |BS|{|S| and |S| ě |V |{2.

11.4.3 High expansion implies large spectral gap

Theorem 11.4.4. Let G “ pV,Eq be a connected, d-regular graph. Let λ1 “ d
and λ2 be the largest and the second largest eigenvalue of the adjacency matrix of
G. Then,

hpGq ď
a

2dpd´ λ2q.

Proof. Let g be an eigenvector of the adjacency matrix A of G corresponding to
λ2. Since g is perpendicular to the all-ones vector, the vector g has positive as
well as negative entries. Define f P RV by

fpuq “

"

gpuq if gpuq ą 0,
0 otherwise.

Let S “ tu P V : fpuq ‰ 0u be the support of f . We may assume that S
has at most |V |{2 vertices, otherwise we would replace the eigenvector g by its
negative ´g.

The theorem will follow once we prove the inequalities

hpGq2

2d
ď
fTLf

fTf
ď d´ λ2 (11.1)
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for the Laplacian matrix L “ dI ´A of the d-regular graph G.

The upper bound in (11.1) is (relatively) easy: For u P S we have

pLfqpuq “ dfpuq ´
ÿ

vPV :tu,vuPE

fpvq

“ dgpuq ´
ÿ

vPS:tu,vuPE

gpvq

ď dgpuq ´
ÿ

vPV :tu,vuPE

gpvq

“ pd´ λ2qgpuq.

Because fpuq “ 0 whenever u R S we arrive at

fTLf “
ÿ

uPV

fpuqpLfqpuq ď pd´ λ2q
ÿ

uPS

gpuq2 “ pd´ λ2qf
Tf.

The lower bounds in (11.1) is harder and needs more work and ingenuity.
Some preparation: Let us label the vertices of G by 1, . . . , |V | so that

fp1q ě fp2q ě . . . ě fp|V |q.

Direct the edges of the graph G (arbitrarily) and define K P RVˆE by

Kpu, eq “

$

&

%

`1 if edge e enters vertex u,
´1 if edge e exits vertex u,
0 otherwise.

Then one has L “ KKT. Define the quantity

B “
ÿ

tu,vuPE

|fpuq2 ´ fpvq2|.

We shall prove

hpGqfTf ď B ď
?

2d
b

pKfqTKf
a

fTf, (11.2)

which implies the lower bound in (11.1) because fTLf “ pKfqTpKfq.
The upper bound in (11.2) follows from Cauchy-Schwarz

B “
ÿ

tu,vuPE

|fpuq2 ´ fpvq2|

“
ÿ

tu,vuPE

|fpuq ` fpvq| ¨ |fpuq ´ fpvq|

ď

d

ÿ

tu,vuPE

pfpuq ` fpvqq2 ¨

d

ÿ

tu,vuPE

pfpuq ´ fpvqq2
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and by
d

ÿ

tu,vuPE

pfpuq ´ fpvqq2 “
b

pKfqTKf

as well by
d

ÿ

tu,vuPE

pfpuq ` fpvqq2 ď

d

2
ÿ

tu,vuPE

pfpuq2 ` fpvq2q “

d

2d
ÿ

uPV

fpuq2 “
?

2dfTf.

The lower bound in (11.2) follows from the following calculation which uses
telescopic summation and the ordering of the vertices of G:

B “
ÿ

tu,vuPE

|fpuq2 ´ fpvq2|

“
ÿ

tu,vuPE,uăv

pfpuq2 ´ fpvq2q

“
ÿ

tu,vuPE,uăv

v´1
ÿ

i“u

pfpiq2 ´ fpi` 1q2q

“

|V |´1
ÿ

i“1

pfpiq2 ´ fpi` 1q2q|Bt1, . . . , iu|

“
ÿ

iPS

pfpiq2 ´ fpi` 1q2q|Bt1, . . . , iu|

ě hpGq
ÿ

iPS

pfpiq2 ´ fpi` 1q2qi

“ hpGq
ÿ

iPS

pfpiqq2

“ hpGq
a

fTf.

Here we use the fact that |S| ď |V |{2 and so |Bt1, . . . , iu|{i ě hpGq if i ď |V |{2.
Furthermore, notice that fpi` 1q “ 0 for i “ |S| when collapsing the telescopic
sum.

11.4.4 Low distortion embeddings of expander graphs

Theorem 11.4.5. Let d ě 3 be an integer and let ε ą 0 be a positive real. For
every d-regular graph G “ pV,Eq and λ2 ď d´ ε, we have

c2pGq ě

c

ε

2d
tlogd |V |u.

In particular, Bourgain’s theorem is tight for families of d-regular expander graphs.
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Proof. For simplicity we assume that |V | is even.
SinceG is d-regular, every vertex hasď dr vertices at distance r. In particular

if r “ tlogd |V |u ´ 1, then there are ď |V |{2 vertices at distance r from any
given vertex. Define the graph H “ pV,EHq by connecting two vertices if their
distance in G is ě tlogd |V |u. Then the minimal degree of H is ě |V |{2. By
a classical theorem of Dirac from 1952 we know that every graph on |V | ě 3
vertices with minimum degree at least |V |{2 contains a Hamiltonian cycle; one
can find the (simple) proof for instance as Theorem 10.1.1 in the book [1] by
Diestel. Since |V | is even, we derive that H has a perfect matching.

Let B P SV be the adjacency matrix of such a perfect matching. It is a per-
mutation matrix of a permutation consisting out of |V |{2 disjoint transpositions.
We denote the edges participating in the perfect matching by F .

Let A P SV be the adjacency matrix of G.
Define the matrix Y by

Y “ dI ´A`
ε

2
pB ´ Iq,

and we want to show that Y satisfies the assumptions of Theorem 11.2.1.
It is easy to verify that Y e “ 0 holds. The matrix Y is positive semidefinite

because for every x P RV which is perpendicular to e we have the inequality

xTY x “ xTpdI ´A`
ε

2
pB ´ Iqqx

ě pd´ λ2qx
Tx`

ε

2
xTpB ´ Iqx

ě εxTx`
ε

2

ÿ

tu,vuPF

p2xpuqxpvq ´ xpuq2 ´ xpvq2q

ě εxTx´
ε

2
2

ÿ

tu,vuPF

pxpuq2 ` xpvq2q

ě εxTx´ εxTx

ě 0.

To end the proof we only have to evaluate Y ’s objective value:

´
ÿ

ij:Yijă0

Yijdpxi, xjq
2 “ d|V |

and
ÿ

ij:Yiją0

Yijdpxi, xjq
2 ě

ε

2
|V |tlogd |V |u

2.

Hence,

c2pGq ě

c

ε

2d
tlogd |V |u.
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11.4.5 Construction of a family of expander graphs

Explicit constructions of a family of expander graphs are very much non-trivial.
An easy construction of a family of 3-regular expander graphs which neverthe-
less relies on a deep result in number theory (Selberg’s 3{16 theorem) is as
follows: Let p be a prime. The vertex set of Gp is Zp and a vertex x is connected
to x`1, x´1 and x´1 where all operations are performed modulo p and where
the inverse of 0 is defined to be 0.

11.5 Further reading

In this lecture we mostly followed the presentation of the price winning, very
fascinating, survey article by Hoory, Linial, Wigderson [2] on expander graphs
(especially Section 13). There the authors present the many, often surprising,
connections of expanders with other parts of mathematics and computer sci-
ence. The recent survey [4] by Lubotzky is fascinating too. It focuses on the
deep algebraic side of expanders.

Much more on metric embeddings and its applications can be found in Chap-
ter 15 of Matoušek’s book on discrete geometry [5].

11.6 Exercises

11.1** (a) Prove Theorem 11.2.1.
(b) Show: Let f : X Ñ Rn be an optimal distortion embedding. If Y

attains the optimum in Theorem 11.2.1 then Yij ą 0 only for f ’s
most contracted pairs i and j and Yij ă 0 only for f ’s most expanded
pairs i and j.

(c) Find an optimal distortion embedding of the Petersen graph (see Fig-
ure 6.1).

11.2 Let G “ pV,Eq be a d-regular graph and let

λ1 ě λ2 ě . . . ě λn

be the eigenvalues of the adjacency matrix of G. Show that

(a) λi P r´d, ds for all i “ 1, . . . , n.
(b) G is connected if and only if λ1 ą λ2.
(c) G is bipartite if and only if λ1 “ ´λn.

(d) λ22 ě d |V |´d
|V |´1 .

11.3 Let G “ pV,Eq be a d-regular graph and let λ2 the second largest eigen-
value of its adjacency matrix. Then for S, T Ď V we have

ˇ

ˇ

ˇ

ˇ

|ttu, vu P E : u P S, v P T u| ´ d
|S||T |

|V |

ˇ

ˇ

ˇ

ˇ

ď λ2
a

|S||T |.
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11.4 Computer exercise: Compute the optimal distortion embedding of the
semimetric in Table 11.1 and draw a random projection onto the two-
dimensional Euclidean plane.
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CHAPTER 12

PACKINGS ON THE SPHERE

Packing problems are fundamental in geometric optimization and coding the-
ory: How densely can one pack given objects into a given container?

In this lecture the container will be the unit sphere

Sn´1 “ tx P Rn : x ¨ x “ 1u

and the objects we want to pack are spherical caps of angle γ. The spherical cap
with angle γ P r0, πs and center x P Sn´1 is given by

Cpx, γq “ ty P Sn´1 : x ¨ y ě cos γu.

Its normalized volume equals (by integration with spherical coordinates)

wpγq “
ωn´1pS

n´2q

ωnpSn´1q

ż 1

cos γ

p1´ u2qpn´3q{2 du,

where ωnpSn´1q “ p2πn{2q{Γpn{2q is the surface area of the unit sphere. Two
spherical caps Cpx1, γq and Cpx2, γq intersect in their topological interior if and
only if the inner product of x1 and x2 lies in the half-open interval pcosp2γq, 1s.
Conversely we have

Cpx1, γq
˝ X Cpx2, γq

˝ “ H ðñ ´1 ď x1 ¨ x2 ď cosp2γq.

A packing of spherical caps with angle γ, is a collection of any number of spher-
ical caps with this angle and pairwise-disjoint topological interiors. Given the
dimension n and the angle γ we define1

Apn, 2γq “ maxtN : Cpx1, γq, . . . , CpxN , γq is a packing in Sn´1u.

1Note here that we use 2γ in the definition of Apn, 2γq because we want to make the notation
consistent with the common literature. There one emphasizes that 2γ is the angle between the
centers of the spherical caps.
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One particular case of packings of spherical caps has received a lot of atten-
tion over the last centuries.

In geometry, the kissing number τn is the maximum number of non-overlapping
equally-sized spheres that can simultaneously touch a central sphere. It is easy
to see that τn “ Apn, π{3q because the points where the spheres touch the cen-
tral sphere form the centers of a packing of spherical caps with angle π{6.

Today, the kissing number is only known for dimensions 1, 2, 3, 4, 8 and 24.
It is easy to see that the kissing number in dimension 1 is 2, and in dimension
2 it is 6. The kissing number problem has a rich history. In 1694 Isaac Newton
and David Gregory had a famous discussion about the kissing number in three
dimensions. The story is that Gregory thought thirteen spheres could fit while
Newton believed the limit was twelve. Note that the easy area argument, which
proves τ2 “ 6, only gives that

τ3 ď

Z

1

wpπ{3q

^

“

Z

4π

2πp1´ cospπ{6qq

^

“ t14.92 . . .u “ 14.

It took many years, until 1953, when Schütte and van der Waerden proved
Newton right.

Figure 12.1: Construction of 12 kissing spheres. Image credit: Anja Traffas

In the 1970s advanced methods to determine upper bounds for the kiss-
ing number based on linear programming were introduced. Using these new
techniques, the kissing number problem in dimension 8 and 24 was solved by
Odlyzko, Sloane, and Levensthein. For four dimensions, however, the optimiza-
tion bound is 25, while the exact kissing number is 24. In a celebrated work
Oleg Musin proved this in 2003, see [3].

The goal of this lecture is to provide a proof of τ8 “ 240.

12.1 α and ϑ for packing graphs

Many, often notoriously difficult, problems in combinatorics and geometry can
be modeled as packing problems of graphs G “ pV,Eq where the vertex set
V can be an infinite or even a continuous set. All possible positions of the
objects which we can use for the packing are vertices of a graph and we draw
edges between two vertices whenever the two corresponding objects cannot be
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simultaneously present in the packing because they overlap in their interior.
Now every independent set in this conflict graph gives a valid packing.

For the problem of determining the optimal packing of spherical caps with
angle γ, Apn, 2γq, we define the packing graph Gpn, 2γq with vertex set

V “ Sn´1 “ tx P Rn : x ¨ x “ 1u,

and edge set
x „ y ðñ x ¨ y P pcosp2γq, 1q.

Then,

Apn, 2γq “ αpGpn, 2γqq, and τn “ Apn, π{3q “ αpGpn, π{3qq

Now it is an “obvious” strategy to compute the theta number for this graph
in order to find upper bounds for the independence number αpGpn, 2γqq.

To generalize the theta number for infinite graphs, we will need a notion
of positive semidefinite infinite matrices because in the definition of the theta
number we need matrices whose rows and columns are indexed by the vertex
set of the graph.

This leads to positive semidefinite, continuous Hilbert-Schmidt kernels.

Definition 12.1.1. A continuous function (called continuous Hilbert-Schmidt ker-
nel)

K : Sn´1 ˆ Sn´1 Ñ R

is called symmetric if Kpx, yq “ Kpy, xq holds for all x, y P Sn´1. It is called
positive semidefinite if for all N and all x1, . . . , xN P Sn´1 the symmetric N ˆN
matrix

`

Kpxi, xjq
˘

1ďi,jďN
ľ 0

is positive semidefinite. We denote the cone of positive semidefinite continuous
Hilbert-Schmidt kernels by CpSn´1 ˆ Sn´1qľ0

We use this cone CpSn´1ˆSn´1qľ0 to define the theta prime number of the
packing graph Gpn, 2γq:

ϑ1pGpn, 2γqq “ inf λ

K P CpSn´1 ˆ Sn´1qľ0

Kpx, xq “ λ´ 1 for all x P Sn´1

Kpx, yq ď ´1 for all tx, yu R E.

We have tx, yu R E whenever the spherical caps Cpx, γq and Cpy, γq do
not intersect in their topological interior, i.e. whenever x ¨ y P r´1, cosp2γqs.
The definition ϑ1 is similar to the dual formulations in Lemma 6.4.1. We use a
prime to indicate that we replace the equality Kpx, yq “ ´1 by the inequality
Kpx, yq ď ´1.

Similar to the finite case, ϑ1 provides an upper bound for the independence
number:
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Theorem 12.1.2.
αpGpn, 2γqq ď ϑ1pGpn, 2γqq

Proof. Let C Ď Sn´1 be an independent set. Let K be a feasible solution of
ϑ1pGpn, 2γqq. Because K is positive semidefinite we have

0 ď
ÿ

xPC

ÿ

yPC

Kpx, yq

“
ÿ

xPC

Kpx, xq

looooomooooon

“|C|pλ´1q

`
ÿ

x‰y

Kpx, yq

looooomooooon

ďp´1qp|C|2´|C|q

ď |C|pλ´ 1q ´ p|C|2 ´ |C|q

This implies |C| ď λ, yielding the theorem.

Note that if we are in the lucky case that αpGpn, 2γqq “ ϑ1pGpn, 2γqq, the
inequalities in the proof of the theorem are tight. This can only happen when
Kpx, yq “ ´1 for tx, yu R E. We will use this observation later when we deter-
mine τ8.

12.2 Symmetry reduction

Computing ϑ1 does not seem to be easy since it is defined as an infinite-dimensional
semidefinite program. However, the underlying graph is highly symmetric and
so we can perform symmetry reduction, similar to the one in Chapter 6.6.

The automorphism group of the graphGpn, 2γq is the orthogonal groupOpnq
because for all A P Opnq we have

Ax ¨Ay “ x ¨ y.

Furthermore the graph Gpn, 2γq is vertex transitive because for every two points
x and y on the unit sphere there is an orthogonal matrix mapping x to y. Even
stronger it is two-point homogeneous, meaning that if x, y, x1, y1 P Sn´1 are so
that

x ¨ y “ x1 ¨ y1,

then there is an A P Opnq with Ax “ x1, Ay “ y1.
If K is a feasible solution for ϑ1 with objective value λ “ Kpx, xq ` 1 and if

A P Opnq is an orthogonal matrix then also

KApx, yq “ KpAx,Ayq

is a feasible solution for ϑ1 with the same objective value. So we can symmetrize
any feasible solution K of ϑ1

K 1px, yq “

ż

APOpnq
KApx, yqdµpAq,
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where µ is the normalized Haar measure of the orthogonal group.
That means that we can restrict the optimization variable K to be a positive

semidefinite continuous Hilbert-Schmidt kernel which is invariant under the
orthogonal group, i.e.

K P CpSn´1 ˆ Sn´1q
Opnq
ľ0 ,

where

CpSn´1 ˆ Sn´1q
Opnq
ľ0

“ tK P CpSn´1 ˆ Sn´1q : KApx, yq “ KpAx,Ayq “ Kpx, yq for all A P Opnqu.

So we get

ϑ1pGpn, 2γqq “ inf λ

K P CpSn´1 ˆ Sn´1q
Opnq
ľ0

Kpx, xq “ λ´ 1 for all x P Sn´1

Kpx, yq ď ´1 for all tx, yu R E.

12.3 Schoenberg’s theorem

Now the idea is to find an explicit characterization of the cone CpSn´1ˆSn´1q
Opnq
ľ0 .

Such a characterization was proved by Schoenberg in 1941. He parameterized
this cone by its extreme rays.

Theorem 12.3.1 (Schoenberg (1941)).

CpSn´1 ˆ Sn´1q
Opnq
ľ0 “

#

8
ÿ

k“0

fkE
n
k px, yq : fk ě 0,

8
ÿ

k“0

fk ă 8

+

, (12.1)

where
Enk px, yq “ Pnk px ¨ yq,

and where Pnk is a polynomial of degree k satisfying the orthogonality relation

ż 1

´1

Pnk ptqP
n
l ptqp1´ t

2q
n´3
2 dt “ 0 if k ‰ l,

and where the polynomial Pnk is normalized by Pnk p1q “ 1.

The equality in (12.1) should be interpreted as follows: A kernel K lies in
CpSn´1 ˆ Sn´1qOpnq if and only if there are nonnegative numbers f0, f1, . . . so
that the series

ř8

k“0 fk converges and so that

Kpx, yq “
8
ÿ

k“0

fkE
n
k px, yq

188



holds. Here the right hand side converges absolutely and uniformly over Sn´1ˆ

Sn´1.
For n “ 2, P 2

k are the Chebyshev polynomials (of the first kind). For larger n
the polynomials belong to the family of Jacobi polynomials. The Jacobi poly-
nomials with parameters pα, βq are orthogonal polynomials for the measure
p1 ´ tqαp1 ` tqβdt on the interval r´1, 1s. They form a complete orthogonal
system of the space L2pr´1, 1s, p1 ´ tqαp1 ` tqβdtq. This space consists of all
real-valued functions f : r´1, 1s Ñ R for which the integral

ż 1

´1

f2ptqp1´ tqαp1` tqβdt

exists and is finite. We denote by P pα,βqk the normalized Jacobi polynomial of
degree k with normalization P

pα,βq
k p1q “ 1. The first few normalized Jacobi

polynomials with parameter pα, αq and α “ pn´ 3q{2 are

Pn0 ptq “ P
pα,αq
0 ptq “ 1,

Pn1 ptq “ P
pα,αq
1 ptq “ t,

Pn2 ptq “ P
pα,αq
2 ptq “

n

n´ 1
t2 ´

1

n´ 1
.

Much more information is known about these orthogonal polynomials. They
are also known to many computer algebra systems.

sage: x = PolynomialRing(QQ, ’x’).gen()

sage: n = 4

sage: a = (n-3)/2

sage: for k in range(0,5):

sage: print(jacobi_P(k,a,a,x)/jacobi_P(k,a,a,1))

1

x

4/3*x^2 - 1/3

2*x^3 - x

16/5*x^4 - 12/5*x^2 + 1/5
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12.4 Proof of Schoenberg’s theorem

In this section we prove Theorem 12.3.1 in three steps. In the first two steps we
derive some properties of the extreme rays Enk .

12.4.1 Orthogonality relation

The space of symmetric continuous Hilbert-Schmidt kernel is an inner product
space, just like the space of symmetric matrices. The inner product between K
and L is

xK,Ly “

ż

Sn´1

Kpx, yqLpx, yqdωnpxqdωnpyq.

Lemma 12.4.1. We have the orthogonality relation Enk K Enl whenever k ‰ l.

Proof. Since Enk px, yq “ Pnk px ¨ yq and the integrals are invariant under Opnq,
we can take x “ N , where N is the North Pole, and therefore,

xEnk , E
n
l y “ ωnpS

n´1q

ż

Sn´1

Pnk pN ¨ yqP
n
l pN ¨ yqdωnpyq

“ ωnpS
n´1qωn´1pS

n´2q

ż 1

´1

Pnk ptqP
n
l ptqp1´ t

2q
n´3
2 dt

“ 0,

if k ‰ l.

12.4.2 Positive semidefiniteness

Lemma 12.4.2. The Enk ’s are positive semidefinite.

Proof. Let us consider the space of continuous functions f : Sn´1 Ñ R with
inner product

pf, gq “

ż

Sn´1

fpxqgpxqdωnpxq.

Let V0 be the space of constant functions on Sn´1 and, for k ě 1, let Vk be
the space of polynomial functions on Sn´1 of degree k which are orthogonal to
V0, V1, . . . , Vk´1.

The key idea is to relate Vk to Enk .

Fix x P Sn´1. Consider the evaluation map f ÞÑ fpxq. This is a linear
function on Vk. By the Riesz representation theorem2, there is a unique vk,x P Vk
with

pvk,x, fq “ fpxq.

Claim: αkvk,xpyq “ Enk px, yq for some αk ą 0

2In fact it follows from basic linear algebra because Vk is of finite dimension.
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Proof. Note that both sides are polynomials of the right degree. Also, vk,xpyq is
invariant under rotations that leave x fixed: Let A P Opnq such that Ax “ x.
Then,

pAvk,xqpyq “ vk,xpA
´1yq “ vk,xpyq,

because we have

pAvk,x, fq “ pvk,x, A
´1fq

“ fpAxq

“ pvk,Ax, fq pby definition of vk,¨q

“ pvk,x, fq pAx “ xq

and by uniqueness of vk,x, it follows that Avk,x “ vk,x. Thus px, yq ÞÑ vk,xpyq is
purely a function of x ¨ y.

Also, for k ‰ l, vk,x K vl,x since Vk K Vl, thus they have the right orthogo-
nality relations. Hence Enk px, yq and vk,xpyq are multiples of each other. Since
we have

Enk px, xq “ 1 and vk,xpxq “ pvk,x, vk,xq ą 0,

the claim follows.

Now we are ready to show that Enk is positive semidefinite. Observe that
Enk px, yq “ αkvk,xpyq and that vk,xpyq “ pvk,y, vk,xq. Thus we have,

ż

Sn´1

ż

Sn´1

Enk px, yqfpxqfpyqdωnpxqdωnpyq

“ αk

ż

Sn´1

ż

Sn´1

pvk,y, vk,xqfpxqfpyqdωnpxqdωnpyq

“ αk

ˆ
ż

Sn´1

vk,xfpxqdωnpxq,

ż

Sn´1

vk,yfpyqdωnpyq

˙

ě 0

as both the integrals in the last inner product are identical. It follows that Enk is
positive semidefinite.

12.4.3 End of proof

We first show that, if f0, f1, . . . are nonnegative numbers such that
ř8

k“0 fk
converges, then the series

ř8

k“0 fkE
n
k px, yq converges absolutely and uniformly

for all x, y P Sn´1.
By Lemma 12.4.2 Enk is positive semidefinite and so

|Enk px, yq| ď Enk px, xq “ Pnk p1q “ 1

for all x, y P Sn´1 and so
8
ÿ

k“0

fkE
n
k px, yq
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converges absolutely for all x, y P Sn´1.
Now, for all x, y P Sn´1 for all m P N we have

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“m

fkE
n
k px, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“m

fk

and so the series also converges uniformly for all x, y P Sn1.
With the above observation, if we are given nonnegative numbers f0, f1, . . .

such that
ř8

k“0 fk converges, then the kernel

Kpx, yq “
8
ÿ

k“0

fkE
n
k px, yq

is continuous. From Lemma 12.4.2 it is also positive semidefinite, and so we
showed the inclusion “Ě”.

For the other inclusion “Ď” let K : Sn´1 ˆ Sn´1 Ñ R be a continuous,
positive semidefinite, and invariant kernel. Kernel K is invariant, so let h :
r1, 1s Ñ R be the function such that Kpx, yq “ hpx ¨ yq for all x, y P Sn´1.
The polynomials Pn0 , P

n
1 form a complete orthogonal system of L2pr´1, 1s, p1´

t2qpn´3q{2dtq with convergence in the L2-norm.
We first claim that the fk are all nonnegative. To see this, recall the orthog-

onality relation from Lemma 12.4.1. First note that
C

ÿ

k

fkE
n
k , E

n
l

G

ě 0

since this is the inner product of two positive semidefinite kernels. Now by
orthogonality of Enk ’s, we have

0 ď

C

ÿ

k

fkE
n
k , E

n
l

G

“ fl xE
n
l , E

n
l y

loooomoooon

ą0

This is possible only if fl ě 0.
To finish, we show that the series

ř8

k“0 fk converges. To this end, consider
for m “ 0, 1, . . . the function

hmpuq “ hpuq ´
m
ÿ

k“0

fkP
n
k puq for all u P r1, 1s.

These are continuous functions. Moreover, since we have

hm “
8
ÿ

k“m`1

fkP
n
k

in the sense of L2 convergence, it follows that for each m the kernel Kmpx, yq “
hmpx ¨ yq is positive semidefinite.
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This implies in particular that hmp1q ě 0 for all m. But then we have

hp1q ´
m
ÿ

k“0

fk “ hp1q ´
m
ÿ

k“0

fkP
m
k p1q “ hmp1q ě 0

and we conclude that the series of nonnegative terms
ř8

k“0 fk converges to a
number less than or equal to hp1q, as we wanted.

12.5 Delsarte’s LP method

Using Schoenberg’s theorem we can reformulate ϑ1pGpn, 2γqq where we use the
nonnegative optimization variables f0, f1, . . .

ϑ1pGpn, 2γqq “ inf λ

f0, f1, . . . ě 0
8
ÿ

k“0

fk ă 8

8
ÿ

k“0

fkP
n
k p1q “ λ´ 1

ÿ

k

fkP
n
k ptq ď ´1 for all t P r´1, cosp2γqs

(12.2)

This problem has infinitely many variables. If we truncate the variables3 we
get the following bound:

αpGpn, 2γqq ď ϑ1pGpn, 2γqq ď inf λ

f0, f1, . . . , fd ě 0,

d
ÿ

k“1

fkP
n
k p1q “ λ´ 1

d
ÿ

k“1

fkP
n
k ptq ď ´1 @t P r´1, cosp2γqs

Since this optimization problem is a linear program (with infinitely many
constraints) it carries the name linear programming bound. These kind of linear
programming bounds were first invented by Delsarte in 1973 in the context of
error correcting codes and therefore they also carry the name “Delsarte’s LP
method”.

Note that the infinitely many inequalities can be replaced by a finite dimen-
sional semidefinite condition using sums of squares (see Chapter 2.7):

´1´
d
ÿ

k“1

fkP
n
k ptq “ pptq ´ pt` 1qpt´ cosp2γqqqptq

3Formally we set 0 “ fd`1 “ fd`2 “ . . .
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where p and q are polynomials which can be written as sum of squares.

12.6 τ8 equals 240

It so happens that for n “ 8, αpGp8, π{3qq “ ϑ1pGp8, π{3qq “ 240. This result is
due to Odlyzko, Sloane, and independently due to Levenshtein.

First, consider the set of 240 points in S7 obtained by all possible permuta-
tions and sign-changes of the point

A “

ˆ

1
?

2
,

1
?

2
, 0, 0, 0, 0, 0

˙T

and all possible even sign-changes of the point

B “

ˆ

1
?

8
,

1
?

8
,

1
?

8
,

1
?

8
,

1
?

8
,

1
?

8
,

1
?

8

˙T

There are
`

8
2

˘

22 “ 112 points generated by A and 27 “ 128 points generated by
B. All possible inner products for points from this set are

"

´1,´
1

2
, 0,

1

2
, 1

*

.

In particular, note that there is no inner product between 1
2 and 1. Thus, this

is a valid kissing configuration. In fact, this configuration of points on the unit
sphere is coming from the root system E8 which has connections to many areas
in mathematics and physics.

Now, taking hints from the formulation for ϑ1pGp8, π{3qq, we explicitly con-
struct a kernel Kpx, yq. Recall, Kpx, yq “ ´1 if tx, yu R E. Also, recall that
Kpx, yq was a function of the inner product x ¨ y “ t only. Now, consider the
following polynomial

F ptq “ ´1` βpt` 1q

ˆ

t`
1

2

˙2

t2
ˆ

t´
1

2

˙

Note that, F p´1q “ F p´1{2q “ F p0q “ fp1{2q “ ´1 by construction. Also,
F ptq ď ´1 for t P r´1, 1{2s. Setting, F p1q “ λ ´ 1 “ 240 ´ 1 “ 239, we get
β “ 320

3 .
Now, it can be verified (Exercise 12.1 (a)) that

F ptq “
6
ÿ

k“0

fkP
8
k ptq, fk ě 0. (12.3)

Thus, F ptq is a feasible point for the optimization problem (12.2).
Now by construction of the set of points, we know that αpGp8, π{3qq ě 240.

By the construction of F ptq, we know that ϑ1pGp8q, π{3q ď 240. Thus we have
α “ ϑ1pGp8, π{3qq. Thus,

τ8 “ 240.
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12.7 Further reading

Schoenberg’s result can be seen as a special case of Bochner’s theorem which
gives a similar statement for every compact, homogeneous space and which
is based on the Peter-Weyl theorem. In [4] and [1] general techniques are
presented which use Bochner’s theorem to simplify semidefinite programs which
are invariant under a group of symmetries.

A very readable introduction to the area of geometric packing problems and
energy minimization is [2] from Henry Cohn.

12.8 Exercises

12.1** (a) Determine fk in (12.3), completing the proof of τ8 “ 240.

(b) Compute ϑ1pGp2, π{3qq.

(c) Determine αpGpn, π{4qq.

12.2** Consider 12 points x1, . . . , x12 on the sphere S2. What is the largest possi-
ble minimal angle between distinct points xi and xj with i ‰ j?

12.3** Write a computer program for finding ϑ1pGpnq, π{3q and produce a table
for n “ 2, . . . , 24.

12.4 Determine αpGp24, π{3qq.
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Part IV

Applications in algebra
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CHAPTER 13

SUMS OF SQUARES OF
POLYNOMIALS

In this chapter we return to sums of squares of polynomials, which we had al-
ready briefly introduced in Chapter 2. We address the following basic question:
Given a subset K Ď Rn defined by finitely many polynomial inequalities, how
can one certify that a polynomial p is nonnegative on K? This question is moti-
vated by its relevance to the problem of minimizing p over K, to which we will
return in the next two chapters. We collect a number of results from real al-
gebraic geometry which give certificates for nonnegative (positive) polynomials
on K in terms of sums of squares. We give a full proof for the representation re-
sult of Putinar, which we will use later for designing a hierarchy of semidefinite
relaxations for polynomial optimization problems.

In this and the next two chapters we use the following notation. Rrx1, . . . , xns
(or simply Rrxs) denotes the ring of polynomials in n variables. A polyno-
mial p P Rrxs can be written as p “

ř

α pαx
α, where pα P R and xα stands

for the monomial xα1
1 ¨ ¨ ¨xαnn . The sum is finite and the maximum value of

|α| “
řn
i“1 αi for which pα ‰ 0 is the degree of p. For an integer d, Nnd denotes

the set of sequences α P Nn with |α| ď d, thus the exponents of the monomials
of degree at most d. Moreover, Rrxsd denotes the vector space of all polyno-
mials of degree at most d, its dimension is spn, dq “ |Nnd | “

`

n`d
d

˘

and the set
txα : α P Nn, |α| ď du of monomials of degree at most d is its canonical base.

13.1 Sums of squares of polynomials

A polynomial p is said to be a sum of squares, abbreviated as p is sos, if p can be
written as a sum of squares of polynomials. Σ denotes the set of all polynomials

198



that are sos. A fundamental property, already proved in Section 2.7, is that sums
of squares of polynomials can be recognized using semidefinite programming.

Lemma 13.1.1. Let p P Rrxs2d. Then p is sos if and only if the following semidef-
inite program in the matrix variable Q P Sspn,dq is feasible:

Q ľ 0,
ÿ

β,γPNn
d

β`γ“α

Qβ,γ “ pα @α P Nn2d. (13.1)

13.1.1 Polynomial optimization

Why do we care about sums of squares?
Sums of squares are useful because they constitute a sufficient condition for

nonnegative polynomials.

Example 13.1.2. Consider the polynomial:

fnpxq “ xn1 ` ¨ ¨ ¨ ` x
n
n ´ nx1 ¨ ¨ ¨xn.

One can show that fn is a sum of squares for any even n, which permits to derive
the arithmetic-geometric mean inequality:

n
?
x1 ¨ ¨ ¨xn ď

x1 ` ¨ ¨ ¨ ` xn
n

(13.2)

for x1, ¨ ¨ ¨ , xn ě 0 and any n ě 1. (You will show this in Exercise 13.1).

As one can recognize sums of squares using semidefinite programming, sums
of squares can be used to design tractable bounds for hard optimization prob-
lems of the form: Compute the infimum pmin of a polynomial p over a subset
K P Rn defined by polynomial inequalities:

K “ tx P Rn : g1pxq ě 0, ¨ ¨ ¨ , gmpxq ě 0u,

where g1, ¨ ¨ ¨ , gm P Rrxs. Such optimization problem, where the objective and
the constraints are polynomial functions, is called a polynomial optimization
problem.

Define the set of nonnegative polynomials on K:

PpKq “ tf P Rrxs : fpxq ě 0 @x P Ku. (13.3)

Clearly,

pmin “ inf
xPK

ppxq “ suptλ : p´ λ P PpKqu. (13.4)

Computing pmin is hard in general.
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Example 13.1.3. Given integers a1, ¨ ¨ ¨ , an P N, consider the polynomial

ppxq “

˜

n
ÿ

i“1

aixi

¸2

`

n
ÿ

i“1

px2i ´ 1q2.

Then the infimum of p over Rn is equal to 0 if and only if the sequence a1, ¨ ¨ ¨ , an
can be partitioned. So if one could compute the infimum over Rn of a quartic
polynomial then one could solve the NP -complete partition problem.

As another example, the stability number αpGq of a graph G “ pV,Eq can be
computed using any of the following two programs:

αpGq “ max

#

ÿ

iPV

xi : xi ` xj ď 1 @ti, ju P E, x2i ´ xi “ 0 @i P V

+

, (13.5)

1

αpGq
“ min

#

xTpAG ` Iqx :
ÿ

iPV

xi “ 1, x ě 0

+

, (13.6)

where AG is the adjacency matrix of G. The formulation (13.5) is due to Motzkin.
This shows that polynomial optimization captures NP -hard problems, as soon as
the objective or the constraints are quadratic polynomials.

A natural idea is to replace the hard positivity condition: p P PpKq by the
easier sos type condition: p P Σ ` g1Σ ` ¨ ¨ ¨ ` gmΣ. This leads to defining the
following parameter:

psos “ suptλ : p´ λ P Σ` g1Σ` ¨ ¨ ¨ ` gmΣu. (13.7)

As a direct application of Lemma 13.1.1, one can compute psos using semidefi-
nite programming. For instance, when K “ Rn,

psos “ p0 ` sup

$

’

&

’

%

´Q00 : Q ľ 0, pα “
ÿ

β,γPNn
d

β`γ“α

Qβ,γ , @α P Nn2dzt0u

,

/

.

/

-

. (13.8)

Clearly the inequality holds:
psos ď pmin. (13.9)

In general the inequality is strict. However, when the setK is compact and satis-
fies an additional condition, equality holds. This follows from Putinar’s theorem
(Theorem 13.2.9), which claims that any polynomial positive on K belongs to
Σ ` g1Σ ` ¨ ¨ ¨ ` gmΣ. We will return to the polynomial optimization problem
(14.1) and its sos relaxation (13.7) in the next chapters. In the remaining of this
chapter we investigate sums of squares representations for positive polynomials
and we will prove Putinar’s theorem.
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13.1.2 Hilbert’s theorem

Hilbert has classified in 1888 the pairs pn, dq for which every nonnegative poly-
nomial of degree d in n variables is a sum of squares of polynomials:

Theorem 13.1.4. Every nonnegative n-variate polynomial of even degree d is a
sum of squares if and only if n “ 1, or d “ 2, or pn, dq “ p2, 4q.

We saw earlier that nonnegative univariate polynomials are sos, the case
d “ 2 boils down to the fact that positive semidefinite matrices have a Cholesky
factorization, but the last exceptional case pn, dq “ p2, 4q is difficult. For every
pair pn, dq ‰ p2, 4q with n ě 2 and even d ě 4, there is an n-variate polynomial
of degree d which is nonnegative over Rn but not sos. It is not difficult to see
that it suffices to give such a polynomial for the two pairs pn, dq “ p2, 6q, p3, 4q.
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Figure 13.1: The Motzkin polynomial

Example 13.1.5. Hilbert’s proof for the ‘only if ’ part of Theorem 13.1.4 was not
constructive, the first concrete example of a nonnegative polynomial that is not sos
is the following polynomial, for the case pn, dq “ p2, 6q:

ppx, yq “ x2y2px2 ` y2 ´ 3q ` 1,

constructed by Motzkin in 1967.
Proof that p is nonnegative on R2: If x2` y2´ 3 ě 0 then clearly Mpx, yq ě 0.

Otherwise, set z2 “ 3´x2´ y2 and use the arithmetic-geometric mean inequality:
3
a

x2y2z2 ď px2 ` y2 ` z2q{3 to deduce Mpx, yq ě 0.
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To show that p is not sos, use brute force: Say p “
ř

l s
2
l for some polynomials

sl of degree at most 3. As the coefficient of x6 in p is 0, we see that the coefficient
of x3 in each sl is 0; analogously, the coefficient of y3 in sl is 0. Then, as the
coefficients of x4 and y4 in p are 0, we get that the coefficients of x2 and y2 in
sl are 0. After that we can conclude that the coefficients of x and y in sl are 0.
Finally, say sl “ alxy

2 ` blx
2y ` clxy ` dl. Then the coefficient of x2y2 in p is

equal to ´3 “
ř

l c
2
l , yielding a contradiction.

In fact, the same argument shows that p ´ λ is not sos for any scalar λ P R.
Therefore, for the infimum of the Motzkin polynomial p over R2, the sos bound psos

carries no information: psos “ ´8, while pmin “ 0 is attained at p˘1,˘1q.
For the case pn, dq “ p3, 4q, the Choi-Lam polynomial:

qpx, y, zq “ 1` x2y2 ` y2z2 ` x2z2 ´ 4xyz

is nonnegative (directly, using the arithmetic-geometric mean inequality) but not
sos (direct inspection).

13.1.3 Are sums of squares a rare event?

A natural question is whether sums of squares abound or not within the cone of
of nonnegative polynomials. It turns out hat the answer depends, whether we
fix or let grow the number of variables and the degree.

On the one hand, if we fix the number of variables and allow the degree
to grow, then every nonnegative polynomial p can be approximated by sums of
squares obtained by adding a small high degree perturbation to p.

Theorem 13.1.6. If p ě 0 on r´1, 1sn, then the following holds:

@ε ą 0 Dk P N p` ε

˜

1`
n
ÿ

i“1

x2ki

¸

P Σ.

On the other hand, if we fix the degree and let the number of variables
grow, then there are significantly more nonnegative polynomials than sums of
squares: There exist universal constants c, C ą 0 such that

c ¨ npd´1q{2 ď

˜

volpP̂n,2dq
volpΣ̂n,2dq

¸1{D

ď C ¨ npd´1q{2. (13.10)

Here P̂n,2d is the set of nonnegative homogeneous polynomials of degree 2d
in n variables intersected with the hyperplane H “ tp :

ş

Sn´1 ppxqµpdxq “

1u. Analogously, Σ̂n,2d is the set of homogeneous polynomials of degree 2d in
n variables that are sums of squares, intersected by the same hyperplane H.
Finally, D “

`

n`2d´1
2d

˘

´ 1 is the dimension of the ambient space.
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13.1.4 Artin’s theorem

Hilbert asked in 1900 the following question, known as Hilbert’s 17th problem:
Is it true that every nonnegative polynomial on Rn is a sum of squares of rational
functions? Artin answered this question in the affirmative in 1927:

Theorem 13.1.7. (Artin’s theorem) A polynomial p is nonnegative on Rn if and

only if p “
řm
j“1

´

pj
qj

¯2

for some pj , qj P Rrxs.

This was a major breakthrough, which started the field of real algebraic
geometry.

13.2 Positivstellensätze

We now turn to the study of nonnegative polynomials p on a basic closed semi-
algebraic set K, i.e., a set K of the form

K “ tx P Rn : g1pxq ě 0, ¨ ¨ ¨ , gmpxq ě 0u, (13.11)

where g1, ¨ ¨ ¨ , gm P Rrxs. Set g0 “ 1. When the polynomials p, gj are linear,
Farkas’ lemma implies:

p ě 0 on K ðñ p “
m
ÿ

j“0

λjgj for some scalars λj ě 0. (13.12)

We will show the following result, due to Putinar: Assume that K is compact
and satisfies the additional condition (13.17) below. Then

p ą 0 on K ùñ p “
m
ÿ

j“0

sjgj for some polynomials sj P Σ. (13.13)

Of course, the following implication holds trivially:

p “
m
ÿ

j“0

sjgj for some polynomials sj P Σ ùñ p ě 0 on K.

However, this is not an equivalence, one needs a stronger assumption: strict
positivity of p over K. Note the analogy between (13.12) and (13.13): While
the variables in (13.12) are nonnegative scalars λi, the variables in (13.13) are
sos polynomials si. A result of the form (13.13) is usually called a Positivstel-
lensatz. This has historical reasons, the name originates from the analogy to
the classical Nullstellensatz of Hilbert for the existence of complex roots:

Theorem 13.2.1. (Hilbert’s Nullstellensatz) Given g1, ¨ ¨ ¨ , gm P Rrxs, define
the complex variety, consisting of their common complex roots:

VCpg1, ¨ ¨ ¨ , gmq “ tx P Cn : g1pxq “ 0, ¨ ¨ ¨ , gmpxq “ 0u.
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For a polynomial p P Rrxs,

p “ 0 on VCpg1, ¨ ¨ ¨ , gmq ðñ pk “
m
ÿ

j“1

ujgj for some uj P Rrxs, k P N.

In particular, VCpg1, ¨ ¨ ¨ , gmq “ H ðñ 1 “
řm
j“1 ujgj for some uj P Rrxs.

Checking a Nullstellensatz certificate: whether there exist polynomials uj
satisfying p “

ř

j ujhj , amounts to solving a linear program (after fixing a
bound d on the degrees of the unknown uj ’s). On the other hand, checking a
certificate of the form: p “

ř

j sjgj where the sj ’s are sos, amounts to solving
a semidefinite program (again, after fixing some bound d on the degrees of the
unknown sj ’s). In a nutshell, semidefinite programming is the key ingredient to
deal with real elements while linear programming permits to deal with complex
elements. We will return to this in the last chapter.

13.2.1 The univariate case

We consider here nonnegative univariate polynomials over a closed interval
K Ď R, thus of the form K “ r0,8q or K “ r´1, 1s (up to scaling). Then
a full characterization is known, moreover with explicit degree bounds.

Theorem 13.2.2. (Pólya-Szegö) Let p be a univariate polynomial of degree d.
Then, p ě 0 on r0,8q if and only if p “ s0 ` s1x for some s0, s1 P Σ with
degps0q ď d and degps1q ď d´ 1.

Theorem 13.2.3. (Fekete, Markov-Lukácz) Let p be a univariate polynomial of
degree d. Assume that p ě 0 on r´1, 1s.

(i) p “ s0 ` s1p1´ x
2q, where s0, s1 P Σ, degps0q ď d` 1 and degps1q ď d´ 1.

(ii) For d odd, p “ s1p1`xq`s2p1´xqwhere s1, s2 P Σ, degps1q,degps2q ď d´ 1.

Note the two different representations in (i), (ii), depending on the choice
of the polynomials describing the set K “ r´1, 1s.

13.2.2 Krivine’s Positivstellensatz

Here we state the Positivstellensatz of Krivine (1964), which characterizes non-
negative polynomials on an arbitrary basic closed semi-algebraic set K (with no
compactness assumption). Let K be as in (13.11). Set g “ pg1, ¨ ¨ ¨ , gmq and,
for a set of indices J Ď t1, ¨ ¨ ¨ ,mu, set gJ “

ś

jPJ gj . The set

Tpgq “

$

&

%

ÿ

JĎrms

sJgJ : sJ P Σ

,

.

-

(13.14)

is called the preordering generated by g “ pg1, ¨ ¨ ¨ , gmq. It consists of all
weighted sums of the products gJ , weighted by sums of squares. Clearly, any
polynomial in Tpgq is nonnegative on K: Tpgq Ď PpKq.
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Example 13.2.4. Let K “ tx P R : g “ p1 ´ x2q3 ě 0u and p “ 1 ´ x2. Then,
p is nonnegative on K, but p R Tpgq (check it). But, note that pg “ p4 (compare
with item (ii) in the next theorem).

Theorem 13.2.5. (Krivine’s Positivstellensatz) Let K be as in (13.11) and let
p P Rrxs. The following holds.

(i) p ą 0 on K ðñ pf “ 1` h for some f, h P Tpgq.

(ii) p ě 0 on K ðñ pf “ p2k ` h for some f, h P Tpgq and k P N.

(iii) p “ 0 on K ðñ ´p2k P Tpgq for some k P N.

(iv) K “ Hðñ ´1 P Tpgq.

In (i)-(iv) above, there is one trivial implication. For example, it is clear that
´1 P Tpgq implies K “ H. And in (i)-(iii), the existence of a sos identity for p
of the prescribed form implies the desired property for p.

Choosing K “ Rn (g “ 1), we have Tpgq “ Σ and thus (ii) implies Artin’s
theorem. Moreover, one can derive the following result, which characterizes the
polynomials that vanish on the set of common real roots of a set of polynomials.

Theorem 13.2.6. (The Real Nullstellensatz) Given g1, ¨ ¨ ¨ , gm P Rrxs, define
the real variety, consisting of their common real roots:

VRpg1, ¨ ¨ ¨ , gmq “ tx P Rn : g1pxq “ 0, ¨ ¨ ¨ , gmpxq “ 0u. (13.15)

For a polynomial p P Rrxs,

p “ 0 on VRpg1, ¨ ¨ ¨ , gmq ðñ p2k`s “
m
ÿ

j“1

ujgj for some s P Σ, uj P Rrxs, k P N.

In particular,

VRpg1, ¨ ¨ ¨ , gmq “ H ðñ ´1 “ s`
m
ÿ

j“1

ujgj for some s P Σ, uj P Rrxs.

The above result does not help us yet to tackle the polynomial optimization
problem (14.1): Indeed, using (i), we can reformulate psos as

psos “ sup
λPR,f,gPRrxs

tλ : pp´ λqf “ 1` g, f, g P Tpgqu.

However, this does not lead to a semidefinite program, because of the quadratic
term λf where both λ and f are unknown. Of course, one could fix λ and
solve the corresponding semidefinite program, and iterate using binary search
on λ. However, there is an elegant, more efficient remedy: Using the refined
representation results of Schmüdgen and Putinar in the next sections one can
set up a simpler semidefinite program permmitting to search over the variable
λ.
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13.2.3 Schmüdgen’s Positivstellensatz

When K is compact, Schmüdgen [7] proved the following simpler representa-
tion result for positive polynomials on K.

Theorem 13.2.7. (Schmüdgen’s Positivstellensatz) AssumeK is compact. Then,

ppxq ą 0 @x P K ùñ p P Tpgq.

A drawback of a representation
ř

J sJgJ in the preordering Tpgq is that it
involves 2m sos polynomials sJ , thus exponential in the numberm of constraints
defining K. Next we see how to get a representation of the form

ř

j sjgj , thus
involving only a linear number of terms.

13.2.4 Putinar’s Positivstellensatz

Under an additional (mild) assumption on the polynomials defining the set K,
Putinar [5] showed the analogue of Schmüdgen’s theorem, where the preorder-
ing Tpgq is replaced by the following quadratic module:

Mpgq “

#

m
ÿ

j“0

sjgj : sj P Σ

+

. (13.16)

First we describe this additional assumption. For this consider the following
conditions on the polynomials gj defining K:

Dh PMpgq tx P Rn : hpxq ě 0u is compact, (13.17)

DN P N N ´
n
ÿ

i“1

x2i PMpgq, (13.18)

@f P Rrxs DN P N N ˘ f PMpgq. (13.19)

Proposition 13.2.8. The conditions (13.17), (13.18) and (13.19) are all equiva-
lent. If any of them holds, the quadratic module Mpgq is said to be Archimedean.

Proof. The implications (13.19) ùñ (13.18) ùñ (13.17) are clear. Assume
(13.17) holds and let f P Rrxs. As the set K0 “ tx : hpxq ě 0u is compact, there
exists N P N such that ´N ă fpxq ă N over K0. Hence, N ˘ f is positive on
K. Applying Theorem 13.2.7, we deduce that N ˘ f P Tphq ĎMpgq.

Clearly, (13.17) implies that K is compact. On the other hand, if K is com-
pact, then it is contained in some ball tx P Rn : gm`1 “ R2 ´

řn
i“1 x

2
i ě 0u.

Hence, if we know the radius R of a ball containing K, then it suffices to add
the (redundant) ball constraint gm`1pxq ě 0 to the description of K so that the
quadratic module Mpg1q is now Archimedean, where g1 “ pg, gm`1q.

206



Theorem 13.2.9. (Putinar’s Positivstellensatz) Assume that the qudratic mod-
ule Mpgq is Archimedean (i.e., the gj ’s satisfy any of the equivalent conditions
(13.17)-(13.19)). Then,

ppxq ą 0 @x P K ùñ p PMpgq.

Example 13.2.10. Consider the simplex K “ tx P Rn : x ě 0,
řn
i“1 xi ď 1u and

the corresponding quadratic module M “Mpx1, ¨ ¨ ¨ , xn, 1´
řn
i“1 xiq. Then M is

Archimedean. To see it note that the polynomial n´
ř

i x
2
i PM . This follows from

the following identities:

‚ 1´ xi “ p1´
ř

j xjq `
ř

j‰i xj PM.

‚ 1´ x2i “
p1`xiqp1´x

2
i q

2 `
p1`xiqp1´x

2
i q

2 “
p1`xiq

2

2 p1´ xiq `
p1´xiq

2

2 p1` xiq PM .

‚ n´
ř

i x
2
i “

ř

ip1´ x
2
i q PM .

Example 13.2.11. Consider the cubeK “ r01sn “ tx P Rn : 0 ď xi ď 1 @i P rnsu
and the corresponding quadratic module M “Mpx1, 1´x1, ¨ ¨ ¨ , xn, 1´xnq. Then
M is Archimedean. Indeed, as in the previous example, 1 ´ x2i P M and thus
n´

ř

i x
2
i PM .

13.2.5 Proof of Putinar’s Positivstellensatz

In this section we give a full proof for Theorem 13.2.9. The proof is elementary,
combining some (sometimes ingenious) algebraic manipulations. We start with
defining the notions of ideal and quadratic module in the ring Rrxs.

Definition 13.2.12. A set I Ď Rrxs is an ideal if I is closed under addition and
multiplication by Rrxs: I ` I Ď I and Rrxs ¨ I Ď I.

Definition 13.2.13. A subset M Ď Rrxs is a quadratic module if 1 PM and M is
closed under addition and multiplication by squares: M`M ĎM and Σ¨M ĎM .
M is said to be proper if M ‰ Rrxs or, equivalently, if ´1 RM .

Example 13.2.14. Given polynomials g1, ¨ ¨ ¨ , gm,

pg1, ¨ ¨ ¨ , gmq “

#

m
ÿ

j“1

ujgj : uj P Rrxs

+

is an ideal (the ideal generated by the gj ’s) and the set Mpgq from (13.16) is a
quadratic module (the quadratic module generated by the gj ’s).

We start with some technical lemmas.

Lemma 13.2.15. If M Ď Rrxs is a quadratic module, then I “M X p´Mq is an
ideal.

Proof. This follows from the fact that, for any f P Rrxs and g P I, we have:

fg “
´

f`1
2

¯2

g `
´

f´1
2

¯2

p´gq P I.
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Lemma 13.2.16. Let M Ď Rrxs be a maximal proper quadratic module. Then,
M Y p´Mq “ Rrxs.

Proof. Assume f RMYp´Mq. Each of the setsM 1 “M`fΣ andM2 “M´fΣ
is a quadratic module, strictly containing M . By the maximality assumption on
M , M 1 and M2 are not proper: M 1 “M2 “ Rrxs. Hence:

´1 “ g1 ` s1f, ´1 “ g2 ´ s2f for some g1, g2 PM, s1, s2 P Σ.

This implies: ´s2 ´ s1 “ s2pg1 ` s1fq ` s1pg2 ´ s2fq “ s2g1 ` s1g2 and thus
s1, s2 P ´M . On the other hand, s1, s2 P Σ Ď M . Therefore, s1, s2 P I “
M X p´Mq. As I is an ideal (by Lemma 13.2.15), we get s1f P I Ď M and
therefore ´1 “ g1 ` s1f PM , contradicting M proper.

Lemma 13.2.17. Let M be a maximal proper quadratic module in Rrxs and
I “M X p´Mq. Assume that M is Archimedean, i.e., satisfies:

@f P Rrxs DN P N N ˘ f PM.

Then, for any f P Rrxs, there exists a (unique) scalar a P R such that f ´ a P I.

Proof. Define the sets

A “ ta P R : f ´ a PMu, B “ tb P R : b´ f PMu.

As M is Archimedean, A,B are both non-empty. We show that |A X B| “ 1.
First observe that a ď b for any a P A and b P B. For, if one would have
a ą b, then b´ a “ pf ´ aq ` pb´ fq is a negative scalar in M , contradicting M
proper. Let a0 be the supremum of A and b0 the infimum of B. Thus a0 ď b0.
Moreover, a0 “ b0. For, if not, there is a scalar c such that a0 ă c ă b0. Then,
f ´ c RM Y p´Mq, which contradicts Lemma 13.2.16.

We now show that a0 “ b0 belongs to AXB, which implies that AXB “ ta0u
and thus concludes the proof. Suppose for a contradiction that a0 R A, i.e.,
f ´ a0 R M . Then the quadratic module M 1 “ M ` pf ´ a0qΣ is not proper:
M 1 “ Rrxs. Hence,

´1 “ g ` pf ´ a0qs for some g PM, s P Σ.

As M is Archimedean, there exists N P N such that N ´ s PM . Pick ε such that
0 ă ε ă 1{N . Then, a0 ´ ε P A and f ´ pa0 ´ εq “ pf ´ a0q ` ε PM implies:

´1` εs “ g ` pf ´ a0 ` εqs PM.

Adding with εpN ´ sq PM , we obtain:

´1` εN “ p´1` εsq ` εpN ´ sq PM.

We reach a contradiction since ´1` εN ă 0.

Lemma 13.2.18. Assume p ą 0 on K. Then there exists s P Σ such that sp´ 1 P
Mpgq.
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Proof. We need to show that the quadratic module M0 “ Mpgq ´ pΣ is not
proper. Assume for a contradiction that M0 is proper. We are going to construct
a P K for which ppaq ď 0, contradicting the assumption that p is positive on K.
By Zorn’s lemma1 let M be a maximal proper quadratic module containing M0.
As M ĚMpgq, M too is Archimedean. Applying Lemma 13.2.17 to M , we find
some scalar ai P R for which

xi ´ ai P I “M X p´Mq @i P rns.

The ai’s make up a point a P Rn. As I is an ideal, this implies that

f ´ fpaq P I @f P Rrxs. (13.20)

Indeed, say f “
ř

α fαx
α, then f ´ fpaq “

ř

α fαpx
α ´ aαq. It suffices now to

show that each xα ´ aα belongs to I. We do this using induction on |α| ě 0. If
α “ 0 there is nothing to prove. Otherwise, say α1 ě 1 and write β “ α´ e1 so
that xα “ x1x

β and aα “ a1a
β . Then we have

xα ´ aα “ x1px
β ´ aβq ` aβpx1 ´ a1q P I

since xβ ´ aβ P I (using induction) and x1 ´ a1 P I.
Now we apply (13.20) to f “ gj and we obtain that

gjpaq “ gj ´ pgj ´ gjpaqq PM

since gj PMpgq ĎM and gj ´ gjpaq P ´M . As M is proper, we must have that
gjpaq ě 0 for each j. This shows that a P K. Finally,

´ppaq “ pp´ ppaqq ´ p PM,

since p ´ ppaq P I Ď M and ´p P M0 Ď M . Again, as M is proper, this implies
that ´ppaq ě 0, yielding a contradiction because p ą 0 on K.

Lemma 13.2.19. Assume p ą 0 on K. Then there exist N P N and h P Mpgq
such that N ´ h P Σ and hp´ 1 PMpgq.

Proof. Choose s as in Lemma 13.2.18. Thus, s P Σ and sp´ 1 PMpgq. As Mpgq
is Archimedean, we can find k P N such that

2k ´ s, 2k ´ s2p´ 1 PMpgq.

Set h “ sp2k ´ sq and N “ k2. Then, h P Mpgq and N ´ h “ pk ´ sq2 P Σ.
Moreover,

hp´ 1 “ sp2k ´ sqp´ 1 “ 2kpsp´ 1q ` p2k ´ s2p´ 1q PMpgq,

since sp´ 1, 2k ´ s2p´ 1 PMpgq.

1Zorn’s lemma states the following: Let pP,ďq be a partially ordered set in which every chain
(totally ordered subset) has an upper bound. Then P has a maximal element.

209



We can now show Theorem 13.2.9. Assume p ą 0 on K. Let h and N satisfy
the conclusion of Lemma 13.2.19 and k P N such that k ` p P Mpgq. We may
assume that N ą 0. Note that:

ˆ

k ´
1

N

˙

` p “
1

N
ppN ´ hqpk ` pq ` php´ 1q ` khq PMpgq.

So what we have just shown is that k` p PMpgq implies pk´ 1{Nq` p PMpgq.
Iterating this pkNq times, we obtain that

p “

ˆ

k ´ kN
1

N

˙

` p PMpgq.

This concludes the proof of Theorem 13.2.9.

13.3 Notes and further reading

Hilbert obtained the first fundamental results about the links between nonnega-
tive polynomials and sums of squares. He posed in 1900 at the first International
Congress of Mathematicians in Paris the following question, known as Hilbert’s
17th problem: Is it true that every nonnegative polynomial on Rn is a sum of
squares of rational functions? The solution of Artin in 1927 to Hilbert’s 17th
problem was a major breakthrough, which started the field of real algebraic
geometry. Artin’s proof works in the setting of formal real (ordered) fields. It
combines understanding which elements are positive in any ordering of the field
and using Tarksi’s transfer principle which roughly states the following: If pF,ďq
is an ordered field extension of R which contains a solution x P Fn of a system
of polynomial equations and inequalities with coefficients in R, then this system
also has a solution x1 P Rn. Tarski’s transfer principle also plays a crucial role
in the proof of the Positivstellensatz of Krivine (Theorem 13.2.5). The book of
Marshall [3] contains the proofs of all the Positivstellensätze described in this
chapter.

Reznick [6] gives a nice historical overview of results about positive polyno-
mials and sums of squares. The idea of using sums of squares combined with
the power of semidefinite programming in order to obtain tractable sufficient
conditions for nonnegativity of polynomials goes back to the PhD thesis of Par-
rilo [4]. He exploits this idea to attack various problems from optimization and
control theory. Lasserre and Netzer [2] showed that every nonnegative polyno-
mial can be approximated by sums of squares of increasing degrees (Theorem
13.1.6). Blekherman [1] proved the inequalities (13.10) relating the volumes
of the cones of sums of squares and of nonnegative polynomials.
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13.4 Exercises

13.1. Given a P Nn with |a| “
ř

i ai “ 2d, define the polynomial in n variables
x “ px1, ¨ ¨ ¨ , xnq and of degree 2d:

Fn,2dpa, xq “
n
ÿ

i“1

aix
2d
i ´ 2d

n
ź

i“1

xaii “
n
ÿ

i“1

aix
2d
i ´ 2dxa.

(a) Let a P Nn with |a| “ 2d. Show that a “ b ` c for some b, c P Nn,
where |b| “ |c| “ d and both bi, ci ą 0 for at most one index i P rns.

(b) With a, b, c as in (a), show that

Fn,2dpa, xq “
1

2
pFn,2dp2b, xq ` Fn,2dp2c, xqq ` dpx

b ´ xcq2.

(c) Show that, for any a P Nn with |a| “ 2d, the polynomial Fn,2dpa, xq
can be written as the sum of at most 3n´ 4 squares.

(d) Show the arithmetic-geometric mean inequality (13.2).

13.2 (a) Show Theorem 13.2.2.

(b) For a univariate polynomial f of degree d define the following polyno-
mial Gpfq, known as its Goursat transform:

Gpfqpxq “ p1` xqdf

ˆ

1´ x

1` x

˙

.

Show that f ě 0 on r´1, 1s if and only if Gpfq ě 0 on r0,8q.

(c) Show Theorem 13.2.3.

13.3 Show the Real Nullstellensatz (Theorem 13.2.6) (you may use Theorem
13.2.5).

13.4 Let G “ pV,Eq be a graph. The goal is to show Motzkin’s formulation
(13.6) for the stability number αpGq. Set

µ “ min

#

xTpAG ` Iqx :
ÿ

iPV

xi “ 1, x ě 0

+

. (13.21)

(a) Show that µ ď 1{αpGq.

(b) Let x be an optimal solution of the program (13.21), S “ ti : xi ‰ 0u
denotes its support. Show that µ ě 1{αpGq if S is a stable set in G.

(c) Show that the program (13.21) has an optimal solution x whose sup-
port is a stable set. Conclude that (13.6) holds.
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CHAPTER 14

POLYNOMIAL EQUATIONS
AND MOMENT MATRICES

Consider the polynomial optimization problem:

pmin “ inf
xPK

ppxq, (14.1)

which asks for the infimum pmin of a polynomial p over a basic closed semi-
algebraic set K, of the form:

K “ tx P Rn : g1pxq ě 0, ¨ ¨ ¨ , gmpxq ě 0u (14.2)

where g1, ¨ ¨ ¨ , gm P Rrxs. In the preceding chapter we defined a lower bound
for pmin obtained by considering sums of squares of polynomials. Here we con-
sider another approach, which will turn out to be dual to the sums of squares
approach.

Say, p “
ř

α pαx
α, where there are only finitely many nonzero coefficients

pα and let p “ ppαqαPNn denote the vector of coefficients of p, so pα “ 0 for all
|α| ą degppq. Moreover, let rxs8 “ pxαqαPNn denote the vector consisting of all
monomials xα. Then, one can write:

ppxq “
ÿ

α

pαx
α “ pTrxs8.

We define the set C8pKq as the convex hull of the vectors rxs8 for x P K:

C8pKq “ convtrxs8 : x P Ku. (14.3)

Let us introduce a new variable yα “ xα for each monomial. Then, using
these variables y “ pyαq and the set C8pKq, we can reformulate problem (14.1)
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equivalently as

pmin “ inf
xPK

ppxq “ inf
xPK

pTrxs8 “ inf
y“pyαqαPNn

tpTy : y P C8pKqu. (14.4)

This leads naturally to the problem of understanding which sequences y belong
to the set C8pKq. In this chapter we give a characterization for the set C8pKq,
we will use it in the next chapter as a tool for deriving global optimal solutions
to the polynomial optimization problem (14.1).

This chapter is organized as follows. We introduce some algebraic facts
about polynomial ideals I Ď Rrxs and their associated quotient spaces Rrxs{I,
which we will need for the characterization of the set C8pKq. Using these tools
we can also describe the so-called eigenvalue method for computing the complex
solutions of a system of polynomial equations. This method also gives a useful
tool to extract the global optimizers of problem (14.1). Then we give a charac-
terization for the sequences y belonging to the set C8pKq, in terms of associated
(moment) matrices required to be positive semidefinite.

14.1 The quotient algebra Rrxs{I

14.1.1 (Real) radical ideals and the (Real) Nullstellensatz

Here, K “ R or C denotes the field of real or complex numbers. A set I Ď Krxs
is an ideal if I` I Ď I and Krxs ¨ I Ď I. Given polynomials h1, ¨ ¨ ¨ , hm, the ideal
generated by the hj ’s is

I “ ph1, ¨ ¨ ¨ , hmq “

#

m
ÿ

j“1

ujhj : uj P Krxs

+

.

A basic property of the polynomial ring Krxs is that it is Noetherian: every ideal
admits a finite set of generators. Given a subset V Ď C, the set

IpV q “ tf P Krxs : fpxq “ 0 @x P V u

is an ideal, called the vanishing ideal of V .
The complex variety of an ideal I Ď Krxs is

VCpIq “ tx P Cn : fpxq “ 0 @f P Iu

and its real variety is

VRpIq “ tx P Rn : fpxq “ 0 @f P Iu “ VCpIq X Rn.

The elements x P VCpIq are also called the common roots of the polynomials in
I. Clearly, if I “ ph1, ¨ ¨ ¨ , hmq is generated by the hj ’s, then VCpIq is the set of
common complex roots of the polynomials h1, ¨ ¨ ¨ , hm and VRpIq is their set of
common real roots.
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Given an ideal I Ď Krxs, the set
?
I “ tf P Krxs : fm P I for some m P Nu (14.5)

is an ideal (Exercise 14.1), called the radical of I. Clearly we have the inclu-
sions:

I Ď
?
I Ď IpVCpIqq.

Consider, for instance, the ideal I “ px2q generated by the monomial x2. Then,
VCpIq “ t0u. The polynomial x belongs to

?
I and to IpVCpIqq, but x does not

belong to I. Hilbert’s Nullstellensatz states that both ideals
?
I and IpVCpIqq

coincide:

Theorem 14.1.1. (Hilbert’s Nullstellensatz) For any ideal I Ď Krxs, we have
equality: ?

I “ IpVCpIqq.

That is, a polynomial f vanishes at all x P VCpIq if and only if some power of f
belongs to I.

The ideal I is said to be radical if I “
?
I or, equivalently (in view of the

Nullstellensatz), I “ IpVCpIqq. For instance, the ideal I “ px2q is not radical.
Note that 0 is a root with double multiplicity. Roughly speaking, an ideal is
radical when all roots x P VCpIq have single multiplicity, but we will not go into
details about multiplicities of roots.

Given an ideal I Ď Rrxs, the set

R
?
I “ tf P Rrxs : f2m ` s P I for some m P N, s P Σu (14.6)

is an ideal in Rrxs (Exercise 14.1), called the real radical of I. Clearly we have
the inclusions:

I Ď
R
?
I Ď IpVRpIqq.

As an example, consider the ideal I “ px2`y2q Ď Rrx, ys. Then, VRpIq “ tp0, 0qu
while VCpIq “ tpx,˘ixq : x P Cu. Both polynomials x and y belong to R

?
I and

to IpVRpIqq. The Real Nulstellensatz states that both ideals R
?
I and IpVRpIqq

coincide.

Theorem 14.1.2. (The Real Nullstellensatz) For any ideal I Ď Rrxs,

R
?
I “ IpVRpIqq.

That is, a polynomial f P Rrxs vanishes at all common real roots of I if and only
if the sum of an even power of f and of a sum of squares belongs to I.

We will use the following characterization of (real) radical ideals (see Exer-
cise 14.2).

Lemma 14.1.3.
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(i) An ideal I Ď Krxs is radical (i.e.,
?
I “ I) if and only if

@f P Krxs f2 P I ùñ f P I.

(ii) An ideal I Ď Rrxs is real radical (i.e., R
?
I “ I) if and only if

@f1, ¨ ¨ ¨ , fm P Rrxs f21 ` ¨ ¨ ¨ ` f
2
m P I ùñ f1, ¨ ¨ ¨ , fm P I.

It is good to realize that, if V is a complex variety, i.e., if V “ VCpIq for some
ideal I, then VCpIpV qq “ V . Indeed, the inclusion VCpIq Ď VCpIpVCpIqqqq is
clear. Moreover, if v R VCpIq, then there is a polynomial f P I Ď IpVCpIqq such
that fpvq ‰ 0, thus showing v R VCpIpVCpIqqq.

However, the inclusion V Ď VCpIpV qq can be strict if V is not a complex
variety. For example, for V “ Czt0u Ď C, IpV q “ t0u, since the zero polynomial
is the only polynomial vanishing at all elements of V . Hence, VCpIpV qq “ C
contains strictly V .

For any ideal I, we have the inclusions:

I Ď IpVCpIqq Ď IpVRpIqq,

with equality throughout if I is real radical. Yet this does not imply in general
that VCpIq “ VRpIq, i.e., that all roots are real. As an example illustrating
this, consider e.g. the ideal I “ px ´ yq Ď Rrx, ys; then I is real radical, but
VRpIq Ă VCpIq. However, equality holds if VRpIq is finite.

Lemma 14.1.4. If I Ď Rrxs is a real radical ideal, with finite real variety:
|VRpIq| ă 8, then VCpIq “ VRpIq.

Proof. By assumption, equality: IpVRpIqq “ IpVCpIqq holds. Hence these two
ideals have the same complex variety: VCpIpVRpIqqq “ VCpIpVCpIqqq. This im-
plies equality VRpIq “ VCpIq, since VRpIq is a complex variety (as it is finite, see
Exercise 14.3) and VCpIq too is a complex variety (by definition).

14.1.2 The dimension of the quotient algebra Krxs{I

Let I be an ideal in Krxs. We define the quotient space A “ Krxs{I, whose
elements are the cosets

rf s “ f ` I “ tf ` q : q P Iu

for f P Krxs. Then A is an algebra with addition: rf s ` rgs “ rf ` gs, scalar
multiplication λrf s “ rλf s, and multiplication rf srgs “ rfgs, for f, g P Krxs and
λ P K. These operations are well defined. Indeed, if rf s “ rf 1s and rgs “ rg1s,
i.e., f 1, g1 are other representatives in the cosets rf s, rgs, respectively, so that
f ´ f 1, g ´ g1 P I, then

pf 1 ` g1q ´ pf ` gq P I, λf 1 ´ λf P I, f 1g1 ´ fg “ pf 1 ´ g1qg1 ` fpg1 ´ gq P I.

As we now see, the dimension of the quotient space A is related to the cardinal-
ity of the complex variety VCpIq.
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Theorem 14.1.5. Let I Ď Krxs be an ideal and let A “ Krxs{I be the associated
quotient space.

(i) dimA ă 8 if and only if |VCpIq| ă 8.

(ii) Assume |VCpIq ă 8. Then |VCpIq| ď dimA, with equality if and only if the
ideal I is radical (i.e., I “

?
I).

Remark 14.1.6. Let I be an ideal in Rrxs. Then the set I` iI “ tf` ig : f, g P Iu
is an ideal in Crxs and it is easy to check that the two quotient spaces Rrxs{I and
Crxs{pI ` iIq have the same dimension. Hence, in order to compute the dimension
of Rrxs{I, we can as well deal with the corresponding ideal I ` iI in the complex
polynomial ring.

For the proof of Theorem 14.1.5, it is useful to have the following construc-
tion of interpolation polynomials.

Lemma 14.1.7. Let V Ď Kn be a finite set. There exist polynomials pv P Krxs for
v P V satisfying the following property:

pvpuq “ δu,v @u, v P V.

They are called interpolation polynomials at the points of V . Then, for any poly-
nomial f P Krxs,

f ´
ÿ

vPVCpIq

fpvqpv P IpVCpIqq. (14.7)

Proof. Fix v P V . For any u P V ztvu, let iu be a coordinate where v and u differ,
i.e., viu ‰ uiu. Then define the polynomial pv by

pv “
ź

uPV ztvu

xiu ´ uiu
viu ´ uiu

.

Clearly, pvpvq “ 1 and pvpuq “ 0 if u P V , u ‰ v. By construction the polynomial
in (14.7) vanishes at all v P VCpIq and thus belongs to IpVCpIqq.

Example 14.1.8. Say, V “ tp0, 0q, p1, 0q, p0, 2qu Ď R2. Then the polynomials
pp0,0q “ px1´1qpx2´2q{2, pp1,0q “ x21 and pp0,2q “ x2p1´x1q{2 are interpolation
polynomials at the points of V .

Lemma 14.1.9. Let I be an ideal in Crxs andA “ Crxs{I. Assume VCpIq is finite,
let pv (v P VCpIq) be interpolation polynomials at the points of VCpIq, and let

L “ trpvs : v P VCpIqu

be the corresponding set of cosets in A. Then,

(i) L is linearly independent in A.

(ii) L generates the vector space Crxs{IpVCpIqq.
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(iii) If I is radical, then L is a basis of A and dimA “ |VCpIq|.

Proof. (i) Assume that
ř

vPVCpIq
λvrpvs “ 0 for some scalars λv. That is, the

polynomial f “
ř

vPVCpIq
λvpv belongs to I. By evaluating the polynomial f at

each v P VCpIq and using the fact that pvpvq “ 1 and pvpuq “ 0 if u P VCpIqztvu,
we deduce that λv “ 0 for all v. This shows that L is linearly independent in A.

(ii) Relation (14.7) implies directly that L is generating in Krxs{IpVCpIqq.
(iii) Assume that I is radical and thus I “ IpVCpIqq (by the Nullstellensatz).

Then, L is linearly independent and generating in A and thus a basis of A.

Proof. (of Theorem 14.1.5). In view of Remark 14.1.6, we may assume K “ C.
(i) Assume first that dimA “ k ă 8, we show that |VCpIq| ă 8. For this,
pick a variable xi and consider the k ` 1 cosets r1s, rxis, ¨ ¨ ¨ , rxki s. Then they
are linearly dependent in A and thus there exist scalars λh (0 ď h ď k) (not
all zero) for which the (univariate) polynomial f “

řk
h“0 λhx

h
i is a nonzero

polynomial belonging to I. As f is univariate, it has finitely many roots. This
implies that the i-th coordinates of the points v P VCpIq take only finitely many
values. As this holds for all coordinates we deduce that VCpIq is finite.

Assume now that |VCpIq| ă 8, we show that dimA ă 8. For this, as-
sume that the i-th coordinates of the points v P VCpIq take k distinct values:
a1, ¨ ¨ ¨ , ak P C. Then the polynomial f “ pxi ´ a1q ¨ ¨ ¨ pxi ´ akq vanishes at all
v P VCpIq. Applying the Nullstellensatz, fm P I for some integer m P N. This
implies that there is a linear dependency among the cosets r1s, rxis, ¨ ¨ ¨ , rxmki s.
Therefore, there exists an integer ni for which rxnii s lies in the linear span
of trxhi s : 0 ď h ď ni ´ 1u. From this one can easily derive that the set
trxαs : 0 ď αi ď ni´ 1, i P rnsu generates the vector space A, thus showing that
dimA ă 8.

(ii) Assume VCpIq is finite. If I is radical then equality dimA “ |VCpIq|
follows from Lemma 14.1.9 (iii). Assume now that I is not radical and let
f P

?
IzI. If pv (v P VCpIq) are interpolation polynomials at the points of

VCpIq, one can easily verify that the system trpvs : v P VCpIqu Y trf su is linearly
independent in A, so that dimA ą |VCpIq|.

14.1.3 The eigenvalue method for complex roots

A basic, fundamental problem in mathematics and many areas of applications
is how to solve a system of polynomial equations: h1pxq “ 0, ¨ ¨ ¨ , hmpxq “ 0. In
other words, how to compute the complex variety of the ideal I “ ph1, ¨ ¨ ¨ , hmq.
Here we assume that I Ď Krxs is an ideal which has finitely many complex roots:
|VCpIq| ă 8. We now describe a well known method for finding the elements
of VCpIq, which is based on computing the eigenvalues of a suitable linear map
on the algebra A “ Krxs{I.
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Namely, given an arbitrary polynomial h P Krxs, we consider the following
‘multiplication by h’ linear map:

mh : A Ñ A
rf s ÞÑ rfhs.

(14.8)

As VCpIq is finite we known from Theorem 14.1.5 that the vector space A has
finite dimension. Say, N “ dimA, then N ě |VCpIq|, with equality if I is radical
(by Theorem 14.1.5).

Let us choose a set of cosets B “ trb1s, ¨ ¨ ¨ , rbN su forming a basis ofA and let
Mh denote the matrix of mh with respect to the base B (which not symmetric
in general). Then, for v P VCpIq, we define the vector rvsB “ pbjpvqqNj“1 whose
entries are the evaluations at v of the polynomials in B.

Lemma 14.1.10. The vectors trvsB : v P VCpIqu are linearly independent.

Proof. Assume
ř

vPVCpIq
λvrvsB “ 0 for some scalars λv, i.e.,

ř

vPVCpIq
λvbjpvq “

0 for all j P rN s. As B is a base of A, this implies that
ř

vPVCpIq
λvfpvq “ 0 for

any f P Krxs (check it). Applying this to the polynomial f “ pv, we obtain that
λv “ 0 for all v P VCpIq.

As we now show, the matrix Mh carries out useful information about the
elements of VCpIq: its eigenvalues are the evaluations hpvq of h at the points
v P VCpIq and its left eigenvectors are the vectors rvsB.

Theorem 14.1.11. Let h P Krxs, let I Ď Krxs be an ideal with |VCpIq| ă 8, and
let mh be the linear map from (14.8).

(i) Let B be a base of A and let Mh be the matrix of mh in the base B. Then, for
each v P VCpIq, the vector rvsB is a left eigenvector of Mh with eigenvalue
hpvq, i.e.,

MT
h rvsB “ hpvqrvsB. (14.9)

(ii) The set thpvq : v P VCpIqu is the set of eigenvalues of mh.

(iii) Assume that I is radical and let pv (v P VCpIq) be interpolation polynomials
at the points of VCpIq. Then,

mhprpusq “ hpuqrpus

for all u P VCpIq. Therefore, the matrix of mh in the base trpvs : v P VCpIqu
is a diagonal matrix with hpvq (v P VCpIq) as diagonal entries.

Proof. (i) Say, Mh “ paijq
N
i,j“1, so that

rhbjs “
N
ÿ

i“1

aijrbis, i.e., hbj ´
N
ÿ

i“1

aijbi P I.

Evaluating the above polynomial at v P VCpIq gives directly relation (14.9).
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(ii) By (i), we already know that each scalar hpvq is an eigenvalue of MT
h

and thus of mh. We now show that the scalars hpvq (v P VCpIq) are the only
eigenvalues of mh. For this, let λ R thpvq : v P VCpIqu, we show that λ is
not an eigenvalue of mh. Let J denote the ideal generated by I Y th ´ λu.
Then, VCpJq “ H. Applying the Nullstellensatz, we obtain that 1 P J and thus
1 ´ uph ´ λq P I for some u P Krxs. It suffices now to observe that the latter
implies that mupmh ´ λidq “ id, where id is the identity map from A to A. But
then mh ´ λid is nonsingular, which implies that λ is not an eigenvalue of mh.

(iii) Assume that I is radical and let tpv : v P VCpIqu be interpolation poly-
nomials. Using relation (14.7), we obtain that mhprf sq “

ř

vPVCpIq
fpvqhpvqrpvs

for any polynomial f . In particular, mhprpvsq “ hpvqrpvs.

Here is a simple strategy on how to use the above result in order to com-
pute the points v P VCpIq. Assume that the ideal I is radical (this will be the
case in our application to polynomial optimization) and suppose that we have
a polynomial h for which the values hpvq (v P VCpIq) are pairwise distinct (e.g.
pick a linear polynomial h with random coefficients). Suppose also that we
know a base B of A and that we know the matrix Mh of mh in this base. We
know from Theorem 14.1.11 that Mh has N “ |VCpIq| distinct eigenvalues so
that each eigenspace has dimension 1. Hence, by computing the eigenvectors
of MT

h , we can recover the vectors rvsB “ pbjpvqqNj“1 (up to scaling). In order to
compute the i-th coordinate vi of v, just express the coset rxis in the base B: If
rxis “

řN
j“1 cijrbjs for some scalars cij , then vi “

řN
j“1 cijbjpvq.

Example 14.1.12. Let I “ px3 ´ 6x2 ` 11x ´ 6q be the ideal generated by the
polynomial x3 ´ 6x2 ` 11x´ 6 “ px´ 1qpx´ 2qpx´ 3q (univariate case). Then,
VCpIq “ t1, 2, 3u and B “ tr1s, rxs, rx2su is a base of A “ Rrxs{I. With respect to
this base B, the matrix of the multiplication operator by x is

Mx “

¨

˝

rxs rx2s rx3s

r1s 0 0 6
rxs 1 0 ´11
rx2s 0 1 6

˛

‚

(built using the relation rx3s “ 6r1s ´ 11rxs ` 6rx2s). It is an easy exercise to
verify that MT

x has three eigenvectors: p1, 1, 1q with eigenvalue λ “ 1, p1, 2, 4q
with eigenvalue λ “ 2, and p1, 3, 9q with eigenvalue λ “ 3. Thus the eigenvectors
are indeed of the form rvsB “ p1, v, v

2q for v P t1, 2, 3u.
The polynomials p1 “ px ´ 2qpx ´ 3q{2, p2 “ ´px ´ 1qpx ´ 3q and p3 “

px ´ 1qpx ´ 2q{2 are interpolation polynomials at the roots v “ 1, 2, 3. Note that
the matrix of mx with respect to the base trp1s, rp2s, rp3su is

¨

˝

rxp1s rxp2s rxp3s

rp1s 1 0 0
rp2s 0 2 0
rp3s 0 0 3

˛

‚,

thus indeed a diagonal matrix with the values v “ 1, 2, 3 as diagonal entries.
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Finally, we indicate how to compute the number of real roots using the mul-
tiplication operators. This is a classical result, going back to work of Hermite in
the univariate case. You will prove it in Exercise 14.4 for radical ideals.

Theorem 14.1.13. Let I be an ideal in Rrxs with |VCpIq| ă 8. Define the Hermite
quadratic form:

H : Rrxs{I ˆ Rrxs{I Ñ R
prf s, rgsq ÞÑ Trpmfgq,

(14.10)

where Trpmfgq denotes the trace of the multiplication operator by fg. Let σ`pHq
(resp., σ´pHq) denote the number of positive eigenvalues (resp., negative eigenval-
ues) of H. Then, the rank of H is equal to |VCpIq| and

σ`pHq ´ σ´pHq “ |VRpIq|.

14.2 Characterizing the set C8pKq

Our goal in this section is to characterize the set C8pKq from (14.3). We need
one more ingredient: moment matrices.

14.2.1 Moment matrices

Let y “ pyαqαPNn be a sequence of real numbers indexed by Nn. It is convenient
to introduce the corresponding linear functional L on the polynomial ring:

L : Rrxs Ñ R
xα ÞÑ Lpxαq “ yα

f “
ř

α fαx
α ÞÑ Lpfq “

ř

α fαyα.
(14.11)

Consider first the case when y “ rvs8 for some v P Rn. Then, L is the
evaluation at v (denoted as Lv) since Lpfq “

ř

α fαv
α “ fpvq for f P Rrxs.

Moreover, the matrix yyT has a special structure: its pα, βq-th entry is equal to
vαvβ “ vα`β “ yα`β , thus depending only on the sum of the indices α and β.
This observation motivates the following definition.

Definition 14.2.1. Given a sequence y “ pyαqαPNn of real numbers, its moment
matrix is the real symmetric (infinite) matrix indexed by Nn, defined by

Mpyq “ pyα`βqα,βPNn .

Next we observe that nonnegativity of L on the cone Σ of sums of squares
can be reformulated in terms of positive semidefiniteness of the moment matrix
Mpyq.

Lemma 14.2.2. Let y “ pyαqαPNn be a sequence of real numbers and let L be the
associated linear functional from (14.11). For any polynomials f, g P Rrxs:

Lpf2q “ fTMpyqf , Lpgf2q “ fTMpg ˚ yqf ,
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where g ˚ y P RNn is the new sequence with α-th entry

pg ˚ yqα “ Lpgxαq “
ÿ

γ

gγyα`γ @α P Nn.

Therefore, L ě 0 on Σ if and only if Mpyq ľ 0, and L ě 0 on gΣ if and only if
Mpg ˚ yq ľ 0.

Proof. For f “
ř

α fαx
α, g “

ř

γ gγx
γ , we have:

Lpf2q “ L

˜

ÿ

α,β

fαfβx
α`β

¸

“
ÿ

α,β

fαfβyα`β “
ÿ

α,β

fαfβMpyqα,β “ fTMpyqf ,

Lpgf2q “ L

˜

ÿ

α,β,γ

fαfβgγx
α`β`γ

¸

“
ÿ

α,β

fαfβLpgx
γq “ fTMpg ˚ yqf .

These two identities give directly the result of the lemma.

Next we observe that the kernel of Mpyq can be seen as an ideal of Rrxs,
which is real radical when Mpyq ľ 0. This observation will play a cucial role in
the characterization of the set C8pKq in the next section.

Lemma 14.2.3. Let y “ pyαqαPNn be a sequence of real numbers and let L be the
associated linear functional from (14.11). Set

I “ tf P Rrxs : Lpfhq “ 0 @h P Rrxsu. (14.12)

(i) A polynomial f belongs to I if and only if its coefficient vector f belongs to the
kernel of Mpyq.

(ii) I is an ideal in Rrxs.

(iii) If Mpyq ľ 0 then the ideal I is real radical.

Proof. (i), (ii): Direct verification.
(iii) Using Lemma 14.2.2 and the fact that Mpyq ľ 0, the following holds for
any polynomial f :

Lpf2q “ fTMpyqf ě 0 and Lpf2q “ 0 ùñMpyqf “ 0 ùñ f P I.

We now show that I is real radical, using the characterization from Lemma
14.1.3: Assume that

ř

i f
2
i P I. Then, 0 “ Lp

ř

i f
2
i q “

ř

i Lpf
2
i q and thus

Lpf2i q “ 0, which in turn implies that fi P I for all i.
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14.2.2 Finite rank positive semidefinite moment matrices

We can now characterize the sequences belonging to the set C8pKq, in terms of
positivity and rank conditions on their moment matrices.

Theorem 14.2.4. Let K be the set from (15.2). Let y “ pyαqαPNn be a sequence
of real numbers and let L be the linear functional from (14.11). The following
assertions are equivalent.

(i) y P C8pKq, i.e., y “
řr
i“1 λirvis8 for some scalars λi ą 0 and vi P K.

(ii) rank Mpyq ă 8, Mpyq ľ 0 and Mpgj ˚ yq ľ 0 for j P rms.

(iii) rank Mpyq ă 8 and L ě 0 on Σ` g1Σ` ¨ ¨ ¨ ` gmΣ.

Proof. Assume that (i) holds. Then,Mpyq “
řr
i“1 λiMprvis8q is positive semidef-

inite (since Mprvis8q ľ 0 for each i) and Mpyq has finite rank. For i P rrs and
j P rms, we have that gj ˚ rvis8 “ gjpviqrvis8 with gjpviq ě 0. Therefore,
Mpgj ˚ yq “

řr
i“1 λigjpviqMprvis8q is positive semidefinite. This shows (ii).

The equivalence of (ii) and (iii) follows directly from Lemma 14.2.2.
We now show the implication (ii) ùñ (i). Assume that rank Mpyq “ r ă 8,

Mpyq ľ 0, Mpgj ˚yq ľ 0 for j P rms; we show (i). Let L be the linear functional
from (14.11) and let I be the set from (14.12). By Lemma 15.3.1, we know that
I is a real radical ideal in Rrxs. First we claim that

dimRrxs{I “ r.

This follows directly from the fact that a set of columns tC1, ¨ ¨ ¨ , Csu of Mpyq,
indexed (say) by tα1, ¨ ¨ ¨ , αsu Ď Nn, is linearly independent if and only if the
corresponding cosets of monomials trxα1s, ¨ ¨ ¨ , rxαssu is linearly independent in
Rrxs{I.

As dimRrxs{I “ r ă 8, we deduce using Lemma 14.1.9 that |VCpIq| ă 8;
moreover, |VCpIq| “ dimRrxs{I “ r since I is real radical (and thus radical).
Furthermore, using Lemma 14.1.4, we deduce that VRpIq “ VCpIq. Say,

VCpIq “ tv1, ¨ ¨ ¨ , vru Ď Rn.

Let pv1 , ¨ ¨ ¨ , pvr P Rrxs be interpolation polynomials at the vi’s. We next claim
that

L “
r
ÿ

i“1

LppviqLvi , i.e., y “
r
ÿ

i“1

Lppviqrvis8, (14.13)

where Lvi is the evaluation at vi. As both L and L1 “
řr
i“1 LppviqLvi vanish at

all polynomials in I, in order to show that L “ L1, it suffices to show that L and
L1 coincide at all elements of a given base of Rrxs{I. Now, by Lemma 14.1.9,
we know that the set trpv1s, ¨ ¨ ¨ , rpvr su is a base of Rrxs{I and it is indeed true
that L1ppviq “ Lppviq for all i. Thus (14.13) holds.

Next, we claim that

Lppviq ą 0 for all i P rrs.

223



Indeed, Lppviq “ Lpp2viq, since pvi ´ p
2
vi P I (as it vanishes at all points of VCpIq

and I is radical). Therefore, Lppviq ě 0 (since Mpyq ľ 0). Moreover, Lppviq ‰ 0
since, otherwise, the rank of Mpyq would be smaller than r.

Remains to show that v1, ¨ ¨ ¨ , vr belong to the set K, i.e., that gjpviq ě 0
for all j P rms, i P rrs. For this, we use the fact that Lpgjp2viq ě 0, since
Mpgj ˚ yq ľ 0. Indeed, using (14.13), we get:

Lpgjp
2
viq “ gjpviqLppviq.

By assumption, Lpgjp2viq ě 0 and we just showed that Lppviq ą 0. This implies
that gjpviq ě 0, as desired, and the proof is complete.

14.2.3 Moment relaxation for polynomial optimization

Let us return to the polynomial optimization problem (14.1). In Chapter 13, we
defined the lower bound psos ď pmin, obtained by considering sums of squares
decompositions in the quadratic module Mpgq “ Σ` g1Σ` ¨ ¨ ¨ ` gmΣ:

psos “ suptλ : p´ λ PMpgq “ Σ` g1Σ` ¨ ¨ ¨ gmΣu. (14.14)

Based on the discussion in the preceding section, we can also define the follow-
ing lower bound for pmin:

pmom “ inftpTy : y0 “ 1, Mpyq ľ 0, Mpgj ˚ yq ľ 0 pj P rmsqu (14.15)

These two bounds are ‘dual’ to each other, since the positivity conditions in
(14.15) mean that the corresponding linear functional L is nonnegative on
Mpgq. We have the following inequalities:

Lemma 14.2.5. We have: psos ď pmom ď pmin.

Proof. The inequality psos ď pmom is ‘weak duality’: Let λ be feasible for (14.14)
and let y be feasible for (14.15) with associated linear functional L. Then,
p´λ PMpgq, Lp1q “ 1 and L ě 0 on Mpgq. Therefore, Lpp´λq “ Lppq´λ ě 0
implies pTy “ Lppq ě λ and thus pmom ě psos.

The inequality pmom ď pmin follows from the fact that, for each v P K,
y “ rvs8 is feasible for (14.15) with value ppvq.

We saw in the preceding chapter that psos “ pmin “ pmom if K is compact and
if moreover the quadratic module Mpgq is Archimedean.

On the other hand, it follows from Theorem 14.2.4 that pmom “ pmin if the
program (14.15) has an optimal solution y for which Mpyq has finite rank.

In the next chapter we will consider hierarchies of semidefinite program-
ming relaxations for problem (14.1) obtained by adding degree constraints to
the programs (14.14) and (14.15), and we will use the results of Theorems
14.1.11 and 14.2.4 for giving a procedure to find global optimizers of problem
(14.1).

224



14.3 Notes and further reading

The terminology of ‘moment matrix’ which we have used for the matrix Mpyq is
motivated by the relevance of these matrices to the classical moment problem.
Recall that, given a (positive Borel) measure µ on a subset K Ď Rn, the quantity
yα “

ş

K
xαdµpxq is called its moment of order α. The K-moment problem asks

to characterize the sequences y P RNn which are the sequence of moments of
some measure µ supported by K.

In the special case when µ is a finite atomic measure, i.e., when µ is sup-
ported by finitely many points of K, then its sequence of moments is of the form
y “

řr
i“1 λirvis8 for some positive scalars λi and some vi P K. In other words,

the set C8pKq corresponds to the set of sequences of moments of finite atomic
measures on K. Moreover, the closure of the set C8pKq is the set of sequences
of moments of an arbitrary measure on K. Hence, Theorem 14.2.4 character-
izes which sequences admit a finite atomic measure on K, when K is a basic
closed semi-algebraic set, in terms of positivity and finite rank conditions on the
sequence y. This result is due to Curto and Fialkow [1]. (When the condition
rank Mpyq ă 8 holds, Curto and Fialkow speak of flat data). The proof of
[1] uses tools from functional analysis, the simpler algebraic proof given here is
based on [4] (see also [4]).

We refer to the books of Cox, Little and O’Shea [1, 2] for further reading
about ideals and varieties (and, in particular, about multiplication operators in
the quotient space Rrxs{I).

14.4 Exercises

14.1 Recall the definitions (14.5) and (14.6) for
?
I and R

?
I.

(a) Show that the radical
?
I of an ideal I Ď Crxs is an ideal.

(b) Show that the real radical R
?
I of an ideal I Ď Rrxs is an ideal.

14.2 Show Lemma 14.1.3.

14.3 (a) Let I and J be two ideals in Crxs. Show that I XJ is an ideal and that
VCpI X Jq “ VCpIq Y VCpJq.

(b) Given v P Cn, show that the set tvu is a complex variety.

(b) Show that any finite set V Ď Cn is a complex variety.

14.4** The goal is to show Theorem 14.1.13 in the radical case.

Let I be a radical ideal in Rrxs with N “ |VCpIq| “ dimRrxs{I ă 8. Let
B “ trb1s, ¨ ¨ ¨ , rbN su be a base of A “ Rrxs{I and, for any h P Rrxs, let
Mh denote the matrix of the multiplication by h in the base B. Then, the
matrix of the Hermite quadratic form (14.10) in the base B is the real
symmetric matrix H “ pHijq

N
i,“1 with entries Hij “ TrpMbibj q. Finally,
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σ`pHq, σ´pHq denote, respectively, the numbers of positive and negative
eigenvalues of H.

(a) Show that H “
ř

vPVCpIq
rvsBrvs

T
B and rankpHq “ |VCpIq|.

(b) Show that VCpIq can be partitioned into VRpIqYT YT , where T is the
set of complex conjugates of the elements of T .

(c) Show that H “ P ´ Q for some matrices P,Q such that P,Q ľ 0,
rankpP q “ |VRpIq| ` |T | and rankpQq “ |T |.

(d) Show that H “ A ´ B for some matrices A,B such that A,B ľ 0,
AB “ BA “ 0, rankpAq “ σ`pHq and rankpBq “ σ´pHq.

(e) Show that σ`pHq “ |VRpIq| ` |T | and σ´pHq “ |T |.
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CHAPTER 15

POLYNOMIAL OPTIMIZATION
AND REAL ROOTS

We return to the polynomial optimization problem:

pmin “ inf
xPK

ppxq, (15.1)

where K is defined by polynomial inequalities:

K “ tx P Rn : g1pxq ě 0, ¨ ¨ ¨ , gmpxq ě 0u (15.2)

with p, g1, ¨ ¨ ¨ , gm P Rrxs. Throughout we set g0 “ 1. In the previous chapters
we have introduced the two parameters:

psos “ sup

#

λ : p´ λ PMpgq “
m
ÿ

j“0

gjΣ

+

,

pmom “ inftLppq : L linear function on Rrxs, Lp1q “ 1, L ě 0 on Mpgqu,

which satisfy the inequalities:

psos ď pmom ď pmin.

Both parameters can be reformulated using positive semidefinite matrices. How-
ever these matrices are infinite (indexed by Nn), since there is a priori no de-
gree bound on the polynomials sj entering a decomposition: p ´ λ “

ř

j sjgj
in Mpgq, and since L is a linear function on Rrxs which is infinite dimensional.
Hence, it is not clear how to compute the parameters pmom and psos. In this
chapter, we consider hierarchies of approximations for problem (15.1) obtained
by adding degree bounds to the programs defining psos and pmom.
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Given an integer t, recall that Rrxst denotes the set of polynomials of degree
at most t. We set Σ2t “ Σ X Rrxs2t and we define the truncated (at degree 2t)
quadratic module:

Mpgq2t “

#

m
ÿ

j“0

gjsj : sj P Σ, degpsjgjq ď 2t pj “ 0, 1, ¨ ¨ ¨ ,mq

+

,

which consists of the elements
ř

j sjgj of the quadratic module Mpgq where all
summands have degree at most 2t. Then, we define the bounds:

psos,t “ suptλ : p´ λ PMpgq2tu, (15.3)

pmom,t “ inftLppq : L linear function on Rrxs2t, Lp1q “ 1, L ě 0 on Mpgq2tu.
(15.4)

Lemma 15.0.1. For any integer t, psos,t ď pmom,t ď pmin.

Proof. Let L be feasible for (15.4) and let λ be feasible for (15.3). Then, we
have: 0 ď Lpp´ λq “ Lppq ´ λ. This implies that psos,t ď pmom,t.

Given v P K, let L be the evaluation at v; that is, L is the linear function
on Rrxs2t defined by Lpfq “ fpvq for f P Rrxs2t. Then, L is feasible for the
program (15.4) with objective value Lppq “ ppvq. This implies: pmom,t ď ppvq.
As this holds for all v P K, we deduce that pmom,t ď pmin.

In this chapter we investigate some properties of these hierarchies of bounds:

1. Duality: The bounds psos,t and pmom,t are defined by dual semidefinite pro-
grams.

2. Asymptotic convergence: Both bounds converge to pmin, when Mpgq is
Archimedean.

3. Optimality certificate and global minimizers: When (15.4) has an opti-
mal solution satisfying a special rank condition, the bound pmom,t is exact
and one can compute global minimizers of the problem (15.1).

4. Application to computing real roots of polynomial equations.

15.1 Duality

We now indicate how to reformulate the programs (15.3) and (15.4) as semidef-
inite programs and to check that they are in fact dual semidefinite programs.

The following is the truncated analogue of what we did in Section 14.2 (for
linear functions L on Rrxs and sequences y P RNn). Any linear function L on
Rrxs2t is completely specified by the sequence of real numbers y “ pyαqαPNn2t ,
where yα “ Lpxαq. Then we define the corresponding truncated (at order t)
moment matrix:

Mtpyq “ pyα`βqα,βPNnt ,
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indexed by Nnt . One can easily check that:

L ě 0 on ΣX Rrxs2t ðñMtpyq ľ 0.

Analogously,

L ě 0 on tsg : s P Σ, degpsgq ď 2tu ðñMt´dg pg ˚ yq ľ 0,

after setting dg :“ rdegpgq{2s and where g ˚ y is the sequence indexed by Nnt´dg
with pg ˚ yqα “ Lpxαgq “

ř

γ gγyα`γ (which is well defined if |α| ď 2pt´ dgq as
then |α ` γ| ď 2pt ´ dgq ` degpgq ď 2t). Therefore, the program (15.4) can be
equivalently reformulated as:

pmom,t “ inf
yPNn2t

tpTy : y0 “ 1, Mtpyq ľ 0, Mt´dgj
pgj ˚ yq ľ 0 pj “ 1, ¨ ¨ ¨ ,mqu.

(15.5)
We now explicit the fact that the dual semidefinite program of (15.5) coin-

cides with (15.3); we do this only in the unconstrained case: K “ Rn (i.e., with
no constraints gj ě 0) in order to avoid tedious notational details. For γ P Nn2t
let At,γ denote the 0/1 matrix indexed by Nnt with pα, βq-th entry At,γpα, βq “ 1
when α` β “ γ and 0 otherwise. Note that

Mtpyq “
ÿ

γPNn2t

yγAt,γ and
ÿ

γPNn2t

xγAt,γ “ rxstrxs
T
t (15.6)

after setting rxst “ pxαqαPNnt .

Lemma 15.1.1. The programs:

suptλ : p´ λ P ΣX Rrxs2tu, (15.7)

and
inf

yPRNn2t
tpTy : y0 “ 1, Mtpyq ľ 0u (15.8)

are dual semidefinite programs.

Proof. Using (15.6), we can express (15.8) as the following semidefinite pro-
gram (in standard dual form):

p0 ` inf

$

&

%

ÿ

γPNn2tzt0u
pγyγ : At,0 `

ÿ

γPNn2tzt0u
yγAt,γ ľ 0

,

.

-

. (15.9)

Next we express (15.7) as a semidefinite program (in standard primal form).
For this, we use the fact that p ´ λ P Σ X Rrxs2t if and only if there exists
a positive semidefinite matrix Q indexed by Nnt such that p ´ λ “ rxsTt Qrxst.
Rewrite: rxsTt Qrxst “ xQ, rxstrxs

T
t y “

ř

γPNn2t
xAt,γ , Qyx

γ (using (15.6)). There-
fore, (15.7) is equivalent to

p0 ` sup t´xAt,0, Qy : xAt,γ , Qy “ pγ pγ P Nn2tzt0uq, Q ľ 0u . (15.10)

It is now clear that the programs (15.9) and (15.10) are dual semidefinite pro-
grams.
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15.2 Convergence

Theorem 15.2.1. Assume that Mpgq is Archimedean (i.e., there exists a polyno-
mial f P Mpgq for which the set tx P Rn : fpxq ě 0u is compact). Then, the
bounds pmom,t and psos,t converge to pmin as tÑ8.

Proof. Pick ε ą 0. Then the polynomial p´ pmin ` ε is strictly positive on K. As
Mpgq is Archimedean, we can apply Putinar’s theorem (Theorem 13.2.9) and
deduce that p´pmin`ε PMpgq. Hence, there exists t P N such that p´pmin`ε P
Mpgq2t and thus pmin ´ ε ď psos,t. Therefore, limtÑ8 psos,t “ pmin. Since, by
Lemma 15.0.1, psos,t ď pmom,t ď pmin for all t, we deduce: limtÑ8 pmom,t “ pmin.

15.3 Flat extensions of moment matrices

We state here a technical result about moment matrices which will be useful for
establishing an optimality certificate for the moment bounds pmom,t. Roughly
speaking, this result permits to extend a truncated sequence y P RNn2s satisfying
a rank condition (see (15.12) below) to an infinite sequence ỹ P RNn whose
moment matrix Mpỹq has the same rank as Mpyq, to which we can then apply
the result from Theorem 14.2.4.

We recall that we can view the kernel of a moment matrix as a set of poly-
nomials, after identifying a polynomial f with its vector of coefficients f . If y is
a sequence in RNn2s and L is the associated linear function on Rrxs2s, then

f P kerMspyq ðñ Lpfgq “ 0 @g P Rrxss; (15.11)

from now on we abuse notation and also write ‘f P kerMspyq’. We also recall
that the kernel of an infinite moment matrix Mpỹq corresponds to an ideal I in
Rrxs (Lemma 14.2.3). The following simple result about kernels of matrices is
useful (check it).

Lemma 15.3.1. Let X be a symmetric matrix with block form

X “

ˆ

A B
BT C

˙

.

Assume that we are in one of the following two situations: (i) rankX “ rankA
(then one says that X is a flat extension of A), or (ii) X ľ 0. Then the following
holds:

x P kerAðñ x P kerBT ðñ pxT, 0qT P kerX.

As an application we obtain the following result showing that the kernel of
a truncated moment matrix behaves like a ‘truncated ideal’.

Lemma 15.3.2. Given a sequence y P RNn2s consider its moment matrices Mspyq
and Ms´1pyq. Clearly Ms´1pyq is a principal submatrix of Mspyq. Assume that we
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are in one of the following two situations: (i) rankMspyq “ rankMs´1pyq, or (ii)
Mspyq ľ 0. Given polynomials f, g P Rrxs, the following holds:

f P kerMspyq, degpfgq ď s´ 1 ùñ fg P kerMspyq.

Proof. Let L be the linear function on Rrxs2s associated to y. A first observation
is that it suffices to show the result when g has degree 1, say g “ xi (then the
general result follows by iterating this special case). A second observation is
that it suffices to show that fg belongs to the kernel of Ms´1pyq (then fg also
belongs to the kernel ofMspyq, in view of Lemma 15.3.1). So, pick a polynomial
u of degree at most s ´ 1 and let us show that Lppfxiquq “ 0. But this follows
from the fact that f P kerMspyq since degpxiuq ď s (recall (15.11)).

Theorem 15.3.3. Given a sequence y P RNn2s , consider its moment matrices Mspyq
and Ms´1pyq. Assume that

rank Mspyq “ rank Ms´1pyq. (15.12)

Then, one can extend y to a sequence ỹ P RNn satisfying:

rank Mpỹq “ rank Mspyq. (15.13)

Let I be the ideal in Rrxs corresponding to the kernel of Mpỹq. The following
properties hold:

(i) If tα1, ¨ ¨ ¨ , αru Ď Nns´1 indexes a maximum linearly independent set of columns
of Ms´1pyq, then the set trxα1s, ¨ ¨ ¨ , rxαr su Ď Rrxs{I is a base of Rrxs{I.

(ii) The ideal I is generated by the polynomials in kerMspyq: I “ pkerMspyqq.

Proof. The first part of the proof consists of constructing the sequence ỹ sat-
isfying (15.13). It is based on Lemma 15.3.2; the details are elementary but
technical, so we omit them. (You will show the case n “ 1 in Exercise 15.1).

(i) If the set tα1, ¨ ¨ ¨ , αru indexes a maximum set of linearly independent
columns of Ms´1pyq then, as rankMpỹq “ rankMs´1pyq, it also indexes a max-
imum set of linearly independent columns of Mpỹq. This implies that the set
trxα1s, ¨ ¨ ¨ , rxαr su is a base of Rrxs{I.

(ii) As rankMpỹq “ rankMspyq, we have the inclusion: kerMspyq Ď kerMpỹq
(recall Lemma 15.3.1). Thus the ideal generated by kerMspyq is contained in
the ideal kerMpỹq:

pkerMspyqq Ď kerMpỹq.

Set M “ txα1 , ¨ ¨ ¨ , xαru where the αi’s are as in (i), and let xMy denote the
linear span ofM (whose elements are the polynomials

ř

i λix
αi where λi P R).

Then, xMy X kerMpỹq “ t0u (by (i)). We claim that

Rrxs “ xMy ` pkerMspyqq.

For this, one can show using induction on its degree that each monomial xα can
be written as xα “ p ` q where p lies in the span of M and q lies in the ideal
generated by kerMspyq (check it). Now, let f P kerMpỹq. Applying the above
to f , we can write f “ p ` q where p P xMy and q P pkerMspyqq. This implies
that p “ f ´ q P xMy X kerMpỹq “ t0u and thus f “ p P pkerMspyqq.
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15.4 Optimality certificate and global minimizers

Let K˚p “ tx P K : ppxq “ pminu denote the set (possibly empty) of global
minimizers of the polynomial p over K. We also set

dK “ maxtdg1 , ¨ ¨ ¨ , dgmu, where df “ rdegpfq{2s for f P Rrxs. (15.14)

Theorem 15.4.1. Let L be an optimal solution to the program (15.4) and let
y “ pLpxαqq P RNn2t be the corresponding sequence. Asssume that y satisfies the
rank condition:

rank Mspyq “ rank Ms´dK pyq (15.15)

for some integer s satisfying maxtdp, dKu ď s ď t. Then the following properties
hold:

(i) The relaxation (15.4) is exact: pmom,t “ pmin.

(ii) The common roots to the polynomials in kerMspyq are all real and they are
global minimizers: VCpkerMspyqq Ď K˚p .

(iii) If L is an optimal solution of (15.4) for which the matrix Mtpyq has maxi-
mum possible rank, then VCpkerMspyqq “ K˚p .

Proof. As y satisfies the rank condition (15.15), we can apply Theorem 15.3.3:
There exists a sequence ỹ P RNn extending the subsequence pyαq|α|ď2s of y and
satisfying rank Mpỹq “ rank Mspyq “: r. Thus, ỹα “ yα if |α| ď 2s, but it could
be that ỹ and y differ at entries indexed by monomials of degree higher than
2s, these entries of y will be irrelevant in the rest of the proof. Let I be the
ideal corresponding to the kernel of Mpỹq. By Theorem 15.3.3, I is generated
by kerMspyq and thus VCpIq “ VCpkerMspyqq. As Mpỹq is positive semidefinite
with finite rank r, we can apply Theorem 14.2.4 (and its proof): We deduce
that

VCpIq “ tv1, ¨ ¨ ¨ , vru Ď Rn

and

ỹ “
r
ÿ

i“1

λirvis8 where λi ą 0 and
r
ÿ

i“1

λi “ 1.

Taking the projection onto the subspace RNn2s , we obtain:

pyαqαPNn2s “
r
ÿ

i“1

λirvis2s where λi ą 0 and
r
ÿ

i“1

λi “ 1. (15.16)

In other words, the restriction of the linear map L to the subspace Rrxs2s is the
convex combination

řr
i“1 λiLvi of evaluations at the points of VCpIq. Moreover,

let tα1, ¨ ¨ ¨ , αru Ď Nns´dK index a maximum linearly independent set of columns
of Ms´dK pyq, so that the set B “ trxα1s, ¨ ¨ ¨ , rxαr su is a base of Rrxs{I (by
Theorem 15.3.3).
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First we claim that we can choose interpolation polynomials pvi at the points
of VCpIq with degppviq ď s ´ dK . Indeed, if pvi are arbitrary interpolation
polynomials then, using the base B, write pvi “ fi ` gi where gi P I and fi
lies in the linear span of the monomials xα1 , ¨ ¨ ¨ , xαr . Thus the fi’s are again
interpolation polynomials but now with degree at most s´ dK .

Next we claim that v1, ¨ ¨ ¨ , vr belong to the set K. To see this, we use the
fact that L ě 0 on pgjΣqXRrxs2t for all j P rms. As degppviq ď s´dK , we have:
degpgjp

2
viq ď degpgjq`2ps´dKq ď 2s, and thus we can compute Lpgjp2viq using

(15.16) and obtain that Lpgjp2viq “ gjpviqλi ě 0. This gives gjpviq ě 0 for all j
and thus vi P K.

As degppq ď 2s, we can also evaluate Lppq using (15.16): we obtain that
Lppq “

řr
i“1 λippviq ě pmin, since ppviq ě pmin as vi P K. This gives the

inequality: pmom,t ě pmin. The reverse inequality holds always (Lemma 15.0.1).
Thus (i) holds: pmom,t “ pmin. In turn, this implies that ppviq “ pmin for all i,
which shows (ii): tv1, ¨ ¨ ¨ , vru Ď K˚p .

Assume now that rankMtpyq is maximum among all optimal solutions of
(15.4). In other words, y lies in the relative interior of the face of the fea-
sible region of (15.4) consisting of all optimal solutions. Therefore, for any
other optimal solution y1, we have that kerMtpyq Ď kerMtpy

1q. Consider a
global minimizer v P K˚p of p over K and the corresponding optimal solution
y1 “ rvs2t of (15.4). The inclusion kerMtpyq Ď kerMtpy

1q implies that any
polynomial in kerMtpyq vanishes at v. Therefore, kerMspyq Ď IpK˚p q and thus
I “ pkerMspyqq Ď IpK˚p q. In turn, this implies the inclusions:

K˚p Ď VCpIpK˚p qq Ď VCpIq “ tv1, ¨ ¨ ¨ , vru.

Thus (iii) holds and the proof is complete.

Under the assumptions of Theorem 15.4.1, we can apply the eigenvalue
method described in Section 14.1.3 for computing the points in the variety
VCpkerMspyqq. Indeed, all the information that we need is contained in the
matrix Mspyq. Recall that what we need in order to recover VCpIq is an ex-
plicit base B of the quotient space Rrxs{I and the matrix in the base B of some
multiplication operator in Rrxs{I, where I “ pkerMspyqq.

First of all, if we choose tα1, ¨ ¨ ¨ , αru Ď Nns´dK indexing a maximum linearly
independent set of columns of Ms´1pyq, then the set B “ trxα1s, ¨ ¨ ¨ , rxαr su of
corresponding cosets in Rrxs{I is a base of Rrxs{I. For any variable xk, we
now observe that it is easy to build the matrix Mxk of the ‘multiplication by
xk ’ in the base B, using the moment matrix Mspyq. Indeed, for any j P rrs, as
degpxkx

αj q ď s, we can compute the linear dependency among the columns of
Mspyq indexed by the monomials xkxαj , xα1 , ¨ ¨ ¨ , xαr . In this way, we obtain
a polynomial in the kernel of Mspyq (thus in I) which directly gives the j-th
column of the matrix Mxk .

Finally, we point out that it is a property of most interior-point algorithms
that they return an optimal solution in the relative interior of the optimal face,
thus a point satisfying the assumption of (iii). In conclusion, if we have an
optimal solution of the moment relaxation (15.4) satisfying the rank condition
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(15.15), then we can (numerically) compute all the global optimizers of prob-
lem (15.1).

15.5 Real solutions of polynomial equations

Consider now the problem of computing all real roots to a system of polynomial
equations:

h1pxq “ 0, ¨ ¨ ¨ , hmpxq “ 0

where h1, ¨ ¨ ¨ , hm P Rrxs. In other words, with I denoting the ideal generated
by the hj ’s, this is the problem of computing the real variety VRpIq of I. We
address this question in the case when VRpIq is finite.

Of course, if the complex variety VCpIq of I is finite, then we can just apply
the eigenvalue method presented in Chapter 14 to compute VCpIq (then select
the real elements). However, it can be that VRpIq is finite while VCpIq is infinite.
As a trivial such example, consider the ideal generated by the polynomial x21`x

2
2

in two variables, to which we come back in Example 15.5.2 below. In that case
we cannot apply directly the eigenvalue method. However we can apply it
indirectly: Indeed, we can view the problem of computing VRpIq as an instance
of polynomial optimization problem to which we can then apply the results of
the preceding section. Namely, consider the problem of minimizing the constant
polynomial p “ 0 over the set

K “ tx P Rn : hjpxq ě 0,´hjpxq ě 0 @j P rmsu.

Then, K “ VRpIq coincides with the set of global minimizers of p “ 0 over K.
As before, we consider the moment relaxations (15.4). Now, any feasible

solution L is an optimal solution of (15.4). Hence, by Theorem 15.4.1, if the
rank condition (15.15) holds, then we can compute all points in VRpIq. We
now show that it is indeed the case that, for t large enough, the rank condition
(15.15) will be satisfied.

Theorem 15.5.1. Let h1, ¨ ¨ ¨ , hm P Rrxs be polynomials having finitely many real
roots. Set dK “ maxjrdegphjq{2s. For t P N, let Ft denote the set of sequences
y P RNn2t whose associated linear function L on Rrxs2t satisfies the conditions:

Lp1q “ 1, L ě 0 on Σ2t, Lpuhjq “ 0 @j P rms @u P Rrxs with degpuhjq ď 2t.
(15.17)

Then, there exist integers t0 and s such that dK ď s ď t0 and the following rank
condition holds:

rankMspyq “ rankMs´dK pyq @y P Ft @t ě t0. (15.18)

Moreover, R
?
I “ pkerMspyqq if y P Ft has maximum possible rank.

Proof. The goal is to show that if we choose t large enough, the the kernel
of Mtpyq contains sufficiently many polynomials permitting to show the rank
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condition (15.18). Here y is an arbitrary feasible solution in Ft and L is its
corresponding linear function on Rrxs2t. We assume that t ě maxj degphjq.
Then,

hj P kerMtpyq @j P rms (15.19)

(since then Lph2j q “ 0).
Now we choose a ‘nice’ set of polynomials tf1, ¨ ¨ ¨ , fLu generating R

?
I, the

real radical ideal of the ideal I; namely, one for which we can claim the follow-
ing degree bounds:

@f P
R
?
I f “

L
ÿ

l“1

ulfl for some ul P Rrxs with degpulflq ď degpfq. (15.20)

(That such a nice set of generators exists follows from the theory of Gröbner
bases.) Next we claim:

Dt1 P N f1, ¨ ¨ ¨ , fL P kerMtpyq for any t ě t1. (15.21)

Fix l P rLs. Applying the Real Nullstellensatz, we know that there exist polyno-
mials pi and uj and an integer N (which, for convenience, we can choose to be
a power of 2) satisfying the following identity:

fNl `
ÿ

i

p2i “
m
ÿ

j“1

ujhj .

If t is large enough, then L vanishes at each ujhj (since hj P kerMtpyq and
apply Lemma 15.3.2). Hence L vanishes at the polynomial fNl `

ř

i p
2
i . As L is

nonnegative on Σ2t, we deduce that LpfNl q “ 0. Now an easy induction permits
to show that Lpf2l q “ 0 (this is where choosing N a power of 2 was helpful) and
thus fl P kerMtpyq.

By assumption, the set VRpIq is finite. Therefore, the quotient space Rrxs{ R
?
I

has finite dimension (Theorem 14.1.5). LetM “ tb1, ¨ ¨ ¨ , bru be a set of poly-
nomials whose cosets form a base of the quotient space Rrxs{ R

?
I. Let d0 denote

the maximum degree of the polynomials inM and set

t2 “ maxtt1, d0 ` dKu.

Pick any monomial xα of degree at most t2. We can write:

xα “ ppαq ` qpαq, with qpαq “
L
ÿ

l“1

u
pαq
l fl, (15.22)

where ppαq lies in the span ofM and thus has degree at most d0, and each term
u
pαq
l fl has degree at most maxt|α|, d0u ď t2. Here we have used the fact that
trb1s, ¨ ¨ ¨ , rbrsu is a base of Rrxs{ R

?
I, combined with the property (15.20) of the

generators fl of R
?
I.
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We can now conclude the proof: We show that, if t ě t0 :“ t2 ` 1, then the
rank condition (15.18) holds with s “ t2. For this pick a monomial xα of degree
at most t2, so that (15.22) holds. As degpu

pαq
l flq ď t2 ď t´ 1 and fl P kerMtpyq

(by (15.20)), we obtain that upαql fl P kerMtpyq (use Lemma 15.3.2). Therefore,
the polynomial xα ´ ppαq belongs to the kernel of Mtpyq. As the degree of ppαq

is at most d0 ď t2 ´ dK , we can conclude that rankMt2´dK pyq “ rankMt2pyq.
Finally, the equality R

?
I “ pkerMt2pyqqq follows from Theorem 15.4.1 (iii).

Example 15.5.2. Let I be the ideal generated by the polynomial x21 ` x
2
2. Clearly,

VRpIq “ tp0, 0qu and R
?
I “ px1, x2q is generated by the two monomials x1 and x2.

Let us see how we can find this again by applying the above result.
For this, let L be a feasible solution in the set Ft defined by (15.17) for t “ 1.

Then, we have that Lpx21q, Lpx
2
2q ě 0 and Lpx21 ` x22q “ 0. This implies: Lpx21q “

Lpx22q “ 0 and thus Lpx1q “ Lpx2q “ Lpx1x2q “ 0. Hence the moment matrix
M1pyq has the form:

M1pyq “

¨

˝

1 x1 x2

1 1 y10 y01
x1 y10 y20 y11
x2 y01 y11 y02

˛

‚“

¨

˝

.1 0 0
0 0 0
0 0 0

˛

‚.

Therefore, rankM1pyq “ rankM0pyq, x1, x2 belong to the kernel of M1pyq, and we
find that kerM1pyq generates R

?
I.

As an exercise, check what happens when I is the ideal generated by px21`x2q
2.

When does the rank condition holds?

15.6 Notes and further reading

The flat extension theorem (Theorem 15.3.3) was proved by Curto and Fialkow
[1] (this result and some extensions are exposed in the survey [4]).

The moment approach to polynomial optimization presented in this chapter
was introduced by Lasserre [3]. Lasserre realized the relevance of the results of
Curto and Fialkow [1] for optimization, in particular, that their flat extension
theorem yields an optimality certificate and together with Henrion he adapted
the eigenvalue method to compute global optimizers. Having such a stopping
criterium and being able to compute global optimizers is a remarkable property
of this ‘moment based’ approach. It has been implemented in the software
GloptiPoly, the most recent version can be found at [2]. The application to
computing real roots (and real radical ideals) has been developed by Lasserre,
Laurent and Rostalski, see the survey [5].
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15.7 Exercises

15.1. Given an integer s ě 1, consider a sequence y “ py0, y1, ¨ ¨ ¨ , y2sq P R2s`1

and its moment matrix Mspyq of order s. Assume that the rank condition
holds:

rankMspyq “ rankMs´1pyq.

(a) Show that one can find scalars a, b P R for which the extended se-
quence ỹ “ py0, y1, ¨ ¨ ¨ , y2s, a, bq satisfies:

rankMs`1pỹq “ rankMspyq.

(b) Show that one can find an (infinite) extension

ỹ “ py0, y1, ¨ ¨ ¨ , y2s, ỹ2s`1, ỹ2s`2, ¨ ¨ ¨ q P RN

satisfying
rankMpỹq “ rankMspyq.

This shows the flat extension theorem (Theorem 15.3.3) in the univariate
case n “ 1.

15.2 Consider the problem of computing pmin “ infxPK ppxq, where p “ x1x2
and

K “ tx P R2 : ´x22 ě 0, 1` x1 ě 0, 1´ x1 ě 0u.

(a) Show that, at order t “ 1, pmom,1 “ pmin “ 0 and psos,1 “ ´8.

(b) At order t “ 2, what is the value of psos,2?
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