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Part 1

Theory and algorithms for
semidefinite optimization



CHAPTER 1

BACKGROUND: CONVEX SETS
AND POSITIVE SEMIDEFINITE
MATRICES

A set C is called convex if, given any two points x and y in C, the straight line
segment connecting x and y lies completely inside of C. For instance, cubes,
balls or ellipsoids are convex sets whereas a torus is not. Intuitively, convex sets
do not have holes or dips.

Usually, arguments involving convex sets are easy to visualize by two-dim-
ensional drawings. One reason being that the definition of convexity only in-
volves three points which always lie in some two-dimensional plane. On the
other hand, convexity is a very powerful concept which appears (sometimes
unexpected) in many branches of mathematics and its applications. Here are
a few areas where convexity is an important concept: mathematical optimiza-
tion, high-dimensional geometry, analysis, probability theory, system and con-
trol, harmonic analysis, calculus of variations, game theory, computer science,
functional analysis, economics, and there are many more.

Our aim is to work with convex sets algorithmically. So we have to discuss
ways to represent them in the computer, in particular which data do we want
to give to the computer. Roughly speaking, there are two convenient possibil-
ities to represent convex sets: By an implicit description as an intersection of
halfspaces or by an explicit description as the convex combination of extreme
points. The goal of this chapter is to discuss these two representations. In the
context of functional analysis they are connected to two famous theorems, the
Hahn-Banach theorem and the Krein-Milman theorem. Since we are only work-
ing in finite-dimensional Euclidean spaces (and not in the more general setting
of infinite-dimensional topological vector spaces) we can derive the statements



using simple geometric arguments.

Later we develop the theory of convex optimization in the framework of
conic programs. For this we need a special class of convex sets, namely convex
cones. The for optimization most relevant convex cones are at the moment two
involving vectors in R™ and two involving symmetric matrices in R™"*", namely
the non-negative orthant, the second order cone, the cone of positive semidefi-
nite matrices, and the cone of copositive matrices. Clearly, the cone of positive
semidefinite matrices plays the main role here. As background information we
collect a number of basic properties of positive semidefinite matrices.

1.1 Some fundamental notions

Before we turn to convex sets we recall some fundamental geometric notions.
The following is a brief review, without proofs, of some basic definitions and
notations appearing frequently in the sequel.

1.1.1 Euclidean space

Let F be an n-dimensional Euclidean space which is an n-dimensional real vector
space having an inner product. We usually use the notation z - y for the inner
product between the vectors = and y. This inner product defines a norm on F
by |z| = 4/z -  and a metric by d(z,y) = ||z — y|.

For sake of concreteness we will work with coordinates most of the time:
One can always identify E with R™ where the inner product of the column
vectors x = (xq,...,2,) andy = (y1,...,y,)" isthe usualone: z -y = x'y =
>, z;y;. This identification involves a linear transformation 7' : E — R"
which is an isometry, i.e. © - y = T« - Ty holds for all 2,y € E. Then the norm is
the Euclidean norm (or ¢;-norm): |z|s = 4/, 27 and d(z,y) = |z — y||2 is the
Euclidean distance between two points z,y € R™.

1.1.2 Topology in finite-dimensional metric spaces

The ball with center z € R™ and radius r is
B(z,r) ={yeR" : d(z,y) < r}.

Let A be a subset of n-dimensional Euclidean space. A point x € A is an interior
point of A if there is a positive radius € > 0 so that B(z,e) < A. The set
of all interior points of A is denoted by int A. We say that a set A is open
if all points of A are interior points, i.e. if A = int A. The set A is closed if
its complement R™\ A is open. The (topological) closure A of A is the smallest
(inclusion-wise) closed set containing A. One can show that a set A in R™ is
closed if and only if every converging sequence of points in A has a limit which
also lies in A. A point x € A belongs to the boundary ¢A of A if for every e > 0
the ball B(z,¢) contains points in A and in R™\ A. The boundary dA is a closed



set and we have A = A U 04, and 0A = A\ int A. The set A is compact if every
sequence in A contains a convergent subsequence. The set A is compact if and
only if it is closed and bounded (i.e. it is contained in a ball of sufficiently large,
but finite, radius).

Figure 1.1: A compact, non-convex set A. Which points lie in int A, A, 0A?

For instance, the boundary of the ball with radius 1 and center 0 is the unit
sphere
0B(0,1) = {yeR":d(0,y) =1} = {z e R" : a"a = 1}.

Traditionally, it is called the (n — 1)-dimensional unit sphere, denoted as S"~!,
where the superscript n — 1 indicates the dimension of the manifold.

1.1.3 Affine geometry

A subset A = R" is called an affine subspace of R™ if it is a translated linear
subspace: One can write A in the form

A=z+L={x+y:yelL}

where x € R™ and where L is a linear subspace of R". The dimension of A
is defined as dim A = dim L. Affine subspaces are closed under affine linear
combinations:

N N
VNENV:El,...,:cNeAVal,...,aNER:Zaizl:ZaimieA.
i=1 i=1

The smallest affine subspace containing a set of given points is its affine hull.
The affine hull of A € R" is the set of all possible affine linear combinations

N N
aff A = {Zaixi:N€N7m1,...,;vNeA,ah...,aNeRZai—1,}.
i=1 =1



A fact which requires a little proof (exercise). The dimension of an arbitrary set

Aisdim A = dim(aff A). One-dimensional affine subspaces are lines and (n—1)-

dimensional affine subspaces are hyperplanes. A hyperplane can be specified as
H={zeR":c'z =7},

where ¢ € R™\{0} is the normal of H (which lies orthogonal to H) and where
B € R. Sometimes we write H, g for it.

Ky

¥

%,

Figure 1.2: Determine (as accurate as possible) the coefficients oy, as, a3 of the
affine combination y = a1 21 + asxs + azzsz with o + as + a3z = 1.

If the dimension of A < R" is strictly smaller than n, then A does not have
an interior, int A = . In this situation one is frequently interested in the
interior points of A relative to the affine subspace aff A. We say that a point
x € A belongs to the relative interior of A when there is a ball B(z,e) with
strictly positive radius € > 0 so that aff A n B(z,e) € A. We denote the set of
all relative interior points of A by relint A. Of course, if dim A = n, then the
interior coincides with the relative interior: int A = relint A.

1.2 Convex sets

A subset C' < R"™ is called a convex set if for every pair of points z,y € C also
the entire line segment between x and y is contained in C. The line segment
between the points = and y is defined as

[z,y ={1l—a)z+ay:0< a<1}.
Convex sets are closed under convex combinations:
N N
VN eNVzy,...,en € CVaq,...,any € Ryg : Zai = I:ZaixieC.
1=1 i=1
The convex hull of A € R" is the smallest convex set containing A. It is

N N
conv A = {Zaizi:NeN,xl,...,zNEA,al,...,aN€R>O,Zai = 1},

i=1 1=1



which requires an argument. We can give a mechanical interpretation of the
convex hull of finitely many point conv{xy,...,zx}: The convex hull consists
of all centres of gravity of point masses aj, ..., ay at the positions z1,...,zxy.
The convex hull of finitely many points is called a polytope. Two-dimensional,
planar, polytopes are polygons. Other important examples of convex sets are
balls, halfspaces, and line segments. Furthermore, arbitrary intersections of
convex sets are convex again. The Minkowski sum of convex sets C, D given by

C+D={z+y:zeC,ye D}

is a convex set.

[

+ O

Figure 1.3: Exercise: What is the Minkowski sum of a square and a disk?

Here are two useful properties of convex sets. The first result gives an al-
ternative description of the relative interior of a convex set and the second one
permits to embed a convex set with an empty interior into a lower dimensional
affine space.

Lemma 1.2.1. Let C < R"™ be a convex set. A point x € C lies in the relative
interior of C if and only if

Vye CIzeC,ae(0,1):z=ay+ (1 —a)z,
where (0, 1) denotes the open interval 0 < o < 1.

Theorem 1.2.2. Let C' = R™ be a convex set. If int C = & then the dimension of
its affine closure is at most n — 1.

1.3 Implicit description of convex sets

In this section we show how one can describe a closed convex set implicitly as
the intersection of halfspaces (Theorem[1.3.7). For this we show the intuitive
fact that through every of its boundary points there is a hyperplane which has
the convex set on only one of its sides (Lemmal[1.3.5)). We also prove an impor-
tant fact which we will need later: Any two convex sets whose relative interiors
do not intersect can be properly separated by a hyperplane (Theorem [1.3.8).
After giving the definitions of separating and supporting hyperplanes we look



at the metric projection which is a useful tool to construct these separating hy-
perplanes.

The hyperplane at a point z € R™ with normal vector ¢ € R™\{0} is
H={yeR":c'y=c"z}.

It is an affine subspace of dimension n — 1. The hyperplane H divides R™ into
two closed halfspaces

HY ={yeR":c"y>c"z}, H ={yeR":c'y<cz}.

A hyperplane H is said to separate two sets A < R"™ and B < R” if they lie on
different sides of the hyperplane, i.e., if A< H™ and B < H~ or conversely. In
other words, A and B are separated by a hyperplane if there exists a non-zero
vector ¢ € R™ and a scalar 8 € R such that

VeeAyeB:c'z < B <cly.
The separation is said to be strict if both inequalities are strict, i.e.,
VeeAyeB:c'z<f<cly.

The separation is said to be proper when H separates A and B but does not
contain both A and B.

A hyperplane H is said to support A at x € A if x € H and if A is contained in
one of the two halfspaces H+ or H~, say H~. Then H is a supporting hyperplane
of A at x and H~ is a supporting halfspace.

H

Figure 1.4: The hyperplane H supports A and separates A and B.

1.3.1 Metric projection

Let C € R™ be a non-empty closed convex set. One can project every point
x € R™ onto C' by simply taking the point in C' which is closest to it. This fact is
very intuitive and in the case when C is a linear subspace we are talking simply
about the orthogonal projection onto C.



Lemma 1.3.1. Let C be a non-empty closed convex set in R™. Let x € R"\C be a
point outside of C. Then there exists a unique point w¢(x) in C which is closest to
x. Moreover, n¢(x) € 0C.

Proof. The argument for existence is a compactness argument: As C is not empty,
pick zp € C and consider the intersection C’ of C with the ball B(zq,r) centered
at zo and with radius » = |z — z|. Then C’ is closed, convex and bounded.
Moreover the minimum of the distance |y—z| for y € C'is equal to the minimum
taken over C’. As we minimize a continuous function over a compact set, the
minimum is attained. Hence there is at least one closest point to z in C.

The argument for uniqueness requires convexity: Let y and z be two distinct
points in C, both having minimum distance to x. In this case, the midpoint
of y and z, which lies in C, would even be closer to x, because the distance
d(z, £(y + 2)) is the height of the isosceles triangle with vertices z,y, z.

Hence there is a unique point in C which is at minimum distance to z, which
we denote by w¢(x). Clearly, m¢(x) € dC, otherwise one would find another
point in C closer to x lying in some small ball B(w¢(x),¢) < C. O

Thus, the map 7¢ : R* — C defined by the property
Vy eC: d(y,.’L‘) = d(ﬂ'o(l‘),x)

is well-defined. This map is called metric projection and sometimes we refer to
the vector m¢(z) as the best approximation of x in the set C.
The metric projection 7 is a contraction:

Lemma 1.3.2. Let C be a non-empty closed and convex set in R™. Then,
Va,y € R" : d(mc(x), me(y)) < d(,y).
In particular; the metric projection 7 is a Lipschitz continuous map.

Proof. We can assume that d(r¢(z),7c(y)) # 0. Consider the line segment
[tc(x), mc(y)] and the two parallel hyperplanes H, and H, at m¢(x) and at
7c(y) both having normal vector 7o (z) — mo(y). The points z and 7¢(y) are
separated by H, because otherwise there would be a point in [r¢(x), 7o (y)] <
C which is closer to x than to m¢(x), which is impossible. In the same way, y
and 7m¢(z) are separated by H,. Hence, x and y are on different sides of the
“slab” bounded by the parallel hyperplanes H, and by H,. So their distance
d(z,y) is at least the width of the slab, which is d(7¢(z), 7o (y)). O

The metric projection can reach every point on the boundary of C:

Lemma 1.3.3. Let C be a non-empty closed and convex set in R™. Then, for every
boundary point y € 0C there is a point x lying outside of C' so that y = 7¢/(z).

Proof. First note that one can assume that C' is bounded (since otherwise re-
place C by its intersection with a ball around y). Since C is bounded it is
contained in a ball B of sufficiently large radius. We will construct the desired



point = which lies on the boundary ¢B by a limit argument. For this choose a
sequence of points y; € R"\C such that d(y,y;) < 1/i, and hence lim; o, y; = y.
Because the metric projection is a contraction (Lemma|l.3.2)) we have

d(y, mc(yi)) = d(mc(y), 7o (vi) < d(y,yi) < 1/i.

By intersecting the line aff{y;, 7¢(y;)} with the boundary 0B one can determine
a point x; € 0B so that m¢(x;) = mc(y;). Since the boundary 0B is compact
there is a convergent subsequence (z;;) having a limit « € 0B. Then, because
of the previous considerations and because 7¢ is continuous

y =rmc(y) =mc (,ﬁm y@) = lim 7o (yi;)
]—»(D ‘]HOO

= lim 7o(x;,) = e | lim z;, | = 7e(x),
Jj—00 7 Jj—00 J

which proves the lemma. O

;"

Figure 1.5: The construction which proves Lemma[1.3.3

1.3.2 Separating and supporting hyperplanes

One can use the metric projection to construct separating and supporting hy-
perplanes:

Lemma 1.3.4. Let C be a non-empty closed convex set in R™. Let x € R"\C be a
point outside C and let wo(x) its closest point in C. Then the following holds.

() The hyperplane through = with normal x — w¢(x) supports C at 7o (x) and
thus it separates {z} and C.

(i) The hyperplane through (z + wc(x))/2 with normal x — w¢(z) strictly sepa-
rates {z} and C.



Proof. It suffices to prove (i) and then (ii) follows directly. Consider the hyper-
plane H through « with normal vector ¢ = = — 7¢(z), defined by

H={yeR":c"y=c"nc(z)}
As c'z > c"7mc(x), x lies in the open halfspace {y : c'y > cTnc(z)}. We
show that C lies in the closed halfspace {y : c¢'y < c¢"mc(z)}. Suppose for a
contradiction that there exists y € C such that ¢ (y — ¢ (z)) > 0. Then select a

scalar A € (0,1) such that 0 < A\ < W < landsetw = Ay+(1-N)me(x)
which is a point C. Now verify that |w — x| < |7c(z) — x| = ||c|, which follows

from
|w—z|® = [My — 7e(@) — c® = [cf® + X[y — 7e(2)* — 2Ac (y — 7o ()

and which contradicts the fact that = () is the closest point in C to x. O

Figure 1.6: A separating hyperplane constructed using n¢.

Combining Lemma|l.3.3|and Lemma|l.3.4|we deduce that one can construct
a supporting hyperplane at every boundary point.

Lemma 1.3.5. Let C < R™ be a closed convex set and let x € 0C' be a point lying
on the boundary of C. Then there is a hyperplane which supports C at x.

One can generalize Lemma (i) and remove the assumption that C is
closed.

Lemma 1.3.6. Let C < R"™ be a non-empty convex set and let x € R™\C be a
point lying outside C. Then, {x} and C can be separated by a hyperplane.

Proof. In view of Lemma [1.3.1|we only have to show the result for non-closed
convex sets C. We are left with two cases: If z ¢ C, then a hyperplane separating
{z} and the closed and convex set C also separates {z} and C. If z € C, then
r € 0C. By Lemma there is a hyperplane supporting C at . In particular,
it separates {z} and C. O
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As a direct application of the strict separation result in Lemma (ii),
we can formulate the following fundamental structural result for closed convex
sets.

Theorem 1.3.7. A non-empty closed convex set is the intersection of its supporting
halfspaces.

This is an implicit description as it gives a method to verify whether a point
belongs to the closed convex set in question: One has to check whether the
point lies in all these supporting halfspaces. If the closed convex set is given as
an intersection of finitely many halfspaces, then it is called a polyhedron and the
test we just described is a simple algorithmic membership test.

We conclude with the following result which characterizes when two convex
sets can be separated properly. When both sets are closed and one of them is
bounded, one can show a strict separation. These separation results will be the
basis in our discussion of the duality theory of conic programs.

Theorem 1.3.8. Let C, D < R™ be non-empty convex sets.

(i) C and D can be properly separated if and only if their relative interiors do
not have a point in common: relint C N relint D = (.

(ii) Assume that C' and D are closed and that at least one of them is bounded. If
C n D = (7, then there is a hyperplane strictly separating C' and D.

Proof. (i) The “only if” part (—>): Let H. g be a hyperplane properly separating
Cand DwithC<c H- and Dc H,i.e.,

VeeCuyeD:c'z<pB<cly.

Suppose there is a point x( € relint C' N relint D. Then ¢'z¢ = f3, i.e., 2o € H.
Pick any « € C. By Lemma there exists 2/ € C and « € (0,1) such that
xg = ax + (1 — a)z’. Now

B=c'zg=acz+(1-a)"s’ <af+(1-a) =4,

hence all inequalities have to be tight and so ¢'x = 3. Thus C is contained in
the hyperplane H. Similarly, D < H. This contradicts the assumption that the
separation is proper.

The “if part” («<): Consider the set

E =relint C —relint D = { — y : x € relint C, y € relint D},

which is convex. By assumption, the origin 0 does not lie in E. By Lemma|[1.3.6]
there is a hyperplane H separating {0} and E which goes through the origin.
Say H = H. and

Yz € relint C,y € relint D : ¢' (z — y) = 0.

11



Define
B =inf{c"z : z € relint C}.
Then,
Cc {IER”:CTI>B},

and we want to show that
Dc{y:c'y<p}.

For suppose not. Then there is a point y € relint D so that ¢y > 3. Moreover,
by definition of the infimum there is a point z € relint C so that 3 < c'z < c"y.
But then we find ¢ (z — y) < 0, a contradiction. Thus, C and D are separated
by the hyperplane H, g.

If C u D lies in some lower dimensional affine subspace, then the argu-
ment above gives a hyperplane in the affine subspace aff(C' U D) which can be
extended to a hyperplane in R™ which properly separates C' and D.

(ii) Assume that C' is bounded and C ~n D = ¢Jf. Consider now the set
E=C-D

which is closed (check it) and convex. As the origin 0 does not lie in F, by
Lemma (ii), there is a hyperplane strictly separating {z} and FE: There is
a non-zero vector ¢ and a positive scalar 8 such that

VeeC,yeD:c'(z—y)>p>0.

This implies

inf ¢'z > B +supe'y > é +supcly >supc'y.
zeC yeD 2 yeD yeD

Hence the hyperplane H, , with o = g +sup c'y strictly separates C'and D. [

yeD

1.4 Explicit description of convex sets

Now we turn to an explicit description of convex sets. An explicit description
gives an easy way to generate points lying in the convex set.

We say that a point € C is extreme if it is not a relative interior point
of any line segment in C. In other words, if z cannot be written in the form
x=(1—a)y+ azwithy,z€ C and 0 < a < 1. The set of all extreme points of
C we denote by ext C.

Theorem 1.4.1. Let C = R™ be a compact and convex set. Then,

C = conv(ext C').

12



Proof. We prove the theorem by induction on the dimension n. If n = 0, then C
is a point and the result follows.

Let the dimension n be at least one. If the interior of C is empty, then C lies
in an affine subspace of dimension at most n — 1 and the theorem follows from
the induction hypothesis. Suppose that int C # . We have to show that every
x € C can be written as the convex hull of extreme points of C'. We distinguish
between two cases:

First case: If = lies on the boundary of C, then by Lemma there is a
supporting hyperplane H of C through x. Consider the set F' = H n C. This is
a compact and convex set which lies in an affine subspace of dimension at most
n — 1 and hence we have by the induction hypotheses x € conv(ext F'). Since
ext F' € ext C, we are done.

Second case: If = does not lie on the boundary of C, then the intersection of
a line through = with C is a line segment [y, z] with y, z € dC. By the previous
argument we have y, 2 € conv(ext C). Since x is a convex combination of y and
z, the theorem follows. O

1.5 Convex cones

We will develop the theory of convex optimization using the concept of conic
programs. Before we can say what a “conic program” is, we have to define
convex cones.

Definition 1.5.1. A non-empty subset K of R™ is called a convex cone if it is
closed under non-negative linear combinations:

Va,B € Rsg Var,ye K :ax + By € K.
Moreover, K is pointed if
r,—reK = x=0.

One can easily check that convex cones are indeed convex sets. Furthermore,
the direct product

K x K' ={(z,2) e R"" 1z e K,2' € K'}

N .
of two convex cones K € R™ and K’ < R" is a convex cone again.
A pointed convex cone in R"™ defines a partial order on R™ by

r>y<—zcr—yek
for 2,y € R™. This partial order satisfies the following conditions:

reflexivity:
VeeR" .z >z

13



antisymmetry:
Ve, yeR":x >y y>rx=1x=1y

transitivity:
Ve,y,2zeR":x >y y>z= x> 2
homogenity:
Ve,y e R"VaeRyg: x>y = ax > ay
additivity:

Ve,y, 2’y eR":x >y, 2’ >y =z +2 >y +7v.

In order that a convex cone is useful for practical algorithmic optimization
methods we will need two additional properties to eliminate undesired degen-
erate conditions: A convex cone should be closed and full-dimensional, that is,
it has a non-empty interior. Then, we define strict inequalities by:

T>y<zx—ycint K.

Let (x;)ien and (y;).en be sequences of elements in R”™ which have limits « and
y, then we can pass to limits in the inequalities:

(ANeNVi= N :z; = y;) < x> y.

The separation result from Lemma [1.3.4] specializes to convex cones in the
following way.

Lemma 1.5.2. Let C' < R" be a closed convex cone and let = € R™\C be a
point outside of C. Then there is a linear hyperplane separating {x} and C. Even
stronger, there is a non-zero vector ¢ € R™ such that

VyeC:cly=0>c'z,

thus with the strict inequality ¢"x < 0.

1.6 Examples

The convex cone generated by a set of vectors A € R" is the smallest convex
cone containing A. It is

N
cone A = {Zaixi:NeN,xh...,xNeA,al,...7aNeR>0}.
i=1

Furthermore, every linear subspace of F is a convex cone, however a somewhat
boring one. More interesting are the following examples. We will use them,
especially cone of positive semidefinite matrices, very often.

14



1.6.1 The non-negative orthant and linear programming

The convex cone which is connected to linear programming is the non-negative
orthant. It lies in the Euclidean space R™ with the standard inner product. The
non-negative orthant is defined as

o={r=(z1,...,2,) €R" 1 21,..., 2, =0}

It is a pointed, closed and full-dimensional cone. A linear program is an opti-
mization problem of the following form

maximize cixy+ -+ cpxy
subject to  a1171 + -+ + G1pTy

211 + -+ + ATy,

Am1%1 + -+ G @y = by

One can express the above linear program more conveniently using the partial
order defined by the non-negative orthant RZ:

maximize ¢’z

subject to Az > b,
where ¢ = (c1,...,¢,)7T € R" is the objective vector, A = (a;;) € R™*" is the
matrix of linear constraints, x = (x1,...,7,)" € R" is the optimization variable,

and b = (by,...,b,)" € R™ is the right hand side. Here, the partial order = > y
means inequality coordinate-wise: z; > y; for all i € [n].

1.6.2 The second-order cone

While the non-negative orthant is a polyhedron, the following cone is not. The
second-order cone is defined in the Euclidean space R"*! = R” x R with the
standard inner product. It is

ﬁ"“—{(m,t)eR”xR:”xHQ— xf+-~-+m%<t}.

Sometimes it is also called ice cream cone (make a drawing to convince yourself)
or Lorentz cone. The second-order cone will turn out to be connected to conic
quadratic programming.

1.6.3 The cone of semidefinite matrices

The convex cone which will turn out to be connected to semidefinite program-
ming is the cone of positive semidefinite matrices. It lies in the n(n + 1)/2-
dimensional Euclidean space of n x n-symmetric matrices S with the trace
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inner product. Namely, for two matrices X,Y e R"*",

(X,Y)=Tr(XTY) = Zn] i Xi;Yij, where TrX = EX”
i=1j=1 i=1

Here we identify the Euclidean space S™ with R™*("+1)/2 by the isometry T :
S™ — R™M"+1)/2 defined by

T(X) = (X11,V2X12,V2X13, ..., V2X 10, X202, V2X03, ..., V2 X0, ., X

where we only consider the upper triangular part (in good old FORTRAN 77
tradition) of the matrix X.
The cone of semidefinite matrices is

%o = {X € 8" : X is positive semidefinite},
where a matrix X is positive semidefinite if
VreR":z"Xz > 0.

More characterizations are given in Section[1.7]below.

1.6.4 The copositive cone

The copositive cone is a cone in ™ which contains the semidefinite cone. It is
the basis of copositive programming and it is defined as the set of all copositive
matrices:

={Xe8": 2"Xr >0 Yo eRL}.

Unlike for the semidefinite cone no easy characterization (for example in terms
of eigenvalues) of copositive matrices is known. Even stronger: Unless the
complexity classes P and NP coincide no easy characterization (meaning one
which is polynomial-time computable) exists.

1.7 Positive semidefinite matrices

1.7.1 Basic facts

A matrix P is orthogonal if PPT = I, or, equivalently, PTP = I, i.e. the
rows (resp., the columns) of P form an orthonormal basis of R™”. By O(n) we
denote the set of n x n orthogonal matrices which forms a group under matrix
multiplication.

The spectral decomposition theorem is probably the most important theorem
about real symmetric matrices.
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Theorem 1.7.1. (Spectral decomposition theorem) Any real symmetric matrix
X € 8™ can be decomposed as

n
i=1

where A\1,...,\, € R are the eigenvalues of X and where uq,...,u, € R"™ are
the corresponding eigenvectors which form an orthonormal basis of R™. In matrix
terms, X = PDPT, where D is the diagonal matrix with the \;’s on the diagonal
and P is the orthogonal matrix with the wu;’s as its columns.

Theorem 1.7.2. (Positive semidefinite matrices) Let X € 8™ be a symmetric
matrix. The following assertions are equivalent.

(1) X is positive semidefinite, written as X > 0, which is defined by the property:
2T Xx > 0 for all x € R".

(2) The smallest eigenvalue of X is non-negative, i.e., the spectral decomposition
of X is of the form X = > | Nyusul with all \; > 0.

(3) X = LL" for some matrix L € R"** (for some k > 1), called a Cholesky
decomposition of X.

(4) There exist vectors v1,...,v, € RF (for some k > 1) such that Xij; = viTUj
for all i, j € [n]; the vectors v;’s are called a Gram representation of X.

(5) All principal minors of X are non-negative.

The set SZ, of all positive semidefinite matrices is a pointed, closed, convex,
full-dimensional cone in S™. Moreover, it is generated by rank one matrices, i.e.

SI'y = cone{zx" : x € R"}.

Matrices lying in the interior of the cone SZ are called positive definite. The
above result extends to positive definite matrices. A matrix X is positive defi-
nite (denoted as X > 0) if it satisfies any of the following equivalent properties:
(1) 27 X2 > 0 for all z € R™\{0}, (2) all eigenvalues are strictly positive, (3)
in a Cholesky decomposition the matrix L is non-singular, (4) any Gram repre-
sentation has full rank n, and (5) all the principal minors are positive (in fact
already positivity of all the leading principal minors implies positive definite-
ness; Sylvester’s criterion).

1.7.2 The trace inner product

The trace of an n x n matrix A is defined as Tr(A4) = Y, | A;;. The trace is
a linear form on R™*" and satisfies the following properties: Tr(A) = Tr(AT),
Tr(AB) = Tr(BA). Moreover, if A is symmetric then the trace of A is equal to
the sum of the eigenvalues of A.
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One can define an inner product on R”*™ by setting

<A, B> = Tl'(ATB) = Z A”Blj

i,5=1

This defines the Frobenius norm on R™*™ by setting | A|| = /{A, A). For a vector
x € R™ we have 2T Ax = (A, zz"). For positive semidefinite matrices we have
the following result.

Lemma 1.7.3. For a symmetric matrix A e §",
A>0 <= VBeSL,:(A,B)>0.
In other words, the cone 82 is self-dual: (SZ)* = SZ,.

Proof. Direct verification using the conditions (1) and (2) in Theorem O

1.7.3 Hoffman-Wielandt inequality
Here is a nice inequality to know about eigenvalues.

Theorem 1.7.4. (Hoffman, Wielandt (1953)) Let A, B € 8™ be symmetric ma-
trices with respective eigenvalues «;,...,a, and 1, ..., 3, ordered as follows:
a1 <...<apand f1 = ... = B,. Then,

i aifBi = min{Tr(AXBX7T) : X € O(n)}. (1.1)

i=1
In particular;

Tr(AB) > ) aif3;.
i=1

Proof. Write A = PDPT and B = QEQ" where P,Q € O(n) and D (resp., E)
is the diagonal matrix with diagonal entries «; (resp. 3;). As Tr(AXBX') =
Tr(DYEYT) where Y = PTXQ € O(n), the optimization problem is
equivalent to

min{Tr(DXEX"): X € O(n)}.

We want to prove that the minimum is Tr(DFE), which is attained X = I. For
this consider the linear progra

z,yeR™

max {in—l—Zyj:aiﬁj—xi—yjZOW,je[n]} (1.2)
i=1 j=1

1We now use only the dual linear program (1.3), but we will use also the primal linear program
(1.2) in Chapter 2 for reformulating program (1.1 as a a semidefinite program.
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and its dual linear program

i BiZii Y Zii=1VYje[n], Y Zi;=1Vie[n], Z=0}.
Zéﬁ%&{_zo‘ﬂy 3 Z; J j€[n] ]; J i€ [n] }

7,7=1

(1.3)
Note that the feasible region of the linear program is the set of all doubly-
stochastic matrices, i.e., the matrices with non-negative entries where all rows
and all columns sum up to one. By Birkhoff’s theorem the set of doubly-
stochastic matrices is equal to the convex hull of all permutation matrices. In
other words, the minimum of is equal to the minimum value of " | @;3,;)
taken over all permutations o of [n]. It is an easy exercise to verify that this min-
imum is attained for the identity permutation. This shows that the optimum

value of (1.3) (and thus of (1.2)) is equal to >, o;3; = Tr(DE).
Now pick any X € O(n). Observe that the matrix Z = ((X;;)?)};_; is
doubly-stochastic (by the definition that X is orthogonal) and that

Tr(DXEXT) = an aifj(Xij)?,

4,j=1

which implies that Tr(DXEXT) is at least the minimum Tr(DE) of program
(1.3). This shows that the minimum of (1.I) is at least Tr(DE), which finishes
the proof of the theorem. O

1.7.4 Schur complements

The following notion of Schur complement can be very useful for showing posi-
tive semidefiniteness.

Definition 1.7.5. (Schur complement) Consider a symmetric matrix X in block

form
X = (; g) (1.9

with A € R**", B e R"*! and C € R'*!. Assume that A is non-singular. Then,
the matrix C — BT A~' B is called the Schur complement of A in X.

Lemma 1.7.6. Let X € 8™ be in block form (1.4) where A is non-singular. Then,
X>0 <« A>0andC—B"A7'B>0.

Proof. The following identity holds:

A 0 I A7'B
X = pT P w P =
a (0 C—BTA—lB) , where _<0 I )

As P is non-singular, we deduce that X > 0 if and only if (P~1)TXP~! > 0
which is thus equivalent to A > 0 and C — BTA™'B > 0.
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1.7.5 Block-diagonal matrices

Given matrices X; € S™,..., X, € 8", X; ® - ® X, denotes the following
block-diagonal matrix X € 8", wheren = n; + --- + n,,

Xy 0 ... 0
0 X9 ... O
X=X1® X, =] . . N (1.5)
o 0 ... X,
Then, X is positive semidefinite if and only if all the blocks Xi,..., X, are

positive semidefinite.

Given two sets of matrices A and B, A @ B denotes the set of all matrices
X @Y, where X € A and Y € B. Moreover, for an integer m > 1, m.A denotes
AD - @ A, the m-fold sum.

From an algorithmic point of view it is much more economical to deal with
positive semidefinite matrices in block-form like (1.5).

For instance, if we have a set A of matrices that pairwise commute, then it
is well known that they admit a common set of eigenvectors. In other words,
there exists an orthogonal matrix P € O(n) such that the matrices PT X P are
diagonal for all X € A.

In general one may use the following powerful result about C*-algebras
which permits to show that certain sets of matrices can be block-diagonalized.

Consider a non-empty set A € C™*™ of matrices. A is said to be a C*-algebra
if it satisfies the following conditions:

1. A is closed under matrix addition and multiplication, and under scalar
multiplication.

2. For any matrix A € A, its conjugate transpose A* also belongs to .A.

For instance, the full matrix algebra C™*"™ is a simple instance of C'*-algebra,
and the algebra @2:1 m;C"i*™ as well, where n;, m; are integers. The follow-
ing fundamental result shows that up to an orthogonal transformation this is
the general form of a C*-algebra.

Theorem 1.7.7. (Wedderburn-Artin theorem) Assume A is a C*-algebra of
matrices in C**"™ containing the identity matrix. Then there exists a unitary matrix
P (i.e., such that PP* = I,,) and integers r,ny,m1,...,n,, m, > 1 such that the
set P* AP = {P*XP: X € A} is equal to

mC"*" @ ... Pm,C*"r.

See e.g. the thesis of Gijswijt [4] for a detailed exposition and its use for
bounding the size of error correcting codes in finite fields.
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1.7.6 Kronecker and Hadamard products

Given two matrices A = (A4;;) € R"*™ and B = (By) € RP*9, their Kronecker
product is the matrix A ® B € R"P*™4 with entries

Ainjk = AijBri Yi € [n], j € [m], h e [p], k€ [q].

It can also be seen as the n x m block matrix whose ij-th block is the p x ¢ matrix
A;;Bforallie [n],j e [m].
This includes in particular defining the Kronecker product u ® v € R of
two vectors u € R" and v € RP, with entries (v ® v);;, = u;v,, for i € [n], h € [p].
Given two matrices A, B € R"*™, their Hadamard product is the matrix
Ao B € R"™™ with entries

(A o B)ij = AijBij Vi e [’fl],] € [m]

Note that A o B coincides with the principle submatrix of A ® B indexed by the
subset of all ‘diagonal’ pairs of indices of the form (i3, jj) for i € [n], j € [m].

Here are some (easy to verify) facts about these products, where the matrices
and vectors have the appropriate sizes.

1. (A®B)(C®D) = (AC)® (BD,).
2. In particular, (A® B)(u®v) = (Au) ® (Bwv).

3. Assume A € §" and B € SP have, respectively, eigenvalues a4, .. ., «, and
B1,...,0p. Then A® B € S" has eigenvalues «; [, for i € [n], h € [p]. In
particular,

A B>0=—A®B >0 and Ao B >0,
A>0= A% = ((4;;)F) = 0VkeN.

1.8 Historical remarks

The history of convexity is astonishing: On the one hand, the notion of convexity
is very natural and it can be found even in prehistoric arts. For instance, the
Platonic solids are convex polyhedra and carved stone models of some of them
were crafted by the late neolithic people of Scotland more than 4,000 years
ago. For more information on the history, which unearthed some good hoax,
see also John Baez’ discussion of “Who discovered the icosahedron?” http:
//math.ucr.edu/home/baez/icosahedron/.

On the other hand, the first mathematician who realized how important con-
vexity is as a geometric concept was the brilliant Hermann Minkowski (1864—
1909) who in a series of very influential papers ‘Allgemeine Lehrsétze iiber
die konvexen Polyeder” (1897), “Theorie der konvexen Korper, insbesondere
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Begriindung ihres Oberflachenbegriffs” (published posthumously) initiated the
mathematical study of convex sets and their properties. All the results in this
chapter on the implicit and the explicit representation of convex sets can be
found there (although with different proofs).

Not much can be added to David Hilbert’s (1862-1943) praise in his obituary
of his close friend Minkowski:

Dieser Beweis eines tiefliegenden zahlentheoretischen Satzes’Johne rech-
nerische Hilfsmittel wesentlich auf Grund einer geometrisch anschau-
lichen Betrachtung ist eine Perle Minkowskischer Erfindungskunst. Bei
der Verallgemeinerung auf Formen mit n Variablen fiihrte der Minkowski-
sche Beweis auf eine natiirlichere und weit kleinere obere Schranke fiir
jenes Minimum M, als sie bis dahin Hermite gefunden hatte. Noch
wichtiger aber als dies war es, dal3 der wesentliche Gedanke des Mink-
owskischen Schluf3verfahrens nur die Eigenschaft des Ellipsoids, daf3
dasselbe eine konvexe Figur ist und einen Mittelpunkt besitzt, benutzte
und daher auf beliebige konvexe Figuren mit Mittelpunkt iibertragen
werden konnte. Dieser Umstand fiihrte Minkowski zum ersten Male
zu der Erkenntnis, dal} iiberhaupt der Begriff des konvexen Korpers ein
fundamentaler Begriff in unserer Wissenschaft ist und zu deren frucht-
barsten Forschungsmitteln gehort.

Ein konvexer (nirgends konkaver) Korper ist nach Minkowski als ein
solcher Korper definiert, der die Eigenschaft hat, da}, wenn man zwei
seiner Punkte in Auge fal3t, auch die ganze geradlinige Strecke zwischen
denselben zu dem Korper gehértE]

Until the end of the 1940s convex geometry was a small discipline in pure
mathematics. This changed dramatically when in 1947 the breakthrough of
general linear programming came. Then Dantzig formulated the linear pro-
gramming problem and designed the simplex algorithm for solving it. Nowa-
days, convex geometry is an important toolbox for researchers, algorithm de-
signers and practitioners in mathematical optimization.

2Hilbert is refering to Minkowski’s lattice point theorem. It states that for any invertible matrix
A € R™"*™ defining a lattice AZ"™ and any convex set in R™ which is symmetric with respect to the
origin and with volume greater than 2™ det(A)? contains a non-zero lattice point.

31t is not easy to translate Hilbert’s praise into English without losing its poetic tone, but here is
an attempt. This proof of a deep theorem in number theory contains little calculation. Using chiefly
geometry, it is a gem of Minkowski’s mathematical craft. With a generalization to forms having n
variables Minkowski’s proof lead to an upper bound M which is more natural and also much smaller
than the bound due to Hermite. More important than the result itself was his insight, namely that
the only salient features of ellipsoids used in the proof were that ellipsoids are convex and have a
center, thereby showing that the proof could be immediately generalized to arbitrary convex bodies
having a center. This circumstances led Minkowski for the first time to the insight that the notion of
a convex body is a fundamental and very fruitful notion in our scientific investigations ever since.

Minkowski defines a convex (nowhere concave) body as one having the property that, when one
looks at two of its points, the straight line segment joining them entirely belongs to the body.
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1.9 Further reading

Two very good books which emphasize the relation between convex geometry
and optimization are by Barvinok [1]] and by Gruber [5] (available online).
Less optimization but more convex geometry is discussed in the little book of
Bonnesen, Fenchel [3] and the encyclopedic book by Schneider [7]. The first
one is now mainly interesting for historical reasons. Somewhat exceptional, and
fun to read, is Chapter VII in the book of Berger [2]] (available online) where
he gives a panoramic view on the concept of convexity and its many relations
to modern higher geometry.

Let us briefly mention connections to functional analysis. Rudin in his clas-
sical book “Functional analysis” discusses Theorem and Theorem|[1.4.1|in
an infinite-dimensional setting. Although we will not need these more general
theorems, they are nice to know.

The Hahn-Banach separation theorem is Theorem 3.4 in Rudin.

Theorem 1.9.1. Suppose A and B are disjoint, nonempty, convex sets in a topo-
logical vector space X.
(a) If A is open there exist A € X* and ~ € R such that

RAz < v < RAy

for every x € A and for every y € B. (Here, Rz is the real part of the complex
number z.)

(b) If A is compact, B is closed, and X is locally convex, there exist A € X*,
v1 € R, 2 € R, such that

RAx < v1 <72 < RAy

for every x € A and for every y € B.
The Krein-Milman theorem is Theorem 3.23 in Rudin.

Theorem 1.9.2. Suppose X is a topological vector space on which X* separates
points. If K is a nonempty compact convex set in X, then K is the closed convex
hull of the set of its extreme points.

In symbols, K = conv(ext(K)).

In his blog “What’s new?” Terry Tao [8] gives an insightful discussion of the
finite-dimensional Hahn-Banach theorem.

The book “Matrix analyis” by Horn and Johnson [6] contains a wealth of
very useful information, more than 70 pages, about positive definite matrices.

1.10 Exercises

1.1. Give a proof for the following statement:
Let C < R” be a convex set. If C' # &, then relint C' # &
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1.2.

1.3.

1.4.

Give a proof for the following statement:

Let C' < R"™ be a closed convex set and let x € R”\C' a point lying outside
of C. A separating hyperplane H is defined in Lemma Consider
a point y on the line aff{x, mc(z)} which lies on the same side of the
separating hyperplane H as x. Then, 7¢(z) = 7o (y).

(a) Prove or disprove: Let A < R™ be a subset. Then,

conv A = conv A.

(b) Construct two convex sets C, D < R? so that they can be separated
by a hyperplane but which cannot be properly separated.

Show that the Z;L unit ball

n 1/p
(z1,...,2,)T €eR™: |xll, = <Z |zi|p> <1
i=1

is convex for p = 1, p = 2 and p = o (|z]o = max;—1, . |z;|). Deter-
mine the extreme points and determine a supporting hyperplane for every
boundary point.

(*) What happens for the other p?
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CHAPTER 2

SEMIDEFINITE PROGRAMS:
BASIC FACTS AND EXAMPLES

In this chapter we introduce semidefinite programs, give some basic properties,
and we present several problems that can be modeled as instances of semidefi-
nite programs, arising from optimization, geometry and algebra.

For convenience we briefly recall some notation that we will use in this chap-
ter. Most of it has already been introduced in Section[1.7] S™ denotes the set of
symmetric n x n matrices. For a matrix X € S, X > 0 means that X is positive
semidefinite and S, is the cone of positive semidefinite matrices. Analogously,
X > 0 means that X is positive definite and S is the open cone of positive
definite matrices.

Throughout I,, (or simply I when the dimension is clear from the con-
text) denotes the n x n identity matrix, e denotes the all-ones vector, i.e.,
e=(1,...,1)T € R*, and J, = ee' (or simply J) denotes the all-ones ma-
trix. The vectors eq, ..., e, are the standard unit vectors in R", and the matrices
Ei; = (eie] + ejel)/2 form the standard basis of S”. O(n) denotes the set
of orthogonal matrices, where A is orthogonal if AAT = I, or, equivalently,
ATA =1,.

We consider the trace inner product: (A, By = Tr(ATB) = szzl A;;B;; for
two matrices A, B € R"*". Here Tr(A4) = (I, A) = I | A;; denotes the trace
of A. Recall that Tr(AB) = Tr(BA); in particular, (QAQT,QBQT) = (A, B) if
Q is an orthogonal matrix. A well known property of the positive semidefinite
cone SZ is that it is self-dual: for a matrix X € &, X > 0 if and only if
(X, Y)=0forallY e SZ,.

For a matrix A € 8™, diag(A) denotes the vector in R™ with entries are the
diagonal entries of A and, for a vector a € R", Diag(a) € S™ is the diagonal
matrix with diagonal entries the entries of a.
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2.1 Primal and dual semidefinite programs

2.1.1 Primal form

The typical form of a semidefinite program (often abbreviated as SDP) is a
maximization problem of the form

p* = sip{<C'7 X):(A;,X)=0b; (je[m]), X >0} (2.1)

Here A;,..., A, € 8™ are given n x n symmetric matrices and b € R™ is a given
vector, they are the data of the semidefinite program (2.1). The matrix X is the
variable, which is constrained to be positive semidefinite and to lie in the affine
subspace
W= {Xe8"[{4;,X)=0b;(je[m])}
of §". The goal is to maximize the linear objective function (C, X) over the
feasible region
F=8nW,

obtained by intersecting the positive semidefinite cone SZ, with the affine sub-
space W.

A feasible solution X € F is said to be strictly feasible if X is positive definite.
The program is said to be strictly feasible if it admits at least one strictly
feasible solution.

One can also handle minimization problems, of the form

nf{(C, X) : (45, X) = b; (j € [m]), X >0}

since they can be brought into the above standard maximization form using the
fact that inf(C, X) = —sup{—C, X).

Note that we write a supremum in rather than a maximum. This is
because the optimum value p* might not be attained in (2.1). In general, p* €
R U {00}, with p* = —o if the problem is infeasible (i.e., F = ¢¥) and
p* = +oo might occur in which case we say that the problem is unbounded.

We give a small example as an illustration. Consider the problem of mini-
mizing/maximizing X, over the feasible region

_ 2. _ Xu a
fa_{Xes.X_<a 0

) > O} where a € R is a given parameter.
Note that det(X) = —a? for any X € F,. Hence, if a # 0 then F, = & (the
problem is infeasible). Moreover, if @ = 0 then the problem is feasible but not
strictly feasible. The minimum value of X;; over Fy is equal to O, attained at
X = 0, while the maximum value of X;; over F; is equal to oo (the problem is
unbounded).

As another example, consider the problem

. X1 1
* _ .
b= X12£2 {Xu ' ( 1 X22> = O}'
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Then the infimum is p* = 0 which is reached at the limit when X1; = 1/Xa
and letting Xo5 tend to co. So the infimum is not attained.

In the special case when the matrices A;, C' are diagonal matrices, with di-
agonals a;, c € R", then the program (2.1)) reduces to the linear program (LP):

max {c'z : aij =b; (j € [m]), = 0}.

Indeed, let = denote the vector consisting of the diagonal entries of the ma-

trix X, so that « > 0 if X > 0, and (C,X) = ¢"z, (4;,X) = a]z. Hence

semidefinite programming contains linear programming as a special instance.
2.1.2 Dual form

The program (2.1) is often referred to as the primal SDP in standard form. One
can define its dual SDP, which takes the form:

d* = inf biyi=by: Y yiA; —C >=0p. (2.2)

Thus the dual program has variables y;, one for each linear constraint of the
primal program. The positive semidefinite constraint arising in is also
named a linear matrix inequality (LMI). The following facts relate the primal
and dual SDP’s. They are simple, but very important.

Lemma 2.1.1. Let (X,y) be a primal/dual pair of feasible solutions, i.e., X is a
feasible solution of and y is a feasible solution of (2.2).

1. (weak duality) We have that (C, X) < b"y and thus p* < d*.

2. (complementary slackness) Assume that the primal program attains its
supremum at X, that the dual program attains its infimum at y, and that
p* = d*. Then the equalities (C, X) = by and (X, 3" y;A; — C) = 0
hold.

3. (optimality criterion) If equality (C, X ) = by holds, then the supremum
of is attained at X, the infimum of is attained at y and p* = d*.

Proof. If (X,y) is a primal/dual pair of feasible solutions, then

0< <X,ZyjAj*C> = Z<X7 Ay —(X,C) = ijyj*@(v C) =b"y—(C, X).

J J

The left most inequality follows from the fact that both X and >}, y;A; — C are
positive semidefinite and we use the fact that (4;, X) = b; to get the second
equality. This implies that

(C,X)<p*<d*<by.

The rest of the lemma follows by direct verification. O
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The quantity d* — p* is called the duality gap. In general there might be
a positive duality gap between the primal and dual SDP’s. When there is no
duality gap, i.e., p* = d*, one says that strong duality holds, a very desirable
sitiuation. This topic and criteria for strong duality will be discussed in detail
in the next chapter. For now we only quote the following result on strong du-
ality which will be proved in the next chapter (in the general setting of conic
programming).

Theorem 2.1.2. (Strong duality: no duality gap) Consider the pair of primal
and dual programs and (2.2).

1. Assume that the dual program is bounded from below (d* > —o0)
and that it is strictly feasible. Then the primal program attains its
supremum (i.e., p* = (C, X) for some X € F) and there is no duality gap:
p* = d*.

2. Assume that the primal program is bounded from above (p* < o) and
that it is strictly feasible. Then the dual program attains its infimum
(i.e., d* = by for some dual feasible y) and there is no duality gap: p* = d*.

In the rest of this chapter we discuss several examples of semidefinite pro-
grams.

2.2 Eigenvalue optimization

Given a matrix C' € 8", let A\ynin(C) (resp., Amax(C)) denote its smallest (resp.,
largest) eigenvalue. One can express them (please check it) as follows:

-
max & = max :cTCx, (2.3)
zeR™\{0} ||z||?  mesn—1

)\max(C) =
where S"~! = {z € R" | ||z = 1} denotes the unit sphere in R", and

TC
min T min z'Cxz. (2.4)
zeR™M\{0} |lz||?  zesn-?

)\min (C) =

(This is known as the Rayleigh principle.) As we now see the largest and small-
est eigenvalues can be computed via a semidefinite program. Namely, consider
the semidefinite program

p* =sup{(C, X) : Tr(X) ={,X)=1,X >0} (2.5)

and its dual program
d*=inﬂ§{y:yl—020}. (2.6)
yE

In view of (2.3), we have that d* = A,.x(C). The feasible region of (2.5)
is bounded (all entries of any feasible X lie in [0, 1]) and contains a positive
definite matrix (e.g., the matrix I,,/n), hence the infimum is attained in (2.6).
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Analogously, the program is bounded from below (as y > Anax(C) for
any feasible y) and strictly feasible (pick y large enough), hence the infimum
is attained in (2.6). Moreover there is no duality gap: p* = d*. Here we have
applied Theorem Thus we have shown:

Lemma 2.2.1. The largest and smallest eigenvalues of a symmetric matrix C € 8™
can be expressed with the following semidefinite programs:

Amax(C) = max (C,X) = min y
st. Tr(X)=1,X>0 sst. yl,—C>=0

Amin(C) = min {C, X) = max y
st. Tr(X)=1,X>0 st. C—yl,>0

More generally, also the sum of the k largest eigenvalues of a symmetric
matrix can be computed via a semidefinite program.

Theorem 2.2.2. (Fan’s theorem) Let C' € 8™ be a symmetric matrix with eigen-
values \1 = ... = \,. Then the sum of its k largest eigenvalues is given by any of
the following two programs:

/\1_|_..._|_)\k:)r(n%x{<O,X>:TI'(X)=k‘,InZXZO}, 2.7)
=} n
M4+ A= max {(CYYTY:VTY =1} (2.8)
YeRnxk

There is a simple, elegant proof for this result which relies on a geometric
insight about the feasible regions of the two programs (2.7) and (2.8)):

Ki={XeS&"|I>X>0, Te(X) =k}, (2.9)

Ko={YYT|YeR" YTY =1} (2.10)

The (non-convex) set Ky consists of all projection matrices of rank k£ and is
clearly contained in the (convex) set K;. As the next lemma shows, K; coincides
with the convex hull of K.

Lemma 2.2.3. Ky is the set of extreme points of the convex set Ky. Therefore
equality K1 = conv(Kz) holds.

Proof. The proof uses the following simple observation: For any orthogonal
matrix P € O(n), X € K; if and only if PXPT € K; and, moreover, X is
an extreme point of K; if and only if PXPT is an extreme point of K;. This
observation allows us to deal with diagonal matrices and to reduce the lemma
to a claim about the extreme points of the following polytope:

P={xe0,1]": e’z =k} (2.11)
Indeed, consider X € S", written as X = PDPT, where P € O(n), D is the

diagonal matrix with the eigenvalues of X as diagonal entries, and define the
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vector d = diag(D) € R™. Then, X belongs to (resp., is an extreme point of) K;
if and only if D belongs to (resp., is an extreme point of) K or, equivalently, d
belongs to (resp., is an extreme point of) P.

Now it suffices to observe that the extreme points of the polytope P are the
vectors d € {0,1}" with e'd = k. This implies that X is an extreme point of
K if and only if it has k£ non-zero eigenvalues, all equal to 1, which precisely
means that X € KC,. O

We can now conclude the proof of Theorem

Proof. (of Theorem[2.2.2). In program (2.8), we maximize the linear objective
function (C, X') over the set K3, while in we maximize it over the set K.
In we may assume that the maximum is attained at an extreme point of
K1 which, by Lemma belongs to k5. Therefore, both programs have the
same optimum value, denoted as p*. We now show that p* = A\; +... + Ag.
Let uy,...,u, be an orthonormal set of eigenvectors corresponding to the
eigenvalues A, ..., A, of C'and let Y be the n x k matrix with columns u;, - - - , u.
ThenYY T € Ky and (C,YYT) = Zle \i, thus showing A\; + ... + \x < p*.
Denote by () the orthogonal matrix with columns uy,...,u, and by D the
diagonal matrix with the )\;’s on the diagonal, so that C = QDQ'. Then
(Q, YY) = (D, ZZ") after setting Z = Y 'Q; note that Z"Z = I}, and thus
ZZT e K,. Hence p* is the maximum value of (D, M) = Z?:l \; M, taken over
M € Ko. The constraints for M € K, imply that the vector diag(M) belongs to
the polytope P from (2.11)). Therefore the maximum of )}, A; M;; is at most the
maximum of )}, A\;x; taken over z € P. Now the latter maximum is attained at
an extreme point of P, from which one derives that it is equal to Ay + ... + Ag.
This gives the reverse inequality: p* < A\ + ... + Ax. O

We mention another result of the same flavor: Given two symmetric matrices
A, B, one can reformulate as a semidefinite program the following optimization
problem over orthogonal matrices:

min {Tr(AXBX"): X € O(n)}. (2.12)

We already considered this problem in Section in relation with the Hoffman-
Wielandt inequality for eigenvalues (recall Theorem|1.7.4). The semidefinite re-
formulation uses Kronecker products of matrices (introduced in Section [1.7.6)).

Theorem 2.2.4. Let A,B € S8". Then the program (2.12) is equivalent to the
semidefinite program

max {Tr(S) + Tr(1): AQB—I1, T — S®1I, > 0}. (2.13)

Moreover its optimum value is

n

> @b,

=1
where the «;’s are the eigenvalues of A ordered in ascending order: oy < ... < ap,
and the 3;’s are the eigenvalues of B ordered in descending order: 31 = ... = [,.
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Proof. Let D be the diagonal matrix whose diagonal entries are the «;’s and let
E be the diagonal matrix whose diagonal entries are the 3;’s. As in the proof of
Theorem [1.7.4] the program (2.12)) is equivalent to

min {T((DXEX" : X € O(n)} (2.14)

which in turn is equivalent to the linear program (1.2), repeated here for con-
venience:

P {le +j;tj raifly —si—t; = 0Vije [n]} . (2.15)

We now show that the linear program (2.15) is equivalent to the following
semidefinite program

Jnax (Tr(S) + Ti(1) : EQF ~ [, ®T ~ S® I, = 0}. (2.16)

Tesn

To see it, let S, T be feasible for (2.16) and define the vectors s = diag(S5), t =
diag(T'). Then, as E® F is a diagonal matrix, the diagonal matrices Diag(s) and
Diag(t) are feasible for (2.16) with the same objective value: Tr(S) + Tr(T) =
Tr(Diag(s)) + Tr(Diag(t)). Now, program (2.16) with the additional condition

that S, T are diagonal matrices can be reformulated as (2.15). Finally, write
A= PDP" and B = QEQ" where P,Q € O(n) and observe that

(PRQ)EQF—I1,0T-S®I,)(PRQ)" = AQ B—I1,(QTQ")—(PSP"®I,.

Hence S, T is feasible for if and only if &' = PSPT, T' = QTQ" is
feasible for (2.13), and Tr(S) + Tr(T) = Tr(S’) + Tr(1”). From this follows the
desired equivalence of and (2.13). The fact that the optimum value is
>; ai3; was computed in Theorem [1.7.4] O

2.3 Convex quadratic constraints
Consider a quadratic constraint for a vector x € R™ of the form
Az <b'z +e, (2.17)

where A € §", b € R" and ¢ € R. In the special case when A > 0, then the
feasible region defined by this constraint is convex and it turns out that it can
be equivalently defined by a semidefinite constraint.

Lemma 2.3.1. Assume A > 0. Say, A = LL", where L € R"**. Then, for any
x € R",

I LTz
T Ay < T k
xAx\bx+c<=)(xTL BTa 4 ¢ > 0.
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Proof. The equivalence follows as a direct application of Lemma Choose
here A =1, B= L'z e RF* and C = bz + ¢ € R'*1, And take the Schur
complement of the submatrix I in the block-matrix on the right hand side. O

As a direct application, the Euclidean unit ball can be represented by an LMI:

- B n (1 2™\ (1 0 - (0 €
erifol <1y = foer: (3 7 )= (g 1 (o G) =0}

as well as its homogenization:

.
n+1 __ n+1 . _ n . t x
L0 = {(z,1) e R .||x||<t}—{x€R (x tjn)zo}.

So at t = ty, we have in the z-space the ball of radius ¢y. The set £L"*! is a cone,
known as the second-order cone (or Lorentz cone), to which we will come back
in the next chapter.

The fact that one can reformulate linear optimization over the Euclidean ball
as a maximization or minimization semidefinite program can be very useful as
we will see in the next section.

Corollary 2.3.2. Given c € R™, the following holds:

. T . T (1 JJT)
min ¢ x = minc x S.t. >0
<1 zERM z I (2.18)
= max —Tr(X) st. Xoo=1c¢; (i € [’Il]), X >0
XeSn+t

Proof. Apply Lemma combined with the duality theorem (Theorem|2.1.2).
O

2.4 Robust optimization

We indicate here how semidefinite programming comes up when dealing with
some robust optimization problems.
Consider the following linear programming problem:

max{c'z:a'z > b},

where ¢,a € R™ and b € R are given data, with just one constraint for simplicity
of exposition. In practical applications the data a, b might be given through ex-
perimental results and might not be known exactly with 100% certainty, which
is in fact the case in most of the real world applications of linear programming.
One may write ¢ = a(z) and b = b(z) as functions of an uncertainty parameter
z assumed to lie in a given uncertainty region Z < R*. Then one wants to find
an optimum solution z that is robust against this uncertainty, i.e., that satisfies
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the constraints a(z)"2 > b(z) for all values of the uncertainty parameter z € Z.
That is, solve
max{c'z : a(z)"z > b(z) Vz € Z}. (2.19)

Depending on the set Z this problem might have infinitely many constraints.
However, for certain choices of the functions a(z),b(z) and of the uncertainty
region Z, one can reformulate the problem as a semidefinite programming prob-
lem, thus tractable.

Suppose that the uncertainty region Z is the unit ball and that a(z), b(z) are

linear functions in the uncertainty parameter z = ({1, - - , () € R¥, of the form
k k
a(z) = ao+ Y Gaz, b(z) = bo + Y, (b (2.20)
j=1 j=1

where a;,b; € R” are known. Then the robust optimization problem can
be reformulated as a semidefinite programming problem involving the variable
x € R™ and a new matrix variable Z € S*. The proof relies on the result from
Corollary [2.3.2] where we made use in a crucial manner of the duality theory
for semidefinite programming, for showing the equivalence of both problems in
(2.18).

Theorem 2.4.1. Suppose that the functions a(z) and b(z) are given by (2.20) and
that Z = {z € R™ : |z| < 1}. Then problem (2.19) is equivalent to the problem:

max  c'x suchthat alx— Zy; = b; (j € [k])

2eR?, ZeSk+1 J (2.21)
alx —Tr(Z) = by, Z > 0.

Proof. Fix z € R", set aj = alx —bj for j = 0,1,...,k, and define the vector

j
o = (a;)b_, € R* (which depends on z). Then the constraints: a(z)"z > b(z)

Vz € Z can be rewritten as
T
a z>=—agVzeZ.

Therefore, we find the problem of deciding whether p* > —ag, where

p* = min a' 2.
lzl<1

Now the above problem fits precisely within the setting considered in Corollary
Hence, we can rewrite it using the second formulation in (2.18) — the
one in maximization form — as

* = —Tr(Z): Zy; = o; (7 €|k]),Z > 0}.
pF = max {=TH(Z): Zo; = a5 (j € [K]), 7 > 0}

So, in problem (2.19), we can substitute the condition: a(z)Tz > b(z) Vz € Z
by the condition:

3Z e ST st —Tr(Z) = —ao, Zoj = o (j € [K]).
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The crucial fact here is that the quantifier “vz” has been replaced by the exis-
tential quantifier “32Z”. As problem (2.19) is a maximization problem in z, it is
equivalent to the following maximization problem in the variables x and Z:

T... . T, T.. (s
meRg}lzgmH{cw-aox Te(Z) > by, ala — Zo; = b; (j € [k])}

(after substituting back in «; their expression in terms of ). O

2.5 Examples in combinatorial optimization

Semidefinite programs provide a powerful tool for constructing useful convex
relaxations for combinatorial optimization problems. We will treat this in detail
in a later chapter. For now we illustrate the main idea on the following two
examples: finding a maximum independent set and a maximum cut in a graph.

2.5.1 The maximum independent set problem

Consider a graph G = (V, E)) with vertex set V' = [n], the edges are unordered
pairs of distinct vertices. A set of nodes (or vertices) S < V is said to be inde-
pendent (or stable) if it does not contain an edge and the maximum cardinality
of an independent set is denoted as (&), known as the stability number of G.
The maximum independent set problem asks to compute «(G). This problem is
N P-hard.

Here is a simple recipe for constructing a semidefinite programming upper
bound for a(G). It is based on the following observation: Let S be an indepen-
dent set in G and let = € {0, 1} be its incidence vector, with z; = 1 if i € S and
x; = 0 otherwise. Define the matrix X = zz'/|S|. Then the matrix X satisfies
the following conditions: X > 0, X;; = 0 for all edges {i,j} € E, Tr(X) = 1,
and {J, X) = |S|. It is therefore natural to consider the following semidefinite
program

ﬁ(G) = )I(neaé}i{<‘]7 X> : TI'(X) =1, Xi_’/ =0 ({Za.]} € E)7 X > 0}7 (2.22)

whose optimum value ¢(G) is known as the theta number of G. It follows from
the above discussion that ¢(G) is an upper bound for the stability number. That
is,

a(G) < V(G).

The dual semidefinite program reads

i t:tl i — J > , 2.23
ye]g}fl}tleﬂ% * Z Yig g J=0 ( )
{i,j}eE

and its optimum value is equal to ¥(G) (because (6.13) is strictly feasible and

bounded - check it). Here we have used the elementary matrices E;; introduced
in the abstract of the chapter.
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We will come back to the theta number in a later chapter. As we will see
there, there is an interesting class of graphs for which «(G) = 9(G), the so-
called perfect graphs. For these graphs, the maximum independent set problem
can be solved in polynomial time. This result is one of the first breakthrough
applications of semidefinite programming obtained in the early eighties.

2.5.2 The maximum cut problem

Consider again a graph G = (V,E) where V = [n]. Given a subset S < V,
the cut 0¢(S) consists of all the edges {i, j} of G that are cut by the partition
(S, V\S), i.e., exactly one of the two nodes 7, j belongs to S. The maximum
cut problem (or max-cut) asks to find a cut of maximum cardinality. This is an
N P-hard problem.

One can encode the max-cut problem using variables x € {£1}™. Assign
x; = 1 to the nodes i € S and —1 to the nodes i € V\S. Then the cardinality
of the cut 0¢(S5) is equal to >}, (1 — z;z;)/2. Therefore max-cut can be
formulated as

max-cut = max Z (1—mizj)/2:x e {£1}" 5. (2.24)

Again there is a simple recipe for constructing a semidefinite relaxation for
max-cut: Pick a vector z € {+1}" (arising in the above formulation of max-
cut) and consider the matrix X = z2'. This matrix X satisfies the following
conditions: X > 0 and X;; = 1 for all ¢ € [n]. Therefore, it is natural to consider
the following semidefinite relaxation for max-cut:

sdp = max< > (1-X;;)/2: X =0, X;=1(i€e[n]) ;. (2.25)

{i.j}eE

As we will see later this semidefinite program provides a very good approx-
imation for the max-cut problem: sdp < 1.13 - max-cut. This is a second
breakthrough application of semidefinite programming, obtained in the early
nineties.

Let Ls € 8™ denote the Laplacian matrix of G: its (¢,4)th diagonal entry is
the degree of node ¢ in G, and the (i, j)th off-diagonal entry is —1 if {4, j} is an
edge and 0 otherwise. Note that

1 1
" Lgx = 2 (zi —x)* Vo € R, Za:TLG:c =3 2 (1—ax;) Vo e {£1}".
{i,j}eE {i.j}eE
The first item shows that Lg > 0, and the second item shows that one can refor-
mulate max-cut using the Laplacian matrix. Analogously one can reformulate
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the semidefinite program (2.25) as

sdp = max{i<Lg,X> X >0, Xy;=1(i€ [n])} . (2.26)

Given a positive semidefinite matrix A, consider the following quadratic
problem
opt = max{z? Az : |z], < 1}. (2.27)

where ||z] s = max; |z;| is the {,,-norm. As we maximize a convex function over
the convex set [—1, 1]", the maximum is attained at a vertex, i.e., at a point of
{+1}". This shows that (2.27) is equivalent to

opt = max{z’ Az : x € {£1}"}. (2.28)

This problem is A/ P-hard - indeed it contains the max-cut problem, obtained
when choosing A = L /4.

Note that if we would replace in the cube [—1,1]" by the Euclidean
unit ball, then we find the problem of computing the largest eigenvalue of A
which, as we saw earlier, can be modeled as a semidefinite program.

Just as for max-cut one can formulate the following semidefinite relaxation

of (2.28) (and thus of (2.27)):
sdp = max{{4,X): X >0, X;; =1Vie[n]} (2.29)

We will see later that this semidefinite program too gives a good approximation
of the quadratic problem (2.27): sdp < 7 opt.

2.6 Examples in geometry

Given vectors uy, . .., u, € R¥, let d = (d;;) denote the vector consisting of their
pairwise squared Euclidean distances, i.e., d;; = ||u; —u;||* for all 4, j € [n]. Thus
d;; = 0 for all . Now, think of the vectors u; as representing the locations of
some objects (atoms of a molecule, or sensors in a sensor network). One might
be able to determine the pairwise distances d;; by making some measurements.
However, in general, one can determine these distances d;; only for a subset
of pairs, corresponding to the edges of a graph G. Then the problem arises
whether one can reconstruct the locations of the objects (the vectors u;) from
these partial measurements (the distances d;; for the edges {i, j} of G).

In mathematical terms, given a graph G = (V = [n], E) and d € R, decide
whether there exist vectors u1, ..., u, € R* such that

Hm - Uj||2 = dij for all {Z,]} eFE.

Of course, this problem comes in several flavors. One may search for such
vectors u; lying in a space of prescribed dimension k; then typically k& = 2, 3 or
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4 would be of interest. This is in fact a hard problem. However, if we relax the
bound on the dimension and simply ask for the existence of the u,’s in R* for
some k > 1, then the problem can be cast as the problem of deciding feasibility
of a semidefinite program.

Lemma 2.6.1. Given d € RE, there exist vectors ui,...,u, € R* (for some
k = 1) if and only if the following semidefinite program is feasible:

X >0, Xi; + Xj; —2Xi; = dij for {i,j} € E.

Moreover, such vectors exist in the space R¥ if and only if the above semidefinite
program has a feasible solution of rank at most k.

Proof. Directly, using the fact that X > 0 if and only if X admits a Gram rep-
resentation us, . .., u, € R* (for some k > 1), i.e., X;; = u]u; for all i, j € [n].
Moreover, the rank of X is equal to the rank of the system {u1,...,u,}. O

Thus arises naturally the problem of finding low rank solutions to a semidef-
inite program. We will come back to this topic in a later chapter.

2.7 Examples in algebra

Another, maybe a bit unexpected at first sight, application of semidefinite pro-
gramming is for testing whether a multivariate polynomial can be written as a
sum of squares of polynomials.

First recall a bit of notation. R[zy,...,,] (or simply R[z] for simplicity)
denotes the ring of polynomials in n variables. A polynomial p € R[z] can
be written as p = > pox®, where p, € R and 2 stands for the monomial
z{t - 2% The sum is finite and the maximum value of |a| = > " | «; for which
Pa # 0 is the degree of p. For an integer d, [z]; denotes the vector consisting
of all monomials of degree at most d, which has ("}%) entries. Denoting by
P = (po) the vector of coefficients of p, we can write

p=) pea® =p' [x]a. (2.30)

Definition 2.7.1. A polynomial p is said to be a sum of squares (SOS) if p can be
written as a sum of squares of polynomials, i.e., p = Z;'nzl(qj)Q for some polyno-
mials g;.

It turns out that checking whether p is SOS can be reformulated via a semidef-
inite program. Clearly, we may assume that p has even degree 2d (else p is not
SOS) and the polynomials ¢; arising in a SOS decomposition will have degree
at most d.

Let us now make the following simple manipulation, based on (2.30)):

Zq] Z quqJ quqJ [l‘];ll—Q[x]dv

38



after setting Q = >, ; qjq;". Having such a decomposition for the matrix Q
amounts to requiring that () is positive semidefinite. Therefore, we have just
shown that the polynomial p is SOS if and only if

p = [2]7Q[x]s for some matrix Q > 0.

Linear conditions on () arise by equating the coefficients of the polynomials on
both sides in the above identity.

Summarizing, one can test whether p can be written as a sum of squares by
checking the feasibility of a semidefinite program. If p has degree 2d, this SDP

involves a variable matrix Q) of size (";d) (the number of monomials of degree

at most d) and (";’;d) (the number of monomials of degree at most 2d) linear
constraints.

One can sometimes restrict to smaller matrices ). For instance, if the poly-
nomial p is homeogeneous (i.e, all its terms have degree 2d), then we may
assume without loss of generality that the polynomials ¢; appearing in a SOS
decomposition are homogeneous of degree d. Hence @ will be indexed by the

(”+3_1) monomials of degree equal to d.

Why bother about sums of squares of polynomials? A good reason is that
they can be useful to recognize and certify positive polynomials and to approxi-
mate optimization problems dealing with polynomials. Let us just give a glimpse
on this.

Suppose that one wants to compute the infimum p™"® of a polynomial p
over the full space R™. In other words, one wants to find the largest scalar \ for
which p(z) — A\ = 0 for all € R™. This is in general a hard problem. However, if
we relax the positivity condition on p — A and instead require that p — )\ is a sum
of squares, then it follows from the above considerations that we can compute
the maximum A for which p — A is SOS using semidefinite programming. This
gives a tractable bound p* satisfying: p* < p™n.

In general p* might be distinct from p™". However in the univariate case
(n = 1), equality holds: p™™ = p*. (This will follow from the result in Problem
2.2.) Equality holds also in the quadratic case: d = 2, and in one exceptional
case: n = 2 and d = 4. This was shown by Hilbert in 1888.

We will return to this topic in a later chapter.

2.8 Further reading

A detailed treatment about Fan’s theorem (Theorem can be found in
Overton and Womersley [8]] and a detailed discussion about Hoffman-Wielandt
inequality, Theorem and applications (e.g. to quadratic assignment) can
be found in Anstreicher and Wolkowicz [22].

The recent monograph of Ben-Tal, El Ghaoui and Nemirovski [3] offers a de-
tailed treatment of robust optimization. The result presented in Theorem [2.4.1
is just one of the many instances of problems which admit a robust counterpart
which is a tractable optimization problem. Although we formulated it in terms
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of semidefinite programming (to fit our discussion), it can in fact be formulated
in terms of second-order conic optimization, which admits faster algorithms.

The theta number 9(G) was introduced in the seminal work of Lovasz [3].
A main motivation of Lovasz was to give good bounds for the Shannon capacity
of a graph, an information theoretic measure of the graph. Lovasz succeeded
to determine the exact value of the Shannon capacity of Cj, the circuit on five
nodes, by computing 9(C5) = /5. This work of Lovész can be considered as
the first breakthrough application of semidefinite programming, although the
term semidefinite programming was coined only later. Chapter 33 of [1] gives
a beautiful treatment of this result. The monograph by Grotschel, Lovasz and
Schrijver [1] treats in detail algorithmic questions related to semidefinite pro-
gramming and, in particular, to the theta number. Polynomial time solvability
based on the ellipsoid method is treated in detail there.

Using semidefinite programming to approximate max-cut was pioneered by
the work of Goemans and Williamson [5]]. This novel approach and their result
had a great impact on the area of combinatorial optimization. It indeed spurred
a lot of research activity for getting tight approximations for various problems.
This line of research is now also very active in theoretical computer science,
where the unique games conjecture has been formulated that is directly relevant
to the basic semidefinite relaxation for max-cut — cf. e.g. the survey by
Trevisan [10].

Sums of squares of polynomials are a classical topic in mathematics and they
have many applications e.g. to control theory and engineering. In the late 1800s
David Hilbert classified the parameters degree/number of variables for which
any positive polynomial can be written as a sum of squares of polynomials. He
posed the question whether any positive polynomial can be written as a sum of
squares of rational functions, known as Hilbert’s 17th problem. This was solved
by Artin in 1927, a result which started the field of real algebraic geometry. The
survey by Reznick [6]] gives a nice overview and historical perspective and the
monograph by Delzell and Prestell [4] gives an in-depth treatment of positivity.

2.9 Exercises

2.1. (a) Formulate the dual SDP of the program (2.7).

(b) Give a semidefinite programming formulation for the following prob-
lem:

min{A (X) + ... + \(X) : (4;, X) =b; (j € [m])},

which asks for a matrix X € S™ satisfying a system of linear con-
straints and for which the sum of the k largest eigenvalues of X is
minimum.

2.2. Let p be a univariate polynomial.

(a) Show that p can be written as a sum of squares if and only if p is
non-negative over R, i.e., p(z) = 0 Vx € R.
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(b) Show that if p is non-negative over R then it can be written as sum
of two squares.

2.3**, (a) Build the dual of the semidefinite programming (2.26)) and show that
it is equivalent to

" min {Amax(Diag(u) + L¢) : €u = 0},

ueRm™

where Diag(u) is the diagonal matrix with diagonal entries ug, . . . , uy,.

(b) Show that the maximum cardinality of a cut is at most

n

7 \max L ’
1 Amax(Lc)

where A< (L¢) is the maximum eigenvalue of the Laplacian matrix
of G.

(c) Show that the maximum cardinality of a cut in G is at most
1 n
. E - *Amin A
S 1Bl = TAnin(4c)

where A is the adjacency matrix of G.

(d) Show that both bounds in (b) and (c) coincide when G is a regular
graph (i.e., all nodes have the same degree).

2.4. Consider the polynomial in two variables x and y
p =2t + 223y + 322%y? + 223 + 2y

(a) Build a semidefinite program permitting to recognize whether p can
be written as sum of squares.
(b) Describe all possible sums of squares decompositions for p.

(c) What can you say about the number of squares needed?
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CHAPTER 3

DUALITY IN CONIC
PROGRAMMING

Traditionally, convex optimization problems are of the form

minimize fo(x)
subject to fi(z) <0,..., fx(z) <0

T T
a1 =b1,...,ayc = by,

where the objective function fy : D — R and the inequality constraint functions
fi : D — R which are defined on a convex domain D < R" are convex, i.e. their
epigraphs

epifi = {(z,a): D xR: fi(z) <a}, i=0,...,N,

are convex sets in D x R < R"*!, Equivalently, the function f; is convex if and
only if

Voz,ye DVae[0,1]: fi(1 — a)x + az) < (1 — ) fi(z) + afi(y).
The equality constraints are given by vectors a; € R™\{0} and right hand sides

b; € R. The convex set of feasible solutions is the intersection of N convex sets
with M hyperplanes

ﬂ{xeD filz ﬂ{xeR”~ z=b;}.

The set-up for conic programming is slightly different. We start by consider-
ing a fixed convex cone K lying in the n-dimensional Euclidean space R™. The
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task of conic programming is the following: One wants to maximize (or mini-
mize) a linear function over the feasible region which is given as the intersection
of the convex cone K with an affine subspace:

maximize c'z

subject to x € K,

T

T
ax=>b1,...,a,

T = by,

This differs only slightly from a traditional convex optimization problem:
The objective function is linear and feasibility with respect to the inequality
constraint functions is replaced by membership in the fixed convex cone K. In
principle, one can transform every convex optimization problem into a conic
program. However, the important point in conic programming is that it seems
that a vast majority of convex optimization problems which come up in practice
can be formulated as conic programs using the three standard cones:

1. the non-negative orthant RY, — giving linear programming (LP),

2. the second-order cone L£"*! — giving second-order cone programming

(CQP),

3. or the cone of positive semidefinite matrices ST, — giving semidefinite
programming (SDP).

As we will see in the next lecture, these three cones have particular nice analytic
properties: They have a self-concordant barrier function which is easy to evalu-
ate. This implies that there are theoretically (polynomial-time) and practically
efficient algorithms to solve these standard problems.
In addition to this, the three examples are ordered by their “difficulty”, which
can be pictured as
LP < CQP < SDP.

This means that one can formulate every linear program as a conic quadratic
program and one can formulate every conic quadratic program as a semidefinite
program.

Why do we care about conic programming in general and do not focus on
these three most important special cases?

The answer is that conic programming gives a unifying framework to design
algorithms, to understand the basic principles of its geometry and duality, and
to model optimization problems. Moreover this offers the flexibility of dealing
with new cones obtained e.g. by taking direct products of the three standard
types of cones.
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3.1 Fundamental properties

3.1.1 Local minimizers are global minimizers

A first fundamental property of convex optimization problems is that every local
minimizer is at the same time a global minimizer. A local minimizer of the
convex optimization problem is a feasible solution x € D having the property
that there is a positive € so that

fo(z) = inf{fo(y) : y is feasible and d(x,y) < €}.

Here and throughout we use the notation d(z,y) to denote the Euclidean dis-
tance |« — y|2 between z,y € R". To see that local optimality implies global
optimality assume that z is a local but not a global minimizer, then there is a
feasible solution y so that fo(y) < fo(z). Clearly, d(x,y) > e. Define z € [z, y]
by setting

€
 2d(z,y)

which is a feasible solution because of convexity. Then, d(z, z) = ¢/2 and again
by convexity

z=(1-a)z+ay, «

fo(2) < (1= a)fo(z) + afoly) < fo(x),

which contradicts the fact that z is a local minimizer.

3.1.2 Karush-Kuhn-Tucker condition

A second fundamental property of convex optimization problems is that one has
necessary and sufficient conditions for x being a local (and hence a global) min-
imizer. Stating and analyzing these kind of conditions is central to the theory
of non-linear programming and convex analysis. We just state one fundamental
result here without proving it. A proof can be found for instance in the book [2]
Chapter 5] by Boyd and Vandenberghe.

We assume that the convex optimization problem satisfies the following con-
dition, known as Slater’s condition:

There exists a point = € relint D such that f;(x) < 0 foralli =1,...,N and
such that a]x = b; forall j = 1,..., M.

This point is called a strictly feasible solution since the inequality constraints
hold with strict inequality. Furthermore, we assume that the objective function
and that the inequality constraint functions are differentiable. Under these con-
ditions a feasible solution is a global minimizer if and only if the Karush-Kuhn-
Tucker (KKT) condition holds: There are A1,..., Ay € Ry and p,...,up € R
so that the following equations are satisfied:

/\1f1($) = 07 ceey /\NfN(JJ) = O,

N M
V fo(x) + Z AV fi(x) + Z piaj = 0.
i=1 j=1
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The KKT-condition is an extension of the method of Lagrange multipliers where
one also can consider inequalities instead of only equalities.

3.2 Primal and dual conic programs

When defining conic programming we need a “nice” cone K, satisfying the fol-
lowing properties: K is closed, convex, pointed, and has a non-empty interior
or, equivalently, it is full-dimensional.

3.2.1 Primal conic programs
Let K < R™ be a pointed, closed, convex cone with non-empty interior.

Definition 3.2.1. Given c € R", ay,...,am € R™, and by,...,b,, € R, a primal
conic program (in standard form) is the following maximization problem:

sup{c'z:ze K, ajx="b1,...,a) x =Dy},
which can also be written in a more compact form as
sup{c'z:z e K, Az = b},
where A is the m x n matrix with rows af,... al and b = (by,...,by)"T € R™.

We say that x € R"™ is a feasible solution (of the primal) if it lies in the cone
K and if it satisfies the equality constraints. It is a strictly feasible solution if it
additionally lies in the interior of K.

Note that we used a supremum here instead of a maximum. The reason is
simply that sometimes the supremum is not attained. We shall see examples in
Section 3.5

3.2.2 Dual conic programs

The principal problem of duality is to find upper bounds for the primal conic
program (a maximization problem), in a systematic, or even mechanical way.
This is helpful e.g. in formulating optimality criteria and in the design of effi-
cient algorithms. Duality is a powerful technique, and sometimes translating
primal problems into dual problems gives unexpected benefits and insights. To
define the dual conic program we need the dual cone K*.

Definition 3.2.2. Let K < R" be a cone. The dual cone K* of K is
K*={yeR":y"z>0forallzec K}.

Lemma 3.2.3. If K is a pointed, closed, convex cone with non-empty interior, then
the same holds for its dual cone K*.
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You will prove this in Exercise 3.1. The following property of cones will be
useful — you will prove it in Exercise 3.2.

Lemma 3.2.4. Let K be a closed convex full-dimensional cone. Then we have the
equivalence
reint K «— Yye K*\{0}:y" 2z > 0.

Definition 3.2.5. Let
sup{c'z:2€ K, ajx =b1,...,a) 2 =b,} =sup{c'z:ze K, Az = b}

be a primal conic program. Its dual conic program is the following minimization

problem
inf{Zyjbj :yl,...,ymeR,ZyjajceK*},
j=1

Jj=1

or more compactly,
inf{b"y:yeR™ ATy —ce K*}.

We say that y € R™ is a feasible solution (of the dual) if 37" | y;ja; — c € K*.
It is a strictly feasible solution if 37" | yja; — c € int K*.

3.2.3 Geometric interpretation of the primal-dual pair

At first sight, the dual conic program does not look like a conic program, i.e.
optimizing a linear function over the intersection of a convex cone by an affine
subspace. Although the expression z = " | y;a;—c ranges over the intersection
of the convex cone K* with an affine subspace, it might be less clear a priori
why the objective function >}, y;b; has the right form (a linear function in
z =20 yia; — O).

The following explanation shows how to view the primal and the dual conic
program geometrically. This also will bring the dual program into the right
form. For this consider the linear subspace

L={zeR":ajz=0,...,a] x =0},

and its orthogonal complement

LJ‘—{zyjajeR”:yl,...,ymeR}.
j=1

We may assume that there exists a point xy € R™ satisfying Azy = b for, if not,
the primal conic program would not have a feasible solution. Note then that

m m
bVy=adATy =] <Z ajyj> =z (Z a;y; — c) + e

j=1 j=1
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Therefore, the primal conic program can be written as
sup{c'z:z e K n (xo+ L)}
and the dual conic program as
c'xo+inf{zlz:ze K* n(—c+ L)}

Now both the primal and the dual conic programs have the right form and the
symmetry between the primal and the dual conic program becomes more clear.

What happens when one builds the dual of the dual? Then one gets a conic
program which is equivalent to the primal. This is due to the following lemma.

Lemma 3.2.6. Let K < R™ be a closed convex cone. Then, (K*)* = K.

Proof. The inclusion K < (K*)* is easy to verify using the definition only. For
the reverse inclusion, one needs the separation theorem (Lemma [1.5.2). Let
x € R™\K. Then {z} and K can be separated by a hyperplane of the form
H ={zeR":c"z =0} for some c e R"\{0}. Say, K € HT = {z:c"2 > 0}
and c"x < 0. The inclusion K < H* shows that ¢ € K* and then the inequality
ez < 0 shows that = ¢ (K*)* O

3.3 Examples

Now we specialize the cone K to the first three examples of Section[1.5] These
three examples are useful for a huge spectrum of applications.

3.3.1 Linear programming (LP)

A conic program where K is the non-negative orthant R% is a linear program.
We write a primal linear program (in standard form) as

sup{c'z:2>0,alz="by,...,a 2 =Dby} =sup{c'z:2 >0, Az = b}.

The non-negative orthant is self-dual: (RZ,)* = RZ,. The dual linear program
is

m m
inf{z bjy; : yl,...,ymeR,Z Y;aj —620} —inf{bTy: ATy —c > 0}.

Jj=1 Jj=1

In the case when the problems are not unbounded we could replace the supre-
mum/infimum by maximum/minimum. This is because we are optimizing a
linear function over a polyhedron, which is equivalent to optimizing over its set
of extreme points, and any polyhedron has finitely many extreme points.
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3.3.2 Conic quadratic programming (CQP)

A conic program where K is the second-order cone L£"*! is a conic quadratic
program. We write a primal conic quadratic program (in standard form) as

sup{(c,7) " (z,t) : (z,t) € L, (a1, 1) " (z,t) = by, ... (Gm, Q)" (2,1) = by}

Here (x,t) stands for the (column) vector in R**! obtained by appending a new
entry ¢t € R to x € R™, we use this notation to emphasize the different nature of
the vector’s components. Recall the definition of the second-order cone £""1:

(z,t) e £ if and only if |x]2 < t.
The second-order cone is self-dual, too — you will show this in Exercise 3.3
(£n+1)* — [’n+1.
The dual conic quadratic program is
inf{Z Yibi 11, um € R, Y y(ag,a5) — (¢,7) € /3"“} :
j=1 j=1

This can be written in a nicer and more intuitive form using the Euclidean norm.
Define the matrix B € R"*™ which has a; as its ¢-th column, and the vectors
b= (bj)Ly, @ = (aj)jL; and y = (y;)L; in R"™. Then the dual conic quadratic
program can be reformulated as

inf {by:yeR™, |By —c|> <a'y—~}.

3.3.3 Semidefinite programming (SDP)

A conic program where K is the cone of semidefinite matrices SZ is a semidef-
inite program. We write a primal semidefinite program (in standard form) as

sup{{C, X): X > 0,{A1,X)="0b1,...,{Amn, X) =bn}.
We have already seen earlier that the cone of semidefinite matrices is self-dual:
( go)* = 8L,
The dual semidefinite program is
inf{Zyjbj :yl,...,ymeR,ZyjAj C’ZO}.
j=1 j=1

Engineers and applied mathematicians like to call an inequality of the form
ZZL yiA; — C > 0 a linear matrix inequality (LMI) between the parameters
Y1,---,Ym. 1t iS @ convenient way to express a convex constraint posed on the

vector y = (Y1, -, Ym) -

49



3.4 Duality theory

Duality is concerned with understanding the relation between the primal conic
program and the dual conic program. We denote the supremum of the primal
conic program by p* and the infimum of the dual conic program by d*. What
is the relation between p* and d*? As we see in the next theorem it turns out
that in many cases one has equality p* = d* and that the supremum as well
as the infimum are attained. In these cases duality theory can be very useful
because sometimes it is easier to work with the dual problem instead of the
primal problem.

Theorem 3.4.1. Suppose we are given a pair of primal and dual conic programs.
Let p* be the supremum of the primal and let d* be the infimum of the dual.

1. (weak duality) Suppose z is a feasible solution of the primal conic program,
and y is a feasible solution of the dual conic program. Then,

e <bly.
In particular p* < d*.

2. (complementary slackness) Suppose that the primal conic program attains
its supremum at x, and that the dual conic program attains its infimum at
y, and that p* = d*. Then

m T
(Z Yi; — c> xz = 0.
i=1

3. (optimality criterion) Suppose that x is a feasible solution of the primal
conic program, and y is a feasible solution of the dual conic program, and

equality
m T
<Zyiaic) z=0
i=1

holds. Then the supremum of the primal conic program is attained at x and
the infimum of the dual conic program is attained at y.

4. (strong duality; no duality gap) If the dual conic program is bounded from
below and if it is strictly feasible, then the primal conic program attains its
supremum and there is no duality gap: p* = d*.

If the primal conic program is bounded from above and if it is strictly feasible,
then the dual conic programs attains its infimum and there is no duality gap.

Before the proof one more comment about the usefulness of weak duality:
Suppose you want to solve a primal conic program. If the oracle of Delft, gives
you y, then it might be wise to check whether } " | y;a; — ¢ lies in K*. If so,
then this gives immediately an upper bound for p*.
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The difference d* —p* is also called the duality gap between the primal conic
program and dual conic program.

One last remark: If the dual conic program is not bounded from below:
d* = —oo, then weak duality implies that p* = —oo, i.e., the primal conic
program is infeasible.

Proof. The proof of weak duality is important and simple. It reveals the origin
of the definition of the dual conic program: We have

m m m T
Z yib; = Z yj(a}—x) = (Z yjaj> z=c'z,
j=1 j=1 j=1

where the last inequality is implied by > | y;a; —ce K* and z € K.

Now complementary slackness and the optimality criterion immediately
follow from this.

Strong duality needs considerably more work. It suffices to prove the first
statement (since the second one follows using the symmetry between the primal
and dual problems). So we assume that d* > —oo and that the dual program
has a strict feasible solution. Using these assumptions we will construct a primal
feasible solution x* with c¢'z* > d*. Then, weak duality implies p* = d* and
hence z* is a maximizer of the primal conic program.

Consider the set

m
M:{Zyjaj—c:yeRm,bTygd*}.

J=1

If b = 0 then d* = 0 and setting «* = 0 proves the result immediately. Hence
we may assume that there is an index 7 so that b; is not zero, and then M is not
empty. We first claim that

Mnint K* = ¢.

For suppose not. Then there exists y € R™ such that 37, yja; — ¢ € int K*

and y'b < d*. Assume without loss of generality that b; < 0. Then for a
small enough ¢ > 0 one would have (y; + €)a1 + X/_, yja; — ¢ € K* with
(y1 + €)b1 + X7, yib; < y'b < d*. This contradicts the fact that d* is the
infimum of the dual conic program.

Since M and K* are both convex sets whose relative interiors do not inter-
sect, we can separate them by an affine hyperplane, according to Theorem|(1.3.8
Hence, there is a non-zero vector x € R" so that

sup{z'z:ze M} <inf{z'z:ze K*}. (3.1)

We shall use this point = to construct a maximizer of the primal conic pro-
gram which we do in three steps.

First step: z € K.
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To see it, it suffices to show that

inf 272>0, (3.2)

zeK*

as this implies that « € (K*)* = K. We show the inequality by contradiction.
Suppose there is a vector z € K* with 7z < 0. Then, for any positive ), the
vector \z lies in the convex cone K*. Making \ extremely large drives 2" \z
towards —oo. But we reach a contradiction since, by , the infimum of 2"z
over z € K* is lower bounded since M # .

Second step: There exists 1 > 0 so that a]x = pb; (j € [n]) and z"c > pud*.

Since 0 € K* we also have that the infimum of (3.2) is at most 0. So
we have shown that the infimum of (3.2) is equal to 0. Therefore, by (3.1),
sup,c,s 'z < 0. In other words, by the definition of M, for any y € R™,

m

y'h<dt — xT(Zyjajfc) <0
j=1

or, equivalently,
y'b<dt — Z yi(zTa;) <zl
Jj=1
This means that the halfspace {y : y'b < d*} is contained into the halfspace

{y : y"(2"a;); < 2"c}. Hence their normal vectors b and (z'a;); point in the
same direction. In other words there exists a scalar p > 0 such that

wlaj = pby (j=1,...,m), ud* <a'e.

It suffices now to verify that  is positive. Indeed suppose that p = 0. Then, on
the one hand, we have that z7c > 0. On the other hand, using the assumption
that the conic dual program is strictly feasible, there exists § € R such that
2.;Yja; — c € int K. This implies

m T
0< (Zyjaj—c) x:—ch,
j=1

where strict inequality follows from }; y;a; — ¢ € int K and = € K\{0} (use
here Lemma [3.2.4). This gives c"x < 0, a contradiction.
Third step: «* = z/u is a maximizer of the primal conic program.

This follows directly from the fact that z* is a primal feasible solution (since
we saw above that 2* € K and a] 2* = b; for j € [m]) with ¢Tz* > d*. O
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3.5 Some pathological examples

If you know linear programming and its duality theory you might wonder why
do we always write sup and inf instead of max and min and why do we care
about strictly feasibility in Theorem Why doesn’t strong duality always
hold? Here are some examples of semidefinite programs showing that we in-
deed have to be more careful.

3.5.1 Dual infimum not attained

Consider the semidefinite program

(5 D)) xma (s )16 )

and its dual

. (1o 00y (0 -1\ [y 1
d_lnf{yl'%(o o) T2 0 1) \-1 o) T\t w) =0

In this example, p* = d* = 0 and the supremum is attained in the primal,
but the infimum is not attained in the dual. Note indeed that the primal is not
strictly feasible (since Xs2 = 0 for any feasible solution).

3.5.2 Positive duality gap

There can be a duality gap between the primal and the dual conic programs.
Consider the primal semidefinite program with data matrices

~1 0 0 100 00 1
c=10 -1 o], 41=10 0 o], 42=10 1 0],
0 0 0 00 0 100

and b, = 0, by = 1. It reads
p* = Sup{—XU — X900 :X11=0,2X13+Xoo =1, X > O}
and its dual reads

y1+1 0 Y2
d* = inf y22y1A1+y2Agfc= 0 yo+1 0 |>0
Y2 0 0

Then any primal feasible solution satisfies X153 = 0, Xoo = 1, so that the primal
optimum value is equal to p* = —1, attained at the matrix X = Fs5. Any dual
feasible solution satisfies y, = 0, so that the dual optimum value is equal to
d* = 0, attained at y = 0. Hence there is a positive duality gap: d* — p* = 1.
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3.6 Strong and weak infeasibility
Consider the following two conic programming systems

Az =b, ze K, (3.3)

Z yja; = ATye K* by <0. 3.4
j=1
Clearly, if (3.3) has a solution then (3.4) has no solution: If z is feasible for
(3.3) and y is feasible for (3.4) then

0< (A" Tz =y Az =y b <0,

giving a contradiction. When K is the non-negative orthant then the converse
also holds: If has no solution then has a solution. This fact follows by
applying the separation theorem (Lemmal|l.5.2). Indeed, assume that has
no solution. Then b does not belong to the cone generated by the columns of A.
By Lemma [1.5.2] there exists a hyperplane, having normal y € R™, separating
{b} and this cone spanned by column vectors. So we have the inequalities ATy >
0 and y'b < 0. This shows that y is feasible for (3.4). We just proved Farkas’
lemma for linear programming.

Theorem 3.6.1. (Farkas’ lemma for linear programming)
Given A € R™*™ and b € R™, exactly one of the following two alternatives
holds:

(1) Either the linear system Ax = b, x > 0 has a solution,
(2) Or the linear system ATy >0, b"y < 0 has a solution.

For general conic programming, it is not true that infeasibility of (3.3) im-
plies feasibility of (3.4). As an illustration, consider the following semidefinite
systems:

<E117X>:07<E12,X>: 1, X >0, (3.5)
y1En +y2Er2 = 0, y2 <O, (3.6)

which are both infeasible.
However, one can formulate the following analogous, although weaker, the-
orem of alternatives, which needs some strict feasibility condition.

Theorem 3.6.2. Let K < R" be a full dimensional, pointed, closed and convex
cone, let A € R™*™ with rows a] ,...,a} and let be R™. Assume that the system
Ax = b has a solution xy. Then exactly one of the following two alternatives holds:

(1) Either there exists x € int K such that Ax = b.

(2) Or there exists y € R™ such that 37| yja; = ATy € K*\{0},b7y < 0.
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Proof. Again one direction is clear: If z € int K satisfies Ax = b and y satisfies
ATy e K*\{0} and b"y < 0, then we get 0 < (ATy)Tz = yTAz = yTb < 0,
implying (ATy)"xz = 0. This gives a contradiction since z € int K and ATy e

K*\{0} (recall Lemma [3.2.4).

Assume now that the system in (1) has no solution. By assumption, the
affine space L = {z : Az = b} is not empty, as xo € L. Define the linear space

L={r:Ar=0}={zr:ajz=0,...,a) x =0}

r ' m

so that L = £ + x¢. By assumption, L n int K = ¢J. By the separation theorem
(Theorem|[1.3.8)), there exists a hyperplane separating L and int K: There exists
a non-zero vector ¢ € R" and a scalar  such that

VeeK:c'z>p and Vee L:c'z <p.

Then 8 < 0(as0e K)andce K* (asc'tx > Bforallz € K and t > 0,
which implies that ¢"2 > 0). Moreover, for any = € £ and any scalar ¢ € R,
we have that ¢ (tz + x¢) < B which implies ¢z = 0. Therefore ¢ € £+ and
thus ¢ is a linear combination of the a;'s, say ¢ = >, y;ja; = ATy for some
y = (y;) € R™. So we already have that ATy € K*\{0}. Finally, y"b = y" Az =
'z < /<0 (asxzg e L). O

Consider again the above example: the system (3.5) is not strictly feasible,
and indeed there is a feasible solution to (3.6) after replacing the condition
y2 < 0 by y» < 0 and adding the condition y; F11 + y2 F12 # 0.

We now further investigate the situation when the primal system (3.3)) is
infeasible. According to the above discussion, there are two possibilities:

1. Either (3.4) is feasible: There exists y € R™ such that 3" | y;a; € K* and
bTy < 0. Then we say that the system (3.3)) is strongly infeasible.

2. Or is not feasible.

As we will show below, this second alternative corresponds to the case when
the system (3.3) is “weakly infeasible”, which roughly means that it is infeasible
but any small perturbation of it becomes feasible. Here is the exact definition.

Definition 3.6.3. The system Ax = b, x € K is weakly infeasible if it is infeasible
and, for any e > 0, there exists x € K such that |[Az — b|| <e.

For instance, the system (3.5) is weakly infeasible: For any e > 0 the per-
turbed system (E;1, X) = ¢, {(F12, X)) =1, X > 0 is feasible.

Theorem 3.6.4. Consider the two systems and (3.4). Assume that the sys-
tem (3.3) is infeasible. Then exactly one of the following two alternatives holds.

(1) Either is strongly infeasible: There exists y € R™ such that b'y < 0
and Zgnzl yja; € K*.
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(2) Or (B.3) is weakly infeasible: For every ¢ > 0 there exists x € K satisfying
[Az — b < e

Proof. Assume that (3.3)) is not strongly infeasible. Then the two convex sets
{y : ATy e K*} and {y : b'y < 0} are disjoint. By the separation theorem
(Theorem [1.3.8) there exists a non-zero vector ¢ € R™ such that

inf{c"y: ATy e K*} = sup{c'y: by < 0}.

As 0 € K* the infimum is at most 0. Hence, b'y < 0 implies ¢'y < 0. This
implies that ¢ = \b for some positive A and, up to rescaling, we can assume that
¢ = b. Therefore,

m
Dlajy;e K* = by >0. 3.7

Jj=1

We show that (3.3) is weakly infeasible. For this consider the following pro-
gram, where we have two new variables z, 2’ € R™:

p* = inf {eTz+e'2 i Av+2—2"=b, e K,z,2 e RY,},  (3.8)

zeR™ z,z/eR™

where e = (1,...,1)7 is the all-ones vector. It suffices now to show that the
infimum of (3.8) is equal to 0, since this implies directly that (3.3) is weakly
infeasible. For this consider the dual program of (3.8]), which can be written as
(check it)

d* = sup {b'y: —ATye K* —e<y<e}. 3.9
yeR™

Clearly the primal (3.8) is strictly feasible and d* > 0 (since y = 0 is feasible).
Moreover, d* < 0 by (3.7). Hence d* = 0 and thus p* = d* = 0 since there is

no duality gap (applying Theorem [3.4.1)). O

Of course the analogous result holds for the dual conic program (which
follows using symmetry between primal/dual programs).

Theorem 3.6.5. Assume that the system
Zyjaj —ce K* (3.10)
j=1

is infeasible. Then exactly one of the following two alternatives holds.

(1) Either is strongly infeasible: There exists x € K such that Az = 0 and
clz > 0.

(2) Or is weakly infeasible: For every e > 0 there exist y € R™ and
z € K* such that || (3L, yja; — ) — 2| < e
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3.7 More on the difference between linear and conic
programming

We have already seen above several differences between linear programming
and semidefinite programming: there might be a duality gap between the pri-
mal and dual programs and the supremum/infimum might not be attained even
though they are finite. We point out some more differences regarding rationality
and bit size of optimal solutions.

In the classical bit (Turing machine) model of computation an integer num-
ber p is encoded in binary notation, so that its bit size is logp + 1 (logarithm in
base 2). Rational numbers are encoded as two integer numbers and the bit size
of a vector or a matrix is the sum of the bit sizes of its entries.

Consider a linear program

maX{CTa: : Az = b,x = 0} (3.1D

where the data A, b, ¢ is rational-valued. From the point of view of computability
this is a natural assumption and it would be desirable to have an optimal solu-
tion which is also rational-valued. A fundamental result in linear programming
asserts that this is indeed the case: If program has an optimal solution,
then it has a rational optimal solution z € Q", whose bit size is polynomially
bounded in terms of the bit sizes of A, , c.

On the other hand it is easy to construct instances of semidefinite program-
ming where the data are rational valued, yet there is no rational optimal solu-
tion. For instance, the following program

wax e (1 4) =0

attains its maximum at z = ++/2.

Consider now the semidefinite program, with variables 1, ..., z,,

inf{xn:<1 2)20,( 1 xil)z()forizl...,n}.
2 Ti—1 X

Then any feasible solution satisfies x,, > 22". Hence the bit-size of an optimal
solution is exponential in n, thus exponential in terms of the bit-size of the data.

3.8 Further reading

Conic programs, especially linear programs, conic quadratic programs, and
semidefinite programs are the central topic in the text book of Ben-Tal and Ne-
mirovski [3]]. There also many interesting engineering applications (synthesis
of filters and antennas, truss topology design, robust optimization, optimal con-
trol, stability analysis and synthesis, design of chips) are covered. This book
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largely overlaps with Nemirovski’s lecture notes [5] which are available online.
A nutshell version of these lecture notes is Nemirovski’s plenary talk “Advances
in convex optimization: conic programming” at the International Congress of
Mathematicians in Madrid 2006 for which a paper and a video is available on-
line: [6]]. It is astonishing how much material Nemirovski covers in only 60
minutes.

A second excellent text book on convex optimization is the book by Boyd
and Vandenberghe [2] (available online). Here the treated applications are: ap-
proximation and fitting, statistical estimation, and geometric problems. Videos
of Boyd’s course held at Stanford can also be found there.

The duality theory for linear programming which does not involve duality
gaps is explained in every book on linear programming. For example, Schrijver
[Z, Chapter 7] is a good source.

3.9 Historical remarks

The history of conic programming is difficult to trace. Only recently researchers
recognized that they give a unifying framework for convex optimization.

In 1956, Duffin in a short paper “Infinite programs” [3]] introduced conic pro-
grams. His approach even works in infinite dimensions and he focused on these
cases. However, the real beginning of conic programming seems to be 1993
when the book “Interior-Point Polynomial Algorithms in Convex Optimization”
by Yurii Nesterov and Arkadi Nemirovski was published. There they described
for the first time a unified theory of polynomial-time interior point methods for
convex optimization problems based on their conic formulations. Concerning
the history of conic programs they write:

Duality for convex program involving “non-negativity constraints” de-
fined by a general-type convex cone in a Banach space is a relatively
old (and, possibly, slightly forgotten by the mathematical programming
community) part of convex analysis (see, e.g. [ET76]). The correspond-
ing general results, as applied to the case of conic problems (i.e., finite-
dimensional problems with general-type non-negativity constraints and
affine functional constraints), form the contents of §3.2. To our knowl-
edge, in convex analysis, there was no special interest to conic problems,
and consequently to the remarkable symmetric form of the aforemen-
tioned duality in this particular case. The only previous result in spirit
of this duality known to us it the dual characterization of the Lovasz
capacity number 6(I") of a graph (see [Lo79]).

3.10 Exercises

3.1 Let K < R™ be a cone and let K* be its dual cone.

(a) Show that K* is a closed convex cone.
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(b) If K is pointed, closed, convex and full-dimensional, show that the
same holds for K*.

3.2 Let K be a closed convex full dimensional cone. Show that
reint K <= y'z > 0Vye K*\{0}.
3.3 (a) For the Lorentz cone, show that (£L"+1)* = £n+1,

(b) Determine the dual cone of the cone of copositive matrices.

3.4 Consider the following location problem: We are given N locations in the
plane z1,..., 2y € R2. Find a point y € R? which minimizes the sum of
the distances to the N locations:

(a) Formulate this problem as a conic program using the cone

£2+1 % £2+1 N, £2+1.

(b) Determine its dual.

(c) Is there a duality gap?
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CHAPTER 4
INTERIOR POINT METHODS

In this lecture we consider the problem of solving a conic program numerically.
First, we recall the situation. Let K < R"™ be a pointed, closed, convex cone with
non-empty interior. Given are ¢ € R”, ay,...,a,n, € R", and by,...,b,, € R. The
primal conic program in standard form is the following maximization problem:

T
m

sup{c'z:ze K,ajx =b1,...,a} © =by}.

Since the beginning of the 1990’s the theory of efficient interior point meth-
ods was developed which basically says that if the cone K is “nice” (this can be
made mathematically precise: a sufficient condition is the existence of a self-
concordant barrier function which is computable in polynomial time; for the
details we refer to the literature), then there exists a polynomial time algorithm
which solves the conic program. Solving in polynomial time means that one can
in polynomially many steps approximate an optimal solution within any desired
precision where the precision is part of the input.

Here we only sketch the rough idea of interior point methods. The idea is to
provide only some some background knowledge without giving many details.
[This is just enough to implement a program which solves a small conic pro-
gram with a few variables for instance.] We will ignore many, many technical
details: How to guarantee a polynomial time running time? How to implement
a method which is numerically stable? Going through all the details (very fas-
cinating applied mathematics!) fills a complete advanced course, namely the
LNMB course “Interior point methods”.

For the details we refer to the comprehensive books of Nesterov and Ne-
mirovski [5] and of Boyd and Vandenberghe [2] and to the literature given in
Section

First we present the classical barrier method. The principal ideas developed
there form the backbone of the modern polynomial time interior point methods.
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Then, we look at the most important properties of the central path of the primal-
dual pair of a semidefinite program.

4.1 Classical barrier methods

To explain the basic idea of interior point method we need two ingredients:
Newton’s method for equality constrained minimization and barrier functions.

4.1.1 Newton’s method

We start by recalling Newton’s method for unconstrained minimization. New-
ton’s method is an iterative method for finding roots of equations in one or more
dimensions. It is one of the most important algorithms in numerical analysis and
scientific computing. In convex optimization it can be used to find minimizers
of convex differentiable functions. The Newton method is also the fundamental
algorithm for the design of fast interior point algorithms.

Unconstrained minimization

Newton’s method is quite general. It is natural to define it in the setting of Ba-
nach spaces. Chapter XVIII of the book “Functional analysis in normed spaces”
by L.V. Kantorovich and G.P. Akilov is a classical resource for this which also
includes the first thorough analysis of the convergence behavior of Newton’s
method. Nowadays every comprehensive book on numerical analysis contains
a chapter stating explicit conditions for the convergence speed of Newton’s
method.

To keep it as simple and concrete as possible we define it here only for R".
Let € be an open set of R™ and let f : 2 — R be a strictly convex, differentiable
function. The Taylor approximation of the function f around the point a is

fla+z) = (f(a) +Vf(a)Tz+ ;xTVQf(a)x> +h.o.t.,

where V f(a) € R™ is the gradient of f at a with entries

Vi@ = (-t af(a)>T,

and where V2 f(a) € R"*" is the Hessian matrix of f at a with entries

(32

B axlaxj

[V f(a)]i; f(a),

and where h.o.t. stands for “higher order terms”. Since the function is strictly
convex, the Hessian matrix is positive definite, V2f(a) € 8%,. By ¢ : R* —» R
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we denote the quadratic function which we get by truncating the above Taylor
approximation

q(z) = fla) + Vf(a) 'z + %xTVQf(a)x.

This is a strictly convex quadratic function and so it has a unique minimizer
x* € R™ which can be determined by setting the gradient of ¢ to zero:

0= Vq(z*)

A T
~ (atem) )
= Vf(a) + V?f(a)z*.

Hence, we find the unique minimizer x* of ¢ by solving a system of linear
equations

¥ = — (V%’(a))il Vf(a).

Now Newton’s method is based on approximating the function f locally at a
starting point a by the quadratic function ¢, finding the minimizer (the Newton
direction) x* of the quadratic function, updating the starting point to a + z* and
repeating this until the desired accuracy is reached:

repeat

z* — — (V3f(a)) " Vf(a)
a<—a+z*

until a stopping criterion is fulfilled.

The following fact about Newton’s method are important.

First the good news: If the starting point is close to the minimizer, then
the Newton method converges quadratically (for instance the series n — ﬁ
converges quadratically to its limit 0), i.e. in every step the number of accurate
digits is multiplied by a constant number.

However, if the starting point is not close to the minimizer or if the function
is close to being not strictly convex, then Newton’s method does not converge
well. Consider for example the convex but not strictly convex univariate func-
tion f(z) = 1/4z* — 2. Then f'(z) = 2 — 1 and f”(z) = 322. So if one starts
the Newton iteration at a = 0, one immediately is in trouble: division by zero.
If one starts at a = —</1/2, then one can perform a Newton step and one is
in trouble again, etc. Figure shows the fractal structure which is behind
Newton’s method for solving the equation f’(z) = 23 — 1 = 0 in the complex
number plane. One has similar figures for other functions.

This pure Newton method is an idealization and sometimes it cannot be
performed at all because it can very well happen, that a + z* ¢ Q. One can
circumvent these problems by replacing the Newton step a «— a + z* by a
damped Newton step a < a + Ox* with some step size § > 0 which is chosen
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Figure 4.1: Newton fractal of z3 — 1 = 0. The three colors indicate the region
of attraction for the three roots. The shade of the color indicates the number of
steps needed to come close to the corresponding root. (Source: wikipedia).

to ensure e.g. that a + 6z* € Q. Choosing the right  using a line search can
be done in many ways. A popular choice is backtracking line search using the
Armijo-Goldstein condition.

Let us discuss stopping criteria a bit: One possible stopping criterion is for
example if the the norm of the gradient is small, i.e. for some predefined positive
€ we do the iteration until

IVi@)? <e (4.1)

We now derive a stopping criterion in the case when the function f is not only
strictly convex but also strongly convex. This means that there is a positive
constant m so that the smallest eigenvalue of all Hessian matrices of f is at
least m:

Va e Q: Anin(V2f(a)) = m.

By the Lagrange form of the Taylor expansion we have
1
Va,a +xe Q3 ea,a+2]: fla+z)= f(a)+ Vfla)z+ izTVQf(f)x

and the strong convexity of f together with the variational characterization of

64



the the smallest eigenvalue, which says that

Amin(vzf(g)) _ min xTva(g)x

eeRr\{0}  [z]2 7

gives
flat2) > fla) + V(a)Tx + smle]”

Consider the function of the right hand side
T 1 2
z = fa) + Vf(a) 'z + gm|z]".
It is a convex quadratic function with gradient
x— Vf(a)+maz,
hence its minimum is attained at
o =~ Vf(a)
— .

So we have for the minimum p* of f

. L1 1 |1 ?
> 1)+ V@ -9(@) + 3 | L9 f(@

= f(a) = 5 -1V @2,

which says that whenever the stopping criterion is fulfilled we know that
f(a) and p* are at most ¢/(2m) apart. Of course, the drawback of this consid-
eration is that one has to know or estimate the constant m in advance which is
often not easy. Nevertheless the consideration at least shows that the stopping
criterion is sensible.

Equality-constrained minimization

In the next step we show how to modify Newton’s method if we want to find
the minimum of a strictly convex, differentiable function f : 2 — R in an affine
subspace given by the equations

T T T
a1 =bi,ayx =ba,...,0,T=Dbn,

where a1,...,a,, € R" and by,...,b,, € R.
We define the Lagrange function

L(.’t, )‘1»~ . 7)‘m) = f({I?) + Z Aiazm7
i=1
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and the method of Lagrange multipliers says that if a point y* lies in the affine
space
@Iy* = b1, RS a;y* = b’rru

then it is the unique minimizer of f if and only if
VL(y*)=0.
To find this point y* we approximate the function f using the Taylor approxi-
mation around the point a by
@) = f(a) + Vi(0) Tz + 52TV f(a)e
and solve the linear system (in the variables x* and Ay, ..., Ap)

ai(a+2%) =by,...,a (a+2%) = by,
Vf(a) + V2 f(a)z* + > Nia; = 0

i=1

to find the Newton direction x*. Then we can do the same Newton iterations
using damped Newton steps as in the case of unconstrained optimization.

4.1.2 Barrier method

In this section it will be more convenient to consider the following minimiza-
tion problem instead of the original maximization problem (which is completely
equivalent to the maximization problem by switching the sign of the vector ¢)

inf{cTz cre K, aIx =by,... ,a,Tnx = b}

Using Newton’s method for equality constrained minimization we know how to
deal with the minimization problem

inf{c'z:ajz="by,...,a) x = by}

Now we have to answer the question: How do we deal with the constraint
xz € K? The idea will be to start with a point z lying in the interior of K
and lying in the affine subspace defined by the m equations and then apply
Newton’s method for equality constrained minimization always assuring that
the next point will lie in the interior of K. For this we add to the objective
function ¢z a barrier function ¢(x) so that we want to minimize

'z + ¢(x) (4.2)
instead of ¢"z. The ideal barrier function would be

0, ifzekK,
() = { oo, otherwise.

)
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When we minimize (4.2) we will never consider points not lying in K. This
“almost” works, but Newton’s method is not applicable. The solution is to re-
place the ideal barrier function by a barrier function ¢ which is a function that
is strictly convex and has the property that

x — 0K = ¢(x) — 0.
Then, Newton’s method becomes applicable.
Example 4.1.1. Examples for barrier functions:

o K =RLy: ¢(x) = —In(zy - xp).

n

o K =L g(x,t) = —In(t? — 2 — - —22).

o K =82 ¢(X)=—Indet X.
We have Vo(X) = =Xt and (V*¢(X))H = X 'HX 1.

So for a positive parameter ¢ > 0 we can solve
inf{t(c"z) + ¢(x) :ajz =by,...,a" x = by}

using Newton’s method. The optimal solution «(¢) of this minimization problem
is called the central path. One can show that if ¢ tends to infinity then x(t)
tends to an optimal solution of the original problem. In the next section we
show this in the case of semidefinite programming. Solving x(¢) for large ¢
is computationally expensive since Newton’s method does not converge fast
enough when we start from a point which is not close to the optimal solution.
Now the idea of the barrier method is to find z(t)’s successively for increasing
values of ¢. Then one can use the old z(t) as a starting point for the next Newton
method and making use of it’s quadratic convergence.
In summary the barrier method has the following scheme:

input:
objective function ¢, constraints ay, ..., am, b1,. .., bm,
interior point z € int K with a]z = by,...,a] © = by,

parameter ¢, parameter p (for example p = 10)
repeat
compute z(t) by Newton’s method starting from x
x «— x(t)
t <« ut
until a stopping criterion is fulfilled.

4.1.3 Finding a starting point

We are still left with the problem of finding a first interior point = which we need
as the input for the previous algorithm. In the case of semidefinite programs the
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following approach works: We simply solve another semidefinite program (this
is called Phase 1 of the algorithm) for which every symmetric matrix which lies
in the affine subspace provides an interior point

inf{\: X + AT €82, (A1, X) = by, ..., Ay, X) = by},

where I denotes the identity matrix. For this problem it is easy to find a strictly
feasible solution: One computes a matrix Y in the affine subspace (Y, A4;) = b;
and determines its smallest eigenvalue A, (Y'). Hence, the matrix X = Y +
(e — Amin(Y)) is a strictly feasible solution for every ¢ > 0. Then we can start
to minimize \. If we find a matrix X is so that ) is negative, it can be used as
a starting point for Phase 2, the original problem. If no such negative \ exists,
the original problem is infeasible.

4.2 Central path of a semidefinite program

In this section we want to study the central path of a semidefinite program in
more detail. These properties give the first ideas for developing a polynomial
time interior point algorithm. They also show that the barrier method indeed
converges to the right values when ¢ tends to infinity and they even give the
rate of convergence.

In the following we consider a primal-dual pair of a semidefinite program
where both the primal and the dual are strictly feasible. Then by strong duality
in Theorem 3.4.1|the primal attains the supremum, the dual attains the infimum
and there is no duality gap. Let us recall the geometric formulation of the
primal-dual pair of a semidefinite program

max{(C, X): X > 0,{A1,X)=b1,...,{Am, X) =bp}
=min{2yibi:y17...,ymeR7ZyiAi—C>0}.
i=1 i=1

which is (see Section|3.2.3)

max{(C,X): X >0,X e Xo+ L}
=(X(,C) + min{(Xo,Y):Y = 0,Y € —C + L},

with linear subspace
L={Xe8S":{(A1,X)=0,...,{An, X) =0},

and matrix X, € 8" with (4;, Xo) =b; fori=1,...,m.
Let ¢t > 0 be a positive parameter. Consider the strictly convex functions

P,(X) = —t(C, X) — Indet X,
Dy(Y) = Xo,Y) — Indet Y.
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Because the original primal-dual pair is strictly feasible one can show (with
some effort) that P, attains a unique minimizer X (¢) on the affine subspaces
Xo + L which is strictly feasible for the primal, and that D, attains a unique
minimizer Y (¢) on —C + L* which is strictly feasible for the dual. Hence, this
defines the primal-dual central path (X(t),Y (t)).

This primal-dual central path has many nice properties. Some of them are
given in the following theorem.

Theorem 4.2.1. For every t > 0 we have the augmented optimality condition
1
XY (t) = ;I. (4.3)

Furthermore, the primal dual central path measures the duality gap between the
solutions X (t) and Y (t):

(X0.0) + (X0, Y (1)) —(C.X(1)) = 7.

Proof. Using Lagrangian multipliers we see (write down the condition explic-
itly) that a matrix X* is the unique minimizer of the strictly convex function P,
if and only if

X*>0, X*eXo+L, and —tC — (X*)"te Lt
In the same way, Y* is the unique minimizer of D, if and only if
Y*>0, Y¥e -C+ L', andtX, — (Y*)"'eL.

Hence, 1 X (t)~! is a strictly feasible solution of the dual, and 1Y( y"lisa
strictly fea51ble solution of the primal. The gradient of D; at 1X (t ) equals

1 1 -
VD, <tX(t)1) =tXg — <tX(t)1) =tXo—tX(t) e L,
Hence, by the characterization of the unique minimizer of P, we have Y (¢) =
1X(t)7. In the same way one shows symmetrically that X (¢) = 1Y (t)~*. This
implies the first statement.

The second statement follows easily from the first: Let y1, ..., %, be so that

i yiby = (X0, C) + (X, Y (t)), then
(Xo,C) + (X0, Y (t)) — (C, X(t))

Zyzz <CX )>

Il
MSZ

yilAi, X (1)) — (C, X (1))

Ei>

I
=
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Compare to the optimality condition in Theorem[3.4.1] In particular, it
shows that if ¢ — oo, then X (¢) converges to a primal optimal solution and Y (¢)
converges to a dual optimal solution. Another important point for the analysis
of interior point algorithms is that the theorem gives the rate of convergence
which is proportional to 1.

4.3 Software

One very good thing about conic programs such as linear programs, convex
quadratic programs, and semidefinite programs is that they can be solved effi-
ciently in theory and in practice. That they can be solved efficiently in theory
means that they can be solved in polynomial time to any given precision. That
they can be solved efficiently in practice means that there are software packages
available which can be used to solve these problems up to some decent sizes.

ILOG CPLEX is known to be a high-performance mathematical programming
solver for linear programming, mixed integer programming and quadratic pro-
gramming. It can be used to solve very large, real-world optimization problems.
ILOG CPLEX contains interior point methods for linear programming as well as
for convex quadratic programming (but no semidefinite programming). It is
free for academic use.

http://www.ibm.com/software/integration/optimization/cplex-optimizer/

Semidefinite program solvers are currently slightly less powerful but at least
they can solve problems of moderate size involving matrices having size 1000 x
1000.

One semidefinite programming solver which is easy to use is CVXOPT by
Joachim Dahl and Lieven Vandenberghe:

http://abel.ee.ucla.edu/cvxopt/userguide/index.html

It is also part of sage. Sage is a free open-source mathematics software
system licensed under the GPL. It combines the power of many existing open-
source packages into a common python-based interface. In particular it is not
difficult to install.

http://www.sagemath.org/

Many more software packages for semidefinite programs can be found for
example on the NEOS server for optimization:

http://neos.mcs.anl.gov/neos/solvers/sdp:csdp/SPARSE_SDPA.html

Here one can also submit the optimization problem online. This has the
advantage that one does not have to install the software locally. The input
format is explained here:

http://plato.asu.edu/ftp/sdpa_format.txt
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Essentially one has to specify the matrix sizes and the nonzero entries of the
matrices C, A; and the values of b;. One important hint! Note that the role of
the primal and dual are “switched” in the documentation.

4.4 Historical remarks

Looking at the milestones of the history of mathematical programming shows
that interior point methods for conic programs can be seen as the result of the
development of efficient, polynomial-time algorithms.

1947 Dantzig invented the simplex algorithm for linear programming. The sim-
plex algorithm works extremely good in practice, but until today nobody
really understands why (although there are meanwhile good theoretical
indications). It is fair to say that the simplex algorithm is one of the most
important algorithms invented in the last century.

1972 Klee and Minty found a linear program for which the simplex algorithm
is extremely slow (when one uses Dantzig’s most-negative-entry pivoting
rule): It uses exponentially many steps.

1979 Khachian invented the ellipsoid method for linear programming which
runs in polynomial time. It is a great theoretical algorithm but until today
it did not have any practical impact.

1984 Karmakar showed that one can use interior-point methods for designing
a polynomial-time algorithm for linear programming. Nowadays, interior-
point methods can compete with the simplex algorithm.

1994 Nesterov and Nemirovski generalized Karmarkar’s result to conic pro-
gramming with the use of self-concordant barrier functions.

since 1994 Every day conic programming becomes more useful (in theory and
practice).

It is fair to say that during the last twenty years there has been a revolution in
mathematical optimization based on the development of efficient interior point
algorithms for convex optimization problems.

Margaret H. Wright begins her survey “The interior-point revolution in opti-
mization: History, recent developments, and lasting consequences” [10] with:

REVOLUTION:
(i) a sudden, radical, or complete change;

(ii) a fundamental change in political organization, especially the over-
throw or renunciation of one government or ruler and the substitution
of another.

It can be asserted with a straight face that the field of continuous op-
timization has undergone a revolution since 1984 in the sense of the
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first definition and that the second definition applies in a philosophi-
cal sense: Because the interior-point presence in optimization today is
ubiquitous, it is easy to lose sight of the magnitude and depth of the
shifts that have occurred during the past twenty years. Building on the
implicit political metaphor of our title, successful revolutions eventually
become the status quo.

The interior-point revolution, like many other revolutions, includes old
ideas that are rediscovered or seen in a different light, along with gen-
uinely new ideas. The stimulating interplay of old and new contin-
ues to lead to increased understanding as well as an ever-larger set of
techniques for an ever-larger array of problems, familiar and heretofore
unexplored. Because of the vast size of the interior-point literature, it
would be impractical to cite even a moderate fraction of the relevant ref-
erences, but more complete treatments are mentioned throughout. The
author regrets the impossibility of citing all important work individually.

4.5 Further reading

There are quite some books on interior point methods. The classical barrier
method is developed in the book [3]] by Fiacco and McCormick. The standard
reference is the book [5] by Nesterov and Nemirovski which is not completely
easy to read. Boyd and Vandenberghe [2]] and Ye [11]] as well as [3], Chapter 6]
are very helpful. Then, the books [6] by Renegar and [7]] by Roos, Terlaky, Vial
consider interior point methods for linear programs. There are some surveys
available: Nemirovski, Todd [4], Vandenberghe, Boyd [9]], Todd [8].
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Part 11

Applications in combinatorics
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CHAPTER 5
0/1 OPTIMIZATION

Linear optimization problems in which the variables only can attain the values
0 or 1 are called 0/1 linear optimization problems. A 0/1 linear optimization
problem in standard form is of the form

max c¢'x
x € {0,1}", (5.1)
Az < b,

with A e R™*" he R™, ce R".
Many problems in combinatorial optimization can be written as 0/1 linear

optimization problems. One example is finding the independence number «(G)
of a graph G = (V, E):

a(G@) = max Z Xy

veV
ze{0,1}",
Ty + 1, <1 forall {u,v} € E.

Another example is finding the domination number of a graph GG. A dominating
set of the graph G is a subset U < V of its vertices so that every vertex in V is
connected to at least one vertex in U. The cardinality of a smallest dominating
set is the domination number v(G):

~(G) = min Z Ty

veV
ze{0,1}V,
2 T,=1 forallveV.

w:{u,v}eE
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These two problems, like many other problems in combinatorial optimiza-
tion, are difficult to solve computationally. They are NP-hard. So we do not
expect that there is an efficient algorithm solving them which runs in polyno-
mial time.

One possibility to deal with NP-hard optimization problems is to relax them.
The set of feasible solutions

F={zxeR":2€{0,1}", Ax < b}

of a 0/1 linear optimization problem is a subset of the vertices of the cube [0, 1]™.
We denote the convex hull of all feasible solutions, which is a polytope, by
P = conv F. So solving is equivalent to solving max{c'x : x € P} be-
cause the maximum of the linear function ¢'z is attained at an extreme point
of the polytope P. By relaxing we mean that we replace P by a larger set
P’, not necessarily a polytope, which contains P and for which we can solve
max{c'z : € P'} efficiently. This maximum value provides an upper bound
for the original maximization problem (5.1)).

In Section |5.1| we explain a simple method how to construct such a set P’
using semidefinite optimization. Here the theta number and the semidefinite
relaxation of max cut of a graph will be important examples.

In Sectionwe will go much further. We will consider 0/1 polynomial op-
timization problems which are much more general than 0/1 linear optimization
problems. We explain a hierarchy of stronger and stronger relaxations which
even converges to the original problem. This method is one of the strongest
general purpose techniques to attack difficult combinatorial optimization prob-
lems.

5.1 Relaxations using quadratic optimization

Another standard class of optimization problems are quadratic optimization
problems. They are of the form

max ' Qox + ng + g
xeR"™, (5.2)
2T Q x + b;'-x +a; =0 forallje[m],

where @); € S” are symmetric matrices, b; € R” vectors, and «; € R™ scalars.
It is easy to see that one can transform 0/1 linear optimization problems into
quadratic optimization problems. The constraint

2 S
z; —x; =0

forces feasible solutions to be 0/1-valued. For inequality constraints a;-rx < b
we introduce a slack variable s; and the quadratic equality constraint

2, T _
s;+a;x—b;=0.
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Example 5.1.1. The independence number can be formulated as

(@) = max Z Ty
veV
reRY seRE,
22 —2,=0 forallveV,

24z, +x,—1=0 foralle={u,v}ekE.

Sometimes problems in combinatorial optimization also come naturally as quadratic
optimization problems. One example which we already saw is the max-cut problem

MAXCUT(G) = max > (1 —2uzy)/2
{u,v}eE
zeRY,

22 =1 forallveV.

The —1/ + 1-constraint x,, = +1 is equivalent to the quadratic constraint z2 = 1.
Also the independence number has a natural quadratic formulation

a(G) = max Z z2
veV
zeRY,
:1:12) — 2, =0 foralveV,
TyZy =0 forall {u,v} € E.

Now we would like to relax the quadratic optimization problem by a semidef-
inite program. For this we rewrite quadratic expressions as trace inner products
of symmetric matrices with n + 1 rows and columns

1,7 T
T Qir+bjx+ oy <<§bj Qj>’<x 7))

Note that the optimization variable has the following special structure: The

matrix
v - 1 2T
“\z oz’

is a semidefinite matrix of rank 1. In 0/1 linear programming, the constraint
x? — x; = 0 translates into Y;o = Y;;. When we are dealing with —1/ + 1-valued
variables, the constraint 27 = 1 translates into Y;; = 1.

One can get a semidefinite relaxation of the quadratic optimization problem
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(5.2) if one simply ignores that the optimization variable Y has rank 1

13T
max Y
(@)
Y e Snit,
Yoo =1,

15T
& ij) Y>:O for all j € [m].
<<§bj Q) j&lml

It is clear, as we now longer impose rank-1 constraint of the solution, that the
optimal values of this maximization problem (5.3) is an upper bound of the
original quadratic optimization problem (5.2). The set of feasible solutions of
(5.2)

(5.3)

{reR":2TQz+bjx+a; =0,j€[m]}

is contained in

13T
{(YH,...,YW)T ER":Y e SU, Yoo = 1,<(fg_ 257> ,y> —0.je [m]}.
29 J

Geometrically this means that we first lift the n-dimensional situation of the
quadratic optimization problem into a space of dimension ("}?) — 1 in which
the relaxed semidefinite optimization problem lives. The matrix Y has ("}?) —1
variable entries. We associate with variable x; the variable Y;q and with the
product x;z; the variable Y;;. In the higher dimensional space the quadratic
equalities translate into linear inequalities. Then we project the (convex) feasi-
ble region of semidefinite program back to n dimensions.

Dualizing (5.3) yields

min o
yOv"';ymeRv
1 0 e (67 1bT) (a() 1bT>
+ ) ) - 270 > 0.
Yo <O O) Z Yi (%bj Q; 300 Qo

=1

By weak duality every feasible solution of the dual provides an upper bound of
the original quadratic optimization problem. Thus this provides a rather simple
way to prove upper bounds of the original problem. So we can certify the quality
of solutions by this.

Example 5.1.2. Let us apply this relaxation to the quadratic formulations of «
and MAXCUT. For the independence number we get

a(G) < max Z Yoo

veV
Y e S;/(;){O},
YE)O = 17

Yoo =Yy, forallveV,
Yo =0 forall {u,v} € E.
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The matrix variable Y has one row/column more than the number of vertices of
the graph. This extra row/column is indexed by the index 0. In Exercise 5.1 you
will show that this semidefinite optimization problem is equivalent to the theta
number ¥(G). For MAXCUT one gets that MAXCUT(QG) is upper bounded by
the semidefinite optimization problem

Bl or
max 0 _% > By | Y
{u,v}eE

Y e S;;J{O},
Yoo =1,
Yow=1 forallveV.

(recall E,, = 3(eqe] + eyey)). Here it is obvious that this optimization problem
is equivalent to the semidefinite relaxation sdp from Chapter 2.

5.2 A hierarchy of semidefinite programs

Now we consider 0/1 polynomial optimization problems where the constraints
are allowed to be polynomial inequalities rather than linear inequalities

max CT T

x € {0,1}",
pj(xz) <b; forallje[m].

with polynomials py,...,pm € R[zy,...,2,]. An optimal solution of this 0/1
polynomial optimization problem is attained at a vertex of the polytope

P =conv({x eR" :p1(z) < by,...,pm(x) < by} n{0,1}")

The following standard form of a 0/1 polynomial optimization problems will
become handy

max CT$

z € {0,1}", (5.4
pj(z) = 0,for all j € [m].

The goal of the lecture is to construct a hierarchy of relaxations of P consist-
ing out of convex bodies which are projections of feasible regions of semidefinite
programs (known as spectrahedra) and which find the exact polytope P after at
most n steps:

KioKy2Kz32...2K,=P.
One attractive feature of this construction will be that one can optimize a linear
function c¢"x over each step of the hierarchy K; in polynomial time once ¢ is a
fixed, which is independent of the input size.

We start by giving the construction of the last step in the hierarchy K,,. For
this we need some facts from combinatorics.
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5.2.1 Harmonic analysis on power sets

Let X be a finite set. For many applications this will be simply X = [n] =
{1,...,n}. By 2% we denote the set of all subsets of X, the power set of X. The
space

L2(2%) = {f:2¥ > R}

of real-valued functions is a Euclidean space with inner product

(f,9) = >, f(A)g(A), with f,g e L*(2%).

Ae2X

If X = [n] then the space L?(2¥) is simply the vector space R?" and (f, g)
is the standard inner product between vectors, and f({i1,...,%,}) is the compo-
nent of the vector f with index {i1,...,4;}.

We like to write L?(2%) nevertheless because then resemblance with con-
cepts in harmonic (Fourier) analysis, like Fourier coefficients, convolutions,
functions of positive type, will become more pronounced.

Biorthogonal bases

Two explicit bases of L?(2X) will play an important role for us.
The first one is defined as follows: For B € 2% we define yp € L%(2X) by

1 ifAc B,
0 otherwise.

() - |

The fact that the function y g, with B € 2%, forms a basis of L?(2%) can be easily
seen: If one considers the function x g as column vectors in R2" where we order
the elements of 2% by increasing cardinality, then the matrix () geox is an up-
per triangular matrix in which all diagonal elements are not zero. Note that the
value x5 (A) coincides with (A, B) where ¢ is the zeta-function of the Boolean
lattice 2%, see for instance Aigner [1, Chapter IV.1]. From the definition it is
immediate, but extremely important, that this basis is multiplicative:

xB(Au A") = xB(A)xs(A).

The second basis is the dual basis x}; of x g which is defined by the biorthog-
onality relation
1 ifB=5H,
0 otherwise.

(e = {

Although we will not need it here, one can write down the second basis x%
explicitly using the Mobius function y of the Boolean lattice 2%, namely

. B [ (=DIBI=IAL i A B,
xp(A) = u(A, B) = { 0 otherwise.
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Example 5.2.1. For the set X = {1, 2, 3} the matrix with column vectors x p is

g 1 2 3 12 13 23 123
&) 1111 1 1 1 1
1 0 100 1 1 O 1
2 0 010 1 0 1 1
3 0 001 0 1 1 1
210 000 1 0 0 1
B30 000 0 1 0 1
23 0 000 O 0 1 1
123\0 0 0 0 0O 0 O 1
and its inverse contains as row vectors x’x
g 1 2 3 12 13 23 123
%) 1 -1 -1 -1 1 1 1 -1
1 0 1 0 0 -1 -1 0 1
2 0 0 1 0o -1 0 -1 1
3 o 0 o 1 0 -1 -1 1
2f0 o0 o 0 1 0 0 -1
13 0o 0 0 0 O 1 0 -1
23 o 0o o0 o0 0 O 1 -1
22\0 0 O 0O O O 0 1

Every function f € L?(2%) comes in this way with two basis expansions:

FA) = > F(B)xs(A) = Y F(B)xH(A),

Be2X Be2X

where

~ ~

f(B) = (f,x3B), and f(B) = (f,xn)-

Here again we use the notation 3 to pronounce the similarity to har-
monic analysis. One can think as f as the “Fourier coefficient” of f.
Classically Fourier coefficients of a function f € L?([0,2r]) is given by
the expansion

'\(n)e%rinx

f(z) =

n

D8

o0

In our case the basis functions x g play the role of the exponential basis
functions and the multiplicativity

xB(AUA") =xB(A)xs(A")

corresponds to

627Ti(n+m)cv _ 627rin1‘627rimz )

Formally we are doing harmonic analysis on the semigroup (2%, U).
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We have Plancherel’s identity

(f.9)= Y F(B)GB) = ) F(B)AB).
Be2X

Be2X

For a subset A € 2% we define the shifted function f4 € L*(2%) by
fa(A)=f(Au A).

Then, R R
fa(B) = f(B)x&(A)
because
fa(A) = f(AuA) = > J(B)xp(AuA) = F(B)xs(A)xs(A).

Be2X Be2X

The convolution between two functions f, g € L?(2%) is

(f*9)(A) = (f.ga) = Y. F(B)3(B)xn(A),

Be2X

and so

—_

Fxg(B) = f(B)3(B).

Note that the convolution is not commutative.

Functions of positive type

Definition 5.2.2. We say that a function f € L?(2%) is of positive type if the
symmetric matrix My € 52" defined by

My (A, B) = f(Au B)
is positive semidefinite.

Because of the special structure of the matrix My, the entry My (A, B) only
depends on the union A u B, it is sometimes called the moment matrix of f.
The following theorem gives a characterization of functions of positive type.

A side remark: The theorem is in the spirit of Bochner’s theorem in har-
monic analysis which says that functions of positive type are the Fourier
transform of nonnegative measures.

Theorem 5.2.3. A function f € L?(2%) is of positive type if and only if it is of the
form

~

fA) = > F(B)xs(4), f(B)=0.

Be2X

In other words, the cone of all positive semidefinite moment matrices is a polyhedral
cone, even simplicial cone, with extreme rays

MB(A,A,) :XB(AUA/), BGQX.
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Proof. One direction follows immediately from the multiplicativity of xz. For
the other direction suppose that f € L?(2%X) has the expansion

fA) = > f(B)xs(A),

Be2X

where f(B’) < 0 for some B’ € 2X. Then,

D MpACANEAXEA) = Y F(BIxs(A v AN (A (4)
A ,Ae2X A A, Be2X
2
= > fB) ( > XB(A)XE’<A)>
Be2X Ae2X

= f(B)

< 0,
hence M/ is not positive semidefinite and f is not of positive type. O

5.2.2 Lasserre’s hierarchy

Now we are ready to construct the hierarchy and prove that it converges.

Equivalent reformulation

Since we are dealing with 0/1 problems we can assume that the polynomials
p1,--.,Dpm are square free, i.e. if one considers the polynomial p; as the univari-
ate polynomial in the variable «; then its degree is at most one.

We identify square free monomials

m =Ty Tiy - Ty € R[wy, .00, 0]

with elements in L?(2%) by

M = €4 ig,...i5} = Z X € L2(2x)7
A:AD{i1,in,...ri;}

where eg;, 4, ;) denotes an element of the standard basis in L?(X) (so we
even work with a third basis of L?(2X) here) and we extend this by linearity to
every square free polynomial.

Let a € {0,1}* be a binary vector and let A € 2% be the corresponding
subset, i.e. we have a, = 1 iff v € A. Warning: We will switch between 0/1
vectors and subsets without (another) warning.

Then we can evaluate a square free polynomial p by

p(a) = (p,xa) = P(A),

since
1 if{il,...,ij}gA,
0 otherwise.

(o) = |
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Example 5.2.4. Given are the set X = {1, 2, 3} and the polynomial p(xy, x2,23) =
2x1 + 3x1x9. Then

p(1,1,0) = (p,x12) = (T + xT2 + XT3 + XT23) + 3(xT2 + XTa3)s X12) = 5.
Theorem 5.2.5. Let
F={xe{0,1}" :pi(z) =2 0,...,pm(x) =0}

be the set of feasible solutions of the 0/1 polynomial optimization problem. Then a
function f € L*(2!") is of the form

F(A) = ) F(B)xs(4), with f(B) >0

beF
if and only if

a) f is of positive type,

b) p; = f is of positive type forall j = 1,...,m.

The geometric content of this theorem is actually pretty easy: Every
feasible solution b € F which is a 0/1-vectors corresponds to a subset
B < {1,...,n}. Now we consider the cone 2[" which is spanned by all
feasible solutions, meaning it is spanned by basis vectors xyz where B
corresponds to b € F. This is a polyhedral cone with |F| extreme rays
R=ox5. Now the Theorem says that f € L?(2["]) is an element of this
polyhedral cone iff conditions a) and b) are fulfilled. The advantage
of these two conditions is that they have an equivalent formulation in
terms of semidefinite matrices, namely that the moment matrices My
and M, are positive semidefinite.

Proof. We have

~

(ps = F)(A) = >} 55(B)F(B)xa(A).
Be2X
Suppose conditions a) and b) are satisfied. By Theorem|5.2.3|the function f can
be represented as
F(A) = ) F(B)xs(4)
Be2X

~ ~

with f(B) = 0. If strict inequality f(B) > 0 holds for some B then for every
j € {1,...,m} we have again by Theorem[5.2.3|

~ ~

pi(B)f(B) = p;(b)f(B) =0,

because p; * f is of positive type. Thus, p,(b) = 0 for all j and hence b € F. The
other implication follows with the same arguments. O
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Corollary 5.2.6. The 0/1 polynomial optimization problem (5.4) is equivalent to
the linear optimization problem

n

max Y. eif({i})

=1

f e L*(2%) is of positive type,

() =1,

p; * f is of positive type for all j € [m],

which is equivalent to the semidefinite program
max Y eiMy({i} {i})
i=1

My e S,
My (@, &) =1,
M, .y € 8%y forall j € [m].
Proof. The fact that these two optimization problems are equivalent follows
immediately from the definition of positive type functions.
Since we are maximizing a linear function we can assume that the optimum

fo of the first problem is attained at the extreme ray of the cone of positive type
functions. So it is of the form

Jo=axs
for some a > 0 and by the previous theorem for some b with p;(b) > 0 for all
j € [m]. Furthermore,

1= fo() = axp(D) = «

makes sure that one can recover an optimal 0/1 solution from fy. The objective
value is

Y af({ih) = X cixs({i}).

i=1

Probabilistic interpretation

The two conditions f(¢f) = 1 and f is of positive type have a simple probabilis-
tic interpretation: The second condition says that f is the Fourier transform of
a positive measure whereas the first condition says that the positive measure is
in fact a probability measure

1=f(2)= Y fBxs(@)= Y F(B).
Be2X Be2X

Hence, f determines a probability distribution on the power set 2X. The set B

~

is picked with probability f(B).
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Relaxation

Computationally, the equivalent reformulation in Corollary[5.2.6|is a rather use-
less statement: We exponentially increased the dimension of the problem and
so in a sense we are enumerating all feasible solutions. However, the reformu-
lation can be used to generate systematically valid non-linear inequalities, i.e.
projected LMI inequalities, for the 0/1 polytope P = conv F.

Instead of working with full moment matrices lying in sg’g we only consider
in the ¢-th step/round of Lasserre’s hierarchy truncated moment matrices where
the rows/columns are indexed by all subsets with cardinality at most ¢t + 1;

Notation: ( <ii1) .

For f € R(<zt+2) define the truncated moment matrix M}H e Sl<ivn) by
M, B) = f(AU B)

with A, B € ( <tX+1)‘ Let p be a squarefree polynomial of degree d

p= ZPIWI
I

with coefficients p; and monomials m; where I runs through a subset J of 2%
where every I € J has cardinality at most d. Then,

MV AB) = (px f)AUB) = Y f(TUAUB)
I

with A, B € (st+1{[d/2])'

Definition 5.2.7. Let pi,...,pm € R|z1,...,x,] be polynomials with degrees
di,...,d,,. Furthermore, let

v =max{[d;/2]: j e [m]}.
We define for t > v — 1 the t-th step in Lasserre’s hierarchy by
Ko = {(F({1}), . F({n})T e R : feRlsnsa),

() =1,
Mgt =0,

t+1—[d;/2] .
My 0, e [l
Optimizing over K; can be done in polynomial time once ¢ > v — 1 is a fixed
constant, i.e. independent of the input size. By the previous considerations we
have
K, 12K,2 KU+1 2...2 Kn+v71 =P
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5.2.3 Example: Independence number

Let us apply Lasserre’s hierarchy to the problem of finding the independence
number.
For this we consider the polynomials

Puv(x) =1—2y — 2y € R[m,, : v e V] forall {u,v} € E.
The 0/1 polytope
P =ST(G) = conv{z € {0,1}" : pyy > 0 for all {u,v} € E}

is called the stable set polytopeﬂ
The following theorem says that one can simplify the conditions of K} here.
In fact the semidefinite conditions on the matrices M s can be replaced by

the conditions f({u,v}) = 0 in the moment matrix M;H.

Theorem 5.2.8. Fort > 1 and f € ( <2‘t/+2) the following three statements are
equivalent:

a) M{*h = 0and M*, . >0 for all {u,v} € E,

*

b) M;“ > 0and f({u,v}) = 0 for every {u,v} € E,

¢) M{*' = 0and f(U) = 0 for every subset U € (_,, . ,) of the vertex set which
is not an independent set.

Proof. From M}*' > 0 we can conclude that f(U) > 0 for all U € (_,, ,)

because f(U) is a diagonal element of the positive semidefinite matrix M}Z“.
a) implies b): Consider the ({u}, {u})-entry of M/ . .. It equals (check this
identity!)
puv * f({u}) = —f({u, v})
Since it is a diagonal entry, it has to be non-negative. So f({u,v}) = 0.

b) implies c): Suppose u,v € U are connected by an edge.

First case: |U| < t + 1, then the ({u, v}, {u,v})-entry of M}Z“ equals 0, and
so the ({u, v}, U)-entry, too (why?). Hence also f(U) = M}“(U, U)=0.

Second case: |U| >t + 1. Split U into U = Uy u U, with Uy, Uy € (éz/ﬂ) and
assume {u,v} < U;. Then,

M (U, Uy) = 0 = M (UL, Uz) = 0= f(U) = M{TH(U,U) = 0.

¢) implies a): We shall prove that the matrix MI’:* P is positive semidefinite.
Define Py = (V\‘g’”}) and P, = {U u {w} : U € Py} for w € {u,v}. Then, the

1Sometimes independent sets are called stable sets, but who prefers stability over independence?
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principal submatrix of MJE.“ indexed by Py u P, u P, is of the form

PO Pu Pu
P, /[C A B
P A A O
P, \B 0 B

Since this matrix is positive semidefinite by assumption it follows that the matrix
C — A — B is positive semidefinite because

—xTCAB—x

x A A 0 r |=2"(C—A—- B)x.
T B 0 B T

Now consider the matrix M} . where we partition the rows/columns into P,
and its complement P§ = ( v )\Py. It has the form

<t+1
=) P
P (C—-—A-B 0
P 0 0
and the result follows. O

One can show (Exercise 5.1.c)) that Lasserre’s hierarchy already converges
at step a(G) — 1 to ST(G):

Theorem 5.2.9. For a graph G with o(G) > 2 we have

ST(G) = Ka(a)-1-

5.3 Further reading

Shor [4]] was the first who realized that one can use semidefinite programming
to relax quadratic optimization problems. Meanwhile there are many different
possibilities available to construct semidefinite programming hierarchies for 0/1
polynomial optimization problems. The one we studied in Section is due
to Lasserre [2]. Lasserre’s hierarchy and other hierarchies are presented and
compared by Laurent in [3].
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5.4 Exercises

5.1.** a) Show that the following two semidefinite programs give the same
optimal value:

max Z Yoo
veV
Y e SU1
Yoo = 1,
Yo, =Y, forallveV,
Yo =0 forall {u,v}eE,

and
HG) =max {(J, X)
Xe Sgo,
(I X) =1,
Xup =0 forall {u,v} € E.

b) Prove that the theta number of the cycle graph with five vertices C5
is exactly /5.

¢) Show that K (g)—1 = ST(G).
d) True or false? For all graphs G = (V, E) the following equality holds

ﬂ(G)=maX{Z zq,:zeKl}.

veV

5.2. (Computer exercise)

a) Do the following two ellipsoids intersect?

/9 1/9  1/9
Ey={xzeR3: 2" [1/9 13/36 13/36 |z <1},
1/9 13/36 49/36

V2 V22 —6v2\'
Ey=LzeR®:2" [v2 22 2v2 |a+|[-10v2] 2<1-13V2
V2 242 2v2+1 —10v/2
Solve a semidefinite program to justify your answer.
b) Let x1,...,zxy be N points in R%. Find a point € R? which min-

imizes the maximum Euclidean distance to these points. Compute
the point z for the cities Amsterdam, Athens, Berlin, Copenhagen,
Lisbon, Moscow, Prague, Warsaw. For this assume that Europe is part
of flatland. . .
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CHAPTER 6

GRAPH COLORING AND
INDEPENDENT SETS

In this chapter we revisit in detail the theta number ¢(G), which has already
been introduced in earlier chapters. In particular, we present several equivalent
formulations for ¥(G), we discuss its geometric properties, and present some
applications: for bounding the Shannon capacity of a graph, and for comput-
ing in polynomial time maximum stable sets and minimum colorings in perfect
graphs.

Here are some additional definitions used in this chapter. Let G = (V, E) be
a graph. Then, E denotes the set of pairs {i, j} of distinct nodes that are not
adjacent in G. The graph G = (V, E) is called the complementary graph of G. G
is self-complementary if G and G are isomorphic graphs. Given a subset S € V,
G[S] denotes the subgraph induced by S: its node set is S and its edges are all
pairs {i,j} € E with 4, j € S. The graph C,, is the circuit (or cycle) of length n,
with node set [n] and edges the pairs {i,7+ 1} (for i € [n], indices taken modulo
n). For a set S C V, its characteristic vector is the vector x° € {0,1}", whose
i-th entry is 1 if ¢ € S and 0 otherwise. As before, e denotes the all-ones vector.

6.1 Preliminaries on graphs

6.1.1 Stability and chromatic numbers

A subset S < V of nodes is said to be stable (or independent) if no two nodes
of S are adjacent in G. Then the stability number of G is the parameter a(G)
defined as the maximum cardinality of an independent set in G.
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A subset C' < V of nodes is called a clique if every two distinct nodes in C
are adjacent. The maximum cardinality of a clique in G is denoted w(G), the
clique number of G. Clearly,

w(G) = a(G).

Computing the stability number of a graph is a hard problem: Given a graph
G and an integer k, deciding whether a(G) > k is an N P-complete problem.

Given an integer k > 1, a k-coloring of G is an assignment of numbers (view
them as colors) from {1,--- ,k} to the nodes in such a way that two adjacent
nodes receive distinct colors. In other words, this corresponds to a partition of
V into k stable sets: V = 51 U --- U S, where S; is the stable set consisting of
all nodes that received the i-th color. The coloring (or chromatic) number is the
smallest integer k for which G admits a k-coloring, it is denoted as x(G).

Again it is an A/ P-complete problem to decide whether a graph is k-colorable.
In fact, it is N P-complete to decide whether a planar graph is 3-colorable. On
the other hand, it is known that every planar graph is 4-colorable - this is the
celebrated 4-color theorem. Moreover, observe that one can decide in polyno-
mial time whether a graph is 2-colorable, since one can check in polynomial
time whether a graph is bipartite.

Figure 6.1: The Petersen graph has a(G) = 4, w(G) = 2 and x(G) =3

Clearly, any two nodes in a clique of G must receive distinct colors. There-
fore, for any graph, the following inequality holds:

w(@) < x(G). (6.1)

This inequality is strict, for example, when G is an odd circuit, i.e., a circuit
of odd length at least 5, or its complement. Indeed, for an odd circuit Cs,, 11
(n = 2), w(Capy1) = 2 while x(Co,+1) = 3. Moreover, for the complement
G = Copy1, w(G) = n while x(G) = n + 1. For an illustration see the cycle of
length 7 and its complement in Figure 6.2.

6.1.2 Perfect graphs

It is intriguing to understand for which graphs equality w(G) = x(G) holds.
Note that any graph G with w(G) < x(G) can be embedded in a larger graph G
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Figure 6.2: For C7 and its complement C7: w(C7) = 2, x(C7) = 3, w(C7) =
a(Cr) =3, x(Cr) =4

with w(G) = (&), simply by adding to G a clique of size x(G). This justifies the
following definition, introduced by C. Berge in the early sixties, which makes
the problem well posed.

Definition 6.1.1. A graph G is said to be perfect if equality
w(H) = x(H)
holds for all induced subgraphs H of G (including H = G).

For instance, bipartite graphs are perfect. It follows from the definition and
the above observation about odd circuits that if G is a perfect graph then it does
not contain an odd circuit of length at least 5 or its complement as an induced
subgraph. Berge already conjectured that all perfect graphs arise in this way.
Resolving this conjecture has haunted generations of graph theorists. It was
finally settled in 2004 by Chudnovsky, Robertson, Seymour and Thomas who
proved the following result, known as the strong perfect graph theorem:

Theorem 6.1.2. (The strong perfect graph theorem) A graph G is perfect if
and only if it does not contain an odd circuit of length at least 5 or its complement
as an induced subgraph.

This implies the following structural result about perfect graphs, known as
the perfect graph theorem, already proved by Lovész in 1972.

Theorem 6.1.3. (The perfect graph theorem) If G is a perfect graph, then its
complement G too is a perfect graph.

We will mention below some other, more geometric, characterizations of
perfect graphs.

6.2 Linear programming bounds

Let ST(G) denote the polytope in RV defined as the convex hull of the charac-
teristic vectors of the stable sets of G:

ST(G) = conv{x® : S €V, S is a stable set in G},
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called the stable set polytope of G. Hence, computing «(G) is linear optimization
over the stable set polytope:

a(G) = max{e'z : x € ST(G)}.

We have now defined the stable set polytope by listing explicitly its extreme
points. Alternatively, it can also be represented by its hyperplanes representa-
tion, i.e., in the form

ST(G) = {z e RY : Az < b}

for some matrix A and some vector b. As computing the stability number is
a hard problem one cannot hope to find the full linear inequality description
of the stable set polytope (i.e., the explicit A and b). However some partial
information is known: several classes of valid inequalities for the stable set
polytope are known. For instance, if C is a clique of G, then the clique inequality

2(C) = Y wi <1 (6.2)
eC

is valid for ST(G): any stable set can contain at most one vertex from the clique
C'. The clique inequalities define the polytope

QST(G) = {x e R : 2 >0, (C) < 1 VC clique of G} (6.3)
and maximizing the linear function e'z over it gives the parameter
a*(G) = max{e'z : z € QST(G)}, (6.4

known as the fractional stability number of G. Clearly, QST(G) is a relaxation of
the stable set polytope:
ST(G) < QST(G). (6.5)

The parameter o*(G) is nested between a(G) and x(G), and it can also be
interpreted in terms of fractional colorings of G.

Lemma 6.2.1. For any graph G, we have
a(G) < a*(@) < x(G), (6.6)

and o*(Q) is equal to the optimal value of the linear program

min Z Yo - Z yex© =e, yo = 0VYC clique of G 3.  (6.7)
C clique of G C clique of G

Proof. The left most inequality in follows from the inclusion (6.5)) and the
right most one from the definitions: If z € QST(G) and V =C; v ---u (i is a
partition into k cliques, then
xle=az" (Z XCi) = x(Cz) < Z 1=k
i=1 i=1 i=1
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We now show that the optimal value of (6.7) is equal to o*(G). For this, first
note that in the linear program the condition z > 0 can be removed
without changing the optimal value; that is,

o* (@) = max{e'z : 2(C) < 1 VYC clique of G}.

Now, applying linear programming duality to this linear program, we obtain the
linear program (6.7)). O

For instance, for an odd circuit Co, 41 (n = 2), a*(Capy1) = 25 (check it)
lies strictly between a(Cs,11) = n and x(Capt1) = n + 1.

Assume that G is a perfect graph. Then equality holds throughout in relation
(6.6). Hence, when w € R is the all-ones vector, maximizing the objective
function w'x over the stable set polytope ST(G) or over its linear relaxation
QST(G) gives the same optimal values. The same holds if w is 0/1 valued since
this amounts to replacing G by its subgraph induced by the set of nodes with
w, = 1, which is again perfect. One can show that the same holds for any
integer vector w € ZY,, which implies that the two polytopes ST(G) and QST(G)
coincide. Moreover, this property characterizes perfect graphs.

Theorem 6.2.2. A graph G is perfect if and only if ST(G) = QST(QG).

Although an explicit linear inequality description is known for the stable
set polytope of a perfect graph (given by the clique inequalities), it is not clear
how to use this information in order to give an efficient algorithm for optimizing
over the stable set polytope. As we see later in Section[6.5.2]there is yet another
description of ST(G) - in terms of semidefinite programming, using the theta
body TH(G) — that allows to give an efficient algorithm.

6.3 Semidefinite programming bounds

6.3.1 The theta number

Definition 6.3.1. Given a graph G = (V, E), consider the following semidefinite
program

max {(J,X): Tr(X) = 1, X;y = 0¥{i,j} € B, X = 0}. (6.8)
Lax

Its optimal value is denoted as 9(G), and called the theta number of G.

This parameter was introduced by Lovasz [3]]. He proved the following sim-
ple, but crucial result — called the Sandwich Theorem by Knuth [2] — which
shows that ¥(G) provides a bound for both the stability number of G and the
chromatic number of the complementary graph G.

Theorem 6.3.2. (Lovasz’ sandwich theorem) For any graph G, we have that

a(G) < 9(G) < x(G).
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Proof. Given a stable set S of cardinality |S| = a(G), define the matrix

1
X = 7XS(XS)T e S,
S|
Then X is feasible for with objective value (J, X) = |S| (check it). This
shows the inequality o(G) < 9(G).
Now, consider a matrix X feasible for the program and a partition of V'
into k cliques: V = Cju- - -uCj. Our goal is now to show that {(J, X < k, which

will imply 9(G) < x(G). For this, using the relation e = ¥ | y7i, observe that

Y =

k
i=

k
(k;xci — e) (k;xci — e)T = k? Z XS (O — k.
1 i=1

Moreover,
k
X, )X (xcf‘)T> = Tr(X).
i=1

Indeed the matrix Y, x“ (x“?)" has all its diagonal entries equal to 1 and it
has zero off-diagonal entries outside the edge set of GG, while X has zero off-
diagonal entries on the edge set of G. As X,Y > 0, we obtain

0 <(X,Y)=k*Tr(X) — k(J, X)
and thus (J, X) < k Tr(X) = k. O

An alternative argument for the inequality 9(G) < x(G), showing an even
more transparent link to coverings by cliques, will be given in the paragraph
after the proof of Lemma|6.4.2

6.3.2 Computing maximum stable sets in perfect graphs

tion of Theorem [6.3.2) a(G) = x(G) = ¥(G) can be computed by solving the
semidefinite program (6.8), it suffices to solve this semidefinite program with
precision ¢ < 1/2 as one can then find «(G) by rounding the optimal value to
the nearest integer. In particular, combining with the perfect graph theorem
(Theorem|6.1.3)):

Assume that G is a graph satisfying a(G) = x(G). Then, as a direct applica-

Theorem 6.3.3. If G is a perfect graph then a(G) = X(G) = ¥(G) and w(G) =
X(G) = 9(G).

Hence one can compute the stability number and the chromatic number in
polynomial time for perfect graphs. Moreover, one can also find a maximum
stable set and a minimum coloring in polynomial time for perfect graphs. We
now indicate how to construct a maximum stable set — we deal with minimum
graph colorings in the next section.
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Let G = (V, E) be a perfect graph. Order the nodes of G as vy, - - ,v,. Then
we construct a sequence of induced subgraphs Gy, Gy, - - - , G,, of G. Hence each
G, is perfect, also after removing a node, so that we can compute in polynomial
time the stability number of such graphs. The construction goes as follows: Set
Go = G. Foreachi =1,--- ,n do the following:

1. Compute a(G;_1\v;).
2. IfOé(Gi_l\’Ui) = a(G), then set Gz = Gi_l\vi.
3. Otherwise, set G; = G;_1.

By construction, a(G;) = «(G) for all i. In particular, a(G,,) = «(G). Moreover,
the node set of the final graph G,, is a stable set and, therefore, it is a maximum
stable set of G. Indeed, if the node set of GG,, is not stable then it contains a node
v; for which o(G,\v;) = a(G,,). But then, as G,, is an induced subgraph of G;_1,
one would have that o(G,\v;) < a(G;—1\v;) and thus a(G;—1\v;) = a(G), so
that node v; would have been removed at Step 2.

Hence, the above algorithm permits to construct a maximum stable set in
a perfect graph G in polynomial time — namely by solving n + 1 semidefinite
programs for computing «(G) and «(G;—1\v;) fori =1,---  n.

More generally, given integer weights w € ZY, on the nodes, one can com-
pute in polynomial time a stable set S of maximum weight w(S). For this, one
can apply the algorithm just described for computing a maximum cardinality
stable set in the new graph G’ defined in the following way: Replace each node
1 € V by a set W, of w; nodes pairwise non-adjacent, and make two nodes
xz € W; and y € W; adjacent if  and j are adjacent in G. One can verify that G’
is perfect and that a(G’) is the maximum weight w(S) of a stable set S in G.

6.3.3 Minimum colorings of perfect graphs

We now describe an algorithm for computing a minimum coloring of a perfect
graph G in polynomial time. This will be reduced to several computations of
the theta number which we will use for computing the clique number of some
induced subgraphs of G.

Let G = (V,E) be a perfect graph. Call a clique of G maximum if it has
maximum cardinality w(G).

The crucial observation is that it suffices to find a stable set S in G which
meets all maximum cliques. Indeed, if such S is found then one can recursively
color G\S with w(G) — 1 colors (in polynomial time), and thus G with w(G)
colors. (Clearly, such a stable set S exists: any color class .S in a w(G)-coloring
must meet all maximum cliques as w(G\S) = x(G\S) = w(G) — 1.)

The algorithm goes as follows: For ¢ > 1, grow a list £ of ¢ maximum cliques
Cy,---,Cy. Suppose C1, - - - , C; have been found. Then do the following:

1. We find a stable set S meeting each of the cliques C4, - - - , C; (see below).
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2. Compute w(G\S).
3. fw(G\S) < w(G) then S meets all maximum cliques and we are done.

4. Otherwise, compute a maximum clique C;;; in G\S, which is thus a new
maximum clique of G, and we add it to the list L.

The first step can be done as follows: Set w = Zle x“ € ZY¥, and compute
a stable set S having maximum possible weight w(S), then w(S) = ¢t and S
meets C1,- -+, Cs.

The above algorithm has polynomial running time, since the number of iter-
ations is bounded by |V|. To see this, define the affine space L, = RY defined
by the equations z(C;) = 1,--- ,2(C;) = 1 corresponding to the cliques in the
current list £. Then, L; contains strictly L;, 1, since x° € L;\L;,1 for the set S
constructed in the first step, and thus the dimension decreases at least by 1 at
each iteration.

6.4 Other formulations of the theta number

6.4.1 Dual formulation

We now give several equivalent formulations for the theta number obtained by
applying semidefinite programming duality and some further elementary ma-
nipulations.

Lemma 6.4.1. The theta number can be expressed by any of the following pro-
grams:

IG) = teﬂgﬂg‘s”{t tI+A—J >0, A;; =0(t=j or {i,j}e E)}, (6.9)

IG) = teﬂngiIeISn {t:tI-B>0, B =1(i=jor {i,jle€ E)}, (6.10)

G)= min {t:C—J>0,Cy=t(ieV), Cy=0({ijleE)}, (6.11)

teR,CeS™
I(G) = in {Amax(B) : Bij =1 (i=jor {i,j} € E)}. (6.12)
Proof. First we build the dual of the semidefinite program (6.8), which reads:
teﬂglylélRE {t ctl + Z yijBij — J > O} . (6.13)
{i,jleE

As both programs and (6.13)) are strictly feasible, there is no duality gap:
the optimal value of (6.13) is equal to ¥(G), and the optimal values are attained
in both programs — here we have applied the duality theorem (Theorem [3.4.1)).

Setting A = Xy, ep¥ijBij B=J—Aand C =t[ + A i, it follows
that the program is equivalent to (6.9), (6.10) and (6.11)). Finally the
formulation follows directly from after recalling that \,..(B) is
the smallest scalar ¢ for which ¢t — B > 0. O
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6.4.2 Two more (lifted) formulations

We give here two more formulations for the theta number. They rely on semidef-
inite programs involving symmetric matrices of order 1 + n which we will index
by the set {0} U V, where 0 is an additional index that does not belong to V.

Lemma 6.4.2. The theta number ¥(G) is equal to the optimal value of the follow-
ing semidefinite program:

min {Zoo:Z >0, Zo; =Zy=1(i€V), Zij =0 ({i,j}e E)}. (6.14)
ZeSnt1

Proof. We show that the two semidefinite programs in and (6.14) are
equivalent. For this, observe that

4+ A—J =0 7= (t ¢! ) )

- e I+14A) =7
which follows by taking the Schur complement of the upper left corner ¢ in the
block matrix Z. Hence, if (¢, A) is feasible for (6.9), then Z is feasible for
with same objective value: Z,y = ¢. The construction can be reversed: if 7 is
feasible for (6.14), then one can construct (¢, A) feasible for with t = Zy.
Hence both programs are equivalent. O

From the formulation (6.14)), the link to the chromatic number is even more
transparent. Indeed, let k = x(G) and consider a partition V = C; U - - - U C}, of
the node set into k cliques. For each clique C; define the extended characteristic
vector z; = (1 x©i) e R*" obtained by appending an entry 1 to the character-
istic vector of C;. Define the matrix Z = Zfz L ziz] € S1*™. Then one can easily
check that the matrix 7 is feasible for the program with objective value

Zoo = k. Hence this shows again the inequality J(G) < x(G).

Applying duality to the semidefinite program (6.14), we obtairE] the follow-
ing formulation for ¥(G).

Lemma 6.4.3. The theta number ¥(G) is equal to the optimal value of the follow-
ing semidefinite program:

Yi: Y >0, Yo=1 Y=Y, (1eV), Y, =0{t,5}eFE) ;.
Yg}s%)il{i;/ i 00 0 (Z ) J ({l ]} )

(6.15)
Proof. One can verify that the dual program of (6.14) reads

max{— Z )/“ + 2YOL Y > 07 Y()O = 1, )/ij =0 ({Z,j} € E)} (616)
eV

LOf course there is more than one road leading to Rome: one can also show directly the equiva-

lence of the two programs and (6.15).
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(check it). As is strictly feasible (check it) there is no duality gap, the
optimal value of is attained and it is equal to ¥(G). Note that the pro-
gram ([6.15)) amounts to adding the constraints Y;; = Yp; (i € V) to the program
(6.16). In order to show that both programs and are equivalent,
it suffices to show that admits an optimal solution satisfying these addi-
tional constraints.

For this pick an optimal solution Y to (6.16). In a first step, we show that
Yo: +Y;; = 0foralli € V. Indeed, assume that Yy; + Y;; # 0 for some 7 € V.
Then, Y;; # 0. Let us multiply the i-th column and the i-th row of the matrix Y

by the scalar — ))g—" In this way we obtain a new matrix Y’ which is still feasible

2
for (6.16)), but with a better objective value: Indeed, Y}, = Y (— YOi) - Y

Yii Yii
2
and Y, = — ;f’ , so that the i-th term in the new objective value is
Y2
— (Vi +2Yg;) = % > —(Yii + 2Y0:).
2
Hence, Yy; = —Y;; for all i € V. Now, we can change the signs on the first row

and column of Y (indexed by the index 0). In this way we obtain a new optimal
solution of (6.16) which now satisfies the conditions: Y;; = Yy, forie V. O

As explained in Chapter 5 one can define a hierarchy of semidefinite bounds
for a(G), strengthening the theta number ¥(G). While ¢¥(G) is defined using
matrices indexed by {0} UV, these stronger bounds are obtained by considering
matrices indexed by larger index sets, thus lifting the problem in even larger
dimensions — see Section 5.2.3 for details.

6.5 Geometric properties of the theta number

6.5.1 Orthonormal representations

Definition 6.5.1. An orthonormal representation of GG, abbreviated as ONR, con-
sists of a set of unit vectors {uy, ..., u,} € R? (for some d > 1) satisfying

ujuj =0 V{i,j} e E.

If S is a stable set in GG and the u;’s form an ONR of G of dimension d, then
the vectors w; labeling the nodes of S are pairwise orthogonal, which implies
that d = «(G). It turns out that the stronger lower bound: d > ¥(G) holds.

Lemma 6.5.2. The minimum dimension d of an orthonormal representation of a

graph G satisfies: 9(G) < d.

Proof. Let ui,--- ,u, € R? be an ONR of G. Define the matrices U, = I,
U; = uu] € 8¢ for i € [n]. Now we define a symmetric matrix Z € S"*! by
setting Z;; = (U;,U;) for 4, j € {0} U [n]. One can verify that Z is feasible for the
program defining ¥(G) (check it) with Zyg = d. This gives 9(G) < d. O
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6.5.2 The theta body TH(G)

It is convenient to introduce the following set of matrices X € S"*!, where
columns and rows are indexed by the set {0} U V:

Mg = {YGSn+ISY00 =1, Yo, =Y (’LEV), Y;'j 20({1,]}€E)7 YZO},
(6.17)
which is thus the feasible region of the semidefinite program (6.15). Now let
TH(G) denote the convex set obtained by projecting the set Mg onto the sub-
space R" of the diagonal entries:

TH(G) = {x e RV : 3Y € M such that z; = Vj; Vie V}, (6.18)
called the theta body of G. It turns out that TH(G) is nested between ST(G) and
QST(G).

Lemma 6.5.3. For any graph G, we have that ST(G) < TH(G) < QST(G).

Proof. The inclusion ST(G) < TH(G) follows from the fact that the characteris-
tic vector of any stable set lies in TH(G) (check it). We now show the inclusion
TH(G) < QST(G). For this pick a vector € TH(G) and a clique C of G; we
show that 2(C) < 1. Say z; = Y}; for all i € V, where Y € M. Consider the
principal submatrix Y of Y indexed by {0} u C, which is of the form

1 xg
Yo = (»Tc Diag(xc)> ’
where we set zc = (2;)icc. Now, Yo > 0 implies that Diag(zc) — zcxl > 0

(taking a Schur complement). This in turn implies: e (Diag(z¢) — zczl)e = 0,
which can be rewritten as z(C) — (x(C))? > 0, giving z(C) < 1. O

In view of Lemma [6.4.3] maximizing the all-ones objective function over
TH(G) gives the theta number:

9(G) = max{e'z : x € TH(G)}.
zeRV
As maximizing e"x over QST(G) gives the LP bound o*(G), Lemma im-
plies directly that the SDP bound ¥(G) dominates the LP bound o* (G):
Corollary 6.5.4. For any graph G, we have that o(G) < ¥(G) < o*(G).

Combining the inclusion from Lemma with Theorem [6.2.2] we deduce
that TH(G) = ST(G) = QST(G) for perfect graphs. It turns out that these
equalities characterize perfect graphs.

Theorem 6.5.5. For any graph G the following assertions are equivalent.
1. G is perfect.
2. TH(G) = ST(G)
3. TH(G) = QST(G).
4. TH(G) is a polytope.
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6.5.3 More on the theta body

There is a beautiful relationship between the theta bodies of a graph G and of
its complementary graph G:

Theorem 6.5.6. For any graph G,
TH(G) = {r e RY; : 272 < 1Vz e TH(G)}.

In other words, we know an explicit linear inequality description of TH(G);
moreover, the normal vectors to the supporting hyperplanes of TH(G) are pre-

cisely the elements of TH(G). One inclusion is easy:
Lemma 6.5.7. If v € TH(G) and z € TH(G) then 27> < 1.

Proof. LetY € Mg and Z € Mg such that z = (Y};) and 2z = (Z;;). Let Z’ be
obtained from Z by changing signs in its first row and column (indexed by 0).
Then (Y,Z'y > 0 as Y, Z' > 0. Moreover, (Y, Z') = 1 — x"z (check it), thus
giving 27z < 1. O

Next we observe how the elements of TH(G) can be expressed in terms of
orthonormal representations of G.

Lemma 6.5.8. For z € RY,, z € TH(G) if and only if there exist an orthonormal
representation vy, . . ., v, of G and a unit vector d such that x = ((d"v;)?)icv.

Proof. Let d,v; be unit vectors where the v;’s form an ONR of G; we show that
x = ((d"v;)?) € TH(G). For this, let Y € S"*! denote the the Gram matrix of the
vectors d and (v d)v; for i € V, so that x = (Y};). One can verify that Y € Mg,
which implies z € TH(G).

For the reverse inclusion, pick Y € M and a Gram representation wy, w;
(i eV)of Y. Setd = wg and v; = w;/||w;| for i € V. Then the conditions
expressing membership of Y in M imply that the v;’s form an ONR of G,
|d| =1, and Y;; = (d"v;)? foralli e V. O

To conclude the proof of Theorem [6.5.6| we use the following result, which
characterizes which partially specified matrices can be completed to a positive
semidefinite matrix — you will prove it in Exercise 6.1.

Proposition 6.5.9. Let H = (W, F) be a graph and let a;; (i = j € W or
{i,j} € F) be given scalars, corresponding to a vector a € RW"“F. Define the
convex set

K,={YeSV:Y>0,Y,=a;Vi=jeWand {i,j} € F} (6.19)
(consisting of all possible positive semidefinite completions of a) and the cone
Cp=1{ZeSV:2>0, Z;; =0V{i,j} e F} (6.20)

(consisting of all positive semidefinite matrices supported by the graph H). Then,
K, # & if and only if

Z ai; iz + 2 Z aijZ,;j >0 VZelyg. (6.21)
iew (i.j)eF
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Proof. (of Theorem . Let z € RY, such that 2"z < 1 for all = € TH(G);
we show that € TH(G). For this we need to find a matrix Y € M such
that x = (Y;;):cv. In other words, the entries of Y are specified already at the
following positions: Yoo = 1, Yo; = Yi; = x; fori € V, and Y, j; = 0 for all
{i,7} € E, and we need to show that the remaining entries (at the positions of
non-edges of G) can be chosen in such a way that Y > 0.

To show this we apply Proposition where the graph H is G with an
additional node 0 adjacent to all : € V. Hence it suffices now to show that
Y,Zy=0forall Z e S{Z%}UV with Z;; = 0 if {i, j} € E. Pick such Z, with Gram
representation wo, wq, - -+ ,w,. Then wjw; = 0if {i,j} € E. We can assume
without loss of generality that all w; are non-zero (use continuity if some w;
is zero) and up to scaling that w, is a unit vector. Then the vectors w;/|w;||
(i € V) form an ONR of G. By Lemma (applied to G), the vector z € RV
with z; = (wlw;)?/|w;||* belongs to TH(G) and thus 2"z < 1 by assumption.
Therefore, (Y, Z) is equal to

T 2

wWpo W;

v 2 Saafut 3 aiol? > 3 (SRR 4 s+ fuil?)
eV eV eV le“

’lUT'lU‘ 2
= S (S8t} >0
]

eV
O

6.6 The theta number for vertex-transitive graphs

First we mention an inequality relating the theta numbers of a graph and its
complement.

Proposition 6.6.1. For any graph G = (V, E), we have that 9(G)J(G) = |V|.

Proof. Using the formulation of the theta number from (6.11]), we obtain ma-
trices C,C’ € 8" such that C — J,C' — J > 0, Cy; = J(G), C; = 9(G) for
i€V, Cy =0for{i,j} € Eand Cj; = 0 for {i,j} € E. Then, we have that
(C,I){C",Jy = {J,Jy =n?, and (C,C") = nI(G)I(G). Combining these facts
yields the desired inequality. O

We now show that equality ¥(G)9(G) = |V| holds for certain symmetric
graphs, namely for vertex-transitive graphs. In order to show this, one exploits
in a crucial manner the symmetry of G, which permits to show that the semidef-
inite program defining the theta number has an optimal solution with a special
(symmetric) structure. We need to introduce some definitions.

Let G = (V, E) be a graph. A permutation o of the node set V is called an
automorphism of G if it preserves edges, i.e., {i,j} € F implies {o(i),0(j)} € E.
Then the set Aut(G) of automorphisms of G is a group. The graph G is said to
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be vertex-transitive if for any two nodes i, j € V there exists an automorphism
o € Aut(G) mapping i to j: o(i) = j.

The group of permutations of V' acts on symmetric matrices X indexed by
V. Namely, if o is a permutation of V' and P, is the corresponding permutation
matrix (with P, (i,7) = P, for all i, j € V), then one can build the new
symmetric matrix

O’(X) = P,,XP[;I— = (Xa(i),a(j))’i,jEV'

If o is an automorphism of G, then it preserves the feasible region of the
semidefinite program defining the theta number ¥(G). This is an easy,
but very useful fact.

Lemma 6.6.2. If X is feasible for the program and o is an automorphism
of G, then o(X) is again feasible for (6.8), moreover with the same objective value
as X.

Proof. Directly from the fact that (J,0(X)) = {(J, X), Tr(c(X)) = Tr(X) and
0(X)ij = Xo(i)o(j) = 0if {i, j} € E (since ¢ is an automorphism of G). O

Lemma 6.6.3. The program has an optimal solution X* which is invariant
under action of the automorphism group of G, i.e., satisfies c(X*) = X* for all
o € Aut(G).

Proof. Let X be an optimal solution of (6.8). By Lemmal[6.6.2] o(X) is again an
optimal solution for each o € Aut(G). Define the matrix

1
= tauey] 2 7%

oeAut(G)

*

obtained by averaging over all matrices o(X) for 0 € Aut(G). As the set of
optimal solutions of is convex, X* is still an optimal solution of (6.8).
Moreover, by construction, X * is invariant under action of Aut(G). O

Corollary 6.6.4. If G is a vertex-transitive graph then the program has an
optimal solution X* satisfying X} = 1/nforalli e V and X*e = @e.

Proof. By Lemma there is an optimal solution X* which is invariant
under action of Aut(G). As G is vertex-transitive, all diagonal entries of X*
are equal: Indeed, let i, € V and o € Aut(G) such that (i) = j. Then,
Xj; = Xo(iyo(iy = Xii- As Tr(X*) = 1 we must have X = 1/n for all . Analo-
gously, the invariance of X* implies that >}, .\, X5 = >}, X7 foralli, j, ie.,
X*e = Xe for some scalar A. Combining with the condition (J, X*) = 9J(G) we
obtain that A = 29}, O

n

Proposition 6.6.5. If G is a vertex-transitive graph, then 9(G)J(G) = |V|.
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Proof. By Corollary|6.6.4} there is an optimal solution X* of the program
defining ¥(G) which satisfies X, = 1/n for i € V and X*e = @e. Then

ﬁ’zbé)X * — J > 0 (check it). Hence, t = -7~ and C' = "~ X* define a feasible

(e 9(C)
solution of the program (6.11) defining ¥(G), which implies ¥(G) < n/9(G).
Combining with Proposition we get the equality ¥(G)J(G) = |V|. O

For instance, the cycle C,, is vertex-transitive, so that
IC)I(Cy) = n. (6.22)
In particular, as C5 is isomorphic to C5, we deduce that
9(Cs) = V5. (6.23)

For n even, C, is bipartite (and thus perfect), so that J(C,) = a(C,) = %
and ¥(C,) = w(C,,) = 2. For n odd, one can compute ¥(C,,) using the above

symmetry reduction:
Proposition 6.6.6. For any odd n > 3,

IC) = ncos(m/n) and 9T, = 1+ cos(m/n)

1+ cos(m/n) cos(m/n)

Proof. As9¥(C,,)9¥(C,) = n, it suffices to compute J(C,,). We use the formulation
. As C,, is vertex-transitive, there is an optimal solution B whose entries
are all equal to 1, except B;; = 1 + z for some scalar z whenever |i — j| = 1
(modulo n). In other words, B = J + zA¢,, where A¢, is the adjacency
matrix of the cycle C,,. Thus ¥(C,,) is equal to the minimum value of \,,.x(B)
for all possible z. The eigenvalues of A, are known: They are w® + w™*
(for k = 0,1,--- ,n — 1), where w = e’ is an n-th root of unity. Hence the
eigenvalues of B are

n+ 2z and (W +w k) fork=1,--- ,n—1. (6.24)
We minimize the maximum of the values in (6.24) when choosing « such that
n + 2z = —2x cos(w/n)

(check it). This gives 9(Cy,) = Amax(B) = —2u cos(r/n) = {1tTL. O

6.7 Bounding the Shannon capacity
The theta number was introduced by Lovasz [3] in connection with the problem

of computing the Shannon capacity of a graph, a problem in coding theory
considered by Shannon. We need some definitions.
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Definition 6.7.1. (Strong product) Let G = (V,E) and H = (W, F) be two
graphs. Their strong product is the graph denoted as G - H with node set V- x W
and with edges the pairs of distinct nodes {(i,r),(j,s)} € V. x W with (i = j or
{i,j} € E) and (r = s or {r,s} € F).

If S € Visstable in G and T < W is stable in H then S x T is stable in
G - H. Hence, o(G - H) > a(G)a(H). Let G* denote the strong product of k
copies of GG, we have that
a(G") = (a(G))".

Based on this, one can verify that

O(G) = sup v/ a(GF) = 1}1_>Hclc A a(GF). (6.25)

k=1

The parameter ©(G) was introduced by Shannon in 1956, it is called the Shan-
non capacity of the graph G. The motivation is as follows. Suppose V is a finite
alphabet, where some pairs of letters could be confused when they are trans-
mitted over some transmission channel. These pairs of confusable letters can
be seen as the edge set E of a graph G = (V, E)). Then the stability number of
G is the largest number of one-letter messages that can be sent without dan-
ger of confusion. Words of length k correspond to k-tuples in V*. Two words
(i1, ,ix) and (j1,--- ,Jjir) can be confused if at every position % € [k] the two
letters 45, and j, are equal or can be confused, which corresponds to having an
edge in the strong product G*. Hence the largest number of words of length k
that can be sent without danger of confusion is equal to the stability number of
G* and the Shannon capacity of G represents the rate of correct transmission of
the graph.

For instance, for the 5-cycle Cs, a(Cs) = 2, but a((C5)?) = 5. Indeed,
if 1,2,3,4,5 are the nodes of C5 (in this cyclic order), then the five 2-letter
words (1,1), (2,3), (3,5), (4,2), (5,4) form a stable set in G2. This implies that

Determining the exact Shannon capacity of a graph is a very difficult prob-
lem in general, even for small graphs. For instance, the exact value of the
Shannon capacity of Cs was not known until Lovasz [3] showed how to use the
theta number in order to upper bound the Shannon capacity: Lovasz showed
that ©(G) < ¥(G) and ¥(Cs) = /5, which implies that ©(Cs) = +/5. For in-
stance, although the exact value of the theta number of C5,, 1 is known (cf.
Proposition [6.6.6), the exact value of the Shannon capacity of Cs,1 is not
known, already for C-.

Theorem 6.7.2. For any graph G, we have that O(G) < ¥(G).

The proof is based on the multiplicative property of the theta number from
Lemma — which you will prove in Exercise 6.2 — combined with the fact
that the theta number upper bounds the stability number: For any integer k,
a(G*) < I(GF) = (9(G))* implies £/a(G*) < J(G) and thus O(G) < I(G).
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Lemma 6.7.3. The theta number of the strong product of two graphs G and H
satisfies V(G - H) = ¢(G)I(H).

As an application one can compute the Shannon capacity of any graph G
which is vertex-transitive and self-complementary (e.g., like Cj).

Theorem 6.7.4. If G = (V, E) is a vertex-transitive graph, then ©(G - G) = |V|.
If, moreover, G is self-complementary, then ©(G) = +/|V|.

Proof. We have ©(G - G) > a(G - G) = |V|, since the set of diagonal pairs

i,i) : i € V} is stable in G - G. The reverse inequality follows from Lemma
combined with Proposition[6.6.5t ©(G - G) < 9(G -G) = I(G)I(G) = |V|.
If GG is isomorphic to G then O(G - G) = O(G?) = (O(G))? (check the rightmost
equality). This gives O(G) = +/[V]. O

6.8 Further reading

In his seminal paper [3[], Lovasz gives several equivalent formulations for the
theta number, and relates it to the Shannon capacity and to some eigenvalue
bounds. It is worth noting that Lovasz’ paper was published in 1979, thus be-
fore the discovery of polynomial time algorithms for semidefinite programming.
In 1981, together with Grotschel and Schrijver, he derived the polynomial time
algorithms for maximum stable sets and graph colorings in perfect graphs, based
on the ellipsoid method for solving semidefinite programs. As of today, this is
the only known polynomial time algorithm — in particular, no purely combina-
torial algorithm is known.

Detailed information about the theta number can also be found in the survey
of Knuth [2] and a detailed treatment about the material in this chapter can be
found in Chapter 9 of Grotschel, Lovasz and Schrijver [1]. In particular, proofs
of the geometric characterizations of perfect graphs in Theorems and
can be found there. Weighted versions of the theta number are considered there,
replacing the all-ones objective function e'x by w'x where w € ZY,. One can
give equivalent characterizations, analogue to those we have given for the all-
ones weight function. We have restricted our exposition to the all-ones weight
function for the sake of simplicity.

6.9 Exercises

6.1 Show the result of Proposition

6.2** The goal is to show the result of Lemma about the theta number of
the strong product of two graphs G = (V, E) and H = (W, F'):

9(G - H) = 9(G)0(H).

(a) Show that 9(G - H) = 9(G)I(H).
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6.3

(b) Show that ¥(G - H) < ¥(G)¥(H).

Hint: Use the primal formulation for (a), and the dual formulation
for (b), and think of using Kronecker products of matrices in order
to build feasible solutions.

Let G = (V = [n], E) be a graph. Consider the graph parameter

1
91(G) = mi —_—
1(G) Frrra (cTu;)2’

where the minimum is taken over all unit vectors ¢ and all orthonormal
representations uy, - - - , u, of G.

Show that ¥(G) = 91(G).

Hint: For the inequality 9(G) < 91 (G) think of using the properties of the
theta body from Section For the inequality 9, (G) < 9(G), use an

optimal solution B of the dual formulation (6.10) for ¢¥(G) to build the
vectors ¢, u;.
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CHAPTER 7

APPROXIMATING MAX CUT
AND THE CUT NORM

The maximum cut problem (MAX CUT) is the following problem in combina-
torial optimization. Let G = (V, F) be an undirected graph with vertex set V'
and edge set £ (Y ), where edges e = {u,v} € E are two-element subsets of
the vertex set. With every edge e = {u,v} we associate a nonnegative weight
wyy. Since the graph is undirected we assume that the weights are symmetric
Wyy = Wyy. Furthermore, w,, = 0 whenever {u,v} ¢ E. We incorporate all
the weights into a symmetric matrix W = (w,,) € SV. The MAX CUT problem
seeks for a partition of the vertex set V' into two parts V' —, VT, cutting the graph
into two pieces, so that the sum of edges connecting V'~ and V', the weight of
the cut w(V—, V™), is maximized:

w(V=,VT) = Z Wy

ueV— weVt

It is known that the maximum cut problem is an NP-complete problem. So
unless the complexity classes P and NP coincide there is no efficient polynomial-
time algorithm which solves MAX CUT exactly. In fact, MAX CUT was one of
the first problems which were proved to be NP-complete: It is one of Karp’s 21
NP-complete problems. Even stronger, Hastad in 2001 showed that it is NP-hard
to approximate MAX CUT within a factor of % = 0.941... This is in sharp
contrast to the MIN CUT problem, where we want to minimize the weight of a
non-trivial cut. The MIN CUT problem (and its dual, the MAX FLOW problem)
can be solved using linear programming.

On the positive side, one can compute an 0.878...-approximation of MAX
CUT in polynomial time, using semidefinite programming. This algorithm, due
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to Goemans and Williamson [2], is one of the most influential approximation
algorithms which are based on semidefinite programming.

A problem which is related to (in fact a generalization of) MAX CUT is find-
ing the cut norm of a matrix. Let A = (A4;;) € R™*" be a real matrix. The cut

norm of A is
2 A

iel jeJ

All~ =
IAlo repmax

Computing the cut norm of a matrix has many applications in combinatorics, es-
pecially in graph theory. Examples are finding Szemerédi partitions in graphs, or
finding maximum acyclic subgraphs. As the cut norm is a generalization of the
MAX CUT problem we only can hope for efficient approximations. Today in this
lecture we link the cut norm with Grothendieck’s inequality, a famous inequality
in functional analysis from an even more famous mathematician. Thereby we
will derive another approximation algorithm based on semidefinite program-
ming which is due to Krivine from 1979 (although this connection was only
found in 2006).

7.1 The algorithm of Goemans and Williamson

7.1.1 Semidefinite relaxation

We now want to describe the Goemans-Williamson algorithm. For this we first
reformulate MAX CUT as a (non-convex) quadratic optimization problem hav-
ing quadratic equality constraints. We start by recalling the construction of
the semidefinite relaxation of the MAX CUT problem which we already saw in
Chapter 2 and Chapter 5.

With every vertex of the graph u € V we associate a binary variable x, €
{—1,+1} which indicates whether v liesin V- or V*,ie.u e V- ifz, = —1
and v € V* if z, = +1. We model the binary constraint x,, € {—1,+1} as a
quadratic equality constraint

For two vertices u,v € V we have
1 —xy2, €{0,2}.

This value equals to 0 if u and v lie on the same side of the cut and the value
equals to 2 if v and v lie on different sides of the cut. Hence, one can express
the weight of a cut, which is defined by the variables z,, € {—1, +1}, by

w(V=, V) = % (; Z Wyo (1 — muxv)> )

u,veV
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Now, the MAX CUT problem can be equivalently formulated as

MAXCUT(W) = max {i Z Wy (1 — zyxy) xi =1,ue V} .

u,veV

If we replace in this optimization problem the scalar variables x,, € {—1, +1}
by vector variables y, € RV lying in |V|-dimensional Euclidean space, and the
product z,, by the inner product y, -y, = 3 y,, then the we get the following
vector optimization problem:

1
SDP(W) =max{4 Z Wao (1= Yu - Yo) * Yu - Yu = 1,ueV}.

u,veV

Because y, -y, = 1, we see that the vectors ,, lie on the unit sphere S!VI~1. Note
also, that every feasible solution z,, of the original problem can be transformed
into a feasible solution of the vector optimization problem. We simply set y,, =
(24,0,...,0)T. This means that the maximum value of the vector optimization
problem is at least the value of MAX CUT, thus SDP(IW) > MAXCUT(W).

We proceed by showing two things: First, it is not difficult to realize that the
vector optimization problem can be reformulated as a semidefinite program.
Second, we shall prove that the maximum of the vector optimization problem is
not too far from the optimal value of the original MAX CUT problem. We show
that the inequality

SDP(W) = MAXCUT(W) > 0.878... - SDP(W)

holds for all symmetric weight matrices W = (w,,,, ) with nonnegative entries w,,.
To show that the vector optimization problem is a semidefinite program we
introduce the inner product matrix of the vectors y,,:

Y = (yu : yv)u,vEV :

The matrix Y is a positive semidefinite matrix whose diagonal elements are all
equal to one. Furthermore,

1
Z Z ’Ujuu(l yu = Z Wyv — W Y>
u,veV u,veV

So it suffices to minimize the trace inner product (W, Y") in order to solve the
vector optimization problem. Hence, solving the following semidefinite pro-
gram gives the value of SDP(W):

SDP(W Z Wy — mm{<WY> Y > 0,{Eu,Y)=1ueV},

u,veV

where FE,, denotes the matrix which has a one at position (u,«) and zeros in
all other positions.
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A

Figure 7.1: Views on spectrahedron behind the semidefinite relaxation.

The figure above illustrates the set of feasible solutions in the case of 3 x 3
matrices. It is an inflated tetrahedron. These figures were generated by the
program jSurfer (http://www.imaginary-exhibition.com/).

1
Y=|[=z >0 == 1+22yz — 2> —y* =22 >0, x,y,2z€ [-1,1].
Y

SIS
— a e

7.1.2 Analysis of the algorithm

Theorem 7.1.1. For all matrices W = (w,,) with nonnegative weights we have
the inequality

SDP(W) > MAXCUT(W) > 0.878... - SDP(W).

Proof. The proof is algorithmic and it gives an approximation algorithm which
approximates the MAX CUT problem within a ratio of 0.878.... The Goemans-
Williamson algorithm has five steps:

1. Solve SDP(W) obtaining an optimal solution Y.
2. Perform a Cholesky decomposition of Y to find y, € SIVI=!, with u € V.

3. Choose a random vector r € S!VI=! according to the rotationally invariant
probability distribution on the unit sphere.

4. Define a cut by x,, = sign(y, - r), forue V.

5. Check whether iZu,vev Wyo (1 — 242,) = 0.878...- SDP(W). If not, go
to step 3.

The following lemma, also known as Grothendieck’s identity, is the key to the
proof of the theorem.
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Lemma 7.1.2. Let x,y be unit vectors and let r be a random unit vector chosen
according to the rotationally invariant probability distribution on the unit sphere.
Then, the expectation of the random variable sign(z - r)sign(y - r) € {—1,+1}
equals

2
E[sign(x - r)sign(y - r)] = — arcsinx - y.
™
Proof. By definition, the expectation can be computed as

E[sign(z - r)sign(y - r)] =(+1) - P[sign(x - r) = sign(y - r)]
+ (1) - P[sign(z - r) # sign(y - r)].
Note that
Plsign(z - r) # sign(z - r)] = 1 — P[sign(z - r) = sign(y - )],

so that we only have to compute the probability that the signs of x - r and y - r
are the same. Since the probability distribution from which we sample the unit
vector r is rotationally invariant we can assume that z,y and r lie in a common
plane and hence on a unit circle and that r is chosen according to the uniform
distribution on this circle. Then the probability that the signs of z - r and y - r
are the same only depends on the angle between x and y. Using a figure (draw
one!) it is easy to see that

1 1
P[sign(z - r) = sign(y - r)] = 2- — arccosx - y = — arccos - y.
2m m
Now,

1 1
E[sign(z - r)sign(y -r)] = —arccosx-y— (1 — —arccosz -y)
71' ™

—arcsinx -y,
s
where we used the trigonometric identity
. s
arcsint + arccost = 3

to get the desired result. O

Let us apply Grothendieck’s identity: Using elementary univariate calculus
one can show that
1 — E[sign(x - r)sign(y -7)] 11— % arcsint

= > 0.878..., 1
1l—z-y 1—1 7.1

holds, where ¢t = = -y € [—1,1]. To “see” this one can also plot the function
using SAGE:
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plot((1-2/pi*arcsin(x))/(1-x), (x,-1,1))
plot((1-2/pi*arcsin(x))/(1-x), (x,-0.73,-0.62))

This can be used to estimate the ratio between MAXCUT (W) and SDP(W).
Clearly,

1
MAXCUT(W) > E [4 D wa(1 = zyy)

u,veV

By linearity of expectation,
Elp 3wl —wua) [ =7 D) wi(l = Elrar,])
4 wuv ‘/L.’U,:'C’U - 4 w’U/U (Euxv N
u,veV u,veV
Since wy,,, is nonnegative we can go on by estimating
1 —E[zuz,] = 1 — E[sign(yu - 7) sign(y, - )]
in every summand using (7.I)) getting
E[(1 — 2424)] = 0.878 ... (1 — Yo * Yo)-

Putting it together,

1
MAXCUT(W) = ]E - Z wuv(l - :Eu:rv)
4
u,veV
1
> 08787 D) wu(l—yu w)
u,veV
= 0.878...-SDP(W),
which proves the theorem. O

We finish the explanation of the Goemans-Williamson algorithm by some
further remarks. The steps 3. and 4. in the algorithm are called a randomized
rounding procedure because a solution of a semidefinite program is “rounded”
(or better: projected) to a solution of the original combinatorial problem with
the help of randomness.
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Note also that because the expectation of the constructed solution is at least
0.878 - -- - SDP(W) the algorithm eventually terminates; it will pass step 5 and
without getting stuck in an endless loop. One can show that with high proba-
bility we do not have to wait long until the condition in step 5 is fulfilled.

7.1.3 Remarks on the algorithm

One can modify the Goemans-Williamson algorithm so that it becomes an al-
gorithm which runs deterministically (without the use of randomness) in poly-
nomial time and which gives the same approximation ratio. This was done by
Mahajan and Ramesh in 1995.

It remains to give a procedure which samples a random vector from the unit
sphere. This can be done if one can sample random numbers from the standard
normal (Gaussian) distribution (with mean zero and variance one) which has
probability density

Jla) = =2,

Many software packages include a procedure which produces random numbers
from the standard normal distribution. SAGE:

sage: T = RealDistribution(’gaussian’, 1)
sage: T.get_random_element ()
0.818610064197

If we sample n real numbers z1, ..., z, independently uniformly at random
from the standard normal distribution, then, the vector
_ 1 T n—1
r=———7—/9—o6°—"—(r1,...,&,) €S

24 ... 2
Ty + + x5

is distributed according to the rotationally invariant probability measure on the
unit sphere.

7.2 Cut norm and Grothendieck’s inequality

7.2.1 Cut norm of a matrix

The cut norm of a matrix A = (4;;) e R™*™ is

22 Ais

i€l jeJ

Al- =
H HD Ig[gj]l,afg[n]

Related to the cut norm is the following norm which is given as a quadratic
optimization problem

m

|Allooo1 = max{z Z Ajjxiy;: z2 = ng =1,ie[m],je [n]} .

i=1j=1
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The notation |A[«—1 indicates that this is an operator norm of an op-
erator mapping the space /7, to the space ¢7*. We will not use this fact
here.

Lemma 7.2.1. Let A € R™*™ be a matrix.

a) We have the relation

A Aln = Aot = [Aln
b) If the row sum and the column sum of A are both 0, we have

1
I4lo = 71Alo—1.

¢) There exists a matrix B € RMTU*(+1) with row sum and column sum
equal to zero such that
|Alg = [Blo-

Proof. a) For z;,y; € {+1} we split

Z ij il = Z Aij + Z Aij

INgE

i=1j=1 (i.d)wi=1,y;=1 (irf)wi=—1,y;=—1
- X A Ay
(i,3):xi=1,y;=—1 (4,5):wi=—1,y;=1

and every term is bounded in absolute value from above by |A|, hence the
first inequality 4| A|5 = | Alleo—1 follows.
For the other inequality let I < [m] and J < [n] be given so that

Z Ayl

iel,jeJ

|Allo =

Define z; = 1ifie [ and z; = —1if ¢ ¢ I and similarly y; = +1. Then,

1+x; 1 +y;
Mo =3, 4555

©J vJ 2% i,j

This proves the second inequality | A5 < ||A]|«-1 because the absolute value
of every of the four summands is at most || A|—1-

b) The second statement of the lemma follows by looking at and ap-
plying the additional assumption.

¢) Simply construct B by adding a row and a column to A such that the row
sum and the column sum are equal to 0. Checking that | A|5 equals || B is an
exercise. O

(7.2)
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The following construction shows that computing the cut norm of a matrix
is at least as difficult as computing the MAX CUT of a graph. Let G = (V, E) be
a graph with n vertices vq,...,v, and m edges e, ..., ey, and let W = (wj;) €
SV be a weight matrix with nonnegative weights. Now we define a matrix
A € R?™*" whose cut norm coincides with MAXCUT(W). For this orient the
edges of the graph in some arbitrary way. If e, is arc from v; to v;, then we set

Agi1j = Agik = Wik, Ai_ip = Azij = —wjp.
All other entries of A are zero.

Lemma 7.2.2. Using the construction above we have
1
MAXCUT(W) = 7 - A1 = |4]o-

Proof. Exercise 7.3 (a). O

7.2.2 Grothendieck’s inequality

The semidefinite relaxation of || A[s—1 is

SDPy,1(A4) = max {Z D7 Aijuivg < ugl = Jvs| = 1,i € [m],j [n]}7

i=1j=1

where we optimize over m + n unit vectors u;,v; € R™*". Note that this opti-
mization problem is indeed a semidefinite program (why?).

Theorem 7.2.3 (Grothendieck’s inequality). There is a constant K so that for all
matrices A € R™*™ the inequality

[A]eo—1 < SDPe1(A) < K[| Al o1
holds.

The smallest constant K for which the second inequality holds, is called the
Grothendieck constant K¢. It is known to lie between 1.676... and 1.782... but
its exact value is currently not known. In the following we will prove that

™

< ————— = 1.782...
2In(1 +v/2)

Kg

The argument will also rely on an approximation algorithm which uses random-
ized rounding (in a tricky way).

Thereby, and using Lemma (7.2.1] we find an algorithm which approximates
the cut norm within a factor of (1.782...)~! = 0.561...
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7.2.3 Proof of Grothendieck’s inequality

1. Solve SDP,_,1(A). This gives optimal unit vectors
Uty .oy U, UL, ..., Up € S™FTTL

2. Use these unit vectors to construct new unit vectors

1 1 / / m+n—1
Uy ey Upy, Uy eee s Uy €5

according to Krivine’s trick presented in Lemma below.

3. Choose a random vector r € S™*+"~! according to the rotationally invari-
ant probability distribution on the unit sphere.

4. Randomized rounding: Set

x; = sign(ug - ), y; = sign(vj - r).

We analyze the expected quality of the solution z;, y;. By linearity of expec-
tation we have

SDPy1(A) = E [Z Z Az yjl = Z Z A ;E [Sign(ug -7) sign(v} . 7")] .
i=1j=1 i=1j=1

Now by Lemma the last expectation will turn out to be Su; - v;. Then the
total sum will be equal 3SDP,_,1(A) and hence K¢ < 871.

Now the following lemma, Krivine’s trick, finishes the proof of Theorem

Lemma 7.2.4. Let uq,..., U, and vy, ..., vy, be unit vectors in R™*™. Then there
b ) b b
exist unit vectors u’, ..., ul, and v{,..., v}, in R™*" such that

E [sign(u; - r) sign(v} - )] = Bu; - vy,

holds with )
B="In(l++2)=0561...
™

Proof. Define the function E : [-1,+1] — [—1,+1] by E(t) = 2 arcsint. Then
by Grothendieck’s identity, Lemma [8.2.2]

E [sign(u; - ) sign(v] - r)] = E(u; - v}).
Now the idea is to invert the function E so that we have
u vy = E~Y(Bu; - v;)

and use the series expansion

[ee]
E7Nt) = )] garnat™
r=0
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which is valid for all ¢ € [-1, 1] to define v and v’.

For this define the infinite dimensional Hilbert space
0
(_D Rm-‘rn ®2r+1

and the vectors u;,v; € H componentwise by

(u;), = sign(gar+1)V |92T+1|ﬁ27‘+1u§927’+1

and
() = V/Igar 1 B TE .
Then
0
= 20 92187 g 0y)* T = BTN (Bug - vy)
r=0
and

o0
1 = U; u; = ’U-;» 1}5 = Z ‘92r+1|/62r+1,
r=0

which defines the value of 8 uniquely.
It’s a fun exercise to work out 3 explicitly: We have

2
E(t) = — arcsint,
77
and so

Hence,
2r+ 1

(53)"" -sun (39).

B = 2arsinh 1= 2 In(1 + v/2)
s ™

-5

r=0

2r+1

which implies

because arsinh ¢ = In(¢ + /2 + 1). O

Last concern: How to find/approximate uj, v} in polynomial time? Answer:
we approximate the inner product matrix

o0

(u; U;) = Z 92r+152r+1 ((uz -Uj)27'+1)

r=0

by its series expansion which converges fast enough and then we use its Cholesky
decomposition.
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7.3 Further reading

How good is the MAX CUT algorithm? Are there graphs where the value of the
semidefinite relaxation and the value of the maximal cut are a factor of 0.878...
apart or is this value 0.878. .., which maybe looks strange at first sight, only an
artefact of our analysis? It turned out that the value is optimal. In Exercise 7.1
(b) you will see that already for the 5-cycle C5 the gap is close to 0.878.... In
2002 Feige and Schechtmann gave an infinite family of graphs for which the
ratio MAXCUT /SDP converges to exactly 0.878.... This proof uses a lot of
nice mathematics (continuous graphs, Voronoi regions, isoperimetirc inequal-
ity) and it is explained in detail in the Chapter 8 of the book Approximation
Algorithms and Semidefinite Programming of Gartner and Matousek.

Rather recently in 2007, Khot, Kindler, Mossel, O’'Donnell showed that the
algorithm is optimal in the following sense: If the unique games conjecture is
true, then there is no polynomial time approximation algorithm achieving a bet-
ter approximation ratio than 0.878... unless P = NP. Currently, the validity
and the implications of the unique games conjecture are under heavy investi-
gation. The topic of the unique games conjecture is too hot for this course,
although it is very fascinating. The book of Gartner and Matousek also contains
an introduction to the unique games conjecture.

How good is the upper bound Ks? Finding the value of Ky is an long-
standing open problem. The best-known lower bound is 1.676... by unpub-
lished work of Davie and Reeds.

It was widely believed that Krivine’s analysis gives the right value of K.
So it came as a shock (at least to the author of these notes) when Braverman,
Makarychev, Makarychev, and Naor proved in 2011 that one can improve it
slightly, by a clever modification of Krivine’s trick and much more complicated
computations.

Alon and Naor [2] discovered the connection between the cut norm and
Grothendieck’s inequality in 2006. Since then Grothendieck’s inequality became
a unifying concept in combinatorial optimization; see the survey [3]] of Khot and
Naor.

7.4 Historical remarks and anecdotes

In 2000, Goemans and Williamson won the Fulkerson prize (sponsored jointly
by the Mathematical Programming Society and the AMS) which recognizes out-
standing papers in the area of discrete mathematics for this result.

About the finding of the approximation ratio 0.878... Knuth writes in the
article “Mathematical Vanity Plates”:
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Sometimes people obtain mathematically significant
license plates purely by accident, without making a per-
sonal selection. A striking example of this phenomenon is
the case of Michel Goemans, who received the following
innocuous-looking plate from the Massachusetts Registry of
Motor Vehicles when he and his wife purchased a Subaru at
the beginning of September 1993:

#assachuseTTs [l

8/8-CSH|

Two weeks later, Michel got together with his former stu-
dent David Williamson, and they suddenly realized how to
solve a problem that they had been working on for some
years: to get good approximations for maximum cut and
satisfiability problems by exploiting semidefinite program-
ming. Lo and behold, their new method—which led to a
famous, award-winning paper [15}—yielded the approxi-
mation factor .878! There it was, right on the license, with
C, S, and W standing respectively for cut, satisfiability, and
Williamson.

Winfried Scharlau tries to answer the question: Who is Alexander Grothendieck?

http://www.ams.org/notices/200808/tx080800930p . pdf

7.5 Questions

7.1** (a) Find an approximation algorithm which approximates MAX CUT with-
out using semidefinite programming: (Hint: What happens if one
assigns x,, € {—1, +1} uniformly at random with probability 1/2?)

(b) Let W, be the adjacency matrix of the n-cycle C,,. Find a closed
formula for SDP(W,,). How does this compare to MAXCUT(W,,)?

(c) Let A € 87, be a positive semidefinite matrix. Consider the quadratic
optimization problem

BQP(A) = max Z Z Ajjzizy o =1,i € [n]

i=1j=1

and its semidefinite relaxation

n

SDPpop(A) = max{ ' > Agjug-u; « Jug|® = 1,i € [n]

i=1j=1

Show that -
SDPBQP(A) = BQP(A) = 5 SDPBQP(A)
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7.27'.“.':

Hint: Let X = (X;;) € 8¢, be a positive semidefinite matrix. Then
the matrix

2
2 .
(; arcsin Xij)lgi,jsn — ;X
is positive semidefinite as well (recall: Taylor series of arcsin and
Hadamard product from Chapter 1).

Define the Erdés-Rényi random graph model G(n, p) with p € [0, 1] as fol-
lows: Choose a graph with n vertices uniformly at random by connecting
two vertices with probability p. Define accordingly the random weight
matrix W = (wy,) € R™*" by setting w,,,, = 1 if {u,v} € E and w,, = 0 if
{u,v} ¢ E.

Implement the Goemans-Williamson algorithm in SAGE. Use it to estimate
numerically for n = 100 and p = 2 withm = 1,2, ..., 9 the average value

10
of SDP(W) and the average value of the Goemans-Williamson algorithm.

7.3 (a) Prove Lemmal|/.2.2

(b) Prove

m

| Alloo—1 = max {Z Z Ajjxiy; x,y; € [—1,1],i e [m], j € [n]} .

i=1j=1
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CHAPTER 8

GENERALIZATIONS OF
GROTHENDIECK’S
INEQUALITY AND

APPLICATIONS

In the second part of the last lecture we considered Grothendieck’s inequality:
There is a constant K so that for all matrices A € R™*™ the inequality

[A]om1 < SDPyp1(A) < K| A| o1

holds, where:

|All o1 = max {Z D Ay ca =y = lie[m]je [n]} .

i=1j=1

and where the semidefinite relaxation equals

SDP,_,1(A) = max {2 3 Agjui vy | = v =1, [m],j e [n]} .

i=1j=1

We saw that || Al|.—1 is closely related to the cut norm which is useful in many
graph theoretic applications.

The number |A|s—1 also has a meaning in theoretical physics. It can be
used to find ground states in the Ising model. The Ising model (named after the
physicist Ernst Ising), is a mathematical model of ferromagnetism in statistical
mechanics. The model consists of discrete variables called spins that can be in
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one of two states, namely +1 or —1, UP or DOWN. The spins are arranged in a
graph, and each spin only interacts with its neighbors.

In many cases, the interaction graph is a finite subgraph of the integer lat-
tice Z™ where the vertices are the lattice points and where two vertices are
connected if their Euclidean distance is one. These graphs are bipartite since
they can be partitioned into even and odd vertices, corresponding to the parity
of the sum of the coordinates. Let G = (V, E) be a bipartite interaction graph.
The potential function is given by a symmetric matrix A = (A,,) € SV. Ay, =0
if u and v are not adjacent, A,, is positive if there is ferromagnetic interaction
between v and v, and A, is negative if there is antiferromagnetic interaction.
The particles possess a spin x € {—1,+1}". In the absence of an external field,
the total energy of the system is given by

— Z Ay TuTy-

{u,v}eF

The ground state of this model is a configuration of spins x € {—1, +1}" which
minimizes the total energy. So computing the x,, € {—1, +1} which give | A]s—1
is equivalent to finding the ground state and computing SDP,,_,; amounts to
approximate this ground state energy.

In this lecture we consider two generalizations of this bipartite Ising model.

We start by studying the Ising model for arbitrary interaction graphs and we
find approximations of the ground state energy. The quality of this approxima-
tion will clearly depend on properties of the interaction graph. In particular, the
theta number will appear here in an unexpected way.

Figure 8.1: Spins in the XY model

127



Another generalization will be the consideration of more complicated spins.
Instead of looking only at spins attaining the values —1 and +1 as in the Ising
model, the r-vector model considers spins which are vectors in the unit sphere
S™=! = {z eR":x-x = 1}. The case r = 1 corresponds to the Ising model, the
case r = 2 to the XY model, the case » = 3 to the Heisenberg model, and the
case r = |V| to the Berlin-Kac spherical model. We will derive approximations
of ground state energies

— max Z Ay vy - Ty, forz, e S landueV
{u,v}eE

for fixed r and for bipartite graphs.
In principle a mixture of both generalizations is possible. We do not give it
here as it would require adding even more technical details.

8.1 The Grothendieck constant of a graph

The Grothendieck constant of an undirected graph G = (V, E) is the smallest
constanﬂ K(G) = K so that for every symmetric matrix A € SV the inequality

max{ Y Awfu-foi fue RV ueVi|fu] =1
{u,v}eE

< K max Z ATy i Xy = t1L,ueV
{u,v}eE

holds true. The left hand side is the semidefinite relaxation of the right hand
side. Furthermore, the original Grothendieck constant which we studied in the
last lecture is equal to the supremum of K (G) over all bipartite graphs G; see
Exercise 8.1 (a).

The following theorem gives a surprising connection between the Grothendieck
constant of a graph and the theta number.

Theorem 8.1.1. There is a constant C' so that for any graph G we have

K(G) < Cn(G),

where ¥(G) is the theta number of the complementary graph of G.

The proof of this theorem will again be based on an approximation algo-
rithm which performs randomized rounding of the solution of the semidefinite
relaxation.

Do not confuse the K (G) with K¢ of the last lecture.
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8.1.1 Randomized rounding by truncating

In the algorithm we use the constant M = 34/1 + In9(G). The meaning of it
will become clear when we analyze the algorithm.

1. Solve the semidefinite relaxation

I'max = max 2 Auvfu’fv:fueRVaue‘/vau” =1
{u,v}eE

2. Choose a random vector z = (z,) € RV so that every entry z, is distributed
independently according to the standard normal distribution with mean 0
and variance 1: z, ~ N(0,1).

3. Round to real numbers y, = z - f, forallue V.

4. Truncate y, by setting

o g gl < M,
“ 0 otherwise

We denote by A the optimal value of the +1-constrained problem
A = max Z Ay Tyly i Ty = +1,ueV
{u,v}eE

Important note. The solution x,, which the algorithm determines does not
satisfy the +1-constraint. It only lies in the interval [—M, M| by construction.
However, it is easy to show (how? see Exercise 7.3 (b)) that

M?A = max Z Ao @yt Ty € [-M, M],ueV
{u,v}eE
holds. Similarly,
I'hax = max 2 Auvfu’fv:fueRvaueVra”fungl
{u,v}eF

In the remainder of this section we shall prove the theorem by giving an
explicit bound on the ratio I'pax/A.
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8.1.2 Quality of expected solution

The expected quality of the solution z,, is

Z Aqu[xux’u]

{u,v}eE

= ) Aw(Eyuye] — Elyu(ye — z,)]
{u,v}eE

- E[yv(yu - Iu)] + ]E[(yu - xu)(yv - xv)])

8.1)
= Fmax - E [ Z Auv((yu(yv - 'T’U) + yv(yu - .’Eu)):|

{u,v}eE
+ E Z Auv(yu - xu)(yv - (Ev)
{u,v}eE

because E[y,yy] = fu - f» (Exercise 8.1 (b)).

8.1.3 A useful lemma

To estimate the second and third summand in (8.1 we use the following lemma.

Lemma 8.1.2. Let X,, Y, be random variables with v € V. Assume
E[X?] <A and E[YV?] <B.

Then,

E |: Z Auv(XuYU + Xqu):| < 2v AB(Fmax - Fmin)v

{u,v}eE

where
Tiin =min< > Aufu-fo: fue RV, ueV,[fu <1.
{u,v}eE
Proof. If E[X?2] < 1, then
E Z AquuX'U € [Fmin; Fmax]- (82)
{u,v}eE
This follows from the fact we can write
(E[XHX”])'U,,UEV = (fu ’ f”)u,vEV

because the matrix on the left hand side is positive semidefinite (Exercise 8.1
(c)) and thus has a Cholesky factorization.
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We introduce new variables U, and V,, to be able to apply (8.2). The new
variables are

U, = % (Xu/VA+ Y VB), V= % (Xu/VA-Yu/VB).

Then E[UZ] < 1 and E[V;?] < 1 (verify it). So we can apply (8:2)

E| ) Aw(X.Y, + X,Y,)
{u,v}eE

=2WAB [E| ) AwlUU, | -E| > AwVV,
{u,v}eE {u,v}eE

< 2m(rmax - 1_\milfl)' -

8.1.4 Estimating A and B in the useful lemma

It is clear, that E[y2] = 1. We find an upper bound for E[(y, — z,)?] in the
following lemma.

Lemma 8.1.3.
E[(yy — 74)?] = 2L JOO 2e 12t < Me M°/2,
Ver Ju
Proof. The equation follows from the definition of y, and z, and the normal

distribution. The inequality is coming from the following simple but noteworthy
trick to estimate the integrand by an expression which can be integrated:

t267t2/2 < (t2 + t72)€7t2/2.
Then,
2 +1 .
J(t2 e 2t = —%e*ﬁﬂ + constant of integration,
and the lemma follows by

1 ° 2 2 2 2
2—— t2et /Zdté\/7M+1MeM 12 < Me M2
= 2 +1/m)

because the fact M > 2 implies that

\/E(M+1/M) <

(M +1/M) < M. O

(SR
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8.1.5 Applying the useful lemma

In (8.I) we estimate the second summand by applying the useful lemma with
Xu = Yu, KL = Yu — Ty- We get

_E Z Auv((yu(y'u - :L'v) + Yv (yu - mu)) 2 _2 \% Me_M2/2(Fmax - 1—‘min)-

{u,v}eE

The third summand in (8.1) we estimate by applying the useful lemma with
Xo = Yu — Tu, Yu = —(yu — T4). We get

2

E Z Auv(yu - xu)(yv - xv) 2 _MeiM /2 (Fmax - Fmin)-

{u,v}eF
Altogether,
Y, AwElz.2,] > T — (2V/Me™M72 + MemM"/2) (T = D).
{u,v}eF
8.1.6 Connection to the theta number

The connection to the theta number comes in the following lemma.

Lemma 8.1.4. T T
max ~— L+ min < 19(6)

Fmax

Proof. Exercise 8.2. O

In particular, we have

M = M = 3y/1 + In((Timax — Lmin)/Tmax)-
Furthermore (Inz < z — 1),

M < 3\/(Fmax - Fmin)/Fmax

From this it follows that

> e 1 r ?
M—M/ng—Mpgi* )
‘ ¢ 10 Fmax - Fmin
So,
2 1 1_‘rnax

Z AuUE[-ruxv] 2 I1max -

7FH‘1 X 77Fm X9
(wo)eE \ 10 : 10 Fmax - Fmin ¢

since I'ax — Dimin = Timax this leads to

Fmax'

>~ =

Z A E[z,2,] =

{u,v}eE
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Finally we can put everything together: There is a positive constant C' (which is
not difficult to estimate) so that

1 1
A 2 aro Auqu udv 2 frmaxa
i leurel = Z15@
{u,v}eE

which finishes the proof of Theorem|8.1.1

8.2 Higher rank Grothendieck inequality

Now we model finding ground states in the r-vector model. Given positive
integers m, n, r and a matrix A = (A4;;) € R™*", the Grothendieck problem with
rank-r-constraint is defined as

SDP,.(4) = max{Z Z Aij i Yj %1, ..., Tm € STy, yn € STl},

i=1j=1

where S"7! = {x € R" : x - & = 1} is the unit sphere; the inner product matrix
of the vectors z1,...,Zm,y1,...,yn has rank at most . When r» = 1, then
SDP;(A) = | A] 1 because S° = {—1,+1}.

When r is a constant that does not depend on the matrix size m, n there
is no polynomial-time algorithm known which solves SDP,.. However, it is not
known if the problem SDP, is NP-hard when r» > 2. On the other hand the
semidefinite relaxation of SDP,.(A) defined by

SDPy,4n(A) = maX{Z Z Agj Wi - Vj S UL, U VY, Uy € SM+n_1}

i=1j=1
can be computed in polynomial time using semidefinite programming.

Theorem 8.2.1. For all matrices A € R™*" we have
1

DP?"A § DPm nA <7

SDP,.(A),

where )
2 /(T((r+1)/2)
0=: (M)
and where T is the usual Gamma function, which is the extension of the factorial
function.

The first three values of —-~— are:
2y(r)—1
L = 1 = 3.65979
2v(1) -1 4/m—1 7
1 1
= =1.75193...
292)—-1 w/2-1 75193,
1 1
= = 1.43337...
29(3) =1 16/(37) — 1
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For r — oo the values W converge to 1. In particular, the proof of the

theorem gives another proof of the original Grothendieck’s inequality albeit with

a worse constant K¢ < %%1.

8.2.1 Randomized rounding by projecting

The approximation algorithm which we use to prove the theorem is the follow-
ing three-step process.

1. By solving SDP,,,,,,(A) we obtain the vectors w1, . .., Upm, V1, . . . , v, € S™FT7L,

2. Choose Z = (Z;;) € R™(m+7) 5o that every matrix entry Z,; is distributed
independently according to the standard normal distribution with mean 0
and variance 1: Z;; ~ N(0,1).

3. Project x; = Zu;/|Zu;| € S™"' withi = 1,...,m, and y; = Zv;/|Zv;| €
STlwithj=1,... n.

8.2.2 Extension of Grothendieck’s identity

The quality of the feasible solution z1, ..., Zm,y1,-- ., yn for SDP, is measured
by the expectation
i=1j=1

Lemma 8.2.2. Let u, v be unit vectors in R™*" and let Z € R"*("*") be g ran-
dom matrix whose entries are distributed independently according to the standard
normal distribution with mean 0 and variance 1. Then,

Zu  Zv
E[.
| Zul| |ZU|]
_2(T((r+1)/2) 22 (1-3---(2k — 1))
T( I'(r/2) ) Z(2~4~-2k)((r+2)‘(r+4)...(7~+2k))

The case r = 1 specializes to Grothendieck’s identity from the previous chap-
ter:

(u . U)Qk-‘rl.

k=0

E[sign(Zu)sign(Zv)]

— arcsin(u - v)
7

- i@m+6)@;V+GE)W;V+H)

The proof of Lemma requires quite some integration. The computation
starts of by

Zu Zv ]
E| 22 . 27
[|Zu 1Zv]|

, =2y -ty
=(27r\/1—t2)_”f J ﬁ-ﬁexp (_a: x YTy y) dzdy,
B e A

2(1 — 12
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where ¢t = u-v. We will omit the tedious calculation here. For those who cannot
resist a definite integral (like G.H. Hardy): it can be found in [4].
The only three facts which will be important is that the power series expan-
sion
Zu Zv ] 2ot ]
T f 2k+1 u- U) *
[IZU 1Zv] Z

has the following three properties:
1. the leading coefficient f; equals ~(r)

2. all coefficients for 1 are nonnegative

3. Yo fare1 = 1

8.2.3 Proof of the theorem

Now we have

i=1j=1

|: Zuz ZUj :|
[Zuill 170,

\\Mg TM:

n
2k+1
Z ij Wi~ Vg + Z Z AZ] Z f2k+1 uz vj .

i=1j=1

The first summand equals f;SDP,,+,(A). The second summand is bounded in
absolute value by (1 — f1)SDP,,,+»,(A) as you will prove in Exercise 8.1 (d).
Thus for the second sum we have

m n [oe]
Z Z Z okt (i - v;) M > (fi — 1)SDPy, 1 (A),

which finishes the proof.

8.3 Further reading

Section [8.1} The result is from [1] and the presentation of the proof is closely
following Chapter 10 of the book Approximation Algorithms and Semidefinite
Programming of Gartner and Matousek, which mostly follows K. Makarychev’s
thesis.

Section The proof is from [3] and it follows the idea of Alon and Naor
[2, Section 4] which in turn relies on ideas of Rietz.

More on the definite integral: When working with power series expansions
it is sometimes useful to use hypergeometric functions for this. For instance we
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have

0

(1-3---(2k —1))?
k:O(2-4~--2k)((r+2)-(r+4)---(r+2k))

= twenahi (307 w2,

where 5 F} is a hypergeometric function. Hypergeometric functions are a clas-
sical subject in mathematics. In fact, many (all?) functions you know, are hy-
pergeometric functions. However the topic of hypergeometric functions seems
somehow to be too classical for many modern universities.

In case you want to know more about them: The book "A=B” by Petkovsek,
Wilf and Zeilberger

(u . 1})2k+1

http://www.math.upenn.edu/~wilf/AeqB.html

is a good start.

8.4 Exercises

8.1** (a) Why does Theorem give a proof of the original Grothendieck
inequality? Which explicit upper bound for K does it provide? (De-
termine a concrete number.)

(b) Show that E[y,y,] = fu. - f» holds.
(¢) Prove that the matrix
(E[X“X”])u,vev
is positive semidefinite.
(d) Show that

m n o0
Z Z Aij Z fors1(ui - v;) T < (1= f1)SDPin(A).
i=1j=1 k=1

8.2 Let G = (V, E) be a graph. A vector k-coloring of G is a collection of unit
vectors f,, € RY so that

1
fufvz—m if{U,U}EE.
(a) Show that if G is colorable with k colors, then it also has a vector
k-coloring.
(b) Find a connection between vector k-colorings and the theta number.
(c) Prove Lemmal8.1.4
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Part 111

Applications in geometry
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CHAPTER 9

OPTIMIZING WITH
ELLIPSOIDS AND
DETERMINANTS

What is an ellipsoid?

There are two convenient ways to represent an ellipsoid.

1. We can define ellipsoids explicitly as the image of the unit ball under an
invertible affine transformation

Eac={Ax+c:2xe B}, where B={reR":|z| <1},

is the unit ball, where A € R™"*" is an invertible matrix, and where ¢ € R" is a
translation vector.

From linear algebra it is known that every invertible matrix A has a factor-
ization of the form A = X P where X e S is a positive definite matrix and
P € O(n) is an orthogonal matrix. So we may assume in the following that the
matrix A which defines the ellipsoid £4 . is a positive definite matrix.

In fact one can find this factorization (also called polar factorization) from
the singular value decomposition of A

A=U'SV, U, VeO(n), X =diag(o,...,om),
where o; > 0 are the singular values of A. Then,

A=XP with X=U"SU, P=U"V.
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The singular values of A are at the same time the lengths of the semiaxis of the
ellipsoid €4 .
The volume of the ellipsoid equals

n/2
volE4 . = det Avol B where volB = m

2. We can define ellipsoids implicitly by a strictly convex quadratic inequal-
ity: Let A € 87, be a positive definite matrix, then

Eace = {Az+c:|z| <1}
= {z+c:|A 2| <1}
= {zeR":(z—c)fA 3 (z—c) <1}.

Ellipsoids are important geometric objects partially due to their simple de-
scriptions. They can be used for instance to approximate other more compli-
cated convex sets. In this lecture we will use ellipsoids to approximate poly-
topes. In particular we will answer the questions:

e Inner approximation: How can we determine an ellipsoid contained in a
polytope which has largest volume?

e Outer approximation: How can we determine an ellipsoid containing a
polytope which has smallest volume?

e Can we estimate the quality of this inner and of this outer approximation?

9.1 Determinant maximization problems

To be able to maximize the volume of ellipsoids we want to maximize the de-
terminant of positive definite matrices. In the next section we will see that the
logarithm of the determinant is a concave function so that determinant maxi-
mization can be dealt with tools from convex optimization.

In fact one can reformulate determinant maximization problems as semidef-
inite programs but we will not do this here; dealing directly with determinant
maximization problem is generally easier and more efficient.

Here we give the primal-dual pair of a determinant maximization problem
together with the corresponding duality theory. All in all it is very similar to
semidefinite programming, only the objective function is not linear.

The primal determinant maximization problem is defined as

sup n+{C,X)+Indet X
X eSY,
<AJ7X>:bJ7 j:17"'7ma
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and its dual is

inf b'y —Indet (Z y;A; — C’)

=1
y e R"n

m

DA —CeS
j=1

We have statements for weak duality and strong duality, which are very sim-
ilar to Theorem 3.4.1. A slight difference is complementary slackness and the
optimality criterion. The optimality criterion says: Suppose that X is feasible
for the primal, y is feasible for the dual and the equality

X (i yjAj C) =In

j=1

holds. Then X and y are both optimal (see Exercise 9.1 (a)).

In many cases it is useful to combine determinant maximization problems
with linear conic programs. In these cases we want to work with the following
primal-dual pair.

Primal:
sup n+{(C,X)+Indet X +c'x
X eSY
re K
<Aj,X>+aJTx:bj, j=1,...,m
Dual:

inf b7y — Indet (Z yiAj — C)

i=1

ye R”Yl

m
DlyiAj—CeS,
j=1

m

Z yja; —ce K*
j=1

9.2 Convex spectral functions

In this section we shall prove that the function X — —Indet X is a (strictly)
convex function. For this we will give two proofs. One simple adhoc proof and
one which is conceptual. The second proof will characterize all convex functions
on symmetric matrices which only depend on the eigenvalues.

141



9.2.1 Minkowski’s determinant inequality
Theorem 9.2.1. The function

F:8,—->R, X— —IndetX
is a strictly convex function on the set of positive definite matrices.

Proof. It suffices to show that the function X — — Indet X is strictly convex on
any line segment

[X,Y]={tX+(1—t)Y :te[0,1],X # Y}

in 8Z,. Therefore, we compute the second derivative of the one-dimensional
function f(t) = —Indet(tX + (1 —¢)Y") and see that it is always strictly positive:
From linear algebra we know that there is a matrix 7" with determinant 1 whose
inverse simultaneously diagonalizes X and Y. Hence,

X =TT diag(zy,...,2,)T and Y =TT diag(y1,...,yn)T

and
f() = —In(yr +tzr—y1)) = —Inyn + t(@n — yn)),
Wy = m=m T Yn
ot Y1 +t('r1 _yl) Yn +t(xn _yn)’
70 = Getm) o Gen)
—5 (T = e —— + -+ >0. O
ot? ( ) Y1+ t(xl - yl) Yn + t(xn - yn)

With the same argument we can derive Minkowski’s determinental inequality:
(det(X + Y)Y = (det X)Y™ + (det V)"

which holds for all X,Y € 87,

Geometrically, this means that in the cone of positive semidefinite matrices,
the set of matrices having determinant greater or equal than a given constant is
a convex set.

9.2.2 Davis’ characterization of convex spectral functions
The function F(X) = —Indet X is an example of a convex spectral function.
Definition 9.2.2. A convex spectral function is a convex function

F:8" > Ru{w}

where F(X) only depends on the spectrum (the collection of the eigenvalues A1 (X),
.+, A (X)) of the matrix X. In other words, by the spectral theorem,

F(X) = f(AXA") forall Ae O(n).

Hence, there is a function f : R®™ — R u {oo} which defines F by the following
equation
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Note that this implies that the function f is symmetric, i.e. its value stays the
same if we permute its n arguments; it is invariant under permutation of the
variables.

In our example

W] ifall A >0,
FOse i) = H

0 otherwise.

The following theorem is due to Davis (1957). It gives a complete charac-
terization of convex spectral functions.

Theorem 9.2.3. A function F : S — R u {0} is a convex spectral function if
and only if the function f : R™ — R u {o0} defined by

F(X) = f(M(X), ..., An(X))
is symmetric and convex. In particular,

F(X)= max f((AXA")1,...,(AXA"),,)
AeO(n)

holds.

Proof. One implication follows without any work.

Let F' be a convex spectral function. Then f is symmetric by definition. It
is convex since F' and f “coincide” on diagonal matrices. Let A = (A\q,..., \,),
M = (p1,...,4n) and ¢ € [0,1] be given. Then

FEA+ (1 —t)M) F(diag(tA + (1 —t)M))
= F(tdiag(A) + (1 —t)diag(M))
< tF(diag(A)) + (1 —t)F(diag(M))
= F(A) + (1 0 f(M).

The proof of the other implication is more interesting. It is an application of
Birkhoff’s theorem (cf. Chapter 1.7.3), see also the geometric interpretation at
the end of this section.

If we show that

F(X)= Agl(%) FAXA )1, ...,(AXAT),.,)

holds, then it follows that F' is convex because it is a maximum of a family of
convex functions.
For this consider the spectral decomposition of X

n
_ oy T
X = Z /\ju]uj.
Jj=1
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with orthonormal basis u1,...,u,. If we assemble these vectors as row vectors
in the orthogonal matrix A we see that

FUAXAT) 11, (AXAT) ) = F(AL .. \) = F(X)
holds. Thus,

F(X)< max f((AXA")11,...,(AXA"),.,.).
AeO(n)

The other inequality. For A € O(n) define Y = AXAT. Then,

Y“—e Yel—e (Z)\Au] Auy) ) an Auj 61

Jj=1
Here is the trick: The matrix
S = (Sijh<ijen With Sy = ((Auy)Te;)?

is doubly stochastic (why?). So by Birkhoff’s theorem S is a convex combination
of permutation matrices P°.

S = Z e P?, where pu, =0, 2 e = 1.
o€eS, oESy

Hence by the convexity and the symmetry of f, we have

f(}/i17---7Ynn) = (Z 'U'UZPU VIRRER) Zﬂgngj)\j>
j=1

g€ES, o€S,

< ZNUf(ZPU YERRE 7Zpgj)‘j>
j=1

o€S

= Zuaf o1(1)s > Ao—1(n))

g€ES,

= Z lffaf()\luuw)\n)

g€ES,

= O, M)
- F(X).

Hence, for all A € O(n)
f((AXAT)llw- (AXA )mr) \F(X)a
and the theorem is proved. O

We conclude this excursion with a geometric observation which unifies
some of our previous considerations. If we project matrices in the Schur-
Horn orbitope of X which is defined by

conv{AXA": Ae O(n)}

144



on the diagonal elements, then we get the permutahedron given by the
eigenvalues A1, ..., A\, of X which is defined as

conv{(As(1),- -, Ao(n)) : 0 € Sn}.

From this the Hoffman-Wielandt inequality and the characterization of
Davis follow.

Another side remark: Davis’ characterization together with Fan’s theo-
rem (Theorem 2.2.2) can be used to determine an explicit linear matrix
inequality modeling the condition F'(X) < ¢ for many functions F. See
Ben-Tal, Nemirovski [3[][Proposition 4.2.1] for the complete statement.
A similar argument also works for functions depending only on singular
values.

9.3 Approximating polytopes by ellipsoids

Now we are ready to describe how ellipsoids can be used to approximate poly-
topes.

Recall that one can represent a polytope in two ways. Either as a convex
hull of finitely many points

P = conv{zy,...,zny} € R,
or as a bounded intersection of finitely many halfspaces
P={zeR":alz<by,...,al v <by,}.

The first representation, also called the V-representation, is an explicit pa-
rameterization whereas the second one, also called the #-representation, is
implicit. In general it is computationally demanding to transform one represen-
tation into the other.

9.3.1 Inner approximation

To formulate the condition that an ellipsoid £4 . is contained in a polytope P
we will use the explicit representation of the ellipsoid and the implicit represen-
tation of the polytope.

Proposition 9.3.1. The ellipsoid
Eac={Ax +c: |z <1}
is contained in the polytope
P={zxeR":alz<b,...,a  x<bp}

if and only if the inequality
|Aa;| < b —alc

holds foralli =1,...,m.
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Proof. We have

aj (Az +¢) <b; YreR" : |z| <1

—  max (Aa;) "z <b; —a]c
zif|z]<1

C?
because by the Cauchy-Schwarz inequality max,.|,|<1(Aa;) T2 = |Aa;. O

The inequality ||Aa;| < b; — a] ¢ can be directly modeled by a second order
cone programming constraint or, using the Schur complement, by a semidefinite
constraint.

9.3.2 Outer approximation

To formulate the condition that an ellipsoid £4 . is containing a polytope P we
will use the implicit representation of the ellipsoid and the explicit representa-
tion of the polytope.

Proposition 9.3.2. The ellipsoid
Ep—rpe={zeR": (v — )TA(z —c) <1}

contains the polytope
P = conv{zy,...,zN}

(@ %)

is positive semidefinite with Ac = d and the inequality

if and only if the matrix

x] Az —2x]d+s <1
holds for alli = 1,..., N.

Proof. The point z; lies in the ellipsoid £,-1/2 . if and only if

C

(z; —c)TA(z; —c) < 1
— xiTAxi — 23:iTAc +cTAc< 1
= x]Ax;—22]d+d"ATMd< 1

— ] Az; —2x]d+s<1, wheres>d A 'd.
Because the matrix A is positive definite we can express s > d' A~'d using the

Schur complement as
s d'
i A= 0. O
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The constraint
] Az —2x]d+ s <1

can be expressed by the linear matrix inequality

1 ] s dT
() G =r

9.4 The Lowner-John ellipsoids

Using Proposition and Proposition one can find the ellipsoid of
largest volume contained in a polytope P as well as the ellipsoid of smallest vol-
ume containing P by solving determinant maximization problems. In both cases
one maximizes the logarithm of the determinant of A. Because the logarithm of
the determinant is a strictly concave function both optimization problems have
a unique solution. The ellipsoids are called the Léwner-John ellipsoidsﬂ of P.
Notation: &;,(P) for the ellipsoid giving the optimal inner approximation of P
and &,,:(P) for the ellipsoid giving the optimal outer approximation of P.

The following theorem can be traced back to John (1948). Historically, it is
considered to be one of the first theorems involving an optimality condition for
nonlinear optimization.

Theorem 9.4.1. (a) Let P be a polytope. The Lowner-John ellipsoid &, (P) is
equal to the unit ball if and only if P is contained in the unit ball and there
is are positive numbers A1, ..., \y and vertices x1, ...,z of P having unit
length so that

N N
Z )\ixi =0 and Z /\Zl‘ll‘;r = In
=1 1=1

holds.

(b) Let P be a polytope. The Léwner-John ellipsoid &;,,(P) is equal to the unit
ball if and only if P is containing the unit ball and if there are unit vectors
Z1,...,xyN on the boundary of P and there are positive numbers A1,..., Ay
so that

N N
i=1 i=1

holds.

Before we give the proof we comment on the optimality conditions. The
first equality makes sure that not all the vectors z1,...xzy lie on one side of
the sphere. The second equality shows that the vectors behave similar to an

n the literature the terminology seems to differ from author to author.
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orthonormal basis in the sense that we can compute the inner product of two

vectors z and y by
N

Ty = > Ni(a])(a]y).

i=1

Proof. Statement (a) follows from the optimality conditions of the underlying
determinant maximization problem. See Exercise 9.1 (b).

Statement (b) follows from (a) by polarity:
Let C < R™ be a convex body. Its polar body C* is

C*={zeR":z'y<1forallyeC}.
The unit ball is self-polar, B* = B. Furthermore, for every ellipsoid £ we have
vol £ vol £* > (vol B)?,

because direct verification yields

ATA
(1+ 3cT(ATA

—1/2 1
(gA,c)* = SA/,C’ with A’ = ( )_10)) > d = *i(ATA)ilg

and so
det Adet A’ > 1.

Let P be a polytope and assume that &;,(P) = B. We will now prove by
contradiction that B = &,,:(P*). For suppose not. Then the volume of &, (P*)
is strictly smaller than the volume of B since P* < B. However, by taking the
polar again we have

gout(P*)* = P7

and vol &+ (P*)* > vol(B) a contradiction. So by (a) we have for vertices
Z1,...,xy of P, which are of unit length, the conditions

N N
Z AZJH =0 and Z >\1$ZI;I— = In,
i=1 1=1

for positive A1, ..., Ay. Then the unit vectors x; also lie on the boundary of the
polytope P because

P=(P*={zeR":z]jz<1,i=1,...,N}.
Now let
Em(P)={zeR": (z—c)TA 3z —¢) <1}

be the optimal inner approximation of P. We want to derive from the optimality
conditions that det A < 1 holds.
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First we realize that the second optimality condition implies that the equa-
tion 'V | \; = n holds; simply take the trace.
The points
yi =c+ (osiTA2a:,;)71/2A2xi
lie in &;,(P) and so y]z; < 1 holds because this inequality determines a sup-
porting hyperplanes of P. Then,

N N
n > Z Ny i = Z )\,-(xiTA%:,»)l/Q
i=1

i=1

where we used the first equality when simplifying Zi\il Aic'xz; = 0. The trace
of A can be estimated by using the second equality

N

N N
(A, I,) = <A7 Z )\ixixiT> = )\ixiTAxi < Z )\i(miTAQxi)lm <n,
i=1 i=1 i=1

where we used in the first inequality the spectral factorization of A = PTDP,
with orthogonal matrix P and diagonal matrix D, together with the Cauchy-
Schwarz inequality

(z] PTD)(Px;) < (x] PTD?*Px;)V?((Px;)" Px;)'? = (x] PTD?Pa;)"/2,
Now we finish the proof by realizing that (lnz < z — 1)
Indet A < Tr(A) —n <0,
and so det A < 1. O

This optimality condition is helpful in surprisingly many situation. For ex-
ample one can use them to prove an estimate on the quality of the inner and
outer approximation.

Corollary 9.4.2. Let P = R" be an n-dimensional polytope, then there are invert-
ible affine transformations T;, and T,,; so that

and 1 1
EB = ﬁToutgout(P) = ToutP < Toutgout(P) =B

holds.

Proof. We only prove the first statement, the second follows again by polarity.
It is clear that we can map &;,(P) to the unit ball by an invertible affine
transformation. So we can use the equations

N N
i=1 i=1
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to show T;,P < n&;,(P). By taking the trace on both sides of the second
equations we also have

N

Z )\i =n.

i=1

The supporting hyperplane through the boundary point z; of P is orthogonal
the unit vector z; (draw a figure). Hence,

BCcPcQ={zeR":z]z<1,i=1,...,N}.

Let x be in @, then because z"x; € [—||z|, 1] we have

N
0< 2 Ni(1 =2z (|| + 2" a;)
i=1

N N N
= J2| D3 A + (1= [2) D] ey — Y Al ")
1=1 i=1 i=1
= [l +0— J=[?,
and so |z| < n. O

If P is centrally symmetric, i.e. P = —P, then in the above inequalities n
can be replaced by 1/n. See Exercise 9.1 (c).

Another nice mathematical application of the uniqueness Lowner-John el-
lipsoids is the following.

Proposition 9.4.3. Let P be a polytope and consider the group G of all affine
transformations which map P into itself. Then there is an affine transformation T
so that TGT~! is a subgroup of the orthogonal group.

Proof. Since the volume is invariant under affine transformations with determi-
nant equal to 1 or —1 (only those affine transformations can be in G) and since
the Lowner-John ellipsoid is the unique maximum volume ellipsoid contained
in a polytope we have

Agin(P) = Em(AP) = gm(P)

forall AeG.
Let T be the affine transformation which maps the Léwner-John ellipsoid
Ein(P) to the unit ball B. Then for every A € G

TAT'B = TAE,,(P) = T, (P) = B.

So TAT~! leaves the unit ball invariant, hence it is an orthogonal transforma-
tion. O
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9.5 Further reading

Many examples of determinant maximization problems are in Vandenberghe,
Boyd and Wu [5]. They treat matrix completion problems, risk-averse linear
estimation, experimental design, maximum likelihood estimation of structured
covariance matrices, and Gaussian channel capacity. Next to this, they also de-
velop the duality theory and an interior point algorithm for determinant maxi-
mization problems.

For more information on convex spectral functions and general eigenvalue
optimization problems the survey [4] by Lewis is a good start.

Many more examples of computing ellipsoidal approximations are in the
book [3]][Chapter 4.9], especially ellipsoidal approximations of unions and in-
tersections of ellipsoids and approximating sums of ellipsoids.

The Lowner-John ellipsoid is an important and useful concept in geometry,
optimization, and functional analysis. For instance, Lenstra’s polynomial time
algorithm for solving integer programs in fixed dimension is based on it (see
LNMB course: Integer programming methods).

Another excellent and very elegant source on applications of the Lowner-
John ellipsoid in geometry and functional analysis is by Ball [2]]. He uses John’s
optimality criterion to give a reverse isoperimetric inequality (the ratio between
surface and volume is maximized by cubes) and to prove Dvoretsky’s theorem
(high dimensional convex bodies have almost ellipsoidal slices). The proof of
the second part of Theorem (b) is from the beautiful note of Ball [1].

One general strategy when working with convex sets is to find an affine
transformation of the convex set so that the unit ball and the convex set are
as close as possible. Here the notion of closeness depends of course on the
question. In many cases these affine transformations can be found by solving
an optimization problem involving positive definite matrices.

9.6 Exercises

9.1** (a) Prove weak duality of determinant maximization problems: Let X be
a solution of the primal and let y be a solution of the dual. Then,

bTy — Indet (Z y;A; — C) —(n+<{C,X)+1Indet X) > 0.
j=1

Hint: Inx <z — 1.

(b) Prove Theorem (a).
(c) Show the strengthening of Corollary

B = Tlngzn(P) cT;,Pc \/Engln(P) = \/EB

in the case of centrally symmetric polytopes P.
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(d) Find a polytope P for which the inclusion
BcPcnB
cannot be improved. Find a centrally symmetric polytope for which
Bc Pc+/nB
cannot be improved.

9.2 (a) Show that the sum of the largest k eigenvalues of a symmetric matrix
is a convex spectral function.

(b) True or false: The second largest eigenvalue of a symmetric matrix is
a convex spectral function.

9.3 Compute the gradient of the function

F:8,—-R, Xw— —IndetX.
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CHAPTER 10

EUCLIDEAN EMBEDDINGS:
LOW DIMENSION

In many situations one is interested in finding solutions to semidefinite pro-
grams having a small rank. For instance, if the semidefinite program arises
as relaxation of a combinatorial optimization problem (like max-cut or max
clique), then its rank one solutions correspond to the solutions of the underly-
ing combinatorial problem. Finding an embedding of a weighted graph in the
Euclidean space of dimension d, or finding a sum of squares decomposition of
a polynomial with d squares, amounts to finding a solution of rank at most d
to some semidefinite program. As another example, the minimum dimension of
an orthonormal representation of a graph G = (V, F) (introduced in Chapter 6)
is the minimum rank of a positive semidefinite matrix X satisfying X;; = 0 for
all non-edges.

This chapter is organized as follows. First we show some upper bounds on
the rank of solutions to semidefinite programs. For this we have to look into
the geometry of the faces of the cone of positive semidefinite matrices. Then we
discuss several applications: Euclidean embeddings of weighted graphs, hidden
convexity results for images of quadratic maps, and the S-lemma which deals
with quadratic inequalities. We also discuss complexity issues related to the
problem of determining the smallest possible rank of solutions to semidefinite
programs.
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10.1 Geometry of the positive semidefinite cone

10.1.1 Faces of convex sets

We begin with some preliminary facts about faces of convex sets which we will
use to study the faces of the positive semidefinite cone SZ,.

Let K be a convex set in R". Aset F' < K is called a face of K if forall z € F
the following holds:

r=ty+ (1—1t)z withte (0,1), y,z2e K = y,z€ F.

Clearly any intersection of faces is again a face. Hence, for x € K, the smallest
face containing x is well defined (as the intersection of all the faces of K that
contain x), let us denote it by F ().

A point z € R" is called a perturbation of x € K if x + ¢z € K for some ¢ > 0;
then the whole segment [z — ez, x + €z] is contained in the face Fix(z).

Lemma 10.1.1. Given a convex set K and x € K, let Fx(x) be the smallest face
of K containing x. The following properties hold.

(i) « belongs to the relative interior of F ().
(ii) Fk(zx) is the unique face of K containing x in its relative interior.

Proof. (i) Assume for a contradiction that « ¢ relint Fx(z). Then, by applying
the separation theorem from Theorem 1.3.8 (i), there exists a hyperplane

Hc,’y = {y : CTy = ’Y}

separating the two convex sets {x} and Fx (z) properly: There exist a nonzero
vector ¢ € R™ and « € R such that

'z =7, cly<yVye Fx(z), and Fg(z) & H, .

Then the set Fi(x) n H,  is a face of K, which contains « and is strictly con-
tained in F (x) (check it). This contradicts the fact that F () is the smallest
face containing z.

(ii) Let F be a face of K containing z in its relative interior. Then F (z) < F.
To show the reverse inclusion, pick y € F', y # x. As z lies in the relative interior
of F, Lemma 1.2.1 implies that there exists a point z € F' and a scalar ¢ € (0, 1)
such that z = ty + (1 — ¢)z. As Fi(x) is a face, we deduce that y, z € Fx(z).
This shows that F' € Fi(z). O

Hence, z lies in the relative interior of K precisely when F(z) = K and =
is an extreme point of K, i.e.,

x=ty+(1—t)z withy,ze Kandte (0,1) =y =z =z,
precisely when F (x) = {z}. Recall that if K does not contain a line then it has

at least one extreme point.
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10.1.2 Faces of the positive semidefinite cone

Here we describe the faces of the positive semidefinite cone SZ,. We show that
each face of SZ can be identified to a smaller semidefinite cone SZ, for some
0<r<n.

Proposition 10.1.2. Let A € S, r = rank(A), and let F'(A) = Fs» (A) denote

the smallest face of 8% containing A. Let uq,--- ,u, be an orthonormal set of
eigenvectors of A, where uy,--- ,u, correspond to its nongero eigenvalues, and let
U (resp., Up) be the matrix with columns uy, - -+ ,u, (resp., ui,--- ,u,). The map

¢A: ST g Sn

7 U Z 0 UT — UpZUT (10.1)
0 0
is a rank-preserving isometry, which identifies F'(A) and SL:
T zZ 0 T T r
F(A) = ¢(SLy) =1U 0 0 U' =UyZUy : Ze S, ;.
Moreover, F(A) is given by
F(A) = {X € 8 : KerX D KerA} (10.2)

r+1)‘

and its dimension is equal to ("}

Proof. Set D = diag(A1,---, A, 0,---,0) € 8, Dy = diag(A1, -+, Ar) € SL,
where )\; is the eigenvalue for eigenvector u;, C' = diag(0,---,0,1,---,1) €
8%y, where the first r entries are 0 and the last n — r entries are 1. Finally,
set Q =UCUT =" . uu. Then, A = UDUT and (C, D) = 0. Moreover,
(Q, A) = 0, as the vectors u,.41, - ,u, span the kernel of A.

As @ > 0, the hyperplane

H={XeS§":(Q,X)=0}
is a supporting hyperplane for S, and the intersection
F=80nH={XeS:(Q,X) =0}
is a face of SZ, containing A. Moreover,
F ={X eS8, :KerX o KerA}.

Indeed, the condition (Q,X) = 0 reads >,_, ., u/Xu; = 0. For X > 0,
u] Xu; > 0 for all 4, so that (Q, X) = 0 if and only if u] Xu; = 0 or, equiv-
alently, Xu; =0forallie {r +1,--- ,n}, i.e, KerA < KerX.

We now show that F = F'(A). In view of Lemma|[10.1.1] it suffices to show
that A lies in the relative interior of the face F.
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For this, consider the linear bijection X — Y = UTXU. It maps S? onto
itself, Q onto C, and A onto D, and the face F onto the face

F'={U'XU:XeF}.
Hence, I’ contains D and F” is equal to
F' ={Y €80 :{(C,Y) =0}

Any matrix Y € F’ has its last n — r diagonal entries equal to 0 and thus it has
the block form:

Y = (g 8) where Z € 8Z,.

Therefore, the faces F’ and F are given by

F’_{<g 8) :Zesgo}, F-{U(% 8>UT;Ze3;0}.

As Dy > 0, Dy lies in the interior of SZ,. This implies that D lies in the relative
interior of F’ and, in turn, that A belongs to the relative interior of F. Thus,
F = F(A).

Summarizing, we have shown that F'(A) can be identified with S, via the
rank-preserving isometry:

_(Z4 0 _ T
Z — Y = (0 0) — X=UYU
Dy — D — A
Sty — F ~ F(A)
and the dimension of F is equal to dim SZ, = ("}"). O
As a direct application, the possible dimensions for the faces of the cone SZ
are ("1') for r = 0,1,--- ,n. Moreover there is a one-to-one correspondence

between the lattice of faces of S and the lattice of subspaces of R™:
U subspace of R" — Fi; = {X € 8%, : KerX 2 U}, (10.3)

with U; € Uy < Iy, 2 Fy,.

10.1.3 Faces of spectrahedra

Consider an affine subpsace A in the space of symmetric matrices, of the form
A={XeS":(A;,X)=10; (je[m])}, (10.4)

where A4, --- , A, are given symmetric matrices and b1, - - - , b,,, are given scalars.
The codimension of A is

codim A = dim 8" — dim A = dim{Ay, -+, A ).
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If we intersect the cone of positive semidefinite matrices with the affine space
A, we obtain the convex set

K=8"%nA={XeS" :X>0, (A, X)=b; (je[m])} (10.5)

This is the feasible region of a typical semidefinite program (in standard primal
form). Such a convex set is called a spectrahedron — this name is in the analogy
with polyhedron, which corresponds to the feasible region of a linear program
and spectra reflects the fact that the definition involves spectral properties of
matrices.

An example of a spectrahedron is the elliptope

(Sn = {X S S;O : X” =1Vie [Tl]}, (106)

which is the feasible region of the semidefinite relaxation for Max-Cut consid-
ered in earlier chapters.

As an application of the description of the faces of the positive semidefinite
cone in Proposition we can describe the faces of K.

Proposition 10.1.3. Let K be the spectrahedron (15.2). Let A € K, r = rank(A),
and let U, Uy be as in Proposition [10.1.2] Define the affine space in S":

As ={Z €8 : Uy AUy, Z) = b; ¥j € [m]}, (10.7)
and the corresponding linear space:
La={ZeS8 :(UJA;jUy, Zy=0VYje [m]}. (10.8)

The map ¢ from identifies F(A) and 8Ly N Aa: Fx(A) = ¢(SLy n Aa).
Moreover, F (A) is given by

Fr(A) = {X € K : KerX 2 KerA} (10.9)
and its dimension is equal to

r+1

dim F (A) = dim Ay = ( )

) — dim(U, A;Up = j € [m]). (10.10)

Finally, a matrix B € 8" is a perturbation of A if and only if B € UyL AU, .

Proof. As K = 8%y n A, we have that Fx(A) = F(A) n A, where F(A) is the
smallest face of S, containing A, and (10.9) follows from (10.2). If X = ¢(Z2)
is the image of Z € 8" under the map ¢ from (10.1)) then

(A;, X) =(UTA;U,UTXU) = <UTAjU, (g 8)> = (Uq A;Uo, Z).

Therefore, the face Fx(A) is the image of ST, n A4 under the map ¢ and its
dimension is equal to dim.4,4. Finally, B is a perturbation of A if and only if
A+ eB e Fg(A) for some ¢ > 0, which is equivalent to B € UyL U] using the
description of F (A). O
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Corollary 10.1.4. Let K be defined as in (15.2). Let A € K and r = rank(A). If
A is an extreme point of K then

(T ; 1) < codim A < m (10.11)

In particular, K contains a matrix A whose rank r satisfies

—14++/8m+1
—

r< (10.12)

Proof. If A is an extreme point of K then dim Fx(A) = 0 and (15.15) follows
directly from (10.10). As K contains no line, K has at least one extreme point.
Now (10.12) follows directly from ("}') < m for any matrix A which is an
extreme point of K. O

Remark 10.1.5. The codimension of the affine space A can be expressed from
any Cholesky decomposition: A = WW'T, where W € R"*", by

codim As = dim(WA;W ' : j e [m]).

Indeed, the matrix P = WTUODJ 1is nonsingular, since PTP = Dy ! using the
fact that U] Uy = I,.. Moreover, W P = Uy, and thus

dim(WTA;W @ j e [m]) = dim(PTWTA;WP : j € [m]) = dim(U] A;Uy : j € [m]).

As an illustration, for the elliptope K = &,, if A € &, is the Gram matrix of vectors
{a1, -+ ,a,} € R, then codim Ay = dim{aia],--- ,a,a)).

As an illustration we discuss a bit the geometry of the elliptope &,,. As a
direct application of Corollary [10.1.4} we obtain the following bound for the
rank of extreme points:

Corollary 10.1.6. Any extreme point of &, has rank r satisfying ("5') < n.

A matrix X € &, has rank 1 if and only if it is of the form X = xzT for
some z € {+1}". Such matrix is also called a cut matrix (since it corresponds to
a cut in the complete graph K,,). There are 2"~ ! distinct cut matrices. They are
extreme points of &, and any two of them form an edge (face of dimension 1)
of &£,. While for n < 4, these are the only faces of dimension 1, the elliptope
&, for n > 5 has faces of dimension 1 that are not an edge between two cut
matrices. You will see an example in Exercise 10.3.

Figure shows the elliptope £; (more precisely, its bijective image in R3
obtained by taking the upper triangular part of X'). Note the four corners, which
correspond to the four cuts of the graph Kj3. All the points on the boundary of
&3 - except those lying on an edge between two of the four corners — are extreme
points. For instance, the matrix

1 0 1/V2
A=1 0 1 142
vz 1v2 1

is an extreme point of £ (check it), with rank r = 2.
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Figure 10.1: The elliptope &3

10.1.4 Finding an extreme point in a spectrahedron

In order to find a matrix A in a spectrahedron K whose rank satisfies (10.12),
it suffices to find an extreme point A of K. Algorithmically this can be done as
follows.

Suppose we have a matrix A € K with rank r. Observe that A is an extreme
point of K precisely when the linear space £ (in (10.8)) is reduced to the zero
matrix. Assume that A is not an extreme point of K. Pick a nonzero matrix C €
L4, so that B = UyCU, is a nonzero perturbation of A. Hence A + ¢tB > 0 for
some t > 0. Moreover, at least one of the supremums: sup{t > 0: A + ¢tB > 0}
and sup{t > 0 : A — tB > 0} is finite, since K contains no line. Say, the first
supremum is finite, and compute the largest scalar ¢ > 0 for which A +tB > 0
(this is a semidefinite program). Then the matrix A’ = A+tB still belongs to the
face Fx(A), but it now lies on its border (by the maximality of ¢). Therefore, A’
has a larger kernel: KerA’ > KerA, and thus a smaller rank: rankA’ < rankA—1.
Then iterate, replacing A by A’, until finding an extreme point of K.

Therefore, one can find an extreme point of K by solving at most n semidef-
inite programs. However, finding the smallest possible rank of a matrix in K is
a hard problem - see Proposition

10.1.5 A refined bound on ranks of extreme points

The upper bound on the rank of an extreme point from Corollary[10.1.4]is tight
- see Example [10.2.3] below. However, there is one special case when it can be
sharpened, as we explain here. Consider again the affine space A from
and the spectrahedron K = SZ, n A. From Corollary[10.1.4} we know that any
extreme point A of K has rank r satisfying

(r ;L 1> < codim A.

Hence, r < s+ 1if codim A = (5;2). Under some assumptions, Barvinok shows
that r < s for at least one extreme point of K.
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Proposition 10.1.7. Assume that K is nonempty bounded and codim A = (*1?)

for some integer s > 1 satisfying n > s + 2. Then there exists A € K with
rank A < s.

The proof uses the following topological result.

Theorem 10.1.8. Consider the projective space P™"~1, consisting of all lines in R"
passing through the origin, and let S"~* be the unit sphere in R™. For n > 3 there
does not exist a continuous map ® : S"~1 — P"~! such that ®(z) # ®(y) for all
distinct z,y € S L

The following lemma deals with the case n = s+ 2, it is the core of the proof
of Proposition [10.1.7

Lemma 10.1.9. Let n = s + 2 with s > 1 and let A = S be an affine space
with codim A = (*3?). If K = S&§? n A is nonempty and bounded, then there is
a matrix A € K with rank A < s.

Proof. Assume first that A nS5{? = . Then A lies in a hyperplane H support-
ing a proper face F of S&}?. (This can be checked using the separating theorem
from Theorem 1.3.8 (i).) By Proposition F can be identified with St
for some ¢ < s + 1 and thus an extreme point of K has rank at most ¢t — 1 < s.

Suppose now that A n S$1? # . By (10.10), dim K = (*}%) — codim A =
s + 2. Hence, K is a (s + 2)-dimensional compact convex set, whose boundary
0K is (topologically) the sphere S*™1. We now show that the boundary of K
contains a matrix with rank at most s.

Clearly every matrix in 0K has rank at most s + 1. Suppose for a contra-
diction that no matrix of /K has rank at most s. Then, each matrix X € 0K
has rank s + 1 and thus its kernel Ker X has dimension 1, it is a line though the
origin. We can define a continuous map ® from 0K to P**! in the following
way: For each matrix X € 0K, its image ®(X) is the line KerX. The map &
is continuous (check it) from S**! to P**! with s + 1 > 2. Hence, applying
Theorem [10.1.8, we deduce that there are two distinct matrices X, X’ € 0K
with the same kernel: KerX = KerX’. Hence X and X’ are two distinct points
lying in the same face of K: F(X) = Fi(X’). Then this face has an extreme
point A, whose rank satisfies rankA < rankX — 1 < s. O

We can now conclude the proof of Proposition [10.1.7

Proof. (of Proposition [10.1.7). By Corollary[10.1.4|there exists a matrix A € K
with rank A < s + 1. Pick a vector space U < KerA with codim U = s + 2. By

Proposition [10.1.2} there is a rank-preserving isometry between Fy; and S3%2.
Moreover, A € Fiy n A. Hence the result follows by applying Lemma(10.1.9] O

Example 10.1.10. Consider the three matrices
1 0 0 1 1 1
=l B ()=o)
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and the affine space

A={XeS&*: (A, X)=0,(B,X)=0,(C,X)=1}.

Then S2, n A = {I} thus contains no rank 1 matrix, and codim A = 3 = (°}?)

with s = 1. This example shows that the condition n > s + 2 cannot be omitted in
Lemma

Example [10.2.3|below shows that the assumption that K is bounded cannot be
omitted as well.

10.2 Applications

10.2.1 Euclidean realizations of graphs

The graph realization problem can be stated as follows. Suppose we are given
a graph G = (V = [n], E) together with nonnegative edge weights w € R%,
viewed as ‘lengths’ assigned to the edges. We say that (G, w) is d-realizable if
one can place the nodes of G at points vy, - - - ,v, € R? in such a way that their
Euclidean distances respect the given edge lengths:

Jup, -+ v € RY vy — 0|2 = wij V{i,j} e E. (10.13)

(We use here the squares of the Euclidean distances as this makes the notation
easier). Moreover, (G, w) is realizable if it is d-realizable for some d > 1. In
dimension 3, the problem of testing d-realizability arises naturally in robotics
or computational chemistry (the given lengths represent some known distances
between the atoms of a molecule and one wants to reconstruct the molecule
from these partial data).

Testing whether a weighted graph is realizable amounts to testing feasibility
of a semidefinite program:

Lemma 10.2.1. (G, w) is realizable if and only if the following semidefinite pro-
gram (in matrix variable X € §™):

Xii + ij — 2X” = W;j V{’L,]} € .E7 X>0 (1014)

has a feasible solution. Moreover, (G, w) is d-realizable if and only if the system

10.14) has a solution of rank at most d.

Proof. Ifvy,--- ,v, € R is a realization of (G, w), then their Gram matrix X =
(v]v;) is a solution of rank at most d of . Conversely, if X is a solution
of of rank < d and vy, --- ,v, € R* is a Gram decomposition of X, then
the v;’s form a d-realization of (G, w). O

As a direct application of Corollary [10.1.4] any realizable graph (G, w) is
d-realizable in dimension d satisfying

d+1 —1 8| E 1
( N )<|E|, e, d< T VSIEIFT (10.15)

2 2
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When G = K, is a complete graph, checking whether (K, w) is d-realizable
amounts to checking whether a suitable matrix is positive semidefinite and com-
puting its rank:

Lemma 10.2.2. Consider the complete graph G = K,, with edge weights w, and
define the matrix X € S"~1 by

. Win + Wjn — W5 . .
Xiqj=w7;n (’LE[H*I]), XZ = # (Z#]G[nfl])

Then, (K, w) is d-realizable if and only if X > 0 and rankX < d.

Proof. The proof relies on the observation that if a set of vectors vy, - ,v, €
R9 satisfies (10.13), then one can translate it and thus assume without loss of
generality that v,, = 0. O

Example 10.2.3. Consider the complete graph G = K,, with weights w;; = 1 for
all edges. Then (K,,,w) is (n — 1)-realizable but it is not (n — 2)-realizable (easy
to check using Lemma (10.2.2).

Hence, the upper bound is tight on this example. This shows that the
condition that K is bounded cannot be omitted in Proposition (Note that
the set of feasible solutions to the program is indeed not bounded).

On the other hand, for any fixed d > 1, deciding whether a graph (G, w)
is d-realizable is a hard problem. Therefore, deciding whether the semidefinite
program has a solution of rank at most d is a hard problem.

We show this for d = 1. Then there is a simple reduction from the partition
problem: Decide whether a given sequence of integers ai,--- ,a, € N can be
partitioned, i.e., whether there exists € € {+1}" such that ¢;a; + - - - + €,a, = 0.

Proposition 10.2.4. Given a graph (G, w) with integer lengths w € N¥, deciding
whether (G, w) is 1-embeddable is an N'P-complete problem, already when G is
restricted to be a circuit.

Proof. Letay, - ,ay, € N be an instance of the partition problem. Consider the
circuit G = C,, of length n, with edges {i, i+ 1} for i € [n] (indices taken modulo
n). Assign the length w; ;11 = a;41 to edge {i,i + 1} fori = 1,--- ,n. It is now
an easy exercise to show that (C,,, w) is 1-realizable if and only if the sequence
(a1, - ,a,) can be partitioned.

Indeed, assume that vq,- - ,v,—1, v, € R is a 1-realization of (C,,, w). With-
out loss of generality we may assume that v,, = 0. The condition w, ; = a1 =
|vi| implies that v; = €;a; for some €; € {£1}. Next, fori = 1,--- ,n — 1, the
conditions w; ;+1 = a;4+1 = |v; — v;+1| imply the existence of €3, - - , ¢, € {£1}
such that v;, 1 = v; + €;41a;41. This implies 0 = v,, = €1a1 + - - - + €,a,, and thus
the sequence aq, - - - , a, can be partitioned.

These arguments can be reversed to show the reverse implication. O

On the other hand:
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Lemma 10.2.5. If a circuit (C,,w) is realizable, then it is 2-realizable.
This can be shown (Exercise 10.1) using the following basic geometrical fact.

Lemma 10.2.6. Let uy,--- ,ur € R™ and vy,--- ,v, € R™ two sets of vectors
representing the same Euclidean distances, i.e., satisfying

lwi = sl = flvi = v;]| Vi, j € [K].

Then there exists an orthogonal matrix A € O(n) and a vector a € R" such that
v; = Au; + a for all i € [k].

But the above shows: Any realizable weighted circuit can be embedded in
the line or in the plane, but deciding which one of these two possibilities holds
is an A'P-complete problem!

10.2.2 Hidden convexity results for quadratic maps

As a direct application of Proposition [10.1.4] we obtain the following result for
systems of two quadratic equations.

Proposition 10.2.7. Consider two matrices A, B € 8™ and a,b € R. Then the
system of two quadratic equations

Z Aijjrizg = a, Z Bijxix; =0 (10.16)
i,j=1 i,j=1
has a real solution x = (x1,--- ,x,) € R™ if and only if the system of two linear
matrix equations
<A3X>:a7 <BaX>:b (10.17)

has a positive semidefinite solution X > 0.

Proof. If x is a solution of (10.16), then X = zx' is a solution of (10.17).

Conversely, assume that the system (10.17) has a solution. Applying Corollary
10.1.4, we know that it has a solution of rank r satisfying ("') < m = 2, thus
with 7 < 1. Now, if X has rank 1, it can be written in the form X = zz", so that

2 is a solution of (10.16). O

This result does not extend to three equations: The affine space from Exam-
ple contains a positive semidefinite matrix, but none of rank 1. As we
now observe, the above result can be reformulated as follows: The image of R
under a quadratic map into R? is a convex set.

Proposition 10.2.8. (Dines 1941) Given two matrices A, B € S™, the image of
R" under the quadratic map q(x) = (2" Az, 2" Bx):

Q = {(z"Az, 2" Bz) : x e R"}, (10.18)

is a convex set in R2.
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Proof. Set
Q = {({A,X),(B, X)) eR*: X € SLy}.
Clearly, Q < Q' and Q' is convex. Thus it suffices to show equality: Q@ = Q.

For this, let (a,b) € Q. Then the system (10.17) has a solution X > 0. By

Proposition [10.2.7] the system (10.16) too has a solution, and thus (a,b) €
Q. O

While it is not obvious from its definition that the set Q is convex, it is obvious
from its definition that the above set Q' is convex. For this reason, such a result
is called a hidden convexity result.

Here is another hidden convexity result, showing that the image of the unit
sphere S"~! (n > 3) under a quadratic map in R? is convex. We show it using
the refined bound from Proposition [10.1.7]

Proposition 10.2.9. (Brickman 1961) Letn > 3, A, Be 8" and a,b € R. Then
the image of the unit sphere under the quadratic map q(z) = (z" Az, z" Bz):

C={(z"Az,2"Bz) : Z 2 =1}

i=1
is a convex set in R2.

Proof. It suffices to show that, if the set
K={XeS8},: (A X)=aqa, (B,X)=">, Tr(X) =1}

is not empty then it contains a matrix of rank 1. Define the affine space
A={XeS": (A X)=a,(B,X)=0, Tr(X) = 1}.

Then the existence of a matrix of rank 1 in K follows from Corollary[10.1.4|if
codim A < 2, and from Proposition [10.1.7|if codim A = 3 (as K is bounded,

codim A = (5§2),n>s+2fors:1). 0

The assumption n > 3 cannot be omitted in Proposition Consider
the quadratic map q defined using the matrices A and B from Example
Then, ¢(1,0) = (1,0), ¢(0,1) = (—1,0), but (0,0) does not belong to the image
of S! under q.

We conclude with the following application of Proposition [10.2.9] which
shows that the numerical range R(M) of a complex matrix M € C"*" is a
convex subset of C (viewed as R?). Recall that the numerical range of M is

i,j=1 i=1

Proposition 10.2.10. (Toeplitz-Hausdorff) The numerical range of a complex
matrix is convex.
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Proof. Write z € C™ as z = x + iy where z,y € R", so that ), |z;]? = >, 27 + y2.
Define the quadratic map ¢(z,y) = (q1(z,y), ¢2(z,y)) by

Z*Mz = qi(z,y) +iga(z, y).

Then, the numerical range of M is the image of the unit sphere S?"~! under
the map ¢, and the result follows from Proposition [10.2.9 O

10.2.3 The S-Lemma

In the preceding section we dealt with systems of quadratic equations. We now
discuss systems of quadratic inequalities.
Recall Farkas’ lemma for linear programming: If a system of linear inequali-
ties:
alr < by

al r < by,
implies the linear inequality ¢z < d, then there exist nonnegative scalars
AL,y Am = 0suchthat e = Ajay + -+ + A\pap, and Aiby + -+ + A by, < d.
This type of inference rules does not extend to general nonlinear inequali-

ties. However such an extension does hold in the case of quadratic polynomials,
in the special case m = 1 (and under some strict feasibility assumption).

Theorem 10.2.11. (The homogeneous S-lemma) Given matrices A, B € S",
assume that " Ax > 0 for some x € R". The following assertions are equivalent.

() {zeR":2TAz >0} c {x e R": 2" Bz > 0}.
(ii) There exists a scalar A = 0 such that B — AA > 0.

Proof. The implication (ii) = (i) is obvious. Now, assume (i) holds, we show
(ii). For this consider the semidefinite program (P):

inf{(B, X): (A, X) >0, Tr(X) =1, X > 0}

and its dual (D):
sup{y : B—zA—yl >0, z > 0}.

First we show that (P) is strictly feasible. By assumption, there exists a unit
vector z for which 2TAz > 0. If Tr(A) > 0 then X = azx"/2+ [/2n is a
strictly feasible solution. Assume now that Tr(A) < 0. Set X = azx' + 81,
where we choose o > 0, § > 0 in such a way that 1 = Tr(X) = a + fn and
0 < (A, X)=ax"Az + BTr(A), i.e.,

2" Ax
naT Az — Tr(A)

S |-

<p<

Then X is strictly feasible for (P).
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Next we show that the optimum value of (P) is nonnegative. For this, con-
sider a feasible solution X of (P) and consider the set

K ={X€8%: (A X) = (A Xo), (B,X) = (B, Xo)}.

As K # (&, applying Corollary [10.1.4] there is a matrix X € K with rank 1.
Say X = xz'. Then, 2T Az = (A, Xo) > 0 which, by assumption (i), implies
2" Bx > 0, and thus (B, X¢) = 2" Bz > 0.

As (P) is bounded and strictly feasible, applying the duality theorem, we
deduce that there is no duality gap and that the dual problem has an optimal
solution (y, z) with y, z > 0. Therefore, B — zA = (B — zA —yI) + yI > 0, thus
showing (ii). O

This extends to non-homogeneous quadratic polynomials (Exercise 10.2):

Theorem 10.2.12. (The non-homogeneous S-lemma)

Let f(x) = 2T Ax + 24Tz + o and g(x) = 2" Bz + 2b"2 + B be two quadratic
polynomials where A, B € §", a,b € R" and «, 8 € R. Assume that f(x) > 0 for
some x € R™. The following assertions are equivalent.

@) {zeR™: f(z) >0} < {xeR": g(x) = 0}.

T T
(ii) There exists a scalar \ > 0 such that Boby PN > 0.
b B a A

(iii) There exist a nonnegative scalar A and a polynomial h(x) which is a sum of
squares of polynomials such that g = Af + h.

10.3 Notes and further reading

Part of the material in this chapter can be found in the book of Barvinok [1].
In particular, the refined bound (from Section [10.1.5) on the rank of extreme
points of a spectrahedron is due to Barvinok. Details about the geometry of the
elliptope can be found in [3].

The structure of the d-realizable graphs has been studied by Belk and Con-
nelly [2]. It turns out that the class of d-realizable graphs is closed under taking
minors, and it can be characterized by finitely many forbidden minors. For d < 3
the forbidden minors are known: A graph G is 1-realizable if and only if it is a
forest (no K3-minor), G is 2-realizable if and only if it has no K,-minor, and G
is 3-realizable if and only if it does not contain K5 and K522 as a minor. (You
will show some partial results in Exercise 10.1.) Saxe [5] has shown that testing
whether a weighted graph is d-realizable is A'P-hard for any fixed d.

The S-lemma dates back to work of Jakubovich in the 1970s in control the-
ory. There is a rich history and many links to classical results about quadratic
systems of (in)equations (including the results of Dines and Brickman presented
here), this is nicely exposed in the survey of Polik and Terlaky [4].
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10.4 Exercises

10.1%*

10.2%*

10.3

A graph G is said to be d-realizable if, for any edge weights w, (G, w) is
d-realizable whenever it is realizable. For instance, the complete graph
K, is (n — 1)-realizable, but not (n — 2)-realizable (Example[10.2.3).

(a) Given two graphs G; = (V4, E1) and G2 = (Va, Ey) such that V1 n'Va is
a clique in G; and Gy, their clique sum is the graph G = (V3 U Vs, B4 U E»).

Show that if G is d;-realizable and G5 is ds-realizable, then G is d-
realizable where d = max{d;, ds}.

(b) Given a graph G = (V,E) and an edge e € E, G\e = (V, E\{e})
denotes the graph obtained by deleting the edge e in G.

Show that if G is d-realizable, then G\e is d-realizable.

(c) Given a graph G = (V, E) and an edge e = {i1,i2} € E, G/e denotes
the graph obtained by contracting the edge e in GG, which means: Identify
the two nodes i; and i, i.e., replace them by a new node, called i(, and
replace any edge {i1,j} € E by {io, j} and any edge {is,j} € E by {ig, j}-
Show that if G is d-realizable, then G/e is d-realizable.

(d) Show that the circuit C,, is 2-realizable, but not 1-realizable.

(e) Show that G is 1-realizable if and only if G is a forest (i.e., a disjoint
union of trees).

() Show that K 5 » is 4-realizable, but not 3-realizable.

NB: A minor of G is a graph that can be obtained from G by deleting and
contracting edges and by deleting nodes. So the above shows that if G
is d-realizable then any minor of G is d-realizable. Moreover, if G is 3-
realizable then G has no K5 and K352 minor. The reverse implication
holds but requires more work [2].

(@) Let A,B,C € 8", a,b,ce R and let
Q= {q(z) = (z" Az, 2" Bz,2"Cx) : x e R"} < R?

denote the image of R™ under the quadratic map ¢q. Assume thatn > 3
and that there exist «, 3, € R such that aA + 3B + vC > 0.

Show that the set Q is convex.

(b) Show Theorem|[10.2.12

(a) Consider the two cut matrices .J (the all-ones matrix) and X = zz7
where z € {£1}", distinct from the all-ones vector. Show that the segment
F = [J, X] is a face of the elliptope &,,.

168



(b) Consider the matrix

1 0 0 1/V2 1/4/2
0 1 0 1/V2 0

A=1 0 0 1 0  1//2|eés.
1/vV2 1/4/2 0 1 1/2

V2 0 1/V2 1)2 1
What is the dimension of the face Fg, (A)? What are its extreme points?

10.4 Let p be a polynomial in two variables and with (even) degree d. Show
that if p can be written as a sum of squares, then it can be written as a
sum of at most d + 1 squares.

NB: For d = 4, Hilbert has shown that p can be written as sum of at most
three squares but this is a difficult result.
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CHAPTER 11

EUCLIDEAN EMBEDDINGS:
LOW DISTORTION

11.1 Motivation: Embeddings of finite metric spaces

Definition 11.1.1. A finite metric space is a pair (X, d) where X is a finite set
and where the function d : X x X — R defines a metric: For all x,y,z € X we
have

(non-negativity) d(z,y) =0, and d(z,y) = 0 if and only if z = vy,

(symmetry) d(z,y) = d(y, z),
(triangle inequality) d(z,z) < d(z,y) + d(y, 2).

One important example is the shortest path metric of a connected graph G =
(V, E). There we measure the distance d(z,y) between two vertices z,y in G by
the length of a shortest path connecting x and y. Here the length of a path is
the number of its edges.

In computational phylogenetics one frequently deals with genetic distance
matrices. See Table 11.1.

To work with finite metric spaces one wants to perform data analysis or one
wants to visualize them. For these tasks there are many geometric algorithms
available which are based on the Euclidean metric but which are not available
for arbitrary metric spaces. So it is an obvious method to map the points of the
finite metric space into a Euclidean space, preferably one of low dimension.

A Euclidean embedding f : X — R”™ is an injective map from X to n-
dimensional Euclidean space. We want to embed X isometrically into Euclidean
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Ban | E.Af. | WAf. | San | Ind. | N.E. | Kor. | S.C. | Eng. | Aus.

Bantu 0
E. Africa 658 0
W. Africa 188 697 0

San 94 776 885 0

India 2202 | 1078 | 1748 | 1246 0
Near East | 1779 | 709 | 1454 | 880 229 0

Korea 2668 | 1475 | 1807 | 1950 | 681 933 0
S.China | 2963 | 1664 | 1958 | 2231 | 847 983 | 498 0

English 2288 | 1163 | 1487 | 1197 | 280 236 | 982 | 1152 0
Australia | 3272 | 2131 | 2694 | 2705 | 1176 | 1408 | 850 | 1081 | 1534

Table 11.1: Genetic distance matrix due to Cavalli-Sforza (1994). (What is
“wrong” with this matrix?)

space R", so that for all x,y € X we have

d(z,y) = |1 @) = f@)l = | 2@ = F))?

where f(x); denotes the i-th component of the vector f(z) € R™.

There are two problems with isometric embeddings into Euclidean spaces:
If we insist on finding an isometric embedding into Euclidean space with a fixed
dimension n, independent of the cardinality of X, then finding such an embed-
ding is a semidefinite optimization problem with a rank constraint; indeed an
NP-hard problem. If we relax the rank constraint, then we are dealing with a
semidefinite feasibility problem. However, in general it will not be feasible.

Example 11.1.2. Consider for instance the shortest path metric of the star graph
X ={1,2,3,4}, with d(1,4) = d(2,4) = d(3,4) =1, and d(i, j) = 2, otherwise.

To embed (X,d) isometrically into Euclidean space, one needs that each of the
triplets {1,2,4}, {1,3,4} and {2, 3, 4} lie on a single line, which is impossible.

In this lecture we propose to use Euclidean embedding having low distortion
instead of (non-existing) isometric Euclidean embeddings.

Definition 11.1.3. Let (X, d) be a finite metric space and let f : X — R" be an
embedding into Euclidean space. We define the expansion, contraction and the
distortion of f by

expansion(f) = ;?,2})(( W
d(z, y)

contraction(f) = max

x,yeX m

distortion(f) = expansion(f) - contraction(f)
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Definition 11.1.4. The optimal distortion of (X, d) is given by

Y. d) — : . : .
c2(X, d) f:XHEEwldlstortlon(f)

In the case when (X, d) is the shortest path metric of a graph G we write co(G).

11.2 Computing optimal Euclidean embeddings

Let (X, d) be a finite metric space with X = {z1,...,2,}. Then we can find a
Euclidean embedding of X which minimizes the distortion by solving a semidef-
inite optimization problem. For this let f : X — R" be an embedding. Then
we can assume by scaling that contraction(f) = 1. So we have to minimize
expansion(f) to minimize the distortion. The following optimization problem
does this:

minimize ~>
vyeR, f: X - R"
d(wi, 25)? < | f(wi) = f2))]? < APd(wi, 25)°

By considering the inner product matrix Z = (f(z;)" f(2;))1<i,j<n, Which is
positive semidefinite, and by noting that

|f(@i) = f(x)|? = Ziz — 2Zi; + Zj; = {eie] +eje] — (eie] +ejel ), Z)
we get a semidefinite optimization problem

minimize T
TeR, ZeS,

T

leie] + eje]T» - (eieJT +ejel), Z) = d(xi,x4)?
i Z) <

(eie]T + ejeiT), Td(xi,$j)2

leie] +eje

for which /7 = ¢2(X, d) holds.
By using strong duality of conic programming (Exercise 11.1 (a)) we arrive
at the following theorem.

Theorem 11.2.1. The least distortion of a finite metric space (X,d), with X =
{x1,...,2,}, into Euclidean space is given by

v o Yiid(mg, )2
co(X,d) = max Z”'Y”>0 A 5
YeSZ,,Ye=0 _Zij:Yij<0 Yijd(mi,mj)

The condition Ye = 0 says that the all-ones vector e lies in the kernel of Y.

We will use this theorem to find lower bounds for the optimal distortion
embeddings of several graphs.
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11.2.1 Least distortion embedding of the cube

To warm up we consider the graph of the r-dimensional unit cube Q, = (V,,, E,)
with V. = {0, 1}". Here two vertices are adjacent whenever their Euclidean dis-
tance equals 1. Clearly (check it), the usual Euclidean embedding has distortion
/7. In fact, as the following theorem shows, one cannot improve it.

Theorem 11.2.2.
C2(Qr) = \/;

Proof. Define the matrix Y € RV"*V» by

1 ifd(,j) =1,
) r—=1 ifi=j,
YOID=Y 1 ifde ) =r,
0 otherwise.

It satisfies the properties of Theorem We clearly have Ye = 0. The
fact that V" is positive semidefinite follows from the fact that for y € {0,1}" the
vectors f, € RV defined by f,(z) = (—1)“’Ty form a basis of eigenvectors of
Y. One directly verifies that the corresponding eigenvalues are nonnegative. To
end the proof we only have to evaluate Y’s objective value:

15:Y35>0
and
— ) Yid(i,5)? =2
i§:Y;; <0
Hence,
2rr2
CQ(QT) = oy = \/; O

11.3 Corner stones of metric embeddings

11.3.1 Bourgain’s theorem

Bourgain showed in 1985 that every finite metric space embeds into Euclidean
space with low distortion. This theorem is according to Hoory, Linial, and
Wigderson the “grand ancestor” of the area of metric embeddings.

Theorem 11.3.1. There is a constant C so that any finite metric space (X, d) can
be embedded into Euclidean space with distortion at most C'log | X|:

(X, d) = O(log | X]).
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In particular it shows that the optimal solution of the semidefinite optimiza-
tion problem in Theorem[11.2.1]is bounded by C'log | X|. The proof is presented
in Chapter 15.7 of the book by Matousek [5]. However, currently, there is no
proof known which is based on semidefinite optimization. In fact, Goemans [3]
writes: “it would be nice to prove this result from semidefinite programming
duality.”

11.3.2 Johnson-Lindenstrauss flattening lemma

Another major result in the area of metric embeddings with many applications
is by Johnson and Lindenstrauss from 1984. It says that one can reduce the
dimension of Euclidean embeddings significantly.

Theorem 11.3.2. Let (X, d) be a finite metric space which isometrically embeds
into Euclidean space of dimension |X|. Then there is an embedding of X into a
Euclidean space of dimension O(log | X |/€?) with distortion at most 1 + e.

The construction behind the proof (see Theorem 15.2.1 in Matousek [5])
is very simple: One uses a random linear projection onto a low dimensional
subspace.

11.4 Embeddings of expanders

An expander is a graph which is sparse but at the same time highly connected.
Expanders are remarkable graphs which have many applications in mathematics
and computer science. In the last forty years they were subject of a huge amount
of research.

Here we will use them to show that Bourgain’s theorem is tight in the sense
that the shortest path metric on expander graphs can only be embedded into
Euclidean space with distortion Q(logn).

For this we start by defining the edge expansion ratio. Although this defini-
tion gives some intuition how expander graphs look like it is frequently much
easier to work with expanders algebraically using spectral properties of their
adjacency matrix. These spectral properties will then be useful for proving that
expanders embed rather badly into Euclidean space.

11.4.1 Edge expansion

Let G = (V,E) be a graph. We assume that in G every vertex has exactly d
neighbors, i.e. that G is d-regular. Let S < V' be a subset of the vertices and let
S = V\S be its complement. The edge boundary of S is

0S = {{u,v} e E:ue S,ve S}
For the edges which stay in S or S define
E(S)={{u,v}e E:u,ve S}, E(S)={{u,v}e E:uveS}
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Definition 11.4.1. The edge expansion ratio of a graph G is

0S|
h(G) = =2l
©) scvisigivizz |9]

Definition 11.4.2. Let d > 3 be an integer. A family of d-regular graphs G,, =
(Va, Ey) with |V,,| — oo when n tends to infinity is called a family of d-regular
expander graphs if there exists ¢ > 0 with h(G,,) > e

In the following two sections we will prove a fundamental inequality due to
Dodziuk (1984) and independently Alon and Milman (1985) and Alon (1986).
It relates the edge expansion ratio h(G) of a d-regular graph with the spectral
gap of a graph, the difference d — A\, between the largest and the second largest
eigenvalue of its adjacency matrix

d _QAQ < h(G) < /2d(d = \2)

This shows that G,, is a family of d-regular expander graphs if and only if
there exists an € > 0 so that d — \y(G,,) > € for all n.

11.4.2 Large spectral gap implies high expansion

Theorem 11.4.3. Let G = (V, E) be a connected, d-regular graph. Let Ay = d
and Aq be the largest and the second largest eigenvalue of the adjacency matrix of
G. Then,

Proof. The largest eigenvalue of the adjacency matrix A of the d-regular graph G
equals d and the corresponding eigenvector is the all-ones vector e (see Exercise
11.2). So the second largest eigenvalue A\, of A is given by

fTAf

T ferV\(0).sle FTF

because of the Rayleigh principle. If we would find a vector f which is perpen-
dicular to e so that
fTAf

frf
holds, then we would prove the desired inequality. Let S < V' be a set attaining
the edge expansion ratio

> d — 2h(G)

h(G) = ||55| with |S| < |V]/2.

Define the vector B _
F=15x° = 18Ix" eRY
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where y° € RY denotes the characteristic vector of the set S. This vector is
perpendicular to e. The denominator of the Rayleigh quotient equals

fTAf = 2 ) fwf)
{u,v}eE
= 2(|E9)IIS)* + |B(S)IIS]* - 1S]IS]10S])
= (dIS|—|2S)[S|* + (d[S| — [oS])|S]* — 2IS|[S]|2S]
= d(IS| + |S)IS|[S| = (IS] + |S])*|es|
= dV|IS|[S| - [V|*|es],

where we first split the sum into {u,v} € E(S), {u,v} € E(S), and {u,v} € 05,
and then use the identities

d|S| = 2|E(S)| + (0S|, d[S| =2|E(S)|+ 0S|, [V|=1[S|+[S|.
The numerator of the Rayleigh quotient equals

FTf =ISPIS| + |SP[S] = |SI[SI(IS] + IS]) = [VISI[S].

Together,
T T _ V2
STAL _ AVISISL - IVPIRS| oSy
s VIISIIS] |S11S]
where we use that h(G) = |0S]/|S| and |S| = |V]/2. O

11.4.3 High expansion implies large spectral gap

Theorem 11.4.4. Let G = (V, E) be a connected, d-regular graph. Let A\ = d
and Ao be the largest and the second largest eigenvalue of the adjacency matrix of

G. Then,
h(G) < A/2d(d — X2).

Proof. Let g be an eigenvector of the adjacency matrix A of G corresponding to
A2. Since g is perpendicular to the all-ones vector, the vector g has positive as
well as negative entries. Define f € RV by

fu) z{ g(u) if g(u) > 0,

0 otherwise.

Let S = {u € V : f(u) # 0} be the support of f. We may assume that S
has at most |V|/2 vertices, otherwise we would replace the eigenvector g by its
negative —g.

The theorem will follow once we prove the inequalities

WG _ fTLf
20~ fTf

<d— A2 (11.1)

177



for the Laplacian matrix L = dI — A of the d-regular graph G.
The upper bound in (I1.1) is (relatively) easy: For u € S we have

(L) = dfw— > f)

veV:{u,v}eE

= dg(u)— D g(v)
veS:{u,v}eF

< dglw)- ). g(v)
veV:{u,v}eE

= (d—=A2)g(u).

Because f(u) = 0 whenever u ¢ S we arrive at

FTLf =)0 F)(Lf)(u) < (d—=X9) Y g(w)? = (d— X)) fTf.

ueV uesS

The lower bounds in (11.1) is harder and needs more work and ingenuity.
Some preparation: Let us label the vertices of G by 1,...,|V] so that

fO) = f@2)=...= f(V]).
Direct the edges of the graph G (arbitrarily) and define K € RV*¥ by

—1 if edge e exits vertex u,

+1 if edge e enters vertex u,
K(u,e) =
0  otherwise.

Then one has L = KK . Define the quantity

B= ), If(w)®~f@©?
{u,v}eE
We shall prove
WG fTf < B<V2\/(Kf)TKf\/fTF, (11.2)
which implies the lower bound in (I1.1)) because fTLf = (K f)T(K f).
The upper bound in (11.2) follows from Cauchy-Schwarz

B = ) If)?~f)

{u,v}eF

DTlf@) + F@)] - If () = f(v)]

{u,v}eE
< DU(F) + F@)2e [ (flu) = f(v))?
{u,v}eE {u,v}eE
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and by

Y (fw) = f)? =\J(KNTKS

{u,v}eE

as well by

D (f)+f)2< 20 Y] (fw?+f(v)?) =, [2d )] f(u)? = V2dfTf.
{u,v}eE {u,v}eE uevV

The lower bound in (11.2) follows from the following calculation which uses
telescopic summation and the ordering of the vertices of G:

B = > |f(w?®—f()?

{u,v}eF

Y (Fw?=f?

{u,v}eF,u<v

v—1
= Y U@ -ra+1?)
{u,v}eFEu<v i=u

[Vi-1

= Z (f(@)* = fG+ 1)), ..., 4}

= DG = fG+1)H)e{L,. .., 4}
€S

> h(G) Y (F()? = f(i +1)%)i

€S
= h(G) Y, (f()?
€S

= WGV

Here we use the fact that |S| < [V|/2 and so |0{1,...,i}|/i = h(G) if i < |V]/2.
Furthermore, notice that f(i + 1) = 0 for ¢ = |S| when collapsing the telescopic
sum. O

11.4.4 Low distortion embeddings of expander graphs

Theorem 11.4.5. Let d > 3 be an integer and let ¢ > 0 be a positive real. For
every d-regular graph G = (V, E) and Ay < d — ¢, we have

ex(©) = | lloma V1)

In particular, Bourgain’s theorem is tight for families of d-regular expander graphs.
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Proof. For simplicity we assume that |V| is even.

Since G is d-regular, every vertex has < d" vertices at distance r. In particular
if r = |log,;|V|| — 1, then there are < |V/|/2 vertices at distance r from any
given vertex. Define the graph H = (V, E) by connecting two vertices if their
distance in G is > |log,|V||. Then the minimal degree of H is > |V|/2. By
a classical theorem of Dirac from 1952 we know that every graph on |V| > 3
vertices with minimum degree at least |V/|/2 contains a Hamiltonian cycle; one
can find the (simple) proof for instance as Theorem 10.1.1 in the book [1]] by
Diestel. Since |V| is even, we derive that H has a perfect matching.

Let B € SV be the adjacency matrix of such a perfect matching. It is a per-
mutation matrix of a permutation consisting out of |V|/2 disjoint transpositions.
We denote the edges participating in the perfect matching by F'.

Let A € SV be the adjacency matrix of G.

Define the matrix Y by

Y =dl—A+ = (B I),

and we want to show that Y satisfies the assumptions of Theorem(11.2.1
It is easy to verify that Ye = 0 holds. The matrix Y is positive semidefinite
because for every x € RV which is perpendicular to e we have the inequality

Yo = z'(dl-A+ = (B )z
> (d—)\Q):z:Tz+ 5% "(B-1Izx
> exla+ < Z (2z(u)z(v) — z(u)? — 2(v)?)
{u,v}eF
> ex'z— -2 2 (z(u)? + z(v)?)
{u,v}eF
= ex'z—ex'x
= 0

To end the proof we only have to evaluate Y’s objective value:

N Vyd(wi,x;)? = d|V]
ij:}/qjj<0

and

€
Y Vi a)? > 5V Ilog [V
i7:Y;5>0

ex(6) = | llog V1) .

Hence,
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11.4.5 Construction of a family of expander graphs

Explicit constructions of a family of expander graphs are very much non-trivial.
An easy construction of a family of 3-regular expander graphs which neverthe-
less relies on a deep result in number theory (Selberg’s 3/16 theorem) is as
follows: Let p be a prime. The vertex set of G, is Z,, and a vertex x is connected
tox+ 1,  — 1 and 2~ ! where all operations are performed modulo p and where
the inverse of 0 is defined to be 0.

11.5 Further reading

In this lecture we mostly followed the presentation of the price winning, very
fascinating, survey article by Hoory, Linial, Wigderson [2] on expander graphs
(especially Section 13). There the authors present the many, often surprising,
connections of expanders with other parts of mathematics and computer sci-
ence. The recent survey [4] by Lubotzky is fascinating too. It focuses on the
deep algebraic side of expanders.

Much more on metric embeddings and its applications can be found in Chap-
ter 15 of Matousek’s book on discrete geometry [5].

11.6 Exercises

11.1** (a) Prove Theorem 11.2.1.
(b) Show: Let f : X — R™ be an optimal distortion embedding. If YV’
attains the optimum in Theorem 11.2.1 then Y;; > 0 only for f’s
most contracted pairs ¢ and j and Y;; < 0 only for f’s most expanded
pairs ¢ and j.
(c) Find an optimal distortion embedding of the Petersen graph (see Fig-
ure 6.1).

11.2 Let G = (V, E) be a d-regular graph and let
M= =.. .2\,
be the eigenvalues of the adjacency matrix of G. Show that
(@) M e[—d,d]foralli=1,...,n.
(b) G is connected if and only if A; > As.
(c) G is bipartite if and only if A\; = —\,,.

@ A3 > dfp

11.3 Let G = (V, E) be a d-regular graph and let A\, the second largest eigen-
value of its adjacency matrix. Then for S,T < V we have

[{{u,v} e E:ue S,veT} —d|5|1‘|y|1 < Ao/ |57
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11.4 Computer exercise: Compute the optimal distortion embedding of the
semimetric in Table 11.1 and draw a random projection onto the two-
dimensional Euclidean plane.
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CHAPTER 12
PACKINGS ON THE SPHERE

Packing problems are fundamental in geometric optimization and coding the-
ory: How densely can one pack given objects into a given container?
In this lecture the container will be the unit sphere

Sl ={reR":z-x=1}

and the objects we want to pack are spherical caps of angle ~. The spherical cap
with angle v € [0, 7] and center x € S*~! is given by

C(x,y) ={ye S" ' :x-y > cosv}.

Its normalized volume equals (by integration with spherical coordinates)

n—2 1
U)(")/) _ wnfl(s ) f (1 _ uQ)(n—3)/2 du,

wn(Sn—l) 0S Y

where w,, (S""1) = (27™/2)/T'(n/2) is the surface area of the unit sphere. Two
spherical caps C(z1,~) and C(x2,) intersect in their topological interior if and
only if the inner product of x; and z- lies in the half-open interval (cos(2v), 1].
Conversely we have

C(z1,7)° nC(x,7)° =@ <= —1< x5 32 < COS(27).

A packing of spherical caps with angle ~, is a collection of any number of spher-
ical caps with this angle and pairwise-disjoint topological interiors. Given the
dimension n and the angle v we deﬁneF_-]

A(n,2y) = max{N : C(x1,7),...,C(xy,) is a packing in S"'}.

INote here that we use 2+ in the definition of A(n,2v) because we want to make the notation
consistent with the common literature. There one emphasizes that 2+ is the angle between the
centers of the spherical caps.
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One particular case of packings of spherical caps has received a lot of atten-
tion over the last centuries.

In geometry, the kissing number 7, is the maximum number of non-overlapping
equally-sized spheres that can simultaneously touch a central sphere. It is easy
to see that 7,, = A(n, 7/3) because the points where the spheres touch the cen-
tral sphere form the centers of a packing of spherical caps with angle 7/6.

Today, the kissing number is only known for dimensions 1, 2, 3, 4, 8 and 24.
It is easy to see that the kissing number in dimension 1 is 2, and in dimension
2 it is 6. The kissing number problem has a rich history. In 1694 Isaac Newton
and David Gregory had a famous discussion about the kissing number in three
dimensions. The story is that Gregory thought thirteen spheres could fit while
Newton believed the limit was twelve. Note that the easy area argument, which
proves 1o = 6, only gives that

5 < {MJ = {%(1 _LZS(W/@) —14.92.. ] = 14.

It took many years, until 1953, when Schiitte and van der Waerden proved
Newton right.

Y Y ‘ Y
A

- ~
—

Figure 12.1: Construction of 12 kissing spheres. Image credit: Anja Traffas

In the 1970s advanced methods to determine upper bounds for the kiss-
ing number based on linear programming were introduced. Using these new
techniques, the kissing number problem in dimension 8 and 24 was solved by
Odlyzko, Sloane, and Levensthein. For four dimensions, however, the optimiza-
tion bound is 25, while the exact kissing number is 24. In a celebrated work
Oleg Musin proved this in 2003, see [3].

The goal of this lecture is to provide a proof of 73 = 240.

12.1 « and ¥ for packing graphs

Many, often notoriously difficult, problems in combinatorics and geometry can
be modeled as packing problems of graphs G = (V, E) where the vertex set
V' can be an infinite or even a continuous set. All possible positions of the
objects which we can use for the packing are vertices of a graph and we draw
edges between two vertices whenever the two corresponding objects cannot be
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simultaneously present in the packing because they overlap in their interior.
Now every independent set in this conflict graph gives a valid packing.

For the problem of determining the optimal packing of spherical caps with
angle v, A(n,2v), we define the packing graph G(n, 2v) with vertex set

V=8"1'={zeR":2 -z =1},

and edge set
x~y<=>x-ye (cos(2y),1).

Then,
A(n,2v) = a(G(n,2v)), and 7, = A(n,7/3) = a(G(n,n/3))

Now it is an “obvious” strategy to compute the theta number for this graph
in order to find upper bounds for the independence number a(G(n, 27)).

To generalize the theta number for infinite graphs, we will need a notion
of positive semidefinite infinite matrices because in the definition of the theta
number we need matrices whose rows and columns are indexed by the vertex
set of the graph.

This leads to positive semidefinite, continuous Hilbert-Schmidt kernels.

Definition 12.1.1. A continuous function (called continuous Hilbert-Schmidt ker-
nel)
K:S"tx s »R

is called symmetric if K (z,y) = K(y,x) holds for all z,y € S"~1. It is called
positive semidefinite if for all N and all z1,...,xy € S?! the symmetric N x N
matrix

(K(.’L‘i, .’L‘j)) >0

1<ij<N =
is positive semidefinite. We denote the cone of positive semidefinite continuous
Hilbert-Schmidt kernels by C(S™~! x S"~1),,

We use this cone C(S"~! x §"~1). to define the theta prime number of the
packing graph G(n,2v):

¥ (G(n,27y)) =inf A
Kec(s™" x 5" V)sp
K(z,r) =\ —1forallz e S"*
K(z,y) < —1forall {x,y} ¢ E.

We have {z,y} ¢ E whenever the spherical caps C(z,v) and C(y,~) do
not intersect in their topological interior, i.e. whenever z - y € [—1, cos(2v)].
The definition ' is similar to the dual formulations in Lemma 6.4.1. We use a
prime to indicate that we replace the equality K(z,y) = —1 by the inequality
K(z,y) < -1

Similar to the finite case, ¥/ provides an upper bound for the independence
number:
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Theorem 12.1.2.
a(G(n,27)) <9 (G(n,27))

Proof. Let C = S™~! be an independent set. Let K be a feasible solution of
¥ (G(n,2v)). Because K is positive semidefinite we have

0 < Z Z K(x,y)
zeC yeC
= D K@a) + ) Ky
zeC TF#Y
=[|Cl(A-1) <(=1(CP-[Ch
< |0l =1) = ([P~ cl)
This implies |C| < ), yielding the theorem. O

Note that if we are in the lucky case that a(G(n,2v)) = 9'(G(n,2y)), the
inequalities in the proof of the theorem are tight. This can only happen when
K(x,y) = —1 for {z,y} ¢ E. We will use this observation later when we deter-
mine 7g.

12.2 Symmetry reduction

Computing 1’ does not seem to be easy since it is defined as an infinite-dimensional
semidefinite program. However, the underlying graph is highly symmetric and
so we can perform symmetry reduction, similar to the one in Chapter 6.6.

The automorphism group of the graph G(n, 2v) is the orthogonal group O(n)
because for all A € O(n) we have

Ax - Ay =z -y.

Furthermore the graph G(n, 2) is vertex transitive because for every two points
x and y on the unit sphere there is an orthogonal matrix mapping z to y. Even
stronger it is two-point homogeneous, meaning that if x,y,2’,y’ € S"~! are so
that
zoy=2a-y,

then there is an A € O(n) with Az =2/, Ay = v/.

If K is a feasible solution for ¢ with objective value A = K(z,z) + 1 and if
A € O(n) is an orthogonal matrix then also

KA (z,y) = K(Az, Ay)

is a feasible solution for ¥ with the same objective value. So we can symmetrize
any feasible solution K of

K'(z,) = f KA (2,y)du(A),
AeO(n)
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where 1 is the normalized Haar measure of the orthogonal group.

That means that we can restrict the optimization variable K to be a positive
semidefinite continuous Hilbert-Schmidt kernel which is invariant under the
orthogonal group, i.e.

Kec(sm™t x smhHZ,
where
e(s™ ! x s Y
= {KeC(S"™' x §"7) : K*(2,y) = K(Az, Ay) = K(x,y) for all A e O(n)}.
So we get
?(G(n,2y)) = inf A
Kec(s" x smHg

K(z,2) =X —1forallz e $"!
K(z,y) < —1forall {z,y} ¢ E.

12.3 Schoenberg’s theorem

Now the idea is to find an explicit characterization of the cone C(S™ ! x S"‘l)gé”).
Such a characterization was proved by Schoenberg in 1941. He parameterized
this cone by its extreme rays.

Theorem 12.3.1 (Schoenberg (1941)).

C(Sn—l gn— 1 {2 kak x, y 0 2 fk < OC} (121)

where
E;?(f»y) = PI?(CC ’ y)7
and where P}} is a polynomial of degree k satisfying the orthogonality relation

f PrOPrO)(1—t2) T dt = 0ifk 1,

and where the polynomial P} is normalized by P[*(1) = 1.

The equality in ) should be interpreted as follows: A kernel K lies in
C(Sm—1 x §n=1)0m) 1f and only if there are nonnegative numbers fy, fi,... so
that the series Y., fi converges and so that

0
= L e
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holds. Here the right hand side converges absolutely and uniformly over "1 x
St

For n = 2, P? are the Chebyshev polynomials (of the first kind). For larger n
the polynomials belong to the family of Jacobi polynomials. The Jacobi poly-
nomials with parameters («,3) are orthogonal polynomials for the measure
(1 — t)*(1 + t)Pdt on the interval [—1,1]. They form a complete orthogonal
system of the space L2([—1,1],(1 — t)*(1 + t)?dt). This space consists of all
real-valued functions f : [-1,1] — R for which the integral

Jl P21 = (1 + 0Pt

exists and is finite. We denote by P,Ea’ﬁ ) the normalized Jacobi polynomial of

degree k with normalization P,ga’ﬁ )(1) = 1. The first few normalized Jacobi
polynomials with parameter (o, o) and o = (n — 3)/2 are

Pt) = PY(t) = 1,
Pt) = P (1) = 1,
1
pr(t) = Pl = g2 .
3(1) = P (1) = ——t* = ——

Much more information is known about these orthogonal polynomials. They
are also known to many computer algebra systems.

sage: x = PolynomialRing(QQ, ’x’).gen()
sage: n = 4

sage: a = (n-3)/2

sage: for k in range(0,5):

sage: print(jacobi_P(k,a,a,x)/jacobi_P(k,a,a,1))
1

x

4/3*xx"2 - 1/3
2*%x"3 - x
16/5%x~4 - 12/5%x"2 + 1/5

0.5
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12.4 Proof of Schoenberg’s theorem

In this section we prove Theorem|12.3.1]in three steps. In the first two steps we
derive some properties of the extreme rays E},.

12.4.1 Orthogonality relation

The space of symmetric continuous Hilbert-Schmidt kernel is an inner product
space, just like the space of symmetric matrices. The inner product between K
and L is

<K7 L> = gno K(xvy)L(xvy)dwn(x)dwn(y)

Lemma 12.4.1. We have the orthogonality relation E}' 1 E whenever k # 1.

Proof. Since E}(z,y) = Pj*(x - y) and the integrals are invariant under O(n),
we can take z = N, where N is the North Pole, and therefore,

BLED = wS [ RN )P g)de o)
= @S (87 [ RPN OO - )T e
= 0,

ifk# 1L O

12.4.2 Positive semidefiniteness
Lemma 12.4.2. The E}’s are positive semidefinite.

Proof. Let us consider the space of continuous functions f : S"~! — R with
inner product

(r9) = | r@te)don @)

Let V; be the space of constant functions on S™~! and, for k > 1, let Vj, be
the space of polynomial functions on S"~! of degree k which are orthogonal to
Vo, Vi, ..o, Vie—a.

The key idea is to relate Vj, to E}.

Fix z € S"~1. Consider the evaluation map f ~ f(z). This is a linear
function on Vj. By the Riesz representation theorenﬂ there is a unique v, , € Vi,
with

(Uk7267f) = f((IJ)

Claim: agvg . (y) = E}(z,y) for some ay > 0

2In fact it follows from basic linear algebra because V}, is of finite dimension.
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Proof. Note that both sides are polynomials of the right degree. Also, vy, ., (y) is
invariant under rotations that leave z fixed: Let A € O(n) such that Az = .
Then,

(Avk,z)(y) = Uk,x(Aily) = Uk,ac(y)7

because we have

(Avk,.tv f) = (vk,-’ta Ailf)

= [f(Az)
= (kA f) (by definition of vy .)
= (ke f) (Az = z)

and by uniqueness of vy, ,, it follows that Avy , = vy .. Thus (z,y) — vk, (y) is
purely a function of z - y.

Also, for k # I, v, L v, since Vj, L V;, thus they have the right orthogo-
nality relations. Hence E}'(x,y) and v ,(y) are multiples of each other. Since
we have

Ep(x,xz) =1 and wvgg(z) = (kg Vks) >0,

the claim follows. O
Now we are ready to show that E} is positive semidefinite. Observe that

El(z,y) = agvk . (y) and that vy ,(y) = (v, vk,»). Thus we have,

f j B (2, y) £ (@) f () doon () doon (y)
Sn—l Sn—l

o || ko @) ) ) (1)
= o ([ @), [ )

= 0

as both the integrals in the last inner product are identical. It follows that E} is
positive semidefinite. O

12.4.3 End of proof

We first show that, if fy, f1,... are nonnegative numbers such that Zf:o fx
converges, then the series >, fx E} (z,y) converges absolutely and uniformly
forall z,y € S 1.

By Lemma E}! is positive semidefinite and so

|Ep(z,y)| < Bf(z,2) = B (1) =1
for all z,y € S*~! and so

Z ka]? ($, y)
k=0
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converges absolutely for all z,y € S?~1.
Now, for all ,y € S*~! for all m € N we have

0 Q0
Z BB (@, y)| < ). f
k=r k=m

and so the series also converges uniformly for all z,y € S™.
With the above observation, if we are given nonnegative numbers fy, f1, ...
such that Zf:o fx converges, then the kernel

[ee}
Z kEkIy

is continuous. From Lemma it is also positive semidefinite, and so we
showed the inclusion “2”.

For the other inclusion “c” let K : S® ! x ! — R be a continuous,
positive semidefinite, and invariant kernel. Kernel K is invariant, so let h :
[1,1] — R be the function such that K(z,y) = h(z - y) for all z,y € S"~ L.
The polynomials P, P/* form a complete orthogonal system of L?([—1,1], (1 —
t2)(»=3)/24t) with convergence in the L?-norm.

We first claim that the f}, are all nonnegative. To see this, recall the orthog-
onality relation from Lemma First note that

k

since this is the inner product of two positive semidefinite kernels. Now by
orthogonality of E}'’s, we have

0< <Z ka;L,E;L> = fi{El', B}

>0

This is possible only if f; > 0
To finish, we show that the series Z‘ZO:O fx converges. To this end, consider
form =0, 1,... the function

hom(u) = h(u) — i fePl(u) forallwe[1,1].

These are continuous functions. Moreover, since we have

[ee}
>, REPr

k=m+1

in the sense of L? convergence, it follows that for each m the kernel K,,(x,y) =
hu(x - y) is positive semidefinite.
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This implies in particular that h,,(1) > 0 for all m. But then we have

m

Efk—h ZfP’” (1) = 0

and we conclude that the series of nonnegative terms >,”_, f; converges to a
number less than or equal to i(1), as we wanted.

12.5 Delsarte’s LP method

Using Schoenberg’s theorem we can reformulate ¢'(G(n, 2v)) where we use the
nonnegative optimization variables fy, f1, ...

¥ (G(n,2y)) =inf X
vafla"' =0

M <o

k=0

D PR = A -
=0

Z fuPp(t) < —1forallte[—1,cos(27)]
k

(12.2)

This problem has infinitely many variables. If we truncate the Variablesﬂ we
get the following bound:

a(G(n,27)) <9 (G(n,2y)) <inf A
fos f1,. . fa =0

d
D AP = A1
k=1

d
D fePR(t) < —1 Vte[—1,cos(2y)]
k=1

Since this optimization problem is a linear program (with infinitely many
constraints) it carries the name linear programming bound. These kind of linear
programming bounds were first invented by Delsarte in 1973 in the context of
error correcting codes and therefore they also carry the name “Delsarte’s LP
method”.

Note that the infinitely many inequalities can be replaced by a finite dimen-
sional semidefinite condition using sums of squares (see Chapter 2.7):

d
—L— > fuPi () = p(t) = (t + 1)(t — cos(2y))a(t)

k=1

SFormally we set 0 = fg.1 = fd+2 = ...
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where p and ¢ are polynomials which can be written as sum of squares.

12.6 73 equals 240

It so happens that for n = 8, a(G(8,7/3)) = ¥ (G(8,7/3)) = 240. This result is
due to Odlyzko, Sloane, and independently due to Levenshtein.
First, consider the set of 240 points in S obtained by all possible permuta-

T
\/7 \/7

and all possible even sign-changes of the point

(1111111y
There are (2)22 = 112 points generated by A and 27 = 128 points generated by
B. All possible inner products for points from this set are

11
~1,—=,0,=,1%.
{ b 270727 }

In particular, note that there is no inner product between % and 1. Thus, this
is a valid kissing configuration. In fact, this configuration of points on the unit
sphere is coming from the root system Eg which has connections to many areas
in mathematics and physics.

Now, taking hints from the formulation for ¢/ (G(8,7/3)), we explicitly con-
struct a kernel K(z,y). Recall, K(z,y) = —1 if {z,y} ¢ E. Also, recall that
K (z,y) was a function of the inner product x - y = ¢t only. Now, consider the
following polynomial

F(t)=—1+B(t+1) (t+ ;)2’52 (t‘;)

Note that, F(—1) = F(-1/2) = F(0) = f(1/2) = —1 by construction. Also,
F(t) < —1fort e [-1,1/2]. Setting, F(1) = A —1 = 240 — 1 = 239, we get
8= 320

Now it can be verified (Exercise 12.1 (a)) that
6
Z FePE(),  fr=0. (12.3)

Thus, F(t) is a feasible point for the optimization problem (12.2).
Now by construction of the set of points, we know that a(G(8,7/3)) = 240.
By the construction of F'(t), we know that ¥/'(G(8),7/3) < 240. Thus we have
a =9 (G(8,7/3)). Thus,
5 = 240.
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12.7 Further reading

Schoenberg’s result can be seen as a special case of Bochner’s theorem which
gives a similar statement for every compact, homogeneous space and which
is based on the Peter-Weyl theorem. In [4] and [1] general techniques are
presented which use Bochner’s theorem to simplify semidefinite programs which
are invariant under a group of symmetries.

A very readable introduction to the area of geometric packing problems and
energy minimization is [2]] from Henry Cohn.

12.8 Exercises

12.1** (a) Determine fj in (12.3), completing the proof of 75 = 240.
(b) Compute ¥ (G(2,7/3)).
(c) Determine a(G(n,w/4)).

12.2** Consider 12 points 1, . .., 212 on the sphere S?. What is the largest possi-
ble minimal angle between distinct points x; and «; with ¢ # j?

12.3** Write a computer program for finding ¢'(G(n),n/3) and produce a table
forn=2,...,24.

12.4 Determine o(G(24,7/3)).
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CHAPTER 13

SUMS OF SQUARES OF
POLYNOMIALS

In this chapter we return to sums of squares of polynomials, which we had al-
ready briefly introduced in Chapter 2. We address the following basic question:
Given a subset K < R"™ defined by finitely many polynomial inequalities, how
can one certify that a polynomial p is nonnegative on K? This question is moti-
vated by its relevance to the problem of minimizing p over K, to which we will
return in the next two chapters. We collect a number of results from real al-
gebraic geometry which give certificates for nonnegative (positive) polynomials
on K in terms of sums of squares. We give a full proof for the representation re-
sult of Putinar, which we will use later for designing a hierarchy of semidefinite
relaxations for polynomial optimization problems.

In this and the next two chapters we use the following notation. R[z1, ..., x,]
(or simply R[z]) denotes the ring of polynomials in n variables. A polyno-
mial p € R[z] can be written as p = >, p,x®, where p, € R and z“ stands
for the monomial z7* ---2%~. The sum is finite and the maximum value of
lo] = > | a; for which p, # 0 is the degree of p. For an integer d, N’} denotes
the set of sequences o € N with |a| < d, thus the exponents of the monomials
of degree at most d. Moreover, R[x]; denotes the vector space of all polyno-
mials of degree at most d, its dimension is s(n,d) = [N%| = (") and the set
{z* : a € N",|a| < d} of monomials of degree at most d is its canonical base.

13.1 Sums of squares of polynomials

A polynomial p is said to be a sum of squares, abbreviated as p is sos, if p can be
written as a sum of squares of polynomials. > denotes the set of all polynomials
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that are sos. A fundamental property, already proved in Section 2.7, is that sums
of squares of polynomials can be recognized using semidefinite programming.

Lemma 13.1.1. Let p € R[z]2q. Then p is sos if and only if the following semidef-
inite program in the matrix variable Q € S*"™% is feasible:

Q=0, > Qs =pa YoeNy, (13.1)

n
B,veNy

Btvy=a

13.1.1 Polynomial optimization

Why do we care about sums of squares?
Sums of squares are useful because they constitute a sufficient condition for
nonnegative polynomials.

Example 13.1.2. Consider the polynomial:

folz) =2t 4+ + 2} —nxy -2y
One can show that f,, is a sum of squares for any even n, which permits to derive
the arithmetic-geometric mean inequality:

Y TRTY P B (13.2)

n
for xy,--- ,x, = 0and any n > 1. (You will show this in Exercise 13.1).

As one can recognize sums of squares using semidefinite programming, sums
of squares can be used to design tractable bounds for hard optimization prob-
lems of the form: Compute the infimum pmi, of a polynomial p over a subset
K € R™ defined by polynomial inequalities:

K:{‘IERngl(z) 207 agm(‘r) 20}7

where ¢1,- -+, gm € R[z]. Such optimization problem, where the objective and
the constraints are polynomial functions, is called a polynomial optimization
problem.

Define the set of nonnegative polynomials on K:
P(K) ={feR[z]: f(x) 20Vz e K}. (13.3)
Clearly,
Pmin = ;éllf(p(:c) =sup{A:p—AeP(K)}. (13.4)

Computing pm, is hard in general.
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Example 13.1.3. Given integers ay,-- - ,a, € N, consider the polynomial

p(z) = < aia?i) + Z(xf —1)2

Then the infimum of p over R™ is equal to O if and only if the sequence a1, - ,ay
can be partitioned. So if one could compute the infimum over R™ of a quartic
polynomial then one could solve the N'P-complete partition problem.

As another example, the stability number «(G) of a graph G = (V, E) can be
computed using any of the following two programs:

oz(G)—max{in:a:,»-i—a@élV{i,j}GE, x?—xi—OVieV}, (13.5)

eV

1 4

—— =min{x (Ag+ 1)z : r,=1,z=03%, (13.6)
iy (<o e |

where Ag is the adjacency matrix of G. The formulation (13.5)) is due to Motzkin.
This shows that polynomial optimization captures N P-hard problems, as soon as
the objective or the constraints are quadratic polynomials.

A natural idea is to replace the hard positivity condition: p € P(K) by the
easier sos type condition: p € ¥ + ¢1% + - -+ + g 2. This leads to defining the
following parameter:

Psos =SUP{A :p— A€+ g1 X+ - + g X} (13.7)

As a direct application of Lemma|13.1.1} one can compute pg,s using semidefi-
nite programming. For instance, when K = R",

Dsos = Po +sup{ —Qoo : @ > 0, po = Z Qs,y, YaeNz\{0} . (13.8)
prad
Clearly the inequality holds:
Dsos < Pmin- (13.9)

In general the inequality is strict. However, when the set K is compact and satis-
fies an additional condition, equality holds. This follows from Putinar’s theorem
(Theorem [13.2.9), which claims that any polynomial positive on K belongs to
Y+ ¢aX+ -+ gnX. We will return to the polynomial optimization problem
and its sos relaxation in the next chapters. In the remaining of this
chapter we investigate sums of squares representations for positive polynomials
and we will prove Putinar’s theorem.
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13.1.2 Hilbert’s theorem

Hilbert has classified in 1888 the pairs (n, d) for which every nonnegative poly-
nomial of degree d in n variables is a sum of squares of polynomials:

Theorem 13.1.4. Every nonnegative n-variate polynomial of even degree d is a
sum of squares if and only if n = 1, or d = 2, or (n,d) = (2,4).

We saw earlier that nonnegative univariate polynomials are sos, the case
d = 2 boils down to the fact that positive semidefinite matrices have a Cholesky
factorization, but the last exceptional case (n,d) = (2,4) is difficult. For every
pair (n,d) # (2,4) with n > 2 and even d > 4, there is an n-variate polynomial
of degree d which is nonnegative over R™ but not sos. It is not difficult to see
that it suffices to give such a polynomial for the two pairs (n,d) = (2,6), (3,4).

Figure 13.1: The Motzkin polynomial

Example 13.1.5. Hilbert’s proof for the ‘only if’ part of Theorem [13.1.4|was not
constructive, the first concrete example of a nonnegative polynomial that is not sos
is the following polynomial, for the case (n,d) = (2,6):

plz,y) = 2*y*(2® +y> = 3) + 1,

constructed by Motzkin in 1967.

Proof that p is nonnegative on R?: If 2 + y*> — 3 > 0 then clearly M (z,y) = 0.
Otherwise, set 2> = 3 — x? — y? and use the arithmetic-geometric mean inequality:
{/x2y?22 < (22 + y? + 22)/3 to deduce M (x,y) = 0.
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To show that p is not sos, use brute force: Say p = ., s? for some polynomials
s; of degree at most 3. As the coefficient of x° in p is 0, we see that the coefficient
of z2 in each s; is 0; analogously, the coefficient of y> in s; is 0. Then, as the
coefficients of z* and y* in p are 0, we get that the coefficients of 2% and y? in
s; are 0. After that we can conclude that the coefficients of x and y in s; are O.
Finally, say s; = ajzy® + bix®y + cixy + d;. Then the coefficient of 2%y? in p is
equal to —3 = Y, ¢}, yielding a contradiction.

In fact, the same argument shows that p — X is not sos for any scalar \ € R.
Therefore, for the infimum of the Motzkin polynomial p over R?, the sos bound pgos
carries no information: pges = —o0, while pmin = 0 is attained at (1, +1).

For the case (n,d) = (3,4), the Choi-Lam polynomial:

q(z,y,2) = 1+ 2%y? + 2% + 2227 — dayz

is nonnegative (directly, using the arithmetic-geometric mean inequality) but not
sos (direct inspection).

13.1.3 Are sums of squares a rare event?

A natural question is whether sums of squares abound or not within the cone of
of nonnegative polynomials. It turns out hat the answer depends, whether we
fix or let grow the number of variables and the degree.

On the one hand, if we fix the number of variables and allow the degree
to grow, then every nonnegative polynomial p can be approximated by sums of
squares obtained by adding a small high degree perturbation to p.

Theorem 13.1.6. If p > 0 on [—1,1]", then the following holds:

i=1

Ve>03keN p+e(1+2xf’“)62.

On the other hand, if we fix the degree and let the number of variables
grow, then there are significantly more nonnegative polynomials than sums of
squares: There exist universal constants ¢, C' > 0 such that

. 1/D
c. a1z < [ VOUPn.2a) < C.nld-D2. (13.10)
vol(%, 24)

Here P, o4 is the set of nonnegative homogeneous polynomials of degree 2d
in n variables intersected with the hyperplane H = {p : (g, . p(z)u(dz) =
1}. Analogously, f]ngd is the set of homogeneous polynomials of degree 2d in
n variables that are sums of squares, intersected by the same hyperplane H.
Finally, D = ("*247!) — 1 is the dimension of the ambient space.
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13.1.4 Artin’s theorem

Hilbert asked in 1900 the following question, known as Hilbert’s 17th problem:
Is it true that every nonnegative polynomial on R™ is a sum of squares of rational
functions? Artin answered this question in the affirmative in 1927:

Theorem 13.1.7. (Artin’s theorem) A polynomial p is nonnegative on R" if and
2
onlyifp=37", (%) for some p;, q; € R[z].

This was a major breakthrough, which started the field of real algebraic
geometry.

13.2 Positivstellensatze

We now turn to the study of nonnegative polynomials p on a basic closed semi-
algebraic set K, i.e., a set K of the form

K={zeR":¢g1(x) =20, -, gm(x) =0}, (13.11)
where g¢1,---,gm € R[z]. Set go = 1. When the polynomials p, g; are linear,
Farkas’ lemma implies:

p=20on K < p= 2 Ajg; for some scalars A; > 0. (13.12)
§=0

We will show the following result, due to Putinar: Assume that K is compact
and satisfies the additional condition (13.17) below. Then

p>0onK = p= Z sjg; for some polynomials s; € 3. (13.13)
5=0

Of course, the following implication holds trivially:

m
p= Z s;g; for some polynomials s; € ¥ = p > 0 on K.
j=0

However, this is not an equivalence, one needs a stronger assumption: strict

positivity of p over K. Note the analogy between (13.12) and (13.13)): While
the variables in (13.12) are nonnegative scalars )\;, the variables in (13.13) are

sos polynomials s;. A result of the form (13.13) is usually called a Positivstel-
lensatz. This has historical reasons, the name originates from the analogy to
the classical Nullstellensatz of Hilbert for the existence of complex roots:

Theorem 13.2.1. (Hilbert’s Nullstellensatz) Given ¢, - , gm € R[], define
the complex variety, consisting of their common complex roots:

Ve(gr, - sgm) ={z e C" 1 g1(x) =0, , gm(z) = 0}.
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For a polynomial p € R[z],

p=00nVe(gr, - gm) — p* = Z ujg; for some u; € R[z], ke N.
j=1

In particular, Ve(g1, - ygm) = J <= 1= Z;”:l u;g; for some u; € R[z].

Checking a Nullstellensatz certificate: whether there exist polynomials u;
satisfying p = ;;u;jh;, amounts to solving a linear program (after fixing a
bound d on the degrees of the unknown u;’s). On the other hand, checking a
certificate of the form: p = >}, s;g; where the s;’s are sos, amounts to solving
a semidefinite program (again, after fixing some bound d on the degrees of the
unknown s;’s). In a nutshell, semidefinite programming is the key ingredient to
deal with real elements while linear programming permits to deal with complex
elements. We will return to this in the last chapter.

13.2.1 The univariate case

We consider here nonnegative univariate polynomials over a closed interval
K < R, thus of the form K = [0,00) or K = [—1,1] (up to scaling). Then
a full characterization is known, moreover with explicit degree bounds.

Theorem 13.2.2. (Pdlya-Szegd) Let p be a univariate polynomial of degree d.
Then, p = 0 on [0,00) if and only if p = sg + sy for some sp,s1 € ¥ with
deg(so) < dand deg(s1) <d— 1

Theorem 13.2.3. (Fekete, Markov-Lukacz) Let p be a univariate polynomial of
degree d. Assume that p > 0 on [—1,1].

(i) p = so + s1(1 — 2?), where sg,s1 € %, deg(sp) < d + 1 and deg(s;) < d — 1.
(i) Fordodd, p = s1(1+x)+s2(1—x) where s1, o € 3, deg(s1),deg(s2) < d — 1.

Note the two different representations in (i), (ii), depending on the choice
of the polynomials describing the set K = [—1, 1].

13.2.2 Krivine’s Positivstellensatz

Here we state the Positivstellensatz of Krivine (1964), which characterizes non-
negative polynomials on an arbitrary basic closed semi-algebraic set K (with no
compactness assumption). Let K be as in (13.11). Set g = (g1, - ,9m) and,

for a set of indices J < {1,--- ,m}, set g5 = ]_[JEJ gj. The set
T(g) =3 >, ss9s:5,€% (13.14)
J<[m]
is called the preordering generated by g = (g1,---,gm). It consists of all

weighted sums of the products g;, weighted by sums of squares. Clearly, any
polynomial in T(g) is nonnegative on K: T(g) < P(K).
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Example 13.2.4. Let K = {r e R: g = (1 —2%)> > 0} and p = 1 — 2% Then,
p is nonnegative on K, but p ¢ T(g) (check it). But, note that pg = p* (compare
with item (ii) in the next theorem).

Theorem 13.2.5. (Krivine’s Positivstellensatz) Let K be as in (13.11) and let
p € R[z]. The following holds.

() p>00on K < pf =1+ h forsome f,h e T(g).

(ii) p=0on K < pf = p** + h for some f,h e T(g) and k € N.
(iii) p=0on K — —p?** € T(g) for some k € N.

(iv) K = J < —1€T(g).

In (i)-(iv) above, there is one trivial implication. For example, it is clear that
—1 e T(g) implies K = ¢J. And in (i)-(iii), the existence of a sos identity for p
of the prescribed form implies the desired property for p.

Choosing K = R™ (g = 1), we have T(g) = ¥ and thus (ii) implies Artin’s
theorem. Moreover, one can derive the following result, which characterizes the
polynomials that vanish on the set of common real roots of a set of polynomials.

Theorem 13.2.6. (The Real Nullstellensatz) Given g1, - ,gm € R[z], define
the real variety, consisting of their common real roots:

Vr(g1, s gm) ={xzeR": g1(x) =0, , gm(z) = 0}. (13.15)

For a polynomial p € R[z],

m
p=0onVelgr, - ,gm) < p*F+s= Z ujg; for some se ¥, u; € R[x], ke N.
j=1

In particular;

m

Ve(g1, s gm) = J = —-1=s+ Z ujg; for some se X, u; € R[z].
j=1

The above result does not help us yet to tackle the polynomial optimization
problem (14.1)): Indeed, using (i), we can reformulate psos as

Psos = sup {)\:(p—)\)le—l—g,f,geT(g)}.
A€eR, f,geR[z]

However, this does not lead to a semidefinite program, because of the quadratic
term \f where both \ and f are unknown. Of course, one could fix A and
solve the corresponding semidefinite program, and iterate using binary search
on \. However, there is an elegant, more efficient remedy: Using the refined
representation results of Schmiidgen and Putinar in the next sections one can
set up a simpler semidefinite program permmitting to search over the variable
A.
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13.2.3 Schmiidgen’s Positivstellensatz

When K is compact, Schmiidgen [7]] proved the following simpler representa-
tion result for positive polynomials on K.

Theorem 13.2.7. (Schmiidgen’s Positivstellensatz) Assume K is compact. Then,
p(z) >0Vee K = pe T(g).

A drawback of a representation ), ; s;g; in the preordering T(g) is that it
involves 2™ sos polynomials sz, thus exponential in the number m of constraints
defining K. Next we see how to get a representation of the form };; s;g;, thus
involving only a linear number of terms.

13.2.4 Putinar’s Positivstellensatz

Under an additional (mild) assumption on the polynomials defining the set K,
Putinar [5] showed the analogue of Schmiidgen’s theorem, where the preorder-
ing T(g) is replaced by the following quadratic module:

M(g) = {Z 8j9;:8; € E} . (13.16)

7=0

First we describe this additional assumption. For this consider the following
conditions on the polynomials g; defining K:

Jh e M(g) {z e R": h(x) = 0} is compact, (13.17)
INeN N - >la? e M(g), (13.18)

i=1
VfeR[z]INeN N + f e M(g). (13.19)

Proposition 13.2.8. The conditions (13.17), (13.18) and (13.19) are all equiva-

lent. If any of them holds, the quadratic module M(g) is said to be Archimedean.

Proof. The implications (13.19) = (13.18) = are clear. Assume
holds and let f € R[x]. As the set Ky = {x : h(z) > 0} is compact, there
exists N € N such that —N < f(x) < N over K,. Hence, N + f is positive on
K. Applying Theorem[13.2.7} we deduce that N + f € T(h) < M(g). O

Clearly, implies that K is compact. On the other hand, if K is com-
pact, then it is contained in some ball {x € R" : g,,, .1 = R* — > 27 > 0}.
Hence, if we know the radius R of a ball containing K, then it suffices to add
the (redundant) ball constraint g,,,,1(z) > 0 to the description of K so that the

quadratic module M(g’) is now Archimedean, where g’ = (g, gm+1)-
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Theorem 13.2.9. (Putinar’s Positivstellensatz) Assume that the qudratic mod-
ule M(g) is Archimedean (i.e., the g;’s satisfy any of the equivalent conditions

113.17)-(13.19)). Then,
p(z) >0Ver e K = pe M(g).

Example 13.2.10. Consider the simplex K = {x e R" : 2 >0, Y, , z; < 1} and
the corresponding quadratic module M = M(z1, -+ ,xn,1— > | ;). Then M is
Archimedean. To see it note that the polynomial n — ., x? € M. This follows from
the following identities:

o l—wi=(1—2;u) + 2.7 € M

o 12— (1+m>2<1—w?> n (1+w¢>2(1—wff’> — (1+2:m2(1 — )+ <1—;i)2(1 + ;) € M.

. n—zixfzzi(l—x?)EM.

Example 13.2.11. Consider the cube K = [01]" = {x e R" : 0 < x; < 1Vi € [n]}
and the corresponding quadratic module M = M(x1,1—x1,- -+ ,xn, 1—x,). Then
M is Archimedean. Indeed, as in the previous example, 1 — x? € M and thus
n—Y,a?e M.

13.2.5 Proof of Putinar’s Positivstellensatz

In this section we give a full proof for Theorem|[13.2.9] The proof is elementary,
combining some (sometimes ingenious) algebraic manipulations. We start with
defining the notions of ideal and quadratic module in the ring R[x].

Definition 13.2.12. A set I < R[z] is an ideal if I is closed under addition and
multiplication by R[z]: I + I < I and R[z]- I < I.

Definition 13.2.13. A subset M < R[z] is a quadratic module if 1 € M and M is
closed under addition and multiplication by squares: M+M < M and ¥-M < M.
M is said to be proper if M # R[z] or; equivalently, if —1 ¢ M.

Example 13.2.14. Given polynomials g1, , gm,
(91,7 . gm) = {Z ujg; : uj GR[fL“]}
j=1

is an ideal (the ideal generated by the g;’s) and the set M(g) from isa
quadratic module (the quadratic module generated by the g;’s).

We start with some technical lemmas.

Lemma 13.2.15. If M < R[x] is a quadratic module, then I = M n (—M) is an
ideal.

Proof. This follows from the fact that, for any f € R[x] and g € I, we have:
2 2
fg=(%) g+(%) (—g) el O
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Lemma 13.2.16. Let M < R[x] be a maximal proper quadratic module. Then,
My (—M) = R[z].

Proof. Assume f ¢ M u(—M). Each of the sets M/ = M+ f¥ and M" = M — %
is a quadratic module, strictly containing M. By the maximality assumption on
M, M’ and M" are not proper: M’ = M” = R[z]. Hence:

—1=g1+s1f, —1=go—sof forsomegy,g>€ M, 51,50 €.

This implies: —89 — 81 = Sg(gl + $1f) + Sl(gg — ng) = S20g1 + S192 and thus
s1,80 € —M. On the other hand, s;,s2 € ¥ < M. Therefore, s;,s0 € I =
M ~ (—=M). As I is an ideal (by Lemma [13.2.15)), we get s;f € [ = M and
therefore —1 = g; + s1 f € M, contradicting M proper. O

Lemma 13.2.17. Let M be a maximal proper quadratic module in R[z] and
I =M n (—M). Assume that M is Archimedean, i.e., satisfies:

VfeR[z] INENN + f e M.
Then, for any f € R[z], there exists a (unique) scalar a € R such that f —a € I.
Proof. Define the sets
A={aeR:f—aeM}, B={beR:b— fe M}

As M is Archimedean, A, B are both non-empty. We show that |A n B| = 1.
First observe that @ < b for any a € A and b € B. For, if one would have
a>b,thenb—a=(f—a)+ (b— f)is a negative scalar in M, contradicting M
proper. Let ag be the supremum of A and b, the infimum of B. Thus a¢ < bo.
Moreover, ag = bg. For, if not, there is a scalar ¢ such that ay < ¢ < bg. Then,

f—cé¢ M u (—M), which contradicts Lemma(13.2.16

We now show that ay = by belongs to An B, which implies that An B = {ap}
and thus concludes the proof. Suppose for a contradiction that ag ¢ A, i.e.,
f —aog ¢ M. Then the quadratic module M’ = M + (f — ap)X is not proper:
M’ = R[z]. Hence,

—1=g+(f—ap)s forsomege M, seX.

As M is Archimedean, there exists N € N such that N — s € M. Pick ¢ such that
0<e<1/N.Then,ag—ec€ Aand f — (ag — €) = (f — ag) + € € M implies:

—l4+es=g+(f—ao+e)seM.
Adding with e(N — s) € M, we obtain:
—1+eN=(—1+e€s)+e(lN—s)e M.
We reach a contradiction since —1 + e N < 0. O
Lemma 13.2.18. Assume p > 0 on K. Then there exists s € ¥ such that sp — 1 €

M(g).
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Proof. We need to show that the quadratic module M, = M(g) — pX is not
proper. Assume for a contradiction that M is proper. We are going to construct
a € K for which p(a) < 0, contradicting the assumption that p is positive on K.
By Zorn’s lemm let M be a maximal proper quadratic module containing M.
As M 2 M(g), M too is Archimedean. Applying Lemma[13.2.17|to M, we find
some scalar a; € R for which

x;—a; el =Mn(—M) VYien].
The a;’s make up a point a € R™. As I is an ideal, this implies that
f—fl@)el VfeR[x]. (13.20)

Indeed, say f = )., faz®, then f — f(a) = 3., fa(z®* — a®). It suffices now to
show that each z* — a® belongs to I. We do this using induction on |a| > 0. If
« = 0 there is nothing to prove. Otherwise, say «; > 1 and write § = a — e S0
that 2 = z;2° and a® = a,4”. Then we have

% —a® = 21(a® —dP) +aP(x1 —ar) el

since z® — a” e I (using induction) and z; — a; € I.
Now we apply (13.20) to f = g; and we obtain that

gi(a) = g; — (9; — gj(a)) € M

since g; € M(g) < M and g; — g,(a) € —M. As M is proper, we must have that
gj(a) = 0 for each j. This shows that a € K. Finally,

—p(a) = (p—pla)) —pe M,

since p — p(a) e I € M and —p € My < M. Again, as M is proper, this implies
that —p(a) > 0, yielding a contradiction because p > 0 on K. O

Lemma 13.2.19. Assume p > 0 on K. Then there exist N € N and h € M(g)
such that N — h € ¥ and hp — 1 € M(g).

Proof. Choose s as in Lemma|13.2.18| Thus, s € ¥ and sp — 1 € M(g). As M(g)
is Archimedean, we can find k € N such that

2k — s, 2k — s*p — 1€ M(g).

Set h = s(2k — s) and N = k%. Then, h € M(g) and N — h = (k — s)? € %.
Moreover,

hp—1= 52k —s)p—1=2k(sp—1) + (2k — s°p — 1) € M(g),

since sp — 1,2k — s?p — 1 € M(g). O

1Zorn’s lemma states the following: Let (P, <) be a partially ordered set in which every chain
(totally ordered subset) has an upper bound. Then P has a maximal element.
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We can now show Theorem|[13.2.9] Assume p > 0 on K. Let h and N satisfy
the conclusion of Lemma|13.2.19|and k € N such that £ + p € M(g). We may
assume that N > 0. Note that:

1 1
(k:—N) +p= N((N—h)(k’-i—p)—l—(hp—l)-i—k‘h) e M(g).
So what we have just shown is that k + p € M(g) implies (k—1/N) +p € M(g).
Iterating this (k/V) times, we obtain that

p= (k—kN]i[) +peM(g).

This concludes the proof of Theorem|[13.2.9

13.3 Notes and further reading

Hilbert obtained the first fundamental results about the links between nonnega-
tive polynomials and sums of squares. He posed in 1900 at the first International
Congress of Mathematicians in Paris the following question, known as Hilbert’s
17th problem: Is it true that every nonnegative polynomial on R" is a sum of
squares of rational functions? The solution of Artin in 1927 to Hilbert’s 17th
problem was a major breakthrough, which started the field of real algebraic
geometry. Artin’s proof works in the setting of formal real (ordered) fields. It
combines understanding which elements are positive in any ordering of the field
and using Tarksi’s transfer principle which roughly states the following: If (F, <)
is an ordered field extension of R which contains a solution x € F™ of a system
of polynomial equations and inequalities with coefficients in R, then this system
also has a solution z' € R™. Tarski’s transfer principle also plays a crucial role
in the proof of the Positivstellensatz of Krivine (Theorem [13.2.5). The book of
Marshall [3] contains the proofs of all the Positivstellensitze described in this
chapter.

Reznick [6] gives a nice historical overview of results about positive polyno-
mials and sums of squares. The idea of using sums of squares combined with
the power of semidefinite programming in order to obtain tractable sufficient
conditions for nonnegativity of polynomials goes back to the PhD thesis of Par-
rilo [4]. He exploits this idea to attack various problems from optimization and
control theory. Lasserre and Netzer [2] showed that every nonnegative polyno-
mial can be approximated by sums of squares of increasing degrees (Theorem
[13.1.6). Blekherman [I]] proved the inequalities relating the volumes
of the cones of sums of squares and of nonnegative polynomials.

210



13.4 Exercises

13.1.

13.2

13.3

13.4

Given a € N" with |a| = }, a; = 2d, define the polynomial in n variables
z = (z1, -+ ,x,) and of degree 2d:

n
Fp24(a,x) Zal 2d—2dnx“‘ *Zaix?d—Qdaja.
i=1

(a) Let a € N" with |a| = 2d. Show that a = b + ¢ for some b,c € N”,
where |b| = |¢| = d and both b;, ¢; > 0 for at most one index i € [n].

(b) With a, b, ¢ as in (a), show that
1
Fpod(a,x) = Q(Fn?gd(%, x) + Fp24(2¢,z)) + d(xb — 2)?,

(c) Show that, for any a € N™ with |a| = 2d, the polynomial F), 24(a, z)
can be written as the sum of at most 3n — 4 squares.

(d) Show the arithmetic-geometric mean inequality (13.2).
(a) Show Theorem|[13.2.2

(b) For a univariate polynomial f of degree d define the following polyno-
mial G(f), known as its Goursat transform:

G = 1+ 'f (12).

1+

Show that f > 0 on [—1, 1] if and only if G(f) = 0 on [0, o).
(c) Show Theorem

Show the Real Nullstellensatz (Theorem [13.2.6) (you may use Theorem
13.2.5).

Let G = (V,FE) be a graph. The goal is to show Motzkin’s formulation
(13.6) for the stability number a(G). Set
{4 = min {x (Ag + Iz 2 =1 x> } (13.21)
eV

(a) Show that 1 < 1/a(G).

(b) Let z be an optimal solution of the program (13.21), S = {i : ; # 0}
denotes its support. Show that p > 1/«a(G) if S is a stable set in G.

(c) Show that the program (13.21) has an optimal solution = whose sup-
port is a stable set. Conclude that (13.6]) holds.
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CHAPTER 14

POLYNOMIAL EQUATIONS
AND MOMENT MATRICES

Consider the polynomial optimization problem:
Pmin = 1inf p(x), (14.1)
zeK

which asks for the infimum py,;, of a polynomial p over a basic closed semi-
algebraic set K, of the form:

K={zeR":¢g1(x) 20, - ,gm(x) =0} (14.2)

where ¢1,- -, gm € R[z]. In the preceding chapter we defined a lower bound
for pmin obtained by considering sums of squares of polynomials. Here we con-
sider another approach, which will turn out to be dual to the sums of squares
approach.

Say, p = >, paz®, where there are only finitely many nonzero coefficients
Po and let p = (pa)aen» denote the vector of coefficients of p, so p, = 0 for all
|| > deg(p). Moreover, let [z]o, = (2%)aenn denote the vector consisting of all
monomials z®. Then, one can write:

p(x) = ) par® = p' ]

We define the set C, (K) as the convex hull of the vectors [z], for z € K:
Co(K) = conv{[z]e : x € K}. (14.3)

Let us introduce a new variable y, = z® for each monomial. Then, using
these variables y = (y,) and the set C (K'), we can reformulate problem (14.1))
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equivalently as

pmin = inf p(z) = inf p'[z], = inf {p'y:yeCu(K)}. (14.4)
ze K zeK y=(Ya)aenn

This leads naturally to the problem of understanding which sequences y belong

to the set C,, (K). In this chapter we give a characterization for the set C, (K),

we will use it in the next chapter as a tool for deriving global optimal solutions

to the polynomial optimization problem (14.1)).

This chapter is organized as follows. We introduce some algebraic facts
about polynomial ideals I < R[z] and their associated quotient spaces R[x]/I,
which we will need for the characterization of the set C, (K). Using these tools
we can also describe the so-called eigenvalue method for computing the complex
solutions of a system of polynomial equations. This method also gives a useful
tool to extract the global optimizers of problem (14.I). Then we give a charac-
terization for the sequences y belonging to the set C, (K), in terms of associated
(moment) matrices required to be positive semidefinite.

14.1 The quotient algebra R[x]|/I/

14.1.1 (Real) radical ideals and the (Real) Nullstellensatz

Here, K = R or C denotes the field of real or complex numbers. A set I < K[z]
isanideal if I +I < I and K[z]-I < I. Given polynomials A1, - - , h,,,, the ideal
generated by the h;’s is

1= (hlv"’ ;hm) = {i UjhjSUjEK[I]}.

A basic property of the polynomial ring K[x] is that it is Noetherian: every ideal
admits a finite set of generators. Given a subset V' < C, the set

Z(V)={feK|[z]: f(x) =0Vz eV}

is an ideal, called the vanishing ideal of V.
The complex variety of an ideal I < K[z] is

VeI)={zeC": f(z)=0Vfel}
and its real variety is
V() ={zeR": f(x)=0Vfel}l=Vc()nR"
The elements x € V(I) are also called the common roots of the polynomials in
I. Clearly, if I = (hq,--- , hy,) is generated by the h,’s, then V(1) is the set of

common complex roots of the polynomials hq,--- , h,, and Vg(I) is their set of
common real roots.
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Given an ideal I < K][z], the set
VI={feK[z]: fmel forsomem e N} (14.5)

is an ideal (Exercise 14.1), called the radical of I. Clearly we have the inclu-
sions:
ISV T(Ve()).

Consider, for instance, the ideal I = (2?) generated by the monomial z2. Then,
Ve (I) = {0}. The polynomial = belongs to +/T and to Z(Vz(I)), but  does not
belong to I. Hilbert’s Nullstellensatz states that both ideals +/T and Z(V¢ (1))
coincide:

Theorem 14.1.1. (Hilbert’s Nullstellensatz) For any ideal I < K|[z], we have
equality:
VI = Z(Ve(I)).

That is, a polynomial f vanishes at all x € Vi(I) if and only if some power of f
belongs to 1.

The ideal I is said to be radical if I = /I or, equivalently (in view of the
Nullstellensatz), I = Z(V¢(I)). For instance, the ideal I = (2?) is not radical.
Note that 0 is a root with double multiplicity. Roughly speaking, an ideal is
radical when all roots = € V(1) have single multiplicity, but we will not go into
details about multiplicities of roots.

Given an ideal I < R[z], the set
VI={feR[z]: f" +sel forsomemeN,se ¥} (14.6)

is an ideal in R[z] (Exercise 14.1), called the real radical of I. Clearly we have
the inclusions:
1< VIT<IZ(Ve)).

As an example, consider the ideal I = (2%+y?) € R[x, y]. Then, Vi (I) = {(0,0)}
while Ve(I) = {(x, +iz) : z € C}. Both polynomials = and y belong to +/T and
to Z(Vg(I)). The Real Nulstellensatz states that both ideals v/7 and Z(Vi (1))
coincide.

Theorem 14.1.2. (The Real Nullstellensatz) For any ideal I < R[x],
VI =Z(Ve(D)).

That is, a polynomial f € R[x] vanishes at all common real roots of I if and only
if the sum of an even power of f and of a sum of squares belongs to I.

We will use the following characterization of (real) radical ideals (see Exer-
cise 14.2).

Lemma 14.1.3.
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(i) Anideal I < K[z] is radical (i.e., /I = I) if and only if
VfeK[z] fPel= fel.
(ii) Anideal I < R[z] is real radical (i.e., VI = 1) if and only if
Vi, fmeR[z] [+t frel= fi,,fnel

It is good to realize that, if V' is a complex variety, i.e., if V' = V(1) for some
ideal I, then Vi(Z(V)) = V. Indeed, the inclusion V¢(I) < Ve (Z(Ve(1)))) is
clear. Moreover, if v ¢ V(I), then there is a polynomial f € I < Z(V¢(I)) such
that f(v) # 0, thus showing v ¢ Ve (Z(Ve(1))).

However, the inclusion V' < V(Z(V)) can be strict if V' is not a complex
variety. For example, for V = C\{0} < C, Z(V') = {0}, since the zero polynomial
is the only polynomial vanishing at all elements of V. Hence, Vc(Z(V)) = C
contains strictly V.

For any ideal I, we have the inclusions:
Ic I(V(C(I)) e I(VR(I)),

with equality throughout if I is real radical. Yet this does not imply in general
that Ve(I) = W(I), ie., that all roots are real. As an example illustrating
this, consider e.g. the ideal I = (z — y) < R[z,y]; then [ is real radical, but
Wr(I) < Ve (I). However, equality holds if Vi (1) is finite.

Lemma 14.1.4. If I < R[z] is a real radical ideal, with finite real variety:
[Ve(I)| < oo, then V(1) = Vr(I).

Proof. By assumption, equality: Z(Vr(I)) = Z(V(I)) holds. Hence these two
ideals have the same complex variety: Vo (Z(Vk(I))) = Ve(Z(Ve(I))). This im-
plies equality Vg (I) = Vi(I), since Vx([) is a complex variety (as it is finite, see
Exercise 14.3) and V(1) too is a complex variety (by definition). O

14.1.2 The dimension of the quotient algebra K[z]//

Let I be an ideal in K[z]. We define the quotient space A = K|[z]/I, whose
elements are the cosets

(fl=f+1={f+q:qel}

for f € K[z]. Then A is an algebra with addition: [f] + [g] = [f + g], scalar
multiplication A[f] = [Af], and multiplication [f][g] = [fg], for f,g € K[x] and
A € K. These operations are well defined. Indeed, if [f] = [f'] and [g] = [¢'],
i.e., f', ¢ are other representatives in the cosets [f],[g], respectively, so that
f—1f, g—g €lI,then

f'+9)—(f+g el M =Xfel, f'd—fg=(f"—4)g +flg—9g) el

As we now see, the dimension of the quotient space A is related to the cardinal-
ity of the complex variety V(7).
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Theorem 14.1.5. Let I < K[z] be an ideal and let A = K[x]/I be the associated
quotient space.

(i) dim A < oo if and only if |Ve(I)] < oo.

(i) Assume |Vc(I) < . Then |Ve(I)| < dim A, with equality if and only if the
ideal I is radical (i.e., I = /I).

Remark 14.1.6. Let I be an ideal in R[x]. Then the set I +il = {f +ig: f,g€ I}
is an ideal in C[x] and it is easy to check that the two quotient spaces R[x]/I and
C[z]/(I +1iI) have the same dimension. Hence, in order to compute the dimension
of R[z]/I, we can as well deal with the corresponding ideal I + il in the complex
polynomial ring.

For the proof of Theorem|14.1.5} it is useful to have the following construc-
tion of interpolation polynomials.

Lemma 14.1.7. Let V < K" be a finite set. There exist polynomials p,, € K[z] for
v € V satisfying the following property:

Po(u) = 0y Yu,v e V.

They are called interpolation polynomials at the points of V. Then, for any poly-
nomial f € K[xz],

f= ) f@p,eZ(Ve(l)). (14.7)

veVe(I)

Proof. Fix v e V. For any u € V\{v}, let i,, be a coordinate where v and u differ,
i.e., v;, # u;y. Then define the polynomial p, by

O
ueV\{v} ¥ tu

Clearly, p,(v) = 1 and p,(u) = 0if u € V, u # v. By construction the polynomial
in (14.7) vanishes at all v € V(1) and thus belongs to Z(V(1)). O

Example 14.1.8. Say, V = {(0,0),(1,0),(0,2)} < R2 Then the polynomials
P(0,0) = (x1 —1)(z2—2)/2, P(1,0) = 22 and P0,2) = x9(1 —x1)/2 are interpolation
polynomials at the points of V.

Lemma 14.1.9. Let I be an ideal in C[z] and A = C[xz]/I. Assume V(1) is finite,
let p, (v € Vi(I)) be interpolation polynomials at the points of Vi (I), and let

L =A{[pv] : veVe(l)}
be the corresponding set of cosets in A. Then,
(i) L is linearly independent in A.
(ii) L generates the vector space C[x]/Z(Vc(1)).
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(iii) If I is radical, then L is a basis of A and dim A = |V(I)].

Proof. (i) Assume that 3 .y, ) Au[po] = 0O for some scalars A,. That is, the
polynomial f = Zvevc( 1) APy belongs to I. By evaluating the polynomial f at
each v € V(1) and using the fact that p,(v) = 1 and p,(u) = 0 if u € Ve(I)\{v},
we deduce that A, = 0 for all v. This shows that £ is linearly independent in A.
(ii) Relation (14.7) implies directly that £ is generating in K[z]|/Z(Vc(1)).
(iii) Assume that I is radical and thus I = Z(V¢(I)) (by the Nullstellensatz).
Then, £ is linearly independent and generating in A and thus a basis of A. [

Proof. (of Theorem[14.1.5)). In view of Remark [14.1.6] we may assume K = C.
(i) Assume first that dim A = k£ < oo, we show that |V¢(I)] < oo. For this,
pick a variable z; and consider the k + 1 cosets [1],[x;],--- ,[2¥]. Then they
are linearly dependent in A and thus there exist scalars A\, (0 < h < k) (not
all zero) for which the (univariate) polynomial f = Zi:o )\hm? is a nonzero
polynomial belonging to I. As f is univariate, it has finitely many roots. This
implies that the i-th coordinates of the points v € V(1) take only finitely many
values. As this holds for all coordinates we deduce that V(1) is finite.

Assume now that [V¢(I)| < oo, we show that dimA < co. For this, as-
sume that the i-th coordinates of the points v € V(1) take k distinct values:
ai,- -+ ,ar € C. Then the polynomial f = (z; — a1) - - (z; — ax) vanishes at all
v € Ve(I). Applying the Nullstellensatz, /™ € I for some integer m € N. This
implies that there is a linear dependency among the cosets [1], [z;],- - - , [#7*].
Therefore, there exists an integer n; for which [z]?] lies in the linear span
of {[z}] : 0 < h < n; — 1}. From this one can easily derive that the set
{[x*] : 0 < o; < m; — 1,4 € [n]} generates the vector space A, thus showing that
dim A < o0.

(ii) Assume V(I) is finite. If I is radical then equality dim.A = |V (I)]
follows from Lemma (iii). Assume now that I is not radical and let
f e V/I\I. If p, (v € Ve(I)) are interpolation polynomials at the points of
Ve (1), one can easily verify that the system {[p,] : v € Vc(I)} u {[f]} is linearly
independent in A4, so that dim A > |V (I)]. O

14.1.3 The eigenvalue method for complex roots

A basic, fundamental problem in mathematics and many areas of applications
is how to solve a system of polynomial equations: hj(z) =0,--- , hAp(z) = 0. In
other words, how to compute the complex variety of the ideal I = (hq, - , hp).
Here we assume that I < K[z] is an ideal which has finitely many complex roots:
|[Ve(I)| < co. We now describe a well known method for finding the elements
of Vi(I), which is based on computing the eigenvalues of a suitable linear map
on the algebra A = K[z]/I.
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Namely, given an arbitrary polynomial h € K[z], we consider the following
‘multiplication by &’ linear map:

mp : .A g .A
/1 = [fhl.

As V(1) is finite we known from Theorem that the vector space A has
finite dimension. Say, N = dim A, then N > |V(I)|, with equality if I is radical
(by Theorem[14.1.5)).

Let us choose a set of cosets B = {[b1],--- , [bn]} forming a basis of A and let
M), denote the matrix of m; with respect to the base B (which not symmetric
in general). Then, for v € V(I), we define the vector [v|z = (bj(v))é\’: 1 whose
entries are the evaluations at v of the polynomials in 5.

(14.8)

Lemma 14.1.10. The vectors {[v]p : v € Vi(I)} are linearly independent.

Proof. Assume ) .y 1) Av[v]s = 0 for some scalars A, i.e., 3J,cy, (1) Aubj(v) =
0 for all j € [N]. As B is a base of A, this implies that >} .y, ;) Avf(v) = 0 for
any f € K[z] (check it). Applying this to the polynomial f = p,,, we obtain that
A, =0 for all v e Vi (1). O

As we now show, the matrix M), carries out useful information about the
elements of Vi(I): its eigenvalues are the evaluations h(v) of h at the points
v € V() and its left eigenvectors are the vectors [v]z.

Theorem 14.1.11. Let h € K[z], let I < K[z] be an ideal with |V¢(I)| < o, and
let my, be the linear map from (14.8).

(i) Let B be a base of A and let Mj, be the matrix of my, in the base 3. Then, for
each v € V¢(I), the vector [v]g is a left eigenvector of M}, with eigenvalue
h(v), ie.,

M [v]5 = h(v)[v]5. (14.9)

(i) The set {h(v) : v e Vi(I)} is the set of eigenvalues of my,.

(iii) Assume that I is radical and let p, (v € Vc(I)) be interpolation polynomials
at the points of Ve (I). Then,

mp([pu]) = h(w)[pu]

for all w € Vo (I). Therefore, the matrix of my, in the base {[p,] : v € Ve (1)}
is a diagonal matrix with h(v) (v € V(1)) as diagonal entries.

Proof. (i) Say, M, = (ai;)1;—,, so that

N N
[hbj] = Z Qg5 [bl], i.e., hb] — 2 aijbi el.
i=1 i=1
Evaluating the above polynomial at v € V- (I) gives directly relation (14.9).
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(ii) By (i), we already know that each scalar h(v) is an eigenvalue of M,]'
and thus of m;. We now show that the scalars h(v) (v € V(1)) are the only
eigenvalues of my,. For this, let A ¢ {h(v) : v € Vc(I)}, we show that A is
not an eigenvalue of m;. Let J denote the ideal generated by I u {h — A}.
Then, Vi(J) = . Applying the Nullstellensatz, we obtain that 1 € J and thus
1 —u(h — \) € I for some u € K[z]. It suffices now to observe that the latter
implies that m,, (mp, — Aid) = id, where id is the identity map from A to A. But
then m;, — Aid is nonsingular, which implies that )\ is not an eigenvalue of my,.

(iii) Assume that 7 is radical and let {p, : v € V¢(I)} be interpolation poly-
nomials. Using relation , we obtain that my([f]) = X, v ) f(0)R(v)[po]
for any polynomial f. In particular, m,([p,]) = h(v)[ps]. O

Here is a simple strategy on how to use the above result in order to com-
pute the points v € Vi (I). Assume that the ideal I is radical (this will be the
case in our application to polynomial optimization) and suppose that we have
a polynomial h for which the values h(v) (v € V(1)) are pairwise distinct (e.g.
pick a linear polynomial ~» with random coefficients). Suppose also that we
know a base B of A and that we know the matrix M;, of m; in this base. We
know from Theorem that M, has N = |V(I)| distinct eigenvalues so
that each eigenspace has dimension 1. Hence, by computing the eigenvectors
of M)}, we can recover the vectors [v]z = (b;(v))}, (up to scaling). In order to
compute the i-th coordinate v; of v, just express the coset [z;] in the base B: If

[z;] = Z;il ¢;j[b;] for some scalars ¢;;, then v; = Z;.V:l cijb;(v).

Example 14.1.12. Let I = (2% — 622 + 11z — 6) be the ideal generated by the
polynomial x® — 62 + 11z — 6 = (x — 1)(x — 2)(x — 3) (univariate case). Then,
Ve(I) = {1,2,3} and B = {[1], [z], [z?]} is a base of A = R[x]/I. With respect to
this base B, the matrix of the multiplication operator by x is

[z] [2°] [2°]

n /o0 o 6
My=1[z2] [ 1 o0 -1
[2?] ( 0 1 6 )

(built using the relation [23] = 6[1] — 11[z] + 6[22]). It is an easy exercise to
verify that M has three eigenvectors: (1,1,1) with eigenvalue \ = 1, (1,2,4)
with eigenvalue \ = 2, and (1,3,9) with eigenvalue A = 3. Thus the eigenvectors
are indeed of the form [v]z = (1,v,v?) for v e {1,2,3}.

The polynomials py = (v — 2)(z — 3)/2, p2 = —(z — 1)(x — 3) and p3 =
(x — 1)(x — 2)/2 are interpolation polynomials at the roots v = 1,2, 3. Note that
the matrix of m, with respect to the base {[p1], [p2], [p3]} is

[zp1]  [2p2] [2ps]

[p1] ( 1 0 0 )
[p2] 0 2 0 |
[ps] 0 0 3

thus indeed a diagonal matrix with the values v = 1,2, 3 as diagonal entries.
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Finally, we indicate how to compute the number of real roots using the mul-
tiplication operators. This is a classical result, going back to work of Hermite in
the univariate case. You will prove it in Exercise 14.4 for radical ideals.

Theorem 14.1.13. Let I be an ideal in R[x] with |Vc(I)| < co. Define the Hermite
quadratic form:
H: Rlz]/IxR[z]/IT — R
(L1, 1a) = Tr(myq),

where Tr(my,4) denotes the trace of the multiplication operator by fg. Let o (H)
(resp., o_(H)) denote the number of positive eigenvalues (resp., negative eigenval-
ues) of H. Then, the rank of H is equal to |Vc(I)| and

o (H) —o-(H) = [Ve(I)].

(14.10)

14.2 Characterizing the set C,,(K)

Our goal in this section is to characterize the set C,(K) from (14.3). We need
one more ingredient: moment matrices.

14.2.1 Moment matrices

Let ¥ = (Yo )aen» be a sequence of real numbers indexed by N”. It is convenient
to introduce the corresponding linear functional L on the polynomial ring:

L: Rlz] — R
x* - L(z%) =

Yo
f=2afar® = L(f) =2, fala-

Consider first the case when y = [v], for some v € R™. Then, L is the
evaluation at v (denoted as L,) since L(f) = >} fav® = f(v) for f € R[z].
Moreover, the matrix yy' has a special structure: its (a, 3)-th entry is equal to
v¥P = v*+t8 =y, 5, thus depending only on the sum of the indices o and f3.
This observation motivates the following definition.

(14.11)

Definition 14.2.1. Given a sequence y = (Yo )aen» Of real numbers, its moment
matrix is the real symmetric (infinite) matrix indexed by N", defined by

M(y) = (Ya+5)a,penn-

Next we observe that nonnegativity of L on the cone ¥ of sums of squares
can be reformulated in terms of positive semidefiniteness of the moment matrix

M(y).

Lemma 14.2.2. Let y = (Yo )aen~ be a sequence of real numbers and let L be the
associated linear functional from (14.11)). For any polynomials f, g € R[z]:

L(f*) = f" M@y f, Lgf*) =f M(g=yf,

221



where g+ y € RN" is the new sequence with a-th entry

(9*y)a = L(gz®) = Zg,yymr.y Ya e N”.

v

Therefore, L > 0 on X if and only if M(y) > 0, and L > 0 on ¢X if and only if
M(g=y) >0.

Proof. For f =3 fax®, g= ZW gz, we have:

L(f*) =L (Z fafﬂx“ﬁ) = Y fatsyars = Y fafsM(y)ap = FTM(y)F,
o, a,p o,

L(gf*) =L ( > faf/agvx‘“ﬁ”) = Y falsL(gz”) = fTM(g#y)f.
B

B,y

These two identities give directly the result of the lemma. O

Next we observe that the kernel of M (y) can be seen as an ideal of R[z],
which is real radical when M (y) > 0. This observation will play a cucial role in
the characterization of the set Cy (K) in the next section.

Lemma 14.2.3. Let y = (Yo )aen~ be a sequence of real numbers and let L be the

associated linear functional from (14.11). Set
I ={feR[z]: L(fh) = 0 Vh € R[z]}. (14.12)

(i) A polynomial f belongs to I if and only if its coefficient vector f belongs to the
kernel of M (y).

(ii) I is an ideal in R[z].
(iii) If M (y) = O then the ideal I is real radical.

Proof. (i), (ii): Direct verification.
(iii) Using Lemma [14.2.2 and the fact that M(y) > 0, the following holds for
any polynomial f:

L(f?) = fTM(y)f >0 and L(f?) =0 — M(y)f =0—> feI.
We now show that [ is real radical, using the characterization from Lemma

14.1.3; Assume that >, f2 € I. Then, 0 = L(}, f?) = Y, L(f?) and thus
L(f7) = 0, which in turn implies that f; € I for all . O
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14.2.2 Finite rank positive semidefinite moment matrices

We can now characterize the sequences belonging to the set Cy (K), in terms of
positivity and rank conditions on their moment matrices.

Theorem 14.2.4. Let K be the set from (15.2). Let y = (Ya)aen~ be a sequence
of real numbers and let L be the linear functional from (14.11). The following
assertions are equivalent.

() yeCx(K), ie., y=>,_, Ni[vi]o for some scalars \; > 0 and v; € K.
(ii) rank M(y) < oo, M(y) > 0 and M (g; *y) > 0 for j € [m].
(iii) rank M(y) < wand L=00n X + ¢1X + - -+ + g 2

Proof. Assume that (i) holds. Then, M (y) = > _; \iM ([v;]s) is positive semidef-
inite (since M ([v;]o) > O for each 7) and M (y) has finite rank. For i € [r] and
j € [m], we have that g; * [v;]c = g;(vi)[vi]ee With g;(v;) = 0. Therefore,
M(gj *y) = D1 Mig;(vi) M ([vi]oo) is positive semidefinite. This shows (ii).
The equivalence of (ii) and (iii) follows directly from Lemma[14.2.2]
We now show the implication (ii) = (i). Assume that rank M (y) = r < o0,
M(y) = 0, M(g; *y) > 0 for j € [m]; we show (i). Let L be the linear functional

from (14.11) and let I be the set from (14.12). By Lemma|15.3.1] we know that

I is a real radical ideal in R[z]. First we claim that
dimR[z]/I = r.

This follows directly from the fact that a set of columns {C1,--- ,Cs} of M(y),
indexed (say) by {a1,- - ,as} = N”, is linearly independent if and only if the
corresponding cosets of monomials {[z®!],--- ,[x*<]} is linearly independent in
R[z]/I.

As dimR[z]/I = r < oo, we deduce using Lemma that [Ve ()| < oo;
moreover, |Ve(I)| = dimR[z]/I = r since [ is real radical (and thus radical).
Furthermore, using Lemma [14.1.4] we deduce that Vi (1) = Vi(I). Say,

Ve(I) = {vg, -+ ,v.} SR

Let py,,- - ,Pv, € R[z] be interpolation polynomials at the v;’s. We next claim
that . .
L= L(py,)Ly,, i€, y=> L(py)[vilo: (14.13)
i=1 i=1

r

where L,, is the evaluation at v;. As both L and L' = >,;_; L(p, ) L., vanish at
all polynomials in 7, in order to show that L = L/, it suffices to show that L and
L' coincide at all elements of a given base of R[z]/I. Now, by Lemma
we know that the set {[p,,], - ,[pv,.]} is a base of R[x]/I and it is indeed true

that L'(p,,) = L(py,) for all i. Thus (14.13) holds.
Next, we claim that

L(py,) >0 forallie [r].
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Indeed, L(p.,) = L(p2.), since p,, — p2, € I (as it vanishes at all points of V¢ ([)
and [ is radical). Therefore, L(p,,) > 0 (since M(y) > 0). Moreover, L(p,,) # 0
since, otherwise, the rank of M (y) would be smaller than r.

Remains to show that vy, --- , v, belong to the set K, i.e., that g;(v;) > 0
for all j € [m], i € [r]. For this, we use the fact that L(g;p?) > 0, since

M(g; *y) > 0. Indeed, using (14.13), we get:
L(g;p3,) = 95 (vi) L(py,)-

By assumption, L(g;p3,) = 0 and we just showed that L(p,,) > 0. This implies
that g;(v;) = 0, as desired, and the proof is complete. O

14.2.3 Moment relaxation for polynomial optimization

Let us return to the polynomial optimization problem (14.1). In Chapter 13, we
defined the lower bound psos < pmin, Obtained by considering sums of squares
decompositions in the quadratic module M(g) =X + g1 + - -+ + g 2:

Dsos =SUp{A:p—AeM(g) =X+ X+ - gmX}. (14.14)

Based on the discussion in the preceding section, we can also define the follow-
ing lower bound for pyn:

Pmom = inf{p'y 1yo =1, M(y) >0, M(g; *y) >0 (j € [m])} (14.15)

These two bounds are ‘dual’ to each other, since the positivity conditions in
(14.15) mean that the corresponding linear functional L is nonnegative on
M (g). We have the following inequalities:

Lemma 14.2.5. We have: psos < Pmom < Pmin-

Proof. The inequality psos < pmom 1S ‘Weak duality’: Let A be feasible for (14.14)
and let y be feasible for (14.15) with associated linear functional L. Then,
p—Ae M(g), L(1) =1and L > 0 on M(g). Therefore, L(p—\) = L(p) = A =0
implies p"y = L(p) = A and thus pmom = Psos-

The inequality pmom < Pmin follows from the fact that, for each v € K,
y = [v] is feasible for with value p(v). O

We saw in the preceding chapter that psos = pmin = Pmom if K is compact and
if moreover the quadratic module M (g) is Archimedean.

On the other hand, it follows from Theorem that pmom = Pmin if the
program has an optimal solution y for which M (y) has finite rank.

In the next chapter we will consider hierarchies of semidefinite program-
ming relaxations for problem obtained by adding degree constraints to
the programs (14.14) and (14.15), and we will use the results of Theorems
[14.1.11]and [14.2.4] for giving a procedure to find global optimizers of problem

(14.1).
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14.3 Notes and further reading

The terminology of ‘moment matrix’ which we have used for the matrix M (y) is
motivated by the relevance of these matrices to the classical moment problem.
Recall that, given a (positive Borel) measure p on a subset K < R", the quantity
Yo = §, x¥dp(z) is called its moment of order . The K-moment problem asks
to characterize the sequences y € RN which are the sequence of moments of
some measure p supported by K.

In the special case when 4 is a finite atomic measure, i.e., when p is sup-
ported by finitely many points of K, then its sequence of moments is of the form
y = >.i_; Ai[vi]o for some positive scalars A; and some v; € K. In other words,
the set C., (K) corresponds to the set of sequences of moments of finite atomic
measures on K. Moreover, the closure of the set C,, (K) is the set of sequences
of moments of an arbitrary measure on K. Hence, Theorem [14.2.4| character-
izes which sequences admit a finite atomic measure on K, when K is a basic
closed semi-algebraic set, in terms of positivity and finite rank conditions on the
sequence y. This result is due to Curto and Fialkow [1]. (When the condition
rank M(y) < oo holds, Curto and Fialkow speak of flat data). The proof of
[1] uses tools from functional analysis, the simpler algebraic proof given here is
based on [4] (see also [4]).

We refer to the books of Cox, Little and O’Shea [1], 2] for further reading
about ideals and varieties (and, in particular, about multiplication operators in
the quotient space R[x]/I).

14.4 Exercises

14.1 Recall the definitions (14.5) and (14.6) for v/I and /1.
(a) Show that the radical /T of an ideal I < C[z] is an ideal.
(b) Show that the real radical +/T of an ideal I < R[] is an ideal.
14.2 Show Lemma
14.3 (a) Let I and J be two ideals in C[z]. Show that I n J is an ideal and that
V@(I N J) = V(C(]) U Vc(J).
(b) Given v € C”, show that the set {v} is a complex variety.

(b) Show that any finite set V < C™ is a complex variety.

14.4** The goal is to show Theorem [14.1.13|in the radical case.

Let I be a radical ideal in R[z] with N = |V¢(I)| = dimR[z]/I < oo. Let
B = {[b1],--- ,[bn]} be a base of A = R[z]/I and, for any h € R[z], let
M, denote the matrix of the multiplication by A in the base B. Then, the
matrix of the Hermite quadratic form in the base B is the real
symmetric matrix H = (H;;)]_, with entries H;; = Tr(M,;,). Finally,
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o+ (H), o_(H) denote, respectively, the numbers of positive and negative
eigenvalues of H.

(a) Show that H = . .y [v]g[v]f and rank(H) = |V (1)].
(b) Show that V(1) can be partitioned into Vg (I) uT U T, where T is the
set of complex conjugates of the elements of 7.

(c) Show that H = P — @ for some matrices P, such that P,Q > 0,
rank(P) = |Vg(I)| + |T'| and rank(Q) = |T.

(d) Show that H = A — B for some matrices A, B such that A, B
AB = BA =0, rank(A4) = 0, (H) and rank(B) = o_(H).

(e) Show that o (H) = |Vg(I)| +|T| and o_(H) = |T|.

v

0,
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CHAPTER 15

POLYNOMIAL OPTIMIZATION
AND REAL ROOTS

We return to the polynomial optimization problem:
Pmin = nf p(z), (15.1)
where K is defined by polynomial inequalities:
K={zeR":¢g1(x) 20, -, gm(x) =0} (15.2)

with p, g1, , gm € R[z]. Throughout we set gy = 1. In the previous chapters
we have introduced the two parameters:

Dsos =sup{)\:p—)\eM(g) = Zgﬁ]},
j=0

Pmom = inf{L(p) : L linear function on R[z], L(1) =1, L > 0 on M(g)},

which satisfy the inequalities:

Psos < Pmom < Pmin-

Both parameters can be reformulated using positive semidefinite matrices. How-
ever these matrices are infinite (indexed by N"), since there is a priori no de-
gree bound on the polynomials s; entering a decomposition: p — A = . s;9;
in M(g), and since L is a linear function on R|[z] which is infinite dimensional.
Hence, it is not clear how to compute the parameters ppom and pses. In this
chapter, we consider hierarchies of approximations for problem obtained
by adding degree bounds to the programs defining psos and pmom-
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Given an integer ¢, recall that R[z]; denotes the set of polynomials of degree
at most t. We set Xo; = ¥ n R[z]s; and we define the truncated (at degree 2t)
quadratic module:

m
M(g)Qt = {Z gjsj * S5 € E’ deg(sjgj) < 2t (.] = 07 17' o am)} 5
j=0

which consists of the elements };; s;g; of the quadratic module M (g) where all
summands have degree at most 2¢. Then, we define the bounds:

psos,t = SUP{)\ p— >\ € M(g)2t}7 (153)
Pmom,¢ = inf{L(p) : L linear function on R[z]e;, L(1) =1, L > 0 on M(g)2}-
(15.4)

Lemma 15.0.1. For any integer t, psost < Pmom,t < Pmin-

Proof. Let L be feasible for and let \ be feasible for (15.3). Then, we
have: 0 < L(p — A\) = L(p) — A. This implies that psos ; < Pmom,t-

Given v € K, let L be the evaluation at v; that is, L is the linear function
on R[z]y; defined by L(f) = f(v) for f € R[z];. Then, L is feasible for the
program (15.4) with objective value L(p) = p(v). This implies: pmom;: < p(v).
As this holds for all v € K, we deduce that pmom,+ < Pmin- O

In this chapter we investigate some properties of these hierarchies of bounds:

1. Duality: The bounds psos ¢ and pmem,. are defined by dual semidefinite pro-
grams.

2. Asymptotic convergence: Both bounds converge to pnin, when M(g) is
Archimedean.

3. Optimality certificate and global minimizers: When (15.4) has an opti-
mal solution satisfying a special rank condition, the bound pmem ¢ is exact
and one can compute global minimizers of the problem (15.1)).

4. Application to computing real roots of polynomial equations.

15.1 Duality

We now indicate how to reformulate the programs and as semidef-
inite programs and to check that they are in fact dual semidefinite programs.

The following is the truncated analogue of what we did in Section 14.2 (for
linear functions L on R[z] and sequences y € RY"). Any linear function L on
R[z]2; is completely specified by the sequence of real numbers y = (ya)aenz, ,
where y, = L(z®). Then we define the corresponding truncated (at order t)
moment matrix:

My (y) = (ya-&-ﬂ)a,ﬂEN? )
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indexed by N}'. One can easily check that:
L>0 onX¥ nR[z]y < M(y) > 0.
Analogously,
L >0 on{sg:seX, deg(sg) <2t} &= M; _4,(g9*y) =0,

after setting d, := [deg(g)/2] and where g * y is the sequence indexed by N}" d,
with (g% y)a = L(2%9) = 3, gyYa+~ (which is well defined if |o] < 2(t — d,) as
then |a + 7| < 2(t — d,) + deg(g) < 2t). Therefore, the program can be
equivalently reformulated as:

Pmom.t = inf Py iyo =1, Mi(y) =0, Myaq, (9;*y) =0(j =1,--- ,m)}.
2t

(15.5)

We now explicit the fact that the dual semidefinite program of coin-

cides with (15.3); we do this only in the unconstrained case: K = R" (i.e., with

no constraints g; > 0) in order to avoid tedious notational details. For v € NZ,

let A, denote the 0/1 matrix indexed by N}* with («, 8)-th entry A, (o, 3) = 1
when « + 8 = v and 0 otherwise. Note that

Mi(y) = Y yyArsy and Y 27 Ay, = [z]i[z]] (15.6)

vyeNG, ~vEeNg,
after setting [z]; = (z)aeny -

Lemma 15.1.1. The programs:

sup{\: p — A € X n R[z]at}, (15.7)
and
inf {p"y:yo =1, Mi(y) > 0} (15.8)
yeRYz2¢

are dual semidefinite programs.

Proof. Using (15.6), we can express (15.8) as the following semidefinite pro-
gram (in standard dual form):

po + inf Z DYyt Ao + Z Yy Aiy =03 . (15.9)
veNz, \{0} veNz, \{0}
Next we express as a semidefinite program (in standard primal form).
For this, we use the fact that p — A\ € ¥ n R[z]y, if and only if there exists
a positive semidefinite matrix ) indexed by N7 such that p — A = [z]] Q[];.
Rewrite: [z]]Q[z]: = (Q, [z]:[x]]) = 3 eny, (Aty, @a” (using ). There-
fore, is equivalent to '

po +sup {—(Ar0, Q) : (At 5, Q) = py (Y€ N5 \{0}), @ =0} (15.10)
It is now clear that the programs ((15.9) and (15.10) are dual semidefinite pro-
grams. U
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15.2 Convergence

Theorem 15.2.1. Assume that M (g) is Archimedean (i.e., there exists a polyno-
mial f € M(g) for which the set {x € R™ : f(x) = 0} is compact). Then, the
bounds pmom,: and psos 1 converge to pmin as t — 0.

Proof. Pick € > 0. Then the polynomial p — pmin + € is strictly positive on K. As
M (g) is Archimedean, we can apply Putinar’s theorem (Theorem 13.2.9) and
deduce that p— pmin + € € M (g). Hence, there exists ¢ € N such that p—ppin +e€ €

M (g)2, and thus pmin — € < Psos,c- Therefore, lim; o, Psost = Pmin. Since, by
Lemma|[15.0.1] psos.t < Pmom,t < Pmin for all ¢, we deduce: lim;_, o Pmom,t = Pmin-
O

15.3 Flat extensions of moment matrices

We state here a technical result about moment matrices which will be useful for
establishing an optimality certificate for the moment bounds pmem. Roughly
speaking, this result permits to extend a truncated sequence y € RN2: satisfying
a rank condition (see below) to an infinite sequence j € RY" whose
moment matrix M (y) has the same rank as M (y), to which we can then apply
the result from Theorem 14.2.4.

We recall that we can view the kernel of a moment matrix as a set of poly-
nomials, after identifying a polynomial f with its vector of coefficients f. If y is
a sequence in RN2s and L is the associated linear function on R[z],s, then

f e ker M,(y) < L(fg) =0Vg e R[z],; (15.11)

from now on we abuse notation and also write ‘f € ker M,(y)’. We also recall
that the kernel of an infinite moment matrix M () corresponds to an ideal I in
R[z] (Lemma 14.2.3). The following simple result about kernels of matrices is
useful (check it).

Lemma 15.3.1. Let X be a symmetric matrix with block form

A B
Assume that we are in one of the following two situations: (i) rankX = rankA
(then one says that X is a flat extension of A), or (ii) X > 0. Then the following

holds:
rekerA e rekerB' < (z",0)" € ker X.

As an application we obtain the following result showing that the kernel of
a truncated moment matrix behaves like a ‘truncated ideal’.

Lemma 15.3.2. Given a sequence y € RN2s consider its moment matrices M(y)
and My_4(y). Clearly Ms_1(y) is a principal submatrix of Ms(y). Assume that we
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are in one of the following two situations: (i) rankM;(y) = rankM,_;(y), or (ii)
M;(y) > 0. Given polynomials f, g € R[z], the following holds:

feker My(y), deg(fg) <s—1= fg e ker M(y).

Proof. Let L be the linear function on R[z],s associated to y. A first observation
is that it suffices to show the result when ¢ has degree 1, say g = x; (then the
general result follows by iterating this special case). A second observation is
that it suffices to show that fg belongs to the kernel of M;_;(y) (then fg also
belongs to the kernel of M(y), in view of Lemma([15.3.1)). So, pick a polynomial
u of degree at most s — 1 and let us show that L((fz;)u) = 0. But this follows
from the fact that f € ker M, (y) since deg(z;u) < s (recall (I5.11)). O

Theorem 15.3.3. Given a sequence y € RY?s, consider its moment matrices M(y)
and M;_1(y). Assume that

rank M,(y) = rank M,_;(y). (15.12)
Then, one can extend y to a sequence § € RY" satisfying:
rank M(g) = rank M, (y). (15.13)

Let I be the ideal in R[z] corresponding to the kernel of M(g). The following
properties hold:

@ If{a1, - ,a.} € N”_, indexes a maximum linearly independent set of columns
of Ms_1(y), then the set {[x**],--- ,[z*"]} < R[z]/I is a base of R[z]/I.

(ii) The ideal I is generated by the polynomials in ker M;(y): I = (ker My (y)).

Proof. The first part of the proof consists of constructing the sequence ¢ sat-
isfying (15.13). It is based on Lemma the details are elementary but
technical, so we omit them. (You will show the case n = 1 in Exercise 15.1).

(i) If the set {1, -, .} indexes a maximum set of linearly independent
columns of M;_1(y) then, as rankM (§) = rankM;_(y), it also indexes a max-
imum set of linearly independent columns of M(g). This implies that the set
{[z*],--- ,[z*"]} is a base of R[z]/I.

(ii) AsrankM () = rankM;(y), we have the inclusion: ker M, (y) < ker M (9)
(recall Lemma [15.3.1)). Thus the ideal generated by ker M,(y) is contained in
the ideal ker M (g):

(ker M,(y)) < ker M (7).

Set M = {z°,--- 2%} where the o;’s are as in (i), and let (M) denote the
linear span of M (whose elements are the polynomials >}, A;z** where \; € R).
Then, (M) n ker M (g) = {0} (by (i)). We claim that

Rlz] = (M) + (ker M(y)).

For this, one can show using induction on its degree that each monomial x® can
be written as & = p + ¢ where p lies in the span of M and ¢ lies in the ideal
generated by ker M;(y) (check it). Now, let f € ker M (). Applying the above
to f, we can write f = p + ¢ where p € (M) and q € (ker M,(y)). This implies
thatp = f —qge (M) nker M(j) = {0} and thus f = p € (ker M,(y)). O
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15.4 Optimality certificate and global minimizers

Let K = {z € K : p(r) = pmin} denote the set (possibly empty) of global
minimizers of the polynomial p over K. We also set

dig = max{dy,,--- ,dg, }, whered; = [deg(f)/2] for feR[z]. (15.14)

Theorem 15.4.1. Let L be an optimal solution to the program and let
y = (L(z®)) € RNzt be the corresponding sequence. Asssume that y satisfies the
rank condition:

rank M(y) = rank M,_q4, (y) (15.15)

for some integer s satisfying max{d,,dx} < s < t. Then the following properties
hold:

(i) The relaxation (15.4) is exact: Pmom,t = Pmin.

(ii) The common roots to the polynomials in ker M;(y) are all real and they are
global minimizers: V¢ (ker M (y)) < K.

(>iii) If L is an optimal solution of (15.4) for which the matrix M,(y) has maxi-
mum possible rank, then V¢ (ker M,(y)) = K.

Proof. As y satisfies the rank condition (15.15]), we can apply Theorem[15.3.3
There exists a sequence § € RY" extending the subsequence (Yar)|a<25 Of y and

satisfying rank M (y) = rank M;(y) =: r. Thus, g, = y. if |a| < 2s, but it could
be that § and y differ at entries indexed by monomials of degree higher than
2s, these entries of y will be irrelevant in the rest of the proof. Let I be the
ideal corresponding to the kernel of M (). By Theorem [15.3.3] I is generated
by ker M,(y) and thus V(1) = Vi(ker M (y)). As M(g) is positive semidefinite
with finite rank r, we can apply Theorem 14.2.4 (and its proof): We deduce
that
Ve) ={vy,--- ,u.} S R

and . .
7y = 2 Ai[vi]lew where \; > 0 and Z A= 1.
i=1

i=1

Taking the projection onto the subspace R2:, we obtain:

(ya)aeNg's = Z /\i[’UZ‘]QS where )\z >0 and Z /\z =1. (15.16)
1=1 1=1

In other words, the restriction of the linear map L to the subspace R[x]s; is the
convex combination »);_, A;L,, of evaluations at the points of V(). Moreover,
let{ay,---,a,} € N7, index a maximum linearly independent set of columns
of Ms_4,.(y), so that the set B = {[z*'],---,[z*"]} is a base of R[z]/I (by
Theorem [15.3.3)).
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First we claim that we can choose interpolation polynomials p,,, at the points
of Vi (I) with deg(p,,) < s — di. Indeed, if p,, are arbitrary interpolation
polynomials then, using the base 5, write p,, = f; + g; where g; € I and f;
lies in the linear span of the monomials x®*,--- % . Thus the f;’s are again
interpolation polynomials but now with degree at most s — d.

Next we claim that v, --- , v, belong to the set K. To see this, we use the
fact that L > 0 on (g;X) n R[] for all j € [m]. As deg(p,,) < s —dk, we have:
deg(g;p2,) < deg(g;) +2(s —dx) < 2s, and thus we can compute L(g,p3, ) using
(15.16) and obtain that L(g;p2 ) = g;(vi)A; = 0. This gives g;(v;) > 0 for all j
and thus v; € K.

As deg(p) < 2s, we can also evaluate L(p) using (15.16): we obtain that
L(p) = >_; Aip(vi) = pmin, since p(v;) = pmin as v; € K. This gives the
inequality: pmom,t > Pmin. The reverse inequality holds always (Lemma|[I5.0.1).
Thus (i) holds: pmom,t = Pmin. In turn, this implies that p(v;) = pmin for all 4,
which shows (ii): {vy, -+ ,v,.} € K.

Assume now that rankM,;(y) is maximum among all optimal solutions of
(15.4). In other words, y lies in the relative interior of the face of the fea-
sible region of consisting of all optimal solutions. Therefore, for any
other optimal solution y’, we have that ker M;(y) < ker M;(y’). Consider a
global minimizer v € K of p over K and the corresponding optimal solution
y' = [v]o of (15.4). The inclusion ker M,(y) < ker M,(y’) implies that any
polynomial in ker M, (y) vanishes at v. Therefore, ker Ms(y) = Z(K ;) and thus
I = (ker M,(y)) < Z(K}¥). In turn, this implies the inclusions:

K € Ve(Z(Ky)) € Ve(I) = {vr, -+ o0}
Thus (iii) holds and the proof is complete. O

Under the assumptions of Theorem we can apply the eigenvalue
method described in Section 14.1.3 for computing the points in the variety
Ve(ker Ms(y)). Indeed, all the information that we need is contained in the
matrix M,(y). Recall that what we need in order to recover V(1) is an ex-
plicit base B of the quotient space R[x]/I and the matrix in the base 5 of some
multiplication operator in R[x]/I, where I = (ker M,(y)).

First of all, if we choose {ay,- -+ ,a,} € N_, indexing a maximum linearly
independent set of columns of M,_;(y), then the set B = {[z*'],--- , [z*"]} of
corresponding cosets in R[z]/I is a base of R[z]/I. For any variable zj, we
now observe that it is easy to build the matrix M,, of the ‘multiplication by
z)’ in the base B, using the moment matrix M,(y). Indeed, for any j € [r], as
deg(xzpz®) < s, we can compute the linear dependency among the columns of
M, (y) indexed by the monomials z;z% 2, ---  z*. In this way, we obtain
a polynomial in the kernel of M;(y) (thus in I) which directly gives the j-th
column of the matrix M,, .

Finally, we point out that it is a property of most interior-point algorithms
that they return an optimal solution in the relative interior of the optimal face,
thus a point satisfying the assumption of (iii). In conclusion, if we have an
optimal solution of the moment relaxation satisfying the rank condition
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(15.15), then we can (numerically) compute all the global optimizers of prob-

lem (15.1).

15.5 Real solutions of polynomial equations

Consider now the problem of computing all real roots to a system of polynomial
equations:
hi(z) =0, ;hp(z) =0

where hq,- -+, by, € R[z]. In other words, with I denoting the ideal generated
by the h;’s, this is the problem of computing the real variety Vg(I) of I. We
address this question in the case when Vg(I) is finite.

Of course, if the complex variety V() of I is finite, then we can just apply
the eigenvalue method presented in Chapter 14 to compute V(I) (then select
the real elements). However, it can be that Vg (7) is finite while Vi (I) is infinite.
As a trivial such example, consider the ideal generated by the polynomial % + 3
in two variables, to which we come back in Example below. In that case
we cannot apply directly the eigenvalue method. However we can apply it
indirectly: Indeed, we can view the problem of computing V(/) as an instance
of polynomial optimization problem to which we can then apply the results of
the preceding section. Namely, consider the problem of minimizing the constant
polynomial p = 0 over the set

K ={zeR":hj(x) =>0,—h;(z) =0Vje[m]}.

Then, K = Vg(I) coincides with the set of global minimizers of p = 0 over K.
As before, we consider the moment relaxations (15.4). Now, any feasible
solution L is an optimal solution of (15.4). Hence, by Theorem if the
rank condition holds, then we can compute all points in Vg(I). We
now show that it is indeed the case that, for ¢ large enough, the rank condition

(15.15) will be satisfied.

Theorem 15.5.1. Let hy, - - , hy, € R[z] be polynomials having finitely many real
roots. Set dx = max;[deg(h;)/2]. Fort e N, let F; denote the set of sequences
y € RNzt whose associated linear function L on R[x]s; satisfies the conditions:

L(1)=1, L >0 on Xy, L(uh;) = 0Vj € [m] Vu € R[z] with deg(uh;) < 2t.
(15.17)
Then, there exist integers to and s such that dx < s < tg and the following rank
condition holds:

rankM;(y) = rankM,_q, (y) Yy € F; Vt = 1. (15.18)

Moreover, /T = (ker M(y)) if y € F; has maximum possible rank.

Proof. The goal is to show that if we choose ¢ large enough, the the kernel
of M,(y) contains sufficiently many polynomials permitting to show the rank
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condition (15.18). Here y is an arbitrary feasible solution in F; and L is its
corresponding linear function on R[z]y;. We assume that ¢ > max; deg(h;).
Then,

hj € ker My(y) Vj € [m] (15.19)

(since then L(hf) =0).
Now we choose a ‘nice’ set of polynomials {f;,--- , fo} generating +/I, the

real radical ideal of the ideal I; namely, one for which we can claim the follow-
ing degree bounds:

L
VfevI f= Z uyf; for some u; € R[z] with deg(u;f;) < deg(f). (15.20)
=1

(That such a nice set of generators exists follows from the theory of Grobner
bases.) Next we claim:

Jt1eN fi,--+, fr e ker My(y) for any ¢ > t;. (15.21)

Fix [ € [L]. Applying the Real Nullstellensatz, we know that there exist polyno-
mials p; and u; and an integer N (which, for convenience, we can choose to be
a power of 2) satisfying the following identity:

m
Y+ 208 =) uihy.
i j=1

If ¢ is large enough, then L vanishes at each u;h; (since h; € ker M,(y) and
apply Lemma. Hence L vanishes at the polynomial Y + Y, p?. As L is
nonnegative on Y, we deduce that L(f}¥) = 0. Now an easy induction permits
to show that L(f#) = 0 (this is where choosing N a power of 2 was helpful) and
thus f; € ker My (y).

By assumption, the set Vi (I) is finite. Therefore, the quotient space R[z]/+/T
has finite dimension (Theorem 14.1.5). Let M = {b1,--- ,b,.} be a set of poly-
nomials whose cosets form a base of the quotient space R[x]/¥/I. Let dy denote
the maximum degree of the polynomials in M and set

to = max{tl,do + dK}
Pick any monomial z“ of degree at most ¢5. We can write:
L
2 = p® 4+ ¢@, with ¢@ = 3, (15.22)
=1

where p(®) lies in the span of M and thus has degree at most d, and each term
ul(a) Ji has degree at most max{|a|,dp} < to. Here we have used the fact that

{[b1],- - -, [br]} is a base of R[x]/~/T, combined with the property (15.20) of the
generators f; of v/1.
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We can now conclude the proof: We show that, if t > ¢, := t3 + 1, then the
rank condition (15.18]) holds with s = t,. For this pick a monomial z* of degree
at most ¢, so that || holds. As deg(ul(a)fl) <ty <t—1and f; € ker M;(y)
(by ), we obtain that ul(a) f1 € ker M (y) (use Lemma. Therefore,
the polynomial z* — p(®) belongs to the kernel of M, (y). As the degree of p(®)

is at most dy < t2 — dg, we can conclude that rankM;, 4, (y) = rankM,, (y).
Finally, the equality v/ = (ker M, (y))) follows from Theorem (iii).
O

Example 15.5.2. Let I be the ideal generated by the polynomial x3 + z3. Clearly,
Ve(I) = {(0,0)} and /T = (x1,5) is generated by the two monomials 1 and x-.
Let us see how we can find this again by applying the above result.

For this, let L be a feasible solution in the set F; defined by fort =1.
Then, we have that L(x?), L(z3) > 0 and L(x? + %) = 0. This implies: L(2%) =
L(z3) = 0 and thus L(z1) = L(z2) = L(z172) = 0. Hence the moment matrix
M, (y) has the form:

1 xr1 T2
1 1 yi0 you 1
Mi(y)= 21| yio y20 w1 |=1{0
T2 \Yo1 Y11 Yoz 0

o O O
o O O

Therefore, rank M (y) = rankMy(y), x1, xo belong to the kernel of M (y), and we
find that ker M (y) generates v/I.

As an exercise, check what happens when I is the ideal generated by (x2 + x4)2.
When does the rank condition holds?

15.6 Notes and further reading

The flat extension theorem (Theorem[15.3.3)) was proved by Curto and Fialkow
[1] (this result and some extensions are exposed in the survey [4]]).

The moment approach to polynomial optimization presented in this chapter
was introduced by Lasserre [3]. Lasserre realized the relevance of the results of
Curto and Fialkow [[1] for optimization, in particular, that their flat extension
theorem yields an optimality certificate and together with Henrion he adapted
the eigenvalue method to compute global optimizers. Having such a stopping
criterium and being able to compute global optimizers is a remarkable property
of this ‘moment based’ approach. It has been implemented in the software
GloptiPoly, the most recent version can be found at [2]. The application to
computing real roots (and real radical ideals) has been developed by Lasserre,
Laurent and Rostalski, see the survey [5].
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15.7 Exercises

15.1.

15.2

Given an integer s > 1, consider a sequence y = (yo, y1, - ,Y2s) € R?5H1
and its moment matrix M;(y) of order s. Assume that the rank condition
holds:

rankM;(y) = rankM;_1 (y).

(a) Show that one can find scalars a,b € R for which the extended se-
quence Zj = (yOa Y1, 5 Y2s,Q, b) satisfies:

rankM; 1 (g) = rankM;(y).
(b) Show that one can find an (infinite) extension

?j = (y07y17 o 7y28ag23+17g2s+27 o ) € RN

satisfying
rankM (y) = rankM,(y).

This shows the flat extension theorem (Theorem[15.3.3)) in the univariate
casen = 1.

Consider the problem of computing pmin = inf,ex p(z), where p = 125
and
K={zeR*: —22>0,1+2,>0,1—2;, >0}

(a) Show that, at order ¢t = 1, pmom,1 = Pmin = 0 and pses,1 = —00.
(b) Atorder ¢t = 2, what is the value of pgos 2?
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