SECTION 3.3: TECHNIQUES OF DIFFERENTIATION

LEARNING OBJECTIVES

- Learn how to differentiate using short cuts, including:
the Linearity Properties, the Product Rule, the Quotient Rule, and (perhaps) the Reciprocal Rule.

PART A: BASIC RULES OF DIFFERENTIATION

In Section 3.2, we discussed Rules 1 through 4 below.

Basic Short Cuts for Differentiation

Assumptions:
$\cdot c, m, b$, and n are real constants.

- f and g are functions that are differentiable "where we care."

	If $h(x)=$	then $h^{\prime}(x)=$	Comments
1.	c	0	The derivative of a constant is 0.
2.	$m x+b$	m	The derivative of a linear function is the slope.
3.	x^{n}	$n x^{n-1}$	Power Rule
4.	$c \cdot f(x)$	$c \cdot f^{\prime}(x)$	Constant Multiple Rule (Linearity)
5.	$f(x)+g(x)$	$f^{\prime}(x)+g^{\prime}(x)$	Sum Rule (Linearity)
6.	$f(x)-g(x)$	$f^{\prime}(x)-g^{\prime}(x)$	Difference Rule (Linearity)

- Linearity. Because of Rules 4, 5, and 6, the differentiation operator D_{x} is called a linear operator. (The operations of taking limits (Ch.2) and integrating (Ch.5) are also linear.) The Sum Rule, for instance, may be thought of as "the derivative of a sum equals the sum of the derivatives, if they exist." Linearity allows us to take derivatives term-by-term and then to "pop out" constant factors.
- Proofs. The Limit Definition of the Derivative can be used to prove these short cuts. The Linearity Properties of Limits are crucial to proving the Linearity Properties of Derivatives. (See Footnote 1.)

Armed with these short cuts, we may now differentiate all polynomial functions.

Example 1 (Differentiating a Polynomial Using Short Cuts)

Let $f(x)=-4 x^{3}+6 x-5$. Find $f^{\prime}(x)$.

§ Solution

$$
\begin{array}{rlrl}
f^{\prime}(x) & =D_{x}\left(-4 x^{3}+6 x-5\right) & \\
& =D_{x}\left(-4 x^{3}\right)+D_{x}(6 x)-D_{x}(5) & & \text { (Sum and Difference Rules) } \\
& =-4 \cdot D_{x}\left(x^{3}\right)+D_{x}(6 x)-D_{x}(5) & & \text { (Constant Multiple Rule) }
\end{array}
$$

TIP 1: Students get used to applying the Linearity Properties, skip all of this work, and give the "answer only."

$$
=-4\left(3 x^{2}\right)+6-0
$$

$$
=-12 x^{2}+6
$$

Challenge to the Reader: Observe that the " -5 " term has no impact on the derivative. Why does this make sense graphically? Hint: How would the graphs of $y=-4 x^{3}+6 x$ and $y=-4 x^{3}+6 x-5$ be different? Consider the slopes of corresponding tangent lines to those graphs. \S

Example 2 (Equation of a Tangent Line; Revisiting Example 1)

Find an equation of the tangent line to the graph of $y=-4 x^{3}+6 x-5$ at the point $(1,-3)$.

§Solution

- Let $f(x)=-4 x^{3}+6 x-5$, as in Example 1.
- Just to be safe, we can verify that the point $(1,-3)$ lies on the graph by verifying that $f(1)=-3$. (Remember that function values correspond to y-coordinates here.)
- Find m, the slope of the tangent line at the point where $x=1$.

This is given by $f^{\prime}(1)$, the value of the derivative function at $x=1$.

$$
m=f^{\prime}(1)
$$

From Example 1, remember that $f^{\prime}(x)=-12 x^{2}+6$.
$=\left[-12 x^{2}+6\right]_{x=1}$
$=-12(1)^{2}+6$

$$
=-6
$$

- We can find a Point-Slope Form for the equation of the desired tangent line.

The line contains the point: $\left(x_{1}, y_{1}\right)=(1,-3)$.
It has slope: $m=-6$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-3) & =-6(x-1)
\end{aligned}
$$

- If we wish, we can rewrite the equation in Slope-Intercept Form.

$$
\begin{aligned}
y+3 & =-6 x+6 \\
y & =-6 x+3
\end{aligned}
$$

- We can also obtain the Slope-Intercept Form directly.

$$
\begin{aligned}
y & =m x+b \Rightarrow \\
(-3) & =(-6)(1)+b \\
b & =3 \Rightarrow \\
y & =-6 x+3
\end{aligned}
$$

- Observe how the red tangent line below is consistent with the equation above.

Example 3 (Finding Horizontal Tangent Lines; Revisiting Example 1)

Find the x-coordinates of all points on the graph of $y=-4 x^{3}+6 x-5$ where the tangent line is horizontal.

§ Solution

- Let $f(x)=-4 x^{3}+6 x-5$, as in Example 1.
- We must find where the slope of the tangent line to the graph is 0 .

We must solve the equation:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
-12 x^{2}+6 & =0 \quad(\text { See Example 1.) } \\
-12 x^{2} & =-6 \\
x^{2} & =\frac{1}{2} \\
x & = \pm \sqrt{\frac{1}{2}} \\
x & = \pm \frac{\sqrt{2}}{2}
\end{aligned}
$$

The desired x-coordinates are $\frac{\sqrt{2}}{2}$ and $-\frac{\sqrt{2}}{2}$.

- The corresponding points on the graph are:

$$
\begin{aligned}
& \left(\frac{\sqrt{2}}{2}, f\left(\frac{\sqrt{2}}{2}\right)\right) \text {, which is }\left(\frac{\sqrt{2}}{2}, 2 \sqrt{2}-5\right) \text {, and } \\
& \left(-\frac{\sqrt{2}}{2}, f\left(-\frac{\sqrt{2}}{2}\right)\right), \text { which is }\left(-\frac{\sqrt{2}}{2},-2 \sqrt{2}-5\right)
\end{aligned}
$$

- The red tangent lines below are truncated.

PART B: PRODUCT RULE OF DIFFERENTIATION

WARNING 1: The derivative of a product is typically not the product of the derivatives.

Product Rule of Differentiation

Assumptions:

- f and g are functions that are differentiable "where we care."

If $h(x)=f(x) g(x)$, then $h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.

- Footnote 2 uses the Limit Definition of the Derivative to prove this.
- Many sources switch terms and write: $h^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$, but our form is easier to extend to three or more factors.

Example 4 (Differentiating a Product)

Find $D_{x}\left[\left(x^{4}+1\right)\left(x^{2}+4 x-5\right)\right]$.

§ Solution

TIP 2: Clearly break the product up into factors, as has already been done here. The number of factors (here, two) will equal the number of terms in the derivative when we use the Product Rule to "expand it out."

TIP 3: Pointer method. Imagine a pointer being moved from factor to factor as we write the derivative term-by-term. The pointer indicates which factor we differentiate, and then we copy the other factors to form the corresponding term in the derivative.

$$
\left.\begin{array}{rl}
\left(x^{4}+1\right) & \left(x^{2}+4 x-5\right) \\
\wedge & \left(D_{x}\right) \quad \text { copy }+ \\
\text { copy } \quad \wedge\left(D_{x}\right)
\end{array}\right)+
$$

The Product Rule is especially convenient here if we do not have to simplify our result. Here, we will simplify.

$$
=6 x^{5}+20 x^{4}-20 x^{3}+2 x+4
$$

Challenge to the Reader: Find the derivative by first multiplying out the product and then differentiating term-by-term. \S

The Product Rule can be extended to three or more factors.

- The Exercises include a related proof.

Example 5 (Differentiating a Product of Three Factors)

Find $\frac{d}{d t}\left[(t+4)\left(t^{2}+2\right)(\sqrt[3]{t}-t)\right]$. The result does not have to be simplified, and negative exponents are acceptable here. (Your instructor may object!)

§Solution

$$
\begin{aligned}
& (t+4)\left(t^{2}+2\right)\left(t^{1 / 3}-t\right) \\
& \wedge\left(D_{t}\right) \text { copy copy }+ \\
& \text { copy } \wedge\left(D_{t}\right) \text { copy }+ \\
& \text { copy copy } \wedge\left(D_{t}\right) \\
& \frac{d}{d t}\left[(t+4)\left(t^{2}+2\right)(\sqrt[3]{t}-t)\right]=\left[D_{t}(t+4)\right] \cdot\left(t^{2}+2\right) \cdot(\sqrt[3]{t}-t)+ \\
& (t+4) \cdot\left[D_{t}\left(t^{2}+2\right)\right] \cdot(\sqrt[3]{t}-t)+ \\
& (t+4) \cdot\left(t^{2}+2\right) \cdot\left[D_{t}\left(t^{1 / 3}-t\right)\right] \\
& =[1] \cdot\left(t^{2}+2\right) \cdot(\sqrt[3]{t}-t)+ \\
& (t+4) \cdot[2 t] \cdot(\sqrt[3]{t}-t)+ \\
& (t+4) \cdot\left(t^{2}+2\right) \cdot\left[\frac{1}{3} t^{-2 / 3}-1\right]
\end{aligned}
$$

§
TIP 4: Apply the Constant Multiple Rule, not the Product Rule, to something like $D_{x}\left(2 x^{3}\right)$. While the Product Rule would work, it would be inefficient here.

PART C: QUOTIENT RULE (and RECIPROCAL RULE) OF DIFFERENTIATION

WARNING 2: The derivative of a quotient is typically not the quotient of the derivatives.

Quotient Rule of Differentiation

Assumptions:

- f and g are functions that are differentiable "where we care."
- g is nonzero "where we care."

If $h(x)=\frac{f(x)}{g(x)}$,
then $h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$.

- Footnote 3 proves this using the Limit Definition of the Derivative.
- Footnote 4 more elegantly proves this using the Product Rule.

TIP 5: Memorizing. The Quotient Rule can be memorized as:

$$
D\left(\frac{\mathrm{Hi}}{\mathrm{Lo}}\right)=\frac{\mathrm{Lo} \cdot D(\mathrm{Hi})-\mathrm{Hi} \cdot D(\mathrm{Lo})}{(\mathrm{Lo})^{2}, \text { the square of what's below }}
$$

Observe that the numerator and the denominator on the right-hand side rhyme.

- At this point, we can differentiate all rational functions.
(Section 3.3: Techniques of Differentiation) 3.3.10
Reciprocal Rule of Differentiation
If $h(x)=\frac{1}{g(x)}$,
then $h^{\prime}(x)=-\frac{g^{\prime}(x)}{[g(x)]^{2}}$.
- This is a special case of the Quotient Rule where $f(x)=1$.

Think: $-\frac{\mathrm{D}(\mathrm{Lo})}{(\mathrm{Lo})^{2}}$
TIP 6: While the Reciprocal Rule is useful, it is not all that necessary to memorize if the Quotient Rule has been memorized.

Example 6 (Differentiating a Quotient)
Find $D_{x}\left(\frac{7 x-3}{3 x^{2}+1}\right)$.
§ Solution

$$
\begin{aligned}
D_{x}\left(\frac{7 x-3}{3 x^{2}+1}\right) & =\frac{\mathrm{Lo} \cdot D(\mathrm{Hi})-\mathrm{Hi} \cdot D(\mathrm{Lo})}{(\mathrm{Lo})^{2}, \text { the square of what's below }} \\
& =\frac{\left(3 x^{2}+1\right) \cdot\left[D_{x}(7 x-3)\right]-(7 x-3) \cdot\left[D_{x}\left(3 x^{2}+1\right)\right]}{\left(3 x^{2}+1\right)^{2}} \\
& =\frac{\left(3 x^{2}+1\right) \cdot[7]-(7 x-3) \cdot[6 x]}{\left(3 x^{2}+1\right)^{2}} \\
& =\frac{-21 x^{2}+18 x+7}{\left(3 x^{2}+1\right)^{2}}, \text { or } \frac{7-21 x^{2}+18 x}{\left(3 x^{2}+1\right)^{2}}, \text { or }-\frac{21 x^{2}-18 x-7}{\left(3 x^{2}+1\right)^{2}}
\end{aligned}
$$

§

TIP 7: Rewriting. Instead of running with the first technique that comes to mind, examine the problem, think, and see if rewriting or simplifying first can help.

Example 7 (Rewriting Before Differentiating)
Let $s(w)=\frac{6 w^{2}-\sqrt{w}}{3 w}$. Find $s^{\prime}(w)$.

§ Solution

Rewriting $s(w)$ by splitting the fraction yields a simpler solution than applying the Quotient Rule directly would have.

$$
\begin{aligned}
s(w) & =\frac{6 w^{2}}{3 w}-\frac{\sqrt{w}}{3 w} \\
& =2 w-\frac{1}{3} w^{-1 / 2} \Rightarrow \\
s^{\prime}(w) & =2+\frac{1}{6} w^{-3 / 2} \\
& =2+\frac{1}{6 w^{3 / 2}}, \text { or } \frac{12 w^{3 / 2}+1}{6 w^{3 / 2}}, \text { or } \frac{12 w^{2}+\sqrt{w}}{6 w^{2}}
\end{aligned}
$$

§

FOOTNOTES

1. Proof of the Sum Rule of Differentiation. Throughout the Footnotes, we assume that f and g are functions that are differentiable "where we care." Let $p=f+g$. (We will use h for "run" in the Limit Definition of the Derivative.)

$$
\begin{aligned}
& p^{\prime}(x)=\lim _{h \rightarrow 0} \frac{p(x+h)-p(x)}{h}=\lim _{h \rightarrow 0} \frac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)]+[g(x+h)-g(x)]}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right]=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
\end{aligned}
$$

(Observe that we have exploited the Sum Rule (linearity) of Limits.)
$=f^{\prime}(x)+g^{\prime}(x)$
The Difference Rule can be similarly proven, or, if we accept the Constant Multiple Rule, we can use: $f-g=f+(-g)$. Sec. 2.2, Footnote 1 extends to derivatives of linear combinations.
2. Proof of the Product Rule of Differentiation. Let $p=f g$.

$$
\begin{aligned}
p^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{p(x+h)-p(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{[f(x+h) g(x+h)]-[f(x) g(x)]}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)+f(x+h) g(x)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0}\left[\frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\frac{f(x+h) g(x)-f(x) g(x)}{h}\right] \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) \cdot[g(x+h)-g(x)]}{h}+\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)] \cdot g(x)}{h} \\
= & \lim _{h \rightarrow 0}\left[f(x+h) \cdot \frac{g(x+h)-g(x)}{h}+\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h} \cdot g(x)\right]\right. \\
= & {\left[\lim _{h \rightarrow 0} f(x+h)\right] \cdot\left[\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right]+\left[\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]\left[\lim _{h \rightarrow 0} g(x)\right] } \\
= & {[f(x)] \cdot\left[g^{\prime}(x)\right]+\left[f^{\prime}(x)\right] \cdot[g(x)], \text { or } } \\
& f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

Note: We have: $\lim _{h \rightarrow 0} f(x+h)=f(x)$ by continuity, because differentiability implies continuity. We have something similar for g in Footnote 3.
3. Proof of the Quotient Rule of Differentiation, I. Let $p=f / g$, where $g(x) \neq 0$.

$$
\begin{aligned}
p^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{p(x+h)-p(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h} \\
& =\lim _{h \rightarrow 0}\left(\left[\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)} \cdot \frac{1}{h}\right)\right. \\
& =\lim _{h \rightarrow 0}\left(\left[\frac{f(x+h) g(x)-f(x) g(x+h)}{g(x+h) g(x)}\right] \cdot \frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h) g(x)-f(x) g(x+h)}{h} \cdot \frac{1}{g(x+h) g(x)}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h} \cdot \frac{1}{g(x+h) g(x)}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{[f(x+h) g(x)-f(x) g(x)]+[f(x) g(x)-f(x) g(x+h)]}{h} \cdot \frac{1}{g(x+h) g(x)}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{[f(x+h)-f(x)] \cdot g(x)+f(x) \cdot[g(x)-g(x+h)]}{h} \cdot \frac{1}{g(x+h) g(x)}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{[f(x+h)-f(x)] \cdot g(x)-f(x) \cdot[g(x+h)-g(x)]}{h} \cdot \frac{1}{g(x+h) g(x)}\right] \\
& =\left[\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)] \cdot g(x)}{h}-\lim _{h \rightarrow 0} \frac{f(x) \cdot[g(x+h)-g(x)]}{h}\right] \cdot\left[\lim _{h \rightarrow 0} \frac{1}{g(x+h) g(x)}\right] \\
& =\left[[g(x)] \cdot\left[\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]-[f(x)] \cdot\left[\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right] \cdot\left[\frac{1}{g(x) g(x)}\right]\right.
\end{aligned}
$$

(See Footnote 2, Note.)
$=\left([g(x)] \cdot\left[f^{\prime}(x)\right]-[f(x)] \cdot\left[g^{\prime}(x)\right]\right) \cdot \frac{1}{[g(x)]^{2}}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$

4. Proof of the Quotient Rule of Differentiation, II, using the Product Rule.

Let $h(x)=\frac{f(x)}{g(x)}$, where $g(x) \neq 0$.
Then, $g(x) h(x)=f(x)$.
Differentiate both sides with respect to x. Apply the Product Rule to the left-hand side. We obtain: $g^{\prime}(x) h(x)+g(x) h^{\prime}(x)=f^{\prime}(x)$. Solving for $h^{\prime}(x)$, we obtain:

$$
\begin{aligned}
h^{\prime}(x) & =\frac{f^{\prime}(x)-g^{\prime}(x) h(x)}{g(x)} . \text { Remember that } h(x)=\frac{f(x)}{g(x)} . \text { Then, } \\
h^{\prime}(x) & =\frac{f^{\prime}(x)-g^{\prime}(x)\left[\frac{f(x)}{g(x)}\right]}{g(x)} \\
& =\frac{\left(f^{\prime}(x)-g^{\prime}(x)\left[\frac{f(x)}{g(x)}\right]\right)}{[g(x)]} \cdot[g(x)] \\
& =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]}
\end{aligned}
$$

This approach is attributed to Marie Agnessi (1748); see The AMATYC Review, Fall 2002 (Vol. 24, No. 1), p.2, Letter to the Editor by Joe Browne.

- See also "Quotient Rule Quibbles" by Eugene Boman in the Fall 2001 edition (vol.23, No.1) of The AMATYC Review, pp.55-58. The article suggests that the Reciprocal Rule for $D_{x}\left[\frac{1}{g(x)}\right]$ can be proven directly by using the Limit Definition of the Derivative, and then the Product Rule can be used in conjunction with the Reciprocal Rule to differentiate $[f(x)]\left[\frac{1}{g(x)}\right]$; the Spivak and Apostol calculus texts take this approach. The article presents another proof, as well.

