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In this lecture, we look at the transformation which maps points in the
plane to lines: (a,b) — y = ax + b. We'll discuss it’s properties and some
problems to which it can be applied.

DUALITY

Consider the transformation T in R?: T : (a,b) — y =azx +b

Given a point (a,b) in the plane, T maps it to a line y = ax + b.
Under this transformation,

1. T:l:y=cx+dr (—c,d)

Consider any two points P = (p,cp + d) and @ = (g,cq + d) on line
l:y = cx + d. Their image under transformation 7" are
lp:y=pr+(cp+d) and lg : y = gz + (cq + d) respectively. Both Ip
and lg pass through the point (—c¢,d). So, 7" maps line [ : y = cx + d
to a pencil of lines passing through point (—c¢, d) and we take (—c, d)
as the image of [. Notice that the slope of the line is preserved as the
negation of z-coordinate of the image point.

2. T:2=mr oo,
T:00,>2x=—-—m
For a vertical line [ : x = m,T maps it to a pencil of parallel lines of

slope m. We assume that these parallel lines intersect at a point 0o,
at Infinity. This point is called an improper point. For every direction,
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Figure 1: The Duality Transformation

let its slope be m, there is an improper point oo, associated with it.
These improper points form a line called improper line.

Conversely, each line y = mx+a which passes through oo, gets mapped
to a point (—m,a) which lies on the line x = —m. Consequently, the
image of the improper point co,, under 7" is the vertical line z = —m.

. The image of a line segment AB is the double wedge defined by the
image line l4,lp of the two endpoints. The double wedge may not
contain a vertical line since a line segment does not pass through a
point at infinity.

. The image of a ray AB with slope m is the double wedge that has
vertical line x = —m and image line [4 as its two boundaries and
contains the line image g of point B.
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Figure 4: Vertical Distance is Preserved

From now on, we’ll use the following notation:

e [p denotes the line image of the point P under 7.

e P, denotes the point image of line /.

e (l4,1p) denotes the double wedge to which segment AB gets mapped.

e (x = —m,l4) denotes the double wedge image of the ray with slope m
and starts at point A.

Lemma 1 The transformation T preserves slope, vertical distance, and the
above/below relation.

Proof: For a line | : y = ax + b, its image under 7' is a point (—a,b). It
is clear that the slope a of [ is preserved as the negation of z-coordinate of
the image point.

The vertical distance of a point P = (a,b) and a line [ : y = cz + d equals
to b — (ca + d). In the dual world, image of P becomes lp : y = az + b,
and line [ becomes point (—c,d). The vertical distance between the two is
(—ac+b) —d. The two distances are equal. So, the vertical distance and the
above/below relation under 7" are preserved.
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Figure 5: Intersection of a line and a segment

Application 1: Intersections of Lines, Segments,
and Rays

1. Intersection of a line and a segment:

Consider the problem of checking whether a line [ intersects with a
segment AB. If AB intersects with [, then it must be that A lies above
[ and B lies below [, or vise versa. Since T preserves the above/below
relation between the two objects, The point image P, of line | must
lies between the line images 4 and /g of endpoints A and B. So, [
intersects AB if and only if P, lies in the double wedge (I4,15).

. Intersection of two line segments:

Two line segments AB and CD intersect if and only if AB intersect
with CD and AB intersect with C'D. This is equivalent to say: AB
intersects CD if and only if the intersection of Ic and Ip lies within the
double wedge (l4,15) and the intersection of 4 and [p lies within the
double wedge (l¢,lp)-

. Checking intersection between a ray and a line, a ray and a line segment,
and two rays can be solved similarly.



Figure 6: Intersection of two line segments
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Application 2: Intersection of Lower Half-planes

Given: n half-planes H; = {(z.y)|y < a;x + b;}
Find : their intersection

Not all of the boundary lines of these half-planes are on the boundary of
the intersection. So, we must first remove those half-planes whose boundary
line is redundant. Then, sort the remaining half-planes by the slopes of
their boundary lines. Then, we can get the boundary of their intersection by
computing the intersection points of consecutive boundary lines in the sorted
list.

To remove the redundant lines, we first notice that a boundary line [} :
Yy = aix + by is redundant if and only if there are two boundary lines /; : y =
a;x + b; and [; : y = a;x + b; such that a; < ay < a; and [ lies above the
intersection point of /; and [;.

Because of the property that T preserves slope and above/below relation,
we can determine the redundancy of the boundary lines by considering the
dual image points of all boundary lines: By = {P,,1 < i < n}. The
redundancy condition becomes: a point P, is redundant if and only if there
are two points P, and P, such that the z-coordinate of P, is in between
that of P, and B, and P, lies above TPIJ The only points that do not
lie above any segment are those points on the lower convex hull. Therefore,
the redundant boundaries are those whose image under 7" is not on the lower
hull of the image point set By.
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Figure 7: Intersection of Half-Planes

Application 3: Least Median of Squares Re-
gression

Consider the following problem in statistics: find the “best” fit of a line to
a set of data points. The prevailing method of doing this is the least sum of
squares method, which minimizes the sum of the squares of the y-distance
between the fitted line and the data points. (The y-distance is called the
residual of the point.) The problem with this method is that the choice of
line may be perturbed by a single very bad data point. We’d like to find a
fitting line which is less sensitive to noise.

The least median of squares regression finds a line such that the median
of the squares of the residuals is as small as possible. Another way of defining
this problem is to find two parallel lines L; and Ly at minimum vertical
distance from each other, with half of the data points contained in the slab
they define. The regression line shall be the median axis of the strip.

L, and L, must each contain at least one point, or they could be moved
closer to each other (and were thus not at minimum distance). Furthermore,
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one of the pair of lines must contain fwo points, or the lines could be rotated
about their single points to reduce the distance between them. If L; is the
line containing the single point, the z-coordinate of the single point must lies
between those of L,’s points; if this is not the case, the lines could be rotated
closer together without losing any points between them.

Knowing this, we can construct a naive algorithm to find L; and L, by
inspecting every triple of points. Each time we do this, we must determine
whether there are ["T“ — 3] remaining points lie in the slab defined by the
two lines. The total time complexity is thus O(n?).

A refinement of the naive algorithm is to determine, for each pair of points
(p, q) a line [ parallel to [¢ and passing through some other point r such that
precisely [%11] points lie in the closed slab defined by pg and I. The time
complexity for this is O(n?).

If we map the set of points using 7', the above problem would become:
find the intersection point of two lines [,, [, such that the y-distance between
this point and the line I,, which is | 2f* — 3] above or below, is the shortest
among all such distances.

Initially, a “best distance” between lines is set to co. A vertical line is
then swept through the arrangement formed by the lines dual to the set of
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Dual  Arrangement

o’\"ﬂrﬁ.(’.i —Dufn 564-

points, to find a line and an intersection point of two other lines such that
the closed vertical segment from the point to the line intersects | ™| lines
and is as short as possible.

Pointers are maintained between each line intersection point and the line
which is [%52] lines above and below it. As we sweep over every intersection
of the duality lines, we can determine in constant time, using these point-
ers, whether the distance to the line | 252 | lines above is less than the best
distance till now. If so, the new distance becomes the best distance. The

complexity of this algorithm using 7" is O(n?logn).
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Conclusion

From the discussion above, we can conclude that the transformation 7 is very
useful when dealing with problems between lines and points which can be
determined by slope and above/below relation between them. If we consider
the image of a triangle AABC', the corresponding image under 7" will become
a non-convex and unbounded region which makes it more difficult to deal
with. Therefore, 7" is a BAD transformation for problems involving triangles
and polygons.

1 Topological sweep

Let H be a set of n lines in the plane. Assume that no three lines intersect at
a point and that none of the lines is vertical. Each line intersects n — 1 other
lines and thus is divided into n edges. The regions, edges and vertices parti-
tion the plane into a subdivision known as arrangement. If we use a vertical
sweep line, we need to sort n? intersection points. Whether it is possible to
sort the n? intersection points determined by n lines in o(n?logn) is still an
open problem. In topological sweep we compromise the straightness of the
sweepline to acheive better time and space complexities than vertical line
sweep. The idea of topological sweep is to use a curved line (topological line)
with some special properties to simulate a vertical line. Using a topological
line to sweep the arrangement, we need only O(n?) time and O(n) space.

A topological line ( cut ) is a monotonic line in y-direction which inter-
sects every other line exactly once. It is specified by a sequence of edges
(c1,¢2,,,,,Cn), €ach contains an intersection point of the cut with a different
line in the arrangement. Notice that a vertical sweep line runs from —oo
to oo in the y-direction and intersects each line in the arrangement exactly
once. A cut has the same properties by definition.

The sweep will be implemented by starting with leftmost cut which in-
cludes all semi-infinite edges and pushing it to the right till it becomes the
rightmost cut, in a series of elementary steps.

An elementary step is performed when the topological line sweeps past a
vertex of the arrangement. To keep the sweep line a topological line, we can
only past a vertex which is the intersection point of 2 consecutive edges in
the current cut. (Otherwise, it will intersect some line more than once.) Do
we always have such a vertex during the process of sweeping? That is, will
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the topological sweep get stuck?

Lemma 2 There always exist two consecutive edges of the cut with a com-
mon right endpoint, unless we are considering the rightmost cut.

13
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Figure 8: The right endpoint of an edge of the cut.

Proof: Assume that there are vertices still unprocessed but there is no pair
of cut edges c¢g, cxy1 which share a common right endpoint. Let ¢; be the
cut edge with the leftmost right endpoint. Let ¢; be the edge of the cut on /
which cuts ¢; at its right endpoint v;. ¢;s right endpoint (v;) is either to the
right or to the left of ¢;s right endpoint (v;). See figure 8.

If v; is to the right of v;, then the topological line cuts / more than once.
So, this can not be the case.

If v; is to the left of v;, then v, is the leftmost right endpoint. Contradic-
tion.

Therefore v; = v;. And the leftmost right endpoint is always an elemen-
tary step.

2 Data Structure

E[1:n] is the array of line equations:
E[i] = (a;, b;) if the i** line I; of arrangement H is y = a;x + b;.
HTU[1:n] is an array representing the upper horizon tree.
HTU[i] is a pair (\;, ;) of indices indicating the lines that
delimit the segment of /; in upper horizon tree to the left
and to the right respectively.
HTL[1:n] represents the lower horizon tree and is defined similarly.
I is a set of integers, represented as a stack. If 7 is in I, then ¢; and
ci+1 share a common right endpoint.
M[1:n] is an array holding the current sequence of indices that from
the lines mq, mo, , , , , m, of the cut.
N[1:n] is a list of pairs of indices indicating the lines delimiting each
edge of the cut.

The upper horizon tree of a cut is constructed by starting with the cut-
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Figure 9: Upper and Lower Horizon Trees

edges and extending them to the right. When two edges come together at an
intersection point, only the one of higher slope continues to the right. If the
segment of 1; in HTU is the leftmost on 1;, then \; = —1, if it is the rightmost
then p; = 0. See figure 9.

The Lower horizon tree is constructed similarly. The difference is that
when two edges intersect, only the one of lower slope continues to the right.

Given HT'U and HTL, the right endpoint of the edge on [; is identified by
the closer of HTU[4] and HTL[i].

3 The algorithm

Initialization:
1. Sort the lines of the arrangement by slope.

2. Find the leftmost and the rightmost intersection point of the lines. Let
the two points be (z;,y;) and (z,,y,)-

3. Create vertical lines ¢ = x; — 1,2 = x, + 1 as left boundary and right
boundary. Determine the intersection points of lines [y, ,,l, with the
boundaries.

4. Create upper horizon tree:
Insert [y, ,,l, in order to make a “hammock”:
Assume [y,,,1l; have been inserted. These lines form an upper bay as
shown in figure 10. To insert /.1, begin at its endpoint on the left
boundary. Walk in counter clockwise order around the bay till we find
the intersection point of l;,; with an edge.

5. Create lower horizon tree similarly by starting the travers at endpoints
on the right boundary.

15
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Figure 10: Creating a hammock.

6. Initialize N: Let HTU[i] = (-1, 7 ) and HTL[i] = (-1, s). If [, intersects
l; to the left of the intersection point of [, and /; then the right delimiting
line of e; is r. Otherwise, the right delimiting line of e; is s.

7. Initialize I by scanning N.

Step 1 takes O(nlogn) time. Step 2 could be done in linear time since the
leftmost and rightmost intersection points must be the intersection points of
two consective lines in the sorted order. Step 3,6,7 take linear time.

Now lets look at step 4. When inserting line /;, each edge on the bay will
be traversed once. There are O(n) edges on the bay and there are n lines to
be inserted. So we have O(n?). Could we find a tighter bound? Notice that
our lines are inserted in decreasing order of slopes. Edges on the bay that
fail to intersect with line /; will not appear on the new bay formed after we
insert line ;. Each line can only fail once, and therefore be traversed once.
So, HTU can be created in O(n) time.

By similar argument, step 5 also takes O(n). Hence, the initialization can
be done in O(n) after sorting of lines.

Elementary Step

After initialization, a series of elementary steps has to be executed. Notice
that when passing a valid vertex (stored in I), only the two cut edges involved
get changes, all other edges remain the same.

While I# A
1. Pop 7 from I

2. Swap M[i], M[i 4+ 1] /*lines are going to cross, after the elementary
step™/

3. N[i] A+ N[i +1].p
N[i + 1].A <= N[i].p /*the point of elementary step becomes the left
endpoint of the two new cut edges */
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Figure 11: Updating the Horizon Tree

4. Update HTU, HTL.

5. N[i].p < closer HTU[M(i)].p,HTL[M(i)].p
N[i + 1].p « closer HTU[M(i + 1)].p,HTL[M(i + 1)].p
/* find the new right endpoints */

6. If N[¢ + 1].p = M[i + 2| then push i + 1 into L.
If N[i].p = M[i — 1] then push ¢ — 1 into L.
/* push valid vertices formed after sweeping into I if there is any */

The steps 1,2,3,5,6 require just O(1) time. Lets take a look at step 5.
Update HTU

Assume that an elementary step is done after passing point F, which
is the common right endpoint of edge ¢; and c¢; 1. Let s; and s;;1 be the
left endpoints of ¢; and ¢;1; respectively. At first, HTU[M]i]] contains the
segment s;E and HTU[M[i + 1]] conatins the segment s; . P. After sweeping
over E, HTU[M[i]] should contain EP and HTU[M[i+1]] should contain EQ.
All other entries of HTU remain the same. Updating HTU[M[:]] takes only
constant time since we already have E and P. To update HTU[M[i + 1]], we
need to traverse the bay till line /5s;) hits the bay. See figure 11.

To see the time complexity, consider the following charging system: For
each edge traversed, we charge a unit cost to the node x corresponding to the
elementary step. If some where later, an elementary step at node z makes the
edge that charges x invisible from z, then we’ll transfer the one unit charge
to node z.

17



Figure 12: The elementary step at z creates edge zv, making x invisible from
d.

For example, consider the arrangement in figure 12. First there is an
elementary step at x, which modified the corresponding HTU entries from ¢t
and pT to xt and Tu respectively. So, each of edge a, b, ¢ and d charge one unit
to x. Next elementary step occurs at point y, which changes the involving
HTU entries from x¢ and 7y to y¢ and 7z. Finally, the elementary step at
point z changes HTU entries from Zu, §Z to Zu and Zv. The newly created
edge Zv makes edge d invisible from node x, the charge due to traversing d
is transferred from node x to node z.

Lemma 3 At the end of the algorithm each vertex is charged at most once
for every edge on an incident region for the HTU ( HTL ) computation.

Proof: A vertex v is charged only during the excecution of the elementary
step at v. It gets one charge for every edge traversed, each of which is
currently visible from it. It also gets one charge for each edge of the same
region that is seperated by the current edge from its old vertex. If sometime
later, an elementary step makes the edge invisible from v, then this edge
will not be in the same region with v and the charge of the edge will be
transferred to some other vertex. So, at the end of the algorithm, only the
edges that is in the incident region of v will charge v and each of them can
charge v at most once.

Lemma 4 Y ., | R |= O(n).
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Figure 13: Edge Charges

Proof: The idea of this proof is to charge each edge of the faces that touch
[ to vertices on [ and bound the number of charges of each vertex. Since the
number of vertices on [ is O(n), we have Y, | R |= O(c*n) = O(n).

Let I(e;) denotes the line that contains edge e;. Consider the following
charging system:

For each face F' adjacent to line [ and above [
For each edge e; arranged in counter clockwise order except the ones
touching [
If I(e;) intersects [ to the left of F’
then charge one cost to the intersection point of I(e; ;) with [
else charge one cost to the intersection point of I(e;;1) with [

For example, in figure 13, P; gets 2 charges, one from edge d, one from
edge r. P, gets 2 charges from ¢ and s. Ps gets one charge from b, etc.

Similarly, for each face below [, we charge the vertices on [ in the similar
way. For each vertex of [, the number of charges it gets is less than or equal
to 4 - 2 from edges of the face above [, and 2 from those below [. Therefore,
there are O(n) edges that get charges.

Now, let’s see the edges that don’t get any charge: For each vertex v on
[, there are two edges that have v as its right or left endpoint and don’t get
any charge (for example, edges a and g in the figure). Also, the edges that
lie on [ do not get any charge either. There are O(2n+n) = O(n) such edges
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altogether.
S0, Y g | R |=0(4n+2n+n) = O(n).

Lemma 5 Y 5.y | R *= O(n?).

Proof: 3., > ge | R |=0O(n?) and
O(n*) = Y pen | R |? from 4.

Theorem 1 The total cost of updating HTU (or HTL) through all the ele-
mentary steps is O(n?).

Proof: From lemma 3 we know that an edge e charges a vertex only if they
are in the same region and may do so only once. Consider region R in the
arrangement. Each of its vertices can get at most | R | charges, and there
are | R | vertices in R. So, there are at most | R |*> charges associate with R.
Summing this over all regions we get 3 pcy | R |*= O(n?) by lemma 5.

Hence all the topological sweep can be carried out in O(n?) time. As for
the space requirement, all the data structures maintained (6 arrays) are of
linear size. So, space requirement is O(n).
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