
6 Orbit Relative to the Sun. Crossing Times

We begin by studying the position of the orbit and ground track of an arbi-
trary satellite relative to the direction of the Sun. We then turn more specif-
ically to Sun-synchronous satellites for which this relative position provides
the very definition of their orbit.

6.1 Cycle with Respect to the Sun

6.1.1 Crossing Time

At a given time, it is useful to know the local time on the ground track,
i.e., the LMT, deduced in a straightforward manner from the UT once the
longitude of the place is given, using (4.49). The local mean time (LMT) on
the ground track at this given time is called the crossing time or local crossing
time.

To obtain the local apparent time (LAT), one must know the day of the
year to specify the equation of time ET. In all matters involving the position
of the Sun (elevation and azimuth) relative to a local frame, this is the time
that should be used.

The ground track of the satellite can be represented by giving the crossing
time. We have chosen to represent the LMT using colour on Colour Plates
IIb, IIIb and VII to XI.

For Sun-synchronous satellites such as MetOp-1, it is clear that the cross-
ing time (in the ascending or descending direction) depends only on the
latitude. At a given place (except near the poles), one crossing occurs during
the day, the other at night. For the HEO of the Ellipso Borealis satellite, the
stability of the crossing time also shows up clearly.

In the case of non-Sun-synchronous satellites such as Meteor-3-07, the
time difference shows up through a shift in the time from one revolution to
the next. For a low-inclination satellite such as Megha-Tropiques, we see that,
if the ascending node crossing occurs at 06:00, the northern hemisphere will
be viewed during the day, and the southern hemisphere during the night.
After a few days the crossing time at the equator will have changed.
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Figure 6.1. Nodal precession in the ecliptic. In the plane of the ecliptic, the centre
of the Sun has been marked C, and the centre of the Earth O at two given times.
The direction Ox is fixed relative to the stars. A satellite orbits the Earth. Its
ascending node N is shown by a small black dot , whilst the descending node is
shown by a small circle. The line segment joining the two nodes is the projection
of the line of nodes on the ecliptic, not on the satellite orbit

6.1.2 Calculating the Cycle CS

We consider the orbit of the Earth around the Sun, treating it as circular,
since in this calculation of the cycle, we identify LAT and LMT. In Fig. 6.1,
the centre of the Sun, and of the Earth’s orbit, is denoted by C, whilst the
centre of the Earth is O. The ascending node of a satellite in orbit around
the Earth is denoted by N . The dihedral angle between the meridian plane
of the Earth containing N and that containing C gives H , the hour angle of
the ascending node. This angle is represented in Fig. 6.1 by H = (OC, ON).
The diagram is schematic. To be precise, N should represent the projection
of the ascending node on the plane of the ecliptic. However, this will not
affect the following argument.

At the time t = t0, the direction CO defines an axis Ox, with fixed
direction in the Galilean frame !. The hour angle of N is thus written H(t0) =
H0. At another time t = t1, the plane of the satellite orbit will have changed
due to the phenomenon of nodal precession by an angle Ω relative to the
frame !, i.e., relative to the direction Ox. The hour angle of N is then given
by
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Figure 6.2. Variation of the cycle CS relative to the Sun as a function of the
inclination for a satellite at altitude h = 800 km. The cycle CS is given in days on
the left ordinate, and the nodal precession rate P is given in rev/yr on the right
ordinate

H(t1) = H1 = H0 + Ω − β ,

where β is the angle through which the Earth has moved on its orbit around
the Sun, viz.,

β =
(
CO(t0), CO(t1)

)
.

This angle β is equal to the difference in ecliptic longitude l of the Sun at
the two given times. Hence,

∆H = H1 − H0 = Ω − β ,

which represents the variation of the orbital plane relative to the direction of
the Sun.

Setting m = t1 − t0 for the time interval, the angles can be written in
terms of the angular speeds:

Ω = mΩ̇ , β = mΩ̇S ,

whence,

∆H = m(Ω̇ − Ω̇S) . (6.1)

The time interval m0 needed for the hour angle of the ascending node to vary
by 24 hr, or one round trip, is called the cycle relative to the Sun. Hence,
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H(t + m0) = H(t) [2π] ,

which implies that

m0 =
2π

Ω̇ − Ω̇S

.

Bringing in the nodal precession rate P in round trips per year as defined by
(4.30) and using (4.28), m0 becomes

m0 = −JM
Ntro

1 − P
.

The cycle relative to the Sun is usually given in days and we shall denote it
by CS (with C for ‘cycle’ and S for ‘Sun’). Since m0 is expressed in SI units,
i.e., in seconds, we obtain CS from the very simple expression

CS =
Ntro

P − 1
. (6.2)

The quantity P can be expressed in terms of the constant kh defined by
(4.63). This rate P is given by

P = −kh

(
R

a

)7/2

cos i . (6.3)

One can check that for a Sun-synchronous satellite we do indeed have P = 1.
In this way we obtain the cycle relative to the Sun as a function of the

orbital characteristics, taking care to note the signs:

CS = CS(a, i) = − Ntro

kh

(
R

a

)7/2

cos i + 1

, (6.4)

or with approximate numerical values (CS in days),

CS = − 365.25

10.11
(

R

a

)7/2

cos i + 1

. (6.5)

The cycle relative to the Sun, CS = CS(a, i), is a very important feature of
any satellite, but especially Earth-observation satellites.

6.1.3 Cycle CS and Orbital Characteristics

Cycle CS as a Function of Altitude and Inclination

The cycle CS is a function of a and i. Figure 6.2 shows the variation CS(i) for
a fixed altitude h = 800 km. The cycle CS(i) is given in days, with the sign
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indicating the direction of rotation. We have also plotted the nodal precession
P (i) in rev/yr, which is a sinusoidal curve, and P − 1 which determines
the vertical asymptote of CS(i) by its intersection with the horizontal axis
through the origin.

For the altitude represented here, typical of LEO satellites, we see that the
cycle remains in the vicinity of two months (CS ∼ −60 day) for inclinations
below 45◦. When i increases, the length of the cycle also increases. Above
the Sun-synchronous inclination, the cycle decreases (but there are very few
satellites in this configuration).

Specific Cases of the Cycle CS

We note here certain specific values of the cycle CS for different orbits.

• Polar Satellites. We see immediately from (6.4) or (6.5) that, if the
satellite is strictly polar, CS = −365.25 day. The cycle is annual. One
year goes by before we return to the same orbital configuration relative
to the Sun, since the plane of the orbit does not rotate with respect to
!. The negative value of CS shows that the line of nodes moves in the
retrograde direction relative to !T.

• Sun-Synchronous Satellites. Equation (6.2) shows that if Ω̇ = Ω̇S,
the cycle is infinite. This happens for Sun-synchronous satellites and we
may indeed treat CS as infinite, since after a very great number of days,
the angle H will not have changed. For Sun-synchronous satellites, the
hour angle of the ascending node, and hence the crossing time1 of the
satellite at the ascending node, is constant. For a given altitude, the cycle
CS is negative provided that i is less than the Sun-synchronous inclination
given by (4.68). Beyond this value, CS is positive.

• Shortest Cycle. The smallest value for the cycle is given by the minimum
of |CS(a, i)|. According to (6.5), it is obtained for i = 0 and a = R and
the value is

|CS|min =
Ntro

kh + 1
=

365.25
11.11

= 32.9 day . (6.6)

The cycle relative to the Sun CS can never be less than 33 days.

1 The time related to the hour angle is LAT. A Sun-synchronous satellite transits
at the ascending node at the same LMT. If there is no difference between LAT
and LMT here, it is because we have used a simplified scenario for the Earth
orbit. However, for the calculation of the cycle CS, this could not be otherwise:
we only want to know how many days it will be before the next crossing (to
within a few minutes), whatever time of year it is. To treat an elliptical Earth
orbit, we would have to specify the day we choose to begin the cycle.
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Figure 6.3. Cycle relative to the Sun for various satellites. The time given is the
crossing time at the first ascending node
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Example 6.1. Calculate the cycle relative to the Sun for the satellites Meteor-3-07,
TOPEX/Poseidon, ICESat, ERBS and UARS.

These satellites have near-circular orbits. For Meteor-3-07, we have h = 1 194 km
and i = 82.56◦. Using (6.5), we obtain

CS = − 365.25

10.11

„
6378
7572

«7/2

cos(82.56) + 1

= − 365.25
10.11 × 0.5477 × 0.1295 + 1

= − 365.25
0.7169 + 1

= −365.25
1.7169

= −212.73 ,

which gives a cycle of 213 days (advance of crossing time). In this case it is easier
to use (6.2) because the value of P has already been calculated in Example 4.2:

P = −0.716 =⇒ CS =
365.25
P − 1

= −212.73 .

For TOPEX/Poseidon, with h = 1336 km and i = 66.04◦, we obtain P = −2.107,

which gives a cycle CS = −117.47, or 117 days (advance of crossing time).
ICESat is at low altitude, h = 592 km, with inclination i = 94◦ between the

polar inclination for which the cycle is one year (CS = −365.25) and the Sun-

synchronous inclination (iHS = 97.8◦ at this altitude) for which the cycle is infinite.
The calculation gives P = 0.515, whence CS = −752.7, which corresponds to a very

long cycle of more than two years.
ERBS and UARS, both launched by the space shuttle, have the same inclination

and the same altitude to within a few kilometres. The calculation gives P = −3.986

for ERBS, whence CS = −73.2, and P = −4.090 for UARS, whence CS = −72.0.
One often reads for these satellites that their cycle relative to the Sun is 36 days.

However, this is the half-cycle.

Nodal Precession and Cycle CS

In order to visualise the nodal precession and bring out the significance of
the cycle CS as clearly as possible, let us return to the graph in Fig. 6.1 and
apply it to a few satellites in the following example.

Example 6.2. Visualising the cycle CS for various satellites in prograde, polar,
retrograde and Sun-synchronous orbit.

Figure 6.3 shows the position of the Earth on its orbit around the Sun and the po-
sition of the nodes (ascending in black, descending in white) of the satellite orbit.

For the two Sun-synchronous satellites, SPOT-4 and Radarsat-1, it is clear that the

shift of the orbital plane compensates the Earth’s annual motion. For Radarsat-1,
the normal to the orbit lies in the meridian plane passing through the Sun.

For a strictly polar satellite like Nova-1 or Corot, the orbital plane is fixed in $.
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For Corot, which has this inertial orbit, stars are observed perpendicularly to the
orbit, six months in one direction, and six months in the opposite direction, in such

a way as to avoid viewing the Sun.

Let us consider now several retrograde (negative) cycles, one very short, for TRMM
(prograde orbit), one very long, for LAGEOS-1 (retrograde orbit). The satellite

GEOS-3 (retrograde orbit) provides a rare case of precession in the prograde direc-

tion.

6.1.4 Cycle and Ascending Node Crossing Time

Knowing the initial conditions, it is a simple matter to obtain the crossing
times at the ascending node at an arbitrary date, provided that we also know
the cycle relative to the Sun CS. Indeed, since the crossing time increases or
decreases by 24 hours every CS days, it is easy to calculate the increase or
decrease per day. Here is an example of this calculation.

Example 6.3. Calculate the dates during the year 1999 for which the LMT of the
ascending node crossing is the same for the satellites TRMM and Resurs-O1-4.

In order to study the Earth’s radiation budget, TRMM and Resurs-O1-4 were
equipped with the CERES and ScaRaB instruments, respectively. A joint mea-
surement campaign was organised in January and February 1999. The aim was to
compare the measurements obtained for the same region viewed by the two instru-
ments at roughly the same times (with a leeway of ±15 min). The Sun-synchronous
satellite Resurs-O1-4 crosses the ascending node at 22:20 LMT. The initial condi-
tions for TRMM are given by an ascending node crossing (tAN given in month day
hr min s):

tAN = 1999 01 21 20:43:47 (UT) , λ = +5.157◦ .

We calculate the value of τAN, LMT crossing time:

τAN = tAN +
λ
15

= 20:43:47 + 00:20:38 = 21:04:25 .

In Example 4.1, we found P = −6.89, which gives the cycle

CS = −365.25
7.89

= −46.29 day .

We thus obtain the daily drift as

1440
CS

= − 1440
46.42

= −31.02 min .

The difference between τAN = 21:04 on 21 January 1999 (J = 21) and the chosen
time of 22:20 is 76 min. The passage of TRMM at the chosen time thus occurs with
a shift of −76/31 = −2.45 days, or 2 days earlier, i.e., on 19 January 1999 (J = 19).
The ascending node crossing around 22:20 thus occurs on the days Jk given by

Jk = 19 + k|CS| ,
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where the integer k takes 8 values over one year (since |365/CS| = 7.9). Here, with
J0 = 19 and the values k = 0, . . . , 7, we obtain all the dates required for the year

1999. If we need to know the dates of passage of TRMM at 22:20 at the descending

node, we merely add a half-cycle to the values of Jk, which gives dates shifted by
23 days with respect to the first series.

6.2 Crossing Time for a Sun-Synchronous Satellite

6.2.1 Passage at a Given Latitude

The time in LMT at which a Sun-synchronous satellite crosses the ascend-
ing node is constant in time (provided that the orbit is suitably maintained,
of course), because in the frame !, the nodal precession balances the mo-
tion of the Earth’s axis about the Sun. This is the defining feature of Sun-
synchronous orbits, brought out in the next example.

Example 6.4. Calculate the crossing time at two consecutive ascending nodes for
a Sun-synchronous satellite.

Consider the first crossing at the ascending node at longitude λ1 and time t = t0
in UT. Let τ1 be the corresponding LMT, so that, according to (4.50),

τ1 = t0 +
λ1

15
,

with time in hours and longitude in degrees.
The next passage (nodal period T ) will occur at longitude λ2 and at time

t = t0 + T . The corresponding LMT at the second crossing, denoted by τ2, is
therefore

τ2 = t0 + T +
λ2

15
.

The longitude λ2 is obtained simply by considering the equatorial shift given by
(5.22):

λ2 = λ1 +∆Eλ = λ1 − 15T .

We thus have

τ2 = t0 + T +
λ1 − 15T

15
= t0 +

λ1

15
= τ1 ,

which shows that the LMT remains constant.
Since the mean motion is constant, the time taken to reach a given latitude

from the equator will be the same for each revolution. We may thus say that, for a
Sun-synchronous satellite:

• the LMT crossing time at a given latitude is constant,
• the LMT crossing time at a given meridian depends only on the latitude.
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Figure 6.4. Intersection of the ground track of a Sun-synchronous satellite orbit
(ascending node N) with a given meridian plane, defined by the point Q on the
equator

Establishing the Relation Between φ and ∆τ

The relation between τ (the crossing time at the meridian in LMT) and φ
(latitude) is found using the equations for the ground track and calculat-
ing the longitude corresponding to each latitude, whereupon the time can
be found in LMT. But there is a simpler way to obtain this relation from
geometric considerations.

Consider the Earth in the Galilean frame, as shown in Fig. 6.4. At a
given time, let A be the intersection of the meridian plane of the direction
of the Sun with the Earth’s equator. We consider the orbital plane of a Sun-
synchronous satellite. Its ground track cuts the equator at N , the projection
of the ascending node on the Earth’s surface. This plane makes an angle
i = iHS with the equatorial plane (this is indeed i since we are working in !,
rather than the apparent inclination).

The angle HAN = (OA, ON) remains constant by the Sun-synchronicity
condition, since HAN measures the hour angle, and hence the time in LMT,
of the ascending node.

Consider a meridian defined by a point Q on the equator. The ground
track of the orbit cuts this meridian at a point P of latitude φ. The hour
angle of P and of Q is H = (OA, OQ). We define

∆H = H − HAN = (ON , OQ) .
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This angle thus measures the difference in hour angle between N and P (or
Q).

In the spherical triangle PQN , with a right-angle at Q, we know the
side PQ, (OQ, OP ) = φ and the angle at N , representing the inclination
of the orbital plane. We obtain ∆H from the standard relation of spherical
trigonometry, corresponding to the relation (ST XII), identifying PQN with
CAB :

sin∆H =
tanφ

tan iHS
. (6.7)

Naturally, this formula is valid whether the satellite orbit is prograde or retro-
grade. In the prograde case, tanN and sin∆H are positive. In the retrograde
case, as here, tan N = tan(π − iHS) and ∆H are negative.

Let τAN and τ be the local crossing times at the ascending node and P ,
respectively. Then,

∆τ = τ − τAN =
1
K
∆H , (6.8)

where K is a constant depending on the units, so that if time is in hours and
angles in degrees, then K = 15 (since 1 hr corresponds to 15◦).

We thus have the following relations between the latitude φ and the dif-
ference in crossing times ∆τ :

∆τ =
1
K

arcsin
(

tanφ

tan iHS

)
, (6.9)

or

φ = arctan (tan iHS sin K∆τ) . (6.10)

Crossing Time at an Arbitrary Latitude

Let τAN and τDN be the crossing times at the ascending and descending nodes,
respectively. Then,

τAN = 12 + τDN [mod 24] .

For ∆τ , we take the value defined by (6.9), i.e., between −6 hr and +6 hr.
We thereby obtain the two daily crossing times τ(A) and τ(D) in the ascending
and descending parts of the ground track, respectively:

{
τ(A) = τAN +∆τ ,
τ(D) = τDN −∆τ = τAN + 12 −∆τ .

(6.11)

The time difference δ(φ) between two crossings, one in the ascending part
and the other in the descending part, at a given latitude is given by
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δ(φ) = τ(A) − τ(D) = 12 + 2∆τ . (6.12)

We now give some examples of this calculation.

Example 6.5. Calculate the LMT crossing time at latitude 15◦N for a Sun-
synchronous satellite at altitude h = 800 km, when the crossing time at the as-
cending node is 00:00 LMT.

We have seen that the inclination of the satellite is i = 98.6◦ for this altitude.
Equation (6.9) yields

∆τ =
1
K

arcsin

„
tan 15

tan 98.6

«
=

1
15

arcsin(−0.04052) =
−2.32

15
hr = −9.3 min .

We thus take ∆τ = −9 min, and inserting τAN = 00:00 in (6.11), this implies that

τ(A) = τAN +∆τ = 24 h 0 min −9 min = 23:51 ,

τ(D) = τAN + 12 −∆τ = 12 h 0 min +9 min = 12:09 .

The two passages at this latitude thus occur at 23:51 LMT and 12:09 LMT, as can

be checked on the upper part of Fig. 6.5.

Example 6.6. Calculate the LMT crossing time at latitude 50◦ for the Sun-
synchronous satellite SPOT-5, which transits the ascending node at 22:30 LMT.

For this satellite and latitude 50◦, (6.9) gives ∆τ = −42 min. With (6.11) and
τAN = 22:30, we will thus have

φ = 50◦N −→ 21:48 and 11:12 ,

φ = 50◦S −→ 23:12 and 09:48 .

The daytime crossing will occur, in the northern hemisphere, well after 10:30, in

fact, close to midday, with good solar lighting conditions. On the other hand, in
the southern hemisphere, the crossing occurs rather early in the morning and the

lighting conditions are not so good. The choice of node, e.g., descending at 10:30
rather than ascending) favours observation of the high latitudes of one hemisphere

at the expense of the other. We shall return to this point.

6.2.2 Choice of Local Time at the Ascending Node

Restrictions on the Choice of Crossing Time

The local crossing time at the ascending node is determined by the aims of
the mission. It is chosen as a compromise between various constraints which
we shall number here from C1 to C6 (where C stands for ‘constraint’):
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(C1) to obtain the best solar lighting conditions for the regions observed,
(C2) to reduce the risks of antisolar or specular reflection,2
(C3) to take meteorological factors into account, e.g., a certain region may

be under cloud cover every day in the middle of the morning,
(C4) to take into account the crossing time of another Sun-synchronous satel-

lite carrying out the same type of mission,
(C5) to limit periods of solar eclipse,
(C6) to limit thermal variations during each revolution.

We shall now discuss the various times chosen according to the type of mis-
sion.

Different Choices Depending on the Constraints

Satellites with High Energy Requirements. It is important to avoid long
breaks in the power supply when satellites carry a radar or other instrument
with high energy requirements. The solar panels must be almost continuously
illuminated. To achieve this, the best-suited orbit has normal in the meridian
plane (the normal at the centre of the orbit and the Earth–Sun direction are
coplanar), because eclipses are then kept to a minimum (see Sect. 6.3). This
Sun-synchronous orbit is such that τAN = 06:00 or 18:00 and it is called the
dawn–dusk orbit.

Radarsat-1 is such a satellite (τAN = 18:00), as can be seen from Fig. 6.3:
the constraint (C5) is given precedence. This orbit has been chosen for the
future satellite Radarsat-2 (τAN = 06:00), for the Indian RISat-1 (Radar
Imaging Satellite), and the Argentinian SAOCOM-1A. The same goes for
oceanographic satellites using scatterometers, i.e., instruments measuring
wind speeds at the sea surface, such as QuikScat (τAN = 17:55) and Coriolis
(τAN = 18:00). It is also the orbit of the satellite Odin (τAN = 18:00).

This orbit is planned for the European projects GOCE, at very low al-
titude (h $ 250 km), Aeolus-ADM (Atmospheric Dynamics Mission) and
WALES, at low altitude (h $ 400 km), and SMOS (h = 755 km). Other
planned radar satellites will also be in dawn–dusk orbits: TerraSAR-X1 and
TerraSAR-L1, and the COSMO-SkyMed constellation.

Satellites with Orbits Requiring a Specific Configuration Relative
to the Sun. Solar observing satellites, if placed near the Earth, must gain
2 Specular reflection occurs when the normal at the point P , viewed by the satellite,

and the two directions P–satellite and P–Sun lie in the same plane to within
a few degrees and, in addition, the normal is close to the bisector of these two
directions. In this case, the satellite sensor may be blinded by the Sun, with
the Earth’s surface playing the role of mirror. This kind of reflection can be
very efficient, in the case of a calm sea, for example, or quite imperceptible. All
intermediate cases are possible, too. Antisolar reflection can occur when the Sun,
the satellite and the point P being viewed are collinear. This can only happen
between the two tropics.
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Figure 6.6. Drift of the ascending node crossing time τAN for Sun-synchronous
meteorological satellites in the POES programme. The time τAN is given for the
operating period of each satellite. From NOAA data

maximum advantage of their view of the day star. In its response to the
constraint (C5), only the dawn–dusk orbit can allow such continuous obser-
vation. The satellite TRACE (τAN = 06:00) is on this type of orbit, also
expected for Picard.

Satellites Subject to Limited Temperature Variation. It is of the ut-
most importance for satellites carrying out fundamental physics experiments
on the equivalence principle that temperature variations should be kept to
a minimum. The dawn–dusk orbit satisfies constraint (C6). This will be the
orbit for µSCOPE and STEP.

Oceanographic Satellites. When they are not specialised in altimetry,
oceanographic satellites are Sun-synchronous. If they do not carry scatterom-
eters, the equatorial crossing is often chosen around midday and midnight, to
satisfy constraint (C1): τAN = 00:00 for Oceansat-1, τAN = 00:20 for SeaStar,
and τN around midday for Ocean-1 and -2 (also called HY-1 and -2).

Meteorological Satellites. For these satellites which observe meteorologi-
cal phenomena, the crossing time is not critical. The ascending node crossing
times of the various satellites are therefore rather varied, as can be seen from
Table 6.1. Moreover, in most cases, these satellites are not kept at their sta-
tion, the crossing time being allowed to drift. This drift is quadratic in time,
as shown by (4.77). For the NOAA satellites, the drift, which can become
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Table 6.1. Ascending node crossing time τAN for various Sun-synchronous satel-
lites. The value of τAN is that of the first orbits for satellites actually launched or
the planned value for satellites still under development. Meteorological satellites.
For NOAA satellites, see also Fig. 6.6

Sun-synchronous satellite τAN

NOAA-2 20:30
NOAA-3 20:30
NOAA-4 20:30
NOAA-5 20:30
NOAA-17 22:20
FY-1A 15:30
FY-1B 19:50
FY-1C 18:20
FY-1D 20:15
FY-3A 21:30
FY-3B 21:30
Meteor-3M-1 09:15
MetOp-1 21:30
MetOp-2 21:30
MetOp-3 21:30

Sun-synchronous satellite τAN

Nimbus-6 11:45
Nimbus-7 23:50
HCMM 14:00
DMSP-5D2 F-8 06:15
DMSP-5D2 F-10 19:30
DMSP-5D2 F-11 18:11
DMSP-5D2 F-12 21:22
DMSP-5D2 F-13 17:42
DMSP-5D2 F-14 20:29
DMSP-5D3 F-15 21:15
DMSP-5D3 F-16 19:58
NPP 22:30
NPOESS-1, -4 21:30
NPOESS-2, -5 13:30
NPOESS-3, -6 17:30

quite significant, is shown in Fig. 6.6. The same goes for the DMSP satel-
lites. For example, for the satellite DMSP-5D2 F-10, the drift was 47 min
during 1991.

For the NOAA satellites from TIROS-N and NOAA-6 onwards, the con-
straint (C4) has been taken into account: for a given region, and with solar
illumination, one satellite overflies in the morning and the other in the after-
noon.

Satellites for Remote-Sensing of Earth Resources. A satellite may
carry instruments pertaining to different types of mission. For example, the
Russian satellite Resurs-O1-4 carries the Russian imaging device MSU for
remote-sensing and the French instrument ScaRaB to study the Earth radia-
tion budget (which can be classified as meteorological). But it is the remote-
sensing aspect that determined the choice of crossing time.

As already mentioned, satellites of this type are Sun-synchronous, with
very few exceptions. For satellites devoted to remote sensing of Earth re-
sources, constraints (C1) and (C2) are given priority. The local crossing time
at the node must be close to midday for (C1), but not too close because of
(C2). Moreover, considering the curve φ(∆τ), a shift away from midday yields
good solar lighting conditions for high latitudes. Mission designers generally
consider that the optimal time slot for viewing lasts for three hours centered
on noon, i.e., from 10:30 to 13:30 LMT for the crossing at the relevant place,
although these limits do not have to be strictly observed.
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Table 6.2. Ascending node crossing time τAN for various Sun-synchronous satel-
lites. The value of τAN is that of the first orbits for satellites actually launched or the
planned value for satellites still under development. Remote-sensing and resource
management satellites

Sun-synchronous satellite τAN

Landsat-1 21:30
Landsat-2 21:30
Landsat-3 21:30
Landsat-4 21:45
Landsat-5 21:45
Landsat-7 22:00
EO-1 22:01
SAC-C 22:15
SPOT-1 22:30
SPOT-2 22:30
SPOT-3 22:15
SPOT-4 22:30
SPOT-5 22:30
Hélios-1A 13:17
Hélios-1B 13:16
Pléiades-1 22:15
Pléiades-2 22:15
ERS-1 22:15
ERS-2 22:30
Envisat 22:00
EarthCARE 22:30
MOS-1 22:25
MOS-1B 22:30
JERS-1 22:30
ADEOS-1 22:30
ADEOS-2 22:30
ALOS 22:30
EROS-A1 21:45
Kompsat-1 22:50
Resource21-01 22:30
Resource21-02 22:30
Resurs-O1-4 22:15
TechSat-1B 22:15
FaSat-2 22:20

Sun-synchronous satellite τAN

IRS-1A 22:25
IRS-1B 22:25
IRS-1C 22:30
IRS-1D 22:30
IRS-P2 22:40
IRS-P3 22:30
IRS-P6 22:30
TES 22:30
Cartosat-1 22:30
Cartosat-2 22:30
CBERS-1 22:30
CBERS-2 22:30
TMSat 22:20
OrbView-3 22:30
OrbView-4 22:30
QuickBird-2 22:20
Ikonos-2 22:30
EarlyBird-1 22:30
QuikTOMS 22:30
BIRD 22:30
Terra (EOS-AM-1) 22:30
Aqua (EOS-PM-1) 13:30
CloudSat 13:31
Calipso 13:31
PARASOL 13:33
Aura (EOS-Chem-1) 13:38
OCO 13:15
Rocsat-2 21:45
Tan Suo-1 23:00
Diamant-1 23:30
Diamant-2 23:30
RapidEye-1 12:00
NEMO 10:30
SSR-1/ss 09:30
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Figure 6.7. Complementarity of Terra and Aqua. LMT crossing time as a function
of latitude for the Sun-synchronous EOS satellites. For various values of the LMT
ascending node crossing time: 10:30 and 22:30 for EOS-AM-1, 01:30 and 13:30 for
EOS-PM-1. The continuous curve shows the graph for values corresponding to the
crossing time retained in the final project, i.e., 22:30 for EOS-AM-1 and 13:30 for
EOS-PM-1 (Terra and Aqua, respectively)

Figure 6.8. A-Train mission spacing (with notation of descending node crossing
time). Credit: NASA, ESMO Project
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One can thus envisage the following cases, calculated for a satellite at
altitude h = 800 km:

• Equatorial crossing at the lower time limit. If the ascending node is at
10:30, τAN = 10:30, latitudes viewed between ∆τ = 0 and ∆τ = 03:00 are
obtained using (6.10). With K = 15, the calculation for ∆τ = 3 gives

φ = arctan
[
(tan 98.6)× (tan 45)

]
= −78◦ ,

which corresponds to latitudes lying between 0◦ (at 10:30) and 78◦S (at
13:30). If the descending node occurs at 10:30, τAN = 22:30, latitudes
viewed during this time interval lie between 0◦ (at 10:30) and 78◦N (at
13:30).

• Equatorial crossing at the upper time limit. If the ascending node is at
13:30, τAN = 13:30, latitudes viewed between ∆τ = 0 and ∆τ = −3:00
then lie between 78◦N (at 10:30) and 0◦ (at 13:30). If the descending node
is at 13:30, τAN = 01:30, latitudes lie between 78◦S (at 10:30) and 0◦ (at
13:30).

• Equatorial crossing at midday. If the ascending node occurs at 12:00,
τAN = 12:00, latitudes are viewed between ∆τ = −1:30 and ∆τ = 1:30.
The calculation for ∆τ = 1.5 gives

φ = arctan
[
(tan 98.6)× (tan 22.5)

]
= −68◦ ,

which corresponds to latitudes lying between 68◦N (at 10:30) and 68◦S
(at 13:30). If the descending node is at 12:00, τAN = 00:00, latitudes lie
between 68◦S (at 10:30) and 68◦N (at 13:30).

• Choice of time. As the midday crossing time at the node is not chosen,
to avoid specular reflection, the choice of the equatorial crossing time at
10:30 or 13:30 is guided by the choice between the northern and southern
hemispheres. Naturally, the northern hemisphere is generally favoured,
since it encompasses more visible land mass than the other hemisphere,
but also because it comprises more nations financing satellite launches.

For satellites observing Earth resources, the choice is between the two equa-
torial crossing times:

τAN = 22:30 =⇒ descending node 10:30 ,

τAN = 13:30 =⇒ ascending node 13:30 .

The graphs in Fig. 6.7 clearly explain these choices for the satellites EOS-
AM-1 and EOS-PM-1 (renamed Terra and Aqua, respectively).

The A-Train refers to the constellation of satellites that plan to fly to-
gether with EOS Aqua to enable coordinated science observation. These satel-
lites have an afternoon crossing time close to the local mean time of the lead
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satellite, Aqua, which is 1:30 p.m. This explains the name: A is short for
‘afternoon’ and ‘Train’ is self-explanatory (see Fig. 6.8).

The EROS satellites should form a constellation of six satellites for which
the choice of crossing times corresponds to the same strategy. The crossing
times retained for this project are τAN = 22:00, 22:30, and 23:00 for EROS-
B1, -B2 and -B3, and τAN = 13:00, 13:30, and 14:00 for EROS-B4, B-5 and
-B6.

The choice between the two possibilities τAN = 22:30 or τAN = 13:30 is
generally decided in response to the constraint (C3). In this way, one avoids
the rather systematic formation of cloud cover at certain times of the day in
certain well-defined regions. For example, the descending node was chosen at
the end of the morning for the seven satellites in the Landsat series and the
five SPOT satellites.

Table 6.2 shows the supremacy of the 22:30 crossing time for the ascending
node with this type of satellite.

We may lay stakes that, if Australia sends up a satellite to study Earth
resources across its territory, the ascending node will be at 10:30! Remaining
for a moment in the southern hemisphere, note that Brazil had a project for a
Sun-synchronous satellite, SSR-1 (here called SSR-1/ss), with ascending node
at 09:30. This project has been transformed into another, for surveillance of
the Amazon, requiring an equatorial orbit, although the satellite will still be
called SSR-1.

The crossing times of remote-sensing satellites are generally maintained
quite accurately, to within a few minutes.

Other Types of Mission. Other types of mission not mentioned above use
Sun-synchronous orbits. Here are a few examples of ascending node crossing
times: τAN = 12:00 for TOMS-EP, τAN = 14:00 for ARGOS, τAN = 22:50 for
ACRIMSAT. Note that τAN = 08:40 was planned for TERRIERS.

6.3 Appendix: Duration of Solar Eclipse

The satellite undergoes solar eclipse when the Sun is hidden from it by the
Earth. During the eclipse, the satellite cools down and its solar panels no
longer produce electricity. For some satellites, an eclipse is a critical phe-
nomenon, and in this case, the Earth–Sun–satellite geometry is examined in
detail. We shall discuss here two types of orbit: dawn–dusk LEO and GEO.

6.3.1 Dawn–Dusk LEO Orbit

Consider a Sun-synchronous satellite in low circular orbit. If the LMT crossing
time at the equator is around midday and midnight, the satellite is illumi-
nated by the Sun for roughly a little more than half the period. The rest of
the time, it moves in the shadow of the Earth.
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Figure 6.9. Schematic diagram of the Earth and the orbit of a Sun-synchronous
satellite in a dawn–dusk configuration. Left : Meridian plane. Intersection of orbit
with this plane: Si and S′

i. Right : Plane perpendicular to the meridian plane and
perpendicular to the direction of the Sun. The projection of the circular orbit on
this plane is an ellipse

On the other hand, if the equatorial crossing times are around 06:00 and
18:00, the satellite is rarely in the Earth’s shadow. This Sun-synchronous
LEO orbit, with τAN = 06:00 or 18:00 is called a dawn–dusk orbit, as we
have seen. In this configuration, which limits the length of the eclipse, one
finds satellites that cannot tolerate long breaks in their power supply, or are
sensitive to the sudden temperature change between day and night.

Eclipse Conditions

A Sun-synchronous satellite at altitude h (reduced distance η) has inclination
i = iHS given by (4.69). We set

j = iHS − π

2
. (6.13)

Figure 6.9 (left) shows the Earth (polar axis Oz, radius R) in the meridian
plane containing the Sun (hour angle zero). Light rays from the Sun make
an angle δ (declination) with the equatorial plane. The satellite orbit, which
is perpendicular to the meridian plane because it is a dawn–dusk orbit, cuts
this plane at Si and S′

i. One of the two points is illuminated, e.g., S′
i, and so

is the other if it is not in the Earth’s shadow, i.e., if OSi > OA, where the
point A is the intersection of the edge of the Earth’s shadow with the plane
of the orbit, in the meridian plane (the plane of the figure). In the example
given in the figure, if the satellite is in position S1, it undergoes solar eclipse,
whereas if it is at S2, there is no eclipse.
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We have immediately

OS = R + h = a , OA =
R

cos(δ + j)
.

The condition for there to be no eclipse is therefore

K > H (for a given declination) (6.14)

with: H = 1/η , K = cos(δ + j) .

The strongest constraint obtains at the two solstices, with |δ| = ε = 23.44◦.
In these conditions, when η is varied between 1 and 1.9367, the maximal value
for a Sun-synchronous satellite, given by (4.72), the condition (K > H) is
satisfied when η lies between 1.2181 and 1.5221. Using the altitude, we obtain

no eclipse ⇐⇒ 1 391 < h < 3 330 km .

If the altitude of the satellite is less than 1 391 km, there is eclipse, because
the satellite is not high enough to escape from the Earth’s shadow (at least,
at the solstice). If the altitude is greater than 3 330 km, the orbit is close
enough to the equatorial plane (i tends to 180◦) and the ecliptic to mean
that, despite its high altitude, the satellite moves into the shadow.

These observations are rather theoretical. In practice, most satellites in
dawn–dusk orbit are equipped with radar – with the constraint (C5) consid-
ered earlier – and an altitude less than 800 km is thus the norm. The eclipse
phenomenon is then inevitable at some point during the year.

Calculating the Duration of Eclipse

We calculate the duration of eclipse when the satellite has altitude less than
the limiting value h = 1 391 km. Looking along the direction of the Sun’s
rays, the Earth appears as a circle (C1) of radius R and the dawn–dusk
orbit appears as an ellipse (C2) with semi-major axis a, the actual radius
of the circular orbit, and semi-minor axis b, the projection of a on a plane
perpendicular to the direction of the Sun. Figure 6.9 (right) shows, for (C1),
R = OB, and for (C2), a = OT , b = OS1, so that

a = R + h , b = a cos(δ + j) = aK .

With the axes (O, x, y), the equations defining curves (C1) and (C2) can be
written

(C1) : x2 + y2 = R2 , (C2) : x2 +
y2

K2
= a2 .

We calculate the intersection (x1, y1) of these two curves, which yields
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Figure 6.10. Sun-synchronous satellite in dawn–dusk orbit. Duration of solar
eclipse in minutes during one revolution, for the altitude indicated, as a function
of the declination. Graphs are drawn for τAN = 18:00. For τAN = 06:00, take the
opposite value of the declination

x2
1 =

1 − η2K2

1 − K2
R2 .

Rotating the orbital plane onto the plane of the figure, we obtain the actual
value of the angle α which determines the duration of the eclipse (see Fig. 6.9,
right). Hence,

sinα =
x1

a
=

√
H2 − K2

1 − K2
. (6.15)

The duration ∆te of the eclipse is

∆te =
α

π
T0 , (6.16)

since the orbit is circular, with uniform motion of period T0.
In the case K > H , there is no eclipse, as explained above, and we put

α = 0.
Using the altitude h, the angle iHS and the value of the period T0(h=0)

defined by (2.17), we have (time in minutes, angles in radians), for declina-
tion δ,
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∆te (min) = 84.5
(

1 +
h

R

)3/2 1
π

arcsin

√
[R/(R + h)]2 − sin2(δ + iHS)

| cos(δ + iHS)|
.

(6.17)

Figure 6.10 plots representative graphs of the duration of solar eclipse over
one revolution for various altitudes, as a function of the declination. For easier
understanding, Fig. 6.11 (upper) shows the same as a function of the day of
the year.

Ascending Node Crossing Time and Dates of Eclipse

Figure 6.9 (left) shows the situation in a northern summer (δ > 0, Sun at
the zenith in the northern hemisphere) with a satellite orbit crossing the
ascending node at 18:00 (taking into account the direction of rotation of the
Earth). The maximal eclipse occurs at the summer solstice when the satellite
passes close to the South Pole. The most favorable situation with regard to
the question of eclipse, even at very low orbit, occurs for δ = −j, i.e., during
the northern winter, when the direction of the Sun is exactly perpendicular
to the orbit.

For a satellite crossing the ascending node at 06:00, the straight line SiS′
i

occupies a symmetric position with respect to the polar axis Oz. All the above
calculations remain the same, provided that we take the opposite value of the
declination. For example, in this case, the value δ = −23.44◦ corresponds to
the northern summer solstice.

Example 6.7. Calculate the eclipse dates and duration of eclipse for Radarsat-1
and SMOS.

Radarsat-1 has a near-circular Sun-synchronous dawn–dusk orbit with character-
istics: a = 7 167.064 km, iHS = 98.58◦, Td = 100.76 min, τAN = 18:00. Using the
above notation, we obtain

η = 1.1237 , H = 0.8899 , j = 8.58◦ .

To find the date of eclipse, we apply (6.14). With arccos(0.8899) = 27.14◦, we
obtain

δ + j = ±27.14 , hence δ = ±27.14 − 8.58 .

The solution δ = 18.56◦ is the only possible value, since for the other, |δ| > ε. As
we have τAN = 18:00, the dates are given directly by the values of δ. In the northern
summer, there is eclipse for days when the declination is greater than 18.56◦, i.e., in
the interval from 15 May to 20 July. To calculate the duration of the longest eclipse,
at the summer solstice, we use (6.15). With K = cos(ε + j) = cos(32.02) = 0.8479,
we obtain sin α = 0.5096, whence α = 30.6◦. Then, with (6.16),

∆te = 0.170T0 ≈ 17 min .
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Figure 6.11. Duration of solar eclipse in minutes as a function of the day of the
year. Upper : Sun-synchronous satellite in dawn–dusk orbit. Duration of the eclipse
during one revolution at the given altitude. Graphs are drawn for τAN = 18:00.
For τAN = 06:00, take the opposite value of the declination. Lower : geostationary
satellite. Duration of eclipse over one day
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We can also obtain these results directly using (6.17).

The satellite SMOS should fly at an altitude of 755 km, so that iHS = 98.44◦. We
deduce that H = 0.8942 and j = 8.44◦. For the eclipse dates, we find once again that

there is only one possible value for the declination, viz., δ = 26.60−8.44 = 18.16. If

we choose τAN = 18:00, eclipse will occur for declinations greater than +18.16◦, or in
the interval between 13 May and 31 July, around the summer solstice. If we choose

τAN = 06:00, eclipse will occur for declinations less than −18.16◦, that is, in the

interval from 15 November to 28 January, around the winter solstice. Concerning
the duration of eclipse at the solstice, the calculation gives ∆te = 18 min per

revolution.

Example 6.8. Constraints imposed by eclipse on the satellites STEP and GOCE,
in very low orbit.

For STEP, the requirements of temperature stability forbid any period of solar
eclipse during its operating time. Moreover, the orbit must be low, the altitude
being fixed at 400 km. A Sun-synchronous dawn–dusk orbit is the only suitable
orbit. With iHS = 97.05◦ and η = 1.0627, we obtain j = 7.05◦ and H = 0.9410
and hence, δ + j = ±19.78. We thus have just one value for the declination, viz.,
δ = 19.78 − 7.05 = 12.73◦. Depending on the value of τAN, this corresponds to the
interval 25 April to 21 August or the interval 28 October to 15 February. Note that,
in the first case, the eclipse lasts for 118 days, whilst in the second case, it lasts
for 110 days, a consequence of the eccentricity of the Earth’s orbit. Finally, with
this orbit, there is a period of 8 months without eclipse. The accelerometers of the
STEP experiment are maintained at a temperature of 2 K, using a superfluid helium
cryostat, which limits the time over which the experiment can operate to around 6
months. The satellite must be launched shortly after 21 August, if τAN = 18:00 is
chosen, or shortly after 15 February, if τAN = 06:00 is chosen.

GOCE flies at the very low altitude h = 250 km. With iHS = 96.52◦ and η = 1.0392,
we obtain j = 6.52◦ and H = 0.9623, whence δ+j = ±15.79 and δ = ±15.79−6.52.
There are now two values of the declination:

δ = −22.31◦ , δ = +9.27◦ .

We can say that there are two eclipse ‘seasons’, one short, with |δ| close to ε,
the other long, as can be seen very clearly in Fig. 6.11 (upper). The mission is

planned to last 20 months (limited by the amount of fuel needed to compensate

for atmospheric drag) and the satellite should be launched at the end of the long
eclipse season. There are therefore only two possible launch windows: either in July,

taking τAN = 18:00, or in January, taking τAN = 06:00.

6.3.2 GEO Orbit

For a geostationary satellite, no shadow is cast by the Earth on the circular
orbit as long as the direction of the Sun has an inclination (declination δ),
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with respect to the equatorial plane, greater than the angle with which the
satellite views the Earth. Let f0 be this angle, which is the half-angle at the
apex of the observation cone with which the satellite views the Earth, and
to which we shall return in Chap. 8 [see (8.24)]. With ηGS defined by (4.58),
the relation sin f0 = 1/ηGS gives f0 = 8.7◦.

There is therefore an eclipse if |δ| < f0. This happens twice a year, around
the equinoxes:

eclipse for GEO ⇐⇒ [27 Feb–12 Apr] , [01 Sep–16 Oct] .

During these periods, each lasting 45 days (from J = 58 to J = 102 and
from J = 244 to J = 289, although dates may vary by one day from year
to year), the longest eclipse occurs at the equinox itself. On this day, it lasts
∆te0 given by

∆te0 =
f0

π
T0 =

8.7
180

Jsid = 69.5 min ≈ 1 hr 10 min . (6.18)

On the other days, the duration of the eclipse is found by considering the
Earth’s disk, viewed by the satellite, occulting the Sun. The ‘ground track’ of
the Sun cuts the disk along parallel chords, passing through the centre of the
disk for δ = f0. This gives, for the duration ∆te of the eclipse as a function
of δ,

∆te =

√

1 −
(

δ

f0

)2

∆te0 . (6.19)

The value of ∆te as a function of the day of the year is shown in Fig. 6.11
(lower).


