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ABSTRACT
Transfer learning for high-dimensional Gaussian graphical models (GGMs) is studied. The target GGM is
estimated by incorporating the data from similar and related auxiliary studies, where the similarity between
the target graph and each auxiliary graph is characterized by the sparsity of a divergence matrix. An
estimation algorithm, Trans-CLIME, is proposed and shown to attain a faster convergence rate than the
minimax rate in the single-task setting. Furthermore, we introduce a universal debiasing method that can be
coupled with a range of initial graph estimators and can be analytically computed in one step. A debiased
Trans-CLIME estimator is then constructed and is shown to be element-wise asymptotically normal. This
fact is used to construct a multiple testing procedure for edge detection with false discovery rate control.
The proposed estimation and multiple testing procedures demonstrate superior numerical performance
in simulations and are applied to infer the gene networks in a target brain tissue by leveraging the gene
expressions from multiple other brain tissues. A significant decrease in prediction errors and a significant
increase in power for link detection are observed. Supplementary materials for this article are available
online.
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1. Introduction

Gaussian graphical models (GGMs), which represent the depen-
dence structure among a set of random variables, have been
widely used to model the conditional dependence relationships
in many applications, including gene regulatory networks and
brain connectivity maps (Varoquaux et al. 2010; Zhao, Cai, and
Li 2014; Drton and Maathuis 2017; Glymour, Zhang, and Spirtes
2019). In the classical setting with data from a single study, the
estimation of high-dimensional GGMs has been well studied
in a series of articles, including penalized likelihood methods
(Yuan and Lin 2007; Friedman, Hastie, and Tibshirani 2008;
Rothman et al. 2008; Lam and Fan 2009), convex optimization-
based methods (Cai, Liu, and Luo 2011; Cai, Liu, and Zhou
2016; Liu and Wang 2017), and penalized �1 log-determinant
divergence (Ravikumar et al. 2011). Model selection has been
considered in Ravikumar et al. (2008). The minimax optimal
rates are studied in Cai, Liu, and Zhou (2016). Ren et al. (2015)
studies the estimation optimality and inference for individual
entries. A survey of optimal estimation of the structured high-
dimensional GGMs can be found in Cai, Ren, and Zhou (2016).
Liu (2013) considers the inference for GGMs based on a node-
wise regression approach and introduces a multiple testing pro-
cedure for the partial correlations with the FDP and FDR control
and Xia, Cai, and Cai (2015) studies simultaneous testing for the
differential networks.
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Methods for estimating a single GGM have also been
extended to simultaneously estimating multiple graphs when
data from multiple studies are available. For example, Guo et al.
(2011), Chiquet, Grandvalet, and Ambroise (2011), Danaher,
Wang, and Witten (2014), and Cai et al. (2016) consider jointly
estimating multiple GGMs by employing some penalties in
order to induce common structures among different graphs.
This problem falls in the category of multi-task learning
(Lounici et al. 2009; Agarwal, Negahban, and Wainwright 2012),
whose goal is to jointly estimate several related graphs.

Due to high dimensionality and relatively small sample sizes
in many modern applications, estimation of GGMs based on
a single study often has large uncertainty and low power in
link detection. However, the blessing is that samples from some
different but related studies can be abundant. Particularly, for
a given target study, there might be other studies where we
expect some similar dependence structures among the same
set of variables. One example is to infer the gene regulatory
networks among a set of genes for a given issue. Although
gene regulatory networks are expected to vary from tissue to
tissue, certain shared regulatory structures are expected and
have indeed been observed (Pierson et al. 2015; Fagny et al.
2017). This article introduces a transfer learning approach to
improve the estimation and inference accuracy for the gene
regulatory network in one target tissue by incorporating the data
in other tissues.
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Transfer learning techniques have been developed in a range
of applications, including pattern recognition, natural language
processing, and drug discovery (Pan and Yang 2009; Turki,
Wei, and Wang 2017; Bastani 2021). Transfer learning has been
studied in different settings with various similarity measures,
but only a few of them offer statistical guarantees. Cai and
Wei (2021) investigates nonparametric classification in trans-
fer learning and proposes minimax and adaptive classifiers.
In linear regression models, Li, Cai, and Li (2021) consid-
ers the estimation of high-dimensional regression coefficient
vectors when the difference between the auxiliary model and
the target model is sufficiently sparse and proves the minimax
optimal rate. Tripuraneni, Jin, and Jordan (2021) proposes an
algorithm that assumes all the auxiliary studies and the target
study share a common, low-dimensional linear representation.
Transfer learning in general functional classes has been studied
in Tripuraneni, Jordan, and Jin (2020) and Hanneke and Kpotufe
(2020). Loosely speaking, transfer learning aims to improve the
learning accuracy for the target study by transferring infor-
mation from multiple related studies. This is different from
the multi-task learning outlined above, where the goal is to
simultaneously estimate multiple graphs. In terms of theoretical
results, the error criteria for these two learning frameworks are
different and are incomparable in general. The convergence rate
for estimating the target graph in transfer learning can be faster
than the corresponding rate in multi-task learning.

1.1. Model Set-Up

Suppose that we observe iid samples xi ∈ R
p generated from

N(μ, �), i = 1, . . . , n, and the parameter of interest is the
precision matrix � = �−1. Indeed, � uniquely determines the
conditional dependence structure and the corresponding graph.
If the i-th and j-th variables are conditionally dependent in the
target study, there is an undirected edge between the i-th and
j-th nodes in the Gaussian graph and, equivalently, the (i, j)-
th and (j, i)-th entries of � are nonzero. Our focus is on the
estimation and inference for high-dimensional sparse Gaussian
graphs where p can be much larger than n and � is sparse such
that each column of � has at most s nonzero elements with
s � p.

In the transfer learning setting, besides the observations
{x1, . . . , xn} from the target distribution N(μ, �), we also
observe samples from K auxiliary studies. For k = 1, . . . , K,
the observations x(k)

i ∈ R
p are independently generated from

N(μ(k), �(k)), i = 1, . . . , nk. Let �(k) = {�(k)}−1 be the
precision matrix of the kth study, k = 1, . . . , K. If some
knowledge can be transferred to the target study, a certain level
of similarity needs to be possessed by the auxiliary models and
the target one.

To motivate our proposed similarity measure, consider the
relative entropy, or equivalently the Kullback–Leibler (KL)
divergence, between the kth auxiliary model and the target
model. That is,

DKL(N�(k) ‖ N�) = 1
2

Tr(�(k)) − 1
2

log det(Ip + �(k)) for

�(k) = ��(k) − Ip, (1)

where N�(k) and N� denote the normal distributions with mean
zero and covariance matrix �(k) and �, respectively. The KL-
divergence is parametrized by the matrix �(k) and we call
�(k) the kth divergence matrix. We characterize the difference
between � and �(k) via

Dq(�
(k), �) = max

1≤j≤p
||�(k)

j,. ||q + max
1≤j≤p

||�(k)
.,j ||q (2)

for some fixed q ∈ [0, 1]. In words,Dq(�, �(k)) is the maximum
row-wise �q-sparsity of �(k) plus the maximum column-wise
�q-sparsity of �(k). Both the row-wise and column-wise norms
are taken into account because �(k) is nonsymmetric. The quan-
tity Dq(�(k), �) measures the “relative distance” between �

and �(k) in the sense that Dq(�(k), �) = Dq(c�(k), c�) for
any constant c > 0. Notice that the spectral norm of �(k)

is upper bounded by D1(�
(k), �), which further provides an

upper bound on the KL-divergence.
In this work, we develop estimation and inference procedures

for GGMs under the similarity characterization (2) for any fixed
q ∈ [0, 1]. We focus on the methods and theory when q = 1
in the main article and provide matching minimax upper and
lower bounds for q ∈ [0, 1) in the supplementary materials.

1.2. Our Contributions

A transfer learning algorithm, called Trans-CLIME, is proposed
for estimating the target GGM. Inspired by the CLIME in the
single-task setting (Cai, Liu, and Luo 2011), the proposed algo-
rithm includes additional steps to incorporate auxiliary infor-
mation. Furthermore, edge detection with uncertainty quantifi-
cation is considered. We introduce a universal debiasing method
that can be coupled with many initial graph estimators, includ-
ing both the single-task and the transfer learning estimators.
The debiasing step can be analytically computed in one step. We
demonstrate the asymptotic normality under certain conditions.
Applying this procedure, we construct the confidence interval
for an edge of interest and propose a multiple testing procedure
for all the edges with false discovery rate (FDR) control.

Theoretically, we establish the minimax optimal rate of con-
vergence for estimating the GGMs with transfer learning in the
Frobenius norm by providing matching minimax upper and
lower bounds. We also establish the optimal rate of convergence
for estimating individual entries in the graph. These conver-
gence rates are faster than the corresponding minimax rates
in the classical single-task setting, where no auxiliary samples
are available or used. Our proposed Trans-CLIME and debiased
Trans-CLIME are shown to be rate optimal for different error
criteria under proper conditions.

1.3. Organization and Notation

The rest of this article is organized as follows. In Section 2,
we propose an algorithm for graph estimation with transfer
learning given q = 1 in the similarity characterization. In
Section 3, we study statistical inference for each edge of the
graph. In Section 4, we consider multiple testing of all the edges
in the graph with false discovery rate guarantee. In Section 5,
we establish the minimax lower bounds for any fixed q ∈ [0, 1].
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In Section 6, we study the numerical performance of Trans-
CLIME in comparison to some other relevant methods. We then
present an application of the proposed methods to estimate gene
regulatory graphs based on data from multiple brain tissues
in Section 7. Section 8 concludes the article. The proofs and
other supporting information are given in the supplementary
materials.

For a matrix A ∈ R
p×p, let Aj denote the jth column of A.

For any fixed j ≤ p, we call ||Aj||2 the column-wise �2-norm
of A. Let ||A||∞,q = maxj≤p ||Aj||q for q > 0 and ||A||∞,∞ =
maxi,j≤p |Ai,j|, and ||A||1 = ∑p

j=1 ||Aj||1. Let ||A||2 denote the
spectral norm of A and ||A||F denote the Frobenius norm of A.
For a vector v ∈ R

p, let ||v||0 denote the number of nonzero ele-
ments of v. For a symmetric matrix A, let �max(A) and �min(A)

denote the largest and smallest eigenvalues of A, respectively.
Let �(t) denote the standard normal probability function. Let
zq denote the qth quantile of standard normal distribution. We
use c0, c1, . . . and C0, C1, . . . as generic constants which can be
different at different places.

2. GGM Estimation with Transfer Learning

In this section, we study GGM estimation based on transfer
learning. In Section 2.1, we introduce the rationale for the
proposed algorithm. The proposal is introduced in Section 2.2
and its theoretical properties are studied in Section 2.3.

2.1. Rationale and Moment Equations

Moment equations provide a powerful tool for deriving estima-
tion methods in parametric models. By the definition of �, it is
natural to consider the following moment equation:

�� − Ip = 0. (3)

The idea of CLIME (Cai, Liu, and Luo 2011) is to solve an
empirical version of (3) and to encourage the sparsity of the
estimator. In the context of transfer learning, we re-express
the moment equation (3) to incorporate auxiliary information.
Specifically, for k = 1, . . . , K,

Ip = �(k)�(k) = �(k)� − (�(k))ᵀ, (4)

where �(k) is the divergence matrix defined in (1). We see from
(4) that �(k) corresponds to the bias in the moment equations
when we try to identify � based on the k-th study. To simulta-
neously leverage all the auxiliary studies, we further define the
weighted average of the covariance and divergence matrices

�K =
K∑

k=1
αk�

(k) and �K =
K∑

k=1
αk�

(k), (5)

where αk = nk/N for N = ∑K
k=1 nk. For knowledge transfer,

the moment equation considered for � is

�K� − (�K)ᵀ − Ip = 0, (6)

where �K is an average parameter over the K source studies and
it incorporates the auxiliary information. The moment equation

(6) motivates our procedure. First, we will estimate �K based on
the following moment equation:

��K − (�K − �) = 0. (7)

Once �K is identified, we can estimate our target � via (6).
In some practical scenarios, the similarity between �(k) and

� can be weak, for some 1 ≤ k ≤ K, that is, Dq(�(k), �)

can be large. In fact, the similarity is often unknown a priori in
practice. In this case, information transfer may negatively affect
the learning performance of the target problem, which is also
known as the “negative transfer” (Hanneke and Kpotufe 2020).
To address this issue, we will further perform an aggregation
step. The aggregation methods and theory have been extensively
studied in the existing literature in regression problems, to name
a few, Rigollet and Tsybakov (2011), Tsybakov (2014) and Lecué
and Rigollet (2014). This type of methods can guarantee that,
loosely speaking, the aggregated estimator has prediction per-
formance comparable to the best prediction performance which
could be achieved by the initial estimators.

2.2. Trans-CLIME Algorithm

We introduce our proposed transfer learning algorithm, Trans-
CLIME. We randomly split the data from the target study into
two disjoint folds. Specifically, let I be a random subset of
{1, . . . , n} such that |I| = cn for some constant 0 < c < 1.
Let Ic denote the complement of I . Let x̄ = 1

|I|
∑

i∈I xi, x̃ =
1

|Ic|
∑

i∈Ic xi,

�̂ = 1
|I|

∑
i∈I

xixᵀi − x̄x̄ᵀ and �̃ = 1
|Ic|

∑
i∈Ic

xixᵀi − x̃x̃ᵀ. (8)

We will use �̂ for constructing estimators and will use �̃ for
aggregation. Let ñ = |Ic|. Let x̄K = ∑K

k=1
∑nk

i=1 x(k)
i /N denote

the sample mean and �̂K = ∑K
k=1

∑nk
i=1 x(k)

i (x(k)
i )ᵀ/N −

x̄K(x̄K)ᵀ denote the sample covariance based on the auxiliary
samples. To begin with, we compute the single-task CLIME
�̂(CL) such that

�̂(CL) = arg min�∈Rp×p ||�||1 (9)
subject to

∥∥(�̂ + |I|−1Ip)� − Ip
∥∥∞,∞ ≤ λCL,

where �̂ is defined in (8) and λCL > 0 is a tuning parameter.
A diagonal matrix |I|−1Ip is added to �̂ for making the sample
covariance matrix positive definite. This modification has been
considered in a refined version of the CLIME (Cai, Ren, and
Zhou 2016).

Step 1. We estimate �K based on the moment equation (7).
Compute

�̂K =arg min�∈Rp×p ||�||1 (10)

subject to ||� − {(�̂(CL))ᵀ�̂K − Ip}||∞,∞ ≤ λ�.

The optimization (10) can be understood as an adaptive thresh-
olding of an initial estimate �K, (�̂(CL))ᵀ�̂K − Ip. This initial
estimate is inspired by the moment equation (7). We further
explain that the CLIME estimator �̂(CL) is not necessarily sym-
metric and we use (�̂(CL))ᵀ in step 1 to directly leverage the
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constraints in the CLIME optimization. The optimization in
(10) is a more sophisticated version of hard thresholding and
it is designed for the approximate sparse parameter �K. The
estimate �̂K is row-wise and column-wise �1-sparse and will
be used in the next step.

Step 2. For �̂K defined in (10), compute


̂ =arg min
∈Rp×p ||
||1 (11)

subject to
∣∣∣|(�̂K + N−1Ip)
 − (�̂K + Ip)

ᵀ
∣∣∣|∞,∞ ≤ λ
.

This step is a CLIME-type optimization based on the moment
equation (6) and it outputs an estimator of the target graph �.
When the similarities between auxiliary studies and the target
study are sufficiently high, 
̂ is a desirable transfer learning
estimator of �.

As we have discussed in Section 2.1, 
̂ may not be as good
as the single-task estimator if the similarity is weak. Hence, we
perform a model selection aggregation in Step 3 based on the
single-task CLIME estimator and 
̂ to produce a final graph
estimator. Loosely speaking, we compute a weight vector v̂j
motivated by the moment equation

�̃(�̂
(CL)
j , 
̂j)vj − ej ≈ 0.

Notice that the sample splitting step guarantees that both 
̂ and
�̂(CL) are independent of the samples used for aggregation, �̃.

Step 3. For j = 1, . . . , p, compute

Ŵ(j) =
(

(�̂
(CL)
j )ᵀ�̃�̂

(CL)
j (�̂

(CL)
j )ᵀ�̃
̂j

(�̂
(CL)
j )ᵀ�̃
̂j 
̂

ᵀ
j �̃
̂j

)

and

v̂j = arg minv∈{(0,1)ᵀ,(1,0)ᵀ}v
ᵀŴ(j)v − 2vᵀ(�̂

(CL)
j,j , 
̂j,j)

where �̂(CL) is defined in (9) and 
̂ is defined in (11). For j =
1, . . . , p, let

�̂j = (�̂
(CL)
j , 
̂j)v̂j. (12)

We summarize the formal algorithm as follows.

Algorithm 1: Trans-CLIME algorithm
Input : Target data (after a random sample splitting)

{�̂, �̃} and auxiliary samples �̂K.
Output: �̂.
Step 1. Compute �̂K via (10).
Step 2. Compute 
̂ via (11).
Step 3. Aggregation for positive transfer: For j = 1, . . . , p,
compute �̂j via (12).

Computationally, all the optimizations in these three steps
can be separated into p independent optimizations, analogous
to the original CLIME algorithm. This makes the computation
scalable. While �̂ is not symmetric in general, one can use
(�̂ + �̂ᵀ)/2 as a symmetric estimate for �. It is not hard to
show that (�̂ + �̂ᵀ)/2 has the same convergence rate as �̂ in
Frobenius norm.

2.3. Convergence Rate of Trans-CLIME

In this section, we provide theoretical guarantees for the Trans-
CLIME algorithm. We assume the following condition in our
theoretical analysis.

Condition 2.1 (Gaussian graphs). For i = 1, . . . , n, xi ∈ R
p

are iid distributed as N(μ, �). For each 1 ≤ k ≤ K, x(k)
i

are iid distributed as N(μ(k), �(k)) for i = 1, . . . , nk. It
holds that 1/C ≤ �min(�) ≤ �max(�) ≤ C and 1/C ≤
min1≤k≤K �min(�(k)) ≤ max1≤k≤K �max(�

(k)) ≤ C for some
constant C > 0.

The Gaussian assumption facilitates the justification of the
restricted eigenvalue conditions of the empirical covariance
matrices. The Gaussian distribution of the target data also sim-
plifies the limiting distribution of our proposed estimator for
inference.

The parameter space we consider is

Gq(s, h) =
{
(�, �(1), . . . , �(K)) : max

1≤j≤p
||�j||0 ≤ s,

max
1≤k≤K

Dq(�, �(k)) ≤ h
}

. (13)

We mention that the parameter space for GGMs in the single-
task setting (Ren et al. 2015) can be written as Gq(s, ∞) under
Condition 2.1 for any q ∈ [0, 1]. This is becauseGq(s, ∞) allows
the auxiliary studies to be arbitrarily far away from the target
study and the worst-case scenario is equivalent to the setting
where only the target data is available.

In the following, we demonstrate the convergence rate of
Trans-CLIME under Condition 2.1. Let δh,� = {(||�||∞,1 +
h)h

√
log p/n} ∧ h2 and δh = h

√
log p/n ∧ h2. We see that

δh,� � δh as ||�||∞,1 ≥ c > 0. If max{||�||∞,1, h} is finite,
then δh,� 
 δh.

Theorem 2.1 (Convergence rate of Trans-CLIME). Assume Con-
dition 2.1. Let the Trans-CLIME estimator �̂ be computed with

λ� = c1(||�||∞,1 + h)

√
log p

n
and λ
 = c1

√
log p

N
,

where c1 is a large enough constant. If p ≥ c2N for some positive
constant c2 and s log p/N +δh,� ∧ s log p/n = o(1), then for any
true models in G1(s, h), we have

E

[
1
p
||�̂ − �||2F ∨ ||�̂j − �j||22

]
≤ C

(
s log p
N + n

+ δh,� ∧ s log p
n

+ 1
n

)
(14)

for any fixed 1 ≤ j ≤ p and some positive constant C.

Theorem 2.1 demonstrates that under a proper choice of
the tuning parameters, the upper bounds can be obtained in
Frobenius norm and in column-wise �2-norm. We first illustrate
the convergence rate of �̂ in column-wise �2-norm. As all the
�(k), k = 1, . . . , K, share the column-wise s-sparse matrix �,
the term s log p/(N + n) comes from estimating � based on
N + n independent samples. The term δh,� comes from the
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errors of estimating �K in row-wise �2-norm. It goes to zero as
the target sample size n goes to infinity. The term δh,� is deter-
mined by the target sample size because the divergence matrix is
defined and can only be identified based on the target samples.
Nevertheless, δh,� can still be a fast rate when the similarity
among these studies is high, that is, h is small. The minimal term
δh,� ∧ s log p/n is a consequence of the aggregation performed
in Step 3, where s log p/n is the single-task convergence rate
under the same distance measure. However, there is a mild cost
of aggregation, which is of order n−1 shown in the last term in
(14), and it is negligible in most parameter spaces of interest.

To understand the gain of transfer learning, we compare
the current results with the convergence rate of CLIME in the
single-task setting.

Remark 2.1 (Convergence rate of single-task CLIME). Assume
Condition 2.1, s2 log p = o(n) and p ≥ c1n for some positive
constant c1. For the CLIME estimator �̂(CL) defined in (9) with
λCL = c2

√
log p/n with large enough constant c2, then for any

true models in G1(s, ∞),

E

[
1
p
||�̂(CL) − �||2F ∨ ||�̂(CL)

j − �j||22
]

≤ Cs log p
n

for any fixed 1 ≤ j ≤ p and some positive constant C.

We see that the convergence rate of Trans-CLIME is no worse
than CLIME in Frobenius norm for any s ≥ 1, which is a
consequence of aggregation. Furthermore, Trans-CLIME has
faster convergence rate when N � n and δh,� � s

√
log p/n.

That is, if the total auxiliary sample size is dominant and the
similarity is sufficiently strong (h is sufficiently small), then
the learning performance can be significantly improved using
Trans-CLIME. This demonstrates the gain of transfer learning
in estimating the graphical models.

Remark 2.2 (Faster convergence rate in a restricted regime).
Assume Condition 2.1. Let the Trans-CLIME estimator �̂ be
computed with

λ� = c1

√
log p

n
and λ
 = c1

√
log p

N
,

where c1 is a large enough constant. If p ≥ c2N and s2 log p ≤
c3n for some positive constants c2 and c3, then for any true
models in G1(s, h), we have

E

[
1
p
||�̂ − �||2F ∨ ||�̂j − �j||22

]
≤ C

(
s log p
N + n

+ δh ∧ s log p
n

+ 1
n

)
(15)

for any fixed 1 ≤ j ≤ p and some positive constant C.

In Remark 2.2, we prove another convergence rate of Trans-
CLIME when s2 log p � n. Its difference from (14) is that
δh,� is replaced by δh in (15). Hence, the convergence rate in
(15) is sharper than the rate in (14) when max{||�||∞,1, h}
grows to infinity and is of the same order of the rate in (14)
when max{||�||∞,1, h} is finite. However, the condition on s in
Remark 2.2 is stronger than the one assumed in Theorem 2.1

and it is indeed the same as the requirement in the single-task
problems (Cai, Ren, and Zhou 2016; Liu and Wang 2017). In
fact, we will show in Section 5.1 that the minimax lower bound
in Frobenius norm is s log p/(N + n) + δh ∧ (s log p/n) for the
current parameter space. The convergence rate of Trans-CLIME
in (15) has one more term 1/n, which is the cost when the rela-
tive magnitude of h and s is unknown a priori. In most nontriv-
ial parameter spaces, Trans-CLIME enjoys minimax optimality
when s2 log p ≤ c0n or when max{||�||∞,1, h} is finite.

3. Entry-Wise Inference

We propose in this section a debiasing procedure for inference
of individual entries in the graph. The main features of our
proposal are its flexibility to couple with a broad range of ini-
tial graph estimators and its computational efficiency. We first
introduce a universal debiasing method and study its theoretical
guarantees in Section 3.1. We will then use it for the construc-
tion of confidence intervals in the transfer learning setting in
Section 3.2.

3.1. A Universal Debiasing Method

Our procedure on inference for �i,j is inspired by the idea of
debiasing quadratic forms. We begin by expressing �i,j as a
quadratic form:

�i,j = �
ᵀ
i ��j = �

ᵀ
i E[�n]�j, (16)

where �n denotes the sample covariance matrix based on the
target data. In many occasions, �n can be computed based on
all the target data. Sometimes for a sharp theoretical analysis,
sample splitting is performed and �n can be computed based
on a constant proportion of the target data. We call the samples
involved in �n the debiasing samples. Equation (16) holds for
any inverse covariance matrix � not restricting to Gaussian
random graphs.

Leveraging (16), we are able to use the idea of debiasing
quadratic forms (Cai and Guo 2020) to make inference for �i,j.
Specifically, �i,j takes the same format as the coheritability if
we view �i and �j as the regression coefficient vectors for
two different outcomes and view X as the measurements of
genetic variants. Motivated by this observation, we arrive at the
following debiased estimator of �i,j. Let �̂(init) be any initial
estimator of �. The corresponding debiased estimator is

�̊
(db)
i,j = (�̂

(init)
i )ᵀ�n�̂(init)

j + (�̂
(init)
i )ᵀ(ej − �n�̂(init)

j )

+ (�̂
(init)
j )ᵀ(ei − �n�̂(init)

i )

= �̂
(init)
j,i + �̂

(init)
i,j − (�̂

(init)
j )ᵀ�n�̂(init)

i . (17)

We mention that �̂(init) is not necessarily symmetric and hence,
we distinguish �̂

(init)
i,j and �̂

(init)
i,j . It is easy to see that the above

debiasing procedure can be coupled with any �̂(init) which
has a sufficiently fast convergence rate in column-wise �2-
norm. Hence, the candidate estimators for debiasing include,
say, graphical Lasso (Friedman, Hastie, and Tibshirani 2008),
CLIME (Cai, Liu, and Luo 2011), multi-task graph estimators
(Guo et al. 2011; Danaher, Wang, and Witten 2014; Cai et al.
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2016), and our proposed Trans-CLIME. In comparison to Liu
(2013) and Ren et al. (2015), where the debiased estimators
are constructed using �1-penalized node-wise regression, our
proposal in (17) is more flexible in incorporating various types
of initial estimators under different structural assumptions. To
the best of our knowledge, �̊(db) is the first universal debiasing
method for graph estimators.

Besides the general applicability, our debiased estimator for
the whole graph can be analytically computed in one step given
the initial graph estimator �̂(init). Specifically, the debiased esti-
mator in (17) can be re-expressed as

�̊(db) = �̂(init) + (�̂(init))ᵀ − (�̂(init))ᵀ�n�̂(init).

To demonstrate the power of this universal debiasing
method, we first prove the asymptotic normality for the debiased
single-task CLIME estimator, which is

�̂
(db-CL)
i,j = �̂

(CL)
j,i + �̂

(CL)
i,j − (�̂

(CL)
j )ᵀ�̂�̂

(CL)
i ,

where �̂ is defined in (8).

Proposition 3.1 (Asymptotic normality for debiased CLIME).
Assume Condition 2.1 and s log p � √

n. For any fixed i �= j,
√

n(�̂
(db-CL)
i,j − �i,j)√

Vi,j

D−→ N(0, 1)

for Vi,j = �i,i�j,j + �2
i,j.

The asymptotic normality of �̂
(db-CL)
i,j requires that s log p �√

n. The condition and the asymptotic distribution in Proposi-
tion 3.1 recover the results in Ren et al. (2015) and �̂

(db-CL)
i,j is

indeed minimax optimal in Gq(s, ∞) for estimating �i,j. This
demonstrates the optimality of this universal debiasing method.

3.2. Entry-Wise Confidence Intervals Based on Transfer
Learning

Applying the universal debiasing scheme to the Trans-CLIME
estimator �̂, we arrive at the following debiased Trans-CLIME
estimator for �i,j

�̂
(db)
i,j = �̂j,i + �̂i,j − �̂

ᵀ
j �̃�̂i. (18)

In (18), we only use a proportion of target data, that is, those
involved in �̃, as debiasing samples, while the realization of �̂

involves both target and auxiliary samples. This is because first,
only the target data are known to be unbiased; second, the sam-
ples involved in �̃ has mild dependence on �̂ which is induced
by the aggregation step and it allows us to prove the desirable
convergence rate. Ideally, one can use some debiasing samples
independent of �̂, which can be achieved through another
sample splitting. In practice, sample splitting always leads to
sub-optimal empirical performance and hence, we analyze (18)
and take care of the dependence through careful analysis.

Theorem 3.1 (Asymptotic normality for debiased Trans-CLIME).
Assume Condition 2.1 and the sample size condition stated in

(20). For any true models inG1(s, h) and any fixed 1 ≤ i, j ≤ p,
the debiased Trans-CLIME satisfies

√
ñ(�̂

(db)
i,j − �i,j)√

Vi,j

D−→ N(0, 1). (19)

In Theorem 3.1, we establish the asymptotic normality of
�̂

(db)
i,j . We now discuss the improvement in the convergence

rates with transfer learning. For the asymptotic normality to
hold, one requires the sparsity condition that

{
s log p = o(N/

√
n) and δh,� = o(n−1/2) if δh,� ≤ s log p/n

s log p = o(
√

n) otherwise.
(20)

In comparison, the sparsity condition given by the minimax rate
in single-task setting is s log p = o(

√
n) (Proposition 3.1). We

see that the sparsity condition in (20) is weaker when δh,� �
s log p/n and N � n. Specifically, if the similarity is sufficiently
high, that is, δh,� ≤ s log p/n, then transfer learning relaxes the
sparsity condition for asymptotic normality from s log p � √

n
to s log p � N/

√
n. This relaxation is significant as the regime

s log p � √
n is known as the “ultra-sparse” regime and is very

restrictive when n is small. When N � n, which is not hard
to satisfy in many applications, the condition on s is largely
relaxed for valid inference. Another way of interpreting (20) is
that inference based on Trans-CLIME requires weaker sparsity
conditions as long as �̂ has a smaller estimation error than the
single-task CLIME. The minimax optimality of debiased Trans-
CLIME is studied in Section 5.2.

Next, we introduce an estimator for the variance of �̂
(db)
i,j ,

which is

V̂i,j = �̂i,i�̂j,j + �̂i,j�̂j,i. (21)

The variance estimator V̂i,j is based on the limiting distribution
of �̂

(db)
i,j given that the observations are Gaussian distributed.

Lemma 3.1 (Consistency of variance estimator). Under the con-
ditions of Theorem 3.1, the variance estimator defined in (21)
satisfies

|V̂i,j − Vi,j| = oP(1)

and hence,

√
ñ(�̂

(db)
i,j − �i,j)√

V̂i,j

D−→ N(0, 1). (22)

Based on Lemma 3.1, a 100×(1−α)% two-sided confidence
interval for �i,j is

�̂
(db)
i,j ± z1−α/2(V̂i,j/ñ)1/2.

We examine the empirical performance of this inference
method in Section 6.
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4. Edge Detection with FDR Control

An important task regarding the graphical models is edge detec-
tion with uncertainty quantification. That is, we consider testing
(H0)i,j : �i,j = 0 1 ≤ i < j ≤ p. This is a multiple
testing problem with m = p(p − 1)/2 hypotheses to test in
total. For the uncertainty quantification, we consider the false
discovery proportion (FDP) and false discovery rate (FDR). Let
R̂ denote the set of rejected null hypotheses. The FDP and FDR
are defined as, respectively,

FDP(R̂) =
∑

(i,j)∈R̂ 1((i, j) ∈ H0)

|R̂| ∨ 1
and

FDR(R̂) = E[FDP(R̂)],

where H0 is the set of true nulls. Many algorithms have been
proposed and studied for FDR and FDP control in various
settings. Especially, Liu (2013) proposes an FDR control algo-
rithm for GGMs that can be easily combined with our proposed
debiased estimator. The procedure is presented as Algorithm 2.

Algorithm 2: Edge detection with FDR control at level α

Input : {�̂(db)
i,j }i<j, {V̂i,j}i<j, and FDR level α

Output: A set of selected edges R̂
Step 1. For 1 ≤ i < j ≤ p, let ẑi,j = V̂−1/2

i,j
√

ñ�̂
(db)
i,j , where

�̂
(db)
i,j and V̂i,j are defined in (18) and (21), respectively.

Step 2.

t̂ = inf
{

t ∈ [0,
√

2 log m − 2 log log m] :

2m(1 − �(t))
max{∑1≤i<j≤p 1(|̂zi,j| ≥ t), 1} ≤ α

}
. (23)

If (23) does not exist, we set t̂ = √
2 log m.

Step 3. The rejected hypotheses are

R̂ = {(i, j) : |̂zi,j| ≥ t̂, 1 ≤ i < j ≤ p}.

Let m0 = |H0| denote the cardinality of H0 and m =
(p2 −p)/2 denote the total number of hypotheses to test. Define
a subset of random variables “highly” correlated with the ith
variable Ci(γ ) = {

j : 1 ≤ j ≤ p, j �= i, |�i,j| ≥ (log p)−2−γ
}

.

Theorem 4.1 (FDR control). Let p ≤ nr for some r > 0 and
m0 ≥ cp2 for some c > 0. Assume that Condition 2.1 holds and
the true model is inG1(s, h). Suppose that

s(log p)3/2 � N/
√

n, δh,� ∧ s log p/n � (n log p)−1/2,

and max1≤i≤p |Ci(γ )| = O(pρ) for some ρ < 1/2 and γ > 0.
We have

lim
(n,p)→∞

FDR(R̂)

αm0/m
= 1 and

FDP(R̂)

αm0/m
→ 1 in probability

as (n, p) → ∞.

Theorem 4.1 implies that Algorithm 2 can asymptotically
control FDR and FDP at nominal level under certain conditions.
The sample size condition in Theorem 4.1 guarantees that the
remaining bias of �̂

(db)
i,j is uniformly oP((n log p)−1/2). The

condition on the cardinality of Ci(γ ) guarantees that the z-
statistics have mild correlations such that the FDR control is
asymptotically valid.

5. Minimax Optimal Rates for q ∈ [0, 1]
In this section, we establish the minimax lower bounds for esti-
mation and inference of GGMs in the parameter space Gq(s, h)

for any fixed q ∈ [0, 1]. We provide matching minimax upper
bounds in the supplementary materials (Sections C.3 and C.4).

5.1. Optimal Rates Under Frobenius Norm

Theorem 5.1 (Minimax lower bounds under Frobenius norm).
Assume Condition 2.1 and 3 < s log p < c1N for some small
constant c1. (i) For q = 0, if h log p ≤ c2n for some small enough
constant c2, then for some positive constant C1,

inf
�̂

sup
G0(s,h)

E

[
1
p
||�̂ − �||2F

]
≥ C1

{
s log p
N + n

+ (h ∧ s)
log p

n

}
.

(ii) For any fixed q ∈ (0, 1], if hq(log p/n)1−q/2 ≤ c3 for some
small enough constant c3, then there are some positive constants
C2 such that

inf
�̂

sup
Gq(s,h)

E

[
1
p
||�̂ − �||2F

]
≥ C2

{
s log p
N + n

+ hq( log p
n

)1−q/2 ∧ h2 ∧ s log p
n

}
.

Theorem 5.1 establishes the minimax optimal rates under
Frobenius norm. These lower bounds generalize the existing
lower bound in Gq(s, ∞) (Cai, Liu, and Zhou 2016) to allow
for arbitrarily small h. According to the discussion at the end
of Section 2, the Trans-CLIME is minimax optimal with respect
to Frobenius norm in most parameter spaces of interest when
s2 log p ≤ c0n or when max{||�||∞,1, h} is finite. In fact, the only
difference of the rate in (15) and the minimax lower bound is the
cost of aggregation, which is of order 1/n. We mention that the
estimator which achieves the minimax upper bounds depends
on the relative magnitude of h and s and hence, is not adaptive.
In comparison, the Trans-CLIME estimator does not depends
on the unknown parameters and only has a small inflation term.

5.2. Optimal Rates for Estimating �i,j

Theorem 5.2 (Minimax lower bounds for estimating �i,j).
Assume Condition 2.1 and 3 < s < c1 min{pν , N/ log p} for
some small constant c1 > 0 and ν < 1/2 . (i) For q = 0, if
1 ≤ h log p ≤ c2n for some small enough constant c2, then for
some constant C1 > 0,

inf
�̂

sup
G0(s,h)

P

(
|�̂i,j − �i,j| ≥ C1

{
n−1/2 + s log p

N + n
+ (h ∧ s)

log p
n

})
> 1/4.
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(ii) For any fixed q ∈ (0, 1], if hq(log p/n)1−q/2 < c3 for some
small enough constant c3, then

inf
�̂

sup
Gq(s,h)

P

(
|�̂i,j − �i,j|

≥ C3

{
Rq + s log p

N + n
+ hq( log p

n
)1−q/2 ∧ h2 ∧ s log p

n

})
> 1/4,

where C3 is a positive constant and Rq = (N+n)−1/2+n−1/2∧h.

Theorem 5.2 establishes the minimax lower bound for esti-
mating each entry in the graph. These lower bounds are related
to the sparsity conditions in Theorem 3.1. They generalize the
existing lower bound in Gq(s, ∞) (Ren et al. 2015) to allow for
finite h. When q = 0, the parametric rate is n−1/2, which is
the same as in the single-task setting. When q ∈ (0, 1], the
parametric rate is Rq and the rest terms are the remaining bias.
We now illustrate this bound in detail with q = 1.

For q = 1, the minimax optimal rate can be achieved by �̂
(db)
i,j

when max{h, ||�||∞,1} ≤ C and h � n−1/2. See (15) in the
supplementary materials for more details. When h � n−1/2,
a minimax optimal estimator is debiased (single-task) CLIME
using X and X(k), 1 ≤ k ≤ K, as debiasing samples. In the
scenario h � n−1/2, the auxiliary studies are very similar
to the target study and using N + n debiasing samples can
have faster parametric rate, (n + N)−1/2, with bias no larger
than h. However, the central limit theory may not hold for the
rate optimal estimator when h � n−1/2. This is because the
parametric rate is dominated by the bias h when (n + N)−1/2 �
h � n−1/2. In contrast, �̂

(db)
i,j has parametric rate n−1/2 and

its asymptotic normality holds for arbitrarily small h under the
conditions of Theorem 3.1. Hence, �̂

(db)
i,j is a proper choice for

statistical inference.

6. Numerical Experiments

We evaluate the numerical performance of our proposal and
other comparable methods. We set n = 150, p = 200, K = 5,
and nk = 300 for k = 1, . . . , K. We consider three types of target
graph �.

(i) Banded matrix with bandwidth 8. For 1 ≤ i, j ≤ p, �i,j =
2 × 0.6|i−j|1(|i − j| ≤ 7).

(ii) Block diagonal matrix with block size 4, where each block
is Toeplitz (1.2, 0.9, 0.6, 0.3).

(iii) Define �̊i,j = 1(i = j) + ui,j/
√|i − j| + 1, where ui,j are

independently generated from a uniform distribution with
range [0, 0.8]. We threshold (�̊+ �̊ᵀ)/2 such that only the
first s largest values in each column and each row of (�̊ +
�̊ᵀ)/2 are kept. A diagonal matrix is added to guarantee
that the minimum eigenvalue of the target graph is at least
0.1.

To accommodate the practical setting that some auxiliary
studies can be very far from the target study, we define a set
A ⊆ {1, . . . , K} to be the set of informative studies. Specifically,
for each setting in (i) or (ii), we generate �(k) in two ways. For
k ∈ A, �

(k)
i,j is zero with probability 0.9 and is nonzero with

probability 0.1. If an entry is nonzero, it is randomly generated
from U[−r/p, r/p] for r ∈ {10, 20, 30}. For �(k), k /∈ A,
we generate �

(k)
i,j = 0.51(i = j) + ξi,j, where ξi,j is zero

with probability 0.7 and is 0.4 with probability 0.3. In fact,
D1(�(k), �) ≈ 15 for k ∈ A and D1(�(k), �) ≈ 80 for k /∈ A
and hence, the studies not in A are relatively far away from the
target �. For k = 1, . . . , K, we symmetrize �(k) and if �(k) is
not positive definite, we redefine �(k) to be its positive definite
projection.

We compare four methods in each experiment. The first one
is the proposed Trans-CLIME. The second one is the single-
task CLIME that only uses the data from the target study.
The third one applies Trans-CLIME to the target study and
informative auxiliary studies, denoted by “oracle Trans-CLIME.”
Here “oracle” indicates that it leverages the knowledge of oracle
A. The fourth one is multi-task graphical lasso (Guo et al.
2011), shorthanded as “MT-Glasso.” For the choice of tuning
parameters, we consider λCL = 2cn

√
log p/n for CLIME. We

pick cn to minimize the prediction error defined in (24) based
on 5-fold cross-validation. For the Trans-CLIME, we set λ� =
2||�̂(CL)||1

√
log p/n and λ
 = 2cn

√
log p/N where cn is the

same as in the CLIME optimization. For the oracle Trans-
CLIME, the tuning parameters are set in the same way as in
Trans-CLIME except that N is replaced by

∑
k∈A nk. For Trans-

CLIME-based methods, we split the target data into two folds
such that �̂(CL) and 
̂ are computed based on 4n/5 samples and
the aggregation step (Step 3) is based on the rest n/5 samples.
For the debiased Trans-CLIME, we use all the target data as
debiasing samples as it has a better empirical performance. For
“MT-Glasso,” we implement and choose the tuning parameter
based on Bayesian information criterion according to Sections
2.3 and 2.4 of Guo et al. (2011). The R code for the four methods
is available at https://github.com/saili0103/TransCLIME.

6.1. Estimation and Prediction Results

We evaluate the estimation performance in Frobenius norm and
prediction performance based on the negative log-likelihood.
Specifically, we generate x(test)

i ∼ N(0, �) for i = 1, . . . , ntest =
100 and x(test)

i are independent of the samples for estimation. We
evaluate the out-of-sample prediction error of an arbitrary graph
estimator �̂(init) in the following way. We symmetrize �̂(init)

and compute the positive definite projection of the symmetrized
�̂(init), denoted by �̂

(init)
+ . The prediction error of �̂(init) is

evaluated via

Q̂(�̂(init)) = 1
p

{
1

2ntest

ntest∑
i=1

Tr(x(test)
i (x(test)

i )ᵀ�̂
(init)
+ )

− 1
2

log det(�̂(init)
+ )

}
. (24)

In Figure 1, we report the estimation and prediction perfor-
mance in setting (i). As the number of informative auxiliary
studies increases, the estimation errors of two Trans-CLIME-
based methods decrease. As r increases, the estimation errors of
two Trans-CLIME-based methods increase. The oracle Trans-
CLIME has a faster convergence rate than the Trans-CLIME.
This is because K − |A| noninformative studies are used in the

https://github.com/saili0103/TransCLIME
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Figure 1. Estimation errors in Frobenius norm (first row) and negative log-likelihood (second row) for banded � (i) as a function of the number of informative studies (out
of a total of K = 5 studies) for different values of r.

Figure 2. Estimation errors in Frobenius norm for random � (iii) with varying target sample size n (left), total auxiliary sample size N (middle), and the sparsity s (right).
The default setting is p = 200, n = 150, N = 1500, s = 20, r = 20, and A = {1, . . . , K}. In each plot, all the parameters are fixed at default values except the parameter
indexed by the x-axis.

Trans-CLIME, which affects the convergence rates. Neverthe-
less, we see that the Trans-CLIME algorithm is robust to the
noninformative auxiliary studies as its performance is always
not much worse than the single-task CLIME. The estimation
and prediction results for settings (ii) and (iii) are reported in
the supplementary materials (Section E.2). We have observed
similar patterns in those settings.

6.2. Sample Complexity

We further evaluate the dependence of the estimation errors in
Frobenius norm on the target sample size n, the total auxiliary
sample size N, and the sparsity s. We consider the random graph

(iii) that has more flexibility in varying s and present the results
in Figure 2. We see that the estimation errors of single-task
CLIME decrease fast as the target sample size increases. The
errors of oracle Trans-CLIME, and Trans-CLIME also decrease
as the target sample size increases but not in a large amount.
In other words, the improvement of transfer learning becomes
smaller as n increases when auxiliary samples are informative.
This aligns with our theoretical results as we demonstrate the
significant gain of transfer learning when N � n. As the total
auxiliary sample size N increases, errors of the oracle Trans-
CLIME and Trans-CLIME decrease linearly but the errors of
CLIME do not change (middle plot of Figure 2). This agrees with
our theoretical findings in Theorem 2.1 and Remark 2.1. Finally,
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Figure 3. The FDR and power at nominal level 0.1 as a function of the number of informative studies (out of K = 5) and r for banded � (i). The methods in comparison are
debiased as in Section 3.

all the methods have estimation errors increase with the sparsity
parameter s with an approximately linear trend.

6.3. FDR Control

We then consider FDR control at level α = 0.1 based on the
debiasing method introduced in Section 3. From Figure 3, we
see that all three debiased estimators have empirical FDR no
larger than the nominal level in setting (i). In terms of power,
the Trans-CLIME and oracle Trans-CLIME have higher power
when A is nonempty. We observe the robustness of Trans-
CLIME in the sense that the FDR is under control even if non-
informative studies are included. The multiple testing results for
settings (ii) and (iii) are reported in the supplementary materials
(Section D.2). We observe that the power curves in setting (ii)
are the highest in comparison to the other two settings. This is
because the nonzero entries in the target graph have the largest
magnitude in setting (ii).

7. Gene Network Estimation in Multiple Tissues

In this section, we apply our proposed algorithms to detect
gene networks in different tissues using the Genotype-Tissue
Expression (GTEx) data (https://gtexportal.org/). Overall, the
datasets measure gene expression levels in 49 tissues from 838
human donors, comprising a total of 1,207,976 observations
of 38,187 genes. We focus on genes related to central nervous
system neuron differentiation, annotated as GO:0021953.
This gene set includes a total of 184 genes. A complete
list of the genes can be found at https://www.gsea-msigdb.

org/gsea/msigdb/cards/GO_CENTRAL_NERVOUS_SYSTEM_
NEURON_DIFFERENTIATION.

Our goal is to estimate and detect the gene network in a target
brain tissue. Since we use 20% of the samples to compute test
errors, the sample size for the target tissue should not be too
small. We therefore, consider each brain tissue with at least 100
samples as the target in each experiment. We use the data from
multiple other brain tissues as auxiliary samples with K = 12.
We remove the genes that have missing values in these 13 tissues,
resulting in a total of 141 genes for the graph construction. The
average sample size in each tissue is 115. A complete list of
tissues and their sample sizes are given in the supplementary
materials.

We apply CLIME and Trans-CLIME to estimate the graph
among these 141 genes in multiple target brain tissues. We
first compare the prediction performance of CLIME and Trans-
CLIME, where we randomly split the samples of the target tissue
into five folds. We fit the model with four folds of the samples
and compute the prediction error with the rest of the samples.
We report the mean of the prediction errors, each based on a
different fold of the samples. The prediction errors are measured
by the negative log-likelihood defined in (24).

The prediction results are reported in the left panel of Fig-
ure 4. We see that the prediction errors based on Trans-CLIME
are significantly lower than those based on CLIME in many
cases, indicating that the brain tissues in GTEx possess rela-
tively high similarities in gene associations. On the other hand,
these brain tissues are also heterogeneous in the sense that the
improvements with transfer learning are significant in some tis-
sues (e.g., A.C. cortex and F. cortex) and they are relatively mild

https://gtexportal.org/
https://www.gsea-msigdb.org/gsea/msigdb/cards/GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION
https://www.gsea-msigdb.org/gsea/msigdb/cards/GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION
https://www.gsea-msigdb.org/gsea/msigdb/cards/GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION
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Figure 4. The left panel presents the prediction errors of Trans-CLIME relative to the prediction errors of CLIME for 10 different target tissues. The right panel presents the
number of detected edges divided by p(1 − p) using CLIME and Trans-CLIME with FDR=0.1. The full names of the target tissues are given in the supplementary materials.

Figure 5. Comparison of the node degree distribution based on the graph estimated by Trans-CLIME for each of the tissue at FDR level of 10%. The x-axis represents the
degrees of the nodes in A. C. cortex and the y-axis represents the degrees of the nodes in nine other tissues. The dashed line is diagonal.

in others (e.g., C. hemisphere and Cerebellum). We then apply
Algorithm 2 with α = 0.1 to identify the connections among
these genes. The proportion of detected edges are reported in the
right panel of Figure 4. We see that the proportion of detected
edges are relatively low, implying that the networks are sparse.
The Trans-CLIME has more discoveries than CLIME in almost
all the tissues in detecting the gene-gene links, agreeing with
our simulation results. In Figure 5, we evaluate the similarities
among the tissues based on the constructed graphs. Specifically,
we examine the degrees of nodes in A.C. cortex in comparison
to the degrees of nodes in the other nine tissues, all estimated
using Trans-CLIME. We see that the degree distribution in A.C.
cortex is relatively similar to the degree distributions in Cortex
and F. cortex.

In the supplementary materials (Section E.1), we report the
hubs detected by these two methods in different tissues and
observe that many hubs appear more than once in different
tissues based on the results of debiased Trans-CLIME, further
demonstrating a certain level of similarity in gene regulatory
networks among different brain tissues. For example, for A.C
Cortex with Trans-CLIME, we are able to identify the hub
genes SOX1, SHANK3, ATF5, and SEMA3A. These genes are

either the known transcriptional factors (SOX1, ATF5) and have
been shown to be related to neurological diseases, including the
leading autism gene SHANK3 (Lutz et al. 2020) and gene-related
to motor neurons in ALS patients (Sema3A) (Birger et al. 2018).
In comparison, the graphs estimated using CLIME in single
tissue are too sparse and do not reveal any of these hub genes.

8. Discussion

In this article, we have studied the estimation and inference of
Gaussian graphical models with transfer learning. Our proposed
algorithm Trans-CLIME admits a faster convergence rate than
the minimax rate in the single-task setting under mild condi-
tions. The Trans-CLIME estimator can be further debiased for
statistical inference.

We have seen in the numerical experiments that including
some noninformative auxiliary studies can weaken the improve-
ment of transfer learning. While our proposal is guaranteed to
be no worse than the single-task minimax estimator, it may
not be the most efficient way to use the auxiliary studies. A
practical challenge in transfer learning is to find the best set
of auxiliary studies such that the algorithm can gain the most
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from the auxiliary tasks. In the high-dimensional regression
problem, Li, Cai, and Li (2021) proposes to first rank all the
auxiliary studies according to their similarities to the target and
then perform a model selection aggregation. They prove that
the aggregated estimator can be adapted to the informative set
under certain conditions. In a more recent article, Hanneke and
Kpotufe (2020) proves that, loosely speaking, if the ranks of the
auxiliary studies can be recovered, then performing empirical
risk minimization in a cross-fitting manner can achieve adap-
tation to the informative set to some extent in some functional
classes. For the high-dimensional GMMs, heuristic rank esti-
mators can also be derived using their connections to linear
models, based on which one can perform aggregation toward an
adaptive estimator. However, theoretical analysis for such rank
estimators may require strong conditions, especially in the high-
dimensional setting. Hence, finding the best subset of auxiliary
studies is an important topic for future research.

Supplementary Materials

Supplement to “Transfer Learning in Large-Scale Gaussian Graphical Mod-
els with False Discovery Rate Control.” In the supplementary materials, we
provide the proofs of theorems and further results on simulations and data
applications.
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