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Résumé

Les groupes et les monoïdes de tresses forment une extension naturelle des groupes sy-
métriques. Ils apparaissent dans des contextes variés, qui vont de la la topologie à la
théorie des structures automatiques. Dans cette thèse, nous nous intéressons aux pro-
priétés combinatoires des tresses, ainsi que de certaines structures algébriques qui leur
sont apparentées, et nous nous penchons plus spécifiquement sur la notion de complexité
d’une tresse et sur l’étude des tresses de complexité élevée.

Nous commençons par un rappel de nombreux résultats concernant aussi bien les
points de vue algébrique que géométrique que l’on peut avoir sur les tresses, et faisant
partie de l’état de l’art. Cela nous laisse ensuite le loisir de nous intéresser de plus près à
des problèmes spécifiques concernant les tresses.

Dans la première moitié de cette thèse, nous optons pour un point de vue géométrique
sur les tresses, et définissons des notions de complexité géométrique adaptées à ce point de
vue. La complexité géométrique des tresses est à l’origine de la construction d’une forme
normale de relaxation pour les groupes de tresses. Nous étudions les propriétés algébriques
de cette forme normale, et montrons que, malgré son origine purement géométrique, la
forme normale de relaxation est rationnelle.

Nous étudions ensuite la croissance des groupes de tresses vis-à-vis de leur complexité
géométrique, et concevons des algorithmes permettant de compter les tresses ayant une
complexité donnée. Nous calculons également de manière exacte la fonction génératrice
associée à la complexité géométrique, dans le cas des groupes de tresses à deux et à trois
brins. Enfin, de manière plus générale, nous procédons à une étude asymptotique du
nombre de tresses ayant une complexité géométrique donnée.

Dans la seconde moitié de cette thèse, nous changeons d’approche et étudions les
tresses du point de vue algébrique, c’est-à-dire en tant que sous-groupe quotient d’un
groupe libre. Nous étudions la croissance des marches aléatoires dans les groupes et les
monoïdes de tresses, et montrons que les formes normales de Garside à gauche et à droite
sont stables. Ce faisant, nous démontrons l’existence d’une limite non triviale pour la
forme normale de Garside à gauche lors des marches aléatoires.

Enfin, nous étudions le problème de la génération uniforme dans les monoïdes d’Artin–
Tits de type FC, une classe qui généralise à la fois les monoïdes de tresses et de traces.
Nous définissons et caractérisons la notion de mesure de Bernoulli uniforme sur des li-
mites projectives de monoïdes d’Artin–Tits de type FC, et démontrons des résultats de
convergence des mesures uniformes usuelles sur les tresses et les traces d’une taille donnée.
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Abstract

Braid groups and monoids form a natural extension of symmetric groups. They arise in
various contexts, that range from the theory of automatic structures to topology. In this
thesis we focus on studying combinatorial properties of braids, as well as of some related
algebraic structures, with an emphasis of the notion of complexity of a braid and on the
study of braids of large complexity.

After recalling state-of-the-art results about braids in both algebraic and geometric
contexts, we focus on specific problems about braids.

In the first half of this thesis, we consider braids from a geometric point of view, and
define adequate notions of geometric complexity of braids. The geometric complexity of
braids leads to the construction of a relaxation normal form on braid groups. We study
the algebraic properties of this normal form and show that, despite its purely geometric
nature, the relaxation normal form is regular.

Then, we study the growth of braid groups with respect to their geometric complexity,
and provide algorithms for counting braids of a given complexity. In addition, we provide
an exact formula for the generating function associated with the geometric complexity,
in the case of the groups of braids with two or three strands, and more generally we focus
on asymptotic studies of the number of braids with a given geometric complexity.

In the second half of this thesis, we change our approach and we adopt the algebraic
point of view on braids, which we view as quotient subgroups of free groups. We study
the growth of random walks in braid groups and monoids, and prove that the left and
right Garside normal forms are stable, thereby constructing a non-trivial limit for the left
Garside normal form of a random walk.

Finally, we study the problem of uniform generation in Artin–Tits monoids of FC
type, a class that encompasses braid and heap monoids. We define and characterise the
notion of uniform Bernoulli measure on a projective limit of Artin–Tits monoids of FC
type, and we prove convergence results for standard uniform measures on braids and
heaps of a given size.
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Chapitre 1

Introduction (Français)

Cette thèse a pour sujet l’étude des propriétés combinatoires des tresses. Bien que les
tresses aient été des objets bien connus depuis des milliers d’années, comme en témoigne
la Figure 1.1, leur étude en tant qu’objets mathématiques ne date que du début du
vingtième siècle, avec les travaux d’Artin [8, 9]. Une définition intuitive des tresses est la
suivante.

Figure 1.1 – Les tresses dans l’antiquité gauloise

Soit un ensemble de n brins, où n est un entier naturel non nul, tel que chaque brin
ait une extrémité supérieure et une extrémité inférieure. Supposons que les extrémités
supérieures de nos n brins soient collées à un axe horizontal, donc contraintes à rester
immobiles, et que les extrémités inférieures puissent être accrochées à un autre axe hori-
zontal : on peut les décrocher de manière temporaire, de manière à les mouvoir, avant de
les raccrocher à l’axe horizontal.

Tresser ces n brins revient à répéter un nombre fini de fois le mouvement de tressage
élémentaire décrit comme suit, et qu’illustre la Figure 1.2. Choisissons deux extrémités
inférieures situées l’une à côté de l’autre, décrochons-les, échangeons leurs positions, et
raccrochons-les à l’axe horizontal. Ce faisant, nous devrons faire passer une des extrémités
au premier plan, tandis que l’autre passera à l’arrière-plan. Par la suite, les brins sont
libres de bouger individuellement, si tant est que leurs extrémités supérieures et inférieures
restent immobiles, et que les brins ne se touchent pas mutuellement : nous considérons
donc les brins à isotopie près.
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Figure 1.2 – Mouvement de tressage élémentaire

Pour tirer de cette description une définition précise, Artin introduit la classe des
diagrammes de tresses (que nous reprendrons en Définition 2.4), puis identifie chaque
tresse à une classe d’isotopie de diagrammes de tresses. La multiplication des tresses se
définit alors de manière naturelle à partir de la concaténation des diagrammes de tresses.
Cette description formelle fut à l’origine de deux points de vue sur les tresses.

Le premier point de vue, de nature algébrique, consiste à voir les tresses comme un
groupe finiment présenté. S’il est aisé de montrer que les tresses forment un groupe fi-
niment engendré, dont les générateurs sont les mouvements de tressage élémentaires,
montrer que les tresses admettent une présentation finie n’est pas évident. Selon le se-
cond point de vue, plus géométrique, les tresses forment le mapping class group d’un
disque épointé, c’est-à-dire le quotient d’un certain groupe d’homéomorphismes du disque
épointé par la relation d’isotopie.

Dès lors que l’on considère au moins deux brins, le groupe de tresses associé est infini,
ce qui est à l’origine de plusieurs questions importantes d’ordre algorithmique. Est-il
algorithmiquement faisable, et à quel coût, de tester si elles sont égales ? De définir des
représentants canoniques des tresses et de les manipuler ? Ces questions sont au cœur de
cette thèse.

Y répondre requiert de procéder en plusieurs étapes. Une première étape est de for-
muler ces questions de manière rigoureuse, et de définir les outils adéquats pour trouver
une telle formulation. De tels outils incluent diverses notions de complexité, qui peuvent
être liées à différents aspects des tresses et donc être adéquates dans des contextes va-
riés. En effet, et bien que la notion de complexité d’une tresse puisse être intuitivement
liée à l’idée qu’une tresse est complexe si ses descriptions sont complexes, les points de
vue algébrique et géométrique sur les tresses nous conduisent à des types de descriptions
divers, donc à des notions de complexité diverses également.

Une seconde étape consiste à concevoir des formes normales, c’est-à-dire des représen-
tations canoniques des tresses. Selon le point de vue algébrique, les tresses sont des
classes d’équivalence de mots, et choisir une forme normale consiste donc à choisir, pour
chaque tresse, un mot qui la représente. Idéalement, ces formes normales devraient elles
devraient être facile à calculer, c’est-à-dire que, étant données les formes normales respec-
tives NFpαq et NFpβq de deux tresses α et β, le calcul de la forme normale du produit
αβ devrait être algorithmiquement peu coûteux. Il est donc raisonnable de rechercher
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des formes normales ayant des propriétés variées telles que la géodicité (les mots choisis
devraient être aussi courts que possible), la rationalité (l’ensemble des mots de la forme
NFpαq devrait être rationnel, c’est-à-dire accepté par un automate fini) ou l’automati-
cité (pour chaque générateur σ du groupe de tresses, l’ensemble des couples de la forme
pNFpαq,NFpσαqq devrait être rationnel, de même que l’ensemble des couples de la forme
pNFpαq,NFpσαqq). De même, on peut souhaiter que la longueur du mot NFpαq et le
coût du calcul de NFpαβq soient corrélés avec les complexités des tresses α et β.

Une troisième étape consiste en l’étude des tresses de grande complexité. Cette analyse
inclut des sujets tels que le dénombrement des tresses d’une complexité donnée et la
génération uniforme des tresses d’une complexité donnée. Un outil clé dans l’étude de ces
deux sujets est la notion de fonction génératrice. Les fonctions génératrices permettent
l’utilisation de l’analyse réelle ou complexe pour en déduire des estimations, plus ou moins
précises, exactes ou bien asymptotiques, du nombre de tresses d’une complexité donnée.

Parallèlement, une question naturelle est la suivante : dans quelle mesure peut-on
réduire le problème de la génération aléatoire uniforme de tresses de complexité k au
problème de la génération aléatoire uniforme de tresses de complexité k ` 1 (et vice-
versa) ? Cela nous mène à prendre en compte d’autres manières de tirer des tresses au
hasard, comme les marches aléatoires, et dans lesquelles une tresse de complexité k ` 1
est simplement vue comme le produit d’un générateur élémentaire par une tresse de
complexité k.

Contributions principales de cette thèse

Nous présentons ci-dessous une description détaillée de chaque chapitre ainsi que des
contributions principales qu’il contient.

Le chapitre 2 est pour une large part bibliographique, et consiste en la revue de
plusieurs notions faisant partie de l’état de l’art et qui seront utilisées par la suite. Ce
chapitre se compose de deux parties. La première partie est centrée sur le point de vue
algébrique sur les tresses, ainsi que sur d’autres structures algébriques, dont les relations
sont esquissées par la Figure 1.3.

Afin d’identifier des cadres dans lesquels nous pourrons étudier les propriétés des mo-
noïdes de tresses (donc des groupes de tresses), nous étudions d’abord deux généralisa-
tions des monoïdes de tresses que sont les monoïdes d’Artin–Tits et les monoïdes de
Garside. Ces classes ne se généralisent pas l’une l’autre, ce qui nous pousse à intro-
duire la classe des monoïdes d’Artin–Tits de type sphérique, qui sont à l’intersection
des monoïdes d’Artin–Tits et des monoïdes de Garside. Diverses propriétés algébriques,
centrées notam-ment sur les formes normales de Garside, sont prouvées dans le cadre des
monoïdes de Garside. Puis, dans le contexte plus restreint des monoïdes d’Artin–Tits de
type sphérique, certaines de ces propriétés sont précisées, ce qui nous mène à la notion de
forme normale de Garside symétrique. Nous étudions ensuite les monoïdes de traces, qui
forment une structure algébrique analogue aux monoïdes de tresses. De surcroît, outre
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ces structures algébriques déjà largement étudiées [9, 20, 37, 42, 43, 44, 53], nous étudions
les monoïdes d’Artin–Tits de type FC, qui regroupent à la fois les monoïdes de traces et
les monoïdes d’Artin–Tits de type sphérique.

Mono
ïdes de Garside Mono

ïdes d’Artin–Tits Tresses

Traces

Monoïdes d’Artin–Tits
de type FC

Monoïdes d’Artin–Tits
de type sphérique

Figure 1.3 – Structures algébriques étudiées dans le chapitre 2

La seconde partie du chapitre 2 est centrée sur l’étude des aspects géométriques des
groupes de tresses, notamment la représentation des tresses par des laminations du disque
épointé et des diagrammes de courbes, qui sont des représentations géométriques clas-
siques des tresses [13, 39, 48]. Nous déduisons de ces représentations deux notions de com-
plexité géométrique, dont nous montrons qu’elles sont intimement liées l’une à l’autre, et
qui seront au centre de l’attention des chapitres 3 et 4.

Le chapitre 3 est dédié à l’étude de la forme normale de relaxation, qui provient du
point de vue géométrique sur les tresses. Cette forme normale a été introduite et étudiée
dans [25], et est un cas particulier d’une famille de formes normales introduites dans [46].

Nous définissons d’abord de nouvelles structures discrètes, de nature combinatoire,
que nous appelons arbres de laminations, arbres d’arcs et cartes cellulaires, liées aux
représentations géométriques des tresses. Nous prouvons plusieurs propriétés topologiques
et combinatoires simples de ces objets, et montrons en particulier que les arbres d’arcs
associés à une tresse sont des arbres enracinés unaires-binaires. Cette étude est à l’origine
de la contribution principale du chapitre 3, qui consiste à montrer que, malgré sa nature
géométrique,

La forme normale de relaxation est rationnelle.

Nous procédons en calculant explicitement un automate déterministe qui reconnaît
la forme normale de relaxation. Il s’agit donc d’une nouvelle forme normale rationnelle,
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qui vient s’ajouter aux formes normales de Garside [37, 53], de Birman-Ko-Lee [15] et de
Bressaud [19]. Notons en revanche que les autres formes normales étudiées dans [46] ne
sont pas rationnelles a priori.

Nous prouvons ensuite d’autres résultats sur la forme normale de relaxation et sur
l’automate susmentionné. Nous démontrons d’abord que notre automate et l’automate
déterministe minimal de la forme normale de relaxation ont des tailles comparables. Plus
précisément, si on note C et Cmin leurs nombres d’états respectifs, alors Cmin ď C ď

260C40
min, les constantes 260 et 40 n’étant pas optimales. Nous mettons ensuite en évidence

une connexion entre la forme normale de relaxation et l’ordre de Dehornoy sur les tresses,
et prouvons que la forme normale de relaxation associe l’ensemble des tresses positives
pour l’ordre de Dehornoy à un ensemble de mots rationnel. Nous concluons enfin ce
chapitre en conjecturant l’automaticité de la forme normale de relaxation, conjecture que
nous démontrons dans le cas des groupes de tresses à trois brins.

Le contenu de ce chapitre provient en grande partie de [63], et est soumis pour publi-
cation.

Le chapitre 4 est consacré au problème du dénombrement des tresses ayant une
complexité géométrique donnée. Si la question du dénombrement a été abondamment
étudiéé dans le cadre de la complexité algébrique, issue de la représentation des tresses
sous la forme de factorisations en un nombre minimal de générateurs d’Artin, elle ne
semble pas avoir été considérée précédemment pour la complexité géométrique.

Nous commençons par généraliser la notion de diagrammes de courbes, puis nous
introduisons une bijection entre les diagrammes de courbes généralisés et un système
de coordonnées à valeurs entières. Nous mettons alors en évidence des critères simples
caractérisant les collections d’entiers qui sont les coordonnées d’un diagramme de courbes
(au sens usuel). Nous définissons ensuite la fonction génératrices associée à la complexité
géométrique du groupe à n brins, c’est-à-dire la fonction Bnpzq :“

ř

kě0 bn,kz
k telle que

bn,k est le nombre de tresses à n brins et de complexité géométrique k. Les critères
susmentionnés nous permettent alors de calculer les fonctions B2pzq et B3pzq et, plus
précisément, de montrer que

La fonction B3pzq, qui n’est ni rationnelle ni même holonome, et les entiers
b3,k sont donnés par :

B3pzq “ 2
1` z2 ´ z4

z2p1´ z4q

˜

ÿ

ně3

ϕpnqzn

¸

`
z2p1´ 3z4q

1´ z4
;

b3,k “ 1k“0 ` 2

˜

ϕpk ` 2q ´ 1kP2Z ` 2

rk{2s
ÿ

i“1

ϕpk ` 3´ 2iq

¸

1kě1,

où ϕ est l’indicatrice d’Euler.
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Il est intéressant de constater que, alors que la complexité algébrique est a priori
beaucoup plus difficile à calculer que la complexité géométrique, la série associée à la
complexité algébrique pour le groupe de tresses à trois brins est rationnelle, c’est-à-dire
beaucoup plus simple que la série associée à la complexité géométrique pour le groupe de
tresses à trois brins.

Nous calculons également des équivalents simples des entiers b3,k quand k Ñ `8, et
identifions des bornes supérieures et inférieures non triviales pour les entiers bn,k quand
n ě 4.

Ce chapitre est majoritairement issu de [64] et a été publié dans Journal of Knot
Theory and Its Ramifications.

Le chapitre 5 est centré sur l’étude et la convergence des marches aléatoires dans les
monoïdes et groupes d’Artin–Tits de type sphérique irréductibles. Nous commençons par
étudier le cadre plus simple des marches aléatoires dans les monoïdes et les groupes de
traces irréductibles. Les résultats mentionnés existent déjà sous diverses formes [54, 77],
et nous en donnons ici une démonstration unifiée. En nous appuyant sur la notion de trace
bloquante, nous montrons que les préfixes des formes normales de Garside des éléments
obtenus lors d’une marche aléatoire à droite sur un monoïde ou un groupe de traces
irréductible convergent presque sûrement, c’est-à-dire que les formes normales de Garside
de deux traces successives obtenues lors de la marche aléatoire ont des suffixes communs
arbitrairement longs.

Nous quittons ce cadre déjà bien connu et étudions les marches aléatoires dans des
monoïdes et groupes d’Artin–Tits de type sphérique irréductibles. La situation générale
est analogue mais les monoïdes et les groupes de tresses ont un centre non trivial, ce
qui complique considérablement les choses : si la question de la stabilisation de la forme
normale de Garside a été posée par Vershik dès le début des années 2000 [89, 90], elle
n’avait pas de réponse jusqu’à aujourd’hui. Nous proposons une telle réponse dans le
contexte des groupes d’Artin–Tits de type sphérique irréductibles.

Nous introduisons tout d’abord la notion de graphe de Garside bilatère, graphe qui
accepte l’ensemble des mots qui sont à la fois des formes normales de Garside à gauche
et à droite. Nous prouvons que le graphe de Garside bilatère est fortement connexe et
nous en déduisons une notion de mot de tresses bloquant analogue aux traces bloquantes,
emprunté à [26]. Puis, en usant d’arguments de sous-additivité tels que le lemme ergodique
de Kingman, nous démontrons que

Les préfixes des formes normales de Garside à droite des éléments obtenus
lors d’une marche aléatoire à droite sur un monoïde d’Artin–Tits de type
sphérique irréductible convergent presque sûrement.
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Nous montrons aussi dans quelles conditions ce résultat peut être appliqué au cadre
des groupes d’Artin–Tits de type sphérique.

Nous étudions ensuite la limite des formes normales de Garside à gauche associée
à la notion de convergence présentée ci-dessus et démontrons que, sous des hypothèses
assez larges, cette limite est ergodique. Nous en déduisons d’autres résultats concernant
la densité de sous-mots dans la limite et sur la distance de pénétration dans la limite
et dans des mots obtenus après avoir effectué un grand nombre de pas, ainsi que sur la
vitesse de convergence des formes normales vers cette limite.

Le contenu de ce chapitre est majoritairement issu d’un article en cours de rédaction,
écrit en collaboration avec Jean Mairesse.

Le chapitre 6 est centré sur l’étude et le calcul systématique du diamètre du graphe
de Garside bilatère des groupes d’Artin–Tits de type sphérique irréductibles. Sous des
hypothèses plus relâchées que celles considérées à la fin du chapitre 5, la vitesse de conver-
gence des formes normales de Garside vers leur limite est minorée en fonction, entre autres,
du diamètre du graphe de Garside bilatère du groupe considéré. Le calcul du diamètre
de ce graphe est donc une question naturelle qui permet d’obtenir de meilleures garanties
sur la vitesse de convergence des formes normales de Garside.

En considérant séparément les différents types de groupes de Coxeter associés aux
groupes d’Artin–Tits de type sphérique irréductibles, nous démontrons que

Le diamètre du graphe de Garside bilatère d’un groupe d’Artin–Tits de type
sphérique irréductible de groupe de Coxeter W vaut

• 1 si W “ I2paq ;
• 2 si W “ F4, H3 ou H4 ;
• 3 si W “ A3, B3, B4, D4 ou En (avec 6 ď n ď 8) ;
• 4 si W “ An (avec n ě 4), Bn (avec n ě 5) ou Dn (avec n ě 6).

Cette étude est effectuée directement dans le cas des familles infinies de groupes de
Coxeter de type An, Bn, Dn, et à l’aide de l’ordinateur dans le cas des familles finies de
groupes de Coxeter exceptionnels.

Le chapitre 7 est dédié à la construction de mesures uniformes sur les monoïdes
d’Artin–Tits de type FC. De telles mesures uniformes ont déjà été étudiées dans le cadre
des monoïdes de traces [2], et nous suivons ici un programme parallèle dans le contexte
des monoïdes d’Artin–Tits de type FC, et en particulier des tresses.

Ces mesures uniformes sont apparentées à la mesure de Parry [72, 79] et à la mesure
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de Patterson-Sullivan [65, 81, 87]. La mesure de Parry est la mesure d’entropie maximale
d’un système dynamique symbolique sofique, c’est-à-dire, de manière informelle, la me-
sure uniforme sur les chemins infinis dans un automate fini. Les éléments d’un monoïde
d’Artin–Tits de type FC sont représentés par leur forme normale de Garside à gauche, qui
est donc reconnue par un automate fini associé à une mesure de Parry, et nous mettons ici
en lumière la structure combinatoire de cette mesure de Parry. La mesure de Patterson-
Sullivan est également une mesure uniforme sur le bord à l’infini de certains groupes
géométriques. Alors que la preuve de l’existence de cette mesure n’est pas constructive en
général, nous proposons ici une construction explicite de la mesure de Patterson-Sullivan.

Nous commençons par définir une notion de monoïdes d’Artin–Tits de type FC éten-
dus, qui sont des limites projectives de monoïdes d’Artin–Tits de type FC contenant à
la fois des éléments finis et infinis. Nous étudions alors la notion de mesure uniforme
paramétrée par une valuation et sur le cas particulier des mesures de Bernoulli, et nous
identifions plusieurs caractérisations et paramétrages équivalents des mesures uniformes
ainsi que des mesures de Bernoulli. Nous prouvons entre autres que l’ensemble des me-
sures de Bernoulli d’un monoïde d’Artin–Tits de type FC étendu est homéomorphe à un
simplexe ouvert. Nous relions ensuite les mesures de Bernoulli aux mesures uniformes sur
les sphères (la sphère de rayon k étant définie comme l’ensemble des éléments de longueur
k) et démontrons que, pour tout monoïde d’Artin–Tits de type FC,

La famille des mesures uniformes sur les sphères converge au sens faible vers
une mesure de Bernoulli.

Ce résultat nous permet de démontrer la convergence en loi de nombreuses variables
aléatoires, par exemple les préfixes de la forme normale de Garside à gauche d’une tresse
choisie uniformément au hasard parmi les tresses positives de longueur k. Il nous permet
en particulier de réfuter une conjecture de Gebhardt [55] et de démontrer une variante
de cette conjecture.

À l’aide de la notion de graphe pondéré conditionné, nous établissons ensuite d’autres
résultats de convergence plus fins, qui concernent les fonctions Garside-additives et les
fonctions additives, dans le cadre des monoïdes d’Artin–Tits de type FC. Ces résultats
incluent des variantes du théorème central limite, qui nous donnent des informations
précises sur le comportement asymptotique de quantités telles que l’accélération moyenne
due à la parallélisation d’une suite de calcul partiellement parallélisable. Il s’agit là d’une
extension des résultats généraux de Hennion et Hervé [61] au cadre des monoïdes de
tresses. Enfin, nous détaillons explicitement certains des calculs susmentionnés dans les
cas spécifiques des monoïdes de tresses usuels et de modèles de dimères.
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Chapter 1

Introduction (English)

This thesis is devoted to the study of combinatorial properties of braids. Although braids
have been well-known objects for thousands of years, as illustrated by Figure 1.1, their
study as mathematical objects dates only from the early twentieth century, with the
seminal work of Artin [8, 9]. An intuitive definition of braids is as follows.

Figure 1.1 – Braids in the ancient Gaulish society

Consider a set of n strands, where n is a positive integer, such that each strand has
one upper and one lower end. We assume that the upper ends of our n strands are glued
to some horizontal axis, hence cannot move, while the lower ends are clipped to some
horizontal axis: we may temporarily release some of the clips, in order to move the lower
ends, before reattaching the clips to the horizontal axis.

Braiding these n strands consists in repeating a finite number of times the following
elementary braiding move, illustrated in Figure 1.2. Choose two consecutive lower ends,
unclip them, then exchange their positions, and reclip them to the lower horizontal axis.
While doing so, we will have to make one of the lower ends go to the foreground, while the
other one must go to the background. Afterwards, the strands may still move individually,
provided that their upper and lower ends remain motionless, and that the strands do not
touch each other: the strands are considered up to isotopy.

Making the above description precise, Artin introduces the class of braid diagrams
(see Definition 2.4), then identifies braids with an isotopy set of braid diagrams. The



26

concatenation of braid diagrams leads then to a notion of multiplication of braids. This
formal mathematical description of braids subsequently led to two points of view on
braids.

Figure 1.2 – Elementary braiding move

In the first one, which is of algebraic nature, braids form a finitely presented group;
showing that braids form a finitely generated group, whose generators are the elementary
braiding moves, is straightforward, but showing that the group of braids may admits
a finite presentation is not so obvious. In the second point of view, which has a more
geometric flavour, braids form a mapping class group of a punctured open disk, i.e. are
the quotient of some group of homeomorphisms of the punctured open disk by the isotopy
relation.

As soon as the number of strands considered is greater than one, braid groups are
infinite, and as such raise important questions of algorithmic nature. Is it computationally
possible, and at which cost, to test braid equality? To define canonical representatives of
braids and to handle them? These questions lie at the core of this thesis.

Answering these questions requires several steps. A first step consists in making the
question statement precise, and defining adequate tools for tackling it. Such tools include
defining several notions of complexity, which may enlighten different aspects of braids and
be meaningful in various contexts. Indeed, and although the notion of complexity of a
braid may be intuitively bound to the idea that “a braid is complex if it has only complex
descriptions”, the algebraic and geometric points of view on braids lead to descriptions
of different kinds, and thus to different notions of complexities.

A second step resides in designing normal forms, i.e. canonical representations of
braids. In the algebraic viewpoint, braids are equivalence classes of words, and therefore
choosing a normal form consists in choosing, for each braid, a word that represents this
braid. A crucial point of normal forms is that they should be easy to compute, i.e. that,
given the respective normal forms NFpαq and NFpβq of two braids α and β, computing
the normal form of the braid αβ should be algorithmically inexpensive. Consequently,
it makes sense to look for various properties of normal forms, such as geodicity (the
chosen words should be as short as possible), regularity (the set of words of the form
NFpαq should be regular, i.e. recognised by a finite-state automaton) or automaticity
(for each generator σ of the braid group, the sets of pairs of the form pNFpαq,NFpσαqq,
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respectively of the form pNFpαq,NFpσαqq, should be regular sets). Alternatively, we
might wish that the length of the word NFpαq and the cost of computing NFpαβq be
correlated with the complexities of the braids α and β.

A third step consists in a study of braids of large complexity. This analysis includes
topics such as counting braids of a given complexity or generating uniformly braids of
a given complexity. A key ingredient in the study of both these topics is the use of
generating functions. Indeed, generating functions allow using real and complex analysis
for deriving more or less precise, exact or asymptotic, estimations of the number of braids
of a given complexity.

In parallel, we might wish to design an algorithm in which, provided that we be able
to draw braids of complexity k uniformly at random, would allow us to draw braids of
complexity k ` 1 uniformly at random. This leads us to consider alternative manners of
drawing braids such as random walks, in which a braid of complexity k ` 1 is just seen
as the product of an elementary generator by a braid of complexity k.

Main Contributions of this Thesis

We present below a detailed description of each chapter and of the main contributions
contained in each of them.

Chapter 2 is mostly bibliographical, and consists in an overview of several state-
of-the-art notions that will be used subsequently. This chapter is divided in two parts.
The first part is focused on the algebraic point of view on braids, as well as on related
algebraic structures, whose relations are depicted in Figure 1.3.

Ga
rside Monoids Art

in–Tits Monoids
Braids

Heaps

Artin–Tits Monoids
of FC type

Artin–Tits Monoids
of spherical type

Figure 1.3 – Algebraic structures studied in Chapter 2

Aiming first to identify general frameworks in which we will be able to study the
properties of braid monoids, and therefore of braid groups, we first focus on two general-
isations of braids monoids, which are Artin–Tits monoids and Garside monoids. Neither
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class generalises the other class, and therefore we also identify the class of Artin–Tits
monoids of spherical type, which lies at the intersection between Artin–Tits monoids and
Garside monoids. Various algebraic properties, with a remarkable emphasis on Garside
normal forms, hold in the context of Garside monoids. Later, when considering the re-
stricted framework of Artin–Tits monoids of spherical type, some of these properties are
refined, which leads to the notion of symmetric Garside normal form. We focus then
on heap monoids, which are an algebraic structure analogous to braid monoids. Further-
more, in addition to these well-known structures [9, 20, 37, 42, 43, 44, 53], we also focus
on the notion of Artin–Tits monoid of FC type, which encompasses both heap monoids
and Artin–Tits monoids of spherical type.

The second part of Chapter 2 is focused on geometric aspects of braid groups, and in
particular on the representation of braids in terms of laminations of the punctured disk
and of curve diagrams, which are standard geometric representations of braids [13, 39, 48].
We derive from these representations two notions of geometric complexities, which we
show to be deeply connected to each other, and which will be the focal points of Chapters 3
and 4.

Chapter 3 is focused on the study of the relaxation normal form, -which is a nor-
mal form stemming from the geometric point of view of braids. This normal form was
introduced and studied in [25] and belongs to a larger class of normal forms introduced
in [46].

We begin by defining new discrete, combinatorial structures, which we call lamination
trees, arc trees and cell maps, in connection with geometric representations of braids. We
show that these structures enjoy simple combinatorial and topological properties, and
prove in particular that the arc trees associated with a braid are unary-binary rooted
trees. This study leads to the main contribution of Chapter 3, which consists in proving
that, in spite of its geometric nature,

The relaxation normal form is regular.

We do so by computing explicitly a deterministic automaton that recognises the re-
laxation normal form. Hence, we extend the class of known regular normal forms, which
already contains the normal forms of Garside [37, 53], of Birman-Ko-Lee [15] and of
Bressaud [19]. However, the other normal forms studied in [46] do not seem to be regular.

Later on, we prove additional results on the relaxation normal form and on the au-
tomaton computed above. We first prove that our automaton and the minimal deter-
ministic automaton of the relaxation normal form have state spaces of comparable sizes.
More precisely, if their state spaces are of respective cardinalities C and Cmin, we prove
that Cmin ď C ď 260C40

min, where the constants 260 and 40 are not meant to be opti-
mal. Second, we draw strong connections between the relaxation normal form and the
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order of Dehornoy on braids, and prove that the relaxation normal form maps the set
of Dehornoy-positive braids to a regular set of words. Finally, we conjecture that the
relaxation normal form is synchronously automatic, and prove that our conjecture holds
in the case of the three-strand braid group.

Most of the content of this chapter appeared in [63], and was submitted for publication.

Chapter 4 is devoted to the problem of counting braids with a given geometric com-
plexity. Whereas the problem of counting braids with a given algebraic complexity (i.e.
braids that are a product of a given number of Artin generators) was abundantly studied,
the problem of counting braids with a given geometric complexity does not seem to have
been considered yet. We begin with defining a generalisation of curve diagrams, then de-
sign a bijection between generalised curve diagrams and a system of integer coordinates,
and we identify simple criteria that characterise which collections of integers are the co-
ordinates of a (standard) curve diagram. Then, we introduce the generating functions
associated with the geometric complexity in the n-strand braid group, i.e. the functions
Bnpzq :“

ř

kě0 bn,kz
k such that bn,k is the number of n-strand braids and geometric com-

plexity k. The above-mentioned criteria allow us to compute closed expressions of the
functions B2pzq and B3pzq and, more precisely, to show that

The function B3pzq, which is not rational, nor even holonomic, and the
integers b3,k are given by:

B3pzq “ 2
1` z2 ´ z4

z2p1´ z4q

˜

ÿ

ně3

ϕpnqzn

¸

`
z2p1´ 3z4q

1´ z4
;

b3,k “ 1k“0 ` 2

˜

ϕpk ` 2q ´ 1kP2Z ` 2

rk{2s
ÿ

i“1

ϕpk ` 3´ 2iq

¸

1kě1,

where ϕ denotes the Euler totient.

Whereas the algebraic complexity of braids is much harder to compute than the
geometric complexity, the generating function associated with the algebraic complexity
for the group of braids with three strands is rational, i.e. much more simple than the
generating function associated with the algebraic complexity for the group of braids with
three strands.

In addition, we compute simple equivalents of the integers b3,k when k Ñ `8, and
find non-trivial lower and upper bounds on the integers bn,k when n ě 4.

Most of the content of this chapter appeared in [64] and was published in the Journal
of Knot Theory and Its Ramifications.
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Chapter 5 is focused on the study and the convergence of random walks in irreducible
braid groups and monoids. We first recall some results for random walks in irreducible
heap monoids and irreducible heap groups, which are scattered in several papers [54,
77], and for which we provide here unified proofs. Using the notion of blocking heap,
we show that the Garside normal forms of the elements obtained during random walks
on irreducible heap monoids and on irreducible heap groups are almost surely prefix-
convergent, i.e. that the Garside normal forms of two successive heaps obtained during
the random walk have common prefixes of arbitrarily large sizes.

Then, we change our framework and study random walks in irreducible Artin–Tits
monoids of spherical type and groups. The overall situation is analogous but, due to
the fact that braid monoids and groups have a non-trivial centre, the problem is much
harder: although Vershik had asked in the 2000s the question of the stabilisation of
Garside normal forms in braid groups [89, 90], no answer had yet been provided. We
provide such an answer in the context of irreducible Artin–Tits groups of spherical type.

We first introduce a notion of bilateral Garside automaton, which accepts the words
that are both left and right Garside normal words. We prove that the bilateral Garside
automaton is strongly connected and we derive a notion of blocking braid word analogous
to blocking heaps, which we borrow from [26]. Then, using sub-additivity arguments such
as Kingman’s ergodic lemma, we prove that

The right Garside normal forms of the elements obtained during right ran-
dom walks on irreducible Artin–Tits monoids of spherical type are almost
surely prefix-convergent.

We also show in which conditions this result can be lifted to the framework of Artin–
Tits groups of spherical type.

Subsequently, we study the limit of the left Garside normal forms associated with the
above notion of suffix-convergence and prove that, under mild assumptions on the random
walk, this limit is ergodic. From this result, we derive additional results concerning the
density of subwords of the limit and on the penetration distance into the limit and into
words attained after having performed a large number of steps, as well as the speed of
convergence of normal forms towards their limit.

The content of this chapter is aimed to be published in an article written in collabo-
ration with Jean Mairesse.

Chapter 6 consists in the study and the systematic computation of the diameter of
the bilateral Garside automaton of irreducible Artin–Tits groups of spherical type. Under
more relaxed hypotheses than those considered at the end of Chapter 5, the speed of
convergence of Garside normal forms towards their limit is bounded below by parameters
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that depend, among others, of the diameter of the bilateral Garside automaton. Therefore,
computing this diameter is a natural question in order to derive better guarantees on the
speed of convergence of the Garside normal forms.

By treating separately the different types of Coxeter groups associated with irreducible
Artin–Tits groups of spherical type, we show that

The diameter of the bilateral Garside automaton of an irreducible Artin–
Tits group of spherical type with Coxeter group W is

• 1 if W “ I2paq;
• 2 if W “ F4, H3 or H4;
• 3 if W “ A3, B3, B4, D4 or En (with 6 ď n ď 8);
• 4 if W “ An (with n ě 4), Bn (with n ě 5) or Dn (with n ě 6).

This study was performed directly for infinite families of Coxeter groups of type An,
Bn, Dn, and with the help of computers for finite families of exceptional Coxeter groups.

Chapter 7 is devoted to the construction of uniform measures on Artin–Tits monoids
of FC type. Such uniform measures have already been studied for heap monoids [2], and
we develop here analogous arguments in the context of Artin–Tits monoids of FC type,
and in particular in the context of braid monoids.

These uniform measures are similar to the Parry measure [72, 79] and to the Patterson-
Sullivan measure [65, 81, 87]. The Parry measure is the measure of maximal entropy of
a sofic subshift, i.e., informally, the “uniform” measure on infinite paths in a finite-state
automaton. The elements of an Artin–Tits monoid of FC type are represented by their
Garside normal form, which is recognised by a finite-state automaton associated with a
Parry measure. The Patterson-Sullivan measure is also a uniform measure on the border
at infinity of some geometric groups. Although the proof of the existence of this measure
is not constructive in general, we propose here an explicit construction of the Patterson-
Sullivan measure.

We first define the class of extended Artin–Tits monoids of FC type, which are projec-
tive limits of Artin–Tits monoids of FC type containing both finite elements and infinite
elements. We first explore the notion of uniform measure parametrised by a valuation, with
a special emphasis on the concept of Bernoulli measure, and find equivalent characterisa-
tions and parametrisations of uniform measures and of Bernoulli measures. In particular,
we prove that the set of Bernoulli measures on an extended Artin–Tits monoid of FC type
is homeomorphic to an open simplex. Then, we relate Bernoulli measures with uniform
measures on spheres (the “sphere of radius k” is defined as the set of elements of length
k) and prove that, for all Artin–Tits monoids of FC type,
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The family of uniform measures on spheres converges weakly towards a
Bernoulli measure.

This statement allows us to prove a wide range of convergence results, for instance
on the leftmost letter of left Garside normal words of braids chosen uniformly at ran-
dom among the set of braids of length k. In particular, we disprove a conjecture of
Gebhardt [55] and prove a variant of this conjecture.

Later, using the notion of conditioned weighted graphs, we derive finer convergence
results about Garside-additive functions and additive functions in Artin–Tits monoids
of FC type. Such results include central limit theorems, which provide us with detailed
informations about the asymptotic behaviour of quantities such as the mean speed-up of
the parallelisation of partially commutative computations. This is an extension of general
result of Hennion and Hervé [61] to the framework of braid monoids. Finally, we detail
explicitly some of the above-mentioned computations in the specific cases of the standard
braid monoids and of the dimer models.
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Chapter 2

Preliminaries

Résumé

Nous énonçons ici des définitions et des résultats préliminaires concernant les groupes
de tresses et faisant partie de l’état de l’art. Ces définitions et résultats suivent deux
approches. La première approche est algébrique. Elle concerne aussi bien les groupes de
tresses que les groupes d’Artin–Tits de type sphérique. Elle consiste à voir les groupes de
tresses comme des groupes finiment présentés, donc à identifier chaque tresse à une classe
d’équivalence de mots pour une certaine relation de congruence. Nous étudions égalemnt
la notion de monoïde d’Artin–Tits de type FC, qui inclut à la fois les tresses et les traces
et permet d’unifier les formes normales de Garside et de Cartier-Foata.

La deuxième approche est géométrique, et ne concerne que les groupes de tresses,
excluant donc les groupes d’Artin–Tits de type sphérique. Elle consiste à voir les groupes
de tresses comme des groupes d’isotopie sur diverses structures topologiques, notamment
le disque épointé avec bord immobile, donc à identifier chaque tresse à une classe d’équiva-
lence d’homéomorphismes du disque unité complexe.

Abstract

We state here the preliminary definitions and state-of-the-art results related to braid
groups. These definitions and results follow two approaches on braids. The first approach
is algebraic. It concerns braid groups, but also Artin–Tits groups of spherical type. It is
based on viewing braid groups as finitely presented groups, hence identifying each braid
with an equivalence class of words under some congruence relation. We also study the
notion of Artin–Tits monoid of FC type, which includes both braids and traces and allows
unifying the Garside normal form and the Cartier-Foata normal form.

The second approach is geometric, and concerns only braid groups, not all Artin–Tits
groups of spherical type. It is based on viewing braid groups as isotopy groups of some
topological structures, namely the punctured disks with fixed border, hence identifying
each braid with an equivalence class of homeomorphisms of the unit complex disk.
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2.1 Some Notations About Words

Throughout the entire document, we will frequently deal with words, whose letters will be
chosen from various (finite or infinite) alphabets. Consequently, we begin with introducing
some of the notations that we will frequently use in the following pages.

Let A be such an alphabet. We denote by A˚ the set of finite words with letters in
A, whose elements will be denoted by finite sequences of the form w1 ¨ w2 ¨ . . . ¨ wk or
w´k ¨ . . . ¨ w´2 ¨ w´1. In particular, we have wi “ wi´1´k for all i P t1, . . . , ku.

We will have to manipulate several kinds of products. Hence, from this point on, we
reserve the use of the ¨ product for concatenating letters into a word, or for concatenating
words. In particular, in case A is a monoid or a group, then the notation w1w2 will denote
the product of the elements w1 and w2 in A, whereas the notation w1 ¨w2 will denote the
2-letter-word whose letters are w1 and w2.

In order to emphasise the difference between elements of A˚ and elements of A,
we also choose to denote each (finite or infinite) word with an underlined letter, whereas
underlined letters will never be used for denoting objects that are not words. For example,
if a “ a1 ¨ a2 ¨ . . . ¨ ak is an element of A˚, we will denote the product element a1a2 . . . ak
by xay, or simply a if the context is clear.

Let w :“ w1 ¨w2 ¨ . . . ¨wk and x :“ x1 ¨x2 ¨ . . . ¨x` be two elements of A˚. We denote by
|w| the length of the word w, i.e. the integer k. We also denote by w ¨x the concatenation
of the word w with the word x, i.e. the word w1 ¨ w2 ¨ . . . ¨ wk ¨ x1 ¨ x2 ¨ . . . ¨ x`.

If w is a finite sub-word of x, i.e. there exists integers i and j, with the same sign,
such that i ď j` 1 and that w “ xi ¨ xi`1 ¨ . . . ¨ xj, then we denote the word w by xi...j. If
i ą j ` 1, we also denote by xi...j the empty word. In addition, if w is a prefix of x, i.e. if
i “ 1 and 0 ď j, we also denote w by prejpxq. Likewise, if w is a suffix of x, i.e. if i ď 0
and j “ ´1, we also denote w by suf |i|pxq.

Moreover, we will write w Ÿ x when w is a prefix of x, and w Ź x when x is a suffix
of w. If w Ÿ x, we also denote by w´1 ¨ x the suffix of x such that w ¨ pw´1 ¨ xq “ x. If
xŹw, we denote by x ¨w´1 the prefix of x such that px ¨w´1q ¨w “ x.

Finally, if ϕ : A ÞÑ A is an endomorphism of monoids, we denote by ϕpwq the
word ϕpw1q ¨ ϕpw2q ¨ . . . ¨ ϕpwkq; hence, xϕpwqy “ ϕpxwyq. If ψ : A ÞÑ A is an anti-
endomorphism of monoids, i.e if ψpbcq “ ψpcqψpbq for all b, c P A, we denote by ψpwq
the word ψpwkq ¨ ψpwk´1q ¨ . . . ¨ ψpw1q; hence, xψpwqy “ ψpxwyq.

2.2 Braids, Configuration Spaces and Braid Diagrams

The following seminal definition of braid groups and monoids is due to Artin [9].
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Definition 2.1 (Braid monoid and braid group).
Let n be some positive integer. The braid monoid on n strands is the monoid B`n presented
as follows:

B`n :“ xσ1, . . . , σn´1 | σiσi`1σi “ σi`1σiσi`1, σiσj “ σjσi if |i´ j| ě 2y` .

The braid group on n strands is the group Bn presented as follows:

Bn :“ xσ1, . . . , σn´1 | σiσi`1σi “ σi`1σiσi`1, σiσj “ σjσi if |i´ j| ě 2y .

Such groups and monoids are the central object on which we will focus. In his seminal
work [9], Artin showed that braid groups are isomorphic to the fundamental groups of
configuration spaces, as follows.

Definition 2.2 (Configuration space).
Let n be some positive integer. Consider the set FnpCq “ tpz1, . . . , znq P Cn : @i ‰ j, zi ‰
zju of n-tuples of pairwise distinct complex numbers.

Observe that the symmetric group Sn acts freely on FnpCq. We call configuration space
with n complex points, and denote by CnpCq, the orbit space of the action of Sn over
FnpCq.

Alternatively, one may define CnpCq as the set of subsets of C with cardinality n, i.e.
CnpCq :“ tS Ď C : |S| “ nu.

Theorem 2.3.
Let n be some positive integer. The braid group Bn is isomorphic to the fundamental
group of the set CnpCq, i.e. Bn » π1pCnpCqq.

Each path in the configuration space CnpCq is commonly represented graphically by
using braid diagrams, as illustrated in Fig. 2.5.

Definition 2.4 (Semi-group of braid diagrams).
A braid diagram on n strands consists in n strands with fixed upper endpoints and mobile
lower endpoints. The upper endpoints are aligned from left to right on some (upper) hori-
zontal line, and the lower endpoints are aligned from left to right on some (lower) horizon-
tal line. Then, the strands may be intertwined. Each intertwining consists in exchanging
two successive lower endpoints, by applying a half-twist that may be either clockwise or
anti-clockwise when seen from above.

Like paths in CnpCq, braid diagrams can be concatenated as follows: the concatenation
of two braid diagrams D1 and D2 is the braid diagram D1 ¨D2 obtained by merging the
k-th lower endpoint of D1 with the k-th upper endpoint of D2, for each k P t1, . . . , nu.
Similarly, the “reversal” of a braid diagram is its vertical symmetric diagram. Hence, the
semi-group of braid diagrams is isomorphic to a semi-group of paths in CnpCq, and the
isotopy group of braid diagrams is isomorphic to π1pCnpCqq.

In particular, Theorem 2.3 is then equivalent to the following result.
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1 2 i i` 1 i` 2 n´ 1 n

Anti-clockwise
half-turn

Clockwise
half-turn

¨ ¨ ¨ ¨ ¨ ¨

Figure 2.5 – Braid diagram with three half-turns

Theorem 2.6.
Let n be some positive integer. The braid group Bn is isomorphic to the isotopy group of
the set Dn of n-strand braid diagrams.

The isomorphism I between Bn and isotopy classes of Dn is illustrated in Fig. 2.7.
The generator σi is mapped to the anti-clockwise half-turn that exchanges the i-th and
pi ` 1q-st lower endpoints of the diagram, and σ´1

i is mapped to the clockwise half-turn
that exchanges the i-th and the pi ` 1q-st lower endpoints. In particular, when a braid
σ˘1
i acts onto a braid diagram, what was the i-th lower endpoint moved in position i` 1,

thereby becoming the pi` 1q-st lower endpoint, and vice-versa.

This induces a mapping ι from braid words to braid diagrams. Then, since each braid
b is a set of braid words, the isomorphism I maps b to a set tιpwq : w P bu of braid
diagrams. According to Theorem 2.6, this set is in fact an isotopy class of braid diagrams,
i.e. an element of the isotopy group of Dn.

The connections between braid groups, braid diagrams and configuration spaces will
lead to the geometric approach we are to explore later, but also have deep implications
in the algebraic approach we are to follow now.

1 2 i i` 1 i` 2 n´ 1 n

¨ ¨ ¨ ¨ ¨ ¨

σi

σ´1
i`1

Figure 2.7 – Braid diagram associated with the braid σiσ´1
i`1
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2.3 An Algebraic Approach to Braids

Let us focus now on the definition of braid groups through finite presentations. We present
below standard results about braids and about some algebraic structures that either
generalise braids or are related to braids. These structures are Artin–Tits monoids and
groups, Garside monoids and groups, Artin–Tits monoids of spherical type and trace
monoids. They have been studied for a long time, hence they are the subject of an
abundant literature [14, 20, 24, 27, 36, 37, 43, 44, 47, 70, 78, 91].

In that context, we focus on several results that will be useful in the subsequent chap-
ters of this thesis, which mainly concern the properties of the above-mentioned structures
as quotients of free monoids or groups. Doing so, we rewrite some of the proofs that can
be found in the literature, and that will give us a foretaste of the original proofs that
we will write later on. In addition, in Section 2.3.4, we also propose an original notion
of Artin–Tits monoid of FC type. This class is a subclass of Artin–Tits monoids, and en-
compasses both Artin–Tits monoid of spherical type and trace monoids, thereby unifying
the associated notions of Garside normal form and Cartier-Foata normal form.

2.3.1 From Braid Monoids to Garside Monoids

Within this approach, there are various fruitful ways to generalise braid groups. One such
generalisation is due to Brieskorn and Saito [20].

Let u and v be two letters, chosen from some alphabet, and let ` be some non-negative
integer. Hereafter, we denote by ruvs` the word u ¨ v ¨ u ¨ v ¨ . . . with ` letters, i.e.

ruvs0 “ ε, ruvs1 “ u and ruvs``2
“ u ¨ v ¨ ruvs` .

We also denote by ruvs´` the mirror of the word rvus`, i.e.

ruvs0 “ ε, ruvs´1
“ u and ruvs´`´2

“ ¨ ruvs´` ¨ v ¨ u.

For instance, we have

ruvs4 “ u ¨ v ¨ u ¨ v, ruvs5 “ u ¨ v ¨ u ¨ v ¨ u, ruvs´4
“ v ¨ u ¨ v ¨ u and ruvs´5

“ u ¨ v ¨ u ¨ v ¨ u.

Definition 2.8 (Artin–Tits monoid and Artin–Tits group).
An Artin–Tits monoid is a monoid A` with a presentation of the form

A` :“ xσ1, . . . , σn | rσiσjs
mi,j “ rσjσis

mi,j if i ‰ jy
`
,

where the mi,j are elements of the set t2, 3, 4, . . . ,8u such that mi,j “ mj,i for all i ‰ j,
and where the equality rσiσjs

8
“ rσjσis

8 denotes the absence of relation.

The associated Artin–Tits group is the group A presented as follows:

A :“ xσ1, . . . , σn | rσiσjs
mi,j “ rσjσis

mi,j if i ‰ jy .
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Note that Artin–Tits groups and monoids indeed generalise braid groups and monoids,
as it suffices to choose mi,j “ 3 if |i´ j| “ 1 and mi,j “ 2 if |i´ j| ě 2.

The relations used to define Artin–Tits groups and monoids have two important fea-
tures:

1. they are invariant under word reversal, i.e. under the mapping that sends the word
b :“ σi1σi2 . . . σik to the reversed word b˚ :“ σik . . . σi1 ;

2. they are length-preserving (we also say that they are homogeneous).

Invariance under word reversal proves that the left and right-divisibility orderings, i.e.
the orderings ď` and ěr such that a ď` ab and ab ěr b for all elements a and b, play
dual roles in the monoid A`, and will enjoy similar properties.1 Homogeneity is at the
origin of the notion of Artin length of a braid.

Definition 2.9 (Artin length).
Let A be an Artin–Tits group, with generators σ1, . . . , σn. The mapping λ : A ÞÑ Z such
that λpσiq “ 1 for all i P t1, . . . , nu extends to a group homomorphism, which we call
Artin length.

Additional properties of Artin–Tits groups and monoids come from studying their
associated Coxeter groups, which we define now.

Definition 2.10 (Coxeter group).
Let A and A` be an Artin–Tits group and the associated Artin–Tits monoid, such as
introduced in Definition 2.8. The Coxeter group associated with A and A` is defined as
the group W presented as follows:

W :“
@

σ1, . . . , σn | σ
2
i “ 1, rσiσjs

mi,j “ rσjσis
mi,j if i ‰ j

D

,

where 1 denotes the neutral element of the group W.

In particular, we denote hereafter the Coxeter group associated with the braid group
Bn by Wn. The group Wn is obtained from Bn by identifying the generators σi and σ´1

i

for all i P t1, . . . , n´ 1u. Hence, Wn is isomorphic to the isotopy set of braid diagrams in
which clockwise half-turns have been identified with anti-clockwise half-turns: let us call
such diagrams orientation-free diagrams, and let D̃n denote the set of these diagrams.

In an orientation-free diagram, the only important feature of a half-turn is which end-
points i and i ` 1 it exchanges: the orientation of the half-turn has become irrelevant.
Hence, each isotopy class of D̃n is characterised by which pairs of upper and lower end-
points are linked to each other by some strand, i.e. can be identified with a permutation
of the set t1, . . . , nu. In addition, the isomorphism from Bn to the isotopy group of Dn
induces an isomorphism from Wn to the isotopy group of D̃n.

Theorem 2.11.
Let n be a positive integer. The Coxeter group Wn of the braid group Bn is isomorphic
to the symmetric group Sn on n elements.

1For the sake of readability, we avoid using symbols such as ě` or ďr.
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Several results follow from the study of Coxeter groups associated with Artin–Tits
groups and monoids [42, 78].

Definition 2.12 (Simple elements).
Let A` be an Artin–Tits monoid, let W be the associated Coxeter group, and let π :
A` ÞÑW be the canonical projection.

We denote by S the set tb P A` : @a P A`, πpaq “ πpbq ñ λpbq ď λpaqu, and call its
elements simple elements of A`.

Definition 2.13 (Lower semilattice and conditional upper semilattice).
Let pS,ďq be an ordered set. We say that S is a lower semilattice if every pair of elements
of S has a greatest lower bound. We also say that S is a conditional upper semilattice if
every pair of elements of S with an upper bound has a least upper bound.

Theorem 2.14.
Each Artin–Tits monoid A` is left and right-cancellative. Moreover, the canonical pro-
jection π : A` ÞÑW induces a bijection from the set S of simple elements to W, and the
orderings ď` and ěr induce lower semilattice and conditional upper lattice structures on
A` and on S.

In addition, the following statements are equivalent:

1. the ordering ď` induces a lattice structure on A`;
2. the ordering ěr induces a lattice structure on A`;
3. the set tσ1, . . . , σnu admits some common ď`-multiple;
4. the set tσ1, . . . , σnu admits some right ď`-multiple;
5. the Coxeter group W is finite.

If they are satisfied, let ∆ be the ď`-LCM of the set tσ1, . . . , σnu. We have tb P A` :
b ď` ∆u “ S.

Some lower and upper bounds in A` are easy to characterise. Hence, we denote by
GCDď` the greatest lower bound for ď` in A`, and by LCMď` the lowest upper bound
for ď` in A`. Similarly, we use the notations GCDěr and LCMěr .

Lemma 2.15.
Let A` be an Artin–Tits monoid, and let σi and σj be two Artin generators of A`. If
mi,j ă `8, then rσiσjsmi,j “ LCMď`pσi, σjq “ LCMěrpσi, σjq.

For all elements x, y and z of A`, we have GCDď`pxy,xzq “ xGCD`py, zq and
GCDěrpyx, zxq “ GCDěrpy, zqx. Furthermore, y and z have a common ď`-multiple
in A` if and only if xy “ xz have a common ď`-multiple in A`, and in this case we
have LCMď`pxy,xzq “ xLCMď`py, zq. Similarly, y and z have a common ěr-multiple
in A` if and only if yx “ zx have a common ěr-multiple in A`, and in this case we
have LCMěrpyx, zxq “ LCMěrpy, zqx.
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Proof. First, if mi,j ă `8, then the only factors (both for ď` and for ěr) of rσiσjsmi,j
are the elements rσiσjsk and rσjσisk with 0 ď k ď mi,j. Among those, only rσiσjsmi,j is a
multiple of both σi and σj, and therefore it is their lower common multiple.

The second part of Lemma 2.15 follows immediately from the fact that A` is both
left-cancellative and right-cancellative.

From Theorem 2.14 follow many results concerning the set S, which we identify with
the Coxeter group W.

Lemma 2.16.
Let A` be an Artin–Tits monoid, let a be a simple element of A` and let σ be a generator
of A`. Then, aσ R S if and only if a ěr σ.

Proof. First, if a ěr σ, let us write a “ bσ. Since aσ “ bσ2, it follows that πpbq “ πpaσq
and that λpaσq “ λpbq ` 2, hence, by definition, we have aσ R S.

Conversely, if aσ R S, consider the element c of S such that πpcq “ πpaσq. Observe
that λpaσq ” λpcq pmod 2q, whence λpcq ď λpaq ´ 1. Since λpcσq ď λpaq, πpcσq “ πpaq
and a P S, it follows that cσ P S. Theorem 2.14 states that π : S ÞÑW is bijective, hence
a “ cσ and therefore a ěr σ.

Lemma 2.16 suggests that the membership to the set of simple braids is easy to
characterise using the following notions of left and right sets.

Definition 2.17 (Left and right sets).
Let A` be an Artin–Tits monoid, with generators σ1, . . . , σn, and let a be an element of
A`. We call left set of a, and denote by leftpaq, the set tσi : σi ď` au. We also call right
set of a, and denote by rightpaq, the set tσi : a ěr σiu.

Indeed, Lemma 2.16 can then be reformulated as follows: Let a be a simple element
of A` and let σ be a generator of A`. Then, aσ P S if and only if σ R rightpaq and
σa P S if and only if σ R leftpaq.

Corollary 2.18.
Let A` be an Artin–Tits monoid, with generators σ1, . . . , σn. The simple elements of A`

are those without factor of the form σ2 (we say that they are σ2-free), i.e.

S “ ta P A` : @b, c P A`, @i P t1, . . . , nu, a ‰ bσ2
i cu.

Proof. First, if a “ bσ2
i c, then πpaq “ πpbcq and λpbq ą λpacq, hence Theorem 2.14

proves that a R S. Conversely, if a :“ σi1 . . . σik R S, let m be the largest integer such
that σi1 . . . σim P S. Note that 1 ď m ă k. Lemma 2.16 proves that σi1 . . . σim ěr σim`1 .
Therefore, the braids b :“ pσi1 . . . σimqσ

´1
im`1

and c “ σim`2 . . . σik both belong to the
monoid A`, and they obviously satisfy the relation a “ bσ2

m`1c.
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In particular, it follows from the above characterisation of the set S that the GCD
and (conditional) LCM operations in A` and in S coincide.

Lemma 2.19.
Let A` be an Artin–Tits monoid. The set S of simple elements of A` is closed under
ď`-division. Moreover, for all pairs pa,bq of elements of S, their greatest ď`-divisors in
A` and in S are equal, and if they have a common ď`-multiple in A`, then their least
ď`-multiples in A` and in S exist and are equal.

Similar statements hold for the order ěr.

Proof. Consider two elements x and y of the monoid A`, and let us assume that x R S.
There exists some z P A` such that πpxq “ πpzq and λpxq ą λpzq. It follows that
πpxyq “ πpzyq and that λpxyq ą λpzyq, hence that xy R S. This proves that S is closed
under ď`-division.

Now, let a and b be elements of S. Their greatest ď`-divisor in A` must belong to S,
hence is also their greatest ď`-divisor in S. Likewise, if they have a common ď`-multiple
in S, then they have a least ď`-multiple in both S and A`, and their least ď`-multiple in
A` must belong to S, so that these least ď`-multiples coincide. It remains to prove that,
if a and b have a common ď`-multiple in A`, they also have a common ď`-multiple in
S.

Let z be a common ď`-multiple of a and b in A`, and let c :“ GCDď`pa,bq..
We prove by induction on λpzq ´ λpcq that LCMď`pa,bq P S. If λpcq “ λpzq, then
λpcq ě maxtλpaq, λpbqu, hence a “ b “ c “ LCMď`pa,bq. Hence, let us assume that
λpcq ă λpzq. If a “ c, then b “ LCMď`pa,bq. Similarly, if b “ c, then a “ LCMď`pa,bq.
Hence, we focus on the case where c ă` a and c ă` b.

Consider two generators σi and σj of A` such that cσi ď` a and cσj ď` b. Since c´1z
is a common ď`-multiple of σi and σj, it follows that mi,j ă `8 and that rσiσjsmi,j is
the least common ěr-multiple (and ď`-multiple) of σi and σj in A`. Hence, following
Lemma 2.16, an immediate induction on k proves that rσiσjsk P S whenever 0 ď k ď mi,j.
Indeed, if k P t1, . . . ,mi,ju is a minimal integer such that rσiσjsk R S, then it follows that
tσi, σju Ď rightprσiσjs

k´1q, which is impossible.

Likewise, if k P t1, . . . ,mi,ju is a minimal integer such that crσiσjs
k R S, it follows

that tσi, σju Ď rightpcrσiσjs
k´1q. This means that crσiσjsk´1 ěr rσiσjs

mi,j , and therefore
that c ěr σj, which contradicts the fact that cσj belongs to S. Hence, let d :“ crσiσjs

mi,j

and e :“ GCDď`pa,dq. Both cσi and cσj belong to S and ď`-divide z, hence so does
d “ LCMď`pcσi, cσjq. Since cσi ď` e, it follows that λpcq ă λpcσiq ď λpeq, and the
induction hypothesis states that za :“ LCMď`pa,dq belongs to S.

We show similarly that the element zb :“ LCMď`pb,dq belongs to S. Finally observe
that d ď` GCDď`pza, zbq, and therefore the induction hypothesis states that the element
y :“ LCMď`pza, zbq belongs to S. This shows that

LCMď`pa,bq “ LCMď`pa,b, cσi, cσjq “ LCMď`pa,b,dq “ LCMď`pza, zbq “ y
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belongs to S, which completes the induction and the proof of Lemma 2.19.

The proof of Lemma 2.19 is illustrated in Fig. 2.20.

1 c

cσj

cσi e

b

d

a

zb

za

y z

Figure 2.20 – Having a common multiple in A` ô having a common multiple in S

Since the Coxeter groups Wn of braid groups Bn are finite, the second part of Theo-
rem 2.14 applies to braid groups. This leads to two generalisations of braid monoids, that
are Artin–Tits monoids of spherical type and Garside monoids [14, 27, 36, 37, 70, 78].

Definition 2.21 (Garside element and Garside monoid).
Let G` be a finitely generated monoid, equipped with the two divisibility orderings ď` and
ěr.

A Garside element of the monoid G` is an element ∆ such that the equality ta P G` :
a ď` ∆u “ ta P G` : ∆ ěr au holds, and such that the set ta P G` : a ď` ∆u generates
the monoid A`. The divisors of ∆ are called simple elements of the monoid G` relatively
to ∆, or just simple elements of G` is the Garside element ∆ is clear from the context.

If G` admits a Garside element and, in addition,

• the monoid G` is left and right-cancellative;
• there exists a super-additive length function, i.e. a function λ : G` ÞÑ Z such that
λp1q “ 0, λpmq ą 0 for all m ‰ 1, and λpaq ` λpbq ď λpabq for all a, b P G`;
• the divisibility orderings ď` and ěr are lattices;

then we say that G` is a Garside monoid.

Artin–Tits monoids and Garside monoids generalise braid monoids in two different
directions. Indeed, not all Artin–Tits monoids are Garside monoids, and not all Garside
monoids are Artin–Tits monoids, as illustrated below.

Example 2.22.
The monoid M`

2,3 :“ xσ1, σ2 | σ
2
1 “ σ3

2y
` is a Garside monoid, with Garside element

∆ :“ σ2
1 “ σ3

2. However, this monoid is not homogeneous, hence is not an Artin–Tits
monoid.

Conversely, the free monoid N ˚N :“ xσ1, σ2y
` is an Artin–Tits monoid, but the elements

σ1 and σ2 have no common multiple, hence N ˚ N is not a Garside monoid.
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Definition 2.23 (Artin–Tits group or monoid of spherical type).
Let A` be an Artin–Tits monoid, and let W be the Coxeter group associated with A`. We
say that the monoid A` is a Artin–Tits monoid of spherical type (or, equivalently, has
finite Coxeter type), and that the associated Artin–Tits group A is a Artin–Tits group
of spherical type, if the group W is finite. Due to the similarity between such groups and
monoids and their braid equivalents, we still call braids the elements of the monoid A`

and of the group A.

It follows immediately from Theorem 2.11 that braid monoids are indeed Artin–Tits
monoids of spherical type. Moreover, Artin–Tits monoids of spherical type are themselves
Garside monoids.

Proposition 2.24.
Let A` be an Artin–Tits monoid of spherical type, with generators σ1, . . . , σn. The element
∆ :“ LCMď`pσ1, . . . , σnq is a Garside element of the monoid A`, which is a Garside
monoid. In addition, the element ∆ is also equal to LCMěrpσ1, . . . , σnq.

Proof. Recall the process of word reversal. It shows that ∆˚ “ LCMěrpσ1, . . . , σnq.
Hence, Corollary 2.18 shows that

ta P A` : a ď` ∆u “ ta P A` : a is σ2-freeu “ ta P A` : ∆˚
ěr au.

It follows that ∆˚ ď` ∆ and that ∆˚ ěr ∆, i.e. that ∆˚ “ ∆.

This proves that ∆ “ LCMěrpσ1, . . . , σnq is a Garside element of the monoid A`.
Furthermore, Theorem 2.14 already states that A` is left and right-cancellative, and that
the divisibility orderings ď` and ěr are lattices. Finally, the Artin length λ is an additive
length function, which proves that A` is a Garside monoid.

In addition, not all Artin–Tits monoids of spherical type are braid monoids, and there
even exists finite Coxeter groups that are not permutation sets. In particular, the class
of finite Coxeter groups has been completely classified, as follows.

Definition 2.25 (Finite irreducible Coxeter system).
Let xσ1, . . . , σn | σ

2
i “ 1, rσiσjs

mi,j “ rσjσis
mi,j if i ‰ jy be a presentation of a Coxeter

group W. We say this presentation is a finite irreducible Coxeter system if one of the
following requirements is satisfied:

• mi,i`1 “ 3, mi,j “ 2 otherwise, and n ě 0 (we say that W is of type An);
• m1,2 “ 4, mi,i`1 “ 3 if i ‰ 1, mi,j “ 2 otherwise, and n ě 3 (W is of type Bn);
• m1,3 “ 3, mi,i`1 “ 3 if i ‰ 1, mi,j “ 2 otherwise, and n ě 4 (W is of type Dn);
• m1,4 “ 3, mi,i`1 “ 3 if i ‰ 1, mi,j “ 2 otherwise, and 6 ď n ď 8 (W is of type En);
• m2,3 “ 4, mi,i`1 “ 3 if i ‰ 2, mi,j “ 2 otherwise, and n “ 4 (W is of type F4);
• m1,2 “ 5, mi,i`1 “ 3 if i ‰ 2, mi,j “ 2 otherwise, and 3 ď n ď 4 (W is of type Hn);
• m1,2 “ a for some integer a ě 3, and n “ 2 (W is of type I2paq).
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The above typology and type names follow the Cartan-Killing classification of simple
Lie algebras. Hence, the Coxeter group associated to the braid group Bn is of type An´1,
not of type Bn, which might be misleading. However, we will mainly focus on braid groups
Bn in Chapters 3 and 4, while we will focus on arbitrary Artin–Tits groups of spherical
type An, using the typology of finite irreducible Coxeter systems, in Chapters 5, 6 and 7.
This separation of focal points should avoid all possible confusions.

Note that these Coxeter systems are pairwise distinct, with the exception A2 “ I2p3q.
Moreover, the Coxeter systems A0 and A1 are not very interesting in themselves, since
they are respectively associated with the trivial Artin–Tits monoid t0u and the monoid
Zě0 of non-negative integers. Furthermore, finite irreducible Coxeter system are proto-
typical Coxeter groups [31, 32].

Theorem 2.26.
Let W “ xσ1, . . . , σn | σ

2
i “ 1, rσiσjs

mi,j “ rσjσis
mi,j if i ‰ jy be a Coxeter group. The

group W is finite if and only if there a partition of t1, . . . , nu into sets I1, . . . , Ik such
that:

• for all i, j P t1, . . . , nu, if i and j belong to two distinct parts of the partition, then
mi,j “ 2;
• for all ` P t1, . . . , ku, and up to renumbering the generators σi, each presentation

@

pσiqiPI` | σ
2
i “ 1, rσiσjs

mi,j “ rσjσis
mi,j if i ‰ j and i, j P I`

D

is a finite (non-trivial) irreducible Coxeter system.

In addition, the group W is finite and irreducible (i.e. is not a direct product of non-
trivial Coxeter groups) if and only k “ 1, i.e. if the presentation of W is itself a finite
irreducible Coxeter system.

Figure 2.27 presents the complete classification of finite irreducible Coxeter system
in terms of their Coxeter diagrams. Each generator σi is represented by the vertex with
label i. Vertices i and j are linked by an unlabelled edge if mi,j “ 3, or by an edge with
label k if mi,j “ k for some integer k ě 4.

An: 1 2 3 4 n Bn: 1 2 3 4 n
4

Dn: 2 3 4 5 n

1

En: 2 3 4 5 6 7 8

1
if n “ 8

if n “ 7

F4: 1 2 3 4
4

Hn: 1 2 3 4
5

if n “ 4

I2paq: 1 2
a

Figure 2.27 – Finite irreducible Coxeter systems
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The classification of finite irreducible Coxeter systems leads to natural characterisa-
tions of the three infinite families An, Bn and Dn (see [16]). The first result is just a
variant of Theorems 2.11 and 2.14.

Definition 2.28 (Symmetric group and positive descents).
Let n be a positive integer, and let Sn be the symmetric group of the set t1, . . . , nu. In
addition, let β be an element of Sn. We call positive descents of β the elements of the
set dą0pβq :“ tk P t1, . . . , n´ 1u : βpkq ą βpk ` 1qu.

Proposition 2.29.
Let A` be the Artin–Tits monoid of spherical type whose associated Coxeter group is
An (i.e. A` is the braid monoid B`n`1). The group morphism ι : An ÞÑ Sn`1 such that
ι : σk ÞÑ pk Ø k ` 1q for all k P t1, . . . , nu is a group isomorphism.

In addition, let b be a simple braid of A`, and let β “ ι ˝ πpbq be the associated permu-
tation, where π : A` ÞÑ An is the canonical projection of A` on its Coxeter group. We
have leftpbq “ tσk : k P dą0pβqu and rightpbq “ tσk : k P dą0pβ

´1qu.

Definition 2.30 (Signed symmetric group and non-negative descents).
Let n be a positive integer, and let S˘

n be the signed symmetric group of order n, i.e. the
set tϕ : ϕ is a permutation of t´n, . . . , nu and ϕp´kq “ ´ϕpkq for all k P t´n, . . . , nuu.
In addition, let β be an element of S˘

n . We call non-negative descents of β the elements
of the set dě0pβq :“ tk P t0, . . . , n´ 1u : βpkq ą βpk ` 1qu.

Proposition 2.31.
Let A` be the Artin–Tits monoid of spherical type whose associated Coxeter group is Bn.
The group morphism ι : Bn ÞÑ S˘

n such that ι : σ1 ÞÑ p1 Ø ´1q and ι : σk ÞÑ pk ´ 1 Ø
kqp1´ k Ø ´kq for all k P t2, . . . , nu is a group isomorphism.

In addition, let b be a simple braid of A`, and let β “ ι ˝ πpbq be the associated signed
permutation, where π : A` ÞÑ Bn is the canonical projection of A` on its Coxeter group.
We have leftpbq “ tσk : k ´ 1 P dě0pβqu and rightpbq “ tσk : k ´ 1 P dě0pβ

´1qu.

Definition 2.32 (Positive signed symmetric group and twisted descents).
Let n be a positive integer, and let S``

n be the positive signed symmetric group of order
n, i.e. the set tϕ P S˘

n :
śn

k“1 ϕpkq ą 0u. In addition, let β be an element of S``
n . We

call twisted descents of β the elements of the set dtwpβq :“ tk P t1, . . . , n ´ 1u : βpkq ą
βpk ` 1qu if βp1q ` βp2q ą 0, and dtwpβq :“ t0u Y tk P t1, . . . , n´ 1u : βpkq ą βpk ` 1qu
if βp1q ` βp2q ă 0.

Proposition 2.33.
Let A` be the Artin–Tits monoid of spherical type whose associated Coxeter group is
Dn. The group morphism ι : Dn ÞÑ S˘

n such that ι : σ1 ÞÑ p1 Ø ´2qp2 Ø ´1q and
ι : σk ÞÑ pk ´ 1 Ø kqp1´ k Ø ´kq for all k P t2, . . . , nu is a group isomorphism.

In addition, let b be a simple braid of A`, and let β “ ι˝πpbq be the associated (positive)
signed permutation, where π : A` ÞÑ Dn is the canonical projection of A` on its Coxeter
group. We have leftpbq “ tσk : k ´ 1 P dtwpβqu and rightpbq “ tσk : k ´ 1 P dtwpβ

´1qu.
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2.3.2 Garside Monoids, Groups and Normal Forms

Having proved that braid monoids, and even Artin–Tits monoids of spherical type, are
in fact special instances of a larger class of Garside monoids, we now focus on the latter
monoids.

Now, let us mention and prove several standard results about Garside monoids, which
we will use in subsequent parts of this document. These results can be found from nu-
merous sources, such as [14, 27, 36, 37, 47, 70, 78].

In this section, we will always consider a Garside monoid G` generated by a finite
set tσ1, . . . , σnu. We will also fix some Garside element ∆ of G`, and will denote by S
the set ta P G` : a ď` ∆u “ ta P G` : ∆ ěr au.

In addition, we will consider the functions α` : G` ÞÑ G` and αr : G` ÞÑ G`

such that α` : a ÞÑ GCDď`pa,∆q and αr : a ÞÑ GCDěrpa,∆q, where GCDď` and
GCDěr respectively denote the greatest lower bounds for the orderings ď` and ěr.2
These functions are crucial for defining the notions of Garside normal forms of G`, as
follows, and which were originally introduced by Adian in the context of braids [3].

Definition 2.34 (Garside normal forms in the monoid G`).
Let G` be a Garside monoid. The left Garside normal form of an element a of G` is
defined as the word NF`paq :“ a1 ¨ a2 ¨ . . . ¨ ak such that:

• a “ a1a2 . . . ak,
• a1, . . . , ak are simple elements of G`,
• either k “ 0 or ak ‰ 1, and
• ai “ α`paiai`1 . . . akq for all i P t1, . . . , ku.

The right Garside normal form of a is defined as the word NFrpaq :“ a11 ¨a
1
2 ¨ . . . ¨a

1
` such

that:

• a “ a11a
1
2 . . . a

1
`,

• a11, . . . , a
1
` are simple elements of G`,

• either ` “ 0 or a11 ‰ 1, and
• a1i “ αrpa

1
1a
1
2 . . . a

1
iq for all i P t1, . . . , `u.

An immediate induction on the length λpaq proves that the wordsNF`paq andNFrpaq
are well-defined. Indeed, they are well-defined (and identical) if a P S, and therefore if
λpaq ď 1, and if λpaq ě 2, we have NF`paq :“ α`paq ¨ NF`pα`paq

´1aq and NFrpaq :“
NF`paαrpaq

´1q ¨ αrpaq.

2 We stick to standard notations for handling braids and elements of Garside monoids, which leads
us to identify the orders ď` and ěr with divisibility relations and to denote greatest lower bounds by
GCD. Such standard notations include the notation infpxq, called infimum of x, which is the largest
integer u such that ∆u ď` x, for all elements x of the monoid G`.
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In addition, when defining the left Garside normal form, requiring that ak ‰ 1 is
equivalent to requiring that ai ‰ 1 for all i P t1, . . . , ku. Indeed, if ai “ 1 for some i ď k,
then the relation ai “ α`paiai`1 . . . akq proves that aiai`1 . . . ak “ 1, and therefore that
ak “ 1. Similarly, when defining the right Garside normal form, requiring that a11 ‰ 1 is
equivalent to requiring that a1i ‰ 1 for all i P t1, . . . , `u.

Furthermore, in the sequel of the document, and due to the invariance of G` under
word reversal, we will often refer to the left variant of the Garside normal form. Therefore,
we may also omit the word left, and just refer to the Garside normal form. In addition,
we will say that a word is a Garside normal word if it is the Garside normal form of some
element of G`.

There is a canonical way of choosing a length function for G` and generators of G`.

Definition & Proposition 2.35 (Product length).
Let M` be a finitely generated monoid equipped with a super-additive length function.

For each element a P M`, we define the product length of a as the largest integer
χpaq ě 0 such that a can be written as a product of χpaq non-trivial elements of M`.

The product length is a super-additive length function on M`. Moreover, the set ta P
M` : χpaq “ 1u is the smallest generating set of M`, and it is a finite set.

Proof. Let λ be a super-additive length function on M`. First, whenever a is written as a
product a1 . . . au of non-trivial elements of G`, we know that λpaq ě λpa1q`. . .`λpauq ě
u. Hence, the product length χpaq is well-defined, and such that χpaq ď λpaq.

Second, if two elements a,b P G` have respective factorisations a1 . . . au and b1 . . .bv
into non-trivial elements of G`, then a1 . . . aub1 . . .bv is a factorisation of ab. This shows
that χpaq ` χpbq ď χpabq, i.e. that χ is super-additive.

In particular, it follows immediately that the set ta P M` : χpaq “ 1u is contained
in all the generating sets of M`, and is itself a generating set of M`. Hence, since M`

admits some finite generating set, the set ta PM` : χpaq “ 1u must be finite too.

Henceforth, we implicitly assume that λ “ χ, i.e. that λ is the product length, and that
the generators σ1, . . . , σn of G` that we consider are the elements of ta P G` : χpaq “ 1u.
Nevertheless, occasionally, we may still consider different lengths than the product length,
and will make it explicit when such situations occur. This may happen, for instance, when
looking for additive length functions, as in the following example.

Example 2.36.
The monoid M`

2,3 :“ xσ1, σ2 | σ
2
1 “ σ3

2y
` is a Garside monoid, with Garside element

∆ :“ σ2
1 “ σ3

2. The product length χ is not additive, since χpσ1q “ 1 and χpσ2
1q “ 3.

However, there exists an additive length function λ : M`
2,3 ÞÑ Z defined by λpσ1q “ 3 and

λpσ2q “ 2.
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Lemma 2.37.
Let G` be a Garside monoid. For all elements a and b of the monoid G`, we have
α`pabq “ α`paα`pbqq and αrpabq “ αrpαrpaqbq.

Proof. First, due to word reversal, we just need to prove that α`pabq “ α`paα`pbqq
for all a,b P G`. Then, observe that α` is non-decreasing for the ordering ď`. Since
aα`pbq ď` ab, it follows that α`paα`pbqq ď` α`pabq. Conversely, let us prove, by induction
over the length λpaq, that α`pabq ď` aα`pbq.

If λpaq “ 1, then a is simple. Hence, a ď` α`pabq, and the braid c :“ a´1α`pabq
belongs to G`. Since S is closed under divisibility, we know that c P S. Moreover,
note that ac “ α`pabq ď` ab, whence c ď` b. It follows that c ď` α`pbq, whence
α`pabq ď` aα`pbq. Now, if λpaq ě 2, let us factor a as a product a “ σid, where σi is a
generator of the monoid G` (and therefore λpσiq “ 1. The induction hypothesis shows
successively that α`pσidbq ď` σiα`pdbq, because λpσiq “ 1, and that α`pdbq ď` dα`pbq,
because λpdq ă λpaq. It follows that

α`pabq “ α`pσidbq ď` σiα`pdbq ď` σidα`pbq “ aα`pbq,

which concludes the induction and completes the proof.

Corollary 2.38.
Let G` be a Garside monoid, let S be the set of simple elements of G`, and b :“
b1 ¨ b2 ¨ . . . ¨ bk be a word in Szt1u, i.e. whose letters are non-trivial simple elements of
G`. The word b is a left Garside word if and only if the words bi ¨ bi`1 are left Garside
words for all i P t1, . . . , k ´ 1u. Analogously, the word b is a right Garside word if and
only if the words bi ¨ bi`1 are right Garside words for all i P t1, . . . , k ´ 1u.

Proof. Once again, we focus on proving the fact that b is a left Garside word if and only
if the words bi ¨ bi`1 are left Garside words for all i P t1, . . . , k ´ 1u. First, if either the
word b or all of the words bi ¨ bi`1 are left Garside, then none of the letters bi is equal to
1, for i P t1, . . . , ku. Second, if b is left Garside, then we have

α`pbibi`1q “ α`pbiα`pbi`1 . . . bkqq “ α`pbi . . . bkq “ bi

for all i P t1, . . . , k´1u, which proves that the words bi¨bi`1 are all left Garside. Conversely,
if each word bi ¨ bi`1 is left Garside, then an immediate downward induction on i P
t1, . . . , k ´ 1u proves that

α`pbi . . . bkq “ α`pbiα`pbi`1 . . . bkqq “ α`pbibi`1q “ bi,

which completes the proof.

Hence, when a and b are simple elements, we denote by a ÝÑ b the fact that a ¨ b
is a left Garside word, and by a ÐÝ b the fact that a ¨ b is a right Garside word.
Corollary 2.38 amounts to saying that the sets of left Garside words and of right Garside
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words are regular languages. They consist respectively in the words b1 ¨ . . . ¨ bk such that
b1 ÝÑ . . . ÝÑ bk and such that b1 ÐÝ . . .ÐÝ bk.

In addition, following Lemma 2.37, there exists simple characterisations of the rela-
tions a ÝÑ b and aÐÝ b.

Definition 2.39 (Left and right (outgoing) sets).
Let G` be a Garside monoid with generators σ1, . . . , σn, and let a be an element of G`.
We call left set of a, and denote by leftpaq, the set tσi : σi ď` au. We also call right set
of a, and denote by rightpaq, the set tσi : a ěr σiu.

In addition, if a is a simple element, we call left outgoing set of a, and denote by leftpaq,
the set tσi : σia R Su. We also call right outgoing set of a, and denote by rightpaq, the
set tσi : aσi R Su.

Lemma 2.40.
Let G` be a Garside monoid, and let a and b be two non-trivial, simple elements of
G`. We have a ÝÑ b if and only if leftpbq Ď rightpaq, and a ÐÝ b if and only if
rightpaq Ď leftpbq.

Proof. Since both statements of Lemma 2.40 are dual to each other, we focus on proving
that a ÝÑ b if and only if leftpbq Ď rightpaq. First, if leftpbq Ę rightpaq, consider some
generator σi P leftpbqzrightpaq. Since aσi left-divides both ∆ and ab, it follows that
aσi ď α`pabq, whence a ‰ α`pabq and a ÝÑ b.

Conversely, if a ÝÑ b, i.e. a ‰ α`pabq, recall that a ď` α`pabq. Therefore, there
exists a generator σi such that aσi ď` α`pabq. This means both that aσi ď` ∆ and that
aσi ď` ab, i.e. that σi P leftpbqzrightpaq. This completes the proof.

A first consequence of Lemma 2.40 is a condition for concatenating Garside words.

Corollary 2.41.
Let G` be a Garside monoid, and let a and b be two non-trivial elements of G`, with
respective left Garside normal forms a` :“ a`1¨a

`
2¨. . .¨a

`
u and b` :“ b`1¨b

`
2¨. . .¨b

`
v. The equality

NF`pabq “ a` ¨ b` holds if and only if a`u ÝÑ b`1 or, equivalently, if leftpbq Ď rightpa`uq.

Similarly, let ar :“ ar1 ¨ a
r
2 ¨ . . . ¨ a

r
u and br :“ br1 ¨ b

r
2 ¨ . . . ¨ b

r
v be the right Garside normal

forms of a and b. The equality NFrpabq “ ar ¨ br holds if and only if aru ÝÑ br1 or,
equivalently, if leftpbr1q Ě rightpaq.

Proof. The only point that does not follow directly from Corollary 2.38 is the fact that
leftpbq “ leftpb`1q and that rightpaq “ rightparuq. These equalities are direct conse-
quences from the definitions of b`1 “ α`pbq and aru “ αrpaq, and from the fact that each
generator of the monoid A` is both a left-divisor and a right-divisor of the Garside
element ∆.
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In addition, Lemma 2.40 provides us with an automaton that accepts the set of left
Garside words.

Definition & Proposition 2.42 (Left Garside acceptor automaton).
Let G` be a Garside monoid, with generators σ1, . . . , σn. We call left Garside acceptor
automaton the finite-state automaton Aleft :“ pA, V, δ, is, V q, with

• alphabet A “ Szt1u;
• set of states V “ trightpaq : a P Au;
• transition function δ with domain tpP, aq : leftpaq Ď P u and such that δ : pP, aq ÞÑ
rightpaq if leftpaq Ď P ;
• initial state is “ rightp∆q;
• set of accepting states V .

The automaton Aleft is the minimal deterministic automaton that accepts the set of left
Garside words. In particular, the left Garside normal form is a regular normal form, i.e.
the set of left Garside words is regular.

Proof. First, since leftpaq Ď tσ1, . . . , σnu “ is for all a P Szt1u, it is clear that Aleft

accepts the set of words b1 ¨ . . . ¨ bk such that b1 ÝÑ . . . ÝÑ bk, i.e. the set of left Garside
words. Second, each state of Aleft is accessible (in one step) from the state is, and is itself
an accepting state. Hence, it is enough to prove that the sets ta P A : δpP, aq is definedu
are pairwise distinct, for all states P . In particular, if P and Q are distinct states of
Aleft, let us assume, without loss of generality, that some generator σi of the monoid
G` belongs to P zQ. Since leftpσiq “ tσiu, the pair pP, σiq belongs to the domain of δ,
but the pair pQ, σiq does not belong to the domain of δ, which proves that ta P A :
δpP, aq is definedu ‰ ta P A : δpQ, aq is definedu. This completes the proof.

tσ2u

tσ1u

tσ1, σ2uσ1σ2, σ
2
2

σ2, σ
2
2

σ1

∆

Automaton Aleft of M`
2,3

tσ2u

tσ1u

tσ1, σ2uσ1σ2σ2σ1

σ1, σ2σ1

σ2, σ1σ2

σ2

σ1

∆

Automaton Aleft of B`3

Figure 2.43 – Left Garside acceptor automata of the monoids M`
2,3 and B`3

Figure 2.43 presents the left Garside acceptor automata associated with the Garside
monoid M`

2,3 “ xσ1, σ2 | σ
2
1 “ σ3

2y
` (introduced in Example 2.36) and the braid monoid

B`3 “ xσ1, σ2 | σ1σ2σ1 “ σ2σ1σ2y
`.

We might also have defined similarly a right Garside acceptor automaton that accepts
the set of left Garside words.
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Definition & Proposition 2.44 (Right Garside acceptor automaton).
Let G` be a Garside monoid, with generators σ1, . . . , σn. We call right Garside acceptor
automaton the finite-state automaton Aright :“ pA, V, δ, is, V q, with

• alphabet A “ Szt1u;
• set of states V “ tHu Y trightpaq : a P Au;
• transition function δ with domain tpP, aq : P Ď leftpaqu and such that δ : pP, aq ÞÑ
rightpaq if P Ď leftpaq;
• initial state is “ H;
• set of accepting states V .

The automaton Aright is the minimal deterministic automaton that accepts the set of right
Garside words. In particular, the right Garside normal form is a regular normal form,
i.e. the set of right Garside words is regular.

Proof. Since is “ H Ď leftpaq for all a P Szt1u, it is clear that Aright accepts the set of
words b1 ¨ . . . ¨ bk such that b1 ÐÝ . . .ÐÝ bk, i.e. the set of right Garside words.

Moreover, each state of Aright is accessible (in at most one step) from the state is,
and is itself an accepting state. Hence, it is enough to prove that the sets ta P A :
δpP, aq is definedu are pairwise distinct, for all states P . If P and Q are distinct states of
Aleft, let us assume, without loss of generality, that some generator σi of the monoid G`

belongs to P zQ. The only elements of the set tx : ∆ ěr x ěr σ
´1
i ∆u are σ´1

i ∆ and ∆,
which proves that leftpσ´1

i ∆q “ tσ1, . . . , σnuztσiu. It follows that pQ, σ´1
i ∆q belongs to

the domain of δ, but that the pair pP, σ´1
i ∆q does not belong to the domain of δ, which

proves that ta P A : δpP, aq is definedu ‰ ta P A : δpQ, aq is definedu. This completes the
proof.

An alternative way of constructing the right Garside acceptor automaton would have
been to use the Brzozowski minisation algorithm [22], i.e. to reverse the left Garside
acceptor automaton, then to determinise it (retaining only the accessible and coaccessible
part).

Moreover, the left and right Garside normal forms in Garside groups were seminal
examples of the notion of automatic monoid [23, 45, 47]

Definition 2.45 (Synchronously automatic normal form).
Let pG, ¨q be a finitely generated monoid, with generating set Γ :“ tg1, . . . , gnu, and let
NF : G ÞÑ Γ˚ be a regular normal form, which maps each element of G to a finite word
with letters in Γ. In addition, let ε be a letter that does not belong to the set Γ, and let
us consider the extended alphabet Γε :“ ΓY tεu. We say that a word w P Γ˚ε reduces to a
word x P Γ˚, which we denote by w� x, if w P x ¨ tεu˚.

We say that the normal form NF is synchronously left-automatic if, for all generators
gi of G, the set

NFleft
i :“ tpw,xq P Γ˚ε ˆ Γ˚ε : |w| “ |x| and Dγ P G s.t. w� NFpγq and x� NFpgiγqu
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is regular. Similarly, we say that NF is synchronously right-automatic if, for all gener-
ators gi, the set

NFright
i :“ tpw,xq P Γ˚εˆΓ˚ε : |w| “ |x| and Dγ P G s.t. w� NFpγq and x� NFpγgiqu

is regular. Finally, we say that NF is synchronously automatic if it is both synchronously
left- and right-automatic.

Synchronous automatic normal forms are crucial for algorithmic purposes. Indeed, if
NF is a synchronously automatic normal form, computing the normal form of a product
giγ or γgi, where γ is an element of the group G, can be performed in space and time
linear in the length of the word NFpγq.

Note that being an automatic monoid does not depend on the generating set that we
consider [45].

Proposition 2.46.
Let G` be a Garside monoid. The left and right Garside normal forms of G` are syn-
chronously automatic.

Proof. Consider the generating set Γ :“ Szt1u of G`, to which we may add a supple-
mentary letter 1, thereby obtaining the set Γ1 :“ S. We first prove that the left Garside
normal form NF` : G` ÞÑ Γ is synchronously left and right automatic.

For all simple elements β P Szt1u, the finite-state automaton Aleft
s :“ pA, V, δ, is, F q,

with

• alphabet A “ S ˆ S;
• set of states V “ S;
• transition function δ with domain tpγ, pa,bqq P V ˆA : b “ α`pγaqu and such that
δ : pγ, pa,bqq ÞÑ α`pγaq

´1γa if b “ α`pγaq;
• initial state is “ β;
• set of accepting states F “ t1u

recognises a set S such that SXNF`pG
`q2 is equal to the set

tpw,xq P Γ˚1 ˆ Γ˚1 : |w| “ |x| and Dγ P G` s.t. w� NF`pγq and x� NF`pβγqu,

and the finite-state automaton Aright
s :“ pA, V, δ1, i1s, F

1q, with

• alphabet A “ S ˆ S;
• set of states V “ S;
• transition function δ1 with domain tpγ, pa,bqq P V ˆ A : a ď` γb and a´1γb P Su

and such that δ1 : pγ, pa,bqq ÞÑ a´1γb if a ď` γb and a´1γb P S;
• initial state i1s “ 1;
• set of accepting states F 1 “ tsu
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recognises a set S1 such that S1 XNF`pG
`q2 is equal to the set

tpw,xq P Γ˚1 ˆ Γ˚1 : |w| “ |x| and Dγ P G` s.t. w� NF`pγq and x� NF`pγβqu.

This proves that the left Garside normal form is synchronously automatic.

Mirrorring all the relations in the monoid G` (and therefore replacing the Garside
monoid G` by its mirror monoid, which is also a Garside monoid) provides the same
results for the right Garside normal form.

Garside words have additional connections with the Garside element ∆, as we show
below.

Definition & Proposition 2.47 (Conjugation by ∆).
Let G` be a Garside monoid, with Garside element ∆. There exists a conjugation by
∆ in the monoid G`, i.e. a function φ∆ : G` ÞÑ G` such that ∆φ∆paq “ a∆ for all
elements a P G`.

The function φ∆ is a morphism of monoids, is λ-invariant, and induces permutations of
the sets tσ1, . . . , σnu, S and G`.

Proof. First, let a be a simple element of G`. Since a ď` ∆, there exists an element
b P G` such that ab “ ∆. Then, ∆ ěr b, and therefore b P S. This proves that
there exists a function B∆ : S ÞÑ S such that aB∆paq “ ∆. It follows immediately that
∆B2

∆paq “ aB∆paqB
2
∆paq “ a∆, and therefore that the function φ∆ “ B

2
∆ is well-defined

on S.

Second, let b be some element of G`, and let b1 . . .bk be a factorisation of b
into simple elements of G` (e.g., in generators σi of G`). It follows immediately that
∆φ∆pb1qφ∆pb2q . . . φ∆pbkq “ b1∆φ∆pb2q . . . φ∆pbkq “ . . . “ ∆b. Hence, the above con-
struction provides us with an element φ∆pbq :“ φ∆pb1qφ∆pb2q . . . φ∆pbkq such that
∆φ∆pbq “ b∆. Since G` is cancellative, the element φ∆pbq is unique, and therefore
does not depend on which factorisation of b we considered. In particular, the function
φ∆ : b ÞÑ φ∆pb1qφ∆pb2q . . . φ∆pbkq is well-defined on G`.

In addition, if b1 . . .bk and c1 . . . c` are two factorisations of two elements b, c P G`

into simple elements, then φ∆pbcq “ φ∆pb1q . . . φ∆pbkqφ∆pc1q . . . φ∆pc`q “ φ∆pbqφ∆pcq,
which shows that φ∆ is a morphism of monoids. As such, φ∆ preserves the divisibility
relations, and therefore is λ-invariant. Hence, φ∆ maps the sets tσ1, . . . , σnu, S and G`

to themselves.

In addition, using word reversal, there must exist a function φ´1
∆ such that ∆a “

φ´1
∆ paq∆ for all a P G`, and φ´1

∆ maps the sets tσ1, . . . , σnu, S and G` to themselves.
Since

φ´1
∆ pφ∆paqq∆ “ ∆φ∆paq “ a∆ and ∆φ∆pφ

´1
∆ paqq “ φ´1

∆ paq∆ “ ∆a
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for all a P G`, it follows that φ´1
∆ and φ∆ are inverse bijections, and Proposition 2.47

follows.

Lemma 2.48.
Let G` be a Garside monoid, and let a be an element of the monoid G`. We have
NF`pφ∆paqq “ φ∆pNF`paqq and NFrpφ∆paqq “ φ∆pNFrpaqq.

Proof. We focus on proving the first equality. The second one is similar. Observe that
∆φ∆p∆q “ ∆2, i.e. that φ∆p∆q “ ∆, and that φ∆ is an automorphism of the ordered set
pG`,ď`q. It follows that α`pφ∆paqq “ GCDď`pφ∆paq, φ∆p∆qq “ φ∆pGCDď`pa,∆qq “
φ∆pα`paqq. An immediate induction on the word length |NF`paq| completes the proof of
the equality NF`pφ∆paqq “ φ∆pNF`paqq.

In addition, divisibility relations involving powers of the Garside element ∆ are tightly
connected with the length of Garside words and occurrences of the letter ∆ within these
words.

Proposition 2.49.
Let G` be a Garside monoid, let ∆ be a Garside element of G`, and let NF` and NFr

be the associated Garside normal forms. In addition, let u be a non-negative integer and
let b be an element of the monoid G`. The following statements are equivalent:

1. b is a product of u simple elements;
2. b ď` ∆u;
3. ∆u ěr b;

4. |NF`pbq| ď u;
5. |NFrpbq| ď u.

In particular, ∆u is a Garside element of G`. The following statements are also equiva-
lent:

6. ∆u ď` b;
7. b ěr ∆u;

8. p∆qu ŸNF`pbq;
9. NFrpbq Ź p∆q

u,

where p∆qu denotes the word ∆ ¨ . . . ¨∆ with u letters.

Proof. First, the implication 4 ñ 1 is immediate (recall that, since 1 is a simple elem. In
addition, recall the function B∆ : S ÞÑ S such that aB∆paq “ ∆. If b is a product b :“
s1s2 . . . su with si P S for all i P t1, . . . , uu, let us define the elements s˚i :“ φu´i∆ B∆psiq. It
immediately comes that bs˚us˚u´1 ¨ . . . ¨ s

˚
1 “ ∆u, which proves that 1 ñ 2.

Second, we show by induction on |NF`pbq| that |NF`pbq| ď |NF`pabq| for all pairs
pa,bq P S ˆG`. Indeed, consider the word b1 ¨ b2 ¨ . . . ¨ bk :“ NF`pbq. Lemma 2.37 proves
that a ď` α`pabq ď` aα`pbq “ ab1: let c and d be elements of G` such that α`pabq “ ac
and ab1 “ α`pabqd. Since ab1 “ acd, it follows that d is a right-divisor of b1, hence is
simple. The induction hypothesis indicates then that

|NF`pabq| “ |α`pabq ¨NF`pdb2b3 . . . bkq| “ 1` |NF`pdb2b3 . . . bkq| ě |NF`pbq|,
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which completes the induction.

It follows that b ÞÑ |NF`pbq| is non-decreasing for ěr, which proves that 3 ñ 4. One
shows analogously that 2 ñ 5 ñ 1 ñ 3.

In addition, the implications 8 ñ 6 and 9 ñ 7 are immediate, while the converse
implications 6 ñ 8 and 7 ñ 9 follow from a straightforward induction on u. Finally, the
equivalence 6 ô 7 is due to the fact that ∆uc “ φ´u∆ pcq∆u and c∆u “ ∆uφu∆pcq for all
elements c P G`.

Corollary 2.50.
Let G` be a Garside monoid, and let b be an element of the monoid G`. The Garside
words NF`pbq and NFrpbq have the same length, i.e. |NF`pbq| “ |NFrpbq|.

The equivalence between 2 and 3 in Proposition 2.49 shows that each element ∆u

is itself a Garside element of the monoid G`. Hence, we will use below the short-cut
notation ě, which we define as follows: ∆u ě b if and only if ∆u ěr b or, equivalently,
if and only if b ď` ∆u; and ∆u ď b if and only if ∆u ď` b or, equivalently, if and only
if b ěr ∆u. We call infimum of b, and denote by infpbq, the largest integer u such that
∆u ď b.

In addition, since the lengths |NF`pbq| and |NFrpbq| are equal, we henceforth denote
by }b} this common length. An additional consequence of Proposition 2.49 is the following
one.

Corollary 2.51.
Let G` be a Garside monoid, with Garside element ∆. Let u be a non-negative integer
and let b be an element of the monoid G`. In addition, let b1 ¨ . . . ¨ bk be the left Garside
normal form of b, and let c´k ¨. . .¨c1 be the right Garside normal form of b, with k :“ }b}.
We have GCDď`pb,∆

uq “ b1b2 . . . bmintk,uu, and GCDěrpb,∆
uq “ c´mintk,uu . . . c´2c´1.

Proof. If u ě k, then b ď ∆u, and therefore Corollary 2.51 is immediate. Hence, we
assume that u ă k.

First, Proposition 2.49 proves that b1b2 . . . bu ď` GCDď`pb,∆
uq. Now, let m be some

generator of G`. If m ď` bu`1 . . . bk, then bu ď` α`pbumq ď` α`pbu . . . bkq “ bu, hence bu ¨m
is a left Garside word, and Corollary 2.38 proves that b1 ¨ . . . ¨ bu ¨m is also a left Garside
word. Therefore, Proposition 2.49 proves that b1b2 . . . bum does not divide ∆u. Likewise,
if m is not a left-divisor of bu`1 . . . bk, then b1b2 . . . bum does not divide b.

Hence, in both cases, we know that b1b2 . . . bum cannot divide GCDď`pb,∆
uq, and

therefore that b1b2 . . . bu “ GCDď`pb,∆
uq. We show similarly that c´u . . . c´2c´1 “

GCDěrpb,∆
uq, which completes the proof.

We also say that a word w whose letters belong to the set S˝ :“ Szt1,∆u is a ∆-free
word, and that an element b of G` that is not divisible by ∆ is ∆-free. Proposition 2.49
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proves that the elements whose left Garside normal form (or, equivalently, right Garside
normal form) is ∆-free are exactly the ∆-free elements of G`.

Pushing further in that direction, we wish to work only with ∆-free Garside words,
which amounts to cancelling the ∆ factors that occur in the factorisation of any element
of G`. This is of course infeasible per se (since not all elements of G` are ∆-free), but
we already can work on assigning to the ∆ factors a specific place, either to the left of to
the right of the factorisation (by considering left and right Garside normal forms), or “in
the middle”, as shown by the following result.

Lemma 2.52.
Let G` be a Garside monoid, with Garside element ∆, and let u be a non-negative integer.
Consider elements a and b of the monoid G` such that ab ě ∆u. There exists elements
a1, a2, b1 and b2 of G` such that a “ a1a2, b “ b1b2 and a2b1 “ ∆u.

Proof. The claim is obvious for u “ 0. Hence, we first prove it for u “ 1. Since ab ě ∆,
it follows that ∆ “ αrpabq “ αrpαrpaqbq, i.e. that αrpaqb ěr ∆, and therefore that
∆ ď` αrpaqb. This implies that

∆ “ α`pαrpaqbq “ α`pαrpaqα`pbqq ď` αrpaqα`pbq.

This means that αrpaq´1∆ ď` α`pbq ď` b. Defining a2 “ αrpaq and b1 “ αrpaq
´1∆, then

a1 “ apa2q´1 and b2 “ pb1q´1b completes the proof.

We proceed now by induction on u ě 2. Consider elements a1, a2,b1,b2 of G` such
that a “ a1a2, b “ b1b2 and a2b1 “ ∆. Since φ∆pa1qb2 ě ∆u´1, there exists el-
ements a3, a4,b3,b4 of G` such that φ∆pa1q “ a3a4, b2 “ b3b4 and a4b3 “ ∆u´1.
Hence, let us define a1 “ φ´1

∆ pa3q, a2 “ φ´1
∆ pa4qa2, b1 “ b1b3 and b2 “ b4: we

have a1a2 “ φ´1
∆ pa3a4qa2 “ a1a2 “ a and b1b2 “ b1pb3b4q “ b1b2 “ b, as well as

a2b1 “ φ´1
∆ pa4qa2b1b3 “ φ´1

∆ pa4q∆b3 “ ∆a4b3 “ ∆u.

In addition, the Garside monoids can be embedded in their group of fractions, as
follows.

Definition & Proposition 2.53 (Garside group).
Let G` be a Garside monoid, and consider the group morphism

Φ : Z ÞÑ AutpG`
q.

k ÞÑ φk∆

The morphism Φ gives rise to the semidirect product G`¸Φ Z, such that pa, kq ¨ pb, `q :“
paΦk

∆pbq, k ` `q.

For all integers k ě 0, the pair p∆k, kq is central in G` ¸Φ Z, so that the submonoid
N :“ tp∆k, kq : k ě 0u is normal in G` ¸Φ Z. The quotient monoid G :“ pG` ¸Φ Zq{N
is the group of fractions of G`. Moreover, each element x of G can be written as a
product x “ y´1z, with y, z P G`. We say that G is the Garside group associated with
G`.
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Proof. First, recall that φ∆p∆q “ ∆. Hence, a direct computation shows that, for all
pa, k, `q P G` ˆ Z ˆ Z, we have pa, kq ¨ p∆`, `q “ pa∆`, k ` `q “ p∆`φ`∆paq, k ` `q “
p∆`, `q ¨ pa, kq, which proves that p∆`, `q is central in G` ¸Φ Z and therefore that N :“
tp∆k, kq : k ě 0u is normal in G` ¸Φ Z.

Second, for all pa, kq P G`ˆZ, since a ď` ∆λpaq, there exists an element b P G` such
that ab “ ∆λpaq. It follows that

pa, kq ¨ pφ´k∆ pbq, λpaq ´ kq “ pab, k ` λpaq ´ kq “ p∆
λpaq, λpaqq P N,

hence each element x of G has a right inverse, which we denote by x´1. Since x´1x “
x´1xx´1px´1q´1 “ x´1px´1q´1 “ 1, it follows that x´1 is also a left inverse of x, i.e. that
G is a group.

Third, identifying the monoid G` with the subset tpa, 0q : a P G`u of the quotient
G, we observe that

pa, kq ¨ pφ´k∆ pbq∆
|k|, 0q “ pab∆|k|, kq “ pab∆|k|´k, 0q,

where the last equality holds only in the quotient pG` ¸Φ Zq{N. This proves that each
element x of G is of the form x “ y´1z, where y and z belong to tpa, 0q : a P G`u, which
completes the proof.

From now on, we will just identify the Garside group G with the group of fractions of
G`, and assume that G` is a submonoid of G. Observe that, analogously, the Artin–Tits
group A is exactly (by definition) the group of fractions of the monoid A`, hence that
A is the Garside group associated with the Garside monoid A`.

Each kind of Garside normal forms on G` can be generalised to a normal form on
the Garside group G.

Definition 2.54 (Garside normal forms in the group G).
Let a be an element of the Garside group G, and let u be the largest integer such that
∆´ua belongs to the monoid G`. Let us also define the integer ζ :“ 1 if u ě 0, or ζ :“ ´1
if u ă 0. Let a1 ¨ . . . ¨ ak be the left Garside normal form of ∆´ua, and let a11 ¨ . . . ¨ a1k be
the right Garside normal form of ∆´ua (in the sense of Definition 2.34).

The left Garside normal form of a in the group G is defined as the word NF`paq :“
∆ζ ¨ . . . ¨∆ζ ¨ a1 ¨ . . . ¨ ak, with |u| occurrences of the letter ∆ζ. The right Garside normal
form of a in the group G is defined as the word NFrpaq :“ a11 ¨ . . . ¨ a

1
k ¨∆

ζ ¨ . . . ¨∆ζ, with
|u| occurrences of the letter ∆ζ.

Like in the case of Garside monoids, the Garside normal forms are synchronously
automatic in Garside groups [47].

Proposition 2.55.
Let G be a Garside monoid. The left and right Garside normal forms of G are syn-
chronously automatic.
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Proof. Like in the monoid case, we consider the generating set Γ :“ t∆´1uYSzt1u ofG, to
which we may add a supplementary letter 1, thereby obtaining the set Γ1 :“ t∆´1u Y S,
and first prove that the left Garside normal form NF` : G ÞÑ Γ is synchronously left
automatic.

For all simple elements β P S and all ∆-free elements γ of the monoid G`, we have
0 ď infpβγq ď 1. It follows that the set

tpw,xq P Γ˚1 ˆ Γ˚1 : |w| “ |x| and Dγ P G s.t. w� NF`pγq and x� NF`pβγqu

is equal to the union of the sets

tpw,xq P Γ˚1 ˆ Γ˚1 : |w| “ |x| and Dγ P G` s.t. pw� NF`pγq and x� NF`pβγqqu;
tpw,xq P Γ˚1 ˆ Γ˚1 : |w| “ |x| and Dk ě 1, Dγ P G` s.t. infpφ´k∆ pβqγq “ 0,
tpw,xq P Γ˚1 ˆ Γ˚1 : w� p∆´1qk ¨NF`pγq and x� p∆´1qk ¨NF`pφ

´k
∆ pβqγqu;

tpw,xq P Γ˚1 ˆ Γ˚1 : |w| “ |x| and Dk ě 0, Dγ P G` s.t. infp∆φ´k∆ pβq
´1γq “ 0,

tpw,xq P Γ˚1 ˆ Γ˚1 : w� p∆´1qk`1 ¨NF`p∆φ
´k
∆ pβq

´1γq and x� p∆´1qk ¨NF`pγqu,

which, as a consequence of Proposition 2.46, are regular.

We prove in a similar way that NF` is synchronously right automatic and that NFr

is synchronously automatic.

Note that we might also have proved Proposition 2.55 by referring to the following
standard result [47].

Definition 2.56 (Incremental difference sets).
Let G be a finitely generated group, with generating set Γ :“ tg1, . . . , gnu, and let NF :
G ÞÑ Γ˚ be a normal form. Consider two elements γ and γ1 of G, with respective normal
forms NFpγq “ a1 ¨ . . . ¨ ak and NFpγ1q “ a11 ¨ . . . ¨ a

1
`.

The left incremental difference set of γ and γ1 for the normal form NF is defined as the
set

∆left
NFpγ, γ

1
q :“ tpamintk`1,iu . . . akqpa

1
mint``1,iu . . . a

1
`q
´1 : i ě 1u.

In addition, the left incremental difference set of the normal form NF is defined as the
set

∆left
NF :“

ď

γPG

n
ď

i“1

∆left
NFpgiγ, γq.

Similarly, the right incremental difference set of γ and γ1 for the normal form NF is
defined as the set

∆right
NF pγ, γ1q :“ tpa1 . . . amintk,iuq

´1
pa11 . . . a

1
mint`,iuq : i ě 1u

and the right incremental difference set of the normal form NF is defined as the set

∆right
NF :“

ď

γPG

n
ď

i“1

∆right
NF pγ, γgiq.
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Theorem 2.57.
Let G be a finitely generated group, with generating set Γ :“ tg1, . . . , gnu, and let NF :
G ÞÑ Γ˚ be a regular normal form. The normal form NF is synchronously left-automatic
if and only if the left incremental difference set ∆left

NF is finite, and NF is synchronously
right-automatic if and only if the right incremental difference set ∆right

NF is finite.

Proof. Let ε be a copy of the trivial element of G that does not belong to Γ. We first
prove that, for each generator gi P Γ, the set

Sleft
i :“ tpw,xq P Γ˚ε ˆ Γ˚ε : |w| “ |x| and Dγ P G s.t. w� NFpγq and x� NFpgiγqu

is regular if and only if the set ∆left
i :“

Ť

γPG ∆left
NFpgiγ, γq is finite.

Indeed, if Sleft
i is recognised by some minimal deterministic automaton A “ pΓε ˆ

Γε, V, δ, s, F q, consider some element γ of G, and let w and x be two elements of Γ˚ε such
that |w| “ |x|, w� NFpγq and x� NFpgiγq. In addition, for all non-negative integers
k ď |x|, let sk P V be the state of A obtained after having read the k (pairs of) letters
pw1,x1q, . . . , pwk,xkq. There exists a path of length ` ď |V | from the initial state i to
the state sk, i.e. there exists ` pairs of letters pw1

1,x
1
1q, . . . , pw

1
`,x

1
`q such that the pair

pw1
1 ¨ . . . ¨w

1
` ¨wk`1 ¨ . . . ¨w|w|,x

1
1 ¨ . . . ¨ x

1
` ¨ xk`1 ¨ . . . ¨ x|w|q belongs to Sleft

i . It follows that

gi “ px11 . . .x
1
`xk`1 . . .x|w|qpw

1
1 . . .w

1
`wk`1 . . .w|w|q

´1

“ px11 . . .x
1
`qpxk`1 . . .x|w|qpwk`1 . . .w|w|q

´1
pw1

1 . . .w
1
`q
´1

and therefore that pxk`1 . . .x|w|qpwk`1 . . .w|w|q
´1 P

Ť|V |
a“0

Ť|V |
b“0 Γ´agiΓ

b. This proves that
the set ∆left

i “
Ť

γPG ∆left
NFpgiγ, γq is finite.

Conversely, if the set ∆left
i is finite, let A “ pΓε,W, ε, t, Hq be the minimal determin-

istic automaton that accepts the set tw P Γε : Dγ P G s.t. w � NFpγqu. Then, consider
the automaton Ai “ pA, V, δ, s, F q, with

• alphabet A “ Γε ˆ Γε;
• set of states V “ W ˆW ˆ∆left

i ;
• transition function δ with domain tppx,y, ζq, pa,bqq P V ˆ A : px, aq and py,bq

belong to the domain of ε and b´1ζa P ∆left
i u and such that δ : ppx,y, ζq, pa,bqq ÞÑ

pεpx, aq, εpy,bq,b´1ζaq if ppx,y, ζq, pa,bqq belongs to the domain of δ;
• initial state s “ pt, t, giq;
• set of accepting states F “ H ˆH ˆ t1u.

One shows easily that Ai recognises the set Sleft
i .

Overall, it follows that NF is synchronously left-automatic if and only if each set ∆left
i

is finite, i.e. if and only if the set ∆left
NF “

Ťn
i“1 ∆left

i is finite. One shows similarly that
NF is synchronously right-automatic if and only if the set ∆right

NF is finite.
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Corollary 2.58.
Let G be a finitely generated group, with generating set Γ :“ tg1, . . . , gnu, and let NF :
G ÞÑ Γ˚ be a computable, regular normal form, whose language is accepted by some fixed
automaton A.

If NF is synchronously left-automatic, then, for all integers i P t1, . . . , nu, the minimal
deterministic automaton that accepts the language

Sleft
i :“ tpw,xq P Γ˚ε ˆ Γ˚ε : |w| “ |x| and Dγ P G s.t. w� NFpγq and x� NFpgiγqu

is computable. Similarly, if NF is right-automatic, then, for all integers i P t1, . . . , nu,
the minimal deterministic automaton that accepts the language Sright

i is computable.

Proof. We prove that, if the set ∆left
i is finite, then we can compute the automaton

Ai mentioned in the above proof of Theorem 2.57. From the knowledge of A, we can
compute a (minimal deterministic) automaton A “ pΓε,W, ε, t, Hq that accepts the set
L “ tw P Γε : Dγ P G s.t. w� NFpγqu.

We compute now increasingly large subsets S0, S1, . . . of the incremental difference set
∆left
i and automata A0,A1, . . . accepting increasingly large subsets L0,L1, . . . of L. Note

that, since ∆left
i is finite, the sequence S0, S1, . . . can contain only finitely many terms.

In addition, let Dε be the domain of the transition function ε.

We first define S0 “ tgiu. Then, for all integers j such that Sj exists, we define the
non-deterministic automaton Aj “ pΓε, V

j, δj, s, F q with

• state set V j “ W ˆW ˆ Sj;
• non-deterministic transition function δi with domain V j ˆ Γε and such that

δi : ppx,y, ζq, aq ÞÑ tpεpx, aq, εpy,bq,b´1ζaq : b P Γε,

px, aq P Dε, py,bq P Dε and b´1ζa P Sju;

• initial state s “ pt, t, giq;
• set of accepting states F “ H ˆH ˆ t1u.

By construction, we have Lj ¨ ε˚ Ď L, with equality if and only if Sj “ ∆left
i . Hence,

as long as Lj ¨ ε˚ Ĺ L, we select some element γ of G such that NFpγq R Lj ¨ ε˚, then
we define Sj`1 as Sj`1 “ Sj Y∆left

NFpgiγ, γq. By definition, the set ∆left
NFpgiγ, γq was not a

subset of Sj, which proves that the sequence S0, S1, . . . is strictly increasing, and proves
that our process terminates with the computation of ∆left

i itself. It is then straightforward
to compute the automaton Ai and to minimise it.

Applying similar constructions for the sets ∆right
i completes the proof.
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2.3.3 Normal Forms in Artin–Tits Monoids and Groups of Spher-
ical Type

We come back now to the case where G` is an Artin–Tits monoid of spherical type A`,
not only a generic Garside monoid; we will work under that assumption until the end of
this section, and will always asume that ∆ is the smallest Garside element of A`, i.e. the
lowest upper bound of its generators. In that narrower context, there exist alternative
criteria for characterising Garside words, which will lead to a criterion for concatenating
directly Garside words.

Proposition 2.59.
Let A` be an Artin–Tits monoid of spherical type, let S be the set of simple elements of
A`, and let b :“ b1 ¨b2 ¨. . .¨bk be a word with letters in Szt1u. The word b is a left Garside
word if and only if leftpbi`1q Ď rightpbiq for all i P t1, . . . , k ´ 1u. Analogously, the word
b is a right Garside word if and only if rightpbiq Ď leftpbi`1q for all i P t1, . . . , k ´ 1u.

Proof. Following Lemma 2.40, it suffices to prove that leftpaq “ leftpaq and rightpaq “
rightpaq for all braids a P Szt1u. Both equalities are straightforward consequences of
Lemma 2.16.

In addition, Theorem 2.26 provides us with a classification of the finite Coxeter groups,
from which it follows that ∆2 belongs to the centre of the monoid A`.

Proposition 2.60.
Let A` be an Artin–Tits monoid of spherical type with generators σ1, . . . , σn, and consider
its Garside element ∆ :“ LCMď`pσ1, . . . , σnq. The morphism of monoids φ∆ : A` ÞÑ A`,
such that ∆φ∆paq “ a∆ for all a P A`, is an involution.

Proof. The monoid A` is an Artin–Tits monoid of spherical type, which means that its
Coxeter group W is finite. Therefore, Theorem 2.26 states that there exists a partition
J1, . . . , Jk of tσ1, . . . , σnu such that each Coxeter group generated by J` (for ` P t1, . . . , kuq
is presented by a finite irreducible Coxeter system.

Hence, let A`
1 , . . . ,A

`
` be the associated Artin–Tits monoids of spherical type, and

let ∆1, . . . ,∆` be the associated Garside elements. The monoid A` is the direct product
ś`

i“1 A
`
i , and its Garside element ∆ is the (commutative) product

ś`
i“1 ∆i. Therefore,

it remains to treat the case where W is itself presented by a finite irreducible Coxeter
system.

Now, let Γ be the Coxeter diagram associated with W. Proposition 2.47 proves that
φ∆ is a morphism of monoids that maps the set tσ1, . . . , σnu to itself. It follows that φ∆

induces an isomorphism of labelled graphs from Γ to itself. Let κ be the smallest positive
integer such that φκ∆ “ IdΓ.

It comes immediately that
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• κ “ 1 if W “ Bn, W “ E7, W “ E8, W “ H3 or W “ H4;
• κ P t1, 2u if W “ An, W “ Dn (with n ‰ 4), W “ E6, W “ F4 or W “ I2paq.3

Finally, if W “ D4, then φ∆pσ3q “ σ3, and the generators σ1, σ2 and σ4 play symmetric
roles. Consequently, if the morphism φ∆ were to map σ1 to σ2, then it should also map
σ1 to σ4. This proves that φ∆pσ1q “ σ1 and, similarly, that φ∆pσ2q “ σ2 and φ∆pσ4q “ σ4,
which proves that κ “ 1.4

Overall, we have proved that κ must divide 2, which proves that φ2
∆ “ IdΓ, i.e. that

φ2
∆ maps each generator σi to itself, and therefore that φ2

∆ “ IdA` .

If ∆2 is always central in A`, this is not necessarily the case of the element ∆. For
instance, if A` is a dihedral monoid (i.e. W is of type I2paq), then ∆ belongs to the
centre of A` if and only if a is an even integer. Therefore, it is natural to project the
monoid A` onto the quotient A`{∆2. We describe now such projections, which we will
use extensively throughout Chapter 5, as well as the (immediate) result that follows.

Definition 2.61 (Projection on A`{∆2).
Let A` be an Artin–Tits monoid of spherical type, with let b be an element of A`, and
let u be the largest integer such that b ě ∆2u, where ∆ :“ LCMď`pσ1, . . . , σnq.. We
denote by δpbq the element ∆´2ub of A`, which we identify with the projection of b onto
A`{∆2.

Lemma 2.62.
Let A` be an Artin–Tits monoid of spherical type. The equality δpabq “ δpaδpbqq “
δpδpaqbq holds for all elements a and b of the monoid A`.

Moreover, from Proposition 2.60 follows a notion of symmetric Garside normal form
in Artin–Tits groups of spherical type.

Definition & Proposition 2.63 (Symmetric Garside normal form in the group A).
Let A be an Artin–Tits group of spherical type. The symmetric Garside normal form of
a braid a P A is defined as the (unique) word NFsympaq :“ a´1

k ¨ . . . ¨ a´1
1 ¨ b1 ¨ . . . ¨ b` such

that

• a “ a´1
k . . . a´1

1 b1 . . . b`;
• a1 ¨ . . . ¨ ak and b1 ¨ . . . ¨ b` are left Garside words (in the sense of Definition 2.34);
• either k “ 0 or ` “ 0 or the elements a1 and b1 have no common non-trivial divisor
in the monoid A`.

3We may even prove as follows that κ “ 1 if W “ F4 or W “ I2paq with a P 2Z. Indeed, the number
of occurrences of letters σ1 or σ2 (if W “ F4), or σ1 (if W “ I2paq) is invariant among all the words
that represent a given braid. Hence, the generator σ1 is not conjugate with σ4 (if W “ F4) or σ2 (if
W “ I2paq), and therefore we must have κ “ 1.

4Alternatively, Proposition 2.33 proves that the group isomorphism ι : Dn ÞÑ S˘n maps ∆ to the
permutation ´Idt´n,...,nu, which commutes with each element of S˘n , and therefore proves that κ “ 1.
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The subword NF´sympaq :“ a´1
k ¨ . . . ¨a´1

1 is called the negative part of the braid a, and the
subword NF`sympaq :“ b1 ¨ . . . ¨ b` is called the positive part of a. The words of the form
NFsympaq are called symmetric Garside words.

Proof. Let a be an element of A. We first prove that a word such as NFsympaq “ a´1
k ¨

. . . ¨ a´1
1 ¨ b1 ¨ . . . ¨ b` exists. According to Proposition 2.53, there exists elements α and β

of A` such that a “ α´1β. Consider the elements δ :“ GCDď`pα, βq, α :“ δ´1α and
β :“ δ´1β, and consider the words a1 ¨ . . . ¨ ak “ NF`pαq and that b1 ¨ . . . ¨ b` “ NF`pγq.

First, we have a´1
k . . . a´1

1 b1 . . . b` “ α´1β “ α´1δδ´1β “ α´1β “ a. Second, by
construction, both a1 ¨ . . . ¨ ak and b1 ¨ . . . ¨ b` are left Garside words. Third, we have
δ “ GCDď`pα, βq “ GCDď`pδα, δβq “ δGCDď`pα, βq, hence GCDď`pα, βq “ 1, and
therefore GCDď`pa1, b1q ď` GCDď`pα, βq “ 1.

It remains to prove that the wordNFsympaq “ a´1
k ¨. . .¨a

´1
1 ¨b1¨. . .¨b` is unique. Consider

the elements α “ a1 . . . ak and β “ b1 . . . b` of A`. If a P A` and if k ě 1, then β “ αa,
and therefore ` ě 1 and 1 “ GCDď`pa1, b1q “ GCDď`pα, β,∆q “ GCDď`pα, αa,∆q “
GCDď`pα,∆q “ a1, which is impossible. Hence, if a P A`, we have k “ 0 and b1 ¨ . . . ¨ b`
is the left Garside normal form of a. Similarly, if a´1 P A`, then ` “ 0 and a1 ¨ . . . ¨ ak is
the left Garside normal form of a´1.

Now, we assume that neither a nor a´1 belongs toA`. Hence, both k and ` are positive
integers, and both a1 ¨ . . . ¨ ak and b1 ¨ . . . ¨ b` are ∆-free words. Indeed, a1 and b1 must
be non-trivial, i.e. leftpa1q ‰ H and leftpb1q ‰ H, and since a1 and b1 have no common
non-trivial divisor in A` it follows that leftpa1q X leftpb1q “ H, whence leftpa1q Ď

tσ1, . . . , σnuzleftpb1q Ĺ tσ1, . . . , σnu “ leftp∆q and, similarly, leftpb1q Ĺ leftp∆q. Let
u ě 1 be the smallest integer such that ∆ua P A`. The integer u is the unique integer
such that ∆ua is a ∆-free element of A`. For all integers i P t1, . . . , ku, consider the
simple element a˚i :“ B2i´1

∆ paiq of A`. We prove now that a˚k ¨ . . . ¨ a˚1 ¨ b1 ¨ . . . ¨ b` is a left
Garside word.

According to Corollary 2.38, it is enough to prove that the words a˚i`1 ¨ a
˚
i (when

1 ď i ď k ´ 1) and a˚1 ¨ b1 are left Garside words. Recall that u ¨ v is a left Garside
word if and only if u “ α`puvq. In addition, recall the function B∆ : S ÞÑ S introduced
in the proof of Proposition 2.47, such that aB∆paq “ ∆ and such that φ∆ “ B2

∆. Since
φ2

∆ “ B
4
∆ “ IdS , it follows that

u “ α`puvq ô u “ GCDď`p∆, uvq “ GCDď`puB∆puq, uvq

ô GCDď`pB∆puq, vq “ 1ô GCDď`pB
4
∆pvq, B∆puqq “ 1

ô B
3
∆pvq ¨ B∆puq is a left Garside word.

Hence, for all i P t1, . . . , k ´ 1u, and since ai ¨ ai`1 is a left Garside word, so is B3
∆pai`1q ¨

B∆paiq. Then, since φ∆ is an isomorphism of monoids, the word a˚i`1 ¨ a
˚
i “ φi´3

∆ B3
∆pai`1q ¨

φi´3
∆ B∆paiq is a left Garside word too.

Finally, a direct computation shows that a˚k . . . a˚1b1 . . . b` “ ∆ka. Moreover, since
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ak ‰ 1, we know that a˚k ‰ ∆. Hence, ∆ka is a ∆-free element of A`, and therefore
k “ u. This proves that the braids a˚1 , . . . , a˚k, b1, . . . , b` are uniquely defined, and that so
is the word NFsympaq.

Example 2.64.
Consider the braid group B3 :“ xσ1, σ2 | σ1σ2σ1 “ σ2σ1σ2y. The symmetric Garside
words (i.e. the words of the form NFsympaq for a P B3) is the language accepted by the
(non-deterministic) automaton represented in Fig. 2.65, in which each state is both initial
and final. Moreover, for the sake of readability of Fig. 2.65, we chose to denote by σ1 and
σ2 the generators σ´1

1 and σ´1
2 .

tσ2u

tσ1u

tσ1, σ2u

tσ2u

tσ1u

tσ1, σ2uσ1 σ2σ2 σ1

σ1, σ2 σ1

σ2, σ1 σ2

σ2

σ1

∆ σ2 σ1σ1 σ2

σ1, σ1 σ2

σ2, σ2 σ1

σ2

σ1

∆´1

σ2 σ1

σ1 σ2

σ1

σ2

Figure 2.65 – Automaton accepting the language tNFsympaq : a P B3u

2.3.4 Heap Monoids

We focus here on heap monoids and heap groups, which are combinatorial objects similar
to braid monoids and braid groups. Along with braid monoids, trace monoids form a very
popular class of Artin–Tits monoids, and have been studied in depth [24, 43, 44, 91].

Definition 2.66 (Heap monoid and heap group).
Let tσ1, . . . , σnu be a finite alphabet, let D Ď tσ1, . . . , σnu

2 be a symmetric reflexive rela-
tion, which we call dependence or incompatibility relation, and let I “ tσ1, . . . , σnu

2zD
be the associated independence relation.

The heap monoid (also called trace monoid, right-angled Artin–Tits monoid, or free
partially commutative monoid) generated by the pair ptσ1, . . . , σnu, Iq is the monoidM`

presented as follows:

M` :“ xσ1, . . . , σn | @pa, bq P I, ab “ bay` .

The heap group generated by the pair pΣ, Iq is the groupM presented as follows:

M :“ xσ1, . . . , σn | @pa, bq P I, ab “ bay .
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Note that heap monoids and groups are particular instances of Artin–Tits monoids
and groups, in which every exponent mi,j belongs to the set t0, 2u. However, unless the
monoid is the abelian monoid ZΣ

ě0, its Coxeter group is never finite. A popular example
of heap monoids is the dimer model, defined by

M`
n :“ xσ1, . . . , σn | σiσj “ σjσi if |i´ j| ě 2y` .

The dimer model is analogous to braid monoids, from which it is obtained by removing the
braid relations σi ¨σi`1 ¨σi “ σi`1 ¨σi ¨σi`1. This model is well-known in combinatorics [18]
and has recently attracted interest in statistical physics as a model of random growth [68,
91].

This analogy reflects on the Coxeter diagram of the dimer model. Each generator σi
is represented by the vertex with label i. Vertices i and j are linked by an unlabelled,
white edge if mi,j “ 8, i.e. if i ‰ j and pσi, σjq R I.

1 2 3 4 n

Figure 2.67 – Coxeter diagram of the dimer modelM`
n

Like braid monoids, each heap monoid has a graphical representation, in terms of the
heap diagrams introduced by Viennot [92]. Each generating element σi is represented by a
horizontal (not necessarily connected) brick that may move vertically but not horizontally.
Two elements are independent if and only if the bricks that represent them can be placed
on the same vertical layer without overlapping each other.

Figure 2.69 shows the diagrams of two words, σ1σ2σ3σ4σ5σ3σ1 and σ1σ3σ2σ4σ3σ5σ1,
that belong to the same heap, in the heap monoidM` generated by the pair

ptσ1, σ2, σ3, σ4, σ5u, tpσ2, σ3q, pσ3, σ2q, pσ2, σ5q, pσ5, σ2q, pσ3, σ4q, pσ4, σ3q, pσ3, σ5q, pσ5, σ3quq.

A canonical representation of the heap is obtained by letting gravity act on the blocks
that form the diagrams, so that several blocks fall onto the same vertical layer. This
representation is unique, and is linked to the Cartier-Foata normal form introduced below.

Note that, unlike braid diagrams, heap diagrams shall be read from bottom to top.

Like all Artin–Tits monoids, the heap monoidM` is invariant under word reversal,
homogeneous and cancellative, and come with a notion of left and right sets. Aside from
simple elements, some elements ofM`, called cliques, give rise to Garside normal forms
analogous to the case of Garside monoids.

Definition 2.68 (Cliques of a heap monoid).
LetM` be a heap monoid, and let a1, . . . , ak be pairwise independent generators ofM`,
i.e. such that @i, j P t1, . . . , ku, i ‰ j ñ pai, ajq P I. We say that the (commutative)
product a1 . . . ak is a clique ofM`, and we denote by C the set of cliques ofM`.
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Word σ1σ2σ3σ4σ5σ3σ1

σ1

σ2

σ3

σ4

σ5

σ3

σ1

Word σ1σ3σ2σ4σ3σ5σ1

σ1

σ3

σ2

σ4

σ3

σ5

σ1

Resulting heap

σ1

σ2 σ3

σ4 σ3

σ5

σ1

Figure 2.69 – Heap diagrams associated with the heap σ1σ2σ3σ4σ5σ3σ1

Lemma 2.70.
Let M` be a heap monoid with generators σ1, . . . , σn and let a be an element of M`.
The elements of the set leftpaq :“ tσi : σi ď` au are pairwise independent. In addition,
let α`paq be the (commutative) product

ś

σPleftpaq σ. The heap α`paq is the maximal left-
dividing clique of a, i.e. α`paq P C, α`paq ď` a and @b P C,b ď` aô b ď` α`paq.

Similarly, the elements of the set rightpaq :“ tσi : a ěr σiu are pairwise independent,
and the heap αrpaq :“

ś

σPrightpaq σ is the maximal right-dividing clique of a.

Proof. Due to word reversal, we only focus on the part that concerns the left set and
left-divisors of a. Let a1 . . . ak be a factorisation of a into generators orM`. One shows
easily that leftpaq “ tσi : Du P t1, . . . , ku, au “ σi and @v P t1, . . . , u ´ 1u, pau, avq P Iu.
Hence, the elements of leftpaq must be pairwise independent, and therefore commute
with each other.

Then, let a1 . . . am be a factorisation of α`paq, with leftpaq “ ta1, . . . , amu. An imme-
diate induction on i shows that a1 . . . ai ď` a for all i P t1, . . . ,mu, which proves that
α`paq ď` a. Finally, if b is a left-dividing clique of a, then we have leftpbq Ď leftpaq,
hence b “ α`pbq ď` α`paq.

Definition 2.71 (Garside normal forms in the monoidM`).
Let M` be a heap monoid, and let a be an element of M`. The left Garside normal
form, or Cartier-Foata normal form, of a is defined as the word NF`paq :“ a1 ¨a2 ¨ . . . ¨ak
such that:

• a “ a1a2 . . . ak,
• a1, . . . , ak are cliques ofM`,
• either k “ 0 or ak ‰ 1, and
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• ai “ α`paiai`1 . . . akq for all i P t1, . . . , ku.

The right Garside normal form of a is defined as the word NFrpaq :“ a11 ¨a
1
2 ¨ . . . ¨a

1
` such

that:

• a “ a11a
1
2 . . . a

1
`,

• a11, . . . , a
1
` are cliques ofM`,

• either ` “ 0 or a11 ‰ 1, and
• a1i “ αrpa

1
1a
1
2 . . . a

1
iq for all i P t1, . . . , `u.

For instance, the left Garside normal form of the word represented in Fig. 2.69 is
σ1 ¨ σ2σ3 ¨ σ3σ4 ¨ σ5 ¨ σ1.

Moreover, like when defining the Garside normal forms on Garside monoids in Def-
inition 2.34, requiring that ak ‰ 1, in the definition of the left Garside normal form,
amounts to requiring that ai ‰ 1 for all i P t1, . . . , ku, and requiring that a11 ‰ 1, in
the definition of the right Garside normal form, amounts to requiring that a1i ‰ 1 for all
i P t1, . . . , `u.

However, unlike in Garside groups, some elements of the heap groupM, such as the
heap σ2σ

´1
1 , cannot be factored as a product y´1z such that y and z belong to the heap

monoidM`. Hence, there is no direct way to derive a normal form on heap groups from
the Cartier-Foata normal form on heap monoids. Nevertheless, there still exists a notion
of Cartier-Foata normal form on heap groups.

Definition 2.72 (Cliques of a heap group).
LetM be a heap group, and let a1, . . . , ak be pairwise independent generators of the heap
monoidM`, i.e. such that @i, j P t1, . . . , ku, i ‰ j ñ pai, ajq P I. In addition, consider a
tuple pε1, . . . , εkq P t´1, 1uk. We say that the (commutative) product aε11 . . . a

εk
k is a clique

of the groupM, and we denote by C the set of all cliques ofM.

In particular, the cliques of the heap monoid M` are the cliques of M that belong
to the monoid M`. Moreover, the restriction of the Artin length to the monoid M`

coincides with a variant of the product length that we introduced in Definition 2.35 for
Garside monoids.

Definition 2.73 (Product length on heap groups).
Let M be a heap group with generators σ1, . . . , σn, and let a be an element of M. The
product length of a, which we denote by χpaq, is the smallest integer such that a can be
written as a product of χpaq generators σ˘1

i .

The product length leads to a generalisation of the left and right divisibility relations,
as well as of left and right sets of a heap.

Definition 2.74 (Divisibility relations and left and right (outgoing) sets).
Let M be a heap group, and let a and b be two elements of M. We define the partial
divisibility orderings ď` and ěr as follows:

a ď` abô ab ěr bô χpaq ` χpbq “ χpabq.
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We call left set of a, and denote by leftpaq, the set tσεii : εi “ ˘1, σεii ď` au. We also call
right set of a, and denote by rightpaq, the set tσεii : εi “ ˘1, a ěr σiu.

In addition, if a is a clique, we call left outgoing set of a, and denote by leftpaq, the set
tσεii : εi “ ˘1, σεii a R Cu. We also call right outgoing set of a, and denote by rightpaq,
the set tσεii : εi “ ˘1, aσεii R Cu.

Note that, since λpaq “ χpaq for all positive heaps a PM`, Definition 2.74 is consis-
tent with the usual definitions of ď`, ěr, left, right, left and right. In particular, for all
heaps a PM`, Definitions 2.39 and 2.74 lead to the same sets leftpaq, rightpaq, leftpaq
and rightpaq, which legitimates using the same notations.

Moreover, the left and right sets are crucial for characterising the relations ď` and
ěr, due to the following immediate result.

Lemma 2.75.
LetM be a heap group, and let a and b be two elements ofM. We have χpaq ` χpbq “
χpabq if and only if @σε P rightpaq, @τ η P leftpbq, σετ η ‰ 1.

Lemma 2.76.
Let a be an element of the heap group M. The elements of the set leftpaq :“ tσεii :
σεii ď` au are pairwise independent. In addition, let α`paq be the (commutative) product
ś

σεPleftpaq σ
ε. The heap α`paq is the maximal left-dividing clique of a, i.e. α`paq P C,

α`paq ď` a and @b P C,b ď` aô b ď` α`paq.

Similarly, the elements of the set rightpaq :“ tσεii : a ěr σ
εi
i u are pairwise independent,

and the heap αrpaq :“
ś

σεPrightpaq σ
ε is the maximal right-dividing clique of a.

Proof. The proof is analogous to that of Lemma 2.70. Due to word reversal, we only focus
on the part that concerns the left set and left-divisors of a. Let aθ11 . . . aθkk be a minimal-
length factorisation of a into generators orM, i.e. such that k “ χpaq. One shows easily
that leftpaq “ tσεii : Du P t1, . . . , ku, aθuu “ σεii and @v P t1, . . . , u ´ 1u, pau, avq P Iu.
Hence, the elements of leftpaq must be pairwise independent, and therefore commute
with each other.

Then, let aθ1
1 . . . aθmm be a factorisation of α`paq, with leftpaq “ taθ1

1 , . . . , a
θm
m u. An

immediate induction on i shows that aθ1
1 . . . aθii ď` a for all i P t1, . . . ,mu, which proves

that α`paq ď` a. Finally, if b is a left-dividing clique of a, then we have leftpbq Ď leftpaq,
hence b “ α`pbq ď` α`paq.

Consequently, we extend the Garside normal forms to heap groups.

Definition 2.77 (Garside normal forms in the heap groupM).
LetM be a heap group, and let a be an element ofM. The left Garside normal form of
a is defined as the word NF`paq :“ a1 ¨ a2 ¨ . . . ¨ ak such that:

• a “ a1a2 . . . ak,
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• a1, . . . , ak are cliques ofM,
• either k “ 0 or ak ‰ 1, and
• ai “ α`paiai`1 . . . akq for all i P t1, . . . , ku.

The right Garside normal form of a is defined as the word NFrpaq :“ a11 ¨a
1
2 ¨ . . . ¨a

1
` such

that:

• a “ a11a
1
2 . . . a

1
`,

• a11, . . . , a
1
` are cliques ofM,

• either ` “ 0 or a1 ‰ 1, and
• a1i “ αrpa

1
1a
1
2 . . . a

1
iq for all i P t1, . . . , `u.

Again, requiring that ak ‰ 1 amounts to requiring that ai ‰ 1 for all i P t1, . . . , ku,
and requiring that a11 ‰ 1 amounts to requiring that a1i ‰ 1 for all i P t1, . . . , `u.

2.3.5 Artin–Tits Monoids of FC Type

The left Garside normal form, for braid monoids, and the Cartier-Foata normal form, for
heap monoids, seem very similar. Hence, we look for a common framework to study both
Artin–Tits monoids of spherical type and heap monoids, that would lead to generalisations
of both the left Garside normal form and the Cartier-Foata normal form, as well as of
simple elements and of cliques. It is possible to do so by considering variants of Garside
families (see [37]), and we settle for the following framework.

Definition 2.78 (Garside family and two-way Garside family).
Let A` be an Artin–Tits monoid, with generators σ1, . . . , σn. A Garside family of the
monoid A` is a set S such that:

1. σ1, . . . , σn all belong to S;
2. S is closed under ď`-LCM in A`, i.e. every pair of elements of S with a common
ď`-multiple (in A`) has a least common ď`-multiple, which belongs to S;

3. S is closed under ěr-division, i.e. for all a P S, the ěr-divisors of a (in A`) belong
to S.

If, furthermore, S is closed under ď`-division and under ěr-LCM in A`, then we say
that S is a two-way Garside family.

While all Artin–Tits monoids admit a finite (one-way) Garside family [38], we aim
now at proving Theorem 2.85, which states that an Artin–Tits monoid A` admits a finite
two-way Garside family if and only if A` is an Artin–Tits monoid of FC type. Artin–Tits
monoids of FC type were introduced by Charney and Davis [29] as a natural extension
of both braids and heaps [6, 7, 41, 57, 58].
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Definition 2.79 (Artin–Tits monoid of FC type).
Let A` be an Artin–Tits monoid, with generators σ1, . . . , σn. We say that A` is a monoid
of FC type if, for all sets I Ď t1, . . . , nu, either we have mi,j “ 8 for some i, j P I, or
the submonoid of A` generated by tσi : i P Iu is an Artin–Tits monoid of spherical type.

First, it comes immediately that any intersection of two-way Garside families is also
a two-way Garside family. Consequently, there always exists a smallest two-way Garside
family, which may be finite or infinite, depending on A`. Below, we call strong elements
of A` the elements of the smallest two-way Garside family of A`.

Lemma 2.80.
Artin–Tits monoids of spherical type and heap monoids are Artin–Tits monoids of FC
type.

In fact, Artin–Tits monoids of spherical type and heap monoids are prototypical ex-
amples of monoids that admit a finite two-way Garside family, as shown below.

Lemma 2.81.
Let A` be an Artin–Tits monoid, with generators σ1, . . . , σn. Let S be the smallest set
containing the generators σ1, . . . , σn and such that:

• S is closed under ď`-division;
• S is closed under incremental ď`-LCM, i.e. @a P S, @i, j P t1, . . . , nu, ptaσi, aσju Ď
S and i ‰ jq ñ arσiσjs

mi,j P S;
• S is closed under ěr-division and under incremental ěr-LCM.

The set S is the smallest two-way Garside family of A`.

Proof. Each two-way Garside family of A` is closed under ď`-division, incremental ď`-
LCM, ěr-division and incremental ěr-LCM. Hence, it remains to prove that S is closed
under ď`-LCM and ěr-LCM. The proof is very similar to the proof of Lemma 2.19.

Let z be an element of A`, let a and b be two ď`-divisors of z that belong to S, and
let c :“ GCDď`pa,bq. We prove by induction on λpzq ´ λpcq that LCMď`pa,bq P S. If
λpcq “ λpzq, then λpcq ě maxtλpaq, λpbqu, hence a “ b “ c “ LCMď`pa,bq. Hence, let
us assume that λpcq ă λpzq.

If a “ c, then b “ LCMď`pa,bq. Similarly, if b “ c, then a “ LCMď`pa,bq. Hence,
we focus on the case where c ă` a and c ă` b. Consider two generators σi and σj of A`

such that cσi ď` a and cσj ď` b. Then, let d :“ crσiσjs
mi,j and e :“ GCDď`pa,dq. Both

cσi and cσj belong to S and ď`-divide z, hence so does d “ LCMď`pcσi, cσjq. Since
cσi ď` e, it follows that λpcq ă λpcσiq ď λpeq, and the induction hypothesis states that
the element za :“ LCMď`pa,dq belongs to S.

We show similarly that the element zb :“ LCMď`pb,dq belongs to S. Finally observe
that d ď` GCDď`pza, zbq, and therefore the induction hypothesis states that the element



Chapter 2. Preliminaries 71

y :“ LCMď`pza, zbq belongs to S. This shows that

LCMď`pa,bq “ LCMď`pa,b, cσi, cσjq “ LCMď`pa,b,dq “ LCMď`pza, zbq “ y

belongs to S, which completes the induction. We show similarly that S is closed under
ěr-LCM.

The proof of Lemma 2.81 is illustrated in Fig. 2.82.

1 c

cσj

cσi e

b

d

a

zb

za

y z

Figure 2.82 – S is closed under ď`-LCM

Definition 2.83 (Self-independent element).
Let A` be an Artin–Tits monoid, with generators σ1, . . . , σn, and let a be an element
of A`. If there exists two generators σi and σj of A` and three elements u, v and w
of A` such that σi ‰ σj, that mi,j “ 8 and that a “ uσivσjw, then we say that a is
self-dependent. Otherwise, we say that a is self-independent.

Proposition 2.84.
Let A` be an Artin–Tits monoid. Let S be the smallest two-way Garside family of A`,
let S be the set of simple elements of A`, and let I be the set of self-independent elements
of A`. We have S “ S X I.

Proof. We first prove by induction on λpxq that x P S for all x P S X I. Indeed, if
λpxq “ 0 or λpxq “ 1, then by construction we have x P S. Then, if |rightpxq| ě 2,
consider two generators σi and σj of A` that belong to rightpxq. Lemma 2.19 proves
that S is closed under ď`-division, and it comes immediately that I is closed under
ď`-division too. Consequently, we know that both xσ´1

i and xσ´1
j belong to S X I and

therefore, by induction hypothesis, to S. It follows that x “ LCMď`pxσ
´1
i ,xσ´1

j q also
belongs to S.

Hence, we treat the case where λpxq ě 2 and |rightpxq| “ 1. Consider two generators
σi and σj of A` such that x ěr σiσj. Since x P S, Corollary 2.18 states that x is σ2-free,
whence σi ‰ σj. Then, let k be the largest integer such that x ě rσiσjs

´k, where the
notation rσiσjs´k was introduced in Definition 2.8, and let y be the element of A` such
that x “ yrσiσjs

´k. Since rightpxq “ tσju, it follows that 2 ď k ă mi,j.

Since x is σ2-free and since k is maximal, we know that neither σi nor σj belongs to
rightpyq, hence that both yσi and yσj belong to S. Then, since x is self-independent, we
know that so are yσi and yσj. Since k ě 2, the induction hypothesis proves that both yσi
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and yσj belong to S, and therefore that so does yLCMď`pσi, σjq, which is ď`-divisible
by x. This means that x P S, which completes the induction and proves that S X I Ď S.

Conversely, we prove that S Ď SXI. Theorem 2.14 already proves that S is a two-way
Garside family of A`, whence S Ď S. Hence, we shall prove that S Ď I. Let x be some
element of S. Lemma 2.81 proves that there exists an integer k ě 0 elements x0, . . . ,xk
of S such that xk “ x and, for all i P t0, . . . , ku, either

• xi P t1, σ1, . . . , σnu;
• xi ď` xj or xj ěr xi for some integer j P t0, . . . , i´ 1u;
• there exists generators σu and σv, an element y ofA` and integers j, k P t0, . . . , i´1u

such that xj “ yσu, xk “ yσv and xi “ yLCMď`pσu, σvq;
• there exists generators σu and σv, an element y ofA` and integers j, k P t0, . . . , i´1u

such that xj “ σuy, xk “ σvy and xi “ LCMěrpσu, σvqy.

We prove by induction on i that xi P I for all i P t0, . . . , ku:

• If xi P t1, σ1, . . . , σnu, then of course xi P I.
• If xi ď` xj or xj ěr xi for some integer j P t0, . . . , i ´ 1u, then the induction

hypothesis states that xj P I, and therefore xi P I too.
• If xi “ yLCMď`pσu, σvq for some y P A` and some generators σu and σv such

that tyσu,yσvu Ď tx0, . . . ,xi´1u, then the induction hypothesis states that both
yσu and yσv belong to I. Hence, let L be the set tu, vu Y tk : σk is a factor of yu.
Since both yσu and yσv belong to I, it follows that my,z ‰ 0 for each pair py, zq of
elements of L such that y ‰ z. This proves that xi “ yrσuσvs

mu,v also belongs to I.
• Likewise, if xi “ LCMěrpσu, σvqy for some y P A` and some generators σu and σv

such that tσuy, σvyu Ď tx0, . . . ,xi´1u, then xi P I.

This completes the induction and the proof of Proposition 2.84.

Theorem 2.85.
Let A` be an Artin–Tits monoid. The monoid A` admits a finite two-way Garside family
if and only if A` is of FC type.

Proof. Let S be the smallest two-way Garside family of A`. Let us first assume that, for
some set I Ď t1, . . . , nu, we have mi,j ă `8 for all i, j P I, and that the submonoid of
A` generated by tσi : i P Iu is not an Artin–Tits monoid of spherical type. Let B` be
that submonoid, and let SB be the set of simple elements of B`. Theorem 2.14 states
that SB is infinite. Since SB Ď S and SB Ď B` Ď I, it follows that SB Ď S, which proves
that S is infinite.

Conversely, let us assume that S is infinite. This means that S contains elements
of arbitrarily large length. Hence, for all k ě 0, let ak be an element of S such that
λpakq “ k, and let Lk be the set of letters that appear in ak. Then, let L be a subset of
t1, . . . , nu such that the set Ω :“ tk ě 0 : Lk “ tσi : i P Luu is infinite. In addition, let
C` be the submonoid of A` generated by tσi : i P Lu, and let SC be the set of simple
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elements of C`. It necessarily follows that mi,j ă `8 for all i, j P L, since each word ak
belongs to I when k P Ω. Moreover, observe that each ak is a σ2-free element of C` when
k P Ω, whence ak P SC. It follows that SC is infinite, i.e. that C` is not an Artin–Tits
monoid of spherical type. This completes the proof.

Let us restate Theorem 2.85 in terms of Coxeter diagrams. Recall that the Coxeter
diagram of the monoidA` is the graphG with vertices 1, . . . , n, and in which two vertices
i and j are linked by:

• an unlabelled, white edge if mi,j “ 8;
• no edge if mi,j “ 2;
• an unlabelled, black edge if mi,j “ 3;
• a black edge with label mi,j if mi,j ě 4.

An Artin–Tits monoidA` is strong if the induced subgraphs of its Coxeter diagram either
contain a #“# edge (i.e. a white edge) or are Coxeter diagrams of Artin–Tits monoids
of spherical type. This amounts to saying that each maximal #“#-independent induced
subgraph of the Coxeter diagram of A` can be split into connected components which
are isomorphic to the diagrams classified in Fig. 2.27.

Example 2.86.
Consider the matrix M :“ pmi,jq1ďi,jď6 such that

M “

¨

˚

˚

˚

˚

˚

˚

˝

1 3 2 2 2 3
3 1 3 2 2 2
2 3 1 3 2 2
2 2 3 1 4 8

2 2 2 4 1 3
3 2 2 8 3 1

˛

‹

‹

‹

‹

‹

‹

‚

,

and let A`
M be the Artin–Tits monoid defined by

A`
M :“ xσ1, . . . , σ6 | rσiσjs

mi,j “ rσjσis
mi,jy

`,

whose Coxeter diagram is presented in Fig. 2.88.

Its maximal #“#-independent induced subgraphs are outlined in Fig. 2.88, and are iso-
morphic to the Coxeter diagrams of type A5 and B5. Hence, A`

M is an Artin–Tits monoid
of FC type.

It follows from Theorem 2.85 that the smallest (one-way) Garside family of an Artin–
Tits monoid A` may be a strict subset of the smallest two-way Garside family of A`, as
shown below.

Proposition 2.87.
Let A` be an Artin–Tits monoid, let S1 be the smallest Garside family of A`, and let S2

be the smallest two-way Garside family of A`. The inclusion S1 Ď S2 holds, with equality
if and only if A` has FC type.
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1

23

4

5 6
4

Coxeter diagram

1

23

5 6

1

23

4

5
4

Maximal #“#-free induced subgraphs

Figure 2.88 – A Coxeter diagram and its maximal #“#-free induced subgraphs

Proof. Since each two-way Garside family is also a (one-way) Garside family, the inclusion
relation S1 Ď S2 is straightforward. Then, if A` has FC type, let x be some element of
S2, and let Lpxq denote the set of Artin generators tσi : Du,v P A`,x “ uσivu. It follows
from Proposition 2.84 that x P SXIXxLpxqy` and that the monoid xLpxqy` has spherical
type. Therefore, x is a simple element of the monoid generated by Lpxq, i.e. a ěr-divisor
of the element ∆Lpxq :“ LCMpLpxqq. By construction, the element ∆Lpxq belongs to S1,
and therefore so does x belong to S1, which proves that S1 “ S2.

Conversely if A` does not have FC type, then we mentioned above that S1 is finite,
whereas S2 is infinite, whence S1 Ĺ S2.

Proposition 2.87 is illustrated by Example 2.89 (when A` does not have FC type)
and by Example 2.91 (when A` has FC type).

Example 2.89.
Consider the matrices M :“ pmi,jq1ďi,jď3 and N :“ pni,jq1ďi,jď3 such that

M “

¨

˝

1 3 3
3 1 3
3 3 1

˛

‚ and N “

¨

˝

1 4 2
4 1 4
2 4 1

˛

‚.

Let Ã`
2 and C̃`2 be the Artin–Tits monoids defined by

Ã`
2 :“ xσ1, σ2, σ3 | rσiσjs

mi,j “ rσjσis
mi,jy

`; C̃`2 :“ xσ1, σ2, σ3 | rσiσjs
ni,j “ rσjσis

ni,jy
`.

According to Theorem 2.26, these monoids are not of spherical type, and therefore are
not of FC type either, as indicated by their respective Coxeter diagrams:

3

2

1 1 2 3
4 4

Ã`
2 C̃`2



Chapter 2. Preliminaries 75

Hence, their smallest (finite) Garside families, which are represented in Fig. 2.90, are
strict subsets of their smallest (infinite) two-way Garside families. In Figure 2.90, we
represent the relation u ď` v by (the reflexive transitive closure of) arrows that go from
u to v, and we omit representing the relation u ěr v.

1 σ1

σ2

σ3

σ2σ3

σ3σ2

σ1σ2

σ1σ3

σ1σ2σ3σ2σ2σ3σ2

σ2σ1σ3σ1

σ2σ1
σ1σ2σ1

σ3σ1σ2σ1
σ3σ1

σ1σ3σ1

Monoid Ã`
2

1
σ1

σ2σ3σ2

σ2σ3 σ2 σ1σ2σ1

σ1σ2

σ2σ1σ3

σ2σ1 σ2σ1σ2
σ1σ2σ1σ2

σ2σ3σ2σ3 σ3
σ1σ3

σ1σ2σ3σ2σ3

σ3σ2σ3
σ3σ2

σ3σ1σ2σ1σ2

Monoid C̃`2

Figure 2.90 – Smallest Garside families in the monoids Ã`
2 and C̃`2

Example 2.91.
Consider the matrices M :“ pmi,jq1ďi,jď3 and N :“ pni,jq1ďi,jď4 such that

M “

¨

˝

1 3 3
3 1 8

3 8 1

˛

‚ and N “

¨

˚

˚

˝

1 3 8 8

3 1 8 8

8 8 1 3
8 8 3 1

˛

‹

‹

‚

.

Let A`
M and A`

N be the Artin–Tits monoids defined by

A`
M :“ xσ1, σ2, σ3 | rσiσjs

mi,j “ rσjσis
mi,jy

`;A`
N :“ xσ1, . . . , σ4 | rσiσjs

ni,j “ rσjσis
ni,jy

`.

The braid monoid B`4 and the monoids A`
M and A`

N have FC type, as indicated by their
respective Coxeter diagrams:

1 2 3 3

1

2 1

2

3

4

B`4 A`
M A`

N

Hence, their smallest one-way and two-way Garside families, which are represented in
Fig. 2.92, are equal to each other.

We generalise Garside normal forms to Artin–Tits monoids of FC type, using the
functions α` : a ÞÑ GCDď`ptx P S : x ď` auq and αr : a ÞÑ GCDěrptx P S : a ěr xuq.
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1

σ1 σ2 σ3

σ1σ2 σ2σ1 σ1σ3 σ2σ3 σ3σ2

σ1σ2σ3 σ1σ2σ1 σ1σ3σ2 σ2σ1σ3 σ2σ3σ2 σ3σ2σ1

σ1σ2σ1σ3 σ1σ2σ3σ2 σ2σ1σ3σ2 σ1σ3σ2σ1 σ2σ3σ2σ1

σ1σ2σ1σ3σ2 σ1σ2σ3σ2σ1 σ2σ1σ3σ2σ1

∆4

Monoid B`4

1 σ1

σ2

σ3

σ1σ2

σ1σ3

σ2σ1 σ1σ2σ1

σ3σ1 σ1σ3σ1

Monoid A`
M

1

σ1

σ2

σ1σ2

σ2σ1

σ1σ2σ1

σ3

σ4

σ3σ4

σ4σ3

σ3σ4σ3

Monoid A`
N

Figure 2.92 – Smallest (two-way) Garside families in the monoids B`4 , A
`
M and A`

N

Definition 2.93 (Garside normal forms in the monoid A`).
Let A` be an Artin–Tits monoid of FC type and let a be an element of A`. The left
Garside normal form of a is defined as the word NF`paq :“ a1 ¨ a2 ¨ . . . ¨ ak such that:

• a “ a1a2 . . . ak,
• a1, . . . , ak are strong elements of A`,
• either k “ 0 or ak ‰ 1, and
• ai “ α`paiai`1 . . . akq for all i P t1, . . . , ku.

The right Garside normal form of a is defined as the word NFrpaq :“ a11 ¨a
1
2 ¨ . . . ¨a

1
` such

that:

• a “ a11a
1
2 . . . a

1
`,

• a11, . . . , a
1
` are strong elements of A`,

• either ` “ 0 or a1 ‰ 1, and
• a1i “ αrpa

1
1a
1
2 . . . a

1
iq for all i P t1, . . . , `u.

Like in Garside monoids and in heap monoids, requiring that ak ‰ 1 amounts to
requiring that ai ‰ 1 for all i P t1, . . . , ku, and requiring that a11 ‰ 1 amounts to
requiring that a1i ‰ 1 for all i P t1, . . . , `u.
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Note that the Cartier-Foata normal form for heap monoids is in fact a specific instance
of left Garside normal forms for heap monoids. Hence, replacing the set of simple elements
S of a Garside monoid G` by the set of strong elements S of an Artin–Tits monoid
of FC type A`, we generalise immediately the Definitions, Lemmas, Corollaries and
Propositions 2.37 to 2.42, as well as the notations a ÝÑ b and aÐÝ b.

In particular, we redefine the notions of left and right outgoing set of a strong element.
These notions have simple characterisations.

Definition & Proposition 2.94 (Incompatibility set).
Let A` be an Artin–Tits monoid of FC type, with smallest two-way Garside family S,
and let x be an element of S. We call set of letters of x, and denote by Lpxq, the set
tσi : Du,v P A`,x “ uσivu. We also call incompatibility set of x, and denote by Ipxq, the
set tσi : Dσj P Lpxq,mi,j “ 8u. The left and right outgoing sets of x satisfy the relations

leftpxq “ leftpxq Y Ipxq and rightpxq “ rightpxq Y Ipxq.

Proof. Both relations follow immediately from the set equality S “ IX S.

Furthermore, a result analogous to Proposition 2.49 also holds in the framework of
Artin–Tits monoids of FC type.

Proposition 2.95.
Let u be a non-negative integer, let b be an element of the monoid A`, and let Su be the
product set tb1 . . . bu : b1, . . . , bu P Su. The following statements are equivalent:

1. b P Su;
2. |NF`pbq| ď u;
3. |NFrpbq| ď u.

Moreover, if u ě 1, then Su is a two-way Garside family.

Proof. First, the implication 2 ñ 1 is immediate. Second, we show by induction on
|NF`pbq| that |NF`pbq| ď |NF`pabq| for all pairs pa,bq P S ˆ A`. This induction is
exactly the same as the analogous one used for proving Proposition 2.49 in the case of
standard Garside groups.

Third, we prove by induction on u that a 1 ñ 2. First, the statement is immediate
if u ď 1. Then, if u ě 1, let b1, . . . , bu be strong elements and let b :“ b1 . . . bu. Since
b1 ď` α`pbq, let c and d be the elements of A` such that b1c “ α`pbq and cd “ b2 . . . bu.
Since α`pbq ěr c, we know that c P S, hence that |NF`pdq| ď |NF`pcdq|, and the
induction hypothesis states that |NF`pcdq| ď u ´ 1. Since NF`pbq “ α`pbq ¨NF`pdq, it
follows that |NF`pbq| ď u. This completes our second induction, and proves that 1 ñ 2.
One shows analogously that 1 ô 3.

It remains to show that Su is a two-way Garside family. First, each generator σi of
A` belongs to Su and Su is closed under ď`-division and ěr-division. Now, we show by
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induction on u that Su is closed under ď`-LCM. First, the statement is immediate if
u “ 1. Then, if u ě 1, let a1, b1 be elements of S, and let a2, b2 be elements of Su, such
that a1a2 and b1b2 have some ď`-multiple d. Since d is a ď`-multiple of a1 and b1, we
know that c1 :“ LCMď`pa1, b1q belongs to S.

Let a1 and b1 be strong elements such that c1 “ a1a1 “ b1b1, and let d2 be an element
of A` such that c1d2 “ d. Since both a1a2 and a1a1 “ LCMď`pa1, b1q divide d, we know
that a2 and a1 have a common ď`-multiple. Hence, consider the element a2 of A` such
that LCMď`pa2, a1q “ a1a2. By induction hypothesis, we know that both a1a2 and a2

belong to Su´1. Moreover, observe that

c1a2 “ a1a1a2 “ a1LCMď`pa2, a1q “ LCMď`pa1a2, a1a1q ď` d “ c1d2,

whence a2 ď d2.

Similarly, there exists an element b2 of A` such that LCMď`pb2, b1q “ b1b2, and we
know both that b2 P S

u´1 and that b2 ď d2. Hence, the induction hypothesis proves that
c2 :“ LCMď`pa2, b2q belongs to Su´1. Then, observe that a1a2 ď` c1a2 ď` c1c2 and that,
similarly, b1b2 ď c1c2. This proves that a1a2 and b1b2 have a common ď`-multiple in Su,
and since Su is closed under ď`-division, it follows that LCMď`pa1a2, b1b2q P Su. This
completes the proof that Su is closed under ď`-LCM, and one shows analogously that S
is closed under ěr-LCM.

The proof of Proposition 2.95 is illustrated in Fig. 2.96. Plain black lines with double
arrows indicate multiplications to the right by some element of S, plain black lines with
simple arrows indicate multiplications by some element of Su´1, and the unique dotted
line (with a simple arrow) indicates a multiplication by some element of A`.

1

a1

a2 a1a2

c1

b1b2

c1a2

c1b2

c1c2 c1d2

Figure 2.96 – Su is closed under ď`-LCM

Corollary 2.97.
Let A` be an Artin–Tits monoid of FC type and let b be an element of A`. The Garside
words NF`pbq and NFrpbq have the same length, i.e. |NF`pbq| “ |NFrpbq|.

Hence, we also denote by }b} both lengths |NF`pbq| and |NFrpbq|.

Note the duality between the Garside element ∆u, in the case of a (standard) Garside
monoid, and the two-way Garside family Su “ tb1 . . . bu : b1, . . . bu P Su. In particular,
if A` is a Garside monoid, then we have S “ S and Su “ Su “ ta P A` : a ď ∆uu.
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Furthermore, for all integers u ě 1, it makes sense to consider the functions αu` : a ÞÑ
LCMď`ptx P S

u : x ď` auq and αur : a ÞÑ LCMěrptx P S
u : a ěr xuq and the associated

Garside normal forms.

Proposition 2.98.
Let A` be an Artin–Tits monoid of FC type, with two-way Garside family S, let u ě 1
be a positive integer, and let x be an element of A`. Let x1 ¨ . . . ¨ xk be the left Garside
normal form of x with respect to the two-way Garside family S, and let y1 ¨ . . . ¨ y` be the
left Garside normal form of x with respect to the two-way Garside family Su. We have
` “ rk{us, and yi “ xupi´1q`1xupi´1q`2 . . . xmaxtk,uiu for all i P t1, . . . , `u.

In addition, from Corollary 2.38 and Proposition 2.95 follow dual statements.

Lemma 2.99.
Let A` be an Artin–Tits monoid of FC type, with two-way Garside family S. Let I be
a subset of tσ1, . . . , σnu that has some common multiple, and let ∆I :“ LCMď`pIq “
LCMěrpIq. Then, let x be a non-trivial element of A`, and let x1 ¨ ¨ ¨ . . . ¨ xk be the left
Garside normal form of x:

• if I X rightpxkq “ H, then }x∆I} “ k;
• if I Ď rightpxkq, then NF`px∆Iq “ NF`pxq ¨∆I ;
• in all other cases, we have }x∆I} “ k ` 1, and x ă` α

k
` px∆Iq ă` x∆I .

Proof. First, if I X rightpxkq “ H, then xkσi P S for all σi P I, and therefore xk∆I “

LCMď`ptxkσi : σi P Iuq also belongs to S. Hence, Proposition 2.95 states that xy “
x1x2 . . . xk´1pxk∆Iq belongs to Sk, i.e. that }x∆I} ď k. Since k “ }x} ď }x∆I}, it follows
that }x∆I} “ k.

Second, Corollary 2.38 already proves that NF`px∆Iq “ NF`pxq ¨ ∆I if and only if
I Ď rightpxkq.

Hence, if none of the relations I X rightpxkq “ H or I Ď rightpxkq holds, we know
both that NF`px∆Iq ‰ NF`pxq ¨∆I and that there exists a generator σi P I X rightpxkq.
Since σi is atomic, we have leftpσiq “ tσiu, whence Corollary 2.38 proves that x1 ¨. . .¨xk ¨σi
is in left Garside normal form. It follows that k`1 ď }xσi} ď }x∆I} and αk` px∆Iq ă x∆I .
Moreover, x∆I belongs to Sk`1, hence Proposition 2.95 states that k ` 1 “ }x∆I}, and
therefore that x ă` αk` px∆Iq ă` x∆I .

2.4 A Geometric Approach to Braids

Having covered briefly some standard results about the algebraic and combinatorial na-
ture of braid groups and monoids, let us now focus on the topological nature of braids.
Theorems 2.3 and 2.6 were first milestones in that respect, outlining the connection be-
tween braids and topological structures such as isotopy groups of braid diagrams and
fundamental groups of configuration spaces.
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Like the algebraic approach that we treated above, the geometric approach to braids
has been abundantly treated in the literature [13, 39, 48]. Hence, we review here some
standard results that concern the geometric nature of braids, and that we will use in
Chapters 3 and 4.

2.4.1 Braids, Laminations and Curve Diagrams

Let D2 Ď C be the closed unit disk, let BD2 be the unit circle (i.e. the boundary of
D2), and let Pn Ď p´1, 1q be a set of cardinality n. Let Hn be the group of orientation-
preserving homeomorphisms h : C Ñ C such that hpPnq “ Pn, hpBD2q “ BD2 and
hp1q “ 1, hp´1q “ ´1, i.e. the homeomorphisms fixing BD2 and Pn setwise, and ˘1
pointwise. The following result is equivalent to Theorem 2.3.

Theorem 2.100.
The group Bn of braids on n strands is isomorphic to the mapping class group of the
punctured disk D2zPn, i.e. isomorphic to the quotient group of Hn by the isotopy relation.

Remarkably, this definition does not depend on which set Pn we consider. We will
refer below to the elements of Pn as being mobile punctures in the disk D2, and number
them from left to right: Pn “ tpi : 1 ď i ď nu, with p1 ă . . . ă pn. We also call left point,
or fixed puncture, the point ´1, which we also denote by p0; we call right point the point
`1, which we also denote by pn`1.

There exist many variants of Theorem 2.100, which offer flexibility when considering
braids as isotopy classes of homeomorphisms. We present below such two such variants.

Let H˚
n be the group of orientation-preserving homeomorphisms h : CÑ C such that

hpPnq “ Pn, hp´1q “ ´1 and hp1q “ 1, i.e. fixing t´1u, t1u and Pn setwise.

Theorem 2.101.
The group Bn of braids on n strands is isomorphic to the quotient group of H˚

n by the
isotopy relation.

Let H˛
n be the group of orientation-preserving homeomorphisms h : C ÞÑ C such that

hpPnq “ Pn, hpRă´1q “ Ră´1 and hpBD2q “ BD2, where Ră´1 denotes the open real
interval p´8,´1q.

Theorem 2.102.
The group Bn of n-strand braids is isomorphic to the quotient group of H˛

n by the isotopy
relation.

Hence, a braid is the isotopy class rhs of some homeomorphism h. According to stan-
dard notations for braids, we will let braids act on the complex plane on the right, i.e.
denote by rgsrhs the isotopy class of the homeomorphism rh ˝ gs: composition to the left
gives rise to a braid multiplication to the right, and vice-versa.
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Theorems 2.100, 2.101 and 2.102 identify braids with isotopy classes of homeomor-
phisms of C. More precisely, let S be a subset of the complex plane and let β be a braid,
and consider the isotopy class S ¨β “ thpSq : h is an homeomorphism that represents βu.
The group of braids Bn acts transitively on the set tS ¨ β : β P Bnu, which induces an
equivalence relation on the group Bn itself.

We focus below on two subsets of C. We call respectively trivial closed lamination,
trivial open lamination and trivial curve diagram the sets

Lc :“ tz : |2z ` 1´ pj| “ |1` pj`1| : 0 ď j ď nu,
Lo :“

 

1
2
ppj ` pj`1q ` iz : z P R, 1 ď j ď n´ 1

(

, and
D :“ r´1, 1s.

From a geometric point of view, the set Lc is a collection of circles, Lo is a collection of
vertical lines, and D is a horizontal segment.

p0 p1 p2 p3 p4

Trivial closed lamination

p0 p1 p2 p3 p4

Trivial open lamination

p0 p1 p2 p3 p4

Trivial curve diagram

Figure 2.103 – Trivial closed lamination, open lamination and curve diagram

If S “ Lc, S “ Lo or S “ D, then the action of Bn on tS ¨ β : β P Bnu is free (see [13]
for details). This means that the isotopy classes S ¨ β and S ¨ γ are disjoint as soon as
β ‰ γ. Hence, each set hpSq belongs to a class S ¨ β for one unique braid β; we say that
hpSq represents the braid β. We focus below on such sets hpSq.

Closed laminations will be studied in Chapter 3, while curve diagrams will be studied
in Chapter 4, in connection with the trivial open lamination. We introduce below closed
laminations, then open laminations, and finally curve diagrams.

Definition 2.104 (Closed lamination).
Consider the set Pn of n mobile punctures inside the disk D2. We call closed lamination,
and denote by Lc, the union of n` 1 non-intersecting closed curves Lc0, . . . ,Lcn such that
each curve Lcj splits the plane C into one inner region that contains the left point and
j mobile punctures, and one outer region that contains the right point and n ´ j mobile
punctures.

Figure 2.105 represents two closed laminations, including Lc, the trivial one. From
this point on, closed laminations will always be represented as follows. Mobile punctures
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p0 p1 p2 p3

Lc3
Lc2

Lc1
Lc0

Trivial lamination

p0 p1 p2 p3

Lc3
Lc2

Lc1
Lc0

Non-trivial lamination

Figure 2.105 – Closed laminations

are indicated by white dots, the fixed puncture (i.e. the left point) is indicated by a black
dot, and the right point is omitted. In addition, the unit disk D2 is represented by a gray
area, the curves of the lamination are drawn in black, and the real axis R is drawn with a
thin horizontal line. Hereafter, and depending on the context, we may omit to represent
the unit disk D2, as well as the names p0, . . . , pn.

Geometrically, a braid β P Bn, represented by some braid diagram D, acts on the
trivial closed lamination Lc as follows. We place the n mobile punctures on the top of the
n strands of D, then let these punctures “slide” along the strands of D, until we reach the
bottom ofD. At the same time, we force the n`1 curves to follow the motion prescribed by
the punctures. Doing so, we obtain the lamination Lc ¨ β, which will henceforth represent
the braid β itself. Figure 2.107 illustrates the action of the braid σ2 on Lc.

When a braid β acts on some closed lamination Lc, it moves both the mobile punctures
and the curves of Lc. The names of the punctures p0, . . . , pn depend uniquely of the order
of the punctures. Hence, when applying the braid σ˘1

i on a lamination, both punctures
pi and pi`1 move, and they are respectively renamed pi`1 and pi. On the contrary, and
although the curves Lcj may move, they are not renamed, as shown in Fig. 2.105.

Definition 2.106 (Open lamination).
Consider the set Pn of n mobile punctures inside the disk D2. We call open lamination,
and denote by Lo, the union of n´ 1 non-intersecting open curves Lo1, . . . ,Lon´1 such that
each curve Loj
• contains two vertical half-lines with opposite directions (i.e. sets zj ` iRď0 and
z1j ` iRě0);
• splits the plane C into one left region that contains the left point and j punctures,
and one right region that contains the right point and n´ j punctures.

Figure 2.108 represents two open laminations, including Lo, the trivial one. From this
point on, open laminations will always be represented as follows. Mobile punctures are
indicated by white dots, and both the left point and the right point are indicated by
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Braid diagram D
representing σ2

3

2

1

1

Lamination Lc

representing 1

2 3

Lamination Lc ¨ σ2

representing σ2

Figure 2.107 – Braid acting on a closed lamination

black dots. The unit disk D2 is represented by a gray area, the curves of the lamination
are drawn in black, and the segment r´1, 1s (i.e. the trivial curve diagram D) is drawn
in white.

The action of braids on both types of laminations is very similar. A braid β P Bn,
represented by some braid diagram D, acts on the trivial open lamination Lo as follows.
We place the nmobile punctures on the top of the n strands ofD, then let these punctures
“slide” along the strands of D, until we reach the bottom of D. At the same time, we
force the n ´ 1 curves to follow the motion prescribed by the punctures. Doing so, we
obtain the lamination Lo ¨ β, which will henceforth represent the braid β itself. This is
analogous to the process illustrated in Fig. 2.107.

Closed laminations and open laminations are in fact small variants of each other. More
precisely, an open lamination Lo gives rise to a closed lamination Lc as follows. For each
integer i ď n ´ 1, bend both half-lines of the curve Loi to the left, in order to transform
Loi into a closed line Lci . Then, add a closed curve Lcn that encloses all (fixed or mobile)
punctures but does not enclose the right point, and add a closed curve Lc0 that encloses
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Trivial lamination Non-trivial lamination

Figure 2.108 – Open laminations

the fixed puncture but does not enclose any mobile puncture nor the right point. We
thereby obtain a closed lamination Lc that represents the same braid as Lo.

For instance, the closed laminations presented in Fig. 2.105 are obtained from the
open laminations of Fig. 2.108 by following this process.

Definition 2.109 (Curve diagram).
Consider the set Pn of n mobile punctures inside the disk D2. We call curve diagram, and
denote by D, each non-intersecting open curve, with endpoints ´1 and `1, that contains
each puncture of the disk.

Figure 2.110 represents two curve diagrams, including D, the trivial one. From this
point on, curve diagrams will always be represented in the same way as open laminations,
as follows. Mobile punctures are indicated by white dots, and both the left point and the
right point are indicated by black dots. In addition, the unit disk D2 is represented by a
gray area, the curve D is drawn in white, and the trivial open lamination Lo is drawn in
black.

Trivial curve diagram Non-trivial curve diagram

Figure 2.110 – Curve diagrams

Once again, the action of braids on curve diagram has the flavour of the action of
braids on laminations. A braid β P Bn, represented by some braid diagram D, acts on
the trivial curve diagram D as follows. We place the n mobile punctures on the top of the
n strands of D, then let these punctures “slide” along the strands of D, until we reach the
bottom of D. At the same time, we force the curve of D to follow the motion prescribed
by the punctures. Doing so, we obtain the curve diagram D ¨ β, which will henceforth
represent the braid β itself. This is analogous to the process illustrated in Fig. 2.107.
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2.4.2 Norms of Laminations, of Curve Diagrams and of Braids

Following Dynnikov and Wiest [46], we define the norm of a (closed or open) lamination
or of a curve diagram, and the associated norm of a braid.

Definition 2.111 (Closed laminated norm and tight closed lamination).
Let β be a braid on n strands, and let Lc be a closed lamination representing β.

The norm of Lc, which we denote by }Lc}`, is the cardinality of the set Lc X R, i.e.
the number of intersection points between the real axis R and the n ` 1 curves of the
lamination Lc.

Moreover, if, among all the closed laminations that represent β, the lamination Lc has a
minimal norm, then we say that Lc is a tight lamination. In this case, we also define the
closed laminated norm of the braid β, which we denote by }β}c`, as the norm }Lc}`.

Although we call the mapping β ÞÑ }β}c` a norm, following the seminal paper of
Dynnikov and Wiest [46], this mapping does not satisfy standard properties of norms
on metric spaces, such as separation axioms (i.e. that β “ 1 if and only if }β}c` “ 0) or
sub-additivity axioms (i.e. that }β ¨ γ}c` ď }β}c``}γ}c` for all β, γ P Bn). Counterexamples
to those properties are provided by the fact that }1}c` “ 2pn ` 1q and that }pσ1σ2q

k}c` “

2F2k`3 ` 2pn´ 1q, where Fk denotes the k-th Fibonacci number.

However, Dynnikov and Wiest prove in [46] that the mapping β ÞÑ log }β}c` is compa-
rable to a norm, i.e. that there exists positive constants mn and Mn and a norm N of Bn

such that mnpN pβq ´ 1q ď log }β}c` ďMnpN pβq ` 1q for all β P Bn.

Tight closed laminations are important, due to the following classical result (see [39,
46, 48] for details).

Theorem 2.112.
Two tight closed laminations represent the same braid if and only if they are related by
an isotopy that preserves the real axis R setwise and the point ´1.

From this point on, we will refer to the tight closed lamination of a braid, as illustrated
in Fig. 2.114.

Definition 2.113 (Open laminated norm and tight open lamination).
Let β be a braid on n strands, and let Lo be an open lamination representing β.

The norm of Lo, which we denote by }Lo}`, is the cardinality of the set Lo X p´1, 1q, i.e.
the number of intersection points between the real interval p´1, 1q and the n ´ 1 curves
of the lamination Lo.

Moreover, if, among all the open laminations that represent β, the lamination Lo has a
minimal norm, then we say that Lo is a tight lamination. In this case, we also define the
open laminated norm of the braid β, which we denote by }β}o` , as the norm }Lo}`.
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1 σ2 σ2σ
´1
1

Figure 2.114 – Identifying braids with tight closed laminations

Due to the similarity between closed and open laminations, the open and closed lam-
inated norm are also very similar.

Lemma 2.115.
Let Lo be an open lamination with n mobile punctures, and let Lc be the closed lamination
obtained by “bending” the curves of Lo and adding the curves Lc0 and Lcn. We have }Lc}` “
}Lo}` ` n` 3.

Corollary 2.116.
Let β be a braid on n strands. We have }β}c` “ }β}o` ` n` 3.

In addition, tight open laminations are the variants of tight closed laminations, which
explains the following result, which is equivalent to Theorem 2.112.

Theorem 2.117.
Two tight open laminations represent the same braid if and only if they are related by an
isotopy that preserves the real axis R setwise and the point ´1.

Hence, we refer to the tight open lamination of a braid, as illustrated in Fig. 2.118.

1 σ2 σ2σ
´1
1

Figure 2.118 – Identifying braids with tight open laminations
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Definition 2.119 (Diagrammatic norm and tight curve diagram).
Let β be a braid on n strands, and let D be a curve diagram representing β.

The norm of D, which we denote by }D}d, is the cardinality of the set D X Lo, i.e. the
number of intersection points between the curve diagram D and the n ´ 1 curves of the
trivial open lamination Lo.

Moreover, if, among all the curve diagrams that represent β, the diagram D has a minimal
norm, then we say that D is a tight curve diagram. In this case, we also define the
diagrammatic norm of the braid β, which we denote by }β}d, as the norm }D}d.

The connection between the laminated norms and the diagrammatic of a braid is not
as immediate as the connection between the two kinds of laminated norms. Nevertheless,
this connection remains quite simple, as illustrated in Fig. 2.121 and shown below.

Proposition 2.120.
Let β be a braid on n strands. We have }β}o` “ }β´1}d, i.e. the open laminated norm of
the braid β is equal to the diagrammatic norm of the braid β´1.

Proof. Let Lo be the trivial open lamination and let h P H˚
n be a representative of the

braid β such that hpLoq is a tight open lamination. Since the curve h´1pDq is a curve
diagram of the braid β´1, it follows that

}β}` “ |hpL
o
q XD| “ |h´1

phpLoq XDq| “ |Lo X h´1
pDq| ě }β´1

}d.

One proves similarly that }β´1}d ě }β}
o
` , which completes the proof.

|Lo ¨ σ2σ
´1
1 XD| “ 8 |Lo ¨ σ2 XD ¨ σ1| “ 8 |Lo XD ¨ σ1σ

´1
2 | “ 8

Figure 2.121 – From }σ2σ
´1
1 }

o
` to }σ1σ

´1
2 }d

This connection leads to a new variant of Theorem 2.112, in terms of curve diagrams.

Theorem 2.122.
Two tight curve diagrams represent the same braid if and only if they are related by an
isotopy that preserves the trivial open lamination Lo and the points ´1 and `1.
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1 σ´1
2 σ´1

2 σ1

Figure 2.123 – Identifying braids with tight curve diagrams

Hence, we refer to the tight curve diagram of a braid, as illustrated in Fig. 2.123.

Geometrical symmetries induce some additional invariance properties of the above-
mentioned norms. Consider the group morphisms Sv, Sh and Sc such that Sv : σi ÞÑ σ´1

n´i,
Sh : σi ÞÑ σ´1

i and Sc : σi ÞÑ σn´i. Observe that Sh ˝Sv “ Sv ˝Sh “ Sc is the conjugation
morphism φ∆, i.e. the morphism β ÞÑ ∆´1β∆.

Lemma 2.124.
Let Bn be the group of s-strand braids. For all braids β P Bn, we have

}β}c` “ }Svpβq}
c
` “ }Shpβq}

c
` “ }Scpβq}

c
`,

}β}o` “ }Svpβq}
o
` “ }Shpβq}

o
` “ }Scpβq}

o
` , and

}β}d “ }Svpβq}d “ }Shpβq}d “ }Scpβq}d,

i.e. the laminated and diagrammatic norms are invariant under Sv, Sh and Sc.

Proof. From a geometric point of view, the braid morphisms Sv, Sh and Sc respectively
induce vertical, horizontal and central symmetries on the laminations and the curve dia-
grams. More precisely, if Lc, Lo and D are a closed lamination, an open lamination and
a curve diagram representing some braid β P Bn, then:

• their vertically symmetric laminations Lcv, Lov and curve diagram Dv represent the
braid Svpβq;
• their horizontally symmetric laminations Lch, Loh and curve diagram Dh represent

the braid Shpβq;
• their centrally symmetric laminations Lcc, Loc and curve diagram Dc represent the

braid Scpβq.
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Initial diagram
β “ σ´1

1 σ2

Vertical symmetry
Svpβq “ σ2σ

´1
1

Horizontal symmetry
Shpβq “ σ1σ

´1
2

Central symmetry
φ∆pβq “ σ´1

2 σ1

Figure 2.125 – Vertical, horizontal and central symmetries of a curve diagram

2.4.3 Arcs, Bigons and Tightness

The notion of tightness of a lamination or of a curve diagram, such as introduced in
Definitions 2.111, 2.113 and 2.119, are in fact specific instances of a more general notion
of tightness with respect to a union of curves.

p0 p1 p2 p3

bigons

Figure 2.126 – Bigons of a closed lamination with respect to R and to punctures

Definition 2.127 (Arcs, adjacent endpoints and bigons).
Let F and G be two unions of curves, such that the intersection F X G is finite. If the
curves of F and G actually cross each other at each point of F X G, then we say that F
and G are transverse to each other.

We call arc of F with respect to G, or pF ,Gq-arc for short, a connected component of
FzG. If an arc A arc is bounded, then A must have two endpoints, which must lie on G.
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We call these endpoints adjacent endpoints in F with respect to G, or pF ,Gq-adjacent
endpoints.

Finally, if these endpoints are also pG,Fq-adjacent endpoints, then we say that A is a
bigon of F with respect to G, or pF ,Gq-bigon. In addition, if B is a pG,Fq-bigon that
whose endpoints are the endpoints of A, then we say that the closed curve A Y B is a
bigon complex of F and G.

Figure 2.126 shows a closed lamination and the bigons of this lamination with respect
to R and to a set of punctures (here, tp0, p1, p2, p3u).

Bigons and bigon pairs play a crucial role in providing an intrinsic and easy to handle
characterisation of tightness.

Definition 2.128 (Tightness).
Let F and G be two unions of curves that are transverse to each other. In addition, let P
be a set of points. We say that F and G are tight with respect to each other and to the
set P if, for all bigon complexes C of F and G, there exists a point p P P that lies either
on C or inside the finite area delimited by C.

Theorem 2.129.
A closed lamination Lc is tight in the sense of Definition 2.111 if and only if Lc and the
real axis R are tight with respect to each other and to the set tp0, . . . , pnu of all (fixed or
mobile) punctures.

An open lamination Lo is tight in the sense of Definition 2.113 if and only if Lo and the
trivial curve diagram D are tight with respect to each other and to the set tp1, . . . , pnu of
mobile punctures.

A curve diagram D is tight in the sense of Definition 2.119 if and only if D and the
trivial open lamination Lo are tight with respect to each other and to the set tp1, . . . , pnu
of mobile punctures.

Theorem 2.129 is of utmost importance, since it provides us with a direct way of
checking that a lamination or a curve diagram is tight. In addition, it also paves the
way to constructing tight laminations or tight curve diagrams, by removing iteratively
unnecessary bigon complexes.
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Chapter 3

The Relaxation Normal Form of Braids
is Regular

Résumé

Les tresses peuvent être représentées de manière géométrique, en tant que laminations
de disques épointés. La complexité géométrique d’une tresse est la plus petite complexité
d’une lamination représentant cette tresse, et les laminations minimales d’une tresse en
sont les représentants de complexité minimale. Les laminations minimales sont à l’origine
d’une forme normale pour les tresses, via un algorithme de relaxation. Nous étudions ici
cet algorithme de relaxation et la forme normale associée. Nous prouvons que cette forme
normale est rationnelle et close par passage au préfixe. Nous construisons un automate
déterministe qui reconnaît cette forme normale, dont nous comparons la taille à la taille
de l’automate minimal reconnaissant la forme normale de relaxation. Enfin, nous mettons
en évidence des liens entre la forme normale de relaxation et la notion de σ-positivité.

La majeure partie du contenu de ce chapitre est apparue dans [63] et a été soumise
pour publication.

Abstract

Braids can be represented geometrically as laminations of punctured disks. The geometric
complexity of a braid is the minimal complexity of a lamination that represents it, and
tight laminations are representatives of minimal complexity. These laminations give rise
to a normal form for braids, via a relaxation algorithm. We study here this relaxation
algorithm and the associated normal form. We prove that this normal form is regular
and prefix-closed. We provide an effective construction of a deterministic automaton that
recognises this normal form, and we compare the size of this automaton to the size of
the minimal automaton that recognises the relaxation normal form. We also relate the
relaxation normal form and the notion of σ-positivity.

Most of the content of this chapter appeared in [63], and was submitted for publication.
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Chapter 3 is devoted to the study of the relaxation normal form studied in [25], and
which belongs to a larger class of relaxation normal forms [46]. Our main result consists in
proving that the relaxation normal form is regular. Relaxation normal forms are based on
relaxation algorithms, which consist in decreasing step-by-step the geometric complexity
of a braid β, by applying relaxation moves to the tight (closed) lamination that represents
β, i.e. multiplying β by another braid γ chosen from a finite set and so that }βγ}` ă }β}`.

To our knowledge, we provide here the first known example of a regular normal form
stemming from geometric representations of braids as tight (closed) laminations. Our
proof relies heavily on the choice of the relaxation moves used in the relaxation algorithm,
and therefore it does not provide any insights on whether other relaxation normal forms
might be regular. In fact, we suspect that the relaxation normal forms studied in [46]
are not regular, although suitable choices of relaxation moves might lead to other regular
relaxation normal forms.

A similar result holds for the Bressaud normal form [19], which has a geometric
nature and is regular. However, the Bressaud normal form comes from another geometric
representation of braids, and therefore the tools used for proving that the relaxation
normal form is regular are distinct from those used to prove that the Bressaud normal
form is regular.

In particular, the Bressaud normal form and the relaxation normal form differ in
several respects. First, they do not use the same alphabet, i.e. consist in factorisations
where the factors are chosen in two distinct sets. While the Bressaud normal form of
the group Bn uses the alphabet tσiσi`1 ¨ ¨ ¨ σj : 1 ď i ď j ă nu Y tσ´1

i σ´1
i´1 ¨ ¨ ¨ σ

´1
1 :

1 ď i ă nu, the relaxation normal form uses the alphabet tσiσi`1 ¨ ¨ ¨ σj : 1 ď i ď j ă
nu Y tσ´1

i σ´1
i`1 ¨ ¨ ¨ σ

´1
j : 1 ď i ď j ă nu.

Second, the Bressaud normal form is accepted by some deterministic automaton of
size npn´ 1q, while Proposition 3.57 will prove below that each deterministic automaton
that accepts the relaxation normal form is of size at least 2n{2´1. Third, one may observe
directly that some braids have distinct Bressaud and relaxation normal forms, as shown
in Fig. 3.1.

Bressaud normal form Relaxation normal form
pσ´1

2 σ´1
1 q ¨ σ2 ¨ σ1 σ1 ¨ σ

´1
2

pσ2σ3q ¨ σ
´1
1 pσ´1

1 σ´1
2 q ¨ pσ1σ2σ3q

Figure 3.1 – Bressaud and relaxation normal forms

Sections 3.1.1, 3.2.1 and 3.4 present standard notions, which can be found in [13, 39,
46, 48]. On the contrary, the notions and objects introduced in Sections 3.1.2, 3.1.3, 3.2.2
and 3.3 are original, and were designed and developed in order to derive the results of
Chapter 3.
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3.1 Closed Lamination, Cell Map and Lamination Tree

In Chapter 3, we will consider only closed laminations, and cast both open laminations
and curve diagrams aside. Therefore, we henceforth omit all mentions of the word closed,
and refer only to laminations and to the laminated norm of a braid. Accordingly, we will
only denote by }β}` the (closed) laminated norm of the braid β.

3.1.1 Arcs and Bigons of a Closed Lamination

First of all, let us introduce here on the standard notions of arcs and of bigons of a closed
lamination [13, 46].

Definition 3.2 (Arcs, real projection and shadow).
Let L be a (closed) lamination. We say that L is a R-lamination if L is transverse to R.
Let C be an arc of L with respect to R, as introduced in Definition 2.127. Henceforth, we
will just say that C is an arc of L.

We say that C is an upper arc if C is contained in the upper half-plane tz P C : Impzq ě 0u,
and that C is a lower arc if C is contained in the lower half-plane tz P C : Impzq ď 0u.

Since each curve of L is closed, the arc C must have two endpoints on the real axis R.
Let e and E be these endpoints, with e ă E. We say that e is the left endpoint of C, and
that E is the right endpoint of C. We also call real projection of C, and denote by πRpCq,
the open interval pe, Eq Ď R.

Finally, if tp0, . . . , pnu are the punctures of L, we call shadow of C in the lamination L,
and denote by πLpCq, the set ti P t0, . . . , nu : pi P πRpCqu. By extension, for each point
pi P tp0, . . . , pnu, we also denote by πLppiq the singleton set tiu.

Definition 3.3 (Blinding ordering).
Let L be a R-lamination, and let A and A1 be two arcs of L. We say that A blinds A1,
which we denote by A1

π
Ď A, if the relation πRpA1q Ď πRpAq holds.

If πRpA1q Ĺ πRpAq, then we say that A strictly blinds A1, which we denote by A1
π
Ĺ A.

Finally, if a real point p belongs to πRpAq, then we also say that A blinds p, which we
denote by p

π
P A.

The blinding ordering provides us with an alternative characterisation of bigons and
of tightness.

Proposition 3.4.
Let L be a R-lamination. The bigons of L are the arcs of L whose real projection is
minimal for the inclusion ordering.
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Proposition 3.5.
A lamination L that is transverse to R is tight if and only if each of its bigons (or,
equivalently, each of its arcs) blinds at least one puncture of L.

In what follows, we write A
π
˝ A1 when two arcs A and A1 have non-intersecting real

projections, i.e. when πRpAqXπRpA1q “ H. Lemma 3.6 follows immediately from the fact
that the arcs of a lamination do not cross each other.

Lemma 3.6.
Let L be a tight lamination, and let A and A1 be upper (respectively, lower) arcs of L.
Either A

π
Ď A1 or A

π
Ě A1 or A

π
˝ A1.

Corollary 3.7.
Let L be a tight lamination, and let A be an upper arc of L. The following propositions
are equivalent:

1. the arc A is a bigon;
2. no upper arc of L is strictly blinded by A;

3. for each upper arc A1 of L, either A
π
Ď A1 or A

π
˝ A1;

4. for each lower arc A1 of L, either A
π
Ď A1 or A

π
˝ A1;

5. no endpoint of any upper arc of L is blinded by A;
6. no endpoint of any lower arc of L is blinded by A;
7. no endpoint of any arc of L is blinded by A.

Similar statements hold when A is a lower arc.

Proof. The implications 7 ñ 1, 1 ñ 2, 3 ô 5 and 4 ô 6 are immediate. Moreover,
Lemma 3.6 shows that 2 ñ 3. Finally, since L is tight, being an endpoint of some upper
arc of L is equivalent to being an endpoint of some lower arc of L, i.e. to being a real
point of L, which proves that 5 ô 6 ô 7.

In addition, and although Proposition 3.5 gives a necessary and sufficient condition
for a lamination to be tight, it does not provide us with any algorithm for computing such
a tight lamination. We define below such an algorithm, based on the notion of extensions.

Definition 3.8 (Extensions of an arc).
Let L be a R-lamination and let A be an arc of L. We call left extension of A, and denote
by ÐÝe LpAq, the arc of L with which A shares its left endpoint. We call right extension of
A, and denote by ÝÑe LpAq, the arc of L with which A shares its right endpoint.

If there is no ambiguity about the lamination L, we may also write ÐÝe pAq and ÝÑe pAq
instead of ÐÝe LpAq and ÝÑe LpAq.
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For each real interval I, we denote by CÒpIq the upper semi-circle with diameter I and
by CÓpIq the lower semi-circle with diameter I. In addition, in what follows, if e and E
are real points such that e ă E, we may denote both by pe, Eq and pE, eq the real interval
tx P R : e ă x ă Eu.

input : Lamination L with punctures tp0, . . . , pnu

for each upper arc A Ď L do
replace the arc A by CÒpπRpAqq

end
for each lower arc A Ď L do

replace the arc A by CÓpπRpAqq
end
while L contains a bigon B that blinds no point p P tp0, . . . , pnu do

let e`, e1`, er and e1r be such that πRpBq “ pe`, erq, πRpÐÝe pBqq “ pe`, e1`q and
πRp
ÝÑe pBqq “ per, e

1
rq

if B is an upper arc then
replace the arcs B, ÐÝe pBq and ÝÑe pBq by CÓpe1`, e1rq

else
replace the arcs B, ÐÝe pBq and ÝÑe pBq by CÒpe1`, e1rq

end
end

output: Tight lamination isotopic to L
Algorithm 3.9: Tightening a lamination

Algorithm 3.9 transforms a lamination into a tight lamination representing the same
braid. It uses two steps. First, we “normalise” the arcs of the lamination, making sure that
we will not create unnecessary intersections between arcs. Second, we remove incremen-
tally all the useless bigons. Note that, for implementation purposes, actually drawing each
arc is useless. The only relevant information is the vertical (upper or lower) orientation
of each arc and the relative locations of its endpoints on the real axis.

3.1.2 Cells, Boundaries and Cell Map

Having recalled some state-of-the-art results, we focus now on two original notions, which
are the concepts of cell and of cell map.

Definition 3.10 (Cells and boundaries).
Let L be a R-lamination. We call cell of L each finite connected component of the set
CzpLY Rq.

We also call arc boundaries of a cell C the arcs of L that belong to the boundary BC,
and real boundaries of C the connected segments of the set RX BC. Observe that one arc
boundary of C blinds all the other boundaries of C. This boundary is called the parent
boundary of C, and the other arc boundaries of C are called the children boundaries of C.
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Finally, we say that C is an upper cell C is contained in the half-plane tz P C : Impzq ě 0u,
and we say that C lower cell if C is contained in the half-plane tz P C : Impzq ě 0u.

Figure 3.11 shows a cell of some lamination, as well as its (arc and real) boundaries.

CELL

real boundaries

arc boundaries

Figure 3.11 – A cell and its boundaries

Definition & Proposition 3.12 (Cell map).
Let L be a tight lamination. The cell map of the lamination L, which we denote byMpLq,
is the bipartite planar map (i.e. an embedding of a planar graph into the plane) obtained
as follows:

• inside each cell C of L, we draw a vertex vC of the mapMpLq;
• for each cell C of L and each real boundary B of C, we draw, inside the cell C itself,
one half-edge between the vertex vC and the midpoint of the real boundary B, so that
the half-edges drawn inside of C do not cross each other;
• each real boundary B belongs to one upper cell C and one lower cell C 1: we merge the
half-edges that link the midpoint of B to the vertices vC and vC1, thereby obtaining
one edge of the mapMpLq between vC and vC1.

Note that the cell map is not supposed to be connected nor simple (and, actually, is
never connected nor simple), although it does not contain loops. Nevertheless, the relative
positions of its connected components is important. Indeed, the topological properties of
tight laminations are reflected on their cell maps and arc trees.

Theorem 3.13.
Let L be a tight lamination and letMpLq be the cell map of L. The mapMpLq consists
of n` 1 connected components C0, . . . ,Cn, which we can order so that

• the component C0 consists of two vertices and one edge;
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• each component Ci (with 1 ď i ď n) has a “lasso” shape, i.e. it contains one unique
cycle, and has at most one vertex of degree 3; moreover, this unique cycle has an
even length and encloses the components C0, . . . ,Ci´1.

Proof. Let L0, . . . ,Ln be the n` 1 curves of the lamination L. Then, let Z0 be the inner
area defined by the curve L0 and, for 1 ď i ď n, let Zi be the area enclosed between the
curves Li´1 and Li. First, each area Zi is connected, hence the set Ci :“ tvC : C Ď Ziu is
a connected subset of the cell mapMpLq. Second, two cells C and C 1 that belong to two
distinct areas Zi and Zj cannot have any common real boundary, i.e. the vertices vC and
vC1 cannot be neighbours inMpLq. Therefore, the sets Ci are the connected components
ofMpLq.

Since }L}` is minimal, the curve L0 must consist of two bigons with the same real
projection, hence C0 consists of two vertices and one edge. In addition, each compo-
nent Ci with 1 ď i ď n must contain one unique cycle, which encloses the components
C0, . . . ,Ci´1: indeed, by construction of the areas Zj, the set

Ť

jďi´1Zj is the unique
“hole” in the area Zi.

Moreover, the map MpLq is bipartite, since each edge of MpLq links an upper cell
and a lower cell. Therefore, each cycle must have an even length.

Finally, for 1 ď i ď n and for each vertex vC P Ci of degree 1, the cell C has exactly
one arc boundary, which must be a bigon, and exactly one real boundary, which must
contain the unique puncture of Zi. If vC1 is another vertex of Ci with degree 1, then C and
C 1 must therefore share the same real boundary. Hence, Ci “ tvC, vC1u, which contradicts
the fact that Ci must contain one cycle. This proves that Ci may have at most one vertex
with degree 1: since Ci already has one unique cycle, Ci must have a lasso shape.

Note that each component Ci (with 0 ď i ď n) either contains only simple edges
or contains exactly one double edge, which then forms the cycle (of length 2) of the
component. In particular, the component C1 necessarily contains one double edge.

Figure 3.15 shows the cell map of some tight lamination L. The arcs of L are gray
lines, the edges ofMpLq are black lines, and the vertices ofMpLq are white circles. In
addition, each of the connected components C0, C1, C2 and C3 is labelled.

3.1.3 Lamination Trees

We pursue here uncovering original combinatorial objects related to tight closed lamina-
tions, and introduce and investigate the notion of lamination tree.

Definition 3.14 (Left-right order in L).
Let L be a tight lamination, and let A and B be two arcs or punctures of L.

We say that A lies to the left of B in L, which we denote by A ăL B, if and only if
maxπLpAq ă minπLpBq. The order ăL is called left-right order in L.
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MpLq

C0

C1

C2

C3

Figure 3.15 – Cell map of a tight lamination L

Definition & Proposition 3.16 (Lamination trees and arc trees).
Let L be a tight lamination. Consider the directed graph T ÒpLq that we define as follows.
The vertices of T ÒpLq are either of the form vA, where A is an upper arc of L, or of the
form vp, where p is a puncture of L. In addition, each upper arc A of L is the parent
boundary of some upper cell C:

• for each child boundary B of C, one edge of T ÒpLq goes from vA to vB;
• for each puncture p that belongs to a real boundary of C, one edge of T ÒpLq goes
from vA to vp.

The graph T ÒpLq is a rooted tree. In addition, we order T ÒpLq as follows:

• if vA1 , . . . , vAk are the children of some vertex vA (where Ai may be an arc or a
puncture of L) such that A1 ăL . . . ăL Ak, then vAi is the i-th child of vA.

We say that the tree T ÒpLq is the upper lamination tree of L. We define similarly the
lower lamination tree of L, which we denote by T ÓpLq. Finally, when we refer to some
arc tree, regardless of whether this is the upper or the lower lamination tree, we simply
write T ÙpLq.

In addition, we define the (upper and lower) arc trees of L, which we respectively denote
by T ÒarcpLq and T ÓarcpLq, by removing the vertices vp (where p is a puncture of L) from the
lamination trees T ÙpLq.

Proof. We need to prove that the directed graph T ÒpLq is a tree, then that it can be
ordered.
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First, consider two nodes A and B of T ÒpLq. It comes immediately that some directed
path goes from A to B if and only if A blinds B. Hence, Lemma 3.6 proves that T ÒpLq
is a forest. Second, the (outermost) curve Ln contains exactly one upper arc, which is a
maximal element for the relation

π
Ď. This arc is therefore the unique root of T ÒpLq, which

must then be a tree.

Now, consider some upper cell C. Let A be the parent boundary of C. Since the children
of vA are associated either with children boundaries of C or to points belonging to the
real boundaries of C, it comes immediately that these children boundaries and points can
be ordered according to ăL.

Figure 3.17 shows the two arc trees T ÒpLq and T ÓpLq. Each vertex vA is represented
by a white circle lying on A. Each vertex vp is represented by a black circle that lies on
the puncture p.

T ÒpLq

T ÓpLq

T ÒarcpLq

T ÓarcpLq

Figure 3.17 – Lamination trees and arc trees of a tight lamination

In what follows, we will frequently identify the vertex vA with the arc A, and the vertex
vp with the puncture p. In particular, when A is an arc of L, we may unambiguously refer
to the parent and to the children of A. However, each puncture pi of L belongs to both
trees, hence has two parents (one in each tree).

Moreover, note that two distinct punctures of L cannot belong to real boundaries of
the same cell, since they have to be separated by some arc of L. Hence, no arc of L has
more than one puncture among its children.

Proposition 3.18.
Let L be a tight lamination. The leaves of the trees T ÙpLq are the punctures of L, and
the leaves of the trees T ÙarcpLq are the bigons of L.
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Proof. First, each point p must be a leaf of T ÙpLq, and the converse holds due to Propo-
sition 3.5. The equivalence between 1 and 2 in Corollary 3.7 proves the second part of
Proposition 3.18.

Corollary 3.19.
Let L be a tight lamination. Let A be an arc of L and let C1, . . . , Ck be the children of
A. The family pπLpCiqq1ďiďk forms a partition of πLpAq into integer intervals, i.e sets of
consecutive integers.

Definition & Corollary 3.20 (Index of a bigon).
If B is a bigon, then πLpBq is a singleton set: we call index of B in L the integer b such
that πLpBq “ tbu.

Proposition 3.21.
Let L be a tight lamination, and let B and B1 be two distinct bigons of L. Either B ăL B

1

or B1 ăL B or πRpBq “ πRpB
1q; in the latter case, the union B Y B1 is the (innermost)

curve L0.

Proof. If πRpBq X πRpB1q ‰ H, then Corollary 3.7 proves that πRpBq Ď πRpB
1q Ď πRpBq.

Hence, we have πRpBq “ πRpB
1q, and therefore B Y B1 is a closed curve, i.e. one curve

Li of L. The internal area of Li contains no other curve of L, hence i “ 0. Finally, if
πRpBq X πRpB

1q “ H, then of course either B ăL B
1 or B1 ăL B.

In particular, the left-right order in L induces a total order on the set S of bigons
that are not contained in L0. Moreover, if L is non-trivial, then the set S is non-empty,
and its elements are greater than any of the two bigons that belong to L0. This leads to
the notion of rightmost bigon, which is already an important notion in [25].

Definition & Proposition 3.22 (Rightmost bigon and rightmost index).
Let L be a tight lamination. If L is non-trivial, then there exists a unique ăL-maximal
bigon of L, which we call the rightmost bigon of L. We also call rightmost index of L is
the index of this bigon in L.

Proposition 3.23.
Let L be a non-trivial, tight lamination. Let B be the rightmost bigon of L, let k be the
rightmost index of L, and let A be some arc of L. Then, minpπLpAqq ď k. Moreover, if
A and B have opposite vertical orientations (i.e. one is an upper arc and the other one
a lower arc), then minpπLpAqq ď k ´ 1.

Proof. Without loss of generality, we assume here that B is an upper bigon. Let vC be
the leftmost leaf of T ÙarcpLq for which vA is an ancestor. Proposition 3.18 proves that C is
a bigon of L. Let c be the index of C in L.

Since C ďL B, then either B “ C, in which case A is an upper arc and minpπLpAqq ď
c “ k, or C ăL B, in which case minpπLpAqq ď c ă k.
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Finally, from Theorem 3.13 follow topological results about arc trees.

Corollary 3.24.
Let L be a tight lamination. The trees T ÒarcpLq and T ÓarcpLq are unary-binary, i.e. each
node in those trees has at most two children.

Proof. Each vertex A of L is the parent arc boundary of some cell C. Let A1, . . . , Ak be
the children boundaries of C. The vertices vA1 , . . . , vAk are the k children of the vertex
vA in T ÙarcpLq. Hence, the cell C has k ` 1 real boundaries, i.e. degree k ` 1 in the map
MpLq. Since no vertex ofMpLq has a degree more than 3, the result follows.

Lemma 3.25.
Let L be a non-trivial tight lamination, let k be the rightmost index in L, and let A be an
arc of L with shadow tku. We have ÐÝe pAq

π
Ď ÝÑe pAq, and there exists integers i ď j ď k´1

such that πLpÝÑe pAqq “ ti, . . . , ku and πLpÐÝe pAqq “ tj, . . . , k ´ 1u.

Proof. Without loss of generality, we assume that A is a lower arc. Let i ď I and j ď J be
integers such that πLpÝÑe pAqq “ ti, . . . , Iu and πLpÐÝe pAqq “ tj, . . . , Ju. The right endpoint
of A is an endpoint of ÝÑe pAq and belongs to the interval ppk, pk`1q, whence i “ k ` 1 or
I “ k. Similarly, we have j “ k or J “ k ´ 1. Proposition 3.23 proves that i ď k ´ 1 and
that j ď k ´ 1, which shows that I “ k and J “ k ´ 1.

In addition, note that both ÝÑe pAq and ÐÝe pAq blind the puncture pk´1, but that only
ÝÑe pAq blinds pk. This proves that the relations ÝÑe pAq ˝ ÐÝe pAq and ÝÑe pAq

π
Ď ÐÝe pAq are

impossible, and Lemma 3.6 then proves that ÐÝe pAq
π
Ď ÝÑe pAq, thereby showing that i ď j

and completing the proof.

Corollary 3.26.
Let L be a non-trivial tight lamination, let B be the rightmost bigon of L, and let k be
the index of B in L. If πLpÝÑe pBqq “ t0, . . . , ku, then the arc ÝÑe pBq has three children
in T ÙpLq, which are one arc with shadow t0, 1, . . . , j ´ 1u, the arc ÐÝe pBq, with shadow
tj, . . . , k ´ 1u, and the point pk.

Proof. Without loss of generality, we assume that B is a lower arc.

The arcs ÐÝe pBq, B and ÝÑe pBq all belong to the same curve Lu of the lamination L.
Since Lu intersects once the interval p´8,´1q, it follows that the case j “ 0, illustrated
in the left part of Fig. 3.27, is impossible.

Hence, we know that j ě 1. The vertex vÐÝe pBq is a left sibling of vpk in T ÒarcpLq,
hence ÐÝe pBq is a child of ÝÑe pBq. Therefore, the arc ÝÑe pBq must have additional child,
which we call C, as shown in the right part of Fig. 3.27. Since πLpCq, πLpÐÝe pBqq and
tku form a partition of πLpÝÑe pBqq into integer intervals (i.e. sets of consecutive integers),
Corollary 3.26 follows.
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p0 pk

ÝÑe pBq

B

ÐÝe pBq

Case #1:j “ 0 (impossible)

p0 pj´1 pj pk´1 pk

ÝÑe pBq

B

ÐÝe pBqC

Case #2: 1 ď j

Figure 3.27 – Proof of Corollary 3.26

3.2 The Relaxation Normal Form is Regular

3.2.1 A Prefix-Closed Normal Form

We present now the right-relaxation algorithm, introduced by Caruso [25] and which is a
particular case of the transmission-relaxation algorithms of Dynnikov and Wiest [46]. This
algorithm consists in applying a sequence of elementary homeomorphisms to a given tight
lamination, in order to obtain a tight lamination of the trivial braid 1. This algorithm
gives rise to a relaxation normal form, which is the main concern of this paper.

We first introduce some notions, which are central for the right-relaxation algorithm:
the family of sliding braids, whose braid diagrams are given in Fig. 3.28, and the right-
relaxation move.

k `

rk ô `s

k `

rk ñ `s

k `

rk ó `s

k `

rk ð `s

Figure 3.28 – Braid diagrams of sliding braids

Definition 3.29 (Sliding braid).
The family of sliding braids (with n strands) is the family that contains the following
braids, for some integers k and ` such that 1 ď k ă ` ď n:
• rk ô `s “ σkσk`1 . . . σ`´1;
• rk ñ `s “ σ´1

k σ´1
k`1 . . . σ

´1
`´1;

• rk ó `s “ σ´1
`´1σ

´1
`´1 . . . σ

´1
k ;

• rk ð `s “ σ`´1σ`´1 . . . σk.

We call right-oriented sliding braids the braids rk ñ `s and rk ô `s, and we denote by Σ
the set of right-oriented sliding braids.
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Observe that rk ô `s “ rk ó `s´1 and that rk ñ `s “ rk ð `s´1.

Definition 3.30 (Right-relaxation move).
Let β be a non-trivial braid, let L be the tight lamination that represents β, let B be the
rightmost bigon of L and let k be the index of B in L. We define the right-relaxation
move of β, which we denote by Rpβq, as follows, and as illustrated in Fig. 3.31.

According to Lemma 3.25 and to Corollary 3.26, two cases are possible:

• if πLpBq “ ti, . . . , ku for some i ě 1, then Rpβq :“ ri ó ks if B is an upper bigon,
and Rpβq :“ ri ð ks if B is a lower bigon;
• if πLpBq “ t0, . . . , ku, then πLp

ÐÝe pBqq “ tj, . . . , k ´ 1u for some j ě 1; then,
Rpβq :“ rj ó ks if B is an upper bigon, and Rpβq :“ rj ð ks if B is a lower bigon.

pi´1 pi pk´1 pk

ÝÑe pBq

B

Case #1: 0 R πLp
ÝÑe pBqq

p0 pj´1 pj pk´1 pk

ÝÑe pBq

B

Case #2: 0 P πLp
ÝÑe pBqq

Figure 3.31 – Relaxation move (when B is a lower bigon)

Right-relaxation moves are at the core of the relaxation normal form, as they allow
incremental simplifications of laminations.

Lemma 3.32.
Let β be a non-trivial braid. We have }βRpβq}` ď }β}` ´ 1.

Proof. Let L be the tight lamination, with set of punctures tp0, . . . , pnu and with right-
most bigon B, that represents β. Let L1 be the lamination obtained from L as follows:

• if 0 R πLp
ÝÑe pBqq, the puncture pk is slid along the arc ÝÑe pBq until it reaches the

real axis;
• if 0 P πLp

ÝÑe pBqq, then the puncture pk is slid along the arc ÐÝe pBq until it reaches
the real axis.

Let ρ denote the real point to which the puncture pk was slid: L1 is a lamination with
the same arcs as L, with set of punctures tp0, . . . , pk´1, pk`1, . . . , pn, ρu, and L1 represents
the braid βRpβq. Moreover, the arc A blinds none of the new punctures, hence L1 is not
tight. This proves that }βRpβq}` ă }L1}` “ }L}` “ }β}`, i.e. that }βRpβq}` ď }β}` ´ 1.
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Lemma 3.32 proves that, starting from a non-trivial braid β and performing successive
right-relaxation moves, we end with the trivial braid.

Definition & Proposition 3.33 (Relaxation normal form).
Let β be a braid, and consider the sequence of braids inductively defined by β0 “ β, and
βi`1 “ βiRpβiq whenever βi ‰ 1. There exists some integer k such that βk “ 1, and
β “ Rpβk´1q

´1Rpβk´2q
´1 . . .Rpβ0q

´1.

We call relaxation normal form of the braid β, and denote by RNFpβq, the word

Rpβk´1q
´1
¨Rpβk´2q

´1
¨ . . . ¨Rpβ0q

´1,

where ¨ is the concatenation symbol.

Using Algorithm 3.9 makes this definition constructive, since it provides us with a
way of computing the relaxation normal form of any braid. Indeed, for each braid β P
Bn, we can compute a (non necessarily tight) lamination of β. Then, using repeatedly
Algorithm 3.9 and applying right-relaxation moves, we can indeed compute the relaxation
normal form of β.

One key feature of the relaxation normal form is that the set of words tRNFpβq : β P
Bnu is prefix-closed. This follows from the equality RNFpβq “ RNFpβRpβqq ¨Rpβq´1,
which holds for each non-trivial braid β.

This prefix-closure property offers numerous possibilities. The relaxation normal form
induces a tree, whose nodes are the words in relaxation normal form, and where the
children of a word w are the words of the type w ¨ λ (for some sliding braid λ) that are
in normal form. Hence, this tree is a sub-graph of the oriented Cayley graph of Bn for
the right-oriented sliding braids, i.e. the set of generators

Σ “ trk ñ `s : 1 ď k ă ` ď nu Y trk ô `s : 1 ď k ă ` ď nu.

This is useful for studying random processes: for instance, we may define a random
walk by jumping from one word in relaxation normal form to one of its children that we
choose at random. Another example is testing if a word is in relaxation normal form: it
is possible to proceed by induction, checking only whether, for some relaxation normal
word w and some sliding braid λ, the sequence w ¨λ is in relaxation. The latter property
will be useful when proving that the set tRNFpβq : β P Bnu is regular.

3.2.2 One Letter Further

Having defined precisely the relaxation form on which Chapter 3 is focused, we introduce
once again some original notions, which we call neighbour arcs, extended shadow and
λ-relaxed lamination, that will be crucial for proving that the relaxation normal form is
regular.
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Definition 3.34 (Neighbour points and arcs).
Let L be a tight lamination. Recall that LR denotes the set of all intersection points
between the real axis and the curves of L. Let p be a point on the open real interval
pminLR,maxLRq. We call left neighbour of p in L the point p´L :“ maxtz P LR : z ă pu
and right neighbour of p in L the point p`L :“ mintz P LR : z ą pu.

The point p´L belongs to two arcs of L. We denote the upper one by AÒ´pp,Lq, and we
call it left upper arc of p in L. We denote the lower one by AÓ´pp,Lq, and we call it left
lower arc of p in L. Similarly, the point p`L belongs to two arcs of L. We denote the upper
one by AÒ`pp,Lq, and we call it right upper arc of p in L. We denote the lower one by
AÓ`pp,Lq, and we call it right lower arc of p in L. These four arcs are called neighbour
arcs of p in L.

p´L

p

p`L AÒ´pp,Lq

AÒ`pp,Lq

AÓ´pp,Lq

AÓ`pp,Lq

Figure 3.35 – A puncture, its neighbour points and its neighbour arcs

Figure 3.35 shows some tight lamination, in which a puncture p, the neighbour points
of p and the neighbour arcs of p have been highlighted.

Definition 3.36 (Shadow and extended shadow).
Let L be a tight lamination that represents some braid β, and let k be the rightmost
index of L. Let A be an arc of L. We define the extended shadow of A in L as the pair
pπLpAq, πLp

ÝÑe pAqqq if k P πLpAq, or pπLpAq,Hq if k R πLpAq. We denote this pair by
π2
LpAq.

Then, for 1 ď i ď n, ˛ P t`,´u and ϑ P tÓ, Òu, we denote by πβpi, ˛, ϑq the shadow of the
arc Aϑ˛ppi,Lq in L, and we denote by π2

βpi, ˛, ϑq the extended shadow of the arc Aϑ˛ppi,Lq
in L.

By abuse of notation, we define the shadow of β as the mapping

πβ : t1, . . . , nu ˆ t`,´u ˆ tÓ, Òu ÞÑ 2t0,...,nu

pi, ˛, ϑq ÞÑ πβpi, ˛, ϑq

and the extended shadow of β is defined as the mapping
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π2
β : t1, . . . , nu ˆ t`,´u ˆ tÓ, Òu ÞÑ 2t0,...,nu ˆ 2t0,...,nu.

pi, ˛, ϑq ÞÑ π2
βpi, ˛, ϑq

p0 p1 p2 p3

π2
βpi, ˛, ϑq

i
1 2 3

˛

´ pt0u,Hq pt0, 1u,Hq pt3u, t0, 1, 2, 3uq
Ò

ϑ
` pt0, 1u,Hq pt3u, t0, 1, 2, 3uq pt3u, t0, 1, 2, 3uq
´ pt0u,Hq pt2u,Hq pt2u,Hq

Ó
` pt0, 1u,Hq pt2u,Hq pt0, 1, 2, 3u, t3uq

Figure 3.37 – A tight lamination and its extended shadow

According to Proposition 3.23, saying that k P πLpAq is equivalent to saying that
k ď maxpπLpAqq. Consequently, if k P πLpAq, then k P πLpÝÑe pAqq as well, and the right
endpoint of A is also the right endpoint of ÝÑe pAq.

For example, Fig. 3.37 represents the tight lamination L associated with the braid
β “ σ2 and the extended shadow of β. Here, π2

βp3,`, Óq “ pt0, 1, 2, 3u, t3uq. Indeed, the
rightmost index of L is 3, the shadow of AÓ`pp3q in L is t0, 1, 2, 3u, and AÓ`pp3q shares its
right endpoint with an arc of shadow t3u in L.

Let λ be the right-oriented sliding braid of the form rk ñ `s, where 1 ď k ă ` ď n.
We characterise which braids β are such that the word RNFpβq¨λ is in relaxation normal
form. An analogous characterisation holds when λ is a braid rk ô `s.

Definition 3.38 (λ-relaxed lamination).
Let β be an n-strand braid. We say that β is λ-relaxed if all of the following requirements
are fulfilled:

1. πβpk,`, Óq ‰ tku;
2. either πβpk,`, Òq “ t0, . . . , ku or πβpk,´, Òq Ď tk, . . . , `´ 1u;
3. for all i P t`` 2, . . . , nu, `` 1 P πβpi,´, Òq X πβpi,´, Óq;
4. if ` ă n, then k P πβp`` 1,`, Òq;
5. if ` ă n, then either πβp`` 1,`, Óq ‰ t`` 1u or πβp`` 1,´, Òq Ď tk ` 1, . . . , `u.

The five requirements of Definition 3.38 are illustrated in Fig. 3.40.

Proposition 3.39.
Let β be some n-strand braid, and let λ be a right-oriented sliding braid. If the equality
RNFpβλq “ RNFpβq ¨ λ holds, then β is λ-relaxed.

Proof. We prove Proposition 3.39 when λ “ rk ñ `s. The proof is analogous when
λ “ rk ô `s. Let β be a braid such that RNFpβλq “ RNFpβq ¨ λ, i.e. such that
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Rpβλq “ λ´1. Let L be a tight lamination of β, and let L be a tight lamination of βλ.
Until the end of the proof, we denote by p0, . . . , pn the punctures of L, and we denote by
p0, . . . , pn the punctures of L.

We first show how to draw L by modifying L. Observe that ` is the rightmost index
of L and that p` belongs to a lower bigon of L. Since Rpβλq “ λ´1, the puncture p`
of L is slid along one upper neighbouring arc of p` in L, and arrives at some position
pk P ppk´1, pkq. Then, applying Algorithm 3.9 amounts to doing what follows.

1.

2.

3.

4.

5.

 pk

p0 pk _ pk p`

p``1 p``2 p``3 pn¨ ¨ ¨

pk p``1

p``1 ñ pk p``1

Figure 3.40 – Requirements in Definition 3.38

1. For each (lower) arc A of L with shadow t`u in L, consider the real projections
pe, Eq :“ πRp

ÐÝe LpAqq and pe1, E 1q :“ πRp
ÝÑe LpAqq. Lemma 3.25 shows that e1 ă e ă

p`´1 ă E ă p` ă E 1 ă p``1. We merge the arcs A, ÐÝe LpAq and ÝÑe LpAq into one
upper arc with real projection pe1, eq.

2. We do not modify other arcs of L.
3. We replace the puncture p` by the puncture pk.

Note that this process does not depend of the order in which the arcs A are treated
in the first step. Doing so, we obtain a lamination L with set of punctures

tp0, . . . , pnu “ tp0, . . . , pk´1, pk, pk, . . . , p`´1, p``1, . . . , pnu,

which represents the braid β.

In addition, consider some (lower) arc A of L that was erased. Let B be the (lower)
rightmost bigon of L, and consider the real projections peB, EBq :“ πRp

ÐÝe LpBqq and
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pe1B, E
1
Bq :“ πRp

ÝÑe LpBqq. It follows from the relation Rpβλq “ λ´1 that e1B ă pk ă eB.
Since B

π
Ď A this proves that

e1 ď e1B ă pk ă eB ď e ă p`´1 ă E ď EB ă p` ă E 1B ď E 1 ă p``1.

The arc A was therefore merged into an upper arc that blinds pk but not p`´1. Conversely,
each arc of L that either is a lower arc, or blinds p`´1 “ p`, or does not blind pk, is also
an arc of L.

Lemma 3.25 and Corollary 3.26 prove that the intervals πβλp`,´, Òq and πβλp`,`, Òq
are respectively of the form ti, . . . , `´1u and tj, . . . , `u, with either j “ 0 ă i “ k ď `´1
or 1 ď j “ k ď i ď `´ 1.

We prove now that β satisfies each of the five requirements that characterise λ-relaxed
braids, and thereby complete the proof of Proposition 3.39.

1. Let us assume here that πβpk,`, Óq “ tku. Then, the arc AÓ`ppk,Lq is a lower
bigon of L and, like all lower arcs of L, it is also an arc of L. Moreover, note
that πRpAÓ`ppk,Lqq Ď ppk´1, pk`1q “ ppk´1, pkq. Hence, the arc AÓ`ppk,Lq blinds no
puncture of L, contradicting the tightness of L. This means that our assumption
was false, i.e. that πβpk,`, Óq ‰ tku.

2. The arcs AÒ`pp`,Lq, A
Ò
´pp`,Lq and A

Ó
´pp`,Lq “ A

Ó
`pp`,Lq were merged into one arc

A of L:
• if j ě 1, then p` was slid along the arc AÒ`pp`,Lq, hence A “ A

Ò
´ppk,Lq, and

πLpAq “ πβpk,´, Òq “ tk, . . . , iu Ď tk, . . . , `´ 1u;

• if j “ 0, then p` was slid along the arc AÒ´pp`,Lq, hence A “ A
Ò
`ppk,Lq, and

πLpAq “ πβpk,`, Òq “ t0, . . . , ku.

3. Consider some integer i ě ` ` 2. Proposition 3.23 implies that p``1

π
P AÒ´ppi,Lq.

Due to the equalities p``1 “ p``1 and AÒ´ppi,Lq “ A
Ò
´ppi,Lq, it follows that `` 1 P

πβpi,´, Òq. We prove similarly that `` 1 P πβpi,´, Óq.
4. Let us assume that ` ă n. Corollary 3.26 proves that the upper parent of p` in L is

the arc AÒ`pp`,Lq. Moreover, Proposition 3.23 shows that p`
π
P AÒ`pp``1,Lq, which

implies that p`
π
P AÒ`pp`,Lq

π
Ď AÒ`pp``1,Lq. In addition, since Rpβλq “ λ´1, the

arc AÒ`pp`,Lq blinds the point pk. This shows that pk
π
P AÒ`pp`,Lq

π
Ď AÒ`pp``1,Lq “

AÒ`pp``1,Lq, hence that k P πβp`` 1,`, Òq.
5. Let us assume that ` ă n and that πβp`` 1,`, Óq “ t`` 1u. This means that p``1

belongs to a lower bigon in L: let A be this bigon. Since A is a lower arc of L, A is
also an arc of L, which blinds the point p``1 “ p``1 and no other common puncture
of L and L. Proposition 3.23 shows that A also blinds some point pi with i ď `.
Hence, A blinds p`, and πLpAq “ t`, `` 1u.
Let B be the (lower) rightmost bigon of L, and let C and D denote respectively
the arcs ÐÝe LpAq and ÐÝe LpBq. Let peC , ECq and peD, EDq be the real projections of
C and D. Lemma 3.25 proves that eC ă p` ă EC ă p``1. This shows that C blinds
p`, and thus that C is also an arc of L, as illustrated in Fig. 3.41.
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Lemma 3.25 shows that eD ă p`´1 ă ED ă p`. Since p` P πRpBq Ď πRpAq Ď

pp`´1, p``2q, it follows that p`´1 ă EC ă ED ă p`. This proves that C
π
Ĺ D.

Moreover, note that D “ AÒ´pp`,Lq, so that πRpDq Ď ppk, p`q, which proves that
πRpCq Ď ppk, p`q Ď ppk, p``1q. Hence, the arc C “ AÒ´pp``1,Lq has shadow πβp` `
1,´, Òq Ď tk ` 1, . . . , `u in L.

pk
p`´1
“
p`

p`
p``1
“
p``1

p``2
“
p``2

eD eC EC ED

D C

B A

Figure 3.41 – A fragment of the lamination L

We also prove the converse implication of Proposition 3.39.

Proposition 3.42.
Let β be some n-strand braid, and let λ be a right-oriented sliding braid. If β is λ-relaxed,
then the equality RNFpβλq “ RNFpβq ¨ λ holds.

Proof. Like in the proof of Proposition 3.39, we assume hereafter that λ “ rk ñ `s. Let β
be a λ-relaxed braid. Let L be a tight lamination of β, and let L be a tight lamination of
βλ. We denote by p0, . . . , pn the punctures of L, and we denote by p0, . . . , pn the punctures
of L.

We proceed by first showing how to draw L by modifying L. Let AÒ denote the set
of the upper arcs of L.

We partition AÒ in several subsets, and as illustrated in Fig. 3.43:

• Ω1 “ tA P A
Ò : k P πLpAq and `, `` 1 R πLpAqu,

• Ω2 “ tA P A
Ò : ` P πLpAq and k, `` 1 R πLpAqu,

• Ω3 “ tA P A
Ò : `` 1 P πLpAq and k, ` R πLpAqu,

• Ω4 “ tA P A
Ò : k, ` P πLpAq and `` 1 R πLpAqu,

• Ω5 “ tA P A
Ò : `, `` 1 P πLpAq and k R πLpAqu,

• Ω6 “ tA P A
Ò : k, `, `` 1 P πLpAqu,

• Ω7 “ tA P A
Ò : πLpAq Ď t0, . . . , k ´ 1uu,

• Ω8 “ tA P A
Ò : πLpAq Ď tk ` 1, . . . , `´ 1uu, and
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Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω8

Ω9H

H

H

pk p` p``1 pk p` p``1 pk p` p``1

Figure 3.43 – Nine classes of upper arcs

• Ω9 “ tA P A
Ò : πLpAq Ď t`` 2, . . . , nuu.

First, suppose that some arc A belongs to Ω9. Let vB be a leaf of T ÙarcpLq such that vA
is an ancestor of vB: Proposition 3.18 proves that B is a bigon of L. Let j be the index of
B in L. Since tju “ πLpBq Ď πLpAq Ď t`` 2, . . . , nu, we know that j ě `` 2, and since
B “ AÒ´ppjq, the requirement 3 is falsified. This contradiction proves that Ω9 “ H.

Then, if ` “ n, then of course Ω5 “ Ω3 “ H. If ` ă n, then the requirement 4 indicates
that k P πLpAÒ`pp``1,Lqq. Consequently, pk and p``1 are respectively a descendant and a
child of AÒ`pp``1,Lq. Therefore, each upper arc A that blinds p``1 also blinds pk, whence
Ω5 “ Ω3 “ H. This is why we added the symbol H when depicting in Fig. 3.43 the
elements arcs in Ω3, Ω5 and Ω9.

Moreover, let us extend the notations
π
Ď and

π
P as follows: if X and Y are two subsets

of AÒ such that A
π
Ĺ B for each ordered pair pA,Bq P X ˆ Y , then we write X

π
Ď Y .

Similarly, if p P R is such that p
π
P A for each arc A P X, then we write p

π
P X. Using

these notations, the relations shown in Fig. 3.44 are clear.

Ω6

Ω4

Ω1 Ω8 Ω2

pk p` p``1

π
Ď

π
Ď π Ď π

Ď

π P π P π P

Figure 3.44 – Blinding relations between sets Ωi

In addition, note that, for each point p P R, the relation
π
Ď induces a total order on
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the set of the upper arcs of L that blind the point p. Consequently, each of the sets Ω1,
Ω2, Ω4 and Ω6 is totally ordered by

π
Ď: we denote by Ai1

π
Ĺ . . .

π
Ĺ Aiωi the elements of Ωi,

where ωi “ |Ωi|, and we denote by peij, Ei
jq the real projection of the arc Aij.

It is then straightforward to see that the elements of pp`, p``1q X L are

p` ă E2
1 ă . . . ă E2

ω2
ă E4

1 ă . . . ă E4
ω4
ă p``1.

Hence, let a´j and a`j (for 1 ď j ď ω1) and p` be real numbers such that

p` ă E2
1 ă . . . ă E2

ω2
ă a´ω1

ă . . . ă a´1 ă p` ă a`1 ă . . . ă a`ω1
ă E4

1 ă . . . ă E4
ω4
ă p``1,

as illustrated in the top picture of Fig. 3.45.

E2
1 E2

ω2
a´ω1

a´1 a`1 a`ω1 E
4
1 E4

ω4

. . . . . . . . . . . . . . . . . . . . . . . .

Ω1 Ω2

Ω4

Ω2

Ω4

arcs
A1,3
i

arcs
A1,1
i

arcs A1,2
i

. . . . . . . . . . . . . . . . . . . . . . . .

pk p` p` p``1

pk p` p` p``1

Lamination L:

Lamination L:

Figure 3.45 – Ordering pp`, p``1q X L – Adding points a˘i and p` – Going from L to L

Aiming to emulate a “backward” version of Algorithm 3.9, as illustrated in the bottom
picture of Fig. 3.45, we draw the lamination L as follows.

1. We replace each arc A1
j P Ω1 by three arcs: one upper arc A1,1

j with real projection
pE1

j , a
´
j q, one lower arc A1,2

j with real projection pa´j , a
`
j q, and one upper arc A1,3

j

with real projection pe1
j , a

`
j q.
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2. We do not modify other arcs of L.
3. We replace the puncture pk by the puncture p`.

Note that this process does not depend in which the arcs Aij are treated in the first step.

Let us prove that, doing so, we obtain a lamination L with set of punctures

tp0, . . . , pnu “ tp0, . . . , pk´1, pk`1, . . . , p`, p`, p``1, . . . , pnu.

First, checking that L is a lamination amounts to checking that, if X and Y are
both upper (or lower) arcs of L, then either πRpXq Ď πRpY q or πRpXq Ě πRpY q or
πRpXq X πRpY q “ H. The case where either both or none of X and Y are arcs of L is
immediate, and so is the case where X is of the type A1,2

j . Finally, if X is of the type
A1,1
j or A1,3

j , it suffices to treat separately the cases where Y P Ωi for i P t2, 4, 6, 7, 8u, and
each of these cases is immediate too.

In addition, proving that L is a tight lamination amounts to checking that each arc of
L blinds some puncture of L. There are two cases to check. First, each of the arcs A1,1

j ,
A1,2
j and A1,3

j blinds either p` “ p`´1 or p`. Second, consider some arc A that belongs to
both L and L. Since L is tight, A blinds some point pi.

Let us assume that A blinds the point pk. If A is an upper arc, then A R Ω1, hence
A P Ω4 Y Ω6 and A blinds p`. If A is a lower arc, then the requirement 1 implies that
πLpAq ‰ tku, and therefore A also blinds some point pi with i ‰ k. Hence, in all cases,
A blinds some point pi with i ‰ k. Since pi must be a puncture of both L and L, this
proves that L is tight.

Then, let us prove that ` is the rightmost index of L. Let B be the rightmost bigon
of L, and let i be the index of B in L. Since p` belongs to a bigon of L, we know that
i ě `. If i ě ` ` 1, then B is also a bigon of L, and πLpBq “ πLpBq “ tiu. However, we
shall prove now that no bigon of L with index `` 1 or more can be a bigon of L.

Indeed, consider some bigon C of L with index c ě ` ` 1, if such a bigon exists.
Note that C “ AÒ´ppc,Lq “ A

Ò
`ppc,Lq or that C “ A

Ó
´ppc,Lq “ A

Ó
`ppc,Lq, depending on

whether C is an upper or a lower bigon. Hence, we are in one of the following cases.

• If c ě `` 2, then the requirement 3 states that `` 1 P πLpCq, which is false.
• If c “ ``1 and if C is an upper bigon, then the requirement 4 states that k P πLpCq,

which is false.
• If c “ ` ` 1 and if C is a lower bigon, then ÐÝe pCq “ AÒ´pp``1,Lq. Therefore, the

requirement 5 shows that ÐÝe pCq P Ω2. This proves that Ω4 “ H and, since some
curve of L must separate the punctures pk and p``1, that Ω1 ‰ H. Consequently,
the new arc A1,2

1 was “inserted” inside the former bigon C, which is therefore not a
bigon of L. This situation is represented in Fig. 3.46.

It follows that i ď `, i.e. that i “ `, and therefore that A1,2
1 is necessarily the rightmost

bigon of L.
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Finally, let γ be the braid that L represents. Let us prove that Rpγq “ λ´1 and that
γλ´1 “ β. According to the requirement 2, two cases are possible.

• If πβpk,`, Òq “ t0, . . . , ku, then A1
1 “ A

Ò
`ppk,Lq, and therefore both A1

1 and A1,3
1

blind p0 “ p0. Moreover, the interval ppk, E1
1q contains no endpoint of any arc of L

nor of L. The lamination L is therefore obtained from L by sliding the puncture p`
along the arc A1,1

1 “ AÒ´pp`,Lq, then merging arcs of L like in Algorithm 3.9.

• If πβpk,´, Òq Ď tk, . . . , `´ 1u, then pk
π
P AÒ´ppkq and A1

1 “ A
Ò
´ppk,Lq, and therefore

A1,3 does not blind p0 “ p0. Moreover, the interval pe1
1, pkq contains no endpoint of

any arc of L nor of L. The lamination L is therefore obtained from L by sliding the
puncture p` along the arc A1,3

1 “ AÒ`pp`,Lq, then merging arcs of L.

In both cases, it follows that Rpγq “ λ´1 and that γλ´1 “ β.

This means that L was indeed the tight lamination of βλ, and that RNFpβλq “
RNFpβq ¨ λ, which completes the proof of Proposition 3.42.

pk
p``1
“p``1

pk p`
p``1
“p``1

A1
1

ÐÝe pCq

C

A1,3
1

A1,1
1

ÐÝe pCq

A1,2
1

C

Lamination L: Lamination L:

Figure 3.46 – From L to L when p``1 belongs to a lower bigon of L

Corollary 3.47.
Let β be some braid, and let λ be a right-oriented sliding braid. The equality RNFpβλq “
RNFpβq ¨ λ holds if and only if β is λ-relaxed.

3.2.3 An Automaton for the Relaxation Normal Form

Corollary 3.47 paves the way for proving that the relaxation normal form is regular.

Theorem 3.48.
Let Σ be the set of all right-oriented sliding n-strand braids. There exists two functions
decide and compute that take as inputs the extended shadow π2

β of some braid β and a
right-oriented sliding braid λ P Σ, and such that

1. decidepπ2
β, λq “ true if RNFpβq ¨ λ “ RNFpβλq, and false otherwise;
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2. computepπ2
β, λq “ π2

βλ if RNFpβq ¨ λ “ RNFpβλq.

Proof. Corollary 3.47 implies that knowing πβ is sufficient to check whetherRpβλq “ λ´1.
Hence, knowing π2

β is also sufficient, which proves the first part of Theorem 3.48.

We prove now the second part of Theorem 3.48 when λ “ rk ñ `s. First, if β ‰ 1,
note that π2

β ‰ π2
1. Indeed, the rightmost index of β is some positive integer i, which

means that either πβpi,`, Òq “ tiu or πβpi,`, Óq “ tiu, whereas π1pi,`, Ùq “ t0, . . . , iu.
Therefore, we may already define the partial function computepπ2

1, ¨q : λ ÞÑ π2
λ, and

there remains to build an appropriate function compute on pairs pπ2
β, λq such that β is

a non-trivial λ-relaxed braid.

Since RNFpβλq “ RNFpβq ¨ λ, we know that neither β nor βλ is trivial. Let L and
L be the (non-trivial) tight laminations that represent respectively the braids β and βλ.
Once again, we denote by p0, . . . , pn the punctures of L, and we denote by p0, . . . , pn the
punctures of L. In addition, consider the functions ψ : i ÞÑ i ´ 1kăi, ψ : i ÞÑ i ´ 1kăiď`
and

Ψ : I ÞÑ tx : ψpmin Iq ď x ď max Iu if I ‰ H, or H if I “ H;
Ψ˚ : I ÞÑ tx : ψpmin Iq ď x ď ψpmax Iqu if I ‰ H, or H if I “ H;
ΘÒ : pI, Jq ÞÑ pΨpIq,ΨpJqq if tk, `u Ď I, or pΨ˚pIq,Hq if tk, `u Ę I;
ΘÓ : pI, Jq ÞÑ pΨpIq,ΨpJqq if tk, `u Ď J , or pΨ˚pIq,Hq if tk, `u Ę J ,

where I and J are subintervals of t0, . . . , nu. The functions ψ, ψ, Ψ, Ψ˚, ΘÒ and ΘÓ will
play a crucial role in computing π2

βλ.

Intuitively, the functions ψ and ψ are meant to reflect the fact that some punctures
of L and L have different names: pi “ pψpiq “ pψpiq if i ă k or if k ă i ď `, and
pi “ pi “ pψpiq if ` ă i. In addition, let A be an arc of both L and L, i.e. an arc of L that
does not belong to Ω1. We prove below that πLpAq “ ΨpπLpAqq if A blinds p`, and that
πLpAq “ Ψ˚pπLpAqq otherwise. We also prove that π2

LpAq “ ΘÒpπ2
LpAqq if A is an upper

arc, and that π2
LpAq “ ΘÓpπ2

LpAqq if A is a lower arc.

Indeed, remember how the lamination L was drawn in the proof of Proposition 3.42.
We split the set AÒ of upper arcs of L into six subsets Ω1, Ω2, Ω4, Ω6, Ω7 and Ω8, and
replaced each arc A1

j by three arcs A1,1
j , A1,2

j and A1,3
j , then replaced the puncture pk by

a new puncture p`, and did not modify any other arc or puncture.

Furthermore, let pe, Eq be the real projection of A. Proposition 3.23 shows that e ă p`,
hence one shows easily that π2

LpAq “ pΨ˚pπLpAqq,Hq if E ă p`, and that πLpAq “
ΨpπLpAqq if E ą p`.

In addition, if E ą p`, let I, J be subintervals of t0, . . . , nu such that π2
LpAq “ pI, Jq,

and let m be the rightmost index of L. Let us prove that J is non-empty. Due to the
requirement 3 in Definition 3.38, we know that m ď `` 1. If m “ `` 1, then the interval
pp`, p``1q contains no endpoint of any arc of L, and therefore E ą p``1, so that J ‰ H;
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if m ď `, then of course J ‰ H as well. Hence, regardless of the value of m, we have
J ‰ H, i.e. J “ πLp

ÝÑe pAqq.

If A is an upper arc, then E ą p` if and only if A P Ω4 Y Ω6, i.e. if and only if
tk, `u Ď πLpAq “ I. Consequently, if A is a lower arc, then E ą p` if and only if
tk, `u Ď πLp

ÝÑe pAqq “ J . This proves that π2
LpAq “ ΘÒpπ2

LpAqq for all upper arcs A R Ω1

of L, and that π2
LpAq “ ΘÓpπ2

LpAqq for all lower arcs A of L.

Finally, if A1
i is an element of Ω1 and has shadow tu, . . . , vu in L, then the arcs A1,1

i ,
A1,2
i and A1,3

i of L have respective shadows tv, . . . , `´1u, t`u and tu, . . . , `u in L. Therefore,
the last remaining challenge is to identify the neighbouring arcs of the punctures of L.
We do it, and thereby we compute π2

βλ as a function of π2
β and of λ, as follows.

1. Let p˛, u, vq be the unique triple in tp`, 0, kqu Y tp´, k, zq : k ď z ă `u such that
πβpk, ˛, Òq “ tu, . . . , vu. In L, the upper parent of pk has a shadow tu, . . . , vu, whence

π2
βλp`,`, Òq “ ptu, . . . , `u, t`uq;

π2
βλp`,´, Òq “ ptv, . . . , `´ 1u,Hq;

π2
βλp`, Ó,˘q “ pt`u, tu, . . . , `uq.

2. First, recall that AÒ`pp``1,Lq P Ω6. Let x be the integer such that πβp`` 1,`, Òq “
tx, . . . , `` 1u: we have x ď k.
If k P πβp`` 1,´, Òq, then p``1 “ p``1 has the same neighbour arcs in L and in L.
If k R πβp` ` 1,´, Òq, then Fig. 3.49 illustrates the case where x ă k (the case
where x “ k is analogous). First, observe that Ω4 “ H. Since some arcs must
separate the punctures pk, p` and p``1 in L, it follows that Ω1 and Ω2 are non-
empty. Consequently, the neighbour arcs of the puncture p``1 “ p``1 in L are

AÒ`pp``1,Lq “ A
Ò
`pp``1,Lq “ A6

1, A
Ó
`pp``1,Lq “ A

Ó
`pp``1,Lq,

AÒ´pp``1,Lq “ A1,3
ω1
, AÓ´pp``1,Lq “ A1,2

ω1
,

Moreover, since Ω4 “ H, the arcs A1
ω1

and A2
ω2

must be (the first two) children
of A6

1 in L, whose rightmost child is then p``1. Since x ď k, it follows that x “
minπLpA

6
1q “ min πLpA

1
ω1
q “ minπLpA

1,3
ω1
q.

px pk p` p``1 px pk p` p``1
A6

1

A1
ω1

A2
ω2

A6
1

A1,1
ω1

A2
ω2

A1,2
ω1

A1,3
ω1

Lamination L Lamination L

Figure 3.49 – Computing π2
βλp`` 1,˘, Ùq when k R πβp`` 1,´, Òq — assuming x ă k
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Adding these two cases, we obtain

π2
βλp`` 1,`, Òq “ ΘÒ

pπ2
βp`` 1,`, Òqq;

π2
βλp`` 1,`, Óq “ ΘÓ

pπ2
βp`` 1,`, Óqq;

π2
βλp`` 1,´, Òq “ ΘÒ

pπ2
βp`` 1,´, Òqq if k P πβp`` 1,´, Òq

ptx, . . . , `u, t`uq if k R πβp`` 1,´, Òq;

π2
βλp`` 1,´, Óq “ ΘÓ

pπ2
βp`` 1,´, Óqq if k P πβp`` 1,´, Òq

pt`u, tx, . . . , `uq if k R πβp`` 1,´, Òq.

3. Observe that AÒ`pp`,Lq P Ω2 Y Ω4 and that AÒ´pp`,Lq P Ω1 Y Ω2 Y Ω8. In addition,
either AÒ`pp`,Lq “ A

Ò
´pp`,Lq, or A

Ò
`pp`,Lq is the parent of A

Ò
´pp`,Lq. Note that the

former case arises if and only if p` belongs to an upper bigon of L or, equivalently,
if AÒ´pp`,Lq P Ω2. Hence, let y be the integer such that πβp`,`, Òq “ ty, . . . , `u.
In addition, if AÒ´pp`,Lq P Ω1 Y Ω8, let z be the integer such that πβp`,´, Òq “
tz, . . . , `´ 1u.
If k R πβp`,`, Òq, then AÒ`pp`,Lq P Ω2 and AÒ´pp`,Lq P Ω2 Y Ω8. In this case, the
puncture p` “ p`´1 has the same neighbour arcs in L and in L.
If k P πβp`,´, Òq, then AÒ´pp`,Lq P Ω1 and AÒ`pp`,Lq P Ω4. Hence, AÒ´pp`,Lq “ A1

ω1

and Ω2 “ H, which shows that p`´1 belongs to an upper bigon of L. Consequently,
the neighbour arcs of the puncture p`´1 “ p` in L are

AÒ`pp`´1,Lq “ A1,1
ω1
, AÓ`pp`´1,Lq “ A1,2

ω1
,

AÒ´pp`´1,Lq “ A1,1
ω1
, AÓ´pp`´1,Lq “ A

Ó
´pp`,Lq.

Moreover, since AÒ´pp`,Lq P Ω1, the integer z is well-defined, and satisfies the in-
equality z ď k: Figure 3.50a illustrates the case where z ă k. It follows that
z “ minπLpA

1
ω1
q “ min πLpA

1,3
ω1
q.

Finally, if k P πβp`,`, Òq and k R πβp`,´, Òq, then AÒ`pp`,Lq P Ω4 and AÒ´pp`,Lq P
Ω8. It follows that Ω2 “ H. Consequently, the neighbour arcs of the puncture
p`´1 “ p` in L are

AÒ`pp`´1,Lq “ A1,1
ω1
, AÓ`pp`´1,Lq “ A1,2

ω1
,

AÒ´pp`´1,Lq “ A
Ò
´pp`,Lq, A

Ó
´pp`´1,Lq “ A

Ó
´pp`,Lq,

Moreover, the arcs A1
ω1

and AÒ´pp`,Lq are therefore (the first two) children of
AÒ`pp`,Lq “ A4

1 in L, whose rightmost child is then p`. Hence, both integers y
and z are well-defined, and they satisfy the inequalities y ď k ă z: Figure 3.50b
illustrates the case where y ă k. It follows that

y “ min πLpA
4
1q “ min πLpA

1
ω1
q “ minπLpA

1,3
ω1
q and that

z ´ 1 “ min πLpAÒ´pp`,Lqq ´ 1 “ maxπLpA
1
ω1
q “ minπLpA

1,1
ω1
q.

Adding these three cases, we obtain
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π2
βλp`´ 1,`, Òq “ ΘÒ

pπ2
βp`,`, Òqq if k R πβp`,`, Òq

pt`´ 1u,Hq if k P πβp`,´, Òq
ptz ´ 1, . . . , `u,Hq if k P πβp`,`, Òq and k R πβp`,´, Òq;

π2
βλp`´ 1,´, Òq “ ΘÒ

pπ2
βp`,´, Òqq if k R πβp`,´, Òq

pt`´ 1u,Hq if k P πβp`,´, Òq;
π2
βλp`´ 1,`, Óq “ ΘÓ

pπ2
βp`,`, Óqq if k R πβp`,`, Òq

pt`u, tz, . . . , `uq if k P πβp`,´, Òq
pt`u, ty, . . . , `uq if k P πβp`,`, Òq and k R πβp`,´, Òq;

π2
βλp`´ 1,´, Óq “ ΘÓ

pπ2
βp`,´, Óqq.

pz pk p` p` pz pk p`´1 p`

A1
ω1

A1,1
ω1

A1,2
ω1

A1,3
ω1

Lamination L Lamination L
(a) Case #1: k P πβp`,´, Òq — assuming z ă k

py pk pz p` p` py pk pz´1 p`´1 p`

A4
1

A1
ω1

AÒ´pp`,Lq

A4
1

AÒ´pp`,Lq

A1,1
ω1

A1,2
ω1

A1,3
ω1

Lamination L Lamination L
(b) Case #2: k P πβp`,`, Òq and k R πβp`,´, Òq — assuming y ă k

Figure 3.50 – Computing π2
βλp`´ 1,˘, Ùq when k P πβp`,`, Òq

4. Let i be an integer such that i R tk, `, ` ` 1u. The neighbour arcs of pi in L either
are some arc A1

j P Ω1 (which will be replaced by A1,1
j if i ą k, or A1,3

j if i ă k, when
transforming L into L) or are also neighbour arcs of pi in L. It follows that
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π2
βλpψpiq,`, Òq “ pti` 1, . . . , `u, t`uq if i ă k, k P πβpi,`, Òq and

pti` 1, . . . , `u, t`uq if ` R πβpi,`, Òq
pti, . . . , `´ 1u,Hq if k ă i ă ` and k P πβpi,`, Òq
ΘÒ
pπβpi,`, Òqq otherwise;

π2
βλpψpiq,´, Òq “ pti, . . . , `u, t`uq if i ă k, k P πβpi,´, Òq and ` R πβpi,´, Òq

pti´ 1, . . . , `´ 1u,Hq if k ă i ă ` and k P πβpi,´, Òq
ΘÒ
pπβpi,´, Òqq otherwise;

π2
βλpψpiq,`, Óq “ ΘÓ

pπ2
βpi,`, Óqq;

π2
βλpψpiq,´, Óq “ ΘÓ

pπ2
βpi,´, Óqq.

This disjunction of cases provides us with a complete characterisation of π2
βλ as a

function depending only on πβ and of λ, which completes the proof of Theorem 3.48.

Corollary 3.51.
Let n be a positive integer. The language of all relaxation normal words in the braid group
Bn is regular, and is recognised by the deterministic automaton A “ pΣ, Q, i, δ, Qq, with

• alphabet Σ “ trk ñ `s : 1 ď k ă ` ď nu Y trk ô `s : 1 ď k ă ` ď nu;
• state set Q “ tπ2

β : β P Bnu;
• initial state i “ π2

1;
• transition function δ “ tpπ2

β, λ, π
2
βλq : Rpβλq “ λ´1u;

• set of accepting states Q.

Figure 3.52 presents the minimal automaton accepting the language RNFpB3q.

This minimal automaton is obtained by merging states of the above defined automaton
A. Hence, each state s of the minimal automaton is a subset of Q, and is represented in
Fig. 3.52 by some braid β such that π2

β P s. The initial state is the state tπ2
1u, and each

state is accepting. Moreover, for the sake of readability of Fig. 3.52, we chose to denote
by β the braid β´1.

3.3 Is This Automaton Really Efficient?

Corollary 3.51 provides us with a deterministic automaton that accepts the relaxation
normal form. A natural question is that of the size of the deterministic automaton for that
normal form. Is the automaton provided in Corollary 3.51 minimal or close to minimal?
Before answering this question, we first introduce some combinatorial objects that arise
from the concepts of lamination trees and of neighbour arcs, as illustrated in Fig. 3.53.
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Figure 3.52 – Minimal automaton accepting the language RNFpB3q
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T ÒpLq

T ÓpLq

N ÒpLq

N ÓpLq

Figure 3.53 – Lamination trees and neighbour trees of a tight lamination

Definition & Proposition 3.54 (Neighbour trees).
Let L be tight lamination, with set of punctures tp0, . . . , pnu and with rightmost index k.
Let AJ

n be the upper arc contained in the curve Ln, i.e. the root of the tree T ÒpLq. In
addition, let ΛÒ be the subset of upper arcs of L defined by

ΛÒ :“ tAÒ˘ppiq : 0 ď i ď nu Y tAJ
n u Y tA : pk

π
P A and Di ď n,ÝÑe pAq “ AÓ˘ppiqu.

The upper neighbour tree of the lamination L which we denote by N ÒpLq, and defined
as follows. The vertices of N ÒpLq are of the form vA, where A is an upper arc of L such
that A P ΛÒ, or of the form vp, where p is a puncture of L. A vertex vA is an ancestor
of vB in N ÒpLq if and only if A blinds B. Finally, if vA is a vertex whose children are
vertices vA1 , . . . , vAk such that A1 ăL . . . ăL Ak, then vAi is the i-th child of vA.

We define similarly the lower neighbour tree of L, which we denote by N ÓpLq.

Proof. We only need to prove that, if vA1 , . . . , vAk are the children of vA in N ÒpLq, then
A1, . . . , Ak are ordered by the relation ăL. This statement follows from Corollary 3.19
and from the fact thattA1, . . . , Aku is a transversal section of the vertices of T ÒpLq that
descend from vA.

Following Proposition 3.18, the leaves of N ÒpLq and N ÓpLq are the punctures of L.
Furthermore, a puncture pi belongs to an upper (respectively, lower) bigon if and only if
it has no sibling in N ÒpLq (respectively, in N ÓpLq).

Lemma 3.55.
Let β and β1 be n-strand braids, with respective tight laminations L and L1. If N ÒpLq “
N ÒpL1q and N ÓpLq “ N ÓpL1q, then π2

β “ π2
β1.
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Proof. Let vAJn and vAKn be the respective roots of N ÒpLq and of N ÓpLq, and consider the
sets

ΛÒ :“ tAÒ˘ppiq : 0 ď i ď nu Y tAJ
n u Y tA : pk

π
P A and Di ď n,ÝÑe pAq “ AÓ˘ppiqu,

ΛÓ :“ tAÓ˘ppiq : 0 ď i ď nu Y tAK
n u Y tA : pk

π
P A and Di ď n,ÝÑe pAq “ AÒ˘ppiqu.

Let p be some puncture of L. The arc vAÒ´pp,Lq is either the left sibling of p in N ÒpLq,
if such a left sibling exists, or the parent of p in N ÒpLq, if p has no left sibling in N ÒpLq.
We identify similarly the vertices vAÓ´pp,Lq and vAÙ`pp,Lq

among the nodes of N ÒpLq and
N ÓpLq.

Moreover, let k be the rightmost index of L. We identify k since pk is the rightmost
puncture that does not have siblings in both N ÒpLq and N ÓpLq. Let A1

π
Ĺ . . .

π
Ĺ Au be

the arcs blinding pk and belonging to ΛÒ. Let B1

π
Ĺ . . .

π
Ĺ Bv be the arcs blinding pk

and belonging to ΛÓ. It comes immediately that u “ v and that Aj “ ÝÑe pBjq whenever
1 ď j ď u. Hence, we identify each arc of the set tA : pk

π
P A and Di ď n,ÝÑe pAq “ AÓ˘ppiqu

among the nodes of N ÒpLq. Similarly, we identify each arc of the set tA : pk
π
P A and Di ď

n,ÝÑe pAq “ AÒ˘ppiqu among the nodes of N ÓpLq.

Hence, we can compute π2
βpi, ˛, ϑq for each triple pi, ˛, ϑq P t0, . . . , nuˆt`,´uˆtÒ, Óu,

which means that the trees N ÒpLq and N ÓpLq uniquely determine π2
β. This completes the

proof.

Corollary 3.56.
Let A “ pΣ, Q, i, δ, Qq be the automaton provided in Corollary 3.51. Its state set Q is of
cardinality |Q| ď 220pn`1q.

Proof. Let N be the set tpN ÒpLq,N ÓpLqq : L is a tight laminationu and let Π be the set
tπ2

β : β P Bnu. Lemma 3.55 states that there exists some surjective projection N ÞÑ Π,
hence that |Π| ď |N|. Since Q “ Π, it remains to show that |N| ď 220pn`1q.

Let L be some tight lamination. The tree N ÒpLq contains at most n` 1 nodes of the
type vpi , 2pn` 1q nodes of the type vAÒ˘ppiq, 1 node of the type AJ

n and 2pn` 1q nodes of

the type vA, where pk
π
P A and ÝÑe pAq “ AÓ˘ppiq for some i. This proves that N ÒpLq has

at most 5n` 6 nodes. Similarly, N ÓpLq has at most 5n` 6 nodes.

Moreover, both N ÒpLq and N ÓpLq are rooted ordered trees. For each integer k, there
exists Ck´1 rooted ordered trees with k nodes, where Ck “ 1

k`1

`

2k
k

˘

is the k-th Catalan
number (see [49, p. 35]). Moreover, the relations

k
ÿ

i“0

Ci ď pk ` 1qCk “

ˆ

2k

k

˙

“

k
ź

i“1

2i

i
¨

2i´ 1

i
ď 22k

show that there exist at most 210pn`1q rooted ordered trees with at most 5n` 6 nodes. It
follows that |Q| “ |Π| ď |N| ď 220pn`1q.
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We can then prove that the size of the automaton A has the same order of magnitude
as the size of the minimal automaton.

Proposition 3.57.
Let Amin “ pΣ, Qmin, imin, δmin, Fminq be the minimal deterministic automaton that accepts
the set of relaxation normal words for the braid group Bn. The sets Fmin and Qmin are
equal, with cardinality |Qmin| ě 2n{2´1.

Proof. Since Amin is minimal, each of its states is co-accessible: from each state s P Qmin,
one can reach a state s1 P Fmin. Since the relaxation normal form is prefix-closed, it follows
that Qmin Ď Fmin, i.e. that Fmin “ Qmin.

To each braid α corresponds a unique relaxation normal word in Σ˚, hence one
unique state in Qmin. We denote this state by δ˚pαq. Now, let m “ tn´1

2
u. To each tuple

ε “ pε1, ε2, . . . , εmq P t´1, 1um, we associate the braid βε “ σε11 σ
ε2
3 . . . σεm2m´1 P Bn. An

immediate induction on m shows that σε11 ¨ σ
ε2
3 ¨ . . . ¨ σ

εm
2m´1 is a relaxation normal word.

Figure 3.58 – The braid βp´1,1q (for n “ 5)

Then, if ε and η are distinct tuples in t´1, 1um, consider some integer i ď m such that
εi ‰ ηi. Without loss of generality, we assume that εi “ 1 and that ηi “ ´1. One shows
easily that RNFpβεq ¨ r2i ñ ns is a relaxation normal word, whereas RNFpβηq ¨ r2i ñ ns
is not. This shows that δ˚pβεq ‰ δ˚pβηq and, consequently, that |Qmin| ě 2m ě 2n{2´1.

For example, Fig. 3.58 shows the 5-strand braid βp´1,1q “ r1 ñ 2sr3 ô 4s: we have
RNFpβp´1,1qq “ r1 ñ 2s ¨ r3 ô 4s, RNFpβp´1,1qr2 ñ 5sq “ r1 ñ 5s ¨ r3 ô 4s and
RNFpβp´1,1qr4 ñ 5sq “ r1 ñ 2s ¨ r3 ô 4s ¨ r4 ñ 5s.

Corollary 3.59.
Both automata A and Amin introduced in Corollary 3.51 and Proposition 3.57 have state
sets with cardinalities 2Ωpnq.

3.4 Relaxation Normal Form and Braid Positivity

One of the main features of the braid group is that it is left-orderable, meaning that
there exists a total order < on Bn such that, if α, β and γ are braids such that α < β,
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then γα< γβ. Such a property allows us to characterise the order < just by knowing its
positive elements, i.e. the set tα P Bn : 1 < αu.

One such left-order is called the Dehornoy order. This order has been thoroughly
studied [34, 35, 39], and its set of positive elements can be represented simply in terms
of σ-positive braids.

Definition 3.60 (σi-positivity and σ-positivity).
Let β P Bn be a braid on n strands, and σi P Bn be an Artin generator, where i ď n.
We say that β is σi-neutral if it belongs to the subgroup of Bn generated by the set
tσj : i` 1 ď j ď nu.

We also say that β is σi-positive (respectively, σi-negative) if it can be expressed as a
product β “ γ0σ

ε
iγ1σ

ε
i . . . σ

ε
iγk such that k ě 1, each braid γj is σi-neutral, and ε “ 1

(respectively, ε “ ´1).

Finally, we say that β is σ-positive (respectively, σ-negative) if it is σi-positive (respec-
tively, σi-negative) for some i ď n.

This notion of σ-positivity and σ-negativity comes with a wealth of properties, includ-
ing the fact that every non-trivial braid is either σ-positive or σ-negative, but not both
(a proof of this result can be found in [39]). It immediately follows that the Dehornoy
order, for which a braid α is smaller than a braid β if and only if α´1β is σ-positive, has
the property of being a total left-order.

Several normal form, stemming both from geometric and algebraic frameworks, are
related to the Dehornoy order. For instance, up to a conjugation by the involutive mapping
σi Ø σn´i (which transforms the normal form such as decribed in [19] into the variant
mentioned in [40]), the Bressaud normal form maps each σ-positive braid β to a σ-
positive braid word that represents β, although its does not map each σ-negative braid
to a σ-negative braid word.

Similarly, the cycling normal form introduced by Fromentin [51, 52], which has an
algebraic flavour, identifies each braid β with a σ-consistent braid word that represent β.
Furthermore, this word is, up to a multiplicative constant, a shortest representative of β.

Hence, both these normal forms lead to computing σ-consistent braid words, which
allows checking whether a braid is σ-positive, and therefore allows computing the De-
hornoy order. We prove below that the relaxation normal form of a braid β, although it
is not σ-consistent in general, helps checking whether the braid β itself is σ-positive.

Indeed, σ-positivity and σ-negativity is directly expressible in terms of tight lamina-
tions.

Definition & Proposition 3.61 (Second right arcs).
Let L be a tight lamination and let p be some puncture of L, except the rightmost one.
Since LR intersects both intervals pp, pnq and ppn,8q, the point p``L “

`

p`L
˘`

L “ mintz P
LR : z ą p`Lu is well-defined. We call this point the second right neighbour point of p in
L.
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The point p``L belongs to two arcs of L. We call these arcs the second right upper arc
and the second right lower arc of p in L, and denote them respectively by AÒ``pp,Lq and
by AÓ``pp,Lq. The two arcs AÒ``pp,Lq and A

Ó
``pp,Lq are called second right arcs of p

in L.

p

p`L

p``L

AÒ``ppq

AÓ``ppq

Figure 3.62 – A puncture and its second right neighbour and arcs

Figure 3.62 shows some tight lamination, in which a puncture p, the right neighbour
point and the second right neighbour of p, and the second right arcs of p have been
highlighted. Second right arcs provide us with a geometrical characterisation of σi-positive
and σi-negative braids (see [39] for details), which we reformulate here.

Proposition 3.63.
Let L be the tight lamination of a braid β P Bn and let σi be an Artin generator of the
braid group Bn. The braid β is σi-neutral if and only if 0 P πβpj,`, ÒqXπβpj,`, Óq for all
j ď i. In addition, β is

• σi-positive if and only if β is σi´1-neutral and i P πLpAÓ``ppi´1,Lqq Ď ti, . . . , nu;
• σi-negative if and only if β is σi´1-neutral and i P πLpAÒ``ppi´1,Lqq Ď ti, . . . , nu.

From Proposition 3.63 follows a characterisation of the σi-positive and σi-negative
braids according to their relaxation normal forms. Indeed, for each integer j P t1, . . . , nu,
let SÒj , S

Ó

j and Σj be respectively the subsets trj ñ vs : j ă vu, trj ô vs : j ă vu and
Ť

kějpS
Ò

k Y S
Ó

kq of the set Σ of all right-oriented sliding braids.

Theorem 3.64.
Let β P Bn be a braid and let σi be an Artin generator of the braid group Bn. The braid β
is σi-positive (respectively, σi-negative) if and only if RNFpβq P Σ˚i`1 ¨S

Ó

i ¨Σ
˚
i (respectively,

RNFpβq P Σ˚i`1 ¨ S
Ò

i ¨ Σ
˚
i ).

Proof. The sets t1u, Σ˚i`1 ¨ S
Ó

i ¨ Σ
˚
i and Σ˚i`1 ¨ S

Ò

i ¨ Σ
˚
i for (1 ď i ď n´ 1) form a partition

of the free monoid Σ˚. Moreover, a braid β is clearly σi-positive if RNFpβq P Σ˚i`1 ¨ S
Ó

i ,
or σi-negative if RNFpβq P Σ˚i`1 ¨ S

Ò

i . Hence, and without loss of generality, it suffices to



Chapter 3. The Relaxation Normal Form of Braids is Regular 125

prove that if β is a σi-positive, ri ñ js-relaxed braid for some j ě i` 1, then βri ñ js is
σi-positive.

Then, let L and L be tight laminations of β and βri ñ js. Since β is σi-positive,
Proposition 3.63 shows that

0 P πβpu,`, Òq X πβpu,`, Óq “ πβriñjspu,`, Òq X πβriñjspu,`, Óq

for all u ă i. Furthermore, consider the arc A :“ AÓ``ppi´1,Lq “ AÓ``ppi´1,Lq. Proposi-
tion 3.63 also states i P πLpAq, hence that πLpAq Ď ti, . . . , nu, and the requirement 1 of
Definition 3.38 proves that πLpAq ‰ tiu. It follows that ti, i ` 1u Ď πLpAq and therefore
i P πLpAq Ď ti, . . . , nu, which completes the proof.

If follows that the sets tRNFpβq : β is σi-positiveu and tRNFpβq : β is σi-negativeu
are regular, and that each prefix of a σi-positive word must be σi-positive or σi-neutral.
In particular, the sets tRNFpβq : β is σ-positiveu and tRNFpβq : β is σ-negativeu are
also regular.

3.5 Experimental Data, Conjectures and Open Ques-
tions

A natural question that follows Section 3.3 is whether our results can be refined. Can
we build a smaller deterministic automaton that would recognise the relaxation normal
form? At which cost? A first way or proceeding is to modify slightly the notion of extended
shadow of a braid.

Theorem 3.48 consists in saying that, in order to check whether a word w1 ¨ . . . ¨ wk
belongs to the relaxation normal form, it is enough to read the word from left to right
and to remember the extended shadows π2 of the braids w1 . . . wi, for i P t1, . . . , ku. The
construction of the automaton A in Corollary 3.51 follows from this result.

However, the extended shadows may contain unnecessary information. In particular,
let β be a braid, let L be the tight lamination associated with β, and let k be the rightmost
index of L. Consider the sets BÒ :“ tj P t0, . . . , k ´ 1u : pj belongs to an upper bigonu
and BÓ :“ tj P t0, . . . , k ´ 1u : pj belongs to a lower bigonu. For all pairs pj, ˛, ϑq P
t0, . . . , nu ˆ t´,`u ˆ tÓ, Òu, consider the two intervals pI, Jq :“ π2

βpj, ˛, ϑq, and let us
denote by π2

β the pair of sets pI, JzBϑq.

We may prove a variant of Theorem 3.48, where the function π2
β is replaced by the

function π2
β. Observe that π2

σ2
1
‰ π2

σ3
1
, while π2

σ2
1
“ π2

σ3
1
. Therefore, since π2

β depends only
on π2

β, the set tπ2
βpβq : β P Bnu has fewer elements than the set tπ2

βpβq : β P Bnu.
In particular, we might build an automaton A whose states are the elements of the set
tπ2

βpβq : β P Bnu, which means that A is smaller than as A.
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Of course, we might directly compute the minimal deterministic automaton Amin of
the relaxation normal form by computing the automaton A and minimising it. However,
since A is larger than Amin, such a way of proceeding may appear as uselessly costly. In
that context, being able to build from scratch the automaton A provides us with a better
way of obtaining small automata recognising the relaxation normal form.

On the contrary, we may look for tighter lower bounds on the number of states of
the minimal deterministic automaton Amin of the relaxation normal form. Here is such
a lower bound, which is nevertheless not optimal. For all braids α P Bn, let δ˚pαq be
the corresponding state in Amin. For each integer i P t1, . . . , n ´ 1u, consider the braid
βi :“ ri ô nsri ð ns. In addition, for each tuple ε :“ pε1, . . . , εn´1q P t´1,`1un´1,
consider the braid γε :“ βε11 β

2ε2
2 . . . β

pn´1qεn´1

n´1 .

Like in the proof of Proposition 3.57, we observe that RNFpγεq¨ri ô ns is a relaxation
normal word if and only if εi “ 1, and therefore that the states δ˚pγεq are pairwise distinct.
This proves that the automatonAmin must have at least 2n´1 states, which is quadratically
better than the lower bound found in Proposition 3.57.

Figure 3.65 presents, for n P t2, 3, 4, 5u, the size |Amin| of the minimal deterministic
automaton of the relaxation normal form in the braid group Bn, the size |A| of the above-
constructed automaton A, as well as the lower bound 2n´1 and the upper bound 220pn`1q

on |Amin| that we obtained above. It suggests that the lower and upper bounds 2n´1 and
220pn`1q are far from optimal but, at the same time, that the construction of |Amin| is not
so inefficient in practice.

n 2n´1 |Amin| |A| 220pn`1q

2 2 3 3 « 1018

3 4 21 29 « 1024

4 8 207 307 « 1030

5 16 2261 3549 « 1036

Figure 3.65 – Size of the automata accepting the relaxation normal form in Bn

Another question is that of the automaticity of the relaxation normal form. A complete
book about automatic groups and automatic normal forms is [47], which we invite the
reader to look at.

Proposition 3.66.
Consider some integer n P t2, 3u. Let RS denote the set of right-oriented sliding braids
in Bn, i.e. RS :“ trk ñ `s : 1 ď k ă ` ď nu Y trk ô `s : 1 ď k ă ` ď nu. The relaxation
normal form RNF : Bn ÞÑ RS is synchronously automatic.

Proof. Proposition 3.66 is self-evident if n “ 2, hence we focus on the case n “ 3. We
might have built directly automata recognising the sets RNFleft

i and RNFright
i for i “ 1
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and i “ 2. However, we had to face a state space explosion, and could not cope with the
large size of the involved automata. Consequently, we had to find an alternative proof.

Let ψ : RS˚ ÞÑ tσ˘1
1 , σ˘1

2 u be the morphism of monoids such that ψ : σ1σ2 ÞÑ σ1 ¨ σ2,
ψ : σ´1

1 σ´1
2 ÞÑ σ´1

1 ¨ σ´1
2 and ψ : x ÞÑ x if x P tσ˘1

1 , σ˘1
2 u. The normal form RNF “

ψ ˝RNF, which maps each braid β P B3 to the word ψpRNFpβqq, is not prefix-closed
but remains regular. In particular, it is easy to compute the minimal automaton, denoted
by A0, recognising the set tRNFpβq : β P B3u ¨ tεu

˚. This automaton is of size |A0| “ 34
(i.e. A0 has 34 states), which is small enough for carrying subsequent computations.

Then, using the recipe provided by Corollary 2.58, we compute directly (minimal
deterministic) automata, which we denote by Aleft

i and Aright

i , that recognise the sets
RNF

left

i and RNF
right

i for i “ 1 and i “ 2. These automata are of respective sizes
ˇ

ˇ

ˇ
Aleft

1

ˇ

ˇ

ˇ
“ 212,

ˇ

ˇ

ˇ
Aright

1

ˇ

ˇ

ˇ
“ 518,

ˇ

ˇ

ˇ
Aleft

2

ˇ

ˇ

ˇ
“ 214 and

ˇ

ˇ

ˇ
Aright

2

ˇ

ˇ

ˇ
“ 56, which makes handling them

a tractable task.

Tables presenting the automaton A and the automata Aleft

1 , Aleft

2 , Aright

1 and Aright

2

(which are too large to be represented graphically) are available on

http://www.irif.univ-paris-diderot.fr/„vjuge/papers/Automates.pdf.

We wish to derive the synchronous automaticity ofRNF from that ofRNF. However,
reading synchronously letters of words in RNFpB3q may result in reading asynchronously
letter of words in RNFpB3q. For instance, consider the words

a :“ σ1σ2 ¨ σ1σ2 ¨ σ1 ¨ σ1 ¨ σ1σ2 ¨ σ2 ¨ σ2 ¨ σ2 ¨ σ2 and
b :“ σ1σ2 ¨ σ1σ2 ¨ σ2 ¨ σ1σ2 ¨ σ1σ2 ¨ σ

´1
1 σ´1

2 ¨ σ1σ2 ¨ σ2 ¨ σ2 ¨ σ2 ¨ σ2,

whose letters are sliding braids, that both belong to RNFpB3q, and that represent re-
spectively the braids a “ ∆σ2σ

3
1σ

5
2 and b “ ∆σ2σ

3
1σ

6
2 “ aσ2. The morphism ψ maps the

words a and b to words

a1 :“ σ1 ¨ σ2 ¨ σ1 ¨ σ2 ¨ σ1 ¨ σ1 ¨ σ1 ¨ σ2 ¨ σ2 ¨ σ2 ¨ σ2 ¨ σ2 and
b1 :“ σ1 ¨ σ2 ¨ σ1 ¨ σ2 ¨ σ2 ¨ σ1 ¨ σ2 ¨ σ1 ¨ σ2 ¨ σ

´1
1 ¨ σ´1

2 ¨ σ1 ¨ σ2 ¨ σ2 ¨ σ2 ¨ σ2 ¨ σ2,

whose letters are generators σ˘1
i , and that both belong to RNFpB3q. However, the 12th

leftmost letter of a1 comes from the 9th leftmost letter of a, while the 12th leftmost letter
of b1 comes only from the 7th leftmost letter of b, as illustrated in Fig. 3.67. Hence,
reading synchronously the letters of a1 and b1 is not the same as reading synchronously
the letters of a and b.

Hence, for all braids α, β P B3, consider the words a :“ RNFpαq, b :“ RNFpβq,
a1 :“ RNFpαq and b1 :“ RNFpβq. For each integer k ě 0, let us define the integer
ϕapkq :“ mintu ě 0 :

řu
i“1 |λpaiq| ě mintk, |a1|uu. We define similarly the integer ϕbpkq.

Finally, we call synchronisation difference between α and β the integer

∆syncpα, βq :“ }ϕa ´ ϕb}8 “ max
kě0

|ϕapkq ´ ϕbpkq| .

http://www.irif.univ-paris-diderot.fr/~vjuge/papers/Automates.pdf
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σ1 σ2 σ1 σ2 σ1 σ1 σ1 σ2 σ2 σ2 σ2 σ2

σ1 σ2 σ1 σ2 σ2 σ1 σ2 σ1 σ2 σ´1
1 σ´1

2 σ1 σ2 σ2 σ2 σ2 σ2

12th letter of a1

12th letter of b1

9th letter of a

7th letter of b

ϕap12q “ 9

ϕbp12q “ 7

Figure 3.67 – Synchronisation on RNF and partial desynchronisation on RNF

For instance, in the above example (illustrated in Fig. 3.67), we have ϕap12q “ 9, ϕbp12q “
7 and ∆syncpα, βq “ 2.

Let us consider some integer k ě 0 as well as the integers Ak :“
řmintk,|a|u
i“1 |λpaiq| and

Bk :“
řmintk,|b|u
i“1 |λpbiq|. Without loss of generality, we have Ak ě Bk, and therefore

|Ak ´Bk| ď 2pk ` 1´ ϕapBkqq ď 2` 2∆syncpα, βq.

We prove now that the normal form RNF is synchronously automatic as soon as each
of the sets t∆syncpγ, γσiq : γ P B3u and t∆syncpγ, σiγq : γ P B3u, for i P t1, 2u, is finite.
In order to do so, let us reuse the notations of Definition 2.56.

Consider some braid γ P B3, as well as the words a :“ RNFpγq, b :“ RNFpσiγq,
a1 :“ RNFpγq and b1 :“ RNFpσiγq, and consider some integer k ě 0, as well as integers
Ak and Bk such as defined above. Since RNF is synchronously automatic, the set ∆

left

i :“
Ť

γPG ∆left
RNF

pσiγ, γq is finite. Moreover, using the notations introduced in Section 2.1, we
have:

xbk`1...|b|y xak`1...|a|y
´1

“ xb1Bk`1...|b1|y xa
1
Ak`1...|a1|y

´1

“ xb1Bk`1...|b1|y xa
1
Bk`1...|a1|y

´1
xa1Ak`1...Bk

y
´1 if Ak ď Bk, or

“ xb1Bk`1...|b1|y xa
1
Bk`1...|a1|y

´1
xa1Bk`1...Ak

y if Ak ě Bk ` 1.

If the set t∆syncpγ, σiγq : γ P B3u, let M be an upper bound for this set. Since each
braid xb1Bk`1...|b1|y xa

1
Bk`1...|a1|y

´1 belongs to the finite set ∆
left

i and each braid xa1Ak`1...Bk
y´1

or xa1Bk`1...Ak
y belongs to the finite Minkowski product tσ˘1

1 , σ˘1
2 ,1uM , it follows that the

braid xbk`1...|b|y xak`1...|a|y
´1 belongs to the finite set ∆

left

i tσ˘1
1 , σ˘1

2 ,1uM .

This membership relation holds for all integers k ě 0 and for all braids γ P B3, which
proves that the set ∆left

i :“
Ť

γPG ∆left
RNFpσiγ, γq is finite. Repeating this argument proves

that, if each the sets t∆syncpγ, γσiq : γ P B3u and t∆syncpγ, σiγq : γ P B3u are finite for
i P t1, 2u, then RNF is synchronously automatic.
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Eventually, let F and G be the respective sets of final states of A and Aright

1 , and let
xs and zs be the respective initial states of A and of Aright

1 . In addition, let Γright
1 be

the weighted graph defined as follows. The vertices of Γright
1 are tuples px, α, i,y, β, j, zq,

where x and y are states of A, α and β are elements of the alphabet RS, i and j are
integers such that 1 ď i ď |ψpαq| and 1 ď j ď ψpβq, and z is a state of Aright

1 .

For every two vertices v1 “ px1, α1, i1,y1, β1, j1, z1q and v1 “ px2, α2, i2,y2, β2, j2, z2q

of Γright
1 , if there exists two letters u, v P tσ˘1

1 , σ˘1
2 u such that

• if ψpα1q “ a1 ¨ . . . ¨ ak, then 1 ď i1 ď k and u “ ai1 ;
• if 1 ď i1 ă k, then i2 “ i1 ` 1, x2 “ x1 and α2 “ α1;
• if i1 “ k, then i2 “ 1, and the edge x1

α
ÝÑ x2 exists in A;

• if ψpβ1q “ b1 ¨ . . . ¨ b`, then 1 ď j1 ď ` and v “ bj1 ;
• if 1 ď j1 ă `, then j2 “ j1 ` 1, y2 “ y1 and β2 “ β1;

• if j1 “ `, then j2 “ 1, and the edge y1
β
ÝÑ y2 exists in A;

• the edge z1
pu,vq
ÝÝÝÑ z2 exists in Aright

1 ,

then we draw an edge vÑ v1 in Γright
1 , with weight 1i1“1 ´ 1j1“1.

Finally, we prune Γright
1 and restrict it to those vertices that belong to some path

going from the set tpxs, α, 1,xs, β, 1, zsq | α, β P RSu to the set tpx, α, 1,y, β, 1, zq |
α, β P RS,x,y P F, z P Gu.

One shows easily that the set t∆syncpβ, βσ1q : β P B3u is finite if and only if Γright
1

does not contain any cycle of non-zero weight. Although the whole graph Γright
1 might

be huge, its pruned version turns out to be very small and is very fast to compute. By
computing analogous pruned weighted graphs Γright

2 , Γleft
1 and Γleft

2 , and checking that
all cycles in these graphs have weight zero (using the Bellman-Ford algorithm), we check
in no time that RNF is indeed automatic.

In addition, further experimental tests, which were not conclusive due to space issues,
suggest the following generalisation of Proposition 3.66.

Conjecture 3.68.
Consider some integer n ě 2. Let RS denote the set of right-oriented sliding braids in
Bn, i.e. RS :“ trk ñ `s : 1 ď k ă ` ď nu Y trk ô `s : 1 ď k ă ` ď nu. The relaxation
normal form RNF : Bn ÞÑ RS is synchronously automatic.
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Chapter 4

Counting Braids According to Their
Geometric Norm

Résumé

Les tresses peuvent être représentées de manière géométrique, en tant que diagrammes
de courbes. La complexité géométrique d’une tresse est la plus petite complexité d’un
diagramme de courbes représentant cette tresse. Nous introduisons et étudions la notion
de fonction génératrice géométrique associée. Nous calculons explicitement la fonction
génératrice géométrique pour le groupe de tresses à trois brins et démontrons qu’elle n’est
ni rationnelle ni algébrique, ni même holonome. Ce résultat peut sembler contre-intuitif.
En effet, la complexité usuelle (liée à la présentation d’Artin des groupes de tresses) est
algorithmiquement plus difficile à calculer que la complexité géométrique, alors que la
fonction génératrice associée pour le groupe de tresses à trois brins est rationnelle.

La majeure partie du contenu de ce chapitre a été publiée dans [64].

Abstract

Braids can be represented geometrically as curve diagrams. The geometric complexity of
a braid is the minimal complexity of a curve diagram representing it. We introduce and
study the corresponding notion of geometric generating function. We compute explicitly
the geometric generating function for the group of braids on three strands and prove
that it is neither rational nor algebraic, nor even holonomic. This result may appear
as counterintuitive. Indeed, the standard complexity (due to the Artin presentation of
braid groups) is algorithmically harder to compute than the geometric complexity, yet
the associated generating function for the group of braids on three strands is rational.

Most of the content of this chapter appeared in [64].



132 4.1. Counting Braids With a Given Norm

Chapter 4 is devoted to the problem of counting braids with a given geometric com-
plexity. Standard notions of complexity on the elements of a monoid are algebraic: given
a set S of generators of the group, the complexity of an element γ is the smallest in-
teger u ě 0 such that γ belongs to the Minkowski product Su. In the context of n-
strand braid groups, such algebraic complexities include the Artin complexity, where
S :“ tσ˘1

1 , . . . , σ˘1
n´1u, and the Garside complexity, where S :“ tβ˘1 : β P B`n ,1 ď` β ď`

∆u.

The Garside normal form provides a complete answer to both the problem of com-
puting the Garside complexity of a braid and the problem of counting braids with a
given complexity [28]. The problem of counting braids with a given Artin complexity was
settled when n “ 3, and the associated generating function is rational [74, 84]. However,
this problem remains open for n ě 4, and even the problem of computing the Artin
complexity of a braid seems intractable when n is large [76, 80].

Unlike the Artin complexity, the geometric complexity of a braid can be computed
in polynomial time, using variants of Algorithm 3.9, of the Dynnikov coordinates or of
the coordinates introduced below in Definition 4.5. Hence, we might expect that the
associated generating function be at least as simple as the generating function associated
with the Artin complexity. Yet, surprisingly, we prove below that, even in the case of the
group of braids with three strands, the geometric generating function is not rational, nor
even holonomic.

All the notions and results mentioned in Chapter 4 are essentially original, and most
of them were published in [64], although results about Lambert series (Definition 4.27
and Proposition 4.28) and composition of curve diagrams (from Definition 4.34 to Theo-
rem 4.39) are novel and were therefore unpublished prior to this thesis.

4.1 Counting Braids With a Given Norm

In Chapter 4, we will consider only curve diagrams, and cast both open and closed lam-
inations aside, with the exception of the trivial open lamination. Henceforth, we denote
by L the trivial open lamination, and denote by Li the (vertical) curves of L.

4.1.1 Generalising Curve Diagrams

We begin with introducing the original notion of generalised curve diagram, which gen-
eralises (standard) curve diagrams and are specific instances of families of curves such as
treated in Section 2.4.

Definition 4.1 (Generalised curve diagram).
Let k be a positive integer, and let p1 ă . . . ă pn be mobile punctures inside the open
interval p´1, 1q. We call k-generalised curve diagram, and denote by D, a union of k
non-intersecting curves that consists of
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• one open curve with endpoints ´1 and `1;
• k ´ 1 closed curves, none of which encircles any of the points ˘1

and such that each puncture of the disk belongs to one of these k curves.

Curve diagrams, such as introduced in Definition 2.109, are exactly 1-generalised curve
diagrams. If D is a (1-generalised) curve diagram, the endpoints of the curve D itself are
´1 and `1. Therefore, two distinct pD,Lq-arcs can share at most one endpoint, where
L is the trivial open lamination. Hence, if P and Q are pD,Lq-adjacent endpoints, there
exists one unique pD,Lq-arc with endpoints P and Q, and we denote this arc by rP,QsD.

Remember that Theorem 2.129 identifies the tightness of a curve diagram D (in the
sense of Definition 2.119) with the tightness of D with respect to the trivial open lamina-
tion L and the to set of mobile punctures tp1, . . . , pnu (in the sense of Definition 2.128).
Hence, we extend Definition 2.119 to generalised curve diagrams.

Definition 4.2 (Tight generalised curve diagram).
Let D be a generalised curve diagram. We say that D is tight if D is tight with respect to
the trivial open lamination L and to the set of mobile punctures tp1, . . . , pnu.

Using the fact that each puncture must belong to a curve of D, we deduce the following
result.

Proposition 4.3.
A generalised curve diagram D is tight if and only if D is transverse to the trivial open
lamination L and if, for every pD,Lq-arc A whose endpoints are pL,Dq-adjacent end-
points, the arc A contains one point among p1, . . . , pn.

4.1.2 From Diagrams to Coordinates

We focus now on an original notion of coordinates of a (tight) curve diagram and of a
braid, which is similar to the Dynnikov coordinates in its essence, although it is more
suitable for tackling the problem of counting braids. This notion will be central in all
Chapter 4.

Definition 4.4 (Endpoints ordering).
Let D be a generalised curve diagram that is transverse to the trivial open lamination L,
and let Li be a curve of L, with 1 ď i ď n´ 1.

The punctures p1 and pn belong to distinct connected components of CzLi. Hence, the
curve Li intersects the curve diagram D at least once. We orient each curve Li from
bottom to top and thereby induce a linear ordering on Li XD: we denote by Lji the j-th
smallest element of Li XD.

For the sake of coherence, we also define the sets L0 :“ t´1u and Ln :“ t`1u. Then, we
denote by L1

0 the left point ´1, and by L1
n the right point `1.
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An immediate induction on i and on k shows that, if D is a k-generalised curve
diagram transverse to L, then the cardinality of the set Li XD is odd.

In addition, if D is transverse to L, any two points P and Q lying on distinct lines
Li´1 and Li can be linked by at most one pD,Lq-arc. Therefore, we can unambiguously
denote this arc by rP,QsD, which gives rise to the following definition of coordinates of a
tight generalised curve diagram.

Definition 4.5 (Curve diagram coordinates and braid coordinates).
Let D be a tight generalised curve diagram. The coordinates of D are defined as the tuple
sa :“ ps0, a1, s1, a2, . . . , an, snq such that

• si “ 1
2
p|Li XD| ´ 1q, for all i P t0, . . . , nu;

• ai “ maxtj ě 0 : @k P t1, . . . , ju,Lki´1 and Lki are pD,Lq-adjacent endpointsu, for
all i P t1, . . . , nu such that si´1 ‰ si;
• ai is the integer such that the puncture pi lies on the arc rLai`1

i´1 ,L
ai`1
i sD, for all

i P t1, . . . , nu such that si´1 “ si.

If, in addition, D is a (1-generalised) curve diagram, representing some braid β, then we
also say that sa are the coordinates of β.

L1
0

L5
1

L4
1

L3
1

L2
1

L1
1

L3
2

L2
2

L1
2

L1
3

1-generalised diagram

Coordinates: p0, 0, 2, 3, 1, 0, 0q

L1
0

L3
1

L2
1

L1
1

L1
2

L1
3

2-generalised diagram

Coordinates: p0, 0, 1, 0, 0, 0, 0q

Figure 4.6 – Tight generalised curve diagram and associated coordinates

We show below that coordinates indeed characterise tight generalised curve diagrams.

Definition 4.7 (Zones and adjacent points).
Let D be some tight generalised curve diagram, and let i P t1, . . . , nu be some integer. We
denote by Zi be the area lying to the left of Li (if i ď n ´ 1) and to the right of Li´1 (if
i ě 2): we call Zi the i-th zone of the diagram. In addition, let A be some pD,Lq-arc
lying inside the area Zi, and let P and Q be the endpoints of the arc A. We say that P
and Q are i-th zone adjacent points, which we denote by P i

„ Q, and denote the arc A
by rP,QsiD.
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Observe that, although there may exist two pD,Lq-arcs with endpoints P and Q (when
D is a tight k-generalised curve diagram with k ě 2, e.g. the points L1

1 and L2
1 in the

2-generalised curve diagram of Fig. 4.6), the arc rP,QsiD itself is uniquely defined. Indeed,
remember that D and L are transverse to each other, which contradicts the fact that P
and Q may be linked by two or more arcs lying in the same area Zi.

The notion of zones and of i-th zone adjacent points leads to the following results.

Lemma 4.8.
Let D be a tight generalised curve diagram with coordinates sa :“ ps0, a1, s1, . . . , snq,
and let i P t1, . . . , nu be some integer. The pD,Lq-arcs contained in the area Zi link
respectively:

• the points Lji´1 and Lji such that j ď ai;

• the points Lji´1 and Lki´1 such that j ` k “ 2pai ` si´1 ´ siq ` 1 and mintj, ku ą ai,
if si´1 ą si;
• the points Lji and Lki such that j ` k “ 2pai ` si ´ si´1q ` 1 and ai ă j ă k, if
si ą si´1;
• the points Lji´1 and Lki such that j ´ k “ 2psi´1 ´ siq and mintj, ku ą ai.

Proof. We call left-box each interval tu, . . . , vu such that the points Lui´1
i
„ Lvi´1, and

right-box each interval tu, . . . , vu such that Lui
i
„ Lvi .

If tu, . . . , vu is a left-box (with u ă v), then for all w P tu` 1, . . . , v ´ 1u there exists
some x P tu`1, . . . , v´1u such that tw, . . . , xu (or tx, . . . , wu if x ă w) is also a left-box.
An immediate induction then shows that the interval tu, . . . , vu necessarily contains some
minimal left-box, which must be of the form tx, x`1u. Hence, Proposition 4.3 shows that
the arc rLxi´1,L

x`1
i´1 s

i
D must be the pD,Lq-arc containing the puncture pi.

This proves that, among any two left-boxes, one must contain the other, and again an
immediate induction proves that the family of left-boxes must be a set of intervals of the
form tty ´ k, . . . , y ` k ´ 1u : 1 ď k ď `u for some integer ` ě 0. Similarly, the family of
right-boxes must be a set of intervals of the form ttz´ k, . . . , z` k´ 1u : 1 ď k ď mu for
some integer m ě 0. In addition, since pi belongs to only one pD,Lq-arc, we must either
have ` “ 0 or m “ 0.

Finally, consider the two sets S1 “ t1, . . . , y ´ ` ´ 1, y ` `, . . . , 2si´1 ` 1u and S2 “

t1, . . . , z ´ m ´ 1, z ` m, . . . , 2si ` 1u. Each point Lui´1 with u P S1 must be i-th zone
adjacent with some point Lvi with v P S2, and vice-versa. Since the arcs of D cannot cross
each other, it comes immediately that the set S1 and S2 have the same cardinality and
that, if u is the j-th smallest element of S1 and v is the j-th smallest element of S2, for
some j P t1, . . . , |S1|u, then Lui´1

i
„ Lvi . Considering the definition of the coordinates sa,

Lemma 4.8 follows.

Proposition 4.9.
Let D and D1 be two tight generalised curve diagrams with respective coordinates sa and
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sa1. If sa “ sa1, then there exists some isotopy of C, preserving L setwise and tpi : 1 ď nu
pointwise, and that maps D to D1.

Proof. Let ps0, a1, . . . , snq be the common coordinates of D and D1. Since |D X Li| “
2si ` 1 “ |D1 X Li| for all i P t0, . . . , nu, we assume without loss of generality that
DXL “ D1XL. Lemma 4.8 proves then that some isotopy of C preserving pointwise the
lines Li (for 1 ď i ď n´ 1) maps the diagram D to the diagram D1.

In addition, denote by bi the integer ai` |si´1´ si|. Observe that the puncture pi lies
on the arcs

• rLbii´1,L
bi`1
i´1 s

i
D and rLbii´1,L

bi`1
i´1 s

i
D1 if si´1 ą si;

• rLbii ,L
bi`1
i siD and rLbii ,L

bi`1
i siD1 if si ą si´1;

• rLai`1
i´1 ,L

ai`1
i siD and rLai`1

i´1 ,L
ai`1
i siD1 if si´1 “ si.

Therefore, we can even assume that the above-mentioned isotopy preserves each puncture
pi, which is the statement of Proposition 4.9.

Corollary 4.10.
Let β and β1 be two braids with coordinates sa and sa1. If sa “ sa1, then β “ β1.

These coordinates are therefore analogous to the Dynnikov coordinates (see [36, 39]
for details) in several respects. First, both arise from counting intersection points between
different collections of lines. Second, both provide an injective mapping from the braid
group Bn into the set Z2n or Z2n`1. Finally, both systems of coordinates come with very
efficient algorithms, whose complexities are of the same order of magnitude. However,
the coordinates used here are very closely linked with the notion of (diagrammatic or
laminated) norm, whereas the process of computing the norm of a braid from its Dynnikov
coordinates is less immediate.

4.1.3 From Coordinates to Diagrams

Proposition 4.9 and Corollary 4.10 allow us to identify each tight generalised curve dia-
gram and each braid with a tuple of coordinates. Aiming to count (1-generalised) tight
curve diagrams, we aim now at describing which coordinates correspond to generalised
tight curve diagrams.

Lemma 4.11.
Let D be a tight generalised curve diagram, with coordinates ps0, a1, . . . , snq. We have
s0 “ sn “ 0, and 0 ď ai ď 2 mintsi´1, siu ` 1si´1‰si for all integers i P t1, . . . , nu.

Proof. By definition, we have 2si ` 1 “ |D X Li| whenever 0 ď i ď n. Hence, whenever
si´1 “ si, Definition 4.5 directly implies that 1 ď ai ` 1 ď |D X Li| “ 2si ` 1. However,
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if si´1 ‰ si, then the points Lji´1 and Lji exist (and are pD,Lq-adjacent points) whenever
j ď ai, which proves that

0 ď ai ď mint|D X Li´1|, |D X Li|u “ 2 mintsi´1, siu ` 1.

In the following, we call virtual coordinates the tuples ps0, a1, . . . , snq that satisfy the
equalities and inequalities mentioned in Lemma 4.11. A natural question is, provided
some virtual coordinates sa, whether there exists some tight generalised curve diagram
whose coordinates are sa. We prove now that this is the case.

Proposition 4.12.
Let sa “ ps0, a1, . . . , snq be virtual coordinates. There exists some tight generalised curve
diagram D whose coordinates are sa.

Drawing an arc according to the rule:

p1q p2q p3q p4q

Placing a puncture according to the rule:
p5q p6q p7q

Li´2

si´2 “ 5
Li´1

si´1 “ 7
Li

si “ 7
Li`1

si`1 “ 3

ai´1 “ 8 ai “ 5 ai`1 “ 3

Figure 4.13 – Drawing lines and placing punctures of a diagram based on its coordinates

Proof. We just need to follow the recipe provided by Lemma 4.8 and draw the diagram D.
First, we call L1

0 and L1
n the points ´1 and `1. Then, on each line Li, for i P t1, . . . , n´1u,

let us place 2si ` 1 points L1
i , . . . ,L

2si`1
i , from bottom to top. Now, for each integer

i P t1, . . . , nu, define the integer bi :“ ai ` |si´1 ´ si|. We draw lines that lie inside the
zone Zi and that link

1. points Lji´1 and Lji such that j ď ai;
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2. points Lji´1 and Lki´1 such that j ` k “ 2bi ` 1 and ai ă j ă k, if si´1 ą si;

3. points Lji and Lki such that j ` k “ 2bi ` 1 and ai ă j ă k, if si ą si´1;
4. points Lji´1 and Lki such that j ´ k “ 2psi´1 ´ siq and mintj, ku ą ai,

so that no two such lines intersect each other. Note that it is indeed possible to do so
(e.g., if the points pLji q1ďjď2si`1 are close enough to each other, one can draw straight
segments rLji´1,L

k
i s and half-circles with diameter rLji´1,L

k
i´1s or rL

j
i ,L

k
i s).

Then, place a point pi on the arc

5. rLbii´1,L
bi`1
i´1 s

i
D if si´1 ą si;

6. rLbii ,L
bi`1
i siD if si ą si´1;

7. rLai`1
i´1 ,L

ai`1
i siD if si´1 “ si.

Up to an isotopy of C preserving the lamination L pointwise and mapping each point
pi to the actual position of the puncture pi, we have just drawn the diagram D.

4.2 Actually Counting Braids

We introduce now the original notion of geometric generating functions or the braid group
Bn. We will compute exact values for this function and its coefficients when n ď 3, then
look for approximations of its coefficients when n ě 4.

Definition 4.14 (Geometric generating functions).
Let n be a positive integer. We respectively define the closed laminated generating func-
tion, the open laminated generating function and the diagrammatic generating function
of Bn as the functions Bc,`n : z ÞÑ

ř

βPBn
z}β}

c
` , Bo,`n : z ÞÑ

ř

βPBn
z}β}

o
` and Bdn : z ÞÑ

ř

βPBn
z}β}

o
` .

Recall that Corollary 2.116 and Proposition 2.120 state that }β}c` “ }β}o` ` n ` 3 “
}β´1}d ` n ` 3, for all braids β P Bn. Hence, consider the integers N c,`

n,k “ |tβ P Bn :

}β}c` “ ku|, N o,`
n,k “ |tβ P Bn : }β}o` “ ku| and Nd

n,k “ |tβ P Bn : }β}d “ ku|. It follows that
Nd
n,k “ N o,`

n,k “ N c,`
n,k`n´3 for all integers n ě 1 and k ě 0, and therefore that

Bc,`n pzq “ zn`3Bo,`n pzq “ zn`3Bdnpzq.

Hence, we focus hereafter on the diagrammatic generating function and on its coefficients.
The above equalities will then allow us to translate immediately our results in terms of
the two other geometric generating functions.

By definition of the coordinates of braids, if a braid β P Bn has coordinates sa :“
ps0, a1, . . . , snq, then }β}d “ n´1`2

řn´1
i“1 si. Therefore, instead of considering directly the

function Bdnpzq, we focus on the integers gn,k :“ |tβ P Bn : }β}d “ 2k`n´ 1u| and on the
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generating function Gnpzq :“
ř

kě0 gn,kz
k. In particular, observe that Bdnpzq “ zn´1Gnpz2q,

so that properties about the integers gn,k and on the function Gnpzq reflect on the function
Bdnpzq.

Then, following Proposition 4.9 and 4.12, we want to count the tuples sa of virtual
coordinates, with a given sum

řn´1
i“1 si, and whose associated generalised curve diagram

is a 1-generalised curve diagram.

Let D be the generalised diagram associated with sa. We denote by „ the relation of
pD,Lq-adjacency (i.e., P „ Q if and only if P and Q are pD,Lq-adjacent endpoints), and
we denote by ” the reflexive transitive closure of „. Observe that, if D is a k-generalised
curve diagram, then the relation ” has exactly k equivalence classes. Therefore, we aim
below at counting coordinates sa where the relation ” has exactly one equivalence class;
we will say that sa are actual coordinates.

Aiming to reduce the number of cases to look at, we will use the symmetries mentioned
in Section 2.4.3. If a braid β has coordinates ps0, a1, s1, . . . , an, snq, then its horizontally
symmetric braid Shpβq has coordinates psn, an, sn´1, . . . , a1, s0q and its vertically sym-
metric braid Svpβq has coordinates ps0, a

1
1, s1, . . . , a

1
n, snq, where a1i “ 2 mintsi´1, siu `

1si´1‰si ´ ai.

4.2.1 An Introductory Example: The Braid Group B2

In the braid group B2, everything is obvious. Indeed, the group B2 is isomorphic to Z,
and generated by the Artin generator σ1. Since }σk1}d “ 1` 2|k| for all integers k P Z, it
follows that

g2,k “ 1k“0 ` 2 ¨ 1kě1, G2pzq “
1` z

1´ z
, Bd2pzq “

zp1` z2q

1´ z2
.

}σ3
1}d “ 7 }σ´4

1 }d “ 9

Figure 4.15 – }σk1}d “ 2k ` 1

Let us recover this result with the tools introduced above, in particular the reflexive
transitive closure (denoted by ”) of the pD,Lq-adjacency relation (denoted by „): we
detail computations as a warm-up. A braid β with norm 2k ` 1 has coordinates of the
form p0, a1, k, a2, 0q, with k ě 0 and a1, a2 P t0, 1u.
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If k “ 0, then sa “ p0, 0, 0, 0, 0q, hence tL1
0,L

1
1,L

1
2u is the only equivalence class of ”.

It follows that g2,0 “ 0.

We consider now the case k ě 1. Using the vertical symmetry, we focus on the case
a1 ď a2. If a1 “ 1, then a2 “ 1, hence tL1

0,L
1
1,L

1
2u is an equivalence class of ” that

does not contain L2k`1
1 . Similarly, if a2 “ 0, then a1 “ 0, hence tL1

0,L
2k`1
1 ,L1

2u is an
equivalence class of ” that does not contain L1

1.

Therefore, we must have sa “ p0, 0, k, 1, 0q (or sa “ p0, 1, k, 0, 0q, but we decided to
let this case aside for now). Hence, Lemma 4.8 proves that

L1
0 „ L2k`1

1 „ L2
1 „ L2k´1

1 „ . . . „ L3
1 „ L2k´2

1 „ L1
1 „ L1

2.

This proves that p0, 0, k, 1, 0q and p0, 1, k, 0, 0q are actual coordinates, and therefore that
g2,k “ 2. We deduce from these values of g2,k the above expression of the functions
G2pzq “

ř

kě0 z
k and Bd2pzq “ zG2pz

2q.

This second proof is longer and more convoluted than the direct proof obtained by
enumerating the braids in the group B2. However, enumerating the braids in B3 seems
out of reach, whereas considering virtual coordinates and identifying which are actual
coordinates will be possible, as shown in Section 4.2.2.

4.2.2 A Challenging Example: The Braid Group B3

Holonomic functions are univariate power series f that satisfy some linear differential
equation

k
ÿ

i“0

cipzq
Bi

Bzi
fpzq “ 0,

where c0pzq, . . . , ckpzq are complex polynomials. This class of function generalises rational
and algebraic functions, and is closed under various operations, such as addition, multi-
plication, term-wise multiplication and algebraic substitution (i.e. replacing the function
z ÞÑ fpzq by some function z ÞÑ fpgpzqq where g is an algebraic function, i.e. a solution
of some equation P pz, gpzqq “ 0, P being some non-degenerate polynomial).

A short introduction on holonomic series and their use in analytic combinatorics,
including the associated tools for manipulating holonomic series, can be found in [49,
Annex B.4].

The central result of this chapter is the following one.

Theorem 4.16.
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The integers g3,k and the generating functions G3pzq and Bd3pzq are given by:

G3pzq “ 2
1` 2z ´ z2

z2p1´ z2q

˜

ÿ

ně3

ϕpnqzn

¸

`
1´ 3z2

1´ z2
,

Bd3pzq “ 2
1` 2z2 ´ z4

z2p1´ z4q

˜

ÿ

ně3

ϕpnqz2n

¸

`
z2p1´ 3z4q

1´ z4
,

g3,k “ 1k“0 ` 2

˜

ϕpk ` 2q ´ 1kP2Z ` 2

tk{2u
ÿ

i“1

ϕpk ` 3´ 2iq

¸

1kě1,

where ϕ denotes the Euler totient. The functions G3pzq and Bd3pzq are not holonomic.

In particular, the functions G3pzq and Bd3pzq are neither rational nor algebraic. Further-
more, and since the ordinary generating function G3pzq “

ř

kě0 g3,kz
k is not holonomic,

neither are the exponential generating function
ř

kě0
g3,k

k!
zk nor the Poisson generating

function expp´zq
ř

kě0
g3,k

k!
zk. Likewise, the ordinary, exponential and Poisson generat-

ing functions associated with the sequences pN c,`
3,kqkě0, pN o,`

3,kqkě0 and pNd
3,kqkě0 are not

holonomic.

We proceed now to the proof of Theorem 4.16, which we split into five steps.

Proof of Theorem 4.16 – Step 1: Simple Cases

Following the preliminary remarks we made at the beginning of this section, we focus on
virtual coordinates the form sa “ p0, a1, k, a2, `, a3, 0q associated with some generalised
curve diagram D whose induced relation ” has a unique equivalence class. Henceforth,
we consider ` and k as parameters, and compute the integer

Ck,` “ |tpa1, a2, a3q : p0, a1, k, a2, `, a3, 0q are actual coordinatesu|.

Using the vertical symmetry, we know that Ck,` “ C`,k. We focus below on the case where
` ď k, and proceed to a disjunction of cases.

First, if k “ ` “ 0, then sa “ p0, 0, 0, 0, 0, 0, 0q are the coordinates of the trivial braid
1 P B3. Therefore, C0,0 “ 1.

If k “ 0 ă `, then a1 “ 0, and sa are actual coordinates if and only if p0, a2, `, a3, 0q
are also actual coordinates. Indeed, as illustrated by Fig. 4.17, the virtual coordinates
p0, a2, `, a3, 0q can be obtained from p0, a1, 0, a2, `, a3, 0q by “shrinking” the edge rL1

0,L
1
1s

1
D.

Hence, sa are actual coordinates if and only if ta2, a3u “ t0, 1u. It follows that C0,` “

C`,0 “ 2.

Similarly, if 1 ď k “ `, then sa are actual coordinates if and only if 0 ď a2 ď 2k
and if p0, a1, k, a3, 0q are also actual coordinates: as illustrated by Fig. 4.17, the virtual
coordinates p0, a1, k, a3, 0q can be obtained from p0, a1, k, a2, k, a3, 0q by “shrinking” each
edge rLj1,L

j
2s

2
D, when 1 ď j ď 2k ` 1. We therefore have 2k ` 1 ways of choosing a2 and

2 ways of choosing pa1, a3q, which proves that Ck,k “ 2p2k ` 1q.
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a1 “ 0

0

a2

`

a3 a2

`

a3
Shrinking the edge rL1

0,L
1
1s

1
D when k “ 0

a1

k

a2

k

a3 a1

k

a3

Shrinking the edges rLj1,L
j
2s

2
D when k “ `

Figure 4.17 – Shrinking edges of tight generalised curve diagrams when k “ 0 and k “ `

Proof of Theorem 4.16 – Step 2: Towards Cyclic Permutations

We consider now the case where 1 ď k ă `. Using the horizontal symmetry, we may focus
on the case where a1 “ 1: doing so, we will find exactly half of the actual coordinates
p0, a1, k, a2, `, a3, 0q.

In order to ease subsequent computations, we decide here to modify slightly the gen-
eralised curve diagram D we drew from the coordinates sa, as illustrated in Fig. 4.18. We
proceed as follows:

• we add points L2k`2
1 and L2``2

2 on the lines L1 and L2, above the points L2k`1
1 and

L2``1
2 ;

• we draw a curve (drawn in gray in Fig. 4.18) from L1
0 to L1

3, that does not cross the
other curves of D, and that crosses the lines L1 and L2 at L2k`2

1 and L2``2
2 .

Informally, we decided to “close by above” the unique open curve contained in D. Recall
that „ denotes the pD,Lq-adjacency relation, and that ” denotes the reflexive transitive
closure of „. What we just did was to add the relations L1

0 „ L2k`2
1 „ L2``2

2 „ L1
3. Since

D already contained an open curve with endpoints L1
0 and L1

3, adding these points, curves
and relations did not change the number of equivalence classes of the relation ”.

From now on, and in the rest of the proof of Theorem 4.16, we will only use such
“closed by above” generalised diagrams, and we will identify D with this “closed by above”
version.

Then, let us define the integer m :“ `´ k. Since 0 ď k ď `, observe that:

• L1
0 „ L2k`2

1 „ L2``2
2 „ L1

3;
• Lj1 „ Lj2 for all j P t1, . . . , a2u;
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Original diagram Diagram with “closure by above”

Figure 4.18 – Closing the open curve of D by above

a1 “ 1 a2 “ 0 a3 “ 0 a1 “ 1 a2 “ 0 a3 “ 1

a1 “ 1 a2 ą 0 a3 “ 0 a1 “ 1 a2 ą 0 a3 “ 1

Figure 4.19 – Four different cases: a1 “ 1, a2
?
“ 0 and a3

?
“ 0

• Lj1 „ Lj`2m
2 for all j P ta2 ` 1, . . . , 2k ` 1u.

Hence, each equivalence class of the relation ” contains points of the type Lm2 , as
illustrated by Fig. 4.19.

We then define additional relations on the set t1, . . . , 2``2u. Let u and v be elements
of t1, . . . , 2` ` 2u. We write u <

„ v if some connected component of DzL2 has endpoints
Lu2 and Lv2 and lies to the left of L2 (i.e. in the area Z1 Y Z2). Similarly, we write u =

„ v
if some connected component of DzL2 has endpoints Lu2 and Lv2 and lies to the right of
L2 (i.e. in the area Z3).

Alternatively, one might define the relations <
„ and =

„ by saying that u <
„ v whenever

Lu2
2
„ Lv2, Lu2

2
„ Lw1

1
„ Lx1

2
„ Lv2 or Lu2

2
„ Lw1

1
„ L1

0
1
„ Lx1

2
„ Lv2 for some w and x, and that

u
=
„ v whenever Lu2

3
„ Lv2 or Lu2

3
„ L1

3
3
„ Lv2.

One checks easily that, whenever u <
„ v or u =

„ v, the integers u and v have different
parities. Hence, consider the permutation θ of t0, . . . , `u such that θpuq “ v if and only
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if there exists some (even) integer w P t1, . . . , 2` ` 2u such that 2u ` 1
<
„ w

=
„ 2v ` 1.

By construction, there is a bijection between the equivalence classes of the relation ”
and the orbits of θ, as follows: we identify the equivalence class C of ” with the orbit
tu : L2u`1

2 P Cu of θ.

1
<
„ 4, 2

<
„ 3, 5

<
„ 12, 6

<
„ 11, 7

<
„ 10, 8

<
„ 9

1
=
„ 10, 2

=
„ 9, 3

=
„ 8, 4

=
„ 7, 5

=
„ 6, 11

=
„ 12

0
θ
Ñ 3

θ
Ñ 0, 1

θ
Ñ 4

θ
Ñ 1, 2

θ
Ñ 5

θ
Ñ 2

Figure 4.20 – Relations <
„ and =

„, and permutation θ on a 3-generalised diagram

Hence, sa are actual coordinates if and only if θ is a cyclic permutation of t0, . . . , `u.
For the ease of the computation, we identify below the set t0, . . . , `u with the set Z``1 :“
Z{p`` 1qZ.

Proof of Theorem 4.16 – Step 3: Which Permutations are Cyclic?

Let us define the real number α :“ a2

2
. Note that α is not necessarily an integer, and that

a2 “ tαu` rαs. In addition, recall that we defined above the integer m :“ `´k, such that
m ą 0. We consider separately various cases.

� If a2 ą 0 and a3 “ 1, then 0
θ
Ñ 0, as shown in Fig. 4.19 (bottom-right case). It follows

that θ is not a cyclic permutation of the set Z``1.

� If a2 “ 0, then one checks easily, as shown in Fig. 4.19 (top cases), that

a. if 0 ď u ă m, then 2u` 1
<
„ 2pm´ uq

=
„ 2u` 1` 2pk ` a3q;

b. if u “ m, then 2u` 1
<
„ 2`` 2

=
„ 1a3“0 ¨ 2`` 1;

c. if m ă u ď `, then 2u` 1
<
„ 2p`` 1`m´ uq

=
„ 2u` 1´ 2pm` 1´ a3q.

It follows that u θ
Ñ u` pk ` a3q for all u P Z``1.

� If k ` 1 ě a2 ą a3 “ 0, then one checks, as shown in Fig. 4.21 (top case), that

a. if u “ 0, then 2u` 1
<
„ 2`` 2

=
„ 2`` 1;

b. if 1 ď u ă α, then 2u` 1
<
„ 2p`` 1´ uq

=
„ 2u´ 1;

c. if α ď u ă m` α, then 2u` 1
<
„ 2pm` a2 ´ uq

=
„ 2u` 1` 2pk ´ a2q;

d. if m` α ď u ă `` 1´ α, then 2u` 1
<
„ 2p`` 1`m´ uq

=
„ 2u` 1´ 2pm` 1q;

e. if `` 1´ α ď u ď `, then 2u` 1
<
„ 2p`` 1´ uq

=
„ 2u´ 1.

It follows that
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a.

b.

c.

c.

d.

e. Case k ` 1 ě a2:
‚

‚

‚

‚

‚

k “ 3

` “ 5

m “ 2

a2 “ 3

α “ 3
2

a.

b.

c.

d.

d.

e. Case a2 ą k ` 1:
‚

‚

‚

‚

‚

k “ 3

` “ 5

m “ 1

a2 “ 5

α “ 5
2

Figure 4.21 – Case a2 ą 0 and a3 “ 0: k ` 1 ě a2 and a2 ą k ` 1

• uÑ u´ 1 if 0 ď u ă α or if `` 1´ α ď u ď `;
• uÑ u` pk ´ a2q if α ď u ă m` α;
• uÑ u´ pm` 1q if m` α ď u ă `` 1´ α.

� If a2 ą k ` 1 ą a3 “ 0, then one checks, as shown in Fig. 4.21 (bottom case), that

a. if u “ 0, then 2u` 1
<
„ 0

=
„ 2`` 1;

b. if 1 ď u ă k ` 1´ α, then 2u` 1
<
„ 2p`` 1´ uq

=
„ 2u´ 1;

c. if k ` 1´ α ď u ă α, then 2u` 1
<
„ 2pk ` 1´ uq

=
„ 2u` 1` 2pm´ 1q;

d. if α ď u ă m` α, then 2u` 1
<
„ 2pa2 `m´ uq

=
„ 2u` 1´ 2pa2 ´ kq;

e. if m` α ď u ď `, then 2u` 1
<
„ 2p`` 1´ uq

=
„ 2u´ 1.

It follows that

• uÑ u´ 1 if 0 ď u ă k ` 1´ α or if m` α ď u ď `;
• uÑ u` pm´ 1q if k ` 1´ α ď u ă α;
• uÑ u´ pa2 ´ kq if α ď u ă m` α.
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In both pictures of Fig. 4.21, on each point L2u`1
2 , is written the subcase (from a. to

e.) to which we should refer. For instance, in the top picture, the label “b.” is written on
the point L3

2, which is associated with the case i “ 1, i.e. 1 ď u ă α. Indeed, one checks
that L3

2
2
„ L3

1
1
„ L6

1
2
„ L10

2
2
„ L0

2, which shows that 3
<
„ 10

=
„ 0, as mentioned in the above

enumeration of cases.

Overall, in each case, we observe that each permutation ` has a specific structure,
which we call translation and translated cut.

Cut
n,a,b,c Tn,1

1
a
´

1
b

c
n
´
a
´
b
´
c

a
´

1
c

b
n
´
a
´
b
´
c

1

Figure 4.22 – Translated cut TCut
n,a,b,c

Definition 4.23 (Translation and translated cut).
Let a, b, c and n be non-negative integers such that a`b`c ď n, and let Zn :“ Z{nZ. We
call translation, and denote by Tn,a, the permutation of Zn such that Tn,a : k ÞÑ k ´ a.
We call translated cut, and denote by TCut

n,a,b,c, the permutation Tn,1 ˝ C
ut
n,a,b,c of Zn,

where Cut
n,a,b,c is the permutation such that

Cut
n,a,b,c : k ÞÑ k if k P t0, . . . , a´ 1, a` b` c, . . . , n´ 1u

k ` c if k P ta, . . . , a` b´ 1u

k ´ b if k P ta` b, . . . , a` b` c´ 1u.

We proved above that

• if a2 “ 0, then θ is the translation T``1,m`1´a3 ;
• if k ` 1 ě a2 ą a3 “ 0, then θ is the translated cut TCut

``1,rαs,m,k`1´a2
;

• if a2 ą k ` 1 ą a3 “ 0, then θ is the translated cut TCut
``1,k`1´tαu,a2´k´1,m.

Hence, it remains to check which translations and translated cuts are cyclic permutations.
The first case is immediate, whereas the second one is not. Both cases are expressed in
terms of coprimality: for all relative integers a and b, we denote by a ^ b the largest
common divisor of a and b, i.e. the (unique) non-negative integer d such that tax ` by :
x, y P Zu “ dZ. In particular, note that a ^ b “ |a| ^ |b| and 0 ^ b “ |b| for all integers
a, b P Z.
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Lemma 4.24.
Let a and n be integers such that 0 ď a ď n. The translation Tn,a : Zn ÞÑ Zn is cyclic if
and only if a^ n “ 1.

Lemma 4.25.
Let a, b, c and n be non-negative integers such that a ` b ` c ď n. The translated cut
TCut

n,a,b,c : Zn ÞÑ Zn is cyclic if and only if pc´ 1q ^ pb` 1q “ 1.

Proof. First, observe that Tn,a ˝TCut
n,a,b,c “ TCut

n,0,b,c ˝Tn,a. This means that the trans-
lated cuts TCut

n,a,b,c and TCut
n,0,b,c are conjugate to each other. Therefore, the permutation

TCut
n,a,b,c is cyclic if and only if TCut

n,0,b,c is cyclic too, and we henceforth assume that
a “ 0.

Second, observe that b
TCut

n,0,b,c
ÞÝÝÝÝÝÑ n ´ 1

TCut
n,0,b,c

ÞÝÝÝÝÝÑ n ´ 2
TCut

n,0,b,c
ÞÝÝÝÝÝÑ . . .

TCut
n,0,b,c

ÞÝÝÝÝÝÑ b ` c ´ 1.
Hence, the permutation TCut

n,0,b,c is cyclic if and only if TCut
b`c,0,b,c is cyclic too, and we

henceforth assume that n “ b` c.

Third, observe that TCut
b`c,0,b,c is simply the translation Tb`c,b`1. Consequently, the

permutation TCut
b`c,0,b,c is cyclic if and only if pb ` cq ^ pb ` 1q “ 1, i.e. if and only if

pc´ 1q ^ pb` 1q “ 1. This completes the proof.

Remember that sa are actual coordinates if and only if θ is a cyclic permutation of
Z``1. Hence, Lemmas 4.24 and 4.25 prove that sa “ p0, a1, k, a2, k `m, a3, 0q are actual
coordinates if and only if we are in one of the following cases:

(i) a2 “ 0, a3 “ 0 and k ^ pm` 1q “ 1;
(ii) a2 “ 0, a3 “ 1 and pk ` 1q ^m “ 1;
(iii) k ` 1 ě a2 ě 1, a3 “ 0 and pk ´ a2q ^ pm` 1q “ 1;
(iv) 2k ` 1 ě a2 ě k ` 2, a3 “ 0 and pa2 ´ kq ^ pm´ 1q “ 1.

In particular, taking into account the virtual coordinates sa such that a1 “ 0 (and
whose case was tackled in the first few lines of Section 4.2.2), it follows that, whenever
k ě 1 and m ě 1, we obtain the following formula for the integers

Ck,k`m “ Ck`m,k “ |tpa1, a2, a3q : p0, a1, k, a2, k `m, a3, 0q are actual coordinatesu| :

Ck,k`m
2

“ 1k^pm`1q“1 ` 1pk`1q^m“1 `

k`1
ÿ

a2“1

1pk´a2q^pm`1q“1 `

2k`1
ÿ

a2“k`2

1pm´1q^pa2´kq“1

“

k
ÿ

a“1

1a^pm`1q“1 ` 1pk`1q^m“1 `

k`1
ÿ

a“1

1a^pm´1q“1.
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Proof of Theorem 4.16 – Step 4: Generating Functions

Focus now on the generating function G3pzq “
ř

kě0 g3,kz
k. For the sake of clarity and

conciseness, we only indicate the main steps of our computations, which are mainly based
on rearranging terms.

We proved in Section 4.2.2 that C0,0 “ 1, that C0,` “ C`,0 “ 2 for ` ě 1, and that
Ck,k “ 2p2k ` 1q for k ě 1. It follows that

G3pzq “
ÿ

k,`ě0

Ck,`z
k``

“ 1`
ÿ

`ě1

4z` `
ÿ

kě1

2p2k ` 1qz2k
` 2

ÿ

kě1,mě1

Ck,k`mz
2k`m.

Using the above formula for Ck,k`m (when k,m ě 1), we can rewrite this as

G3pzq “ 1`
4z

1´ z
´

2z2pz2 ´ 3q

p1´ z2q2
` 4pH1pzq `H2pzq `H3pzq ´H4pzqq,

where

H1pzq “
ÿ

kě1

ÿ

mě1

k
ÿ

a“1

1a^pm`1q“1z
2k`m, H2pzq “

ÿ

kě1

ÿ

mě1

1pk`1q^m“1z
2k`m,

H3pzq “
ÿ

kě0

ÿ

mě1

k`1
ÿ

a“1

1a^pm´1q“1z
2k`m, H4pzq “

ÿ

mě1

zm.

Then, let us define the function F pzq :“
ř

αě1

ř

βě1 1α^β“1z
2α`β. Using simple sub-

stitutions (t :“ k ´ a, u :“ k ` 1, v :“ m` 1 and w :“ m´ 1), we get

H1pzq “
ÿ

aě1

ÿ

mě1

ÿ

tě0

1a^pm`1q“1z
2pa`tq`m

“
1

1´ z2

ÿ

aě1

ÿ

mě1

1a^pm`1q“1z
2a`m

“
1

zp1´ z2q

˜

ÿ

aě1

ÿ

vě1

1a^v“1z
2a`v

´
ÿ

aě1

z2a`1

¸

“
F pzq

zp1´ z2q
´

z2

p1´ z2q2
,

H2pzq “
1

z2

˜

ÿ

uě1

ÿ

mě1

1u^m“1z
2u`m

´
ÿ

mě1

z2`m

¸

“
F pzq

z2
´

z

1´ z
,

H3pzq “
ÿ

aě1

ÿ

mě1

ÿ

tě´1

1a^pm´1q“1z
2pa`tq`m

“
1

z2p1´ z2q

ÿ

aě1

ÿ

mě1

1a^pm´1q“1z
2a`m

“
1

zp1´ z2q

˜

ÿ

aě1

ÿ

wě1

1a^w“1z
2a`w

` z2

¸

“
F pzq

zp1´ z2q
`

z

1´ z2
, and

H4pzq “
z

1´ z
.

Moreover, consider the coefficients fn of the series F pzq. Since F pzq “
ř

ně3 fnz
n, we

have

fn “

ˇ

ˇ

ˇ

!

a ă
n

2
: a^ pn´ 2aq “ 1

)
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

!

a ă
n

2
: a^ n “ 1

)
ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ

!

a ď n : a ‰
n

2
, a^ n “ 1

)ˇ

ˇ

ˇ
.
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Observe that, if n ě 3 is even, then n
2
^ n “ n

2
‰ 1. It follows that fn “ ϕpnq

2
, i.e. that

F pzq “ 1
2

ř

ně3 ϕpnqz
n, where ϕ denotes the Euler totient. Collecting the above terms,

we have

G3pzq “ 1`
4z

1´ z
´

2z2pz2 ´ 3q

p1´ z2q2
` 4

ˆ

2

zp1´ z2q
`

1

z2

˙

F pzq `

4

ˆ

z

1´ z2
´

z2

p1´ z2q2
´

2z

1´ z

˙

“ 4
1` 2z ´ z2

z2p1´ z2q
F pzq `

1´ 3z2

1´ z2
,

and since B3pzq “ z2G3pz
2q, the two first parts of Theorem 4.16 are proved.

In addition, developing term-wise the series G3pzq “
ř

kě0 g3,kz
k gives

G3pzq “

˜

ÿ

kě0

z2k

¸˜

2p1` 2z ´ z2
q
ÿ

kě1

ϕpk ` 2qzk ` p1´ 3z2
q

¸

,

which proves that g3,k “
řtk{2u

i“0 γk´2i, with

γi “ 1i“0 ´ 3 ¨ 1i“2 ` 2ϕpi` 2q1iě1 ` 4ϕpi` 1q1iě2 ´ 2ϕpiq1iě3.

It follows that

g3,k “ 1k“0 ` 2

˜

ϕpk ` 2q ´ 1kP2Z ` 2

tk{2u
ÿ

i“1

ϕpk ` 3´ 2iq

¸

1kě1,

which proves the third part of Theorem 4.16.

Proof of Theorem 4.16 – Step 5: Holonomy

Finally, we prove the last part of Theorem 4.16, i.e. that the generating functions

G3pzq “ 2
1` 2z ´ z2

z2p1´ z2q

˜

ÿ

ně3

ϕpnqzn

¸

`
´1` 3z2

1´ z2
, B3pzq “ z2G3pz

2
q

are not holonomic.

We do so by using standard tools and results of complex analysis (see [49, Annex B.4])
and of analytic number theory (see [60]).

For the sake of contradiction, let us assume henceforth that G3pzq is holonomic. Then,
so is the generating function

ř

ně1 ϕpnqz
n, i.e. the sequence pϕpnqqně1 is P -recursive:

this means that there exists some complex polynomials A0pXq, . . . , AkpXq with such that
Ak ‰ 0 and

řk
i“0Aipnqϕpn ` iq “ 0 for all integers n ě 1. In addition, since each term
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ϕpnq is a rational number, we may even assume that A0pXq, . . . , AkpXq have integer
coefficients.

Let d :“ maxtdegAi : 0 ď i ď ku, and let us write AipXq “
řd
j“0 ai,jX

j for all i ď k.
Then, consider some integer ` P t0, . . . , ku such that degA` “ d, i.e. a`,d ‰ 0, and let us
define the integer a8 :“

řk
i“0 |ai,d|.

The Euler identity

ź

p prime

1

1´ p´1
“

ź

p prime

˜

ÿ

jě0

p´j

¸

“
ÿ

ně1

n´1
“ `8

shows that
ś

p primep1 ´ p´1q “ 0. Hence, there exists pairwise disjoint sets P0, . . . , Pk
of primes numbers greater than k and such that

ś

pPPi
p1 ´ p´1q ď 1

2a8
for all i ď k.

Consequently, the integers bi “
ś

pPPi
are pairwise coprime integers such that ϕpbiq “

ś

pPPi
pp´ 1q ď bi

2a8
.

The Chinese remainder theorem [60, Theorem 59] shows that there exists an integer
N ě 0 such that N ` i ” 0 pmod biq for all i ‰ `. Since the prime factors of bi are
greater than k, it follows that N ` ` is coprime with bi, for all i ‰ `. Hence, the Dirichlet
theorem [60, Theorem 15] states that there exists arbitrarily large integers n (in the set
tN ` z

ś

i‰` bi : z P Nu) such that n ` ` is prime. For such integers n, remember that
n ` i ” 0 pmod biq when i ‰ `. It follows that ϕpn ` `q “ n ` ` ´ 1 and ϕpn ` iq ď
ϕpbiq
bi
pn` iq ď n`i

2a8
. Since 0 “

řk
i“0Aipnqϕpn` iq, we deduce that

pn´ 1q|A`pnq| ď |A`pnqϕpn` `q| ď
ÿ

i‰`

|Aipnqϕpi` `q|

ď
n` k

2a8

ÿ

i‰`

|Aipnq| ď
n` k

2a8

k
ÿ

i“0

|Aipnq|.

When n Ñ `8, we have |A`pnq| „ |a`,d|n
d and

řk
i“0 |Aipnq| „ a8n

d, from which we
deduce that

|a`,d|n
d`1

„ pn´ 1q|A`pnq| ď
n` k

2a8

k
ÿ

i“0

|Aipnq| „
1

2
nd`1,

which is impossible since |a`,d| ě 1. This contradiction shows that the generating function
G3pzq could not be holonomic.

Finally, since G3pzq “ z´1B3pz
1{2q and since z ÞÑ z1{2 is algebraic, the generating func-

tion B3pzq cannot be holonomic either. This was the last step of the proof of Theorem 4.16,
which is now completed.
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4.3 Estimated and Asymptotic Values

4.3.1 Asymptotic Values in B3

We use Theorem 4.16 to estimate precisely the terms g3,k of the series G3pzq.

Proposition 4.26.
When k Ñ `8, we have:

g3,k „ 4 p1` 1kP2Zq
k2

π2
.

Proof. For the sake of simplicity, let us introduce some notation. We define α “ 4
π2 and

φk “
řtpk´1q{2u

i“0 ϕpk´2iq, as well as real numbers εk, θk and ηk such that φ2k “ pα`εkqk
2,

φ2k´1 “ p2α`θkqk
2 and ηk “ εk`θk. We first want to prove that εk Ñ 0 and that θk Ñ 0

when k Ñ `8.

It is a standard result that
n
ÿ

k“1

ϕpkq „
3

π2
n2

when nÑ `8 (see [60, Theorem 330]). It follows that

p3α ` ηkqk
2
“ φ2k ` φ2k´1 “

2k
ÿ

i“1

ϕpiq „
12

π2
k2
“ 3αk2,

which means that ηk Ñ 0. Hence, it remains to prove that εk Ñ 0.

Then, let A be some positive constant, and let K be some positive integer such that
α

p2k`1q2
ď A and |ηk| ď A whenever k ě K. In addition, for each integer ` ě log2pKq, we

define M` “ maxt|εk| : 2` ď k ď 2``1u. If 2` ď k ď 2``1, then

φ4k “

k
ÿ

i“0

ϕp4iq `
k´1
ÿ

i“0

ϕp4i` 2q “ 2
k
ÿ

i“0

ϕp2iq `
k´1
ÿ

i“0

ϕp2i` 1q “ 2φ2k ` φ2k´1,

i.e. ε2k “
εk`ηk

4
. It follows that

|ε2k| ď
M` ` A

4
ď 2A`

3M`

4
.

Similarly, if 2` ď k ă 2``1, then φ4k`2 “ φ4k ` ϕp4k ` 2q “ 2φ2k ` φ2k`1, i.e.

ε2k`1 “
α

p2k ` 1q2
`

2k2

p2k ` 1q2
εk ´

pk ` 1q2

p2k ` 1q2
εk`1 `

pk ` 1q2

p2k ` 1q2
ηk`1.

Since k ě 2` ě K, we know that α
p2k`1q2

ď A. Moreover, note that

2k2 ` pk ` 1q2

p2k ` 1q2
“

3

4
´

4k ´ 1

4p2k ` 1q2
ď

3

4
.
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It follows that

|ε2k`1| ď A`
2k2 ` pk ` 1q2

p2k ` 1q2
M` `

pk ` 1q2

p2k ` 1q2
A ď 2A`

3M`

4
.

Overall, |εm| ď 2A ` 3M`

4
whenever 2``1 ď m ď 2``2, which shows that M``1 ď

2A` 3M`

4
. It follows that lim supM` ď 8A and, since A is an arbitrary positive constant,

that M` Ñ 0 when ` Ñ `8. Recall that |εk| ď M` whenever 2` ď k ď 2``1: this proves
that εk Ñ 0, and therefore that θk “ ηk ´ εk Ñ 0. It follows that

φk „ p1` 1kP2Z`1q
k2

π2

when k Ñ `8.

With the above notations, and according to Theorem 4.16, we have

g3,k “ 1k“0 ` 2

˜

ϕpk ` 2q ´ 1kP2Z ` 2

tk{2u
ÿ

i“1

ϕpk ` 3´ 2iq

¸

1kě1 “ 4φk`1 `Opkq.

Moreover, we just showed that k2 ď p1` 1kP2Z`1q k
2 „ π2φk, and therefore that k2 “

Opφkq. It follows that g3,k “ 4φk`1 `Opk ` 1q “ 4φk`1 ` opφk`1q, i.e. that g3,k „ 4φk`1,
which proves Proposition 4.26.

Definition 4.27 (Approximately polynomial sequence).
Let punqně0 be a real-valued sequence. We say that punq is approximately polynomial if
there exists a real number δ ą 1 and a periodic, non-zero sequence pωnqně0 whose terms
are non-negative real numbers and such that un „ ωnn

δ.

Proposition 4.26 proves that the sequence pg3,kqkě0 is approximately polynomial. In-
deed, it suffices to consider δ “ 2 and ωn “ 4p1` 1nP2Zqπ

´2. It follows immediately that
sequences pN c,`

3,kqkě0, pN o,`
3,kqkě0 and pNd

3,kqkě0 are also approximately polynomial.

Approximately polynomial sequences have complicated Lambert series, as shown by
the following result.

Proposition 4.28.
Let punqně0 be an approximately polynomial sequence. The Lambert series L : z ÞÑ
ř

ně1 un
zn

1´zn
is not holonomic.

Proof. This proof relies on the tools that were used for proving that G3pzq is not holo-
nomic or for proving Proposition 4.26. However, it is substantially more technical, and
we therefore begin by drawing a sketch of this proof.

We proceed by contradiction, and assume henceforth that Lpzq is holonomic. First, we
build a sequence pVnq that must be “approximately” recurrent linear. Second, we define
some objects that we will not use before the end of the proof, but that give us lower
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bounds for integer constants that we want to use immediately. Third, we define a class
of integers N by using congruence relations, and study the factors of integers of the form
N ` i. Finally, we consider the linear equation that pVnq is supposed to “approximately”
satisfy, split this equation in several parts whose values we estimate using the objects
defined in the second part of the proof, and derive a contradiction.

Proof of Proposition 4.28 – First Part

Consider the real number δ ą 1 and the sequence pωnqně0 used in Definition 4.27. Let
ε be some positive real constant. There exists an integer n0 such that, for all n ě n0,
|un ´ ωnn

δ| ď εωnn
δ. Then consider the real constants S :“

řn0

n“0 |un ´ ωnn
δ| and Ω :“

maxtωn : n ě 0u.

For all integers n ě 1, we define Un :“
ř

k|n uk and Vn :“
ř

k|n ωn{kk
´δ. Note that

|Vn| ď
ř

kě1 Ωk´δ “ Ωζpδq. Therefore,

|Un ´ n
δVn| ď

ÿ

k|n

ˇ

ˇuk ´ ωkk
δ
ˇ

ˇ ď εnδ|Vn| ` S ď εΩnδζpdq ` S.

Since ε is arbitrarily small, it follows that Un “ nδVn ` opn
δq.

We decided to assume that the Lambert series Lpzq “
ř

ně1 Unz
n is holonomic. This

means that the sequence pUnqně1 is P -recursive, i.e. that there exists real polynomials
A0pXq, . . . , AmpXq such that AmpXq ‰ 0 and

řm
i“0Aipn ` iqUn`i “ 0 for all integers

n ě 1. Let d :“ maxtdegAi : 0 ď i ď mu, and let us write AipXq “
řd
j“0 ai,jX

j. It
follows that

0 “
m
ÿ

i“0

AipnqUn`i “
m
ÿ

i“0

d
ÿ

j“0

`

ai,jVn`in
j`δ
` opnj`δq

˘

“ nd`δ
m
ÿ

i“0

ai,dVn`i ` opn
d`δ
q,

and therefore that
řm
i“0 ai,dVn`i Ñ 0 when nÑ `8.

Proof of Proposition 4.28 – Second Part

Now, let ρ be the period of the sequence pωnq, and let z P t0, . . . , ρ ´ 1u be an integer
such that ωz ‰ 0. We also define γ :“ rlog2p2ρ `mqs and a8 :“

řm
i“0 |ai,d|, and choose

some integer ` such that a`,d ‰ 0. Without loss of generality, we assume henceforth that
a`,d “ 1.

Then, for all integers i P t0, . . . ,mu and all integers k ě 1, we define the finite
set Si,k :“ t0u Y tai,dωnk

´δ : 0 ď n ă ρu. We also define the Minkowski sum S8 :“
řm
i“0

řργpm`1q
k“1 Si,k, and choose some positive real constant Z0 such that Z0 ď |z| for all

z P S8zt0u. The mysterious sets Si,k and S8, as well as the constants ργpm` 1q and Z0,
will play a role at the end of the proof.
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Finally, let q be some prime number such that q ” 1 pmod ρq, q ě 2m ` 1 and qδ ě
4

Ωργpm`1qZ0
. Note that such a prime number q exists, according to Dirichlet theorem [60,

Theorem 15]. Then, we also consider some integer M such that M δ´1 ě
2a8Ωqδ

pδ´1qωz
, M ą

ρ` q ` pm´ 1q and M ě pm` 1q2.

Proof of Proposition 4.28 – Third Part

Let N be some positive integer such that

• N ” ρ` z ´ ` pmod ργ`1q;
• N ” q ´ ` pmod q2q;
• N ” 1 pmod kq for all integers k ďM such that k is coprime with ρ and q.

The Chinese remainder theorem [60, Theorem 59] proves that arbitrarily large such inte-
gers N exist.

Let i be some element of t0, . . . ,mu, and let Ri be the largest divisor of N ` i whose
prime factors divide ρ. Let r be some prime factor of Ri, and let α ě 0 be the maximal
integer such that rα divides pN` iq^ργ. Since rα divides the positive integer ρ`z` i´`,
it follows that rα ď ρ` z` i ď 2ρ`m, hence that α ď logrp2ρ`mq ď log2p2ρ`mq ď γ.
This shows that rα`1 divides ργ`1, hence that rα`1 does not divide N ` i. Consequently,
α is the maximal integer such that rα divides N ` i or, equivalently, Ri It follows that
Ri divides ργ, hence that Ri ď ργ.

Then, let Si be the largest divisor of N ` i that is coprime with ρ and q and whose
prime factors are not greater than M . First, if k is a divisor of Si such that k ďM , then
k divides N ` i and N ` i ” i ` 1 pmod kq, so that k ď 1 ` i ď m ` 1. Then, since
Si is a product of integers not greater than M , hence not greater than m` 1, and since
M ě pm` 1q2, an immediate induction shows that Si has no divisor greater than M , i.e
no divisor greater than m` 1. It follows that Si ď m` 1.

Finally, note that pN ` `q ^ q2 “ q, i.e. that N ` ` is divisible by q but not by q2,
and that pN ` iq ^ q “ p`´ iq ^ q “ 1 if i ‰ `. Hence, we factor each number N ` i as a
product N ` i “ q1i“`RiSiTi such that Ri ď ργ, Si ď m ` 1 and each prime factor of Ti
is greater than M and coprime with ρ and q.

Proof of Proposition 4.28 – Fourth Part

Let us define the real numbers Wn :“
ř

k|n 1kąMωn{kk
´δ for all integers n ě 1, as well as

X :“
m
ÿ

i“0

ai,dWN`i, Y :“ a`,dq
´δ

ÿ

k|R`S`

ωpN``q{qkk
´δ and Z :“

m
ÿ

i“0

ÿ

k|RiSi

ai,dωpN`iq{kk
´δ.
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Since q ” 1 pmod ρq, and hence q is coprime with ρ, and since M ą ρ ` q ` pm ´ 1q,
each term of the sum

řm
i“0 ai,dVn`i “

řm
i“0

ř

k|N`i ai,dωpN`iq{kk
´δ appears exactly once in

either the sums X, Y or Z. This shows that
řm
i“0 ai,dVn`i “ X ` Y ` Z.

We evaluate now the sums |X|, |Y | and |Z|. First, note that |Wn| ď Ω
ř

kąM k´δ ď
Ω

pδ´1qMδ´1 , and therefore that |X| ď a8Ω
pδ´1qMδ´1 . Second, observe that

Ωργpm` 1q ě Ω

ργpm`1q
ÿ

k“1

k´δ ě
ÿ

k|R`S`

ωpN``q{qkk
´δ
“ qδY ě ωpN``q{q “ ωz,

and therefore that ωzq´δ ď |Y | ď Ωργpm ` 1qq´δ. Finally, each term of the sum Z “
řm
i“0

řργpm`1q
k“1 ai,d1k|RiRiωpN`iq{kk

´δ belongs to the a Si,k defined during the second part
of the proof. It follows that Z P S8, and that either Z “ 0 or that |Z| ě Z0.

We deduce from this that

• |X ` Y ` Z| ě |Y | ´ |X| ě ωzq
´δ ´

pm`1qΩ
pδ´1qMδ´1 ě

1
2
ωzq

´δ if Z “ 0;

• |X ` Y `Z| ě |Z| ´ |X| ´ |Y | ě Z0´ 2|Y | ě Z0´ 2Ωργpm` 1qq´δ ě 1
2
Z0 if Z ‰ 0.

Consequently, and since N can be arbitrarily large, we cannot have
řk
i“0 ai,dVn`i Ñ 0.

This contradiction shows that Lpzq is not holonomic.

Corollary 4.29.
Let k ě ´1 be some integer. The Lambert series L3,k : z ÞÑ

ř

ně1 g3,n`k
zn

1´zn
is not

holonomic.

This result completes Theorem 4.16 by showing that neither the “standard” gener-
ating function nor the Lambert series L3,kpzq associated with the sequences pg3,n`kqně1

are holonomic. In particular, provided that the sequence pϕpnqqně1 has a very simple
Lambert series

ř

ně1 ϕpnq
zn

1´zn
“ z

p1´zq2
and that the function G3pzq “

ř

ně0 g3,nz
n is the

composition of the series
ř

ně1 ϕpnqz
n by a rational fraction, one might have hoped that

the Lambert series L3,kpzq would be simple too. Corollary 4.29 proves that this is not the
case, and shows that even variants of the series L3,kpzq such as the Lambert series of the
sequences pN c,`

3,kqkě0, pN o,`
3,kqkě0 and pNd

3,kqkě0 are also non-holonomic.

4.3.2 Estimates in Bn (n ě 4)

We did not manage to compute explicitly the generating functions Gnpzq nor the integers
gn,k for n ě 4. Hence, we settle for upper and lower bounds. We begin with simple, yet
non-trivial estimates, then introduce the original notion of composition of diagrams to
derive tighter lower bounds on the integers gn,k.

We first identify an upper bound on the number of virtual coordinates ps0, a1, s1, . . . ,
an, snq such that

řn
i“0 si “ k. Of course, this will also provide us with an upper bound

on the integers gn,k.
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Proposition 4.30.
Let n ě 1 and k ě 0 be integers. Then, gn,k ď 2n

`

k`n´1
n´1

˘n´2 `k`n´2
n´2

˘

.

Proof. Let us bound above the number of ways in which a tuple ps0, a1, . . . , snq of actual
coordinates can be chosen. First, there are exactly

`

k`n´2
n´2

˘

ways of choosing non-negative
integers s1, . . . , sn´1 whose sum is k.

Second, we know that 0 ď ai ď 2 mintsi´1, siu`1 for all integers i P t1, 2, . . . , nu. Then,
let u be an integer such that su “ maxts1, . . . , sn´1u: we know that 0 ď aj ď 2sj´1 ` 1
when 1 ď j ď u and that 0 ď aj ď 2sj ` 1 when u` 1 ď j ď n. Therefore, let Su denote
the set t1, . . . , u´1, u`1, . . . , n´1u: the tuple pa1, . . . , anq must belong to the Cartesian
product t0, 1uˆ

ś

jPSu
t0, . . . , 2sj` 1uˆt0, 1u, whose cardinality is P “ 2n

ś

jPSu
psj` 1q.

By arithmetic-geometric inequality, it follows that

P ď 2n
ˆ

ř

jPSu
psj ` 1q

n´ 2

˙n´2

ď 2n

˜

řn´1
j“1 psj ` 1q

n´ 1

¸n´2

“ 2n
ˆ

k ` n´ 1

n´ 1

˙n´2

,

which completes the proof.

In order to compute a lower bound, we also prove a combinatorial result which is
interesting in itself.

Proposition 4.31.
Let ps0, s1, . . . , snq be non-negative integers, with s0 “ sn “ 0. There exists integers
a1, . . . , an such that ps0, a1, s1, . . . , an, snq are actual coordinates.

Proof. Let us choose ai “ si´1 if si´1 ď si, and ai “ si ` 1 if si´1 ą si, and let D be the
generalised curve diagram associated with the coordinates sa :“ ps0, a1, s1, . . . , an, snq.
We show below that D is a 1-generalised curve diagram. We do so by proving, using an
induction on i P t0, . . . , nu, the following properties Pi and Qi:

Pi “ @j P t1, . . . , siu,L
j
i ” L2si`1´j

i ;

Qi “ @` P t1, . . . , 2si´1 ` 1u, Dm P t1, . . . , 2si ` 1u such that L`i´1 ” Lmi .

First, P0 and Q0 are vacuously true. Now, let i P t1, . . . , nu be some integer such that
Pi´1 and Qi´1 are true, and let us prove Pi and Qi.

If si´1 ď si, then it follows from Pi and Lemma 4.8 that

• Lji „ Lji´1 ” L
2si´1`1´j
i´1 „ L2si`1´j

i whenever 1 ď j ď si´1;

• Lsi`1´j
i „ Lsi`ji whenever 1 ď j ď si ´ si´1;

• L
2si´1`1
i´1 „ L2si`1

i ,
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«

s0 “ 0 si´1 “ 4
ai “ 4

si “ 6 s0 “ 0 si “ 6

Induction step when si´1 ă si

«

s0 “ 0 si´1 “ 4
ai “ 3

si “ 2 s0 “ 0 si “ 2

Induction step when si´1 ě si

Figure 4.32 – Constructing actual coordinates

which proves Pi and Qi.

If si´1 ą si, then it follows from Pi and Lemma 4.8 that

• Lji „ Lji´1 ” L
2si´1`1´j
i´1 „ L2si`1´j

i whenever 1 ď j ď si ´ 1;

• L
2si´1`1
i´1 „ L2si`1

i ,

which already proves Pi in the case j ‰ si and Qi in the case m R tsi, . . . , 2si´1 ´ siu.

Moreover, observe that Lji´1 ” L
2si´1`1´j
i´1 „ Lj`2

i´1 whenever si ď j ď 2si´1´1´si. An
immediate induction on j then shows that Lsii´1 ” Lji´1 for all j P tsi, si ` 2, . . . , 2si´1 ´

siu and that Lsi`1
i´1 ” Lji´1 for all j P tsi ` 1, si ` 3, . . . , 2si´1 ` 1 ´ siu. Therefore, it

follows that Lsii „ Lsii´1 ” L
2si´1`1´si
i´1 ” Lsi`1

i´1 „ Lsi`1
i and, incidentally, that Lsii´1 ”

pLsii´1 and Lsi`1
i´1 q ” Lji´1 whenever si ď j ď 2si´1 ´ si. These two remarks respectively

complete the case j “ si of Pi and the case si ď m ď 2si´1 ´ si of Qi, which proves that
both properties Pi and Qi must hold.

Overall, we have proved that Qi holds for all i P t0, . . . , nu, which proves, using an
immediate induction on i, that Lji ” L1

n for all i P t0, . . . , nu and for all j P t1, . . . , 2sj`1u.
This means that ” has one unique equivalence class, i.e. that D is a 1-generalised curve
diagram, that is, that sa are actual coordinates.
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Corollary 4.33.
Consider integers n ě 1 and k ě 0. Then, gn,k ě

`

k`n´2
n´2

˘

.

This simple lower bound is not tight, as shown below.

Definition 4.34 (Composition of virtual coordinates and of generalised diagrams).
Let sa “ ps0, a1, s1, . . . , an, snq and sa1 “ ps10, a

1
1, s

1
1, . . . , a

1
k, s

1
kq be virtual coordinates. The

composition of sa by sa1 is defined as the tuple sa ˝ sa1 :“ pσ0, α1, σ1, . . . , αn`k´1, σn`k´1q

such that

σi “ 0 if i “ 0 and αi “ a1 ¨ 1s1ą0 ` a
1
1 ¨ 1s1“0 if i “ 1

σi “ s1 ` s
1
i if 1 ď i ď k ´ 1 αi “ s1 ` a1 ´ a

1
1 ` a

1
i if 2 ď i ď k

σi “ si`1´k if k ď i αi “ ai`1´k if k ` 1 ď i

In particular, the tuple sa ˝ sa1 also consists of virtual coordinates.

By extension, let D and D1 be the generalised diagrams respectively associated with sa
and sa1. The composition of D by D1 is the generalised diagram D ˝ D1 associated with
the coordinates sa ˝ sa1.

Intuitively, composing D with D1 consists in plugging the diagram D1 inside the dia-
gram D as follows. We remove the half-arc of D that goes to the puncture p1 to the point
L
s1`a1´a11`1
1 , and replace it by a copy of D1, where the left endpoint of D1 is glued on p1

and the right endpoint of D1. This process is illustrated by Fig. 4.35.

Half-arc to
transform

Diagram D Diagram D1

Copy of D1

Diagram D ˝D1

Figure 4.35 – Composing two generalised diagrams

Lemma 4.36 and Corollary 4.37 follow immediately from Definition 4.34 and from this
intuition.
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Lemma 4.36.
Let k and ` be positive integers, and let D and D1 be respectively a k- and an `-generalised
diagrams. The composition D ˝D1 is a pk ` `´ 1q-generalised diagram.

Corollary 4.37.
The composition of two (1-generalised) diagrams is a (1-generalised) diagram.

In addition, the composition is injective when restricted to a small class of diagrams.

Lemma 4.38.
Consider two positive integers m and n. Let D1 and D2 be two (1-generalised) diagrams
with n punctures, and let D11 and D12 be two generalised diagrams with m punctures. If
D1 ˝D11 “ D2 ˝D12, then D1 “ D2 and D11 “ D12.

Proof. Let sa “ ps0, a1, . . . , snq, sa1 “ ps10, a11, . . . , s1mq and sa ˝ sa1 “ pσ0, α1, . . . , σn`m´1q

be the respective coordinates of D1, D11 and D1 ˝ D11. We just need to show that sa and
sa1 depend only on m, n and sa ˝ sa1.

First, note that s0 “ s10 “ s1m “ 0, that si “ σi`m´1 when 1 ď i ď n, and that
s1i “ σi ´ σm when 1 ď i ď m ´ 1. Hence, one knows psiq0ďiďn and ps1iq0ďiďm. Then,
observe that a1 “ α1 ¨ 1s1ą0 and that ai “ αi`m´1 when 2 ď i ď n.

Computing a11 is slightly more difficult. Let us denote by „ the relation of pD1˝D11,Lq-
neighbourhood. In addition, let us consider the two statements

S0 “ @i P t1, . . . ,m´ 1u,Ls1`a1
i „ Ls1`a1

i`1

S1 “ @i P t1, . . . ,m´ 1u,L
s1`2s1i`a1`1
i „ L

s1`2s1i`1`a1`1

i`1

If s11 “ 0, then a11 “ 0. However, if s11 ą 0, then we know that D11 is not trivial. If s11 ą 0,
and a11 “ 0, then S0 holds but, since D11 is not trivial and was plugged between the points
L
s1`2s11`a1`1
1 and Ls1`a1`1

m , S1 does not hold. Conversely, if s11 ą 0, and a11 “ 1, then S1

holds but, since D11 is not trivial and was plugged between the points Ls1`a1
1 and Ls1`a1

m ,
S0 does not hold. Hence, one can compute a11. Finally, since a1i “ αi ` a

1
1 ´ s1 ´ a1 when

2 ď i ď m, Lemma 4.38 follows.

Theorem 4.39.
Let k and n be positive integers. There exists two (computable) constants κn ě 0 and
γn ą 0 such that, if k ě κn, then gk,n ě γnk

t3n{2u.

Proof. This proof relies on tools of analytic number theory, similar to those used for
proving Proposition 4.26. However, like the proof of Proposition 4.28, this proof is very
technical, and we therefore begin by drawing a sketch of this proof.

First, we introduce univariate and bivariate generating functions as well as some term-
wise comparison ordering of such functions. Second, we focus on some bivariate generating
function G3py, zq and approximate it by below with the help of a simple generating
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function F py, zq. Third, we approximate by below the terms of the functions F py, ykq, for
k ě 0, in terms of the Euler totient ϕ. Fourth, we build a family of integers γa,b,c, thanks
to which we find additional lower approximations of the functions F py, ykq and G3py, y

kq,
and we find lower bounds for the integers γa,b,c. Finally, we derive Theorem 4.39 itself.

Proof of Theorem 4.39 – First Part

In what follows, we will use the “term-wise” comparison ordering ě defined as follows.
If Cpxq “

ř

uě0 cux
u and Dpxq “

ř

uě0 dux
u are two univariate generating series such

that cu ě du for all u ě 0, then Cpxq ě Dpxq. Similarly, if Cpy, zq “
ř

u,vě0 cu,vy
uzv and

Dpy, zq “
ř

u,vě0 du,vy
uzv are two bivariate generating series such that cu,v ě du,v for all

u, v ě 0, we write Cpy, zq ě Dpy, zq.

For all integers s ě 0, k ě 0 and n ě 1, let gn,k,s be the number of (1-generalised)
coordinates ps0, a1, s1, . . . , an, snq such that

řn
i“0 si “ k and s1 “ s. In addition, consider

the generating functions Gnpy, zq “
ř

k,sě0 gn,k,sy
kzs. Corollary 4.37 proves that

gn`m´1,k,s ě
ÿ

a,tě0

gn,k´a´pm´1qt,tgm,a,s´t,

i.e. that Gn`m´1py, zq ě Gnpy, y
m´1zqGmpy, zq. Then, let n be some integer such that

n ě 3, and let n˚ :“ 1 ` 1nP2Z. By construction, we have Gnpyq “ Gnpy, 1q, and an
immediate induction shows that

Gnpyq ě G3py, y
n´3
qG3py, y

n´5
q . . . G3py, y

n˚´1
qGn˚pyq.

Proof of Theorem 4.39 – Second Part

In Section 4.2, we computed the integers

g3,k,k`` “ Ck,` “ |tpa1, a2, a3q : p0, a1, k, a2, `, a3, 0q are actual coordinatesu|.

We have gk,2k “ 2p2k` 1q if k ě 1, g3,k,2k`m ě
řk
a“1 1a^pm`1q“1 if k,m ě 1, and g3,k,` ě 0

if k “ 0 or ` ă 2k. It follows that G3py, zq “
ř

k,sě0 g3,k,sy
kzs ě 2Apyz2q ` Bpyz2, zq,

where

Apyq “
yp3´ yq

p1´ yq2
and Bpy, zq “

ÿ

kě1

ÿ

mě1

k
ÿ

a“1

1a^pm`1q“1y
kzm.

Using the auxiliary function F py, zq :“
ř

αě1

ř

βě1 1α^β“1y
αzβ and the substitution t :“

k ´ a, we obtain

Bpy, zq “
ÿ

aě1

ÿ

mě1

ÿ

tě0

1a^pm`1q“1y
a`tzm “

1

1´ y

ÿ

aě1

ÿ

mě1

1a^pm`1q“1y
azm

“
1

zp1´ yq

˜

ÿ

aě1

ÿ

vě1

1a^v“1y
azv ´

ÿ

aě1

yaz

¸

“
F py, zq

zp1´ yq
´

y

p1´ yq2
.
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Collecting the above terms, we have

2Apyq`Bpy, zq ě
2y

1´ y
`

3y

p1´ yq2
`
F py, zq

zp1´ yq
ě

F py, zq

zp1´ yq
and G3py, y

n
q ě

F py2n`1, ynq

ynp1´ y2n`1q
.

Proof of Theorem 4.39 – Third Part

For all n ě 0, we have F py2n`1, ynq “
ř

uě1

ř

vě1 1u^v“1y
up2n`1q`vn “

ř

kě0 fn,ky
k, with

fn,k “

ˇ

ˇ

ˇ

ˇ

"

u : 0 ă p2n` 1qu ă n, p2n` 1qu ” k pnq, u^
k ´ p2n` 1qu

n
“ 1

*
ˇ

ˇ

ˇ

ˇ

.

Let us use the change of variable w :“ k´u
n

. We obtain easily that 0 ă p2n ` 1qu ă k ô
2k

2n`1
ă w ă k

n
, that p2n` 1qu ” k pmod nq ô u ” k pmod nq ô w P Z and that

u^
k ´ p2n` 1qu

k
“ 1 ô nu^ pk ´ p2n` 1quq “ nô nu^ pk ´ uq “ n

ô npk ´ nwq ^ nw “ nô pk ´ nwq ^ w “ 1 ô k ^ w “ 1.

This shows that fn,k “
ˇ

ˇ

 

w : 2k
2n`1

ă w ă k
n
, k ^ w “ 1

(
ˇ

ˇ.

We introduce now some arithmetic notions. We say that n is square-free if n is the
prime factors of n are pairwise distinct, i.e. if n is not divisible by any integer of the form
k2. We denote by Dppnq the set of prime factors of n, and by Dµpnq the set of square-free
factors of n. We also denote by ppnq the cardinality of the set Πpnq, and by µpnq be the
Möbius function of n, i.e. µpnq “ p´1qppnq if n is square-free and µpnq “ 0 otherwise.

For all integers m,n ě 1, let us define ψpm, kq :“ |tw : 1 ď w ď m, k ^ w “ 1u|. For
all integers w ě 1, it comes easily that 1w^k“1 “

ř

iPDµpkq µpiq1wPiZ. This proves that
ψpm,nq “

ř

iPDµpkq µpiqt
m
i

u. Moreover, recall that
ř

iPDµpkq µpiq
1
i
“

ś

qPΠpkq p1´ q
´1q “

ϕpkq
k

. Consequently, we have

ˇ

ˇ

ˇ

ˇ

ψpm, kq ´
ϕpkq

k
m

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ψpm, kq ´
ÿ

iPDµpkq

µpiq
m

i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă |Dµpkq| ď 2ppkq.

Therefore, the equality fn,k “ ψ
`

k
n
, k
˘

´ψ
`

2k
2n`1

, k
˘

´ 1k“n shows that
ˇ

ˇ

ˇ
fn,k ´

ϕpkq
np2n`1q

ˇ

ˇ

ˇ
ď

2ppkq`1.

Now, consider the integer N :“ p44np2n ` 1q ` 1q!, and let us assume that k ě N .
Let q1 ă . . . ă qppkq be the prime factors of k. If ppkq ď 2, then k ě 43np2n ` 1q “

np2n ` 1q4ppkq`1. If ppkq ě 3, consider the integers k1 :“
śppkq

i“1 qi and k2 “
k
k1
. Since

4 ď q3 ă . . . ă qppkq, it follows that

k “ k1k2 ě k2qppkq

ppkq´1
ź

i“3

qi ě k2qppkq4
ppkq´3

ě 4ppkq´3 maxtqppkq, k2u.
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Since qppkq!k2 ě k1k2 “ k ě p44np2n`1q`1q!, it follows that maxtqppkq, k2u ě 44np2n`1q,
and therefore that k ě np2n` 1q4ppkq`1.

Consequently, regardless of the value of ppkq, we have k ě np2n`1q4ppkq`1. This proves
that ϕpkq “ k

ś

qPΠpkq
q´1
q
ě 2´ppkqk ě np2n`1q2ppkq`2, and therefore that fn,k ě

ϕpkq
2np2n`1q

.

Proof of Theorem 4.39 – Fourth Part

Consider the terms gn,k of the generating function G3py, y
nq, i.e. G3py, y

nq “
ř

kě0 gn,ky
k.

In addition, for all integers a, b, c, consider the integer

γa,b,c :“ |tpu, vq : 1 ď u, v ď a, u^ cpa` bvq “ 1u| .

Finally, let ` be the largest integer such that ` ” k pmod 2n ` 1q and p2n ` 2q` ď k. If
` ě N , then the inequality G3py, y

nq ě
F py2n`1,ynq
ynp1´y2n`1q

shows that

gn,n`k ě

tk{p2n`1qu
ÿ

i“0

fn,k´p2n`1qi ě
ÿ̀

i“1

fn,``p2n`1qi

ě
1

2np2n` 1q

ÿ̀

i“1

ϕp`` p2n` 1qiq, i.e.

2np2n` 1qgn,n`k ě |tpu, vq : 1 ď u ď `` p2n` 1qv, 1 ď v ď `,

|tpu, vq : u^ p`` p2n` 1qvq “ 1u| ě γ`,2n`1,1.

We evaluate now the integers γa,b,c, and first focus on the case a ^ b “ 1. Let
Q :“ r3cζp2qs and let P :“

ś

qďQ 1q prime1bcRqZ. In addition, let us assume that a ě
9cζp2q2ppP q`ppcq.

For all integers u, v ě 1, and since P ^ c “ 1, it comes easily that

1u^c“11u^pa`bvq^P“1 “
ÿ

iPDµpP q

ÿ

jPDµpcq

p´1qµpiq`µpjq1uPijZ1a`bvPiZ.

Recall that
řa
u“1 1uPijZ “ t a

ij
u and that ta

i
u ď

řa
v“1 1a`bvPiZ ď ta

i
u` 1 whenever i^ b “ 1.

Moreover, since a^ b “ 1, all prime divisors of u^ pa` bvq are either divisors of Pc
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or are greater than Q. It follows that

γa,b,c ě

a
ÿ

u,v“1

1u^c“11u^pa`bvq^P“1 ´

a
ÿ

u,v“1

ÿ

qąQ

1q prime1uPqZ1a`bvPqZ

ě
ÿ

iPDµpP q

ÿ

jPDµpcq

ˆ

p´1qµpiq`µpjq
a

ij

a

i
´
a

ij
´
a

i
´ 1

˙

´
ÿ

qąQ

a2

q2

ě a2

¨

˝

ź

qPΠpP q

1´ q´2

˛

‚

¨

˝

ź

qPΠpcq

1´ q´1

˛

‚´ 3 ¨ 2ppP q`ppcqa´
a2

Q

ě

ˆ

ϕpcq

cζp2q
´

1

Q

˙

a2
´ 3 ¨ 2ppP q`ppcqa

ě

ˆ

1

cζp2q
´

1

3cζp2q

˙

a2
´

a2

3cζp2q
“

a2

3cζp2q
.

Now, let d :“ `^ p2n` 1q. It comes immediately that

2np2n` 1qgn,n`k ě γ`,2n`1,1 ě γ`{d,p2n`1q{d,d ě
`2

3dζp2q
ě

`2

3p2n` 1qζp2q

if ` is big enough, for instance if ` ě 18c225p2n`1q. Moreover, since ` ě k
2n`2

´p2n` 1q, we
know that if n ` k ě 9pn ` 1q3, then ` ě n`k

2n`3
. This proves that there exists an integer

Λpnq such that, if k ě Λpnq, then gn,k ě λnk
2, where λn :“ 1

6np2n`1q2p2n`3q2ζp2q
.

Proof of Theorem 4.39 – Fifth Part

Recall that G1pyq “ 1 and that G3pyq ě
ř

kě0 y
k, as proved in Section 4.2. Now, let u be

a positive integer, and let ε P t1, 2u. We assume henceforth that n “ 2u ` ε. We have
n˚ “ ε and u “ tpn´ 1q{2u. First, observe that

Gnpyq ě G3py, y
n´3
qG3py, y

n´5
q . . . G3py, y

nε´1
qGεpyq ě λun´1

¨

˝

ÿ

kěΛpn´1q

k2yk

˛

‚

u

Gεpyq.

Let us also assume that k ě 2uΛpn´ 1q, and let m :“ tk{p2uqu. If ε “ 1, then

gn,k ě λun´1

2m´1
ÿ

k1,...,ku´1“m

ÿ

kuěm

k2
1 . . . k

2
u1k1`...`ku“k

ě λun´1

2m´1
ÿ

k1,...,ku´1“m

ÿ

kuěm

m2u1k1`...`ku“k “ λun´1m
3u´1.
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If ε “ 2, then

gn,k ě λun´1

2m´1
ÿ

k1,...,ku“m

k2
1 . . . k

2
u1k1`...`kuďk

ě λun´1

2m´1
ÿ

k1,...,ku“m

m2u1k1`...`kuďk “ λun´1m
3u.

Adding these two cases, we obtain Theorem 4.39.

4.4 Experimental Data, Conjectures and Open Ques-
tions

Proposition 4.30 and Corollary 4.33 prove that
ˆ

k ` n´ 2

n´ 2

˙

ď gn,k ď 2n
ˆ

k ` n´ 1

n´ 1

˙n´2 ˆ
k ` n´ 2

n´ 2

˙

.

Unfortunately, these lower and upper bounds do not match, since their ratio is equal to
2n

`

k`n´1
n´1

˘n´2, hence grows arbitrarily when n and k grow. Theorem 4.39 also provides
us with the following, tighter inequality when k is large enough:

γnk
t3n{2u

ď gn,k ď 2n
ˆ

k ` n´ 1

n´ 1

˙n´2 ˆ
k ` n´ 2

n´ 2

˙

.

Nevertheless, the ratio between these upper and lower bound also grows arbitrarily when
k grows.

Therefore, aiming to identify simple asymptotic estimations of gn,k when n is fixed
and k Ñ `8, we look for experimental data.

Figure 4.41 presents the ratios gn,k{k2pn´2q (in black) and gn,k{pk` nq2pn´2q (in gray).
We computed gn,k by enumerating all the virtual coordinates, then checking individu-
ally which of them were actual coordinates (up to refinements such as using the above-
mentioned symmetries to reduce the number of cases to look at).

The two series of points suggest the following conjecture, which was already proven
to be true when n “ 2 and n “ 3.

Conjecture 4.40.
Let n ě 2 be some integer. There exists two positive constants αn and βn such that
αnk

2pn´2q ď gn,k ď βnk
2pn´2q for all integers k ě 1.

Figure 4.41 also suggests that the ratios gn,k{k2pn´2q might be split into convergent
clusters, according to the value of k mod 6 (when n “ 4) or k mod 2 (when n “ 5).
Once again, this is coherent with the patterns noticed for n “ 2 and n “ 3, and therefore
suggests a stronger conjecture.
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g4,k{k
4 — g4,k{pk ` 4q4 pˆ100q
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4

k

g5,k{k
6 — g5,k{pk ` 5q6 pˆ1000q

Figure 4.41 – Estimating gn,k — experimental data for n “ 4 and n “ 5

Conjecture 4.42.
Let n ě 2 be some integer. There exists some positive integer ρn such that, for every
integer ` P t0, 1, . . . , ρn ´ 1u, the sequence of ratios gn,kρn``

k2pn´2q has a positive limit λn,` when
k Ñ `8.

Assuming Conjecture 4.42, a natural further step would be to compute the limits
λn,` or to study more precisely the asymptotic behaviour of the ratios gn,k{k2pn´2q. In
particular, we hope that computing arbitrarily precise approximations of the constants
λn,` for small values of n might help us guess analytic values of λn,`, thereby providing
insight about the underlying combinatorial or number-theory-related structure of the
integers gn,k.
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Chapter 5

Random Walks in Braid Groups
Converge

Résumé

Considérons un groupe finiment engendré, associé à une notion de forme normale, et
observons une marche aléatoire sur le groupe. La forme normale des éléments aléatoires
obtenus lors de cette marche converge-t-elle ? Vershik et Malyutin apportent une réponse
positive pour les groupes de tresses et la forme normale de Markov-Ivanovsky [90], et ils
observent que : « Pour la forme normale de Garside (. . . ) le problème de la convergence
reste ouvert ». Nous répondons à cette question par l’affirmative pour les groupes d’Artin–
Tits irréductibles de type sphérique et pour la forme normale de Garside. Nous étudions
également la limite de la marche aléatoire, et montrons qu’elle est ergodique.

Le contenu de ce chapitre provient d’un travail en cours de rédaction, en collaboration
avec Jean Mairesse.

Abstract

Consider a finitely generated group with an associated notion of normal form, and consider
a random walk on the group. Does the normal form of the random elements converge?
Vershik and Malyutin provide a positive answer for the braid groups with the Markov-
Ivanovsky normal form [90], and they observe that: “For the Garside normal form (. . . )
the stability problem is open”. We answer the question by the affirmative for an Artin–
Tits group of spherical type with the Garside normal form. We also study the limit of
the random walks and show that it is ergodic.

The content of this chapter is the result of a paper in progress, written in collaboration
with Jean Mairesse.
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Chapter 5 is devoted to proving that the Garside normal forms of the random walk in
irreducible Artin–Tits groups of spherical type is stable. In the early 2000s, Vershik asked
the question of the stabilisation of normal forms in braid groups [89]. Since then, a first
complete (positive) answer was given for the Markov-Ivanovsky normal form [90], while
another partial (positive) answer was given for the Garside normal form in the Artin–Tits
groups of dihedral type, including the group of braids with three strands [75]. We provide
a complete (positive) answer for the Garside normal form in all irreducible Artin–Tits
groups of spherical type.

In Section 5.1, we first revisit the analogous and easier case of random walks in heap
monoids and heap groups. With the help of some tools that we will later reuse in the
context of braids, we reprove results that are already mentioned in the literature [54, 77].
Then, in Sections 5.2, 5.3 and 5.5, we develop original tools that lead both to proving
stabilisation results for the Garside normal form and to studying properties of the limit
of the random walk.

5.1 Random Walk in Heap Monoids and Groups

In Chapter 5, we aim to study the convergence of a random walk in an Artin–Tits
monoid of spherical type and in the associated group. However, we begin with studying
the convergence of such random walks in heap monoids and groups. This study may be
seen as a warm-up, and shows how to deal with a natural notion of convergence of random
walks in a simple case. In particular, the results mentioned in Section 5.1.1 are already
well-known (see [54, 77]) but we reprove them using tools that we will use later in the
yet unexplored framework of braid monoids and groups.

5.1.1 Random Walk in Heap Monoids

In all Section 5.1.1, we will consider an irreducible heap monoid M` with n ě 2 gen-
erators σ1, . . . , σn and dependency relation D. Let µ be a probability measure overM`

whose support contains the set tσ1, . . . , σnu, i.e. such that the real constant minµ :“
min1ďiďn µpσiq is positive.

Definition 5.1 (Left random walk).
Let pYkqkě0 be i.i.d. random variables distributed with law µ. The left random walk with
step-distribution µ is the sequence X “ pXkqkě0 defined by X0 :“ 1 and Xk`1 :“ YkXk

for k ě 0.

When the probability measure µ is implicit from the context, the sequence pXkqkě0

may also be called simply left random walk.

Does the random walk pXkqkě0 converge? More precisely, let us identify each heap Xk

with its left and right Garside normal forms NF`pXkq and NFrpXkq, and let us consider
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some notion of convergence on words. Recall that the left Garside normal form NF` is
better known as the Cartier-Foata normal form CF. Notions of convergence for words
include:

• the prefix-convergence, in which the distance between two words a :“ a1 ¨ . . . ¨ ak
and b :“ b1 ¨ . . . ¨ b` such that k ď ` is defined as dprepa,bq :“ 0 if a “ b, 2´k´1 if a
is a proper prefix of b, and 2´minti:ai‰biu otherwise;
• the suffix-convergence, in which the distance between two words a :“ a´k ¨ . . . ¨ a´1

and b :“ b´` ¨ . . . ¨ b´1 such that k ď ` is defined as dsuf pa,bq :“ 0 if a “ b, 2´k´1

if a is a proper suffix of b, and 2´minti:a´i‰b´iu otherwise.

Some convergence and divergence results come quickly.

Proposition 5.2.
Let M` be an irreducible heap monoid with at least 2 generators, and let pXkqkě0 be
the left random walk on M`. For all integers i ě 1, the sequence suf ipNFrpXkqqkě0 is
necessarily convergent, and the sequences preipNF`pXkqqkě0 and preipNFrpXkqqkě0 are
almost surely divergent.

Proof. First, the sequence suf ipNFrpXkqqkě0 is non-decreasing (for the order ěr,rev´lex)
and belongs to a finite set, hence it must converge. Second, consider some even integer
k ě 1. The event Ek :“ tYk ď` pre1pNFrpXkqquXtpYk, Yk`1q P Du occurs with probability
at least pminµq2, regardless of the values of pYiqiRtk,k`1u. Consequently, with probability
one, the events Ek hold for infinitely many integers k P t2, 4, 6, . . .u.

When Ek occurs, then NFrpXk`2q “ pYk`1Ykq ¨NFrpXkq. This proves that Yk`1 ď`

pre1pNFrpXk`2qq ď` pre1pNF`pXk`2qq. However, since Yk is a left-divisor of both simple
braids pre1pNFrpXkqq and pre1pNF`pXkqq and since pYk, Yk`1q P D, it follows that
Yk`1 cannot left-divide pre1pNFrpXkqq nor pre1pNF`pXkqq, whence pre1pNFrpXkqq ‰

pre1pNFrpXk`2qq and pre1pNF`pXkqq ‰ pre1pNF`pXk`2qq. This completes the proof.

Furthermore, it follows from Lemma 2.37, Proposition 2.49 and Corollary 2.51 that the
word preipNF`pXk`1qq is a function of preipNF`pXkqq and of Yk`1. This shows that the
sequence preipNF`pXkqq is a Markov chain. However, the sequences suf ipNF`pXkqqkě0

and preipNFrpXkqqkě0 are not necessarily monotonous (even for i “ 1) and are not
Markov chains, hence their behaviour is not so easy to capture.

Example 5.3.
In the dimer modelM`

3 , assume that the five first terms of pYkqkě0 are σ1, σ3, σ3, σ2 and
σ1, in this order. A direct computation shows that NF`pX4q “ σ2 ¨ σ1σ3 ¨ σ3, NFrpX4q “

σ2 ¨σ3 ¨σ1σ3, NF`pX5q “ σ1 ¨σ2 ¨σ1σ3 ¨σ3, and NFrpX5q “ σ1 ¨σ2 ¨σ3 ¨σ1σ3. Hence, neither
psuf1pNF`pXkqqqkě0 nor ppre1pNFrpXkqqqkě0 is non-decreasing. In addition, neither are
them finite-state Markov chains.

The situation is illustrated in Fig. 5.4. As usual, heaps, which we read from left to right,
are represented by heap diagrams, which we read from bottom to top. The Garside words
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NF`pXkq and NFrpXkq are represented by heap diagrams cut into several layers, each
layer representing one heap letter of the word NF`pXkq or NFrpXkq. Hence, the heap
suf1pNF`pXkqq is represented by the top layer of the left Garside normal form of Xk, and
the braid pre1pNFrpXkqq is represented by the bottom layer of the right Garside normal
form of Xk. Both these layers are represented over a gray background.

Chronological
form:

Left Garside
normal form:

Right Garside
normal form:

X1

σ1

σ1

σ1

X2

σ3

σ1

σ1σ3

σ1σ3

X3

σ3

σ3

σ1

σ1σ3

σ3

σ3

σ1σ3

¨

¨

X4

σ2

σ3

σ3

σ1

σ2

σ1σ3

σ3

σ2

σ3

σ1σ3

¨
¨

¨
¨

X5

σ1

σ2

σ3

σ3

σ1

σ3
σ1σ3
σ2
σ1

σ1σ3
σ3
σ2
σ1

¨
¨
¨

¨
¨
¨

...

pre1

...

suf1

R
ea
d
in
g
d
ir
ec
ti
on

Figure 5.4 – Non-monotonic evolution of the Garside normal forms

We prove below that, for all integers i ě 0, the sequence suf ipNF`pXkqqkě0 is almost
surely ultimately constant, i.e.

PrDk ě 0, @m ě k, suf ipNF`pXkqq “ suf ipNF`pXmqqs “ 1.

Definition 5.5 (Blocking permutation and blocking heap).
Let τ be a permutation of the set tσ1, . . . , σnu. We say that τ is a blocking permutation if,
for all i P t1, . . . , n´ 1u, there exists an integer j P ti` 1, . . . , nu such that pτpiq, τpjqq P
D, i.e. such that τpiq ¨ τpjq is a left (or right) Garside word. We say that the heap
t :“ τp1q . . . τpnq is the blocking heap associated with the permutation τ .

Observe that, sinceM` is a connected heap monoid, there exists such blocking per-
mutations. For instance, if, by performing some depth-first exploration of the Coxeter
graph of M`, we denote by τpiq the pn ` 1 ´ iq-th generator of M` that we uncover,
then τ is a blocking permutation. In particular, for each generator σi ofM`, there exists
a blocking permutation τ such that τpnq “ σi, and there exists a blocking permutation τ
such that τp1q “ σi.

Lemma 5.6.
Let τ be a blocking permutation with associated blocking heap t, and let a PM` be some
heap. The heap τpnq is the rightmost letter of both words NF`patq and NFrpatq.
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Proof. Let i be some element i of t1, . . . , n ´ 1u, and let θpiq be some element of ti `
1, . . . , nu such that τpiq ¨ τpθpiqq is a left Garside word. We say that a factorisation
a1 . . . aλpaq`n of at into generators of M` is good if maxtj : aj “ τpθpiqqu ą maxtj :
aj “ τpiqu. First, for each factorisation a1 . . . aλpaq of a into generators of M`, the fac-
torisation a1 . . . aλpaqτp1q . . . τpnq of the heap at is good.

Second, let us assume that there exist two factorisations a1 . . . aλpaq`n and b1 . . . bλpaq`n
of the heap at into generators ofM` and an integer I P t1, . . . , λpaq ` n´ 1u such that:

• the generators aI and aI`1 commute, bI “ aI`1 and bI`1 “ aI ;
• we have aj “ bj for all j P t1, . . . , I ´ 1, I ` 2, . . . , λpaq ` nu.

It comes immediately that the former factorisation is good if and only if the latter factori-
sation is also good. Consequently, an immediate induction proves that each factorisation
of at into generators ofM` is good, which proves that τpiq R rightpatq.

Since the set rightpatq cannot be empty, it follows that rightpatq “ tτpnqu. Moreover,
consider the words w1 ¨ . . . ¨ wk :“ NF`patq and x1 ¨ . . . ¨ xk :“ NFrpatq. Since τpnq “
∆rightpatq “ xk ěr wk ąr 1, it follows that wk “ xk “ τpnq.

Corollary 5.7.
Let τ be a blocking permutation with associated blocking heap t, and let t˚ be the mirror
heap of t, i.e. t˚ :“ τpnqτpn´1q . . . τp1q. For all heaps a,b PM`, we have NF`patt

˚bq “
NF`patq ¨NF`pt

˚bq.

Proof. Let us recall the notations a Ÿ b and a Ź b, which respectively mean that a is a
prefix of b, or that b is a suffix of a. Lemma 5.6 proves that NF`patq Ź τpnq and that
NFrpb

˚tq Ź τpnq, i.e. that τpnq Ÿ NF`pt
˚bq. Since τpnq ¨ τpnq is a left Garside word,

it follows from Corollary 2.38 that NF`patq ¨ NF`pt
˚bq is a left Garside word, which

completes the proof.

Theorem 5.8.
Let M` be a heap monoid, and let pXkqkě0 be the left random walk on M`. For all
integers i ě 0, the sequence psuf ipNF`pXkqqqkě0 is almost surely ultimately constant.

Proof. Let τ be a blocking permutation of M`. For all integers j ě 0, we consider the
event Ej :“ t@i P t1, . . . , nu, Y2nj`i “ Y2npj`1q`1´i “ τpiqu. The family of events pEjqjě0

is independent, and each event Ej happens with probability at least pminµq2n. Hence,
there almost surely exist infinitely many integers j ě 0 such that Ej holds.

Now, consider some integer j ě i such that Ej holds: such an integer j almost
surely exists. Corollary 5.7 proves that NF`pXnp2j`1qq is a suffix of NF`pXkq for all
k ě 2npj ` 1q. Note that |NF`pXnp2j`1qq| “ }Xnp2j`1q} ě

λpXnp2j`1qq

n
“ 2j ` 1. It follows

that suf ipNF`pXkqq “ suf ipNF`pXnp2j`1qqq whenever k ě 2npj ` 1q, which completes
the proof.
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Theorem 5.8 completes our picture of which prefixes and suffixes of the Garside normal
forms of pXkq have stabilisation properties (whenM` is an irreducible heap monoid with
at least 2 generators). We sum up these results in Fig. 5.9.

Convergence of the words
NF`pXkqkě0 NFrpXkqkě0

prefix- 7 7

suffix- X X

Figure 5.9 – Convergence of the normal forms of the random walk in the heap monoid

5.1.2 Random Walk in Heap Groups

Having studied the convergence of random walks in heap monoid, we change our point
of view and study random walks in a heap group M. In particular, we restrict our
study to the case where the measure µ is a probability measure whose range is equal to
tσ˘1

1 , . . . , σ˘1
n u, and we still denote by minµ the positive constant min1ďiďn µpσ

˘1
i q. In

this context, we say that the left random onM with step-distribution µ is a left random
walk with Artin steps.

The sequence suf ipNFrpXkqqkě0 is not non-decreasing (e.g. if Y1 “ Y ´1
0 ), hence we

aim to proving convergence results for both families of sequences suf ipNFrpXkqqkě0 and
suf ipNF`pXkqqkě0. We begin with an immediate result.

Lemma 5.10.
LetM be a heap group, let σεi be some generator ofM, with ε “ ˘1, and let Ωi the set of
generators ofM that are dependent of σi, i.e. Ωi “ tσ

˘1
i u Y tσ

˘1
j : i ‰ j and mi,j “ 8u.

Consider some heap a PM, as well as the word a1 ¨ . . . ¨ ak :“ NFrpaq.

In addition, let us define cliques a0 :“ 1 and ak`1 :“ σεi , and let u be the smallest integer
such that the clique au contains one letter σ˘1

j that belongs to Ωi. We have

NFrpσ
ε
iaq “ a1 ¨ . . . ¨ au´1 ¨ pσ

ε
iauq ¨ au`1 ¨ . . . ¨ ak if σ´εi is a letter of au;

“ a1 ¨ . . . ¨ au´2 ¨ pσ
ε
iau´1q ¨ au ¨ . . . ¨ ak otherwise.

From Lemma 5.10 follows immediately a result analogous to the case of heap monoids,
whose proof is exactly analogous to the second part of the proof of Proposition 5.2.

Proposition 5.11.
Let M be a heap group with at least 2 generators and let pXkqkě0 be a left random walk
in M, with Artin steps. For all integers i ě 1, the sequences preipNF`pXkqqkě0 and
preipNFrpXkqqkě0 are almost surely divergent.

In addition, the first part of Proposition 5.2 also has a variant in the case of heap
groups.
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Theorem 5.12.
LetM be a heap group and let pXkqkě0 be a left random walk inM, with Artin steps. For
all integers i ě 0, the sequence suf ipNFrpXkqqkě0 is almost surely ultimately constant.

Proof. Let i and j be two distinct elements of t1, . . . , nu such thatmi,j “ 8. The subgroup
Mi,j generated by tσi, σju is a 2-generator free monoid. In particular, let pi,j :M ÞÑMi,j

be the canonical projection, i.e. the group morphism such that pi,j : σi ÞÑ σi, pi,j : σj ÞÑ σj
and pi,j : σk ÞÑ σk if k R ti, ju.

The random walk pXkqkě0 onM induces a random walk ppi,jpXkqqkě0 onMi,j. This
latter random walk must be transient [67, 88, 93], i.e. χppi,jpXkqq Ñ `8 when k Ñ `8,
where χ denotes the product length (i.e. the length of the shortest factorisation into
generators of M). Hence, consider the function χmin : x ÞÑ mintχppi,jpxqq : mi,j “ 8u.
We have just proven that χminpXkq Ñ `8 almost surely when k Ñ `8.

Moreover, for all heaps a PM, all the occurrences of the letters σ˘1
i and σ˘1

j appearing
in the shortest factorisations of a must belong to pairwise distinct cliques of the word
NFrpaq. Hence, for all pairs pi, jq such that mi,j “ 8, at least χminpaq letters of the word
NFrpaq are cliques where some letter σ˘1

i or σ˘1
j appears. In particular, for all generators

σεi of the groupM, it follows from Lemma 5.10 that dsuf pNFrpaq,NFrpσ
ε
iaqq ď 21´χminpaq.

Consequently, consider some integer I ě 0. Since χminpXkq Ñ `8 almost surely, there
almost surely exists some integer K ě 0 such that χminpXkq ě I ` 1 whenever k ě K. It
means that dsuf pNFrpXkq,NFrpXk`1qq ď 21´χminpXkq ď 2´I , i.e. that suf IpNFrpXkqq “

suf IpNFrpXk`1qq, for all k ě K. This completes the proof.

We will now use both Theorem 5.12 and a construction analogous to the above-
defined blocking heaps in order to prove that the sequence suf ipNF`pXkqqkě0 almost
surely converges.

Lemma 5.13.
Let τ be a blocking permutation, and let pε1, . . . , εnq and pη1, . . . , ηnq be two elements of
t´1, 1un such that εn “ ηn. Consider the heaps

t :“ τp1qε1 . . . τpnqεn and t˚ :“ τpnqηnτpn´ 1qηn´1 . . . τp1qη1 .

For all heaps a,b PM` such that a ď` at and t˚b ěr b, then τpnqεn is the rightmost
letter of the words NF`patq and NFrpatq, τpnqεn is also the leftmost letter of the words
NF`pt

˚bq and NFrpt
˚bq, and NF`patt

˚bq “ NF`patq ¨NF`pt
˚bq.

Proof. The proof is entirely analogous to the proofs of Lemma 5.6 and of Corollary 5.7.

Lemma 5.14.
Let M be a heap group and let pXkqkě0 be a left random walk in M, with Artin steps.
There exists an integer K ě 0 such that the event E :“ t@k ě K,NF`pXkq Ź σ1u holds
with probability PrEs ą 0.
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Proof. Let S˘1zt1u be the set of non-empty cliques ofM. Theorem 5.8 states that

P

»

–

ď

Lě0

ď

cPS˘1zt1u

č

kěL

tNFrpXkq Ź cu

fi

fl “ 1.

This proves that there exists an integer L ě 0 and a clique c P S˘1zt1u such that the
event FL,c :“ t@k ě L,NFrpXkq Ź cu holds with probability PrFL,cs ą 0.

Now, let τ be a blocking permutation such that τpnq “ 1. Consider the heaps t :“
τp1qε1 . . . τpnqεn , where εi :“ ´1 if 1 ď i ď n ´ 1 and τpiq´1 ď` c, and εi :“ 1 otherwise.
In addition, consider the events

F1 :“ tXn “ tu and F2 :“ t@k ě n` L,NFrpXkX
´1
n q Ź cu.

The events F1, and F2 are independent, so that PrF1 X F2s “ PrF1sPrF2s ą 0.

Let us now assume that the event F1XF2 holds. For all k ě n`L, we have XkX
´1
n ď`

Xk, i.e. Xk ěr Xn, and therefore Lemma 5.13 proves that NF`pXkqŹσ1. Hence, choosing
K :“ n` L completes the proof.

Lemma 5.15.
Let M be a heap group and let pXkqkě0 be a left random walk in M, with Artin steps.
The set tk ě 0 : σ1 ŸNF`pXkqu is almost surely infinite.

Proof. Let τ be a blocking permutation such that τpnq “ σ1, and let ε :“ pε1, . . . , εnq be
an element of t´1, 1un. We denote by t˚ε the heap τpnqεnτpn ´ 1qεn´1 . . . τp1qε1 . For all
tuples ε P t1,´1un and all integers K ě 0, we denote by EK,ε the event t@j P t0, . . . , n´
1u, YKn`j “ τpj ` 1qεj`1u. The event EK,ε holds with probability PrEK,εs ě pminµqn and
is independent from the random variables pYkqkăKn or Kpn`1qďk.

Then, for all K ě 0, consider the tuple εK :“ pεK1 , . . . , ε
K
n q, where εKi :“ ´1 if

1 ď i ď n ´ 1 and if τpiq´1 P leftpXnKq. Moreover, if EK,εK holds, then Lemma 5.13
proves that σ1 Ÿ NF`pXpK`1qnq. It follows that Prσ1 Ÿ NF`pXpK`1qnq | pXkq0ďkďKns ě

PrEK,εK | pXkq0ďkďKns ě pminµqn. This proves that the set tK ě 0 : σ1 ŸNF`pXKnqu is
almost surely infinite, which completes the proof.

Theorem 5.16.
LetM be a heap group and let pXkqkě0 be a left random walk inM, with Artin steps. For
all integers i ě 0, the sequence suf ipNF`pXkqqkě0 is almost surely ultimately constant.

Proof. Let us build an increasing sequence of random variables pτkqkě0 and pθkqkě0 in
NYt`8u as follows. Let K be an integer such as defined in Lemma 5.14. We set τ0 :“ 0
and, for all integers k ě 0 such that τk ă `8, we define (inductively) θk :“ mintj ą
τk`K : σ1 is not the rightmost letter of NF`pXjX

´1
τk
qu and τk`1 :“ mintj ě θk : }Xj} ě

i and σ1ŸNF`pXjqu. By construction, the random variables θk and τk are stopping times,
the family pθk´τkqkě0 is i.i.d, and Lemma 5.15 proves that Prτk`1 ă `8 | θk ă `8s “ 1.
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Moreover, for all integers k ě 0, the random walk pXjX
´1
τk
qjěτk follows the same

distribution law as the random walk pXjqjě0. Consequently, Lemma 5.14 proves that
Prθk “ `8 | τk ă `8s “ PrEs ą 0, where E “ t@k ě K,NF`pXkq Ź σ1u. In particu-
lar, since the family pθk ´ τkqkě0 is i.i.d, there almost surely exists some integer k such
that τk ă `8 and θk “ `8. For such an integer k, and for all integers j ě τk ` K,
it follows immediately that NF`pXjq “ NF`pXjX

´1
τk
q ¨ NF`pXτkq, and therefore that

suf ipNF`pXjqq “ suf ipNF`pXτkqq, which completes the proof.

Proposition 5.11 and Theorems 5.12 and 5.16 are stated above in the context of left
random walks with Artin steps, i.e. whose steps are distributed according to a probability
measure µ with range tσ˘1

1 , . . . , σ˘1
n u. In fact, the proof of Proposition 5.11 holds as soon

as rangepµq generates (positively) the heap group M, and the variants of the proofs of
Theorems 5.12 and 5.16 hold as soon as rangepµq generates (positively) the heap group
M and µ has a finite first moment, i.e. Eµr|NF`pXq|s ă `8.

Theorem 5.16 completes our picture of which prefixes and suffixes of the Garside
normal forms of pXkq have stabilisation properties, which we sum up in Fig. 5.17. Note
that, although some of the arguments that we used were different from the case of heap
monoids, the results that we obtain are entirely similar.

Convergence of the words
NF`pXkqkě0 NFrpXkqkě0

prefix- 7 7

suffix- X X

Figure 5.17 – Convergence of the normal forms of the random walk in the heap group

5.2 Combinatorics of Garside Normal Forms

Having studied the stabilisation of Garside normal forms in the context of irreducible heap
monoids and groups, we aim now to prove similar results in the context of irreducible
Artin–Tits monoids of spherical type and groups. Hence, from this point on, we focus on
introducing and using original notions that will lead to the results of Chapter 5. Among
these notions are two key concepts, the bilateral Garside automaton and the blocking
braids.

Before going further, we need to recall some notation introduced in Section 2.3 and
introduce some additional notation. In what follows, let A` be an Artin–Tits monoid,
generated by the elements σ1, . . . , σn (with n ě 2, so as to avoid the cases of the monoids
t0u and Zě0), and whose Garside groupW is finite and irreducible, i.e. follows the classi-
fication of Theorem 2.26. The monoid A` is an Artin–Tits monoid of spherical type, and
call its elements braids. We also denote by A the group associated with A`, by 1 the unit



176 5.2. Combinatorics of Garside Normal Forms

element of A`, and by ∆ the Garside element LCMď`pσ1, . . . , σnq “ LCMěrpσ1, . . . , σnq
of A`.

In addition, for each set S Ď tσ1, . . . , σnu, we denote by A`
S the Artin–Tits monoid

generated by S, and by WS the associated Coxeter group. Since WS is a subgroup of
W , and therefore is finite, the monoid A`

S is an Artin–Tits monoid of spherical type. We
denote by ∆S the braid LCMď`pSq “ LCMěrpSq.

Finally, we denote by S the set of simple elements of A`, i.e. the set of divisors of ∆,
and we denote by S˝ the set of proper simple elements of A`, i.e. the set S˝ :“ Szt1,∆u.

5.2.1 Connectedness of the Bilateral Garside Automaton

Let a be a proper simple element of A`. Since 1 ă` a ă` ∆ and ∆ ąr a ąr 1, it follows
that H Ĺ leftpaq, rightpaq Ĺ tσ1, . . . , σnu, i.e. that both sets leftpaq and rightpaq are
proper subsets of tσ1, . . . , σnu. This gives rise to the notion of bilateral Garside automaton
of the monoid A`, which is a variant of the left Garside acceptor automaton introduced
in Definition 2.42.

Definition 5.18 (Bilateral Garside automaton and paths).
Let A` be an irreducible Artin–Tits monoid of spherical type, and let S˝ be the set
of its proper simple elements. The bilateral Garside automaton is defined as the non-
deterministic, finite-state automaton Ggar :“ pA, V, δ, V, V q, with

• alphabet A “ S˝;
• set of states V “ trightpaq : a P Au;
• transition function δ with domain tpP, aq : leftpaq “ P u and such that δ : pP, aq ÞÑ
rightpaq if leftpaq “ P ;
• set of initial states V ;
• set of accepting states V .

A bilateral Garside path is a word b1 ¨ . . . ¨ bk with letters in S˝ such that rightpbiq “
leftpbi`1q for all i ă k. We then say that b is a bilateral Garside path from leftpbkq to
rightpb1q.

Note that each arc of Ggar may have several labels. Proposition 2.59 proves that the
bilateral Garside paths are precisely the ∆-free words that are both left Garside words
and right Garside words (i.e. that are left Garside words, regardless of whether they are
read from left to right or from right to left, whence the adjective “bilateral”).

In addition, for each braid a P S˝, we have a˚ P S˝ as well as leftpaq “ rightpa˚q and
rightpaq “ leftpa˚q, where a˚ denotes the reversal of the braid a. Therefore, for every
arc pP,Qq in of Ggar, the pair pQ,P q is also an arc of Ggar, and the graph Ggar can be seen
as non-directed. Examples of bilateral Garside automata are shown in Fig. 5.19 and by
Fig. 6.2, page 211.
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The left Garside acceptor automaton recognises the left Garside normal form, and
its mirror, in which the arcs are reversed, recognises the right Garside normal form.
Considering automata as labelled oriented graphs with marked initial and final states,
the bilateral Garside automaton is a subgraph of both these automata, from which the
state tσ1, . . . , σnu has been deleted.1 Figure 5.19, which presents the bilateral Garside
automaton and the left Garside acceptor automaton associated with the monoid B`4 ,
where loops and labels have been omitted.

tσ1u

tσ2u

tσ3u

tσ1, σ2u

tσ1, σ3u

tσ2, σ3u

Bilateral Garside automaton

tσ1u

tσ2u

tσ3u

tσ1, σ2u

tσ1, σ3u

tσ2, σ3u

tσ1, σ2, σ3u

Left Garside acceptor automaton

Figure 5.19 – Bilateral Garside automaton and left Garside acceptor automaton of the
monoid B`4

We prove below that the graph Ggar is connected. This result was left implicit in [11,
56], where the following proof is used to show the connectedness of the left Garside
acceptor automaton.

Lemma 5.20.
Let S be a proper subset of tσ1, . . . , σnu and let τ be an element of tσ1, . . . , σnuzS. In
addition, let Sτ :“ tσ P S : στ “ τσu be the set of the elements of S that commute with
τ .

If Sτ ‰ S, then the braid b :“ τ∆S is a simple braid such that leftpbq “ tτu Y Sτ and
rightpbq “ S.

Proof. Since τ R S “ leftp∆Sq, Lemma 2.16 proves that b P S.

It is clear that tτu Y Sτ Ď leftpbq Ď tτu Y S. Moreover, if σ P S X leftpbq, let m be
the integer such that ∆tσ,τu “ rσ, τ s

m. We have τ rσ, τ sm´1 “ ∆tσ,τu ď` b “ τ∆S, whence
rσ, τ sm´1 ď` ∆S. Since τ is not a factor of ∆S, this proves that m “ 2, i.e. that σ P Sτ .
Hence, we have leftpbq “ tτu Y Sτ .

It is also clear that S Ď rightpbq Ď tτu Y S. Moreover, since leftpbq Ĺ tτu Y S, we
know that b is a proper divisor of ∆tτuYS, whence rightpbq Ĺ tτu Y S. This proves that
rightpbq “ S.

1The systematic study of the monoids with at most 7 generators suggests that the bilateral Garside
automaton is exactly the intersection or the left and right Garside acceptor automata, from which the
state tσ1, . . . , σnu has been deleted.
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Proposition 5.21.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let Ggar be the bilateral
Garside automaton of A`. The graph Ggar is connected. Moreover, for all vertices P and
Q of Ggar, there exists a bilateral Garside path of length D from P to Q, where D is the
diameter of Ggar.

Proof. Consider some set P P V , and consider the Coxeter diagram G of the Cox-
eter group W associated with the braid monoid A`, i.e. the graph with set of vertices
tσ1, . . . , σnu and set of edges tpσ, τq : στ ‰ τσu. SinceW is irreducible, the graph G must
be connected. In addition, we denote by δGps, tq the distance between the nodes s and t
in G.

We identify hereafter P with a set of vertices of G. Let cpP q be the number of
connected components of P , and let dpP q :“

ř

sPP δGpσ1, sq. We prove now that P is
connected to tσ1u in Ggar.

1. If dpP q “ 0, then P “ tσ1u is obviously connected to itself.
2. If cpP q “ |P | and dpP q ą 0, the set P is independent and contains some vertex
v ‰ σ1. Let s0, s1, . . . , sk be a path inG such that s0 “ σ1, sk “ v and k “ δGpσ1, vq.
Since P is independent, the vertex sk´1 does not belong to P . Hence, consider the
set Q :“ tsk´1u Y tt P P : δGpt, sk´1q ě 2u.
Lemma 5.20 states that the simple braid b :“ sk´1∆P satisfies leftpbq “ Q and
rightpbq “ P . By construction, the set Q is independent, whence cpQq “ |Q|.
Finally, observe that

dpP q´dpQq “
ÿ

tPP

1δGpt,sk´1q“1δGpσ1, tq´δGpσ1, sk´1q ě δGpσ1, vq´δGpσ1, sk´1q “ 1.

Hence, an immediate induction on dpP q shows that P is connected to tσ1u in Ggar.
3. If cpP q ă |P |, then consider some connected component S of P with cardinality
|S| ě 2, and τ be some neighbour of S inG. In addition, let k and ` be the respective
cardinalities of the sets ts P P : δGpτ, sq “ 1u and ts P P : δGpτ, sq “ 1 and @t P
P, δGps, tq ‰ 1u. Note that, since |S| ě 2, we have k ą `. In addition, consider the
set Q :“ tτu Y ts P P : δGps, τq ě 2u.
Lemma 5.20 states that the simple braid b :“ τ∆P satisfies leftpbq “ Q and
rightpbq “ P . Moreover, note that cpQq “ cpP q ` 1´ ` and that |Q| “ |P | ` 1´ k,
whence |Q|´cpQq ă |P |´cpP q. Hence, an immediate induction on |P |´cpP q shows
that P is connected to tσ1u in Ggar.

This proves that the bilateral Garside automaton Ggar is indeed connected. The last part
of Proposition 5.21 comes from the fact that, for each proper subset P of tσ1, . . . , σnu,
the braid ∆P satisfies leftp∆P q “ rightp∆P q “ P , which shows that Ggar contains a loop
around the node P .

The proof of Proposition 5.21 even provides us with the crude upper bound D ď

2pn2`nq. In Chapter 6, we compute explicitly the value of the diameter D for all Artin–
Tits monoids of spherical type A`. In particular, we show that we have in fact D ď 4 in
all cases, which provides us an upper bound on D regardless of the value of n.
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5.2.2 Blocking patterns

Let us now define a notion of blocking pattern analogous to the above notion of blocking
heap, and that is a variant of the blocking braids introduced by Caruso and Wiest [26]:
Proposition 5.21 will be helpful for proving that blocking patterns actually exist. Note
that, in the literature of braids, the notion of “blocking” may have had several meanings,
depending on the context. For instance, our blocking braids are not related to the blocked-
braid groups of Maglia, Sabadini and Walters [73], to the blocked punctures used by
González-Meneses and Wiest in [59], nor to the separator braids of Fromentin [50].

They are, however, somehow related to barriers of Fromentin [52]. A barrier is, in
the context of dual braid monoids [15] and of the cycling normal form, a braid α meant
to prevent certain pseudo-commutations of the type βα “ αγ. Then, in [26], blocking
braids are meant to prevent similar pseudo-commutations, in the context of standard
braid monoids and of the (left) Garside normal form. Below, we modify this latter notion
of blocking braid, by preventing pseudo-commutations in both left and right Garside
normal forms.

Definition 5.22 (Blocking patterns).
Let us place ourselves in an irreducible Artin–Tits monoid of spherical type A` with n
generators. Let w :“ w1 ¨ . . . ¨ wk be a ∆-free, non empty left Garside word. If rightpwkq
has cardinality n´ 1, then we say that w is a blockable word.

If w is a blockable word, we call w-blocking patterns the words w ¨ x ¨ σ where σ is an
Artin generator of the monoid A` and where x is a bilateral Garside path of length D
from rightpwkq to tσu. We denote by Bw the set of all w- or φ∆pwq-blocking patterns.

Finally, we call blocking patterns all the w-blocking patterns, for all blockable words w.

Lemma 5.23.
Let p be a blocking pattern and let a,b P A` be positive braids such that ab is ∆-free
and that NF`pbq Ź p. We have |p| ě D` 2 and NFrpabq Ź sufD`1ppq.

Proof. Let w be a blockable word such that p is a w-blocking pattern. It comes immedi-
ately that k “ |w| `D` 1 ě D` 2.

Hence, consider the word q :“ sufD`1ppq and the braid u :“ abq´1. Since p is
a blocking pattern, the set rightpp´D´2q has cardinality n ´ 1. Moreover, ∆ does not
divide ab, hence does not divide u either. It follows that rightpp´D´2q Ď rightpuq Ĺ
tσ1, . . . , σnu, whence rightpuq “ rightpp´D´2q “ leftpp´D´1q. Therefore, Corollary 2.41
states that NFrpabq “ NFrpuq ¨NFrpqq “ NFrpuq ¨ q, which proves Lemma 5.23.

Lemma 5.24.
Let a,b P A` be positive braids such that ab is ∆-free and such that NF`pbq can be
factored into a product NF`pbq “ b1 ¨ p ¨ b2, where p is a blocking pattern. We have
NF`pabq Ź b2. Similarly, if NFrpbq can be factored into a product NFrpbq “ b1 ¨ p ¨ b2,
where p is a blocking pattern, then NFrpabq Ź b2.
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Proof. Let λ be the rightmost letter of NF`pab1pq, and let σ be the rightmost letter of p.
Since ab is ∆-free, so is ab1p. Therefore, Lemma 5.23 proves that αrpab1pq “ σ. Hence,
σ “ αrpab1pq ěr λ ąr 1. Since p is a blocking pattern, σ is an Artin generator, and thus
σ “ λ. This proves that rightpλq “ rightpσq Ě leftpb2q, and Corollary 2.38 then states
that NF`pab1pb2q “ NF`pab1pq ¨ b2, which shows the first part of Lemma 5.24.

Then, let us assume that NFrpbq can be factored into a product NFrpbq “ b1 ¨p ¨b2.
Lemma 5.23 proves that NFrpab1pq Ź sufD`1ppq, hence that NFrpabq Ź sufD`1ppq ¨b2,
which completes the proof.

Corollary 5.25.
Let σ be an Artin generator of an irreducible Artin–Tits monoid of spherical type A`,
and let b P A` be a positive braid such that NF`pbq can be factored into a product
NF`pbq “ b1 ¨ p ¨ b2, where p is a blocking pattern. We have NF`pσbq Ź b2.

Proof. Since φ∆ leaves the set of Artin generators invariant and since p is ∆-free (as
is every blocking pattern), we may assume, without loss of generality, that NF`pbq is
∆-free.

Let λ be the leftmost letter of b1 ¨p. If σλ “ ∆, then NF`pσbq is obtained by dropping
the first letter of NF`pbq, hence b2 is a suffix of NF`pσbq. If σλ ‰ ∆, then σb is ∆-free,
hence Lemma 5.24 applies and proves the result as well.

Definition 5.26 (Flags).
Let A` be an irreducible Artin–Tits monoid of spherical type. Let w be a left Garside
word, let b P A` be a positive braid, and let b1 ¨ . . . ¨ bk “ b´k ¨ . . . ¨ b´1 be the left
Garside normal form of b. We call w-flags of the braid b the integers i P Z such that
w “ bi ¨ . . . ¨ bi`|w|´1. We denote by F`wpbq the set of all positive w-flags of b, and we
denote by F´wpbq the set of all negative w-flags of b. In addition, we denote by fwpbq the
cardinality of both sets F`wpbq and F´wpbq.

We then extend the notion of flags to sets. If Ω is a set of ∆-free left Garside words, and Ω-
flag is a w-flag for some word w P Ω. We define similarly the sets F`Ωpbq “

Ť

wPΩ F`wpbq

and F´Ωpbq “
Ť

wPΩ F´wpbq, and we denote by fΩpbq the cardinality of the sets F`Ωpbq and
F´Ωpbq.

Lemma 5.27.
Let a,b P A` be positive braids such that ab is ∆-free, and let p be a blocking pattern.
We have fppaq ď fppabq `D` 1 and fppbq ď fppabq ` |p|.

Proof. We first prove that fppaq ď fppabq ` D ` 1. If fppaq “ 0, then the result holds
obviously. However, if fppaq ě 1, let us factor NF`paq into a product NF`paq “ a1 ¨p ¨ a2

such that a1 is as long as possible.

Let q :“ sufD`1ppq be the suffix of p of length D`1. In addition, consider the braids
d :“ a1pq

´1 and e :“ qa2b. Since p is a blocking pattern, we know that leftpp´D´1q has
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cardinality n ´ 2. Moreover, since ab is ∆-free, so is e, so that leftpp´D´1q Ď leftpeq Ĺ
tσ1, . . . , σnu. It follows that leftpeq “ leftpp´D´1q “ rightpp´D´2q.

SinceNF`pdq is obtained by removing theD`1 rightmost letters of a1¨p, we know that
p´D´2 is the rightmost letter of NF`pdq. Therefore, Corollary 2.41 states that NF`pabq “
NF`pdq ¨NF`peq. It follows that fppabq ě fppdq ě fppa1pq ´ pD` 1q “ fppaq ´ pD` 1q,
by maximality of a1.

We prove now that fppbq ď fppabq ` |p|. If fppbq “ 0, then again the result holds.
However, if fppbq ě 1, let us factor NF`pbq as a product NF`pbq “ b1 ¨ p ¨ b2 such that
b2 is as long as possible. Lemma 5.24 states that b2 is a suffix of NF`pabq. Moreover,
b2 is obtained by removing the |p| leftmost letters of p ¨ b2. Hence, fppabq ě fppb2q ě

fpppb2q ´ |p| “ fppbq ´ |p|, by maximality of b2.

Lemma 5.28.
Let a,b P A` be positive braids such that ab is ∆-free. We have fppabq ď fppaq` fppbq`
|p|.

Proof. We proceed by induction on |NF`pbq|. First, if b “ 1, then the result is obvious.
Henceforth, we assume that |NF`pbq| ě 1.

Let λb be the leftmost letter of NF`pbq. We factor NF`paλbq into a product a1 ¨p ¨ a2

such that a1 is as long as possible. Consider the braid q :“ a1p. By maximality of a1,
we have fppqq “ fppaλbq. Moreover, the rightmost letter of p is an Artin generator, let
us say σu. According to Lemma 5.23, we know that σu “ αrpqq and that rightpσuq “
rightpqq “ tσuu.

Now, assume that a2 “ 1. Then, σu “ αrpqq “ αrpaλbq ěr λb ąr 1, and therefore
λb “ σu is the rightmost letter of a1 ¨ p “ NF`paλbq. Since λb is also the leftmost
letter of NF`pbq, Corollary 2.41 states that NF`pabq “ NF`paq ¨NF`pbq. It follows that
fppabq ď fppaq ` fppbq ` |p|.

Then, assume that, on the contrary, a2 ‰ 1, and let ρ be the leftmost letter of
NFrpa2q. It follows from the relations H Ĺ leftpρq Ď leftpa2q Ď rightpσuq “ tσuu that
leftpρq “ tσuu “ rightpqq. Hence, Corollary 2.41 proves that αrpqa2q “ αrpa2q, and
consequently a2 ěr αrpa2q “ αrpqa2q “ αrpaλbq ěr λb. Therefore, a2λ

´1
b belongs to A`,

and leftpa2λ
´1
b q Ď leftpa2q Ď rightpσuq.

Again, Corollary 2.41 states that NF`paq “ NF`pqa2λ
´1
b q “ NF`pqq ¨ NF`pa2λ

´1
b q,

and therefore fppaλbq “ fppqq ď fppaq. Moreover, note that NF`pλ
´1
b bq is a suffix of

NF`pbq, and therefore that fppλ´1
b bq ď fppbq. By induction hypothesis, it follows that

fppabq “ fppaλbλ
´1
b bq ď fppaλbq ` fppλ

´1
b bq ` |p| ď fppaq ` fppbq ` |p|.

Proposition 5.29.
Consider an irreducible Artin–Tits monoid of spherical type A`. Let a,b P A` be two
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positive braids, and let w be a blockable word. We have

fBwpabq ď fBwpaq ` fBwpbq ` 2|S|D`1
p2|w| ` 3D` 3q.

Proof. Let u be the largest integer such that ab ě ∆u. Lemma 2.52 states that there
exists positive braids a1, a2,b1,b2 P A` such that a “ a1a2, b “ b1b2 and a2b1 “ ∆u.
Therefore, fBwpabq “ fBwp∆

uφu∆pa
1qb2q “ fBwpφ

u
∆pa

1qb2q, and φu∆pa1qb2 is ∆-free.

In addition, observe that eachw-blocking pattern is a productw¨p or φ∆pwq¨p, where
|p| “ D` 1. Therefore, there exist at most 2|S|D`1 w-blocking patterns. In addition, by
construction, the set Bw is closed under φ∆. Hence, Lemmas 5.27 and 5.28 prove that

fBwpabq “ fBwpφ
u
∆pa

1
qb2q “

ÿ

pPBw

fppφ
u
∆pa

1
qb2q ď

ÿ

pPBw

´

fppφ
u
∆pa

1
qq ` fppb

2
q ` |p|

¯

ď
ÿ

pPBw

´

fppa
1
q ` fppb

2
q ` |p|

¯

ď
ÿ

pPBw

´

fppa
1a2q ` fppb

1b2q `D` 2|p| ` 1
¯

ď fBwpaq ` fBwpbq ` |Bw|p2|w| ` 3D` 3q

ď fBwpaq ` fBwpbq ` 2|S|D`1
p2|w| ` 3D` 3q.

5.3 Stabilisation of the Random Walk

5.3.1 First Results

Let µ be a probability measure over the set tσ1, . . . , σnu, finite support, such that the
real constant minµ :“ µpσiq is positive.

Definition 5.30 (Left random walk).
Let pYkqkě0 be i.i.d. random variables distributed with law µ. The left random walk with
step-distribution µ is the sequence X “ pXkqkě0 defined by X0 :“ 1 and Xk`1 :“ YkXk

for k ě 0.

When the probability measure µ is implicit from the context, we simply say that X is
a left random walk. In addition, since µ is assumed to have its range equal to tσ1, . . . , σnu,
we may also reuse the terminology of Section 5.1 and say that X is a left random walk
with Artin steps.

Note that, here and in the sequel of Chapter 5, we always focus on the left random
walk, and not its dual right random walk, which is the random walk usually considered,
and which we mentioned in the introductory chapter of this thesis. The main reason
for focusing here on the left random walk rather than the right random walk is that
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Theorem 5.40 will provide us a convergence result for the left Garside normal form,
which is the usual Garside normal form. Of course, all the results mentioned below can
be instantaneously translated by exchanging the notions of left and right, hence imply
dual results about the right random walk.

First, like in the case of heap monoids, some convergence and divergence results come
quickly.

Proposition 5.31.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pXkqkě0 be a left random walk in A` with Artin steps. For all integers i ě 1, the
sequences preipNF`pXkqqkě0 and suf ipNFrpXkqqkě0 is almost surely convergent, with
limit ∆ ¨ . . . ¨∆, and the sequence and preipNFrpXkqqkě0 is almost surely divergent.

Proof. First, let λp∆q be the Artin length of the Garside element ∆. For all integers
k ě 0, if Yk`iλp∆q´1 . . . Yk “ ∆i, which happens with probability at least pminµqiλp∆q,
then it follows that preipNF`pXmqq “ suf ipNFrpXmqq “ ∆ ¨ . . . ¨ ∆ for all integers
m ě k ` iλp∆q.

Second, since the random walk pXmqmě0 is transient, there almost surely exists some
integer M ě 0 such that pre1pNFrpXkqq ‰ 1 whenever k ěM . Consider some even inte-
ger k ěM . The event Ek :“ tYk ď` pre1pNFrpXkqquXtDi, tYk, Yk`1u “ tσi, σi`1uu occurs
with probability at least pminµq2, regardless of the values of pYiqiRtk,k`1u. Consequently,
with probability one, the events Ek hold for infinitely many integers k P t2, 4, 6, . . .u.
When Ek occurs, then NFrpXk`2q “ pYk`1Ykq ¨ NFrpXkq, hence Yk is a left-divisor
of pre1pNFrpXkqq but not of pre1pNFrpXk`2qq, which proves that pre1pNFrpXkqq ‰

pre1pNFrpXk`2qq. This completes the proof.

For all integers i ě 1, it follows from Lemma 2.37, Proposition 2.49 and Corol-
lary 2.51 that the word preipNF`pXk`1qq is a function of preipNF`pXkqq and of Yk`1.
This shows that the sequence preipNF`pXkqq is a Markov chain. However, the sequences
suf ipNF`pXkqq and preipNFrpXkqq are not necessarily monotonous (even for i “ 1) and
are not Markov chains, hence their behaviour is not so easy to capture.

Example 5.32.
In the braid monoid B`4 , assume that the five first terms of pYkqkě0 are σ2, σ1, σ2,
σ3 and σ3, in this order. A direct computation shows that NF`pX4q “ NFrpX4q “

σ3σ1σ2σ1, NF`pX5q “ σ1σ3 ¨ σ3σ2σ1, and NFrpX5q “ σ3 ¨ σ3σ1σ2σ1. Hence, neither
psuf1pNF`pXkqqqkě0 nor ppre1pNFrpXkqqqkě0 is non-decreasing. In addition, neither are
they finite-state Markov chains.

The situation is illustrated in Fig. 5.33. As usual, braids, which we read from left to right,
are represented by braid diagrams, which we read from top to bottom. The Garside words
NF`pXkq and NFrpXkq are represented by braid diagrams cut into several layers, each
layer representing one braid letter of the word NF`pXkq or NFrpXkq Hence, the braid
suf1pNF`pXkqq is represented by the bottom layer of the left Garside normal form of Xk,
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and the braid pre1pNFrpXkqq is represented by the top layer of the right Garside normal
form of Xk. Both these layers are represented over a gray background.

Chronological
form:

Left Garside
normal form:

Right Garside
normal form:
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σ2

σ2

σ2

X2

σ2

σ1
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σ2
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σ2
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σ2

σ3
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σ2
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σ1

σ1
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σ3
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R
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Figure 5.33 – Non-monotonic evolution of the Garside normal forms

5.3.2 Density of Garside Words

Below, we study the sequences psuf ipNF`pXkqqqkě0. We begin by introducing the addi-
tional integer Λ :“ p2D ` 1qλp∆q. Furthermore, in what follows, we will often consider
words of the form NF`pδpaqq, where a is some braid, and δ is the natural projection
on the set tx P A`,∆2 does not divide xu. Hence, we will only write NFδ

`paq: NFδ
` is a

variant of the left Garside normal form in the context of the quotient monoid A`{∆2.

Lemma 5.34.
Let A` be an irreducible Artin–Tits monoid of spherical type, let b P A` be a positive
braid, and let w be a ∆-free left Garside word. There exists a braid a P A` of Artin
length Λ` λpwq such that w ŸNFδ

`pabq.

Proof. First, let z P t0, 1u be such that δp∆zbq is ∆-free, and consider letters of the words
w “: w1 ¨ . . . ¨ wu and NFδ

`p∆
zbq “: b1 ¨ . . . ¨ bv. We define the sets P “ rightpwuq (or

P “ tσ1u if w is the empty word) and Q “ leftpb1q (or Q “ tσ1u if δp∆zbq “ 1).

According to Proposition 5.21, there exists bilateral Garside paths s and t of lengthD,
respectively from P to tσ1u and from tσ1u to Q. Since λpsq ď Dλp∆q and λptq ď Dλp∆q,
the integer y “ Λ´ λpsq ´ λptq ´ zλp∆q is non-negative.

Hence, consider the braid a “ wsσy1t∆
z. We obviously have λpaq “ Λ ` λpwq, and

Corollary 2.41 proves that NFδ
`pabq “ NFδ

`paδpbqq “ w ¨ s ¨ pσ1q
y ¨ t ¨NFδ

`p∆
zbq, which

completes the proof.
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Lemma 5.34 provides us with lower bounds on the probability of finding a given
Garside word in the left Garside normal form of a braid Xm when m is big enough.

Proposition 5.35.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pXkqkě0 be a left random walk in A` with Artin steps. Let w be a ∆-free left Gar-
side word and let m be an integer such that m ě Λ`λpwq. We have P

“

w ŸNFδ
`pXmq

‰

ě

pminµqΛ`λpwq, where minµ denotes the positive real constant mini µpσiq.

Proof. Consider the event E :“ tw Ÿ NFδ
`pXmqu and the integer j :“ m ´ Λ ´ λpwq.

For every braid b P A`, Lemma 5.34 states that there exists a braid a such that λpaq “
Λ` λpwq and w ŸNFδ

`pabq. Therefore, we have

PrE | Xj “ bs ě PrYm´1 . . . Yj “ a | Xj “ bs ě pminµqΛ`λpwq,

whence PrEs ě infbPA` PrE | Xj “ bs ě pminµqΛ`λpwq.

Theorem 5.36.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
Let w be a ∆-free left Garside word, and let pXkqkě0 be a left random walk in A` with
Artin steps. We have

lim inf
kÑ8

ErfwpXkqs

k
ą 0.

Proof. First, let λ be the leftmost letter of w, or λ “ σ1 if w is empty. In addition, let x
be a bilateral Garside path from tσ1u to leftpλq, and let y :“ x ¨w.

Let j and k be integers such that Λ ` λpyq ď j ď k ´ Λ ´ 1, and let Zj,k :“
Yk´1 . . . Yj. Since Xj and Zj,k are independent, so are the events Ej

1 :“ ty ŸNFδ
`pXjqu

and Ej
2 :“ tNFrpδpZj,kqq Ź pσ1qu. By construction, the random braids Zj,k and Xk´j

follow the same law. Therefore, Proposition 5.35 states that PrEj
1s ě pminµqΛ`λpyq and

that PrEj
2s ě pminµqΛ`1, hence that PrEj

1 X E
j
2s ě pminµq2Λ`λpyq`1.

Let us assume in this paragraph that the event Ej
1 X E

j
2 holds. Let z1 ¨ . . . ¨ zv be the

left Garside normal form of Zj,k, and let u ě 0 be the integer such that Zj,k “ ∆2uδpZj,kq.
It follows that NFδ

`pZj,kq “ z2u`1 ¨ . . . ¨ zv, hence that σ1 “ αrpδpZj,kqq ěr zv ąr 1,
i.e. zv “ σ1. Consequently, Corollary 2.41 applies to the braid δpXkq “ δpZj,kqδpXjq,
which proves that NFδ

`pXkq “ NFδ
`pZj,kq ¨NFδ

`pXjq, and therefore that ´|NFδ
`pXjq| is a

(negative) y-flag (and thus a w-flag) of Xk.

We enter now the second step of the proof. Let σi and σj be two generators such that
mi,j ‰ 2. The subgroup of A`{∆2 generated by σ2

i and σiσ
2
jσi is isomorphic to a free

group Z ˚Z. The random walk in the group A`{∆2 is therefore transient [67, 88, 93], i.e.
there exists a real constant θ ă 1 such that PrDi ě 1, δpXiq “ 1s “ θ.

Let q be some integer such that q ą p2Λ` λpyq ` 1q lnpminµq
lnpθq

. We say that an integer i
has q returns in the random walk pXkq if the set tj ą i : δpXjq “ δpXiqu has cardinality
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q or more. Such an event happens with probability θq, which means that Prj P Rqs “ θq,
where Rq is the set of integers i P N with q returns.

For all integers u ě 0, consider the sets Ij,u :“ Ej
1 X Ej

2 X t|NFδ
`pXjq| “ uu and

Ju :“ tj P t0, . . . , ku : j P Ij,uu. For each j P Ju, note that NFδ
`pXjq “ sufupNFδ

`pXkqq.
Hence, if the elements of Ju are j1 ă . . . ă jr, the integers j1, . . . , jr´q must belong to
Rq. This proves that |JuzRq| ď q, and it follows that

k´Λ´1
ÿ

j“Λ`λpyq

1Ij,u “

k´Λ´1
ÿ

j“Λ`λpyq

´

1jPJuzRq ` 1jPRq ,|NFδ` pXjq|“u

¯

1Ij,u

ď

¨

˝

k´Λ´1
ÿ

j“Λ`λpyq

1jPJuzRq

˛

‚1Ťk´Λ´1
j“Λ`λpyq

Ij,u `

k´Λ´1
ÿ

j“Λ`λpyq

1jPRq ,|NFδ` pXjq|“u

ď q1Ť
jďk Ij,u `

k´Λ´1
ÿ

j“Λ`λpyq

1jPRq ,|NFδ` pXjq|“u
.

Furthermore, note that Ej
1 XE

j
2 “

Ť

uě0 Ij,u and that ´u P F´w whenever
Ť

jďk Ij,u is
satisfied. It follows that

fwpXkq “
ÿ

uě0

1´uPF´wpXkq ě
ÿ

uě0

1Ť
jďk Ij,u ě

1

q

ÿ

uě0

¨

˝

k´Λ´1
ÿ

j“Λ`λpyq

1Ij,u ´ 1jPRq ,|NFδ` pXjq|“u

˛

‚

ě
1

q

k´Λ´1
ÿ

j“Λ`λpyq

˜

ÿ

uě0

1Ij,u ´
ÿ

uě0

1jPRq ,|NFδ` pXjq|“u

¸

“
1

q

k´Λ´1
ÿ

j“Λ`λpyq

p1Ej1XE
j
2
´ 1jPRqq,

hence that

E rfwpXkqs ě

k´Λ´1
ÿ

j“Λ`λpyq

P
“

Ej
1 X E

j
2

‰

´ P rj P Rqs

q
ě pk ´ 2Λ´ λpyqq

pminµq2Λ`λpyq`1 ´ θq

q
.

Since q ą p2Λ` λpyq ` 1q lnpminµq
lnpθq

, it follows that

lim inf
kÑ8

ErfwpXkqs

k
ě
pminµq2Λ`λpyq`1 ´ θq

q
ą 0.

Corollary 5.37.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pXkqkě0 be a left random walk in A` with Artin steps. Let Ω be a set of ∆-free
left Garside words. We have

lim inf
kÑ8

ErfΩpXkqs

k
ą 0.
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5.3.3 Stabilisation in the Artin–Tits Monoid

Lemma 5.38.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators.
Let w be a ∆-free left Garside word w. There exists a blockable word z such that, for all
braids b P A`, fBzpbq ď 2fwpbq.

Proof. Ifw is the empty word, then the blockable word z :“ σ´1
n ∆ is just fine. Henceforth,

we assume that the word w “ w1 ¨ . . . ¨wk is not empty. Using Proposition 5.21, let x and
y be bilateral Garside paths of length D, respectively from rightpφ∆pwkqq to leftpw1q

and from rightpwkq to tσ1, . . . , σn´2u. The word z :“ φ∆pwq ¨x ¨w ¨y is a blockable word.

Then, let i be some Bz-flag of b, and let p be some z- or φ∆pzq-blocking pattern such
that i is a p-flag. If p is a z-blocking pattern, then i ` |w| ` D is a w-flag; if p is a
φ∆pzq-blocking pattern, then i is a w-flag. Consequently,

fBzpbq “
ÿ

iě0

1iPF`Bz
pbq ď

ÿ

iě0

1iPF`wpbq ` 1i`|w|`DPF`wpbq ď 2
ÿ

iě0

1iPF`wpbq “ 2fwpbq.

Theorem 5.39.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pXkqkě0 be a left random walk in A` with Artin steps. For each integer k ě 0,
let spkq be the largest common suffix of all words NF`pXjq such that j ě k. In addition,
let w be a ∆-free left Garside word. Then, lim inf 1

k
fwpspkqq is almost surely a positive

constant.

Proof. According to Lemma 5.38, there exists a blockable word z such that fBzpbq ď
2fwpbq for all positive braids b P A`.

We consider now the random variables qk :“ fBzpXkq ` 2|S|D`1 ` 2|z| ` 3D ` 3, for
all integers k ě 0. In addition, let S : pY0, Y1, . . .q ÞÑ pY1, Y2, . . .q be the shift operator.
Proposition 5.29 states that qk`` ď qk ` q` ˝S

k. Since S is measure-preserving, Kingman
ergodic sub-additive theorem states that qk

k
Ñ lim inf E

“

qk
k

‰

almost surely. Moreover,

Corollary 5.37 states that lim inf E
”

fBz pXkq

k

ı

ą 0, hence that lim inf E
“

qk
k

‰

ą 0.

Now, consider the positive real constant θ “ lim inf E
“

qk
k

‰

. In what follows, for all
integers k ě 0, we denote by θk the integer rk

2
θs. We almost surely have qk

k
Ñ θ, whence

the existence of some integer K ě 0 such that qk ě θk ` 2|S|D`1 ` 3|z| ` 4D ` 4, i.e.
fBzpXkq ě θk ` |z| `D` 1, for all integers k ě K.

Then, consider integers k ě m ě K, and let u and v be respectively the θm-th and
pθm`|z|`D`1q-th largest elements of F´Bz

pXkq. Note that u ě v`|z|`D`1, and that
|z|`D`1 is the length of all z-blocking patterns. Therefore, we can factor NF`pXkq into
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a product NF`pXkq “ a ¨p ¨a1 ¨q ¨a2, where p and q are z-blocking patterns, |q ¨a2| “ ´u
and |p ¨ a1 ¨ q ¨ a2| “ ´v.

Corollary 5.25 states that the word a1 ¨ q ¨ a2 is a suffix of NF`pXk`1q, hence that
u is the θm-th smallest element of FBzpXk`1q. An immediate induction proves then that
q ¨ a2 is a suffix of all words NF`pXkq for k ě m. Therefore, q ¨ a2 is a suffix of spkq, and
2fwpspkqq ě fBzpspkqq ě fBzpqa

2q ě θm. Since this is true for all integers k ě m ě K, it
follows that 2fwpspkqq ě θk ě

k
2
θ, hence that lim inf 1

k
fwpspkqq ě

θ
4
ą 0 almost surely.

We derive the following result from Theorem 5.39.

Theorem 5.40.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pXkqkě0 be a left random walk in A` with Artin steps. Let i ě 0 be an integer.
The sequence suf ipNF`pXkqqkě0 is almost surely ultimately constant, i.e., with probability
one, there exists an integer K ě 0 such that suf ipNF`pXkqq “ suf ipNF`pXKqq for all
k ě K.

Proof. For each integer k ě 0, let spkq be the largest common suffix of all words NF`pXjq

such that j ě k. Let ε be the empty word. According to Theorem 5.39, there almost surely
exists a real constant θ ą 0 such that lim inf 1

k
fεpspkqq ě θ. Since fεpspkqq ď |spkq|, this

proves that |spkq| Ñ `8.

Theorem 5.40 completes our picture of which prefixes and suffixes of the Garside
normal forms of pXkq have stabilisation properties, which we sum up in Fig. 5.41. Note
that, this time, the results that we obtain are not similar to those in the heap groups and
monoids, since the sequence of words NF`pXkqkě0 is almost surely prefix-convergent.

Convergence of the words
NF`pXkqkě0 NFrpXkqkě0

prefix- X 7

suffix- X X

Figure 5.41 – Convergence of the normal forms of the random walk in the braid monoid

5.3.4 From Artin–Tits Monoids to Groups

In Sections 5.3.1, 5.3.2 and 5.3.3, we considered random walks in the monoid A`, sup-
ported by a probability measure µ over the set of generators. We aim now at translat-
ing those results in the context of random walks in the monoid A` (or the group A),
supported by any probability measure µ with finite first moment, and whose support
generates the whole monoid (or the whole group).
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We begin with variants of Corollary 5.25 and of Theorem 5.40.

Corollary 5.42.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators. Let
w be a blockable word, let b, c P A` be two positive braids, and let k be the Artin length of
the braid b. Let us assume that we can write NF`pcq as a product a1¨p1

¨a2¨. . .¨ak ¨pk ¨ak`1,
where each sub-word p

i
is a blocking pattern. We have NF`pbcq Ź ak`1.

Proof. Corollary 5.25 implies Corollary 5.42 when k “ 1. An immediate induction on k
completes the proof.

Proposition 5.43.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators.
Let µ be a probability measure over A` with finite first moment such that tσ1, . . . , σnu Ď
supppµq, and let pXkqkě0 be the left random walk with step-distribution µ. For all integers
i ě 1, the sequence psuf ipNF`pXkqqqkě0 is almost surely ultimately constant.

Proof. The proofs in Sections 5.2, 5.3.2 and Lemma 5.38 still apply. Using Corollary 5.42
instead of Corollary 5.25, we adapt the proof of Theorem 5.39 as follows.

Like in the proof of Theorem 5.39, we have qk
k
Ñ θ for some real number θ ą 0, and

have fixed some words w and z. We define now the real number λ :“ θ
3p|z|`D`1q

and the
events Lλk “ tλpYkq ě λku, for k ě 0. Since

ř

kě0 PrLλks ď p1` λ´1qEµrλpXqs ă `8,
Borel-Cantelli theorem states that there almost surely exists some integer L ě 0 such
that none of the events pLλkqkěL holds.

Since qk
k
Ñ θ, there exists some integer K ě L such that fBzpXkq ě 2Θk for all

integers k ě K, where Θk :“
P

θk
3

T

` z ` D ` 1. Consider integers k ě m ě K, and let
u and v be respectively the Θm-th and 2Θk-th largest elements of F´Bz

pXkq. Note that
u ě v `Θk ě v ` pz `D` 1qpλk ` 1q ě v ` pz `D` 1qpλpYkq ` 1q and that |z| `D` 1
is the length of all z-blocking patterns.

Since Lλk does not hold, we have λpYkq ď λk, and we can therefore factorNF`pXkq into
a product NF`pXkq “ a1 ¨p1

¨a2 ¨. . .¨aλpYkq`1 ¨pλpYkq`1
¨aλpYkq`2, where |pλpYkq`1

¨aλpYkq`2| “

´u, |p
1
¨a2 ¨ . . . ¨aλpYkq`2| “ ´v and each p

i
is a z-blocking pattern. Hence, Corollary 5.42

states that p
λpYkq`1

¨ aλpYkq`2 is a suffix of NF`pXk`1q, hence of all words NF`pXkq for
k ě m. From this, we conclude that lim inf 1

k
fBzpspkqq ě

θ
3
and that lim inf 1

k
fwpspkqq ě

θ
6
ą 0 almost surely.

In particular, the case where w is the empty word implies Proposition 5.43.

Theorem 5.44.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators.
Let µ be a probability measure over A with finite first moment such that supppµq generates
A as a monoid, and let pXkqkě0 be the left random walk with step-distribution µ. For all
integers i ě 1, the sequence psuf ipNF`pXkqqqkě0 is almost surely ultimately constant.
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Proof. First, we leave the context of random walks in the monoid A` to focus on random
walks in the quotient monoidA`{∆2. This step is straightforward: we just need to identify
the left Garside normal form of a positive braid b P A` with the left Garside normal
form of the braid δpbq.

Second, we consider probability measures µ on A`{∆2 with finite moment and such
that supppµq generates the whole monoid A`{∆2. Indeed, let K be a positive integer
such that each braid σi is a product of at most K elements of supppµq. Then, for each
integer i P t1, . . . , nu, consider the stopping time τi :“ mintk : Yk “ σiu. We also
consider the stopping time τ :“ mintK, τ1, τ2, . . . , τn´1u and the convolution power µ˚τ .
The probability measure µ˚τ has a finite first moment and tσ1, . . . , σnu Ď supppµ˚τ q, hence
Proposition 5.43 applies to the random walk supported by µ˚τ in the monoid A`{∆2.
Then, since τ is a bounded stopping time and since µ has a finite first moment, the
arguments used in the end of the proof Proposition 5.43 help us generalise Proposition 5.43
to the random walk supported by the distribution µ itself.

Finally, and since A`{∆2 and A{∆2 are isomorphic groups, we step back from a ran-
dom walk in A`{∆2 to a random walk in A itself, and consider probability measures µ
on A such that µ has a finite first moment and supppµq is generates the monoid A itself.
Indeed, we just proved that arbitrarily long suffixes of NFδ

`pXkq have a stabilisation prop-
erty. Since such suffixes are also suffixes of NF`pXkq, we obtain precisely Theorem 5.44.

Variants of Theorem 5.44 also apply for different normal forms, e.g. the symmetric
Garside normal form. Indeed, for each integer k ě 0, let uk be the infimum of the braid
Xk, i.e. the smallest integer such that ∆´ukXk belongs to A`. According to [88], there
exists real constants δ and γ (with γ ą 0), that depend on the distribution µ, and such
that the limits uk

k
Ñ δ and |NFδ` pXkq|

k
Ñ γ almost surely hold.

If δ ą 0, then, almost surely, all but finitely many values of the random walk pXkqkě0

will be positive braids, i.e. belong to A`. In such a case, we only have to consider the
standard left Garside normal form on positive braids. However, if δ ď 0, then, almost
surely, infinitely many values of the random walk pXkqkě0 are not positive braids.

If ´γ ă δ ă 0, then, almost surely, all but finitely many of the braids Xk have a non-
empty positive part, whose length almost surely grows at a rate δ ´ γ. This proves that
the suffixes of NF`sympXkq have a stabilisation property. If δ ă ´γ, then, almost surely,
all but finitely many of the braids Xk are negative, i.e inverses of positive braids, and
therefore have an empty positive part. Then, the words NF´sympXkq begin with prefixes of
the form ∆ ¨ . . . ¨∆, whose length Lk almost surely grows at a rate ´γ´ δ. These prefixes
are followed by subwords w, whose length grows at a positive rate, and such that φLk∆ pwq
has a stabilisation property.

Finally, if δ “ ´γ, then, almost surely, infinitely many of the braids Xk have a
non-empty positive part, and infinitely many have an empty positive part. Therefore,
the suffixes of NF`sympXkq and the prefixes of NF´sympXkq certainly have no stabilisation
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property, even up to applying the conjugation morphism φ∆.

5.3.5 Deleting Occurrences of ∆

Proposition 5.31 proves that, for all integers i ě 1, both sequences preipNF`pXkqqkě0

and suf ipNFrpXkqqkě0 must almost surely converge towards the word ∆ ¨ . . . ¨∆. Hence,
we might informally describe the situation by saying that, when studying the asymptotic
behaviour of the sequences preipNF`pXkqqkě0 and suf ipNFrpXkqqkě0, we are “blinded”
by the occurrences of ∆. Although counting these occurrences of ∆ would provide some
relevant information about the sequences NF`pXkqkě0 and NFrpXkqkě0, the presence of
∆ letters obfuscates all informations that might be contained in the leftmost part of the
words NF`pXkq or in the rightmost part of NFrpXkq. Consequently, it is tempting to
consider the words NF`pXkq from which occurrences of ∆ have been deleted. This gives
rise to the notion of ∆-free Garside normal form, which is analogous to the words NFδ

`

defined above.

Definition 5.45 (∆-free Garside normal forms in the braid group A).
Let A` be an Artin–Tits monoid of spherical type. Let a P A be a braid. There exists an
integer infpaq P Z and a ∆-free, positive braid ã P A` such that a “ ã∆infpaq. The ∆-free
left Garside normal form of a is defined as the word NF∆

` paq :“ NF`pãq, and the ∆-free
right Garside normal form of a is defined as the word NF∆

r paq :“ NFrpãq.

Considering the ∆-free Garside normal forms instead on the usual Garside normal
forms consists in moving from the group A to the quotient space x∆y{A. Note that this
quotient space is itself a group if and only if ∆ belongs to the centre of A. In this new
framework, the above study of the random walk in the braid group and monoid has direct
implications. For the sake of simplicity, we step back here to the case where µ has range
tσ1, . . . , σnu. Using the same process as in the above section, we might easily generalise
these results to the case where µ has finite first moment.

Proposition 5.46.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pXkqkě0 be a left random walk in A` with Artin steps. For all integers i ě 1, the
sequences preipNF∆

` pXkqqkě0 and preipNF∆
r pXkqqkě0 are almost surely divergent.

Proof. It follows immediately from Proposition 5.35 that both sets Ω1 :“ tk ě 0 :
σ1 Ÿ NF∆

` pXkqu and Ω2 :“ tk ě 0 : σ2 Ÿ NF∆
` pXkqu are almost surely infinite, which

proves that preipNF∆
` pXkqqkě0 is almost surely divergent.

Furthermore, since pre1pNF∆
r pXkqq is a left-divisor of preipNF∆

` pXkqq for all k ě 0,
it also follows that pre1pNF∆

r pXkqq “ σ1 when k P Ω1 and that pre1pNF∆
r pXkqq “ σ2

when k P Ω2, which proves that preipNF∆
r pXkqqkě0 is almost surely divergent too.

Proposition 5.47.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
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and let pXkqkě0 be a left random walk in A` with Artin steps. For all integers i ě 1, the
sequences suf ipNF∆

` pXkqqkě0 and suf ipNF∆
r pXkqqkě0 are almost surely convergent.

Proof. First, since the random walk pXkqkě0 in the quotient group A{∆2 is transient,
we know that |NF∆

` pXkq| Ñ `8 almost surely. Moreover, if |NF∆
` pXkq| ě i, then

suf ipNF∆
` pXkqq “ suf ipNF`pXkqq, hence the convergence of suf ipNF∆

` pXkqqkě0 follows
from Theorem 5.40.

Second, Theorem 5.39 proves that fεpspkqq Ñ `8 almost surely, where ε denotes
the empty word. Consequently, it follows from the second part of Lemma 5.24 that the
sequence suf ipNF∆

r pXkqqkě0 converges almost surely.

Propositions 5.46 and 5.47 provide us with a different situation, which we sum up in
Fig. 5.48. Observe that this situation is different from that of standard Garside normal
forms, and analogous to that of heap monoids and groups.

Convergence of the words
NF∆

` pXkqkě0 NF∆
r pXkqkě0

prefix- 7 7

suffix- X X

Figure 5.48 – Convergence of the ∆-free normal forms of the random walk in the braid
monoid

5.4 The Limit of the Random Walk

5.4.1 The Limit as a Markov Process

In what follows, we consider a probability measure µ over the quotient group A`{∆2,
with finite first moment, and such that supppµq generates (positively) the whole group
A`{∆2. We will say that a left random walk X with step-distribution µ is a left random
walk with finite first moment on A`{∆2. Moreover, if supppµq is finite, then we say that
X is a left random walk with bounded steps on A`{∆2. In addition, we also consider the
stopping time τ and the convolution power µ˚τ introduced in the proof of Theorem 5.44,
such that tσ1, . . . , σnu Ď supppµ˚τ q.

Definition 5.49 (Stable limit).
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be
a left random walk with finite first moment on A`{∆2. We call stable limit of X the
left-infinite word limpXq “ . . . ¨ w´2 ¨ w´1 such that

@i ě 1, Dj ě 0, @k ě j, limpXq Ź suf ipNF`pXkqq,

if such a word exists (which almost surely happens).
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Note that, following the proof of Theorem 5.44, the left-random walks associated with
the probability measures µ and µ˚τ almost surely have the same stable limit. Henceforth,
we assume that µ “ µ˚τ , i.e. that tσ1, . . . , σnu Ď supppµq.

In what follows, we will also consider “shifted” left-random walks associated with µ, of
the form pXkpXκq

´1qkěκ, where κ is some non-negative integer. We denote such a random
walk by X

pκq, and denote by Xpκq

k the braid XkpXκq
´1. In particular, we have X “ X

p0q

and Xk “ X
p0q

k .

Lemma 5.50.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let s and t be two
proper simple braids, i.e. two elements of S˝ “ tx P A` : 1 ă` x ă` ∆u. There exists a
braid as,t of Artin length Λ such that rightpsq “ leftpas,tq and NF`pas,tq Ź t.

Proof. According to Proposition 5.21, there exists bilateral Garside paths u and v of
length D, respectively from rightpsq to tσ1u and from tσ1u to leftptq. Since Λ “ p2D `
1qλp∆q, the integer y “ Λ´ λpuq ´ λpvq ´ λptq is non-negative. Hence, the braid as,t :“
uσy1vt is a braid of Artin length λpas,tq “ Λ such that NF`pas,tq “ u ¨ pσ1q

y ¨ v ¨ t, which
completes the proof.

Proposition 5.51.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. Let µ be the step-distribution of X,
and let limpXq be the stable limit of X. For all braids s P S˝, we have PrlimpXq Ź ss ě
pminµqΛ.

Proof. Let t P S˝ be the rightmost letter of limpX
pΛq
q, and let s P S˝ be an arbitrary

proper simple braid. If XΛ “ at,s, then limpXq “ limpX
pΛq
q ¨NF`pat,sq Ź s. Since XΛ is

independent of the random walk X
pΛq, hence of limpX

pΛq
q, it follows that

PrlimpXq Ź ss ě
ÿ

tPS˝
PrlimpXpΛq

q Ź t, XΛ “ at,ss “
ÿ

tPS˝
PrlimpXpΛq

q Ź tsPrXΛ “ at,ss

ě
ÿ

tPS˝
PrlimpXpΛq

q Ź tspminµqΛ “ pminµqΛ.

Definition 5.52 (Stretched integer, suffix time, witness time and witness word).
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2.

We say that an integer k ě 1 is stretched in X if, for all integers j ă k, the word
NFδ

`pXkq is not a suffix of NFδ
`pXjq. If, in addition, the word NFδ

`pXkq is a suffix of
limpXq, then we say that k is a suffix time of X.
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We call witness time of X each integer k that is stretched in X and such that limpXq Ź
s ¨NFδ

`pXkq, where s is the rightmost letter of limpXq. We also denote by WX the set of
witness times for X, and by ωk the k-th smallest element of WX (if |WX| ě k).

Finally, we call witness words of X the word limpXq itself and the words NFδ
`pXkq such

that k is a witness time for X.

Proposition 5.53.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. Let s be an element of S˝, and let
x be the smallest witness word of X. We denote by Es the event tlimpXq Ź su.

The random variables px | Es X tω1 ă `8uq and plimpXqx´1 | Es X tω1 ă `8uq are
independent, and the random variables plimpXq | Esq and plimpXqx´1 | EsXtω1 ă `8uq

are identically distributed.

The random variables ptωi ´ ω1uiě2 | Es X tω1 ă `8uq and pω1 | Es X tω1 ă `8uq are
independent, and the random variables ptωiuiě1 | Esq and ptωi´ω1uiě2 | EsXtω1 ă `8uq

are identically distributed.

Proof. For all integers k ě 0, the event Es X tω1 “ ku holds if and only if:

• the braid s is the last letter of the word limpX
pkq
q;

• we have both leftpδpXkqq Ď rightpsq and NFδ
`pXkq Ź s;

• the integer k is stretched in X and, for all integers j P t1, . . . , k ´ 1u that are
stretched in X, the word s ¨NFδ

`pXjq is not a suffix of s ¨NFδ
`pXkq.

Hence, the variable pXpω1q
| Es X tω1 ă `8uq is independent of ppXjq0ďjďω1 | Es X tω1 ă

`8uq. Moreover, it also follows that pXpω1q
| Es X tω1 ă `8uq follows the same law as

pX | Esq. This completes the proof.

It follows directly from Proposition 5.53 that the random variable limpXq can be
described as a Markov process.

Definition 5.54 (Stable Markov process).
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2.

Let us first choose a simple braid s P S˝ with probability s ÞÑ PrlimpXq Ź ss. Then, for
each integer k ě 1, we choose a (finite or infinite) braid word xk with probability

Prxk is the smallest witness word of X | limpXq Ź ss.

Finally, we denote by x8 the product . . . ¨ x2 ¨ x1, where the product is infinite if every
word xk is finite, or ends with the first infinite word xk we choose.

The random variable x8 is called the stable Markov process for the law µ.
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Corollary 5.55.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be
a left random walk with finite first moment on A`{∆2. The stable limit limpXq and the
stable Markov process x8 are identically distributed.

5.4.2 The Stable Markov Process is Infinite

We aim now at proving that the factorisation x8 “ . . . ¨ x2 ¨ x1 of the stable Markov
process contains infinitely many factors of finite expected length.

Lemma 5.56.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. Let k be a suffix time of X, and let
k1 be some integer such that k1 ą k. The integer k1 is a suffix time of X if and only if
k1 ´ k is a suffix time of the shifted random walk X

pkq.

Proof. Since k is a suffix time of X, it follows that limpXq “ limpX
pkq
q ¨NFδ

`pXkq.

Let us first assume that k1 is a suffix time of X. The word NFδ
`pXkq must be a suffix

of NFδ
`pXk1q, hence we can factor NFδ

`pXk1q as the product NFδ
`pXk1q “ NFδ

`pX
pkq

k1 q ¨

NFδ
`pXkq, and therefore

limpX
pkq
q ¨NFδ

`pXkq “ limpXq ŹNFδ
`pXk1q “ NFδ

`pX
pkq

k1 q ¨NFδ
`pXkq,

which proves that NFδ
`pX

pkq

k1 q is a suffix of limpX
pkq
q.

In addition, consider some integer j P tk, . . . , k1u such that NFδ
`pX

pkq

j q ŹNFδ
`pX

pkq

k1 q.
Since

NFδ
`pXjq “ NFδ

`pX
pkq

j q ¨NFδ
`pXkq ŹNFδ

`pX
pkq

k1 q ¨NFδ
`pXkq “ NFδ

`pXk1q,

it follows that j “ k1. This proves that k1 ´ k is stretched in the random walk X
pkq, and

therefore is a suffix time of Xpkq.

Conversely, let us assume that k1 ´ k is a suffix time of the shifted random walk
X
pkq. Since NFδ

`pX
pkq

k1 q is a suffix of limpX
pkq
q, it follows that NFδ

`pX
pkq

k1 q ¨NFδ
`pXkq is a

left Garside word, and therefore that NFδ
`pXk1q “ NFδ

`pX
pkq

k1 q ¨ NFδ
`pXkq is a suffix of

limpXq “ limpX
pkq
q ¨NFδ

`pXkq.

Moreover, consider some integer j P t0, . . . , k1u. If j ă k, then NFδ
`pXkq is not a suffix

of NFδ
`pXjq, hence neither is NFδ

`pXk1q. If k ď j ď k1 and if NFδ
`pXk1q is a suffix of

NFδ
`pXjq, then NFδ

`pXkq is a suffix of NFδ
`pXjq too. Hence, we can factor NFδ

`pXjq as
the product

NFδ
`pXjq “ NFδ

`pX
pkq

j q ¨NFδ
`pXkq ŹNFδ

`pXk1q “ NFδ
`pX

pkq

k1 q ¨NFδ
`pXkq,
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and therefore NFδ
`pX

pkq

k1 q is a suffix of NFδ
`pX

pkq

j q. It follows that j “ k1, which shows
that k1 is a suffix time of X.

Corollary 5.57.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. Let k be a witness time of X, and
let k1 be some integer such that k1 ą k. The integer k1 is a witness time of X if and only
if k1 ´ k is a witness time of the shifted random walk X

pkq.

Proof. If k1 is a witness time of X, then

limpX
pkq
q ¨NFδ

`pXkq “ limpXq Ź s ¨NFδ
`pXk1q “ s ¨NFδ

`pX
pkq

k1 q ¨NFδ
`pXkq,

hence limpX
pkq
q Ź s ¨NFδ

`pX
pkq

k1 q, and k1 ´ k is a witness time of Xpkq.

Conversely, if k1 ´ k is a witness time of Xpkq, then NFδ
`pX

pkq

k1 q Ź s, hence

limpXq “ limpX
pkq
q ¨NFδ

`pXkq Ź s ¨NFδ
`pX

pkq

k1 q ¨NFδ
`pXkq “ s ¨NFδ

`pXk1q,

and k1 is a witness time of X.

Corollary 5.58.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2.

Let us define ω0, and let ω1 ă ω2 ă . . . be the witness times of X. In addition, for all
integers k ě 1, consider the word xk :“ NFδ

`pX
pωk´1q

ωk
q. The (finite or infinite product)

. . . ¨ x2 ¨ x1 is equal to limpXq, and for each integer k ě 1, the word xk is the smallest
witness word of the shifted random walk X

pqωk´1.

Lemma 5.59.
For all braids a P A` and σ P tσ1, . . . , σnu, we have λpδpaqq ´ 2λp∆q ď λpδpaσqq ď
λpδpaqq ` 1 and λpδpaqq ´ 2λp∆q ď λpδpσaqq ď λpδpaqq ` 1.

Proof. Consider the ∆-free braid b P A` and the integer z P t0, 1u such that δpaq “ b∆z.
We define τ :“ φz∆pσq, which yields the equality δpaσq “ δpbτ∆zq.

If bτ ěr ∆, then b ěr ∆τ´1. Hence, defining c :“ bτ∆´1, we know that c is ∆-
free and that δpaσq “ δpc∆z`1q, which proves that λpδpaσqq ě λpcq ě λpbq ´ λp∆q ě
λpδpaqq ´ 2λp∆q. However, if bτ is ∆-free, then δpaσq “ bτ∆z, and therefore we also
have λpδpaσqq “ λpbτ∆zq ě λpbq ě λpδpaqq´2λp∆q. The converse inequality λpδpaσqq ď
λpδpaqq ` 1 is immediate.

An analogous argument shows that λpδpaqq ´ 2λp∆q ď λpδpσaqq ď λpδpaqq ` 1.
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Proposition 5.60.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2.

For all braids s P S˝, we have Er|WX| | limpXq Ź ss “ `8. Moreover, if X has bounded
steps, then lim infkÑ`8

1
k
Er|WX X t0, . . . , ku| | limpXq Ź ss ą 0.

Proof. Let k ě 0 be some integer, and let Ek be the event t@j P t0, . . . , ku, λpδpXpΛq

k qq ě

λpδpX
pΛq

j qqu. Following Lemma 5.34, there exists a braid a of Artin length Λ`1 such that

σ1 ŸNFδ
`paX

pΛq

k q. Let a´Λ´1 . . . a´2a´1 be a factorisation of a into the Artin generators
σi.

Then, let t P S˝ be the last letter of the word NFδ
`paX

pΛq

k q. Lemma 5.50 proves
that there exists some braids b and c of Artin length Λ such that leftpbq Ď rightptq,
NF`pbqŹ s, leftpcq Ď rightpsq and NF`pcqŹσ1. Let b´Λ . . . b´2b´1 and c´Λ . . . c´2c´1 be
respective factorisations of b and c into Artin generators.

Finally, consider the integer Π :“ Λ` 2` 2p2Λ` 1qλp∆q, as well as the events

F :“
ŞΛ´1
i“0 tYi “ b´i´1u; G :“

ŞΛ
i“0tYk`Λ`i “ a´i´1u;

H :“
ŞΠ
i“1tYk`2Λ`i “ σ1u; I :“

ŞΛ
i“1tYk`Π`2Λ`i “ c´iu and

J :“ tlimpX
pk`Π`3Λ`1q

q Ź su.

By construction, the events Ek, F , G, H, I and J are independent. It follows, using
Proposition 5.51, that PrEk X F XGXH X I X Js ě pminµqΠ`3Λ`1PrEks.

We prove now that, if the event Ek X F X G X H X I X J is satisfied, then k `
Π ` 3Λ ` 1 P WX. Indeed, it follows from F X G X H X I that NFδ

`pXk`Π`3Λ`1q “

c ¨ pσ1q
Π ¨NFδ

`paX
pΛq

k q ¨ b Ź s, where pσ1q
Π denotes the word with Π letters σ1 in a row.

Since leftpcq Ď rightpsq and since limpX
pk`Π`3Λ`1q

qŹ s under the event J , it also follows
that limpXq “ limpX

pk`Π`3Λ`1q
q ¨NFδ

`pXk`Π`3Λ`1q Ź s ¨NFδ
`pXk`Π`3Λ`1q.

Hence, it remains to prove that k ` Π ` 3Λ ` 1 is stretched in X. We do so by
showing that λpδpXk`Π`3Λ`1qq ą λpδpXjqq whenever 0 ď j ď k`Π` 3Λ. We proceed by
distinguishing cases:

• if 0 ď j ď Λ, then λpδpXjqq ď j ď Λ;

• if Λ ď j ď Λ ` k, then Lemma 5.59 shows that λpδpXjqq ď λpδpX
pΛq

j´Λqq ` Λ ď

λpδpX
pΛq

k qq ` Λ;

• if Λ` k ď j ď 2Λ` k ` 1, then λpδpXjqq ď λpδpX
pΛq

k qq ` 2Λ` 1;
• if 2Λ`k`1 ď j ď Π`3Λ`k`1, then λpδpXjqq “ pj´2Λ´k´1q`λpδpX2Λ`k`1qq.

In particular, note that λpδpXΠ`3Λ`k`1qq ą δpXjq whenever 2Λ`k`1 ď j ď Π`3Λ`k.
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In addition, Lemma 5.59 proves that

λpδpXΠ`3Λ`k`1qq “ λpδpX2Λ`k`1qq ` Π` Λ

ě λpδpX
pΛq

k qq ` Π` Λ´ 2p2Λ` 1qλp∆q ą λpδpX
pΛq

k qq ` 2Λ` 1,

and therefore that λpδpXΠ`3Λ`k`1qq ą δpXjq if 0 ď j ď 2Λ` k ` 1 too. This proves that
k is a witness time in X.

Moreover, remember that the group A`{∆2 contains a free subgroup and that the
distribution µ has a finite first moment. Hence, the random walk pδpXpΛq

k qqkě0 has a
positive escape rate. Therefore, there exists positive real constants u and v such that the
event L :“ t@k ě 0, k

u
ď λpδpX

pΛq

k qq ě uku holds with probability v.

If L is true, then
řk
i“0 1Ei ě

lnpkq
2 lnpu`1q

. If, in addition, the set supppµq is finite, then
řk
i“0 1Ei ě

k
uM

, where M :“ maxtλpδpβqq : β P supppµqu. This shows that
řk
i“0 PrEis ě

lnpkqv
2 lnpu`1q

, and that
řk
i“0 PrEis ě

kv
uM

if supppµq is finite. Since

Er|WX X t0, . . . , π ` 3Λ` 1` ku| ¨ 1limpXqŹss ě
ÿ

jďk

PrEj X F XGXH X I X Js

ě pminµqΠ`3Λ`1
k
ÿ

j“0

PrEjs,

Proposition 5.60 follows.

Theorem 5.61.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. The random walk X almost surely
has infinitely many witness times. Moreover, if X has bounded steps, then Erω1s ă `8

and Er|x1|s ă `8.

Proof. Consider some braid s P S˝, and let ps denote the probability Prω1 “ `8 |

limpXqŹss. If ps ą 0, then it comes immediately that Er|WX| | limpXqŹss “ 1´ps
ps
ă `8,

in contradiction with Proposition 5.60. This proves that Ws is almost surely infinite.

We assume now that supppµq is finite. Consider the generating function f : z ÞÑ
Erzω1 | limpXq Ź ss. According to Proposition 5.60, there exists an integer L ě 0 and a
real number q ą 0 such that Er|WXXt0, . . . , ku| | limpXq Ź ss ą qk for all k ě L. Hence,
for all z P p0, 1q, we have

1

1´ fpzq
“

ÿ

iě0

fpzqi “ E

«

1`
ÿ

iě1

zωi | limpXq Ź s

ff

“ 1` E

«

ÿ

jPWX

zj | limpXq Ź s

ff

ě 1`
ÿ

kěL

qzk “ 1` q
zL

1´ z
, i.e.

fpzq ě
qzL

p1´ zq ` qzL
.
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Since f is convex, it follows that f is continuous and differentiable at z “ 1, with
fp1q “ 1 and f 1p1q ď g1p1q, where g : z ÞÑ qzL

2p1´zq`qzL
. It follows that Erω1 | limpXq Ź ss “

f 1p1q ď g1p1q “ 2
q
ă `8, and therefore that Erω1s ă `8. Finally, observe that |x1| ď

λpXω1q ďMω1, where M :“ maxtλpβq : β P supppµqu. It follows that Er|x1|s ă `8.

5.4.3 Ergodicity

Definition 5.62 (t-witness time and t-witness word).
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. Consider some braid t P S˝. We call
t-witness time of X each integer k that is a suffix time in X and such that tŸNFδ

`pXkq.
In addition, we denote by Wt

X the set of t-witness times of X.

We also call t-witness words of X the word limpXq itself and each word NFδ
`pXkq where

k is a t-witness time for X.

Lemma 5.63.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with finite first moment on A`{∆2. Let k be a suffix time in X, and let
k1 be some integer such that k1 ą k. The integer k1 is a t-witness time of X if and only
if k1 ´ k is a t-witness time of Xpkq.

Proof. Lemma 5.56 indicates that k1 is a suffix time in X if and only if k1 ´ k is a suffix
time in X

pkq. Hence, if either k1 PWX or k1 ´ k PW
X
pkq , we know that k1 is a suffix time

in X, that k1´ k is a suffix time in X
pkq and that tŸNFδ

`pX
pkq

k1 q ¨NFδ
`pXkq “ NFδ

`pXk1q,
which proves that k1 is a t-witness time of X and that k1 ´ k is a t-witness time of Xpkq.

Proposition 5.64.
Let A` be an irreducible Artin–Tits monoid of spherical type with n generators, and
let X “ pXkqkě0 be a left random walk with finite first moment on A`{∆2. Moreover,
consider some braid t P S˝ and some set T Ď t1, . . . , nu. Let y be the smallest t-witness
word of X, let s be the rightmost letter of limpXq, and let ET be the event tT Ď rightpsqu.

The word y is almost surely finite. In addition, the random variables py | ET X t|y| ă
`8uq and plimpXqy´1 | ET X t|y| ă `8uq are independent, and the random variables
plimpXq | Eleftptqq and plimpXqy´1 | ET X t|y| ă `8uq are identically distributed.

Furthermore, if X has bounded steps, then Er|y|s ă `8.

Proof. Let s P S˝ be some proper simple braid, and let . . . ¨ x2 ¨ x1 be the factorisation
of limpXq into witness words of X, i.e. into words xi :“ NFδ

`pX
pωi´1q

ωi
q, where ω0 “ 0 and

ω1 ă ω2 ă . . . are the witness times of X.
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We first prove that Er|y|s ă `8. If s ‰ t, let a and b be shortest bilateral Garside
paths from rightpsq to leftptq and from rightptq to leftpsq. They cannot contain the
letter s. With probability at least PrlimpXq Ź sspminµqλpatbsq, we have simultaneously
NF`pXλptbsqq “ t ¨ b ¨ s, NF`pXλpatbsqq “ a ¨ t ¨ b ¨ s, and limpXq Ź s ¨ a ¨ t ¨ b ¨ s. In that
case, it follows that x1 “ a ¨ t ¨ b ¨ sŹ t ¨ b ¨ s “ y.

However, if s “ t, then, with probability at least PrlimpXq Ź sspminµqλpsq, we have
Xλpsq “ s and limpXq Ź s ¨ s, whence x1 “ s “ y.

Hence, there exists a positive real number q ą 0 such that Prx1Źy | limpXqŹ ss ą q.
Moreover, consider the random variable a :“ mintu : xu¨. . .¨x1Źyu. For all i ě 1, the event

ta “ i | a ě iu depends only on the shifted random walk X
pωi´1q, hence is independent

from the random variable pXjq0ďjďωi´1
. Therefore, the variable a is dominated by an

exponential law of parameter 1 ´ q, and therefore a is almost surely finite. Since each
word xi is almost surely finite, the word y itself is almost surely finite.

Moreover, if µ has finite support, then Theorem 5.61 states that Er|x1|s ă `8, and
since Eras ď q

1´q
, it follows that Er|y|s ď Er|x1| | a “ 1s`pEras´1qEr|x1| | a ą 1s ă `8.

Then, for all integers k ě 1, let Fk denote the event tk “ minWt
Xu. We just proved

that there almost surely exists some integer k ě 1 such that Fk holds. Moreover, the
event ET X Fk holds if and only if:

• there exists some braid s P S˝ such that limpX
pkq
q Ź s and rightpsq Ě leftptq;

• there exists some braid u P S˝ such that NFδ
`pXkq Ź u and rightpuq Ě T ;

• we have tŸNFδ
`pXkq;

• the integer k is stretched in X;
• for all integers j P t1, . . . , k ´ 1u that are stretched in X, the word NFδ

`pXjq is not
a suffix of NFδ

`pXkq.

Hence, the random variables px | ET X Fkq and plimpXqx´1 | ET X Fkq are independent,
and the random variables plimpXq | Eleftptqq and plimpXqx´1 | ET X Fkq are identically
distributed.

It follows directly from Proposition 5.64 that the random variable limpXq can be
described as an alternative Markov process.

Definition 5.65 (Alternative stable Markov process).
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be
a left random walk with finite first moment on A`{∆2. Consider the braid t0 “ 1, as
well as a sequence of braids ptkqkě1 chosen independently and uniformly at random in the
set S˝. Then, for each integer k ě 1, we choose a finite braid word y

k
with probability

Pry
k
is the smallest tk-witness word of limpXq | Eleftptk´1qs. Finally, we denote by y8 the

product . . . ¨ y
2
¨ y

1
, where the product is infinite if every word y

k
is finite, or ends with

the first infinite word y
k
we choose.
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The random variable y
8

is called alternative stable Markov process for the law µ.

Corollary 5.66.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be
a left random walk with finite first moment on A`{∆2. The stable limit limpXq and the
alternative stable Markov process y

8
are identically distributed.

Let G8n be the set of left-infinite ∆-free Garside words. The set G8n , equipped with the
product topology, is a compact set. Let E be a Borel subset of G8n that is shift-invariant,
i.e. such that E “ t. . . ¨ s3 ¨ s2 : . . . ¨ s3 ¨ s2 ¨ s1 P Eu.

Theorem 5.67.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with bounded steps on A`{∆2. The stable limit limpXq is ergodic, i.e.
PrlimpXq P Es P t0, 1u for all shift-invariant Borel subsets E of G8n .

Proof. For all braids s P S˝, let us denote by Ws the set tx : Prx is the smallest s-witness
word of limpXqs ą 0u. We also denote by W the set

Ť

sPS˝ Ws, by p the positive constant
1
|S˝| , and by ε the empty word. Then, consider the probabilistic graph Γ whose

• state space is SΓ :“ tpε, 0,1qu Y tpx, k, sq : s P S˝,x PWs, 1 ď k ď |x|u;
• initial state is pε, 0,1q;
• probabilistic transition function τ : SΓ ˆ SΓ ÞÑ R is such that

τ : ppx, k, sq, py, `, tqq ÞÑ 1 if x “ y, s “ t and ` “ k ` 1

ÞÑ p Pry is the smallest t-witness word
p Prof limpXq | Eleftpsqs if k “ |x| and ` “ 1

ÞÑ 0 otherwise.

Let S :“ pxpiq, kpiq, spiqqiě0 be the sequence of states followed by an infinite run in Γ. By
construction, and due to Proposition 5.64, each state besides pε, 0,1q is positive recurrent.
In addition, since σ1 P Wσ1 , the graph Γ is contains a loop around the state pσ1, 1, σ1q

with positive weight. Hence, Γ is aperiodic, and the sequence S follows an ergodic law.

Moreover, let ϕ : WN ÞÑ G8n be the function such that ϕ : pxpiq, kpiq, spiqqiě0 ÞÑ . . . ¨

x
piq

´kpiq
¨ . . . ¨x

p2q

´kp2q
¨x
p1q

´kp1q
, where xpiq

´kpiq
denotes the kpiq-th rightmost letter of the word xpiq.

The random variable ϕpSq also follows an ergodic law, and Corollary 5.66 proves that
limpXq and ϕpSq follow the same law, which completes the proof.

5.4.4 Consequences of Ergodicity

From this point on, we assume that the probability distribution µ has a finite support,
i.e. we focus on left random walks with bounded steps. In particular, Theorem 5.67
applies. We prove now that all ∆-free left Garside words appear in the limit limpXq with
a positive density, and that their rightmost occurrence cannot be very far from the right
end of limpXq.
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Proposition 5.68.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0

be a left random walk with bounded steps on A`{∆2. Let a be a ∆-free left Garside
word, and let dapkq be the density of a factors among the k last letters of limpXq, i.e.
dapkq :“ 1

k
|tb : limpXqŹ a ¨b and |b| ď ku|. There exists a positive real constant Da ą 0

such that dapkq Ñ Da almost surely.

Proof. Let Γ be the graph used in the proof of Theorem 5.67, and let π be the (unique)
invariant probability on Γ. For each sequence of states S :“ pxi, ki, siq0ďiď|a| P S

|a|`1
Γ , we

denote by ΠpSq the product πpx0, k0, s0q
ś|a|´1

i“0 τppxi, ki, siq, pxi`1, ki`1, si`1qq and by ϕpSq
the word x|a|

´k|a|
¨ . . . ¨ x2

´k2 ¨ x1
´k1 . Since Γ is an ergodic graph, it follows that dapkq Ñ Da,

where
Da :“

ÿ

S:ϕpSq“a

ΠpSq ą 0.

Proposition 5.69.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be
a left random walk with bounded steps on A`{∆2. Let a be a ∆-free left Garside word,
and let da be the depth of the word a in the limit limpXq, i.e. da :“ mint|w| : aŸw and
limpXq Źwu. We have Erdas ă `8.

Proof. Let a´` ¨ . . . ¨ a´2 ¨ a´1 be the letters of the word a. Then, let us focus on the
braids ptiqiě0 and words py

i
qiě1 chosen when building the alternative Markov process in

Definition 5.65. Finally, consider the set La :“ tk ě 0 : tk``1 “ a´1 and tk``i “ y
k``i

“

a´i for all i P t2, . . . , `uu.

The random variables 1kPLa are i.i.d. Bernoulli variables whose success probability is
a positive real constant p ą 0. It follows that ErminLas “

1
p
, hence that

Erdas ď Er|y` ¨ . . . ¨ y1| | 0 P Las ` pErminLas ´ 1qEr|y` ¨ . . . ¨ y1| | 0 R Las ă `8.

In addition, let us define here the notion of penetration distance, mentioned and
studied in [55, 56].

Definition 5.70 (Penetration distance).
Let A` be an Artin–Tits monoid of spherical type, let w be a ∆-free (finite or left-infinite)
left Garside word, and let σ be an Artin generator of A`. Consider the factorisations of
w into a product w “ x ¨ y such that either:

• x “ ε and w “ y;
• x is non-empty, y is finite and leftpyσq Ď rightpx´1q;
• x is non-empty, y is finite and ∆ divides yσ.
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The penetration distance of the braid σ in the word w, denoted by pdpw, σq, is defined
as the smallest possible length of such a suffix y.

Then, we prove variants of [55, Conjecture 3.3], when considering the distribution of
the stable limit.

Proposition 5.71.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with bounded steps on A`{∆2. The expected penetration distance into
the stable limit of X is uniformly bounded, i.e.

@s P S˝,ErpdplimpXq, sqs ă `8.

Proof. Let us denote by b the simple braid σ´1
1 ∆. We prove that pdplimpXq, sq ď db.

Indeed, consider a factorisation of limpXq into a product a ¨ b ¨ c.

If ∆ divides bcs, it comes immediately that pdplimpXq, sq ď |b ¨ c|. However, if
bcs is ∆-free, then tσ2, . . . , σnu “ leftpbq Ď leftpbcsq Ĺ tσ1, . . . , σnu. It follows that
leftpbcsq “ leftpbq Ď rightpa´1q, and that pdplimpXq, sq ď |b ¨ c|. By choosing the
suffix c to be as small as possible, we complete the proof.

Corollary 5.72.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let µ be a probability
measure on A` whose range is finite and generates A` as a monoid. In addition, let k be
a positive integer, and let µ˚k be the k-th convolution power of µ. The expected penetration
distance into a braid β chosen according to µ˚k is asymptotically dominated by k, i.e.

@s P S˝, 1

k
Eµ˚krpdpNF`pβq, sqs Ñ 0 when k Ñ `8.

Proof. Let X “ pXuquě0 be the left random walk with step-distribution µ: the braid Xk

is chosen according to the distribution µ˚k. Moreover, for all k ě 1 and s P S˝, consider
the function φs

k : X ÞÑ 1
k
pdpNF`pXkq, sq. In addition, let sk be the longest common suffix

of NF`pXkq and of limpXq, and let M :“ maxt|NF`pxq| : µpxq ą 0u.

By construction of limpXq, we know that sk Ñ `8 almost surely when k Ñ `8.
Moreover, if sk ě pdplimpXq, sq ` 1, then pdplimpXq, sq “ pdpNF`pXkq, sq. It follows
that φs

kpXq is almost surely asymptotically equivalent to 1
k
pdplimpXq, sq, and therefore

that φs
kpXq Ñ 0 almost surely when k Ñ `8. Since 0 ď φs

k ď M , the dominated
convergence theorem proves that 1

k
ErpdpNF`pXkq, sqs “ Erφs

kpXqs Ñ 0 when k Ñ `8,
which completes the proof.

Note that Corollary 5.72 applies in particular when µ is the uniform probability dis-
tribution on the set of generators tσ1, . . . , σnu. Consequently, the expected cost Ck of
computing the Garside normal form of a braid of length k, whose k factors have been
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chosen uniformly at random one after the other, is asymptotically dominated by k2.
However, instead of only showing that Ck “ opk2q, we might have wished to prove that
Ck “ Opkq. A first possible step towards this result is Corollary 5.73.

Corollary 5.73.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with bounded steps on A`{∆2. Let ωi be the i-th smallest witness time
of X. If ω1 has a finite second moment, i.e. if Erω2

1s ă `8, then

sup
sPS˝

sup
kě1

ErpdpNF`pXkq, sqs ă `8.

Proof. Let b be the braid σ´1∆, and let b ¨ p´Λ ¨ . . . ¨ p´1 “ p be a b-blocking pattern. In
addition, let t be the rightmost letter of limpXq, let u be a bilateral Garside path of length
Λ that goes from rightpp´1q to leftptq, and let Θ denote the integer 2pΛ` 1q “ |p ¨u ¨ t|.
Then, consider the left Garside words pziqiě1 such that NFδ

`pXωiΘq “ zi ¨ . . . ¨ z1, and the
integers ζi :“ ωiΘ ´ ωpi´1qΘ, as well as the set P :“ ti ě 1 : zi Źp ¨u ¨ tu and the random
variable θi :“ 1iPP .

By construction, the random variables pzi, ζi, θiqiě1 are i.i.d variables, and θi is a non-
zero Bernoulli variable. In addition, since ω1 has a finite second moment, the random
variable ζ1 “ ωΘ has a finite second moment too.

Now, let us choose some integer k ě 0, and let us define the integer M :“ maxtλpβq :
β P supppµqu. In addition, consider the smallest integer u ě 0 such that ωpu`1qΘ ě k, as
well as the integer λu :“ |P Xt1, . . . , uu| “

řu
i“1 1iPP . For each integer i P P Xt1, . . . , uu,

the blocking pattern p is a subword of zi. Hence, we factor the word NFδ
`pXωΘu

q “

zu ¨ . . . ¨ z1 into a product a0 ¨ p ¨ a1 ¨ p ¨ . . . ¨ p ¨ aλu , where aλu is as short as possible.

An immediate induction shows that, for all j ď λu{M , the word aMj ¨ p ¨ . . . ¨ p ¨ aλu
is a suffix of NFδ

`pXωuΘ`jq. Consequently, if Mζu ă λu, and since 0 ď k ´ ωuΘ ă ζu`1, it
follows that NFδ

`pXkq Ź p ¨ aλu , and therefore that pdpXk, sq ď dp.

From this point on, we assume that Mζu ě λu. Let us define the real numbers U :“
Y

k
2Erζ1s

]

and V :“ U
2
Erθ1s. Moreover, since Mζu ě λu, it follows that either u ă U , or

Mζu ą V , or λU ď V . If k ą 2Erζ1s, then 4Erζ1sU ě k, hence direct computations show
that

Pru ă U s “ PrωUΘ ě ks ď Prζ1 ` . . .` ζU ě 2UErζ1ss ď
UVarpζ1q

U2Erζ1s
2
ď

4Varpζ1q

Erζ1s
2k

;

PrλU ď V s ď
UVarpθ1q

V 2
ď

16Varpθ1qErζ1s

Erθ1sk
;

PrMζu ą V s ď

k
ÿ

v“1

PrMζv ą V s “ kPrMζ1 ą V s ď
kM2Erζ2

1 s

V 2
ď

64M2Erζ2
1 sErζ1s

2

Erθ1sk
.
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Moreover, we still know that pdpXk, sq ď λpXkq ďMk. It follows that

ErpdpXk, sqs ď Erdp ¨ 1Mζuăλus ` 2MErζ1 ¨ 1kď2Erζ1ss `

MkE
“

p1uăU ` 1λUďV ` 1MζuąV q1Mζuěλu ¨ 1ką2Erζ1s
‰

ď Erdps ` 2MErζ1s `MkEr1uăU ¨ 1ką2Erζ1ss `

MkEr1λUďV ¨ 1ką2Erζ1ss `MkEr1MζuąV ¨ 1ką2Erζ1ss

ď Erdps ` 2MErζ1s `
4MVarpζ1q

Erζ1s
2

`

16MVarpθ1qErζ1s

Erθ1s
`

64M3Erζ2
1 sErζ1s

2

Erθ1s
,

which completes the proof.

5.4.5 The Stable Suffix Grows Quickly

Provided that both the sequences of words pNFδ
`pXkqqkě0 and pspkqqkě0 tend to grow

at linear speed, and that each word spkq is necessarily a suffix of the associated word
NFδ

`pXkq, a natural question is that of comparing the growth speeds of both these families
of words. In particular, whereas it is known that NFδ

`pXkq „ γk (almost surely and in L1)
for some positive constant γ, we have only proved so far that there exists some positive
constants α and β such that lim inf 1

k
|spkq| ě α and lim sup 1

k
|spkq| ď β (almost surely

and in L1).

However, when µ has finite support, the above results of Section 5.4 allow us to derive
much more precise results, which we state now.

Theorem 5.74.
Let A` be an irreducible Artin–Tits monoid of spherical type, and let X “ pXkqkě0 be a
left random walk with bounded steps on A`{∆2.

For all integers k ě 0, let spkq be the largest common suffix of the words pXjqjěk, i.e.
the “invariant suffix after k steps”. When k Ñ `8, the sequence of ratios |spkq|

k
converges

towards γ :“ lim 1
k
|NFδ

`pXkq| almost surely and in L1.

Proof. First, recall that, as mentioned in Section 5.4.3, the constant γ is well-defined and
positive. Then, consider some blocking pattern p, and let s P S˝ be some proper simple
braid. From now on, we assume that limpXq Ź s, and implicitly condition all our events
by the fact that limpXq Ź s.

We proved in Section 5.4.3 that there exists witness times ω1 ă ω2 ă . . . such that
Erωi ´ ωi´1s ă `8, where ω0 :“ 0, and such that each word NFδ

`pX
pωi´1q

ωi
q contains an

occurrence of p. In addition, we even proved that the random variables pωi ´ ωi´1q are
i.i.d.



206 5.5. Experimental Data in the Braid Monoid B`n

Now, consider some real constant ε P p0, 1q and some positive integer I, and let EI
denote the event t@i ě I, ωi ´ ωi´1 ă εiu. Since the variables pωi ´ ωi´1q are i.i.d. L1

random variables, it follows that limPrEIs Ñ 1 when I Ñ `8, and therefore there almost
surely exists some integer I ě 1 such that EI holds.

In addition, consider some integer i ě I, some integer k P tωi, . . . , ωi`1u, and η :“
tp1´ εqiu. If EI holds, then

NFδ
`pXkq ŹNFδ

`pXωi´kq ŹNFδ
`pXωηq,

which proves that spωiq ŹNFδ
`pXωηq. Since some event EI almost surely holds, it indeed

follows that
lim inf

|spωiq|

|NFδ
`pXωηq|

ě 1

almost surely when iÑ `8. Moreover, when iÑ `8, we almost surely have ωi „ iErω1s,
and therefore |NFδ

`pXωηq| „ γηErω1s and lim inf |spωiq|
ωi`1

ě γ.

Then, if k is an integer, and if k Ñ `8, let i :“ maxtj : k ě ωju. On the one hand,
we have |spkq|

k
ě

|spωiq|
ωi`1

. On the other hand, we have |spkq|
k
ď

|NFδ` pXkq|

k
Ñ γ. It follows that

|spkq| „ γk almost surely.

In addition, since the random variables spkq take values inside the closed interval
r0, 1s, the dominated convergence theorem even proves that Erspkqs Ñ γ when k Ñ `8,
which completes the proof.

In particular, since |NFδ
`pXkq| ě |spkq|, it comes immediately that lim sup 1

k
|spkq| ď γ.

Consequently, Theorem 5.74 can be rephrased by saying that, asymptotically, the stable
suffixes spkq grow as fast as possible.

5.5 Experimental Data in the Braid Monoid B`
n

We provide now some experimental data obtained for the random walk with distribution
µ uniform over the set of generators Σn :“ tσ1, . . . , σn´1u, when 4 ď n ď 7.

For each value of n, we perform the following experiment. We simulate the start of
100000 independent random walks, by drawing the first 12000 values of pYkqkě0 at random.
For each of them, and each integer k P t1, . . . , 10000u, we approximate the “invariant
suffix” spkq to be the common suffix of the words NF`pXjqkďjď12000. Figure 5.75 presents
mean values of the ratio rnpkq :“ |spkq|

k
, where k ranges from 1 to 10000.

Observe that, if Theorems 5.36 and 5.40 provide a lower bound r̃n on the value of
lim infkÑ`8 rnpkq. For n ě 4, this lower bound must be smaller than pminµq2Λ ď pn ´
1q´9npn´1q ď 3 ¨10´52. Hence, there is still a huge margin between the above experimental
approximations of rn and the only theoretical lower bound r̃n that we computed so far.
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r4pkq

r5pkq
r6pkq

r7pkq

2 4 6 8 10
0.1

0.12

0.14
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0.18

0.2

k (ˆ1000)

Figure 5.75 – Estimating rnpkq — experimental data for n P t4, 5, 6, 7u

Theorem 5.74 means exactly that the random variables dpkq :“
|NFδ` pXkq|´|spkq|

k
must

converge towards 0. Nevertheless, the above-mentioned experiments, which provided us
with Fig. 5.75, indicate that dp5000q « 0.119 in B4, whereas r4p5000q « 0.214. Hence,
the convergence of dpkq towards 0 is blatantly slow, and this suggests that computing
the value of γ with great precision is to be a difficult task.

While performing the above experiment, we also collected some statistical data about
the invariant suffix. Let s be the pointwise limit of the suffixes spkq, and let s´j denote
the j-th rightmost letter of s. Figure 5.76 indicates approximate values of:

• the “typical cardinality” of right sets of the letters of s, i.e.

crn :“ lim
jÑ`8

Er|rightps´jq|s;

• the “typical cardinality” of left sets of the letters of s, i.e.

c`n :“ lim
jÑ`8

Er|leftps´jq|s.

These values were obtained by approximating s to be sp10000q, then crn to be the mean
value of |rightps´jq| when 50 ď j ď 100, and c`n to be the mean value of |leftps´jq| when
50 ď j ď 100. Since the letters of s must all satisfy the relation leftps´jq Ď rightps´j´1q,
it comes with no surprise that c`n ď crn.

Furthermore, since the stable limit s of the random walk was shown to be a Markov
process on an infinite state space, we might hope to show that the sequence ps´iqiě1 is
also a Markov process or a reversed Markov process, where s´i denotes the i-th rightmost
letter of the word s. However, experimental data tend to disprove this hypothesis. We
checked the values of s´1, . . . , s´5 for 1500000000 random walks, approximated by taking
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n crn c`n
4 1.04 1.00

5 1.62 1.28

6 2.10 1.60

7 2.51 1.89

Figure 5.76 – Some characteristics about the invariant suffix

the 200 first values of pYkqkě0. According to Fig. 5.75, such an approximation is sufficient
to ensure with a reasonably small margin of error that we indeed obtained the values of
s´1, . . . , s´5). We found that:

• Prs´2 “ σ2σ1 | s´1 “ σ2s “ 0.0973 ˘ 0.0001 and Prs´5 “ σ2σ1 | s´4 “ σ1s “

0.0954˘ 0.0001;
• Prs´1 “ σ1 | s´2 “ σ2σ1s “ 0.4984 ˘ 0.0001 and Prs´4 “ σ1 | s´5 “ σ2σ1s “

0.5633˘ 0.0001.

The values 0.0973 and 0.0954 are clearly separated by our error margin of ˘0.0001, which
indicates with absolute certainty that Prs´2 “ σ2σ1 | s´1 “ σ2s ‰ Prs´5 “ σ2σ1 | s´4 “

σ1s. Likewise, our experiments makes certain that Prs´1 “ σ1 | s´2 “ σ2σ1s ‰ Prs´4 “

σ1 | s´5 “ σ2σ1s. However, proving that ps´iqiě1 is neither a Markov process nor a
reversed Markov process seems out of reach for now, although our experiments definitely
show that this is the direction towards which we should aim.
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Chapter 6

The Diameter of the Bilateral Garside
Automaton

Résumé

Nous procédons ici à l’étude détaillée et systématique du diamètre du graphe de Garside
bilatère des groupes d’Artin–Tits de type sphérique irréductibles. Le diamètre du graphe
de Garside bilatère intervient explicitement dans le calcul d’une borne inférieure sur la
vitesse de convergence des marches aléatoires étudiées dans le chapitre 5.

Nous considérons séparément les différents types de groupes de Coxeter associés aux
groupes d’Artin–Tits de type sphérique irréductibles, et calculons à chaque fois le dia-
mètre du graphe de Garside bilatère associé, dont nous montrons en particulier qu’il est
nécessairement compris entre 1 et 4. Cette étude est directe dans le cas des familles in-
finies de groupes de Coxeter de type An, Bn, Dn, et à l’aide de l’ordinateur dans le cas
des familles finies de groupes de Coxeter exceptionnels.

Abstract

We perform here a detailed and systematic study of the diameter of the bilateral Garside
automaton of irreducible Artin–Tits groups of spherical type. This diameter is used ex-
plicitly for deriving lower bounds on the speed of convergence of random walks studied
in Chapter 5.

We treat separately the different types of Coxeter groups associated with irreducible
Artin–Tits groups of spherical type; and compute for each of them the diameter of the
bilateral Garside automaton which we show to belong to the interval t1, 2, 3, 4u. This
study was performed directly for infinite families of Coxeter groups of type An, Bn, Dn,
and with the help of computers for finite families of exceptional Coxeter groups.
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In Chapter 5, Proposition 5.21 consists in proving that the bilateral Garside automa-
ton Ggar of an irreducible Artin–Tits monoid of spherical type A` with n generators is
connected, and shows that this diameter cannot be greater than 2pn2 ` nq. Since this
diameter is later used for deriving lower bounds on the speed of convergence of random
walks, it is meaningful to look for better upper bounds, or even for exact values of the
diameter of Ggar.

Consequently, and using the classification of finite irreducible Coxeter groups provided
in Theorem 2.26, we proceed to a disjunction of cases, according to the type of the Coxeter
group W associated with the Artin–Tits monoid A`. Below, we mimic the study of [56],
in which upper bounds on the diameter of the essential part of the left Garside acceptor
automaton are provided. However, here, we provide exact evaluations of the diameter of
Ggar, and do not provide only upper bounds on this diameter.

Before proceeding to a detailed study for each family of Coxeter groups, we first prove
a combinatorial property satisfied by the bilateral Garside automaton, and that we will
use several times later on.

Lemma 6.1.
Let A` be an irreducible Artin–Tits monoid of spherical type with generators σ1, . . . , σn,
and let Ggar be the bilateral Garside automaton of A`. Let P and Q be two proper subsets
of tσ1, . . . , σnu, and let P :“ tσ1, . . . , σnuzP and Q :“ tσ1, . . . , σnuzQ be their comple-
ments. In addition, let M : A` ÞÑ A` be an isomorphism of monoids. The pair pP,Qq is
an arc of Ggar if and only if pφ∆pP q, Qq is an arc of Ggar, if and only if pMpP q,MpQqq is
an arc of Ggar.

Proof. Let us first assume that pP,Qq is an arc of Ggar. Consider some braid a P S˝
such that P “ leftpaq and Q “ rightpaq. Since M is an isomorphism of monoids, M
induces a permutation of the sets tσ1, . . . , σnu and S˝. It follows that Mpaq P S˝, that
leftpMpaqq “ MpP q and that rightpMpaqq “ MpQq. Hence, pMpP q,MpQqq is an arc of
Ggar.

In addition, following Lemma 2.16, the braid a∆Q is a simple braid, where ∆Q :“

LCMď`pQq. Hence, consider the braid B∆paq such that ∆ “ aB∆paq. Since aB∆paq is
simple, it follows that Q X leftpB∆paqq “ H. Moreover, since a∆Q ď` ∆ “ aB∆paq, we
have Q Ď leftpB∆paqq, and therefore leftpB∆paqq “ Q.

Similarly, we have rightpB∆paqq “ leftpB2
∆paqq. Since B2

∆ “ φ∆, this means that
rightpB∆paqq “ φ∆pP q, hence that pQ, φ∆pP qq and pφ∆pP q, Qq are arcs of Ggar.

Finally, sinceM induces a permutation of tσ1, . . . , σnu and since pP,Qq ÞÑ pφ∆pP q, Qq
is an involution, Lemma 6.1 follows.
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6.1 Case W “ An

Let us begin with the case where the Coxeter group of the monoid A` is of type An,
i.e. A` “ Bn`1. Figure 6.2 presents the bilateral Garside automata of the monoids B`4
and B`5 (the first graph was also represented in Fig. 5.19). For the sake of readability, we
omit labelling the edges and representing loops or multiple edges.

tσ1u

tσ2u

tσ3u

tσ1, σ2u

tσ1, σ3u

tσ2, σ3u

Automaton Ggar of B`4

4-clique 6-clique 4-clique

tσ1u

tσ2u

tσ3u

tσ4u

tσ1, σ3u tσ1, σ4u tσ2, σ4u

tσ1, σ2u tσ2, σ3u tσ3, σ4u

tσ1, σ2, σ3u

tσ1, σ2, σ4u

tσ1, σ3, σ4u

tσ2, σ3, σ4u

Bipartite graph K3,4

Automaton Ggar of B`5

Figure 6.2 – Bilateral Garside automata of the monoids B`4 and B`5

Observe that the bilateral Garside automata of the braid monoids B`4 and B`5 have
respective diameters 3 and 4. Henceforth, let Ggar be the bilateral Garside automaton of
the braid monoid B`n . We prove below that the diameter of Ggar is bounded (uniformly
in n), by using repeatedly Proposition 2.29.

Lemma 6.3.
Let Ggar be the bilateral Garside automaton of the braid monoid B`n . Let P and Q be two
proper subsets of t1, . . . , n ´ 1u. If |P | “ |Q|, then the sets tσi : i P P u and tσi : i P Qu
are neighbours in Ggar.

Proof. We prove by induction over n that some permutation ϕ P Sn satisfies dą0pϕq “ P
and dą0pϕ

´1q “ Q for all subsets P andQ of t1, . . . , n´1u (includingH and t1, . . . , n´1u)
such that |P | “ |Q|. Note that P and Q play symmetric roles.

If n “ 2, the result is vacuously true, and if n “ 3, it is still immediate. If n “ 4 or
n “ 5, then Fig. 6.2 proves the result. Henceforth, we assume that n ě 6.

• If n´1 R P YQ, then P,Q Ď t1, . . . , n´2u and, by induction hypothesis, some per-
mutation θ P Sn´1 satisfies dą0pθq “ P and dą0pθ

´1q “ Q. Hence, the permutation
ϕ P Sn such that ϕ : i ÞÑ θpiq if 1 ď i ď n ´ 1 and ϕ : n ÞÑ n satisfies dą0pϕq “ P
and dą0pϕ

´1q “ Q.
• Since P and Q play symmetric roles, it remains to treat the case where n´ 1 P Q.

Then, P ‰ H, so we can consider the integer p :“ minP . Note that p ´ 1 ď
n ´ 1 ´ |P | “ n ´ 1 ´ |Q|, hence the set R :“ t1, . . . , n ´ 1uzQ has at least p ´ 1
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elements. Let ri denote the i-th smallest element of R, for i ď p ´ 1, and set
R´ :“ tri : 1 ď i ď p´ 1u.
In addition, set S :“ t1, . . . , n ´ 1uzR´. Observe that R´ Ď R Ď t1, . . . , n ´ 1u,
whereby |S| “ n´p, and let si denote the i-th smallest element of S, for i ď n´1´p.
Finally, set Q˚ :“ ti P t1, . . . , n ´ p ´ 1u : si P Qu and P ˚ :“ ti P t1, . . . , n ´ p ´
1u : p ` i P P u. By induction hypothesis, some permutation θ P Sn´p satisfies
dą0pθq “ P ˚ and dą0pθ

´1q “ Q˚. Hence, one checks easily that the permutation
ϕ P Sn such that

ϕ : i ÞÝÑ ri if 1 ď i ď p´ 1
ϕ : p ÞÝÑ n
ϕ : i ÞÝÑ sθpi´pq if p` 1 ď i ď n

satisfies dą0pϕq “ P and dą0pϕ
´1q “ Q.

Lemma 6.4.
Let Ggar be the bilateral Garside automaton of the braid monoid B`n . Let P :“ p2Z` 1q X
t1, . . . , n ´ 1u and P 1 :“ tσi : i P P u. For each integer k P t1, . . . , n ´ 1u, there exists a
neighbour Q of P 1 in Ggar such that |Q| “ k.

Proof. Let m :“ tn{2u. We treat two cases separately, depending on whether k ě m or
k ď m.

• If m ď k ď n´ 1, let ` :“ n´ 1´ k and consider the permutation θ P Sn such that
θ : i ÞÝÑ 2pm` 1´ iq if 1 ď i ď m
θ : i ÞÝÑ 2pi´mq ´ 1 if m` 1 ď i ď m` `
θ : i ÞÝÑ 2pn` `´ iq ` 1 if m` `` 1 ď i ď n

One checks easily that dą0pθq “ t1, . . . ,m,m```1, . . . , n´1u, whence |dą0pθq| “ k,
and that dą0pθ

´1q “ P .
• If 1 ď k ď m, consider the permutation θ P Sn such that

θ : i ÞÝÑ 2i if 1 ď i ď m
θ : i ÞÝÑ 2pm` k ´ iq ` 1 if m` 1 ď i ď m` k
θ : i ÞÝÑ 2pi´mq ´ 1 if m` k ` 1 ď i ď n

One checks easily that dą0pθq “ tm, . . . ,m` k´ 1u, whence |dą0pθq| “ k, and that
dą0pθ

´1q “ P .

Lemma 6.5.
Let Ggar be the bilateral Garside automaton of the braid monoid B`n . If n ě 5, then the
sets tσ1u and tσ1, . . . , σn´2u are at distance at least 4 from each other in Ggar.

Proof. Let a be some element of t1, . . . , n´ 1u and let ψ P Sn be some permutation such
that dą0pψq “ tau. We have ψp1q ă ψp2q ă . . . ă ψpaq and ψpa` 1q ă ψpa` 2q ă . . . ă
ψpnq. Hence, let j be an element of dą0pψ

´1q.
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If j “ ψpiq for some i ď a, then 1 ď ψ´1pj ` 1q ă i ď a, and therefore j ` 1 “
ψpψ´1pj`1qq ă ψpiq “ j, which is impossible. Similarly, if j “ ψpiq´1 for some i ě a`1,
then n ě ψ´1pjq ą i ě a ` 1, and therefore j “ ψpψ´1pjqq ą ψpiq “ j ` 1, which is
impossible. This shows that neither tψpiq : 1 ď i ď au nor tψpiq ´ 1 : a ` 1 ď i ď nu
intersects dą0pψ

´1q. It follows that |dą0pθ
´1q| ď mintn´ a, au ď tn{2u.

Moreover, let ϕ P Sn be some permutation such that dą0pϕq “ t1, . . . , n ´ 2u. We
have ψp1q ą ψp2q ą . . . ą ψpn ´ 1q, so that, like in the above case, tψpiq ´ 1 : 1 ď i ď
n´ 2u Ď dą0pθ

´1q, and therefore that |dą0pϕ
´1q| ě n´ 2.

In particular, in Ggar, each neighbour of tσ1u has cardinality 1, and each node at dis-
tance 2 from tσ1u has cardinality at most tn{2u. However, each neighbour of tσ1, . . . , σn´2u

has cardinality n ´ 2 ą tn{2u. Hence, t1u and tσ1, . . . , σn´2u are at distance at least 4
from each other.

Proposition 6.6.
If n ě 5, then the bilateral Garside automaton Ggar of the braid monoid B`n has diameter
4.

Proof. Consider the set P :“ p2Z ` 1q X t1, . . . , n ´ 1u. Combining Lemmas 6.3 and 6.4
proves that the eccentricity of tσi : i P P u in Ggar is at most 2 (i.e. no node of Ggar is at
distance more than 2 from tσi : i P P u), from which it follows that the diameter of Ggar

is at most 4. Then, Lemma 6.5 proves that this diameter is at least 4, which completes
the proof.

6.2 Case W “ Bn

We focus now on the bilateral Garside automaton Ggar of the monoid A` whose Coxeter
group W is of type Bn. Figure 6.8 represents Ggar when n “ 3 and n “ 4, where the
labeling of the edges has been omitted and loops or multiple edges are not represented.

The bilateral Garside automaton of the monoid A` has diameter 3 when the Coxeter
group associated withA is eitherW “ B3 orW “ B4. Henceforth, let Ggar be the bilateral
Garside automaton of the monoid A`, whose Coxeter group is Bn. We prove below that
the diameter of Ggar is bounded (uniformly in n), by using repeatedly Proposition 2.31.

Lemma 6.7.
Let A` be an Artin–Tits monoid of spherical type with Coxeter group Bn, and let Ggar be
the bilateral automaton of A`. Let P and Q be two proper subsets of t0, . . . , n ´ 1u. If
|P | “ |Q|, then the sets tσi : i´ 1 P P u and tσi : i´ 1 P Qu are neighbours in Ggar.

Proof. We prove that some permutation ϕ P S˘
n satisfies dě0pϕq “ P and dě0pϕ

´1q “ Q
for all subsets P and Q of t0, . . . , n ´ 1u (including H and t0, . . . , n ´ 1u) such that
|P | “ |Q|.
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tσ1u

tσ2u

tσ3u

tσ1, σ3u

tσ2, σ3u

tσ1, σ2u

Automaton Ggar of A` (n “ 3)

4-clique 6-clique 4-clique

tσ1u

tσ2u

tσ3u

tσ4u

tσ1, σ4u tσ1, σ3u tσ2, σ4u

tσ3, σ4u tσ2, σ3u tσ1, σ2u

tσ2, σ3, σ4u

tσ1, σ3, σ4u

tσ1, σ2, σ4u

tσ1, σ2, σ3u

Automaton Ggar of A` (n “ 4)

Figure 6.8 – Bilateral Garside automata of A` (when W “ B3 and W “ B4)

Indeed, let p1 ă . . . ă pk be the elements of the set ti : 1 ď i ď n, i ´ 1 P P u, where
k “ |P |, and let p1 ă . . . ă pn´k be the elements of the set ti : 1 ď i ď n, i ´ 1 R P u.
Similarly, let q1 ă . . . ă qk be the elements of the set ti : 1 ď i ď n, i ´ 1 P Qu, and let
q1 ă . . . ă qn´k be the elements of the set ti : 1 ď i ď n, i ´ 1 R Qu. One checks easily
that the permutation ϕ P S˘

n such that

ϕ : pi ÞÝÑ ´qi if 1 ď i ď k
ϕ : pi ÞÝÑ qi if 1 ď i ď n´ k

satisfies dě0pϕq “ P and dě0pϕ
´1q “ Q.

Lemma 6.9.
Let A` be an Artin–Tits monoid of spherical type with Coxeter group Bn, and let Ggar be
the bilateral automaton of A`. Consider the set P :“ p2Z` 1q X t1, . . . , n´ 1u. For each
integer k P t1, . . . , n ´ 1u, there exists a neighbour Q of the set tσi : i ´ 1 P P u in Ggar

such that |Q| “ k.

Proof. Let m :“ rn{2s. We treat two cases separately, depending on whether k ě n ´ 2
or k “ n´ 1.

• If k ď n´2, then Lemma 6.4 already proves that there exists a permutation ϕ P Sn

such that |dą0pϕq| “ k and dą0pϕ
´1q “ P . Hence, the permutation θ P S˘

n such
that θ : i ÞÑ ϕpiq if i ě 1 satisfies |dě0pθq| “ k and dě0pθ

´1q “ P .
• If k “ n´ 1, consider the permutation θ P S˘

n such that
θ : i ÞÝÑ 1´ 2i if 1 ď i ď m
θ : i ÞÝÑ 2pm´ iq if m` 1 ď i ď n.

One checks easily that dě0pθq “ t0, . . . ,m´1,m`1, . . . , n´1u, whence |dě0pθq| “ k,
and that dě0pθ

´1q “ P

Lemma 6.10.
Let A` be an Artin–Tits monoid of spherical type with Coxeter group Bn, and let Ggar



Chapter 6. The Diameter of the Bilateral Garside Automaton 215

be the bilateral automaton of A`. If n ě 5, then the sets tσnu and tσ1, . . . , σn´1u are at
distance at least 4 from each other in Ggar.

Proof. Let a be some element of t0, . . . , n ´ 1u and let ψ P S˘
n be some permutation

such that dě0pψq “ tau. In addition, let κ be the cardinality of the set tj P t0, . . . , nu :
ψ´1pjq ă 0u. We have 0 “ ψp0q ă . . . ă ψpaq and ψpa ` 1q ă . . . ă ψpa ` κq ă 0 ă
ψpa` κ` 1q ă . . . ă ψpnq.

Hence, let j be an element of dě0pψ
´1q. Let k and ` be non-negative integers such

that j “ ˘ψpkq and j ` 1 “ ˘ψp`q.

• If ψ´1pjq ă 0, then 0 ą ψpkq “ ´j ą ´pj` 1q “ ψp`q, hence a` 1 ď ` ă k ď a`κ.
It follows that ψ´1pjq “ ´k ă ´` “ ψ´1pj ` 1q, which is impossible. Therefore, we
have ψ´1pkq ě 0, i.e. j “ ψpkq.
• If k ď a and ψp`q “ j ` 1, then a ě k “ ψ´1pjq ą ψ´1pj ` 1q “ ` ě 0, hence
j “ ψpkq ą ψp`q “ j ` 1, which is impossible. Therefore, if k ď a, we have
ψ´1pj ` 1q ă 0.
• If ` ě a`κ` 1, then ψp`q ą 0, hence n ě k ą ` ě a` 1 and ψpkq “ j. This implies

that j “ ψpkq ą ψp`q “ j ` 1, which is impossible. Therefore, we have ` ď a` κ.

This shows that neither the set tj P t0, . . . , n ´ 1u : ψ´1pjq ă 0 or p0 ď ψ´1pjq ď
a and 0 ď ψ´1pj`1qqu nor the set tj P t0, . . . , n´1u : a`κ`1 ď |ψ´1pj`1q|u intersects
dě0pψ

´1q.

Moreover, the set tj P t0, . . . , nu : ψ´1pjq ď au is of cardinality a ` 1 ` κ, hence
tj P t0, . . . , n´ 1u : ψ´1pjq ă 0 or p0 ď ψ´1pjq ď a and 0 ď ψ´1pj` 1qqu is of cardinality
at least maxtκ´ 1, au. In addition, the set tj P t0, . . . , n´ 1u : a` κ` 1 ď |ψ´1pj ` 1q|u
is of course of cardinality n´ a´ κ. This shows that

|dě0pψ
´1
q| ď mintn` 1´ κ, n´ a, a` κu ď n´ a, whence

|dě0pψ
´1
q| ď

pn` 1´ κq ` pn´ aq ` pa` κq

3
“

2n` 1

3
.

In particular, it follows that the neighbours of tσnu in Ggar are all of cardinality 1
and, using Lemma 6.1, that the neighbours of tσ1, . . . , σn´1u are all of cardinality n´ 1.
Moreover, each node at distance 2 from tσnu has cardinality at most tp2n`1q{3u ď n´2.
Hence, tσnu and tσ1, . . . , σn´1u are at distance at least 4 from each other.

Proposition 6.11.
For each integer n ě 5, the bilateral Garside automaton Ggar of the monoid A` with
Coxeter group Bn has diameter 4.

Proof. Consider the set P :“ p2Z ` 1q X t1, . . . , n ´ 1u. Combining Lemmas 6.7 and 6.9
proves that the eccentricity of tσi : i´ 1 P P u in Ggar is at most 2, from which it follows
that the diameter of Ggar is at most 4. Then, Lemma 6.10 proves that this diameter is at
least 4, which completes the proof.
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6.3 Case W “ Dn

We focus here on the bilateral Garside automaton Ggar of the monoid A` whose Coxeter
group W is of type Dn. Figure 6.12 presents Ggar when n “ 4, where the labelling of the
edges has been omitted and loops or multiple edges are not represented.

4-clique 6-clique 4-clique

tσ1u

tσ2u

tσ3u

tσ4u

tσ2, σ4u tσ1, σ4u tσ1, σ3u

tσ1, σ2u tσ2, σ3u tσ3, σ4u

tσ2, σ3, σ4u

tσ1, σ3, σ4u

tσ1, σ2, σ4u

tσ1, σ2, σ3u

Automaton Ggar of A` (n “ 4)

Figure 6.12 – Bilateral Garside automaton of A` (when W “ D4)

Let Dn be the Coxeter group associated with A. Figure 6.12 shows that the diameter
of Ggar is 3 when n “ 4. Brute-force computations show that the graphs Ggar (not shown in
Fig. 6.12) have respective diameters 3, 4 and 4 when n “ 5, 6 and 7. Henceforth, let Ggar

be the bilateral Garside automaton of the monoid A`, whose Coxeter group is Dn. We
prove below that the diameter of Ggar is bounded (uniformly in n), by using repeatedly
Proposition 2.33.

Lemma 6.13.
Let A` be an Artin–Tits monoid of spherical type with Coxeter group Dn, and let Ggar be
the bilateral automaton of A`. Let P and Q be two proper subsets of t0, . . . , n ´ 1u. If
|P | “ |Q|, then the sets tσi : i´ 1 P P u and tσi : i´ 1 P Qu are neighbours in Ggar.

Proof. We prove that some permutation ϕ P S``
n satisfies dtwpϕq “ P and dtwpϕ

´1q “ Q
for all subsets P and Q of t0, . . . , n ´ 1u such that |P | “ |Q|. Note that P and Q play
symmetric roles.

Let ψ be the transposition p0 Ø 1q, and let M : A` ÞÑ A` be the isomorphism of
monoids such that M : σi`1 ÞÑ σψpiq`1. Since φ∆ induces an isomorphism of the Coxeter
graph of Dn, we know that either φ∆ “M or φ∆ “ Id. Hence, in both cases, there exists
an integer ε P t0, 1u such that φ∆ “M ε.

Consequently, Lemma 6.1 proves that, if there exists a permutation ϕ P S``
n such

that dtwpϕq “ P and dtwpϕ
´1q “ Q, there also exist permutations µ, ν P S``

n such that
dtwpµq “ ψpP q, dtwpµ

´1q “ ψpQq, dtwpνq “ ψεpP q, dtwpν
´1q “ Q. We proceed now to a

disjunction of cases.
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• If 0 R P YQ, then Lemma 6.3 proves that there exists a permutation θ P Sn such
that dą0pθq “ P and dą0pθ

´1q “ Q. Hence, the permutation ϕ P S``
n such that

ϕ : i ÞÑ θpiq if i ě 1 satisfies dtwpϕq “ P and dtwpϕ
´1q “ Q.

• If 1 R P YQ, then we just proved that there exists a permutation θ P S``
n such that

dtwpθq “ ψpP q and dtwpθ
´1q “ ψpQq. Consequently, there also exists a permutation

ϕ P S``
n such that dtwpϕq “ P and dtwpϕ

´1q “ Q.
• If 0 P P XQ, since P and Q play symmetric roles, we assume that 1 P P . It follows

that 0 R P Y ψpP q Y Q, hence that 0 R ψεpP q Y Q. Hence, we just proved that
there exists a permutation θ P S``

n such that dtwpθq “ P and dtwpθ
´1q “ Q.

Consequently, there also exists a permutation ϕ P S``
n such that dtwpϕq “ P and

dtwpϕ
´1q “ Q.

• If 1 P P XQ, then we just proved that there exists a permutation θ P S``
n such that

dtwpθq “ ψpP q and dtwpθ
´1q “ ψpQq. Consequently, there also exists a permutation

ϕ P S``
n such that dtwpϕq “ P and dtwpϕ

´1q “ Q.

Therefore, we can focus on the case where 0 and 1 both belong to the symmetric
difference P∆Q “ pP zQq Y pQzP q. Since P and Q play symmetric roles, we assume
henceforth that 0 P P zQ and that either 1 P P zQ or 1 P QzP .

In addition, let k be the cardinality of both sets P and Q. Then, let p1 ă . . . ă pk
be the elements of the set ti : 1 ď i ď n, i ´ 1 P P u and let p1 ă . . . ă pk be the
elements of the set ti : 1 ď i ď n, i ´ 1 R P u. Likewise, let q1 ă . . . ă qk be the elements
of the set ti : 1 ď i ď n, i ´ 1 P Qu and let q1 ă . . . ă qk be the elements of the set
ti : 1 ď i ď n, i´ 1 R Qu.

• If 1 P P zQ or if k P 2Z, then one checks easily that the permutation ϕ P S``
n such

that
ϕ : 1 ÞÝÑ p´1qk`1q1

ϕ : pi ÞÝÑ ´qi if 2 ď i ď k
ϕ : pi ÞÝÑ qi if 1 ď i ď n´ k.

satisfies dtwpϕq “ P and dtwpϕ
´1q “ Q.

• If 1 P QzP and k “ 1, then P “ t0u and Q “ t1u, hence the permutation ϕ P S``
n

such that ϕ “ p1 Ñ ´3 Ñ ´1 Ñ ´3 Ñ 1qp2 Ø ´2q satisfies dtwpϕq “ P and
dtwpϕ

´1q “ Q.
• If 1 P QzP , k P 2Z ` 1 and k ě 3, then one checks easily that the permutation
ϕ P S``

n such that
ϕ : p1 ÞÝÑ ´q2, 2 ÞÝÑ ´q1, p2 ÞÝÑ 1
ϕ : pi ÞÝÑ ´qi if 2 ď i ď k
ϕ : pi ÞÝÑ qi if 3 ď i ď n´ k.

satisfies dtwpϕq “ P and dtwpϕ
´1q “ Q.

Lemma 6.14.
Let A` be an Artin–Tits monoid of spherical type with Coxeter group Dn, and let Ggar be
the bilateral automaton of A`. Consider the set P :“ p2Z` 1q X t1, . . . , n´ 1u. For each
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integer k P t1, . . . , n ´ 1u, there exists a neighbour Q of the set tσi : i ´ 1 P P u in Ggar

such that |Q| “ k.

Proof. Let m :“ tn{2u. We treat two cases separately, depending on whether k ě n ´ 2
or k “ n´ 1.

• If k ď n´2, then Lemma 6.4 already proves that there exists a permutation ϕ P Sn

such that |dą0pϕq| “ k and dą0pϕ
´1q “ P . Hence, the permutation θ P S``

n such
that θ : i ÞÑ ϕpiq if i ě 1 satisfies |dtwpθq| “ k and dtwpθ

´1q “ P .
• If k “ n´ 1, consider the permutation θ P S˘

n such that
θ : 1 ÞÝÑ p´1qm`12
θ : i ÞÝÑ ´2i if 2 ď i ď m
θ : i ÞÝÑ 2pn´ iq ` 1 if m` 1 ď i ď n.

One checks easily that dě0pθq “ t0, . . . ,m´1,m`1, . . . , n´1u, whence |dě0pθq| “ k,
and that dě0pθ

´1q “ P

Lemma 6.15.
Let A` be an Artin–Tits monoid of spherical type with Coxeter group Dn, and let Ggar

be the bilateral automaton of A`. If n ě 8, then the sets tσnu and tσ1, . . . , σn´1u are at
distance at least 4 from each other in Ggar.

Proof. Let a be some element of t1, . . . , n ´ 1u and let ϕ P S``
n be some permutation

such that dtwpϕq “ tau. In addition, let κ be the cardinality of the set tj P ta`1, . . . , nu :
ϕ´1pjq ă 0u. We have ´ϕp2q ă ϕp1q ă ϕp2q ă . . . ă ϕpaq, ϕpa ` 1q ă . . . ă ϕpa ` κq ă
0 ă ϕpa` κ` 1q ă . . . ă ϕpnq, and p´1qκϕp1q ą 0.

Hence, let j be a positive element of dtwpϕ
´1q. Let k and ` be non-negative integers

such that j “ ˘ϕpkq and j ` 1 “ ˘ϕp`q.

• If ϕ´1pjq ă ´1, then 0 ą ϕpkq “ ´j ą ´pj ` 1q “ ϕp`q. Hence, either ` “ 1 and
a ` 1 ď k ď a ` κ, or a ` 1 ď ` ă k ď a ` κ. In both cases, we have ` ă k,
hence ϕ´1pjq “ ´k ă ´` “ ϕ´1pj ` 1q, which is impossible. Therefore, we have
ϕ´1pjq ě ´1.
• If k ď a and ϕ´1pj ` 1q ą 0, then ϕ´1pjq ą ϕ´1pj ` 1q “ ` ě 0. Hence, ϕ´1pjq “ k

and a ě k ą ` ě 0, and thus j “ ϕpkq ą ϕp`q “ j ` 1, which is impossible.
Therefore, if k ď a, we have ϕ´1pj ` 1q ă 0.
• If ` ě a`κ` 1, then ϕp`q ą 0, hence n ě k ą ` ě a` 1 and ϕpkq “ j. This implies

that j “ ϕpkq ą ϕp`q “ j ` 1, which is impossible. Therefore, we have ` ď a` κ.

This shows that neither the set tj P t1, . . . , n ´ 1u : ϕ´1pjq ă ´1 or p´1 ď ϕ´1pjq ď
a and 0 ď ϕ´1pj ` 1qqu nor the set tj P t1, . . . , n´ 1u : a` κ` 1 ď ϕ´1pj ` 1qu intersects
dě0pϕ

´1q.

The set tj P t1, . . . , n´ 1u : ϕ´1pjq ď au is of cardinality at least a`κ´ 1, hence tj P
t1, . . . , n ´ 1u : ϕ´1pjq ă ´1 or p´1 ď ϕ´1pjq ď a and 0 ď ϕ´1pj ` 1qqu is of cardinality
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at least maxtκ´1, a´2u. In addition, the set tj P t1, . . . , n´1u : a`κ`1 ď ϕ´1pj`1qu
is of cardinality at least n´ a´ κ´ 1. This shows that

|dtwpϕ
´1
q| ď mintn` 1´ κ, n` 2´ a, a` κ` 1u

ď
pn` 1´ κq ` pn` 2´ aq ` pa` κ` 1q

3
“

2n` 4

3
ă n´ 1.

Moreover, let ψ be the permutation p0 Ø 1q, and letM : σi`1 ÞÑ σψpiq`1 be the induced
automorphism of monoid of A`. If ϕ P S``

n is a permutation such that dtwpϕq “ t0u,
then Lemma 6.1 proves that there exists a permutation θ P S``

n such that dtwpθq “ t1u
and dtwpθ

´1q “ ψpdtwpϕ
´1qq, whence |dtwpϕ

´1q| ă n´ 1.

Now, let us investigate the possible values of dtwpϕ
´1q when dtwpϕq “ tn ´ 1u. Two

cases are possible.

1. There exists an integer k P t2, . . . , nu such that ϕ : 1 ÞÑ ˘1, ϕ : i ÞÑ i if 2 ď i ă k,
ϕ : i ÞÑ i ` 1 if k ď i ă n and ϕ : n ÞÑ ˘k. In this case, one checks easily that
dtwpϕ

´1q “ t0, 1u (if k “ 2 and ϕpnq “ ´k), dtwpϕ
´1q “ tk ´ 1u (if 3 ď k and

ϕpnq “ ´k) or dtwpϕ
´1q “ tku (if ϕpnq “ k, and therefore 2 ď k ď n´ 1).

2. We have ϕ : 1 ÞÑ ˘2, ϕ : i ÞÑ i ` 1 if 2 ď i ă n and ϕ : n ÞÑ ˘1. In this case, one
checks easily that dtwpϕ

´1q “ t0u (if ϕpnq “ ´1) or dtwpϕ
´1q “ t1u (if ϕpnq “ 1).

It follows that the neighbours of tσnu in Ggar are tσ1, σ2u and sets of cardinality 1.

Finally, let us investigate the possible values of dtwpϕ
´1q when dtwpϕq “ t0, 1u. We

mimic here the study of the case dtwpϕq “ tau with 1 ď a ď n´ 1. Let b P t2, . . . , nu be
the integer such that |ϕp1q| ă |ϕp2q| and ϕp2q ă . . . ă ϕpbq ă 0 ă ϕpb` 1q ă . . . ă ϕpnq.
In addition, let j be a positive element of dtwpϕ

´1q, and let k and ` be non-negative
integers such that j “ ˘ϕpkq and j ` 1 “ ˘ϕp`q. It comes quickly that ϕ´1pj ` 1q ď b
and that ϕ´1pjq ě ´1, hence that |dtwpϕ

´1q| ď mintb` 1, n` 1´ bu ď n`2
2
ă n´ 2.

Using Lemma 6.1, it follows that the neighbours of tσ1, . . . , σn´1u are tσ3, . . . , σnu and
sets of cardinality n´ 1, and that the neighbours or tσ3, . . . , σnu have cardinality at least
3. Consequently, the nodes at distance 2 of tσnu are sets of cardinality at most n ´ 2,
excluding the set tσ3, . . . , σnu. This proves that tσnu and tσ1, . . . , σn´1u are at distance
at least 4 from each other.

Proposition 6.16.
For each integer n ě 8, the bilateral Garside automaton Ggar of the monoid A` with
Coxeter group Dn has diameter 4.

Proof. Consider the set P :“ p2Z`1qXt1, . . . , n´1u. Combining Lemmas 6.13 and 6.14
proves that the eccentricity of tσi : i´ 1 P P u in Ggar is at most 2, from which it follows
that the diameter of Ggar is at most 4. Then, Lemma 6.15 proves that this diameter is at
least 4, which completes the proof.
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Automaton Ggar of A` (W “ H4)

Figure 6.17 – Bilateral Garside automata ofA` (whenW “ I2paq,W “ F4 andW “ Hn)

6.4 Exceptional Cases

Having treated the cases where the Coxeter group W of the monoid A` is of type An,
Bn or Dn, we already know that there exists an upper bound for the diameters of all
bilateral Garside automata of all Artin–Tits monoids of spherical type. However, we
push our analysis further, and compute the exact value of this diameter when W is of
type En, F4, Hn or I2paq.

Figure 6.17 presents the bilateral Garside automata of the monoid A` when W “

I2paq, F4 and Hn, where the labelling of the edges has been omitted and loops or multiple
edges are not represented. It shows that the graphs Ggar have respective diameters 1, 2
and 2 when W “ I2paq, F4 and Hn. Brute-force computations show that the graph Ggar

(not shown in Fig. 6.17) has diameter 3 when W “ E6.

While plain brute force, by computing the order ď` on the group W, is easy to carry
when W “ E6, F4, H3, H4 or I2paq, it is not so when W “ E7 or W “ E8. Indeed,
these two groups have rather large cardinalities (respectively 2903040 and 696729600),
and storing data about all the elements of W raises space issues.



Chapter 6. The Diameter of the Bilateral Garside Automaton 221

let L0 :“ t1u, L1 :“ tσ1, . . . , σnu and k “ 1
let leftpσiq :“ tσiu and rightpσiq :“ tσiu
let G˚gar be the graph whose nodes are subsets of tσ1, . . . , σnu and without arcs
while Lk ‰ H do

let Lk`1 :“ H
for each element a of Lk and each generator σi such that neither aσ´1

i and aσi
was created do

create a new element b and add it to Lk`1

for each generator σj such that a ěr ∆tσi,σjuσ
´1
i do

let cj :“ a
`

∆tσi,σjuσ
´1
i

˘´1 `
∆tσi,σjuσ

´1
j

˘

store the relation cjσj “ b
add the elements of leftpcjq to leftpbq, and add σj to rightpbq

end
add the arcs pleftpbq, rightpbqq and pleftpbq, rightpbqq to Ggar

end
for each element d of Lk´2 do

delete the element d, the sets leftpdq and rightpdq, and all the
multiplication relations of the form dσi “ e

end
let C be the connected component of tσ1u in G˚gar

display the cardinality of C and the diameter of C
k :“ k ` 1

end
output: the diameter of C

Algorithm 6.18: Computing the diameter of Ggar when W “ E7 or E8

If W “ E7, we alleviate this problem by using Algorithm 6.18. Indeed, instead of
storing simultaneously the sets leftpaq and rightpaq and the relations of the type aσi “ b
for all the elements a and b of W, we do so only for elements of sets

Ť3
i“0 Lk`i, where Lk

is the set of simple braids of Artin length k. Such sets are of cardinality at most 521120
(for k “ 30), which is much smaller than the 2903040 elements of E7 itself.

However, if W “ E8, this refined approach fails, because even the sets Lk have huge
cardinalities. Nevertheless, a partial execution of Algorithm 6.18 up to the Artin length
k “ 13 already proves that the bilateral graph contains some connected subgraph C such
that |C| “ 254, and such that C has diameter 3. Hence, each node of Ggar belongs to C,
and since C is a subgraph of Ggar, the graph Ggar itself must have diameter at most 3.
Therefore, it remains to prove that Ggar has diameter at least 3, which we do by showing
that the vertices tσ8u and tσ1, . . . , σ7u have no common neighbour in Ggar.

Generating all the elements a of W such that leftpaq “ tσ8u seems to be difficult if
we follow the tracks of Algorithm 6.18. Hence, we take a geometric point of view. Indeed,
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W is isomorphic to the group OpR8q of isometries of the set

R8 :“

#

pe1, . . . , e8q P p2Zq8 :
8
ÿ

i“1

e2
i “ 8

+

Y

#

pe1, . . . , e8q P Z8 :
8
ź

i“1

ei “ 1

+

.

Note that each element e of the set R8 has an Euclidian norm |e| “ 8. Then, consider
the primitive roots r1, . . . , r8, all of which belong to the set R8, and the positive vector
p, defined as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

r1
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˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

:“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1 1 1
´2 2 0 0 0 0 0 0
0 ´2 2 0 0 0 0 0
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˛

‹

‹
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‹
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‹

‹

‹

‹

‹

‹

‹

‚

.

In addition, consider the associated reflections si : z ÞÑ z´ 1
4
pz ¨riqri, for i P t1, . . . , 8u.

We have ri ¨ rj “ 0 if mi,j “ 2 and ri ¨ rj “ ´
1
2
|ri| |rj| if mi,j “ 3. Therefore, there exists

an (unique) isomorphism of groups ϕ : W ÞÑ OpR8q such that ϕ : σi ÞÑ si. Furthermore,
we check easily that ri ¨ p ą 0 for all i P t1, . . . , 8u, whence the name “positive” given to
the vector p. In addition, let us prove that e ¨ p ‰ 0 for all e P P8.

Let pe1, . . . , e8q and pp1, . . . , p8q be the respective entries of e and p. First, if we
have e P p2Zq8 and

ř8
i“1 e

2
i “ 8, then two entries of e are non-zero. Since no two

entries of p have the same absolute value, it follows that e ¨ p ‰ 0. Second, if e P
 

pe1, . . . , e8q P Z8 :
ś8

i“1 ei “ 1
(

, Since
ś8

i“1 eipi ă 0, the vector pe1p1, . . . , e8p8q has an
odd number of negative entries, and therefore not as many positive entries as negative
entries. Hence, we have |e ¨ p| ě 5 ` 6 ` 7 ` 8 ` 9 ´ 10 ´ 11 ´ 12 “ 2. This proves that
p ¨ e ‰ 0 for all e P R8.

Then, we use a direct characterisation of the left and right sets [62, page 14].

Lemma 6.19.
Let W be the Coxeter group of type E8. Let a be an element of W, let ϕpaq be its image
in OpR8q. In addition, let r1, . . . , r8 be elements of R8, with associated reflections si, such
that the mapping ϕ : σi ÞÑ si induces an isomorphism of groups between W and OpR8q.
Finally, let p be some vector such that ri ¨ p ą 0 for all i P t1, . . . , 8u and e ¨ p ‰ 0 for
all e P R8. We have

leftpaq “ tσi : p ¨ ϕpaqpriq ă 0u and rightpaq “ tσi : p ¨ ϕpaq´1
priq ă 0u.

Hence, we generate inductively the set of isometries ι P OpR8q such that tσ8u “ tσi :
p ¨ ιpriq ă 0u, by choosing step by step the possible values of ιpriq for i P t1, . . . , 8u. In
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practice, this generation is very efficient, and the set of isometries considered has a small
cardinality. Then, for each such isometry, it is easy to compute the set tσi : p¨ι´1priq ă 0u.
Thereby, we obtain the set Σ :“ tP : ptσ8u, P q is an arc of Ggaru. Moreover, note that
pP, tσ1, . . . , σ7uq is an arc of Ggar if and only if P P Σ. Our computation of Σ proves that
this never happens, which completes the proof that the graph Ggar has diameter 3 when
W is of type E8.

This concludes our systematic analysis of the diameter of the bilateral Garside au-
tomaton.

Theorem 6.20.
Let A` be an irreducible Artin–Tits monoid with finite Coxeter type. Let W be the Coxeter
group associated with A`, and let Ggar be the bilateral Garside automaton of A`. The
diameter of the graph Ggar is:

• D “ 1 if W “ I2paq (with a ě 3);
• D “ 2 if W “ F4, H3 or H4;
• D “ 3 if W “ A3, B3, B4, D4 or En (with 6 ď n ď 8);
• D “ 4 if W “ An (with n ě 4), Bn (with n ě 5) or Dn (with n ě 6).
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Chapter 7

Building Uniform Measures on Braids

Résumé

Nous introduisons et étudions une nouvelle notion de mesure probabilité multiplicative
sur les mots finis et infinis dans les monoïdes d’Artin–Tits de type FC irréductibles.
Nous classifions et paramétrisons les mesures de probabilité multiplicatives, en particulier
la sous-famille des mesures uniformes. Nous construisons les mesures multiplicatives et
uniformes en termes de processus de Markov et de forme normale de Garside. Nous
prouvons également que les mesures de probabilité uniformes usuelles sur les sphères,
dans les monoïdes d’Artin–Tits de type FC, convergent vers notre notion de mesure de
probabilité uniforme (au sens faible). Enfin, nous montrons comment utiliser les graphes
pondérés conditionnés pour en appliquer des théorèmes centraux limites aux mesures
uniformes sur les sphères dans les monoïdes d’Artin–Tits de type FC.

Le contenu de ce chapitre provient d’un travail en cours de rédaction, en collaboration
avec Samy Abbes, Sébastien Gouëzel et Jean Mairesse.

Abstract

We introduce and study the new notion of multiplicative probability distributions on
finite and infinite words in irreducible Artin–Tits monoids of FC type. We classify and
parametrise multiplicative probability distributions, with a special emphasis on the sub-
family of uniform distributions. We provide explicit constructions of multiplicative and
uniform distributions in terms of Markov processes and of Garside normal form. We also
prove that “standard” uniform probability distributions on spheres in Artin–Tits monoids
of FC type converge weakly toward our notion of uniform probability distribution. Finally,
we show how to use the framework of conditioned weighted graphs to derive central limit
theorems for distributions on spheres in Artin–Tits monoids of FC type.

The content of this chapter is the result of a paper in progress, written in collaboration
with Samy Abbes, Sébastien Gouëzel and Jean Mairesse.
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Chapter 7 is devoted to the construction of uniform measures on Artin–Tits monoids
of FC type. Such uniform measures have already been studied for heap monoids [2],
and we develop here analogous arguments in the context of Artin–Tits monoids of FC
type. Positive heaps can be represented by their Cartier-Foata normal form. The Cartier-
Foata normal form is regular, hence there exists a (minimal) automaton that recognises
this normal form. Consequently, we may identify positive heaps with finite paths in this
minimal automaton.

This identification between positive heaps and finite paths led to the construction of
uniform measures [2], which are similar to the Parry measure [72, 79] and to the Patterson-
Sullivan measure [65, 81, 87]. The Parry measure is the measure of maximal entropy of
a sofic subshift, and the Patterson-Sullivan measure is also a uniform measure on the
border at infinity of some geometric groups, whose proof of existence is not constructive
in general.

The identification between positive elements and finite paths in an automaton A that
recognises the left Garside normal form is easily extended to all Artin–Tits monoids
of FC type. However, in the case of irreducible Artin–Tits groups of spherical type,
the automaton A is not strongly connected, which prevents using directly the Perron-
Frobenius theory [85] and complicates things. Hence, this chapter consists mainly in
proving that the automatonA is strongly connected for all irreducible Artin–Tits monoids
of FC type that are not Artin–Tits monoid of spherical type, and in showing how to
generalise the work of [2] to irreducible Artin–Tits monoids of spherical type.

Our construction of the uniform measure on Artin–Tits monoids of FC type, which we
identify with a weak limit of uniform measures on spheres of finite radius, leads to a wide
range of convergence results, for instance on the leftmost letter of left Garside normal
words of braids chosen uniformly at random among the set of braids of length k. Moreover,
we also extend results of Hennion and Hervé [61] to the framework of Artin–Tits monoids
of spherical type, and derive finer convergence results about Garside-additive functions
and additive functions in Artin–Tits monoids of FC type, including central limit theorems.

Most notions presented in Chapter 7 are borrowed from the above-mentioned litera-
ture [61, 65, 72, 79, 81, 85, 87] and adapted to the framework of Artin–Tits monoids of FC
type. This leads to proving some important, original results (Propositions 7.62 and 7.85,
and Theorems 7.39 and 7.84).

7.1 Uniform Measures on Artin–Tits Monoids of FC
Type

We study here an Artin–Tits monoid of FC type A` generated by n ě 2 generators
σ1, . . . , σn, with smallest two-way Garside family S. In Section 7.1.3, we focus most specif-
ically on irreducible Artin–Tits monoids of FC type, i.e. monoids that are not an abelian
product of Artin–Tits monoids.
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7.1.1 Algebraic Generating Function and Möbius Transforms

In Chapter 4, we considered the geometric generating functions of braid monoids. Here,
we focus on their most standard, algebraic counterpart. Henceforth, we will only refer to
the generating function of an Artin–Tits monoid A` (which will mostly have FC type),
the word algebraic being left implicit.

Definition 7.1 (Algebraic generating function and Möbius polynomial).
Let A` be an Artin–Tits monoid. The algebraic generating function of the monoid A`

is defined as the function GA : z ÞÑ
ř

aPA` z
λpaq, where λ is the length function on A`.

The Möbius polynomial of A` is defined by HA : z ÞÑ
ř

IPPp´1q|I|zλp∆Iq, where P denotes
the set tI Ď tσ1, . . . , σnu : LCMď`pIq existsu and ∆I :“ LCMď`pIq for all I P P.

Standard results [4, 21] outline the link between the generating function and the
Möbius polynomial of A`.

Proposition 7.2.
Let A` be an Artin–Tits monoid. The generating function GA and the Möbius polynomial
HA of the monoid A` are inverses of each other, i.e. GApzqHApzq “ 1.

Proof. A direct computation, using the change of variable b :“ ∆Ia, shows that

GApzqHApzq “
ÿ

aPA`

ÿ

IPP
p´1q|I|zλp∆Iq`λpaq “

ÿ

aPA`

ÿ

IPP
p´1q|I|zλp∆Iaq

“
ÿ

bPA`

ÿ

IĎleftpbq

p´1q|I|zλpbq “
ÿ

bPA`

1leftpbq“Hz
λpbq

“ 1.

Efficient algorithms allow us to compute recursively the Möbius polynomial when A`

is a (reducible or not) Artin–Tits monoid of spherical type (see [21] in the case of braid
monoids and [5] in the general case).

Proposition 7.3.
Let A` be an Artin–Tits monoid. If A` is a direct product of two non-trivial Artin–Tits
monoids B` and C`, then HApzq “ HBpzqHCpzq. In addition, if the Coxeter group W
of A` is irreducible, several cases are possible, according to the classification of Theo-
rem 2.26, and are enumerated below.

• If W is of type An, let Ha,npzq be the Möbius polynomial of A`, and let us define
the polynomials Ha,´1pzq “ Ha,0pzq “ 1. We have

Ha,npzq “
n
ÿ

k“0

p´1qkzkpk`1q{2Ha,n´k´1pzq.
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• If W is of type Bn, let Hb,npzq be the Möbius polynomial of A`, and let us define
the polynomial Hb,0pzq “ 1. We have

Hb,npzq “
n´1
ÿ

k“0

p´1qkzkpk`1q{2Hb,n´k´1pzq ` p´1qnzn
2

.

• If W is of type Dn, let Hd,npzq be the Möbius polynomial of A`, and let us define
the polynomial Hd,2pzq “ 1´ 2z ` z2. We have

Hd,n “

n´3
ÿ

k“0

p´1qkpk`1q{2Hd,n´k´1pzq ` p´1qn
`

zpn´2qpn´1q{2
´ 2zpn´1qn{2

` zpn´1qn
˘

.

• If W is of exceptional type, then HApzq is as presented in Fig. 7.4, according to the
type of W.

W HApzq

E6 1´6z`10z2´10z4`5z5´4z6`3z7`4z10´2z11`z12´z15´2z20`z36

E7
1´ 7z` 15z2´ 5z3´ 16z4` 12z5´ 3z6` 8z7´ 3z8´ 3z9` 6z10´ 5z11`

z12 ´ 3z15 ` z16 ´ 2z20 ` 2z21 ` z30 ` z36 ´ z63

E8

1´ 8z ` 21z2 ´ 14z3 ´ 21z4 ` 28z5 ´ 7z6 ` 12z7 ´ 8z8 ´ 10z9 ` 10z10 ´

12z11 ` 7z12 ` 2z13 ´ z14 ´ 3z15 ` 2z16 ´ 2z20 ` 6z21 ´ z22 ´ z23 ´ z28 `

z30 ` z36 ´ z37 ´ z42 ´ z63 ` z120

F4 1´ 4z ` 3z2 ` 2z3 ´ z4 ´ 2z9 ` z24

H3 1´ 3z ` z2 ` z3 ` z5 ´ z15

H4 1´ 4z ` 3z2 ` 2z3 ´ z4 ` z5 ´ 2z6 ´ z15 ` z60

I2paq 1´ 2z ` za

Figure 7.4 – Computing Möbius polynomials in irreducible Artin–Tits monoids

Proof. The computation of HApzq when W is of exceptional case can be performed by
brute-force. Hence, we focus on the case where W is of type An: the cases where W is of
type Bn or Dn are analogous.

If W is of type An, for each set I P P , let kpIq be the largest integer such that
tσn`1´kpIq, . . . , σnu Ď I, and let us denote by J the set Iztσn`1´kpIq, . . . , σnu. In addition,
for all i ď n, let Pi :“ 2tσ1,...,σn´1´iu. The set J must belong to PkpIq, hence ∆I “

∆J∆tσn`1´kpIq,...,σnu. This proves that λp∆Iq “ λp∆Jq`kpIqpkpIq`1q{2. Hence, we compute

Ha,npzq “
ÿ

IPP
p´1q|I|zλp∆Iq “

n
ÿ

i“0

ÿ

IPP
1kpIq“ip´1q|I|zλp∆Iq

“

n
ÿ

i“0

ÿ

JPPi

p´1q|J |`izλp∆J q`ipi`1q{2
“

n
ÿ

i“0

p´1qizipi`1q{2
ÿ

JPPi

p´1q|J |zλp∆J q

“

n
ÿ

i“0

p´1qizipi`1q{2Ha,n´1´ipzq.
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In addition, the radius of convergence of the generating function GApzq enjoys many
properties, such as the following one, which we will then rephrase in a stronger form in
Corollary 7.56.

Proposition 7.5.
Let A` be an irreducible Artin–Tits monoid with n ě 2 generators. Let pA be the radius
of convergence of the generating function GApzq. The real number pA belongs to the half-
open interval r1{n, 2{3q and is a root of the Möbius polynomial HA of minimal modulus,
i.e. |ρ| ě p`A for all roots ρ of HA.

Proof. First, let B` be the free monoid with n generators. The monoid A` is a quotient
monoid of B`, and the monoid Zě0 is a quotient monoid of A`, whence pB ď pA ď pZě0 ,
where pA, pB and pZě0 are the respective radii of convergence of the generating functions
GApzq, GBpzq and GZě0pzq. Since GBpzq “ 1

1´nz
and GZě0pzq “

1
1´z

, it follows that 1
n
“

pB ď pA ď pZě0 “ 1.

The equality GApzqHApzq “ 1 holds on the open (complex) disk of convergence of
GApzq, which means that we have HApzq ‰ 0 whenever |z| ă pA and that GApzq is the
rational fraction HApzq

´1. Since the terms of the generating function GApzq are non-
negative, it follows that pA “ suptz P Rě0 : Gpzq ă `8u, and therefore that pA is a pole
of GA, i.e. a root of HA. Hence, pA is a root of HA of minimal modulus.

Finally, the monoid A` must contain some 2-generator irreducible submonoid, which
we call C` and The monoid C` is either a dihedral monoid with Coxeter group I2paq
for some a ě 3, or a free monoid, with Coxeter group I2paq for a “ `8. Again, we have
pA ď pC, where pC is the radius of convergence of GCpzq, i.e. a root of HCpzq of minimal
modulus. Since HCp0q “ 1 and

HC

ˆ

2

3

˙

“ 1´
4

3
`

ˆ

2

3

˙a

ď 1´
4

3
`

ˆ

2

3

˙3

“ ´
1

27
,

it follows that pC ă 2
3
, which completes the proof.

Moreover, (algebraic) generating functions and Möbius polynomials extend easily to
the framework of valuations, i.e. monoid morphisms from A` to Czt0u.

Definition 7.6 (Valuation).
Let A` be an Artin–Tits monoid with n generators. Let priq1ďiďn be a collection of complex
numbers. We call valuation of parameters priq the (unique) multiplicative function r :
A` ÞÑ C such that rpσiq “ ri for all i P t1, . . . , nu.

If each number ri is a non-negative real number, we say that r is non-negative. If each
number ri is positive, we even say that r is positive.
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Henceforth, we identify each valuation r : A` ÞÑ C with the collection pr1, . . . , rnq.
Note that functions x ÞÑ zλpxq, which appear implicitly in the definitions of the generating
function and of the Möbius polynomial of A`, are specific valuations. Hence, we denote
them by zλ, so that zλ : x ÞÑ zλpxq. In particular, multiplying the tuple pr1, . . . , rnq by a
constant θ amounts to multiplying the valuation r by the valuation θλ.

In addition, we decide to focus only on positive valuations. Indeed, if ri “ 0 for
some i P t1, . . . , nu, studying the valuation r on the monoid A` amounts to studying its
restriction to the submonoid generated by tσj : i ‰ ju. If A` is a braid monoid B`n , then
the braid relations σiσi`1σi “ σi`1σiσi`1 imply that riri`1pri`1´ riq “ 0. Since ri ą 0 for
all i, we must have r1 “ . . . “ rn.

In general, we must have ri “ rj whenever mi,j is odd, due the relation rσiσjsmi,j “
rσjσis

mi,j . Hence, letG be the Coxeter graph of the monoidA`, and consider the subgraph
G1 obtained by deleting all the edges pi, jq of G such that mi,j P 2Z. The equality ri “ rj
must hold whenever i and j belong to the same connected component of G1, and may
not hold if i and j belong to distinct connected component of G1.

For instance, we must have r1 “ . . . “ rn if A` is an Artin–Tits monoid with Coxeter
group of type An, Dn, En, Hn or I2paq with a odd. On the contrary, if the Coxeter group
of A` is of type Bn, then we only have r2 “ r3 “ . . . “ rn, but the equality r1 “ r2 does
not necessarily hold. Likewise, if A` is a heap monoid, then the graphs G and G1 are
equal, and therefore we may choose r1, . . . , rn independently.

This discussion leads to the notion of valuation manifold, whose elements are the
tuples pr1, . . . , rnq associated with some positive valuation r : A` ÞÑ C.

Definition 7.7 (Valuation manifold).
Let A` be an Artin–Tits monoid with n generators. The valuation manifold of A` is
defined as the set

VA :“ tpr1, . . . , rnq P p0,`8q
n : @i, j P t1, . . . , nu,mi,j P 2Z` 1 ñ ri “ rju.

Definition 7.8 (Multivariate generating function and Möbius polynomial).
Let A` be an Artin–Tits monoid. The multivariate algebraic generating function of the
monoid A` is defined as the function GA : r ÞÑ

ř

aPA` rpaq, where r : A` ÞÑ C is a
valuation.

The multivariate Möbius polynomial of A` is defined by HA : r ÞÑ
ř

IPPp´1q|I|rp∆Iq.

These are indeed generalisations of the standard generating function and Möbius
polynomial, through the identification GApzq “ GApzλq and HApzq “ HApz

λq. Further-
more, let C1, . . . , Ck be the connected components of the graph G1 defined above, and
let t1, . . . , tk be the elements of Rn such that tj :“ p1iPCjq1ďiďn for all j P t1, . . . , ku.
The valuation manifold is the cone generated positively by the family t1, . . . , tk, i.e.
VA “ tx1t1 ` . . .` xktk : 0 ă x1, . . . , xku.

In particular, when restricting our study to positive valuations, we can identify each
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valuation r with the tuple px1, . . . , xkq such that pr1, . . . , rnq “
řk
j“1 xjtj. Hence, we may

view GA and HA as actual multivariate functions, with (positive) variables px1, . . . , xkq.

Proposition 7.9.
Let A` be an Artin–Tits monoid. The multivariate generating function GA and the
multivariate Möbius polynomial HA of the monoid A` are inverses of each other, i.e.
GAprqHAprq “ 1.

Proof. A direct computation, using the change of variable b :“ ∆Ia, shows that

GAprqHAprq “
ÿ

aPA`

ÿ

IPP
p´1q|I|rp∆Iqrpaq “

ÿ

aPA`

ÿ

IPP
p´1q|I|rp∆Iaq

“
ÿ

bPA`

ÿ

IĎleftpbq

p´1q|I|rpbq “
ÿ

bPA`

1leftpbq“Hrpbq “ 1.

Proposition 7.9 has the flavour of inclusion-exclusion principles. Pushing further to-
wards this direction naturally leads to the notion of Möbius transform of functions [83, 86].

Definition 7.10 (Möbius transform and inverse Möbius transform).
Consider some function f : A` ÞÑ C. We define the Möbius transform of f as the
function Mf : x ÞÑ

ř

IPPp´1q|I|fpx∆Iq.

In addition, if f is L1, i.e. if
ř

aPA` |fpaq| ă `8, then we define the inverse Möbius
transform of f as the function Mf : x ÞÑ

ř

yPA` fpxyq.

Proposition 7.11.
Let A` be an Artin–Tits monoid and let f : A` ÞÑ C be an L1 function. The Möbius
transform Mf is also an L1 function, and we have MpMfq “MpMfq “ f .

Proof. First, since Mf is a finite sum of L1 functions, it is also an L1 function. Hence,
for all a P A`, and using the changes of variables c :“ b∆I and d :“ ∆Ib, we have

MpMfqpaq “
ÿ

bPA`

ÿ

IPP
p´1q|I|fpab∆Iq “

ÿ

cPA`

ÿ

IĎrightpcq

p´1q|I|fpacq

“
ÿ

cPA`

1rightpcq“Hfpacq “ fpaq and

MpMfqpaq “
ÿ

bPA`

ÿ

IPP
p´1q|I|fpa∆Ibq “

ÿ

dPA`

ÿ

IĎleftpdq

p´1q|I|fpadq

“
ÿ

dPA`

1leftpdq“Hfpadq “ fpaq.
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One shortcoming of the above-defined Möbius transform is that its inverse is only
defined on L1 functions. Hence, in the specific case of monoids of FC type, we introduce a
variant of Möbius transforms, which involves the modified length }x}γ :“ |NF`pxq|`1x“1

and modified functions fk : x ÞÑ 1}x}γďkfpxq. The corrective term 1x“1 in the definition
of }x}γ is meant to provide the equivalence }x}γ “ 1 ô x P S.

Definition 7.12 (Graded Möbius transform and inverse graded Möbius transform).
Let A` be an Artin–Tits monoid of FC type and let f : A` ÞÑ C be a function. We define
the graded Möbius transform of f as the function Mγf : x ÞÑ pMf}x}γ qpxq, and we define
the inverse graded Möbius transform of f as the function Mγf : x ÞÑ pMf}x}γ qpxq, where
M and M are the (standard) Möbius transform and inverse Möbius transform in the
sense of Definition 7.10.

Proposition 7.13.
Let A` be an Artin–Tits monoid of FC type. The graded Möbius transform Mγ and the
inverse graded Möbius transform Mγ are inverse (linear) bijections of the set tf : A` ÞÑ

Cu.

Proof. Let f : A` ÞÑ C be a function, let a be some element of A`, and let k be some
integer.

We first show that pMγfqk “Mγpfkq and pMγfqk “Mγpfkq. Indeed, we have

pMγfkqpaq “ pMpfkq}a}γ qpaq “ pMf}a}γ qpaq “ pMγfqpaq “ pMγfqkpaq if }a}γ ď k;

pMγfkqpaq “ pMpfkq}a}γ qpaq “ pMfkqpaq “ 0 “ pMγfqkpaq if }a}γ ą k;

pMγfkqpaq “ pMpfkq}a}γ qpaq “ pMf}a}γ qpaq “ pMγfqpaq “ pMγfqkpaq if }a}γ ď k;

pMγfkqpaq “ pMpfkq}a}γ qpaq “ pMfkqpaq “ 0 “ pMγfqkpaq if }a}γ ą k.

In addition, a ÞÑ }a}γ is non-decreasing for the ordering ď`, i.e. }a}γ ď }ab}γ for all
a,b P A`. It follows that

pMγpMγfqqpaq “ pMpMγfq}a}γ qpaq “ pMpMγf}a}γ qqpaq “
ÿ

bPA`

pMγf}a}γ qpabq

“
ÿ

bPA`

pMpf}a}γ q}ab}γ qpabq “
ÿ

bPA`

pMf}a}γ qpabq

“ pMpMf}a}γ qqpaq “ f}a}γ paq “ fpaq and

pMγpMγfqqpaq “ pMpMγfq}a}γ qpaq “ pMpMγf}a}γ qqpaq “
ÿ

IPP
p´1q|I|pMγf}a}γ qpa∆Iq

“
ÿ

IPP
p´1q|I|pMpf}a}γ q}a∆I}γ qpa∆Iq “

ÿ

IPP
p´1q|I|pMf}a}γ qpa∆Iq

“ pMpMf}a}γ qqpaq “ f}a}γ paq “ fpaq.
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7.1.2 Extended Artin–Tits Monoid and Finite Measures

We wish to embed A` into a compact metric space A` in a way that would also preserve
the partial order ď`. A standard construction for this is performed into the framework of
projective systems [17].

Definition & Proposition 7.14 (Extended Artin–Tits monoid).
Let A` be an Artin–Tits monoid of FC type. Consider the sets Ωk, for k ě 0, and maps
θk,m : Ωm ÞÑ Ωk, for m ě k ě 0, defined by:

Ωk “ tx P A` : }x} ď ku

θk,m : x ÞÑ αk` pxq,

where αk` : x ÞÑ LCMď`pty P S
k : y ď` xuq.

We have θk,k “ IdΩk and θk,m ˝ θm,n “ θk,n for all k ď m ď n. Hence, we say that the
families pΩkqkě0 and pθk,mqměkě0 form a projective system.

We call extended Artin–Tits monoid the projective limit

A
`

:“

#

pxkqkě0 P
ź

kě0

Ωk : @k,m ě 0,m ě k ñ θk,mpxmq “ xk

+

.

We equip the set A` with the partial order, which we denote by ď`, inherited from the
product partial order on

ś

kě0 Ωk, and with a collection of order-preserving mappings
θk,8 : A` ÞÑ Ωk such that θk,8 : pxmqmě0 ÞÑ xk.

Lemma 7.15.
Let A` be an Artin–Tits monoid of FC type. The mapping ι : A` ÞÑ A

` defined by
ι : x ÞÑ pαk` pxqqkě0 is an embedding of the ordered set A` into A

`.

Proof. Consider two elements x and y ofA`, and let k :“ maxt}x}, }y}u. Since x “ αk` pxq
and y “ αk` pyq, it follows that

x ď` yñ p@m ě 0, αm` pxq ď` α
m
` pyqq ñ ιpxq ď` ιpyq;

ιpxq ď ιpyq ñ αk` pxq ď` α
k
` pyq ñ x ď` y.

This completes the proof.

Definition 7.16 (Finite and infinite elements).
We identify henceforth the Artin–Tits monoid of FC type A` with its embedding ιpA`q

into the set A`. Hence, we call finite elements of A` the elements of A`, and infinite
elements of A` the elements of the set BA` :“ A

`
zA`.

From this first definition follow already some properties on the ordered set pA`
,ď`q.
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Lemma 7.17.
Let A` be an Artin–Tits monoid of FC type. The set A`, equipped with the order ď`,
is a complete lower semilattice, i.e. arbitrary non-empty subsets of A` admit a largest
common divisor. Furthermore, each subset of A` that has some common multiple has a
least common multiple.

Proof. Let S be some non-empty subset of A`. We first show that S admits a largest
common divisor. Indeed, each set Ωk is a finite lower semilattice, hence is a complete
lower semilattice. Hence, consider the sequence pxkqkě0 such that xk “ GCDď`pθk,8pSqq.
For all integers ` ě k ě 0, we have

θk,`px`q “ GCDď`pθk,` ˝ θ`,8pSqq “ GCDď`pθk,8pSqq “ xk,

hence pxkqkě0 belongs to A
`. It follows immediately that pxkqkě0 “ GCDď`pSq.

Consequently, the set S also admits a least common multiple, which is

LCMď`pSq :“ GCDď`ptζ P A
`

: @x P S,x ď` ζuq.

In particular, if A` is an Artin–Tits monoid of spherical type, then A
` is a complete

lattice. We also extend the notion of left Garside normal form to the extended Artin–Tits
monoid A

`.

Definition 7.18 (Extended Garside normal form).
Let A` be an Artin–Tits monoid of FC type. For each integer k ě 1, consider the k-th
extension mapping Θk : A

`
ÞÑ A`, which we define by Θk : x ÞÑ θk´1,8pxq

´1θk,8pxq.

We call extended Garside normal form of x, and denote by NFω
` pxq, the right-infinite

word Θ1pxq ¨Θ2pxq ¨ . . .

Proposition 7.19.
Let x be an element of an Artin–Tits monoid of FC type A`. The (extended) Garside
words NF`pxq and NFω

` pxq satisfy the relation NFω
` pxq “ NF`pxq ¨ 1 ¨ 1 ¨ . . .

Proof. Let us write down the letters of the words NF`pxq and NFω
` pxq, e.g. NF`pxq “ x1 ¨

. . .¨xk andNFω
` pxq “ z1¨z2¨. . ., where k “ }x}. For all integers i ě 1, Corollary 2.51 proves

that x1 . . . xmintk,iu “ z1 . . . zi. Hence, an immediate induction on i proves Proposition 7.19.

Corollary 7.20.
Let A` be an Artin–Tits monoid of FC type and let A` be the associated extended Artin–
Tits monoid of FC type. The extended Garside normal form z ÞÑ NFω

` pzq is injective.

Furthermore, the extended Garside words are the right-infinite words z “ z1 ¨z2 ¨ . . . whose
letters belong to S and satisfy the relations zi ÝÑ zi`1 for all i ě 1. In addition, z is the
extended Garside normal form of a finite element if and only if there exists some integer
k ě 1 such that zi “ 1 for all i ě k, and in this case we have z “ NFω

` pz1 . . . zk´1q.
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Proof. It comes immediately that the extended normal form is injective, i.e. that

NFω
` pxq “ NFω

` pyq ô x “ y.

Then, Lemma 2.40 and Proposition 7.19 prove that the extended Garside normal
forms of finite elements of A` are words z :“ z1 ¨ z2 ¨ . . . such that z1 ÝÑ z2 ÝÑ . . . such
that zk “ 1 for some integer k ě 1, and it comes immediately that z “ NFω

` pz1 . . . zk´1q.

Moreover, for all elements x “ pxkqkě0 of BA and all integers k ě 0, we have }xk} ď k
and therefore Proposition 7.19 proves that Θ1pxq¨. . .¨Θkpxq¨1¨. . . “ NFω

` pxkq, hence that
Θ1pxq ÝÑ . . . ÝÑ Θkpxq. Since x must be infinite, it follows immediately that Θkpxq ‰ 1
for all k ě 1.

Finally, if z :“ z1 ¨z2 ¨ . . . is a right-infinite word such that z1 ÝÑ z2 ÝÑ . . . and zk ‰ 1
for all k ě 1, then Corollary 2.51 proves that the sequence pxkqkě0, where xk :“ z1 . . . zk,
is an element of A`. This element cannot belong to A` itself, hence it belongs to BA,
which completes the proof.

Hence, the extended Garside normal form NFω
` : A

`
ÞÑ tz1 ¨ z2 ¨ . . . P Sω : @i ě

1, zi ÝÑ zi`1u is a bijection. It maps finite elements to the words that contain the letter
1, and infinite elements to the words that do not contain the letter 1. In addition, the
set tNFω

` pzq : z P A
`
u embeds naturally as a subset of the product set Sω :“ tpziqiě1 :

@i ě 1, zi P Su, equipped with the product topology, i.e. the coarsest topology for which
the mappings pzkqkě1 ÞÑ z` are continuous, for all integers ` ě 1.

It is natural to look for a topology on A
` such that NFω

` would be a homeomorphism,
and therefore we focus on the projective topology [17]. In addition, we provide A

` with
the associated Borel σ-algebra, and BA` with the induced σ-algebra.

Definition 7.21 (Projective topology on A
`).

Let A` be an Artin–Tits monoid of FC type. Since each set Ωk “ tx P A` : }x} ď ku
is finite, let us equip it with the discrete topology (i.e. the topology in which all sets are
open).

The projective topology on the projective limit A` is the coarsest topology for which the
mappings θk,8 : A

`
ÞÑ Ωk are continuous.

Proposition 7.22.
Let A` be an Artin–Tits monoid of FC type. The extended Garside normal form NFω

` :

A
`
ÞÑ tNFω

` pzq : z P A
`
u is a homeomorphism.

Proof. By definition, the product topology on tNFω
` pζq : ζ P A

`
u is generated by the

open sets B1pk, aq :“ tz : zk “ au, for all integers k ě 1 and all strong elements
a P S. Likewise, the projective topology on A

` is generated by the open sets B2pk,bq :“
tpxiqiě0 : xk “ bu, for all integers k ě 0 and all elements b of Ωk.
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Hence, let k be some integer, let a be some strong element of A`, and let b be some
element of Ωk. In addition, let z1 ¨ z2 ¨ . . . be the extended Garside normal form of b. The
direct image of B2pk,bq by NFω

` is the open subset
Şk
i“1 B1pi, ziq of tNFω

` pζq : ζ P A
`
u.

Conversely, the inverse image of B1pk, aq by NFω
` is the open subset

Ť

bPΩkpaq
B2pk,bq of

A
`, where the set Ωkpaq is defined as Ωkpaq :“ tb P Ωk : b “ αk´1

` pbqau. This completes
the proof.

Definition 7.23 (Elementary cylinders).
Let A` be an Artin–Tits monoid of FC type. For each finite element x P A`, we call
full elementary cylinder the set ò x :“ ty P A

`
: x ď` yu and elementary cylinder the

set Ò x :“ pò xq X BA`. In addition, for each (finite or not) element y P A
`, we call

downward elementary cylinder the set ó y :“ tz P A
`

: z ď` yu.

Proposition 7.24.
Let A` be an Artin–Tits monoid of FC type. The set A` is a metric, compact set, and
the set BA` is a closed subset of A`. In addition, consider some elements x P A` and
y P A

`. The sets txu and ò x are both open and closed in A
`, the set ó y is closed in

A
`, and the set Ò x is both open and closed in BA`.

Proof. First, observe that all projective limits of finite sets are metric, compact sets
(see [17] for details). Alternatively, this result also follows from the fact that tNFω

` pzq :

z P A
`
u is a closed subset of the metric, compact set Sω.

Then, consider two elements X :“ pxkqkě0 and Y :“ pykqkě0 of A
`. Recall that

X ď` Y if and only if xk ď` yk for all k ě 0. Equivalently, if X belongs to A`, we have
X ď` Y ô X ď` y}X}.

Moreover, by construction, each set B2pk,bq, where b P Ωk, is both open and closed
in A

`. Hence, let x be an element of A`. The set ò x “
Ť

yPΩ}x}:xď`y
B2p}x},yq is both

open and closed in A
`, and therefore the set Ò x “ pò xq X BA` is both open and closed

in BA`. Furthermore, the singleton set txu “ò xz
Ťn
i“1 ò pxσiq is itself open and closed

in A
`.

Finally, the sets A`
z ó ζ “

Ť

xPA`:xRóζ ò x and A` “
Ť

xPA`txu are unions of open
sets, hence are open subsets of A`. It follows that their respective complements ó ζ and
BA` are closed subsets of A`.

Elementary cylinders will play a crucial role in the subsequent parts of this chapter.
In addition, they are closely related to the closed and open balls B2pk,bq :“ tpxiqiě0 :
xk “ bu.

Proposition 7.25.
Let A` be an Artin–Tits monoid of FC type, let ν be a finite measure on A

`, and let
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f : A` ÞÑ C be the function such that f : x ÞÑ νpò xq. For all finite elements x P A`, we
have νpB2p}x}γ,xqq “ pMγfqpxq.

In particular, the measure ν is entirely determined by the values fpxq, for x P A`.

Proof. Consider the function g : x ÞÑ νpB2p}x}γ,xqq. The full elementary cylinder ò x
is the disjoint union of the sets B2p}x}γ,xyq for all the elements y P A` such that
}xy}γ ď }x}γ, i.e. such that }xy}γ “ }x}γ. It follows that fpxq “ pMγgqpxq, and therefore
that g “Mγf .

Moreover, since the open sets H and B2p}x}γ,xq, for x P A`, form a π-system (i.e.
a family closed under finite intersection) and generate the projective topology on A`,
it follows that ν is entirely determined by the values νpB2p}x}γ,xqq, for x P A`, and
therefore by f .

Bifinite domains [1, 82] provide us with an alternative proof of Proposition 7.25.

Definition & Proposition 7.26 (Bifinite domain and Lawson topology).
Let A` be an Artin–Tits monoid of FC type. Consider the sets Ωk, the maps θk,` : Ω` ÞÑ

Ωk, as well as the natural embeddings ϑk,` : Ωk ÞÑ Ω`, for ` ě k ě 0. Recall that A` was
defined as the projective limit of the projective system pΩkqkě0, pθk,`q`ěkě0.

For ` ě k ě 0, both maps θk,` and ϑk,` are order-preserving (for the order ď`). In addition,
we have θk,` ˝ ϑk,` “ IdΩk , and ϑk,` ˝ θk,` ď` IdΩ`. Hence, we say that the pair pθk,`, ϑk,`q
is a projection-embedding pair, and we say that A` is a bifinite domain.

Finally, let us define the Lawson topology on A
` as the topology generated by the open

sets ò x, for x P A`, and A
`
z ó ζ, for ζ P A`.

Proposition 7.27.
Let A` be an Artin–Tits monoid of FC type. The projective topology and the Lawson
topology coincide on A

`. In addition, every finite Borel measure on A
` is entirely de-

termined by its values on the collection of full elementary cylinders, and every finite
Borel measure on BA` is entirely determined by its values on the collection of elementary
cylinders.

Proof. Proposition 7.27 follows from general topological results about bifinite domains.
More precisely, the first part of Proposition 7.27 follows directly from [1, Theorem 1],
while the second part follows from [1, Theorem 2].

7.1.3 Uniform Measures on Extended Monoids

Definition 7.28 (Uniform measure).
Let A` be an Artin–Tits monoid of FC type, and let r : A` ÞÑ C be some non-negative
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valuation. We call uniform measure of parameter r on A
` a probability measure νr on

A
` such that @x P A`, νrpò xq “ rpxq. If r is positive, then we say that νr is positive.

Moreover, if r is of the form qλ for some non-negative real number q (i.e. if r : x ÞÑ qλpxq),
then we say that νr is the uniform measure of parameter q and also denote it by νq.

Finally, if νr is a uniform measure such that νrpA`q “ 0, then we say that νr is a
Bernoulli measure.

Observe that, since r is multiplicative, so is the associated uniform measure, i.e. νrpò
pxyqq “ νrpò xqνrpò yq. Conversely, if ν is a multiplicative measure on A

`, then the
function x ÞÑ νpò xq is a non-negative valuation which is entirely determined by the
values νi :“ νpò σiq.

Aiming to characterise uniform measures, we mention now two uniqueness and exis-
tence results.

Lemma 7.29.
Let A` be an Artin–Tits monoid of FC type and let r : A` ÞÑ C be some positive
valuation. The uniform measure νr of parameter r is unique, if it exists. Moreover, for
all x P A`, we have νrptxuq “ HAprqrpxq.

Proof. Let us assume that there exist uniform measures µr and νr of parameter r. We
have µrpò xq “ rpxq “ νrpò xq for all x P A`, and therefore Proposition 7.25 shows that
µr “ νr.

Then, the inclusion-exclusion principle shows that

νrptxuq “
ÿ

IPP
p´1q|I|νrpò px∆Iqq “

ÿ

IPP
p´1q|I|rpxqrp∆Iq “ HAprqrpxq,

which completes the proof.

Definition 7.30 (Convergence manifold and limit convergence manifold).
Let A` be an Artin–Tits monoid of FC type with n generators and let VA be the valuation
manifold of A`. The convergence manifold and the limit convergence manifold of A`

are defined as the sets

RA :“ tpr1, . . . , rnq P VA : GAprq ă `8u and RBA :“ BRA X VA.

By extension, and identifying the valuation r with the tuple pr :“ pr1, . . . , rnq, we will
also write r P RA and r P RBA as shorthand notations for pr P RA and pr P RBA.

For all tuples px :“ px1, . . . , xnq and py :“ py1, . . . , ynq of real numbers, let us write
px ď py if @i P t1, . . . , nu, xi ď yi, and px ă py if @i P t1, . . . , nu, xi ă yi. In addition,
if z is a real number, we extend the relations ď and ă by identifying z with the tuple
pz :“ pz, . . . , zq, i.e. we write px ď z, px ă z, z ď py and z ă py if px ď pz, pz ă pz, pz ď py and
pz ă py respectively.
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Lemma 7.31.
Let A` be an Artin–Tits monoid of FC type. Consider two elements pq and pr of the
valuation manifold VA of A`. If pq belongs to RA and if pr ď pq, then pr belongs to RA.

Proof. Let q and r be the valuations associated with the tuples pq and pr. For all x P A`,
we necessarily have 0 ď rpxq ď qpxq. Since the series GApqq converges, so does the series
GAprq, i.e. r P RA.

Lemma 7.32.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Let pA
be the smallest positive root of the Möbius polynomial HA, and let pr be some element of
VA. If pr ă pA, then pr P RA, and if pr P RA, then pr ă 1.

Proof. Without loss of generality, we assume that r1 “ maxtr1, . . . , rnu. First, if r1 ă pA,
then GApr1q “ GAprλ1 q converges, i.e. pr1, . . . , r1q P RA, hence Lemma 7.31 proves that
pr P RA. Second, if r1 ě 1, then GAprq ě

ř

kě0 rpσ
k
1q “

ř

kě0 r
k
1 “ `8.

Proposition 7.33.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and
let pr be some element of the valuation manifold VA of A`. There exists a positive real
number ϕpprq such that, for all x ą 0, xpr P RA ô x ă ϕpprq and xpr P RBA ô x “ ϕpprq.
Furthermore, the mapping ϕ : pr ÞÑ ϕpprq is continuous.

Proof. Without loss of generality, let us first assume that maxtr1, . . . , rnu “ 1, and con-
sider the set R :“ tx P p0,`8q : xpr P RAu. Lemma 7.32 proves that p0, pAq Ď R Ď p0, 1q.
Now, let r be the valuation associated with the tuple pr, and consider the functions
GA : x ÞÑ GApxλrq and HA : x ÞÑ HApx

λrq. Since HA is a polynomial and since the
equality GApxqHApxq “ 1 holds when x P R, it follows that GA is the rational function
H´1

A . Consequently, if ϕpprq denotes the smallest positive root of HA, i.e. the smallest
positive pole of GA, we have R “ p0, ϕpprqq, and ϕpprqpr P RBA.

Then, consider some x ą ϕpprq, and consider a sequence pq1, pq2, . . . of elements of
VA that converges towards xpr. Since xpr ą ϕpprqpr, there exists some k ě 0 such that
pqk ą ϕpprqpr. Since ϕpprqpr R RA, Lemma 7.31 proves that pqk R RA. This proves that no
sequence of elements of RA converges towards xpr, i.e. that xpr R RBA. It follows, for all
x P p0,`8q, that xpr P RA ô x ă ϕpprq and x P RBA ô x “ ϕpprq.

Finally, let us prove that ϕ is continuous, and consider some element pr :“ pr1, . . . , rnq
of VA. Then, consider some real number ε P p0, 1{2q, and some element pq of VA such
that |ri ´ qi| ď εri for all i P t1, . . . , nu. It follows that ϕpprqpr ď ϕpprq

1´ε
pq, and therefore

Lemma 7.31 proves that ϕppqq ď 1
1´ε

ϕpprq. Moreover, since p1 ´ εqri ď qi, it follows that
|ri ´ qi| ď

ε
1´ε

qi, and therefore that ϕpprq ď 1´ε
1´2ε

ϕppqq. This proves that ϕ : pr ÞÑ ϕpprq is
continuous.
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Corollary 7.34.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. The
limit convergence manifold of A` is homeomorphic to an open simplex of dimension
dimpVAq ´ 1, and the convergence manifold of A` is homeomorphic to an open ball of
dimension dimpVAq.

More precisely, the convergence manifold of A` is the connected component of the man-
ifold tpr P Va : HApprq ą 0u whose boundary (in Rn) contains the point p0, . . . , 0q.

Proof. Consider the sets Vă1
A :“ tpr P VA : pr ă 1u and V1

A :“ BVă1
A X VA “ tpr P VA :

maxtr1, . . . , rnu “ 1u, which are respectively homeomorphic to an open ball of dimension
dimpVAq and to an open simplex of dimension dimpVAq ´ 1. We claim that the mapping
Φ : pr ÞÑ ϕpprqpr induces a homeomorphism from V1

A to RBA. First, Proposition 7.33 proves
that tΦpprqu “ RBAXtxpr : x P p0,`8qu for all pr P VA. It follows that Φ induces a bijection
from V1

A to RBA.

Moreover, Proposition 7.33 also proves that Φ is continuous, and Lemma 7.32 proves
that pA ď ϕpprq ď 1 for all pr P V1

A. In addition, for each element pr of VA, let ψpprq :“
maxtr1, . . . , rnu. The mapping Ψ : pr ÞÑ ψpprq´1

pr induces a mapping from RBA to V1
A,

which is the inverse bijection of Φ. Moreover, we know that ψ and ψ´1 are continuous
on VA, so that Ψ is continuous too. Consequently, the mapping Φ “ Ψ´1 is indeed a
homeomorphism from V1

A to RBA.

In addition, it follows immediately that the mapping pr ÞÑ ψpprqΦpprq induces a bijection
from Vă1

A to RA. Since both this mapping and its inverse are continuous, it follows that
RA is homeomorphic with Vă1

A , i.e. with an open ball of dimension dimpVAq. Finally, let
C be the connected component of the manifold tpr P Va : HApprq ą 0u whose boundary
(in Rn) contains the point p0, . . . , 0q. We mentioned in the proof of Proposition 7.33 that
HA ą 0 on RA. Since RA is connected and non-empty (because RA is homeomorphic
to a ball), it follows that RA is a non-empty subset of C. Moreover, we also mentioned
that HA “ 0 on RBA, which proves that BRA XC “ H. It follows that RA “ C, which
completes the proof.

In what follows, for all positive valuations r : A` ÞÑ C, we denote by ϕprq the unique
positive real number such that the valuation ϕprqλr : x ÞÑ ϕprqλpxqrpxq belongs to RBA,
and we denote by Φprq the valuation ϕprqλr.

Theorem 7.35.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and
let r : A` ÞÑ C be a valuation. If r P RA, then there exists a (unique) uniform measure
νr of parameter r on A

`, whose support is A`. If r P RBA, then there exists a (unique)
uniform measure νr of parameter r on A

`, whose support is contained into BA`.

Proof. If r P RA, then the generating function GAprq is (absolutely) convergent, and the
equality GAprqHAprq “ 1 holds in the field of real numbers. It follows that HAprq ą 0,
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and therefore that the measure νr such that νrptxuq “ HAprqrpxq and νrpBA
`q “ 0 is

well-defined. Hence, consider some finite braid x P A`. Since the support of νr is A`, we
have

νrpò xq “
ÿ

yPA`

νrptxyuq “
ÿ

yPA`

rpxqrpyqHAprq “ rpxqGAprqHAprq “ rpxq,

which proves that νr is uniform with parameter r.

Then, if r P RBA, let pqjqjě1 be a sequence of valuations in RA such that qjk Ñ rk for
all k P t1, . . . , nu. Proposition 7.24 proves that A` is metric and compact, and therefore
we may assume that the sequence pνqjq converges weakly, towards a limit that we call νr.

Let x P A` be some finite braid. Proposition 7.24 also states that ò x is both open
and closed in A

`, and therefore ò x has an empty topological boundary. Hence, the
Portemanteau theorem [12] implies that limjÑ8 νqjpò xq “ νrpò xq. This proves that

νrpò xq “ lim
jÑ8

qjpxq “ rpxq,

which means that νr is uniform with parameter r and completes the proof.

In addition, ifA` is an Artin–Tits monoid of spherical type (i.e. if the lower semilattice
A
` admits a supremum), then there also exists a uniform measure νr associated with the

valuation r : x ÞÑ 1. This measure degenerate, and is the Dirac measure at ∆ω “ p∆kqkě0.
It coincides with the naive limit of the random walk on the monoid A`, such as studied
in Chapter 5.

Henceforth, we cast aside both the case of the valuation r : x ÞÑ 1x“1, which leads to
the uniform measure νr “ δ1, and the valuation r : x ÞÑ 1, which leads to the uniform
measure νr “ δ∆ω when A` is an Artin–Tits monoid of spherical type

Conversely, let us prove that the above-constructed uniform measures are the only
existing uniform measures. In order to do so, we need to use Perron-Frobenius theory
(see [85, Chapter 1] for details).

Definition 7.36 (Positive matrix and primitive matrix).
Let M be a real square matrix. If all the entries of M are non-negative real numbers, we
say that M is non-negative. If they are positive real numbers, we say that M is positive.

Moreover, if M is a non-negative matrix such that, for some integer k ě 0, the matrices
pM `q`ěk are all positive, then we say that M is primitive.

Theorem 7.37 (Perron).
Let M be a primitive matrix. There exists a positive real number ρ, one row vector l with
positive entries, and one column vector r with positive entries, such that:

• ρ is a simple eigenvalue of M , for the left eigenvector l and the right eigenvector r
(i.e. l ¨M “ ρ l and M ¨ r “ ρ r);
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• for all eigenvalues λ of M , if ρ ‰ λ, then |ρ| ą |λ|;
• each left eigenvector of M with non-negative entries is a (positive) multiple of l,
and each right eigenvector of M with non-negative entries is a (positive) multiple
of r.

We say that ρ is the Perron eigenvalue of M , and that l and r are Perron eigenvectors
of M .

In addition, if l and r are normalised so that l ¨ r “ 1, then, for all row vectors g and
column vectors h with non-negative entries, the equivalence relations

Mk
„ ρkr ¨ l; g ¨Mk

„ ρkg ¨ r ¨ l; Mk
¨ h „ ρkr ¨ l ¨ h and g ¨Mk

¨ h „ ρkpg ¨ rqpl ¨ hq

hold when k Ñ `8. Furthermore, the spectrum of the matrix N :“ M ´ r ¨ l is t0u Y
sppMqztρu.

Finally, for all matrices N such that both N and M ´ N are non-negative, and for all
eigenvalues λ of N , we have

• if ρ ‰ λ, then |ρ| ą |λ|; • if ρ “ λ, then M “ N .

Aiming to apply Theorem 7.37 to combinatorially meaningful matrices, we first prove
some strong connexity results.

Definition 7.38 (Essential left Garside acceptor graph).
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Let
S be the smallest two-way Garside family of A`. We call essential elements of A` the
elements of the set E :“ Szt1,∆u if A` is an Artin–Tits monoid of spherical type, or
E :“ Szt1u otherwise (i.e. if ∆ does not exist), and call essential Garside set the set E
itself.

We also call essential left Garside acceptor graph the oriented labelled graph Gleftgar :“
pV,Eq defined by

V “ trightpaq : a P Eu,
E “ tpP,Qq P V ˆ V : Da P E , leftpaq Ď P and rightpaq “ Qu,

and such that each essential element a P E labels the edges pP,Qq such that leftpaq Ď P
and rightpaq “ Q.

Theorem 7.39.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and let
Gleftgar be the essential left Garside acceptor graph of A`. The paths in Gleftgar are precisely
the ∆-free left Garside words if A` is an Artin–Tits monoid of spherical type, or the left
Garside words otherwise. Furthermore, the graph Gleftgar is strongly connected and contains
loops and, if A` is not an Artin–Tits monoid of spherical type, it contains the state
tσ1, . . . , σnu.
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Proof. First, if A` is an Artin–Tits monoid of spherical type, observe that Gleftgar is the
oriented labelled graph induced by the left Garside acceptor automaton, from which the
node tσ1, . . . , σnu has been deleted. Hence, the paths in Gleftgar are precisely the ∆-free left
Garside words. Furthermore, the bilateral Garside automaton Ggar, which we introduced
in Definition 5.18, is obtained by deleting edges from Gleftgar . Since Proposition 5.21 states
that Ggar is strongly connected and contains loops, so must Gleftgar be connected and contain
loops.

We focus henceforth on the case where A` is not an Artin–Tits monoid of spherical
type, i.e. when its Coxeter diagram contains an edge #“#. Once again, Gleftgar is the oriented
labelled graph induced by the left Garside acceptor automaton, hence the paths in Gleftgar

are precisely the left Garside words. It remains to show that Gleftgar contains some loop and
is strongly connected, which we do by proving that tσ1, . . . , σnu is a vertex of Gleftgar that
is accessible from each vertex of Gleftgar .

Let G be the Coxeter diagram of the monoid A`, and let us denote by dG the distance
in the graph G, by using either edges #“# or #́ #. Henceforth, since we must handle
both the essential left Garside acceptor graph pV,Eq and the Coxeter diagram G, the
word “vertex” will always refer to vertices of G. Furthermore, for avoiding too heavy
notations, we will identify the sets A P t1, . . . , nu with tσa : a P Au.

In addition, for all sets S Ď t1, . . . , nu, we will denote by S#“# the set ti P t1, . . . , nu :
Dj P S,mi,j “ 8u, i.e. the set of vertices that are linked to S via an edge #“#, and by
S#“#˚ the set of vertices accessible from S via edges #“# (including the vertices of S),
i.e. the smallest set T such that S Y T#“# Ď T . Similarly, we will denote by S#́ # the set
ti P t1, . . . , nu : Dj P S,mi,j ě 3u, i.e. the set of vertices that are linked to S via an edge
#́ #, and by S#́ #˚ the set of vertices accessible from S via edges #́ # (including the
vertices of S), i.e. the smallest set T such that S Y T #́ # Ď T .

We already note that, if S is #“#-independent, then there exists a strong element
∆S, whence leftp∆Sq “ S and rightp∆Sq “ S Y S#“#. Now, let P Ď t1, . . . , nu be an
element of V . Since P “ rightpaq for some non-trivial element a, we already know that
P is not empty.

First, if P Ĺ P#“#˚ , consider some vertices i P P and j P t1, . . . , nuzP such that
mi,j “ 8. Then, let P be a maximal #“#-independent subset of P such that i P P .
We have leftp∆P q “ P Ď P and rightp∆P q “ P Y P

#“#
Ě P Y tju. Consequently, an

immediate induction shows that the set P#“#˚ is accessible from P in Gleftgar . In particular,
the set P#“#˚ is accessible from itself in Gleftgar in one step, which means that it belongs to
a loop.

Note that this part of the proof already implies Theorem 7.39 in the case of irreducible
heap monoids.

Second, if P Ĺ P #́ #˚ , let X be a maximal connected #“#-independent subset of G
such that H Ĺ XXP Ĺ X. Observe that |X| ě 2. Moreover, since G contains some edge
#“#, the set X cannot contain all the vertices of G, hence it contains some element x
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that is linked to some edge #“#, i.e. such that x P pX#“#q#“#.

Let B` be the submonoid of A` generated by the set tσi : i P Xu. According to
Proposition 5.21, there exists a sequence of simple braids b1, . . . ,bu in B` such that
leftpb1q Ď X X P , b1 ÝÑ . . . ÝÑ bu and rightpbuq “ Xztxu.

Then, let bu`1 :“ σ´1
x ∆X and bu`2 :“ ∆Xσ

´1
x . Note that bu`2 is the “mirror” of bu`1,

i.e. is obtained by reversing the order of the factors of bu`1. In addition, let y be some
neighbour of x in X. Since mx,y ě 3 and rσxσysmx,y “ ∆tx,yu ď` ∆X “ σxbu`1, it follows
that σx is a factor of bu`1, and also of bu`2. Hence, we have bu ÝÑ bu`1 ÝÑ bu`2 and
rightpbu`2q Ě X#“# YXztxu.

Now, observe that tj : dGpX, jq “ 1u “ X#“#. Then, let P be a maximal #“#-
independent subset of tj P P : dGpj,Xq ě 2u. Since ∆P commutes with b1, . . . ,bu`2, the
elements ∆Pb1, . . . ,∆Pbu`2 are strong elements such that

• leftp∆Pb1q “ P Y leftpb1q Ď P ;
• ∆Pb1 ÝÑ . . . ÝÑ ∆Pbu`2;

• rightp∆Pbu`2q “ P Y P
#“#

Y rightpbu`2q Ě P YX#“# YXztxu.

It follows that both sets Q :“ rightp∆Pbu`2q and Q#“#˚ are accessible from P in Gleftgar ,
and that P Y X Ď Q Y txu Ď Q Y pX#“#q#“# Ď Q#“#˚ . Consequently, an immediate
induction shows that the set P #́ #˚ is accessible from P in Gleftgar .

Hence, let S be the smallest subset of G such that P Ď S “ S#“#˚ “ S#́ #˚ . The two
above points show that S is accessible from P in Gleftgar . Moreover, by construction, S is
a union of maximal connected components of G. Since G itself is connected, it follows
that S “ tσ1, . . . , σnu, which completes the proof.

Definition 7.40 (Garside matrix and expanded Garside matrix).
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, with
two-way Garside family S and essential Garside set E. In addition, let r : A` ÞÑ C be
a positive valuation. We call Garside matrix of parameter r the matrix M :“ pMx,yq,
indexed by pairs of braids x,y P E, and defined by Mx,y “ 1xÝÑyrpyq.

We also call expanded Garside matrix of parameter r the matrix N :“ pNpi,xq,pj,yqq, where
x,y P Szt1u, 1 ď i ď λpxq and 1 ď j ď λpyq, and defined by

Npi,xq,pj,yq “ 1 if x “ y and i` 1 “ j

“ rpyq if x ÝÑ y, i “ λpxq and j “ 1

“ 0 otherwise.

Finally, we call essential Garside matrix of parameter r the restriction of N to indices
pi,xq such that x P E.

In particular, if A` is not an Artin–Tits monoid of spherical type, then its expanded
Garside matrices and its essential Garside matrices are identical. The expanded Garside
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matrix and the essential Garside matrix are analogous to constructions already used
successfully for the analysis of heaps [71].

Lemma 7.41.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and let
r : A` ÞÑ C be a positive valuation. The Garside matrix of parameter r and the essential
Garside matrix of parameter r are primitive.

Proof. The non-negativity of these two matrices is immediate, and their primitiveness
follows from Theorem 7.39. In particular, since the essential Garside graph of A` is
connected and contains loops, let D be its diameter. It comes immediately that, between
any two states of the graph, there exists a path of length exactly 2D` 1.

Definition 7.42 (Successor Garside set).
Consider some element x of an Artin–Tits monoid of FC type A`. We call successor
Garside set of x, and denote by Spxq, the set ty P S : Θ}x}γ pxq ÝÑ yu, i.e. the set t1u if
x “ 1, or ty P S : NF`pxyq “ NF`pxq ¨ yu if x ‰ 1.

Lemma 7.43.
Let A` be an Artin–Tits monoid of FC type, let f : A` ÞÑ C be a valuation, and let
g : x ÞÑ

ř

yPSpxqpMγfqpyq. For all x P A`, we have pMγfqpxq “ fpxqgpxq.

Proof. First, if x “ 1, then Spxq “ t1u and fp1q “ 1, whence the equality pMγfqp1q “
fp1qgp1q. Henceforth, we assume that x is non-trivial, and denote by x1 ¨ . . . ¨ xk be the
left Garside normal form of x, with k “ }x} “ }x}γ.

Consider the two functions F,G : 2tσ1,...,σnu ÞÑ C defined by

F : A ÞÑ
ÿ

IPP
1tIXA“Hup´1q|I|fp∆Iq and G : A ÞÑ

ÿ

yPS

1tleftpyqĎAupMγfqpyq.

We first prove that F “ G. Indeed, for each I P P and for each y P S, we have I Ď
leftpyq ô ∆I ď` y, whence

fp∆Iq “ pMγpMγfqqp∆Iq “
ÿ

yPA`

1}y}γ“11∆Iď`ypMγfqpyq “
ÿ

yPS

1IĎleftpyqpMγfqpyq;

F pAq “
ÿ

yPS

ÿ

IPP
1tIXA“Hu1IĎleftpyqp´1q|I|pMγfqpyq “

ÿ

yPS

1leftpyqĎApMγfqpyq “ GpAq.

According to Lemma 2.99, for all elements ∆I , we have }x∆I} ď k ô rightpxkqX I “
H. Since f is multiplicative, it follows that

pMγfqpxq “ pMfkqpxq “
ÿ

IPP
p´1q|I|1}x∆I}ďkfpx∆Iq “ fpxqF prightpxkqq and that

gpxq “
ÿ

yPSpxq

pMγfqpyq “
ÿ

yPS
1leftpyqĎrightpxkq

pMγfqpyq “ Gprightpxkqq,

which completes the proof.
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Proposition 7.44.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, let
r : A` ÞÑ C be a positive valuation associated with a uniform measure νr of parameter
r such that νrpA`q “ 0, and let M be the Garside matrix of parameter r. The Perron
eigenvalue of M is 1, and the right Perron eigenvectors of M are multiples of the vector
g “ pgxqxPE such that gx :“ gpxq, where g : x ÞÑ

ř

yPSpxqpMγrqpyq.

Proof. We first prove that g is non-zero and has non-negative entries. Recall that the
relation Mγr “ rg holds on S. Therefore, for all x P E , Proposition 7.25 shows that
gx “ gpxq “ rpxqpMγrqpxq “ rpxqνrpB2p1,xqq ě 0. In addition, if g is zero, then we
have pMγrqpxq “ 0 for all x P E , and therefore

1 “ rp1q “ pMγpMγrqqp1q “ pMγrqp1q ` pMγrqp∆q

“ νrpB2p1,1qq ` νrpB2p1,∆qq “ νrpt1uq ` νrpò ∆q “ rp∆q if ∆ exists, or
1 “ rp1q “ pMγpMγrqqp1q “ pMγrqp1q “ νrpB2p1,1qq “ νrpt1uq “ 0 otherwise.

This proves that ∆ exists, and that rp∆q “ 1. Since we must have 0 ă ri ď 1 for all
i P t1, . . . , nu, it follows that r is the constant valuation x ÞÑ 1, which we decided above
to cast aside.

Therefore, we have proven that g is non-zero, and we focus on proving thatM ¨g “ g.
Proposition 7.25 shows that gp1q “ pMγrqp1q “ νrpB2p1,1qq “ νrpt1uq “ 0. It follows
that

pM ¨ gqx “
ÿ

yPSpxq

1y‰1rpyqgpyq “
ÿ

yPSpxq

rpyqgpyq “
ÿ

yPSpxq

pMγrqpyq “ gpxq “ gx.

Proposition 7.45.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and let
r : A` ÞÑ C be a positive valuation associated with a uniform measure νr of parameter r.
The valuation r belongs to the set RA YRBA.

Proof. Consider the tuple pr :“ pr1, . . . , rnq and let us assume, for the sake of contradiction,
that pr R RA YRBA, i.e. that ϕpprq ă 1, where ϕ was defined in Proposition 7.33.

First, Lemma 7.29 proves that νrptxuq “ HAprqrpxq for all x P A`. This proves that
HAprq ě 0. Moreover, if HAprq ą 0, then

1 “ νrpò 1q ě νrpT q “ HAprq
ÿ

xPT

rpxq

for all finite sets T Ď A`. It follows that the series
ř

xPA` rpxq is convergent, i.e. that
pr P RA, which is false.

Hence, we know that HAprq “ 0 and that νrpA`q “ 0, i.e. that νr is concentrated
at infinity. Then, Proposition 7.44 proves that both the Garside matrices M and N ,
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with respective parameters r and Ψprq “ ϕprqλ r, are primitive matrices with Perron
eigenvalue 1. Since ϕprqλpxq rpxq ă rpxq for all x P A`zt1u, it follows that M ‰ N , and
that both N and M ´ N are non-negative, which contradicts Theorem 7.37. Therefore,
our initial assumption was false, which proves Proposition 7.45.

Adding Theorem 7.35 and Proposition 7.45, we obtain the following result.

Theorem 7.46.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. The
positive uniform measures on A

` are:

• the measures νr with support equal to A`, with parameter r P RA, that are defined
by νq : txu ÞÑ HAprqrpxq for all x P A`;
• the measures νr with support in BA`, with parameter r P RBA;
• the Dirac measure at ∆ω, with parameter 1, if A` is an Artin–Tits monoid of
spherical type.

Whenever we consider below a function f with domain in A
` and a probability

measure µ on A
`, we denote by fpµq the distribution of the random variable fpxq when

x is drawn at random according to the measure µ. If pfkqkě0 is a random process, we will
also denote by pfkpµqqkě0 the distribution of the random variable pfkpxqqkě0 when x is
drawn at random according to the measure µ.

A remarkable feature of uniform measures νr is that the process pΘkpνrqqkě1 of exten-
sion mappings, which we introduced in Definition 7.18, is realised by a Markov chain.

Definition 7.47 (Markov Garside matrix).
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, let νr
be a positive uniform measure on A`, and let r : A` ÞÑ C be the parameter of νr. In
addition, let us denote by E the set S (if r P RA) or Szt1u (if r P RBA).

The Markov Garside matrix of r is the matrix P “ pPu,vq, where u,v P E, which is
defined by

P1,v :“ 11“v (if q ‰ pA), and Pu,v :“ 1vPSpuqrpuq
pMγrqpvq

pMγrqpuq
if u ‰ 1.

Theorem 7.48.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Let
r : A` ÞÑ C be a positive valuation, with r P RA YRBA, and let x be an extended braid
chosen according to the uniform measure νr.

The process pΘkpνrqqkě1 is a Markov chain that takes its values in E. Its initial distribution
coincides with Mγr on E, and its transition matrix is the Markov Garside matrix of r.

Proof. We first show that pMγrqpxq ą 0 for all x P E. Indeed:
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• if r P RA, then Proposition 7.25 and Lemma 7.29 indicate that pMγrqpxq “
νrpB2p1,xqq ě νrptxuq “ HAprqrpxq ą 0;
• if r P RBA, then Theorem 7.37, Lemma 7.43 and Proposition 7.44 indicate that
gpxq ą 0, where g is the function, defined in Lemma 7.43, such that pMγrqpxq “
rpxqgpxq.

Hence, pMγrqpxq ą 0, and the Markov Garside matrix of r is well-defined.

If r P RBA, then we know that νrpΘk “ 1q ď νrpA
`q “ 0 for all k ě 0, hence the

random variable Θk indeed takes its values in E. Now, consider some tuple px1, . . . , xkq
of elements of E. We prove now that the real numbers δ :“ νrpΘ1 “ x1, . . . ,Θk “ xkq and
δ1 :“ pMγrqpx1qPx1,x2 . . . Pxk´1,xk are equal.

First, observe that we can focus on the case where x1 ÝÑ . . . ÝÑ xk. Indeed, in
the contrary case, we have δ “ δ1 “ 0. Now, consider the element x “ x1x2 . . . xk. By
construction, we have Θipxq “ xi, hence δ “ νrpθk,8 “ xq “ νrpB2pk,xqq “ pMγrqpxq.
Moreover, note that }x} ă k if xk “ 1 (and therefore r P RA), and that }x} “ k if xk ‰ 1.
It follows that

δ “ νrptxuq “ HAprqrpxq “ pMγrqp1q rpxq

δ “ rpxqrpxkq
´1
pMγrqpxkq if }x} ă k;

δ “ pMγrqpxq “ rpxqgpxq “ rpxq
ÿ

yPSpxkq

pMγrqpyq

δ “ rpxqrpxkq
´1
pMγrqpxkq if }x} “ k.

Moreover, note that

δ1 “ pMγrqpx1q

k´1
ź

i“1

rpxiq
pMγrqpxi`1q

pMγrqpxiq
“ rpxqrpxkq

´1
pMγrqpxkq “ δ.

This proves that pΘkqkě1 is indeed a Markov chain with the specified initial distribution
and transition matrix.

In particular, Theorem 7.48 leads to a characterisation of RBA in terms of polynomial
inequalities, thanks to the notion of Möbius valuation.

Definition 7.49 (Möbius valuation).
Let A` be an Artin–Tits monoid of FC type, and let r : A` ÞÑ C be a valuation. We say
that r is Möbius if pMγrqp1q “ 0 and pMγrqpxq ą 0 for all x P Szt1u.

Proposition 7.50.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and
let r : A` ÞÑ C be a positive valuation. The valuation r is Möbius if and only if it belongs
to RBA.

Proof. First, if r P RBA, then the uniform measure νr of parameter r satisfies νrpA`q “ 0.
Then, let g : x ÞÑ

ř

yPSpxqpMγrqpyq. Proposition 7.44 proves that pMγrqpxq “ rpxqgpxq ą
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0 for all x P E . Hence, it remains to prove that pMγrqp1q “ 0 and that pMγrqp∆q ą 0 ifA`

is an Artin–Tits monoid of spherical type. The first equality comes from Proposition 7.25,
which proves that pMγrqp∆q “ νrpB2p1,1qq “ νrpt1uq ď νrpA

`q “ 0, and the second is
due to the fact that pMγrqp∆q “ rp∆q ą 0. Hence, if r P RBA, it follows that r is Möbius.

Conversely, if r is Möbius, let us build a Bernoulli measure µ with parameter r, using
the recipe provided by Theorem 7.48. Consider the matrix P “ pPx,yq, where x,y P Szt1u,
that is defined by

Px,y :“ 1xÝÑyrpxq
pMγrqpyq

pMγrqpxq
.

Note that, since r is Möbius, the matrix P is well-defined. Furthermore, for all x P Szt1u,
and since r is Möbius, we also have

ÿ

yPSzt1u

Px,y “
rpxq

pMγrqpxq

ÿ

yPSzt1u

1xÝÑypMγrqpyq

“
rpxq

pMγrqpxq

ÿ

yPS

1xÝÑypMγrqpyq “
rpxqgpxq

pMγrqpxq
“ 1,

which proves that P is a stochastic matrix.

In addition, let ι be the measure on Szt1u such that ι : x ÞÑ pMγrqpxq. Since A` is
the disjoint union of the open balls B2p1,xq for x P S and since ιp1q “ 0, it follows that

ιpSzt1uq “ ιpSq “
ÿ

xPS

ιpxq “ pMγιqp1q “ rp1q “ 1,

which means that ι is a probability distribution.

Hence, consider the Markov chain pXkqkě1 of non-trivial strong elements (i.e. elements
of Szt1u) with initial distribution ι and with transition matrix P . Due to Proposition 7.22,
which states that A` is homeomorphic to NFω

` pA
`
q, there exists a probability measure

µ on A
` such that µ : S ÞÑ PrX1 ¨ X2 ¨ . . . P NFω

` pSqs. It immediately follows that
µpA`q “ PrDk ě 1 : Xk “ 1s “ 0, hence that µ is supported by BA`. Hence, consider
the function s : A` ÞÑ C such that s : x ÞÑ µpò xq “ µpÒ xq. It remains to prove that
r “ s.

First, observe that 0 “ µpt1uq “ µpB2p1,1qq “ pMγsqp1q. Then, consider some
non-trivial element x of A`, with left Garside normal form x1 ¨ . . . ¨ xk. Let F : A ÞÑ
ř

IPP 1tIXA“Hup´1q|I|rp∆Iq. Since x1 ÝÑ . . . ÝÑ xk, and due to the relation pMγrqpxq “

rpxqF prightpxkqq demonstrated in the proof of Lemma 7.43, it follows that

pMγrqpxq “ rpxqF prightpxkqq “ rpx1 . . . xk´1q ¨ pMγrqpxkq

“ pMγrqpx1q

k´1
ź

i“1

rpxiq
pMγrqpxi`1q

pMγrqpxiq
“ ιpx1q

k´1
ź

i“1

Pxi,xi`1

“ PrX1 “ x1, . . . , Xk “ xks “ µpB2pk,xqq “ pMγsqpxq.

This means that Mγr “Mγs, and therefore that r “ s, which completes the proof.
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Furthermore, while Corollary 7.34 proves that RBA is homeomorphic to an open sim-
plex for all Artin–Tits monoids of FC type A, its proof refers to a homeomorphism Φ
whose expression is not simple in general, since it involves looking for roots of polynomi-
als of arbitrary degree. However, if A` is a heap monoid, then these polynomials have
degree at most 1 in each of their variables, which leads to simple parametrisations of the
convergence manifold and of the limit convergence manifold.

Theorem 7.51.
Let A` be an irreducible heap monoid with n ě 2 generators. There exists rational func-
tions f1, . . . , fn´1 such that each function fi has i variables, is positive (and has no pole)
on p0, 1qi, and such that the manifolds RA and RBA are given by the equations

RA “ tpx1, f1px1qx2, . . . , fnpx1, . . . , xn´1qxnq : 0 ă x1, . . . , xn ă 1u;

RBA “ tpx1, f1px1qx2, . . . , fnpx1, . . . , xn´1qxnq : 0 ă x1, . . . , xn´1 ă 1 and xn “ 1u.

Proof. We prove the first part of Theorem 7.51, i.e. the equation about RA, by induction
on n. First, the result is immediate for n “ 1. Then, if n ě 2, consider the set N :“ ti :
1 ď i ď n´1 and mi,n ‰ 0u. For all sets S Ď t1, . . . , n´1u, let A`

S denote the submonoid
of A` generated by tσi : i P Su. We may view the Möbius polynomial of A`

S as the
polynomial HSpx1, . . . , xn´1q :“ HApx

S
1 , . . . , x

S
nq in n´ 1 variables, where xSi :“ 1iPSxi.

For all tuples px1, . . . , xnq P RA, both series GApx1, . . . , xnq and GApxS1 , . . . , xSnq are
convergent, which proves that pxiqiPS P RAS

, hence that HSpx1, . . . , xn´1q ą 0. Moreover,
it comes immediately that HA “ Ht1,...,n´1u ´ xnHN . Now, consider rational functions
f1, . . . , fn´1, such that each function fi has i variables, is positive and has no pole on
p0, 1qi, and such that the convergence manifold of A`

t1,...,n´1u is

RAt1,...,n´1u
“ tpy1, . . . , yn´1q : 0 ă x1, . . . , xn´1 ă 1u,

where yi :“ fi´1px1, . . . , xi´1qxi for all i P t1, . . . , n´ 1u. Then, we define

fnpx1, . . . , xn´1q :“
Ht1,...,n´1upy1, . . . , yn´1q

HNpy1, . . . , yn´1q

and yn “ fnpx1, . . . , xn´1qxn

When 0 ă x1, . . . , xn´1 ă 1, we proved above that Ht1,...,n´1upy1, . . . , yn´1q and
HNpy1, . . . , yn´1q are well-defined and positive. This proves that fn has no pole inside
the set p0, 1qn´1, on which it is positive.

We know that HApy1, . . . , ynq ą 0 when 0 ă x1, . . . , xn´1 and xn “ 0. Hence, it
follows from Corollary 7.34 that the set tpy1, . . . , ynq : 0 ă x1, . . . , xn ă 1u is a subset
of RA. Furthermore, since RAt1,...,n´1u

“ tpy1, . . . , yn´1q : 0 ă x1, . . . , xn´1 ă 1u, we
know that RA Ď tpy1, . . . , ynq : 0 ă x1, . . . , xn´1 ă 1 and 0 ă xnu. Finally, when 0 ă
x1, . . . , xn´1 ă 1, observe that HApy1, . . . , ynq ą 0 ô xn ă 1. Hence, it follows that
RA “ tpy1, . . . , ynq : 0 ă x1, . . . , xn ă 1u, which completes our induction and proves the
first part of Theorem 7.51.
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It remains to prove that RBA “ tpy1, . . . , ynq : 0 ă x1, . . . , xn´1 ă 1 and xn “ 1u. First,
it is clear that

RBA Ě tpy1, . . . , ynq : 0 ă x1, . . . , xn´1 ă 1 and xn “ 1u;

Ď tpy1, . . . , ynq : 0 ă x1, . . . , xn ď 1 and maxtx1, . . . , xnu “ 1u.

Hence, consider some tuple px1, . . . , xnq such that py1, . . . , ynq P RBA, and let us assume
that xi “ 1 for some integer i ď n ´ 1, which we assume to be minimal. In addition, let
y : A` ÞÑ C be the Möbius valuation such that yi “ ypσiq, and let νy be the associated
Bernoulli measure.

It follows immediately that Ht1,...,iupy1, . . . , ynq “ 0, which proves, using an inclusion-
exclusion formula, that νy

´

Ťi
j“1 Ò σj

¯

“ 1 ´ νypt1uq “ 1. However, y is Möbius, which

means that νypB2p1, σnqq “ pMγyqpσnq ą 0, although B2p1, σnq X
Ťi
j“1 Ò σj “ H. This

contradiction proves that our assumption was false, which completes the proof.

7.1.4 Uniform Measures on Spheres

We relate now the above-defined uniform measures with standard uniform measures on
finite “spheres” of the form tx P A` : λpxq “ ku, i.e. on elements conditioned by their
Artin length.

Definition 7.52 (Uniform distribution on spheres).
Let A` be an Artin–Tits monoid of FC type. For each integer k ě 0, let A`pkq denote
the set of elements of A` whose length is k, i.e. A`pkq :“ tx P A` : λpxq “ ku. In
addition, let r : A` ÞÑ C be a positive valuation. We define the uniform distribution
of parameter r on A`pkq as the probability distribution µk on A

` such that: µk : x ÞÑ

1xPA`pkq
rpxq

ř

yPA`pkq rpyq
.

Lemma 7.53.
Consider some real number ρ, as well as some real sequence punqně0 such that un „ ρn

when nÑ `8. In addition, let ` be some non-negative integer, and let f` : z ÞÑ
ř

kě0 k
`zk.

Finally, consider the sequence pvnqně0 defined by vn :“
řn
k“0pn´kq

`uk and the generating
function Upzq defined by U : z ÞÑ

ř

ně0 unz
n.

• If ρ ą 1, then vn „ ρnf`pρq when nÑ `8;
• If ρ ą 0, then Upzq „ 1

1´ρz
when z Ñ ρ´1 (with 0 ď z ă ρ´1).

Proof. Let ε be a positive real number, and let κ be some integer such that p1´ εqρn ď
un ď p1 ` εqρn whenever n ě κ. In addition, let A :“

řκ
k“0 |uk|. If ρ ą 1, it comes

immediately that

ρ´nvn ď p1` εq
n´κ
ÿ

k“0

k`ρ´k ` Aρ´n Ñ p1` εqf`pρq

ě p1´ εq
n´κ
ÿ

k“0

k`ρ´k ´ Aρ´n Ñ p1´ εqf`pρq
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when n Ñ `8. Choosing ε to be arbitrarily small, it comes that vn „ ρnf`pρq when
nÑ `8.

Moreover, when 0 ď z ă ρ´1, we also have

p1´ ρzqUpzq ď p1` εqpρzqκ ` p1´ ρzqAÑ 1` ε

ě p1´ εqpρzqκ ´ p1´ ρzqAÑ 1´ ε

when z Ñ ρ´1. Choosing ε to be arbitrarily small, it comes that Upzq „ 1
1´ρz

when
z Ñ ρ´1 (with 0 ď z ă ρ´1).

Corollary 7.54.
Consider some real number ρ, some integer ` ě 0, as well as some real sequence punqně0

such that un „ ρn when n Ñ `8. In addition, consider the sequence pvnqně0 defined by
vn :“

řtn{au

k“0 k`un´ak. If ρ ą 1, then vn „ ρnf`pρ
aq when nÑ `8.

Proof. Let t be some element of the set t0, . . . , a ´ 1u. Consider the sequences punq and
pvnq defined by un :“ ρ´tut`an and vn :“ ρ´tvt`an. It comes immediately that un „ ρan

and that vn “
řn
k“0pn ´ kq`uk. Hence, Lemma 7.53 proves that vn „ ρanf`pρ

aq, i.e. that
vt`an „ ρt`anf`pρ

aq. Since this relation holds for all t, Corollary 7.54 follows.

Proposition 7.55.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Let
r : A` ÞÑ C be a valuation in RBA, and let M be the essential Garside matrix of A`

of parameter r. The Perron eigenvalue of M is 1. In addition, consider the polynomial
HA,r : z ÞÑ HApz

λrq. We have
ř

xPA`pkq rpxq Ñ ´ 1
H 1A,rp1q

when k Ñ `8.

Proof. Let us denote by B` the set of ∆-free braids (if A` is an Artin–Tits monoid of
spherical type) or of elements of A` (if A` is not an Artin–Tits monoid of spherical
type). In addition, let us denote by B`pkq the set A`pkq XB`. Finally, for all finite sets
S Ď A`, we denote by rpSq the sum

ř

xPS rpxq.

First, let us assume that A` is an Artin–Tits monoid of spherical type, and consider
the function I : A` ÞÑ Zě0 ˆ B` such that I : x ÞÑ pinfpxq,∆´ infpxqxq, where we recall
that infpxq :“ maxtk : ∆k ď xu. The function I induces a bijection from A`pkq to the
set tpi,yq P Zě0 ˆB` : k “ iλp∆q ` λpyqu, which proves the equalities

rpA`
pkqq “

tk{λp∆qu
ÿ

i“0

rp∆qirpB`pk ´ λp∆qiqq;

p1´ pzλrqp∆qq

˜

ÿ

kě0

rpA`
pkqqzk

¸

“
ÿ

kě0

rpB`pkqqzk.

Since 1 is the smallest positive pole and the radius of convergence of the rational series
GA,r : z ÞÑ HA,rpzq

´1 “
ř

kě0 rpA
`pkqqzk, and since z ÞÑ 1 ´ pzλrqp∆q has one unique
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root at rp∆q´1{λp∆q ą 1, it follows that 1 is also the convergence radius of the rational
series

ř

kě0 rpB
`pkqq.

Hence, regardless of whether A` is an Artin–Tits monoid of spherical type, we know
that 1 is the convergence radius of

ř

kě0 rpB
`pkqq. Then, consider the row vector g “

pgpi,xq and the column vector h “ phpi,xqq defined by gpi,xq :“ 1i“1rpxq and hpi,xq :“ 1i“λpxq.
It comes immediately that rpB`pkqq “ g ¨Mk´1 ¨ h for all integers k ě 1.

Lemma 7.41 proves that M is primitive. Let ρ be its Perron eigenvalue, and let u and
v be left and right Perron eigenvectors of M such that u ¨ v “ 1. Theorem 7.37 proves
that rpB`pkqq “ g ¨ Mk´1 ¨ h „ ρkL when k Ñ `8, where L :“ ρ´1pg ¨ vqpu ¨ hq is
necessarily positive, since both u and v have positive entries, while g and h are non-zero
vectors with non-negative entries. This proves that ρ “ 1, which was the first statement
of Proposition 7.55.

In particular, if A` is an Artin–Tits monoid of spherical type, let ζ :“ rp∆q´1{λp∆q.
We can apply Corollary 7.54 to the sequences uk “ ζk

L
rpB`pkqq and vk “

ζk

L
rpA`pkqq,

which proves that rpA`pkqq „ L
1´ζ´λp∆q

“ L
1´rp∆q

. Hence, regardless of whether A` is
an Artin–Tits monoid of spherical type, there exists a positive real number R such that
rpA`pkqq Ñ R. Consequently, Lemma 7.53 proves that GA,rpzq „

λ
1´z

when z Ñ 0 (with
0 ď z ă 1). It follows that

HA,rpzq “ GA,rpzq
´1
„

1´ z

R
,

and therefore that H 1
A,rp1q “ ´

1
R
, i.e. R “ ´ 1

H 1A,rp1q
. This completes the proof.

Corollary 7.56.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators, and
let pA be the smallest positive root of the (univariate) Möbius polynomial HA. We have
|A`pkq| „ ´

p´k´1
A

H1AppAq
when k Ñ `8. Moreover, each root of the polynomial HApXq

X´pA
is of

modulus strictly greater than pA.

Proof. According to Theorem 7.46, we know that the valuation r : x ÞÑ p
λpxq
A belongs

to RBA. Consequently, Proposition 7.55 indicates that
ř

xPA`pkq rpxq Ñ ´ 1
H 1A,rp1q

, where

HA,rpxq :“ HAppAxq. Since rpxq “ pkA for all x P A`pkq, it already follows that

|A`
pkq| “ p´kA

ÿ

xPA`pkq

rpxq „ ´
p´kA

H 1
A,rp1q

“ ´
p´k´1
A

H1AppAq

when k Ñ `8.

Second, let M be the essential Garside matrix of A` of parameter r. Proposition 7.55
states that the Perron eigenvalue of M is 1. Let B` be the set of ∆-free braids (if A` is
an Artin–Tits monoid of spherical type) or of elements of A` (if A` is not an Artin–Tits
monoid of spherical type). In addition, let u and v be left and right Perron eigenvectors
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of M such that u ¨ v “ 1, and let N be the matrix M ´ v ¨ u. Theorem 7.37 proves that
the spectrum of N is t0u Y sppMqzt1u. Hence, there exists a positive constant κ P p0, 1q
such that |λ| ď κ for all eigenvalues λ of N . Without loss of generality, we may even
assume that κ1{2 ě pA.

In addition, recall the row vector g “ pgpi,xq and the column vector h “ phpi,xqq defined
by gpi,xq :“ 1i“1rpxq and hpi,xq :“ 1i“λpxq, and such that rpB`pkqq “ g ¨Mk´1 ¨ h for all
integers k ě 1. Moreover, observe that pv ¨ uq2 “ v ¨ u and that

N ¨ pv ¨ uq “ pM ´ v ¨ uq ¨ v ¨ u “ pM ¨ vq ¨ u´ v ¨ pu ¨ vq ¨ u “ v ¨ u´ v ¨ u “ 0;

pv ¨ uq ¨N “ v ¨ u ¨ pM ´ v ¨ uq “ v ¨ pu ¨Mq ´ v ¨ pu ¨ vq ¨ u “ v ¨ u´ v ¨ u “ 0.

It follows, whenever k ě 1, that rpB`pkqq “ g¨pN`v¨uqk´1 ¨h “ g¨Nk´1 ¨h`pg¨vqpu¨hq.

Since |λ| ď κ ă 1 for all eigenvalues λ of N , it follows that rpB`pkqq “ pg ¨vqpu ¨hq`
Opκk{2q. Consequently, ifA` is an Artin–Tits monoid of spherical type, since r : x ÞÑ p

λpxq
A

and κ1{2 ě pA, we also find that

rpA`
pkqq “

tk{λp∆qu
ÿ

i“0

rp∆qirpB`pk ´ λp∆qiqq “
pg ¨ vqpu ¨ hq

1´ rp∆q
`Opκk{2q.

Hence, setting R :“ pg¨vqpu¨hq
1´rp∆q

if A` is an Artin–Tits monoid of spherical type, or R :“

pg¨vqpu¨hq otherwise, we have rpA`pkqq “ R`Opκk{2q, i.e. |A`pkq| “ Rp´kA `Opp
´k
A κk{2q.

It follows that
z ´ pA
HApzq

“ pz ´ pAqGApzq “ pz ´ pAq
ÿ

kě0

|A`
pkq|zk

“ ´pA `
ÿ

kě0

`

|A`
pkq| ´ pA|A

`
pk ` 1q|

˘

zk`1

“ ´pA `
ÿ

kě0

Opp´kA κk{2qzk`1

has a radius of convergence at least pA
κ1{2 , i.e. that the roots of HApzq

z´pA
has a modulus at

least pA
κ1{2 , which completes the proof.

Theorem 7.57.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Let
r : A` ÞÑ C be a positive valuation, and let Φprq be the associated valuation in RBA (i.e.
the only element of RBA of the form x ÞÑ qλpxqrpxq).

For all integers k ě 0, let µk be the uniform distribution with parameter r on the sphere
A`pkq. The uniform measure νΦprq with parameter Φprq is the weak limit of the sequence
pµkqkě0.

Proof. Since A`pkq is a subset of the monoid A`, it is identified with a subset of A`,
and therefore we identify µk with a discrete probability distribution on A

`. In addition,
let φprq be the positive real number such that Φprq “ φprqλr.
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For all x P A` and all k ě λpxq, we have x A`pk ´ λpxqq “ pò xq XA`pkq, which
shows that µkpò xq “ rpxqrpA`pk´λpxqqq

rpA`pkqq
. It follows that

rpA`
pkqq “ φprq´kΦprqpA`

pkqq „ ´
1

H 1
A,Φprqp1q

φprq´k and

µkpò xq Ñ φprqλpxqrpxq “ Φprqpxq “ νΦprqpò xq

when k Ñ `8.

The end of the proof is similar to that of Theorem 7.35. Since A
` is metric and

compact, there exists an increasing sequence pujqjě1 such that pµujqjě1 is weakly con-
vergent. Let µ8 be the weak limit of pµujqjě1. For each braid x P A`, the set ò x
has an empty topological boundary, hence the Portemanteau theorem [12] implies that
µ8pò xqq “ limjÑ8 µujpò xq “ νΦprqpò xq, and Proposition 7.25 proves that µ8 “ νΦprq.
Since this equality holds for all limits of all weakly convergent subsequences of pµkqkě0,
and since A` is metric and compact, it follows that the sequence pµkqkě0 is itself (weakly)
convergent towards νΦprq.

7.1.5 Applications to Artin–Tits Monoids of Spherical Type

Theorem 7.57, along with the above study of the uniform measure, leads to a wide range
of results. We focus here on the specific case of the constant valuation r : x ÞÑ 1, and we
first rephrase some of the above results.

Proposition 7.58.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let pA be the smallest positive root of the Möbius polynomial HApzq. The “standard”
uniform distributions on the spheres A`pkq converge weakly towards the distribution νpA
with parameter pA.

Proof. According to Proposition 7.33 and to Theorem 7.57, the sequence pµkqkě1 of uni-
form distributions of parameter r converges weakly towards the distribution νΦprq, where
Φprq is the valuation φprqλr such that φprq is the smallest positive root of the polynomial
HA,rpzq “ HApzq. This proves that φprq “ pA, and completes the proof.

Corollary 7.59.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators.
Let n ě 0 be an integer, let θn,8 : A

`
ÞÑ Ωn be the projection defined in Definition 7.14,

and let νpA be the uniform measure at infinity. The distribution θn,8pµkq converges towards
θn,8pνpAq when k Ñ `8.

Proof. By construction of the projective topology, the mapping θn,8 is continuous. Hence,
Theorem 7.57 completes the proof.
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Corollary 7.60.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators,
and let infpxq denote the infimum of a braid x, i.e. the number of braids ∆ that arise
in the Garside normal forms of x. The distribution infpνpAq follows a geometric law of
parameter pλp∆qA , and all the moments of infpµkq converge towards the associated moments
of infpνpAq, when k Ñ `8.

Proof. The function inf : A
`
ÞÑ Z is well-defined and continuous almost everywhere for

the measure νpA : the only point where it is not well-defined is ∆ω. Hence, Theorem 7.57
already proves the first part of Corollary 7.60. It remains to prove that Eµkrinf`s Ñ
EνpA rinf`s for all integers ` ě 0. Note that this result is not so immediate, since inf is not
bounded on A

`.

Hence, we mimic the proof of Proposition 7.55. First, by using again the bijection
I : x ÞÑ pinfpxq,∆´ infpxqxq that we have introduced in this proof, we obtain the equalities

|A`
pkq| “

tk{λp∆qu
ÿ

i“0

|B`pk ´ λp∆qiq| and |A`
pkq|Eµkrinf`s “

tk{λp∆qu
ÿ

i“0

i`|B`pk ´ λp∆qiq|.

Moreover, we also proved that there exists a real number R ą 0 such that |B`pkq| „
Rp´kA . Hence, Corollary 7.54 proves that

|A`
pkq| „ Rp´kA f0pp

λp∆q
A q and |A`

pkq|Eµkrinf`s „ Rp´kA f`pp
λp∆q
A q,

which implies that Eµkrinfs Ñ
f`pp

λp∆q
A q

f0pp
λp∆q
A q

“ EνpA rinf`s.

We continue by focusing on the stable region conjecture [55, Conjecture 3.1], which
its authors formulate on the basis of a thorough experimental analysis.

Conjecture 7.61.
Let A` be an irreducible Artin–Tits monoid of spherical type with at least 2 generators
For all braids x P A`, let λipxq denote the i-th leftmost letter of the extended Garside
normal form NFω

` pxq that occurs after the rightmost letter ∆, i.e. λipxq :“ Θinfpxq`ipxq.
It is conjectured that:

1. for each integer i ě 1, the sequence pλipµkqqkě1 is convergent when k Ñ 8.
2. there exists a probability measure λ8 on S˝ and a constant K such that, for all

i ě K, λipµkq Ñ λ8 when k Ñ `8.

Proposition 7.62.
The first statement of Conjecture 7.61 holds, and the second statement of Conjecture 7.61
holds if and only if A` is a dihedral monoid, i.e. if W “ I2paq for some a ě 3.

In general, the following weaker statement holds: the distribution of limkÑ`8 λipµkq con-
verges when iÑ `8.



Chapter 7. Building Uniform Measures on Braids 257

Proof. We first prove the first part of Conjecture 7.61. Let ∆ω be the largest element of
A
`, i.e. ∆ω :“ p∆kqkě0. For each integer i ě 1, we extend λi by continuity to a function

λi : A
`
zt∆ωu ÞÑ S. Since t∆ωu has measure 0 for all the distributions µk as well as for

νpA , and due to Theorem 7.57, the sequence pλipµkqqkě1 converges towards λipνpAq.

Now, let us focus on the second part of Conjecture 7.61. According to Theorem 7.48,
the Markov process pλipνpAqqiě1 follows the same law as the Markov process pΘipνpAqqiě1q

conditioned to satisfy the relation Θ1 ‰ ∆. Hence, consider the valuation r : x ÞÑ p
λpxq
A ,

and let P be the Markov Garside matrix of r, i.e. the transition matrix of pΘipνpAqqiě1q.

In addition, let P be the restriction of P to indices in S˝ “ Szt1,∆u. It follows from
Proposition 5.21 or, alternatively, from Theorem 7.39, that P is primitive. Moreover,
Theorem 7.48 proves that our latter conditioned Markov process has transition matrix P
and initial distribution ι : x ÞÑ pMγrqpxq

1´pMγrqp∆q
for all x P S˝.

Therefore, the second part of Conjecture 7.61 amounts to saying that d ¨P k
“ d ¨P

k`1

for some integer k ě 0, where d is the vector defined by xx :“ ιpxq. This would mean
that d is an eigenvector of P k`1 and, since d has non-negative entries and P is primitive,
that d is a left Perron eigenvector of P , i.e. that d “ d ¨ P .

Denoting by K the positive constant 1
1´pMγrqp∆q

, we compute, for all y P S˝, that

pd ¨ P qy “ K
ÿ

xPS˝
1xÝÑyp

λpxq
A pMγrqpyq “

ÿ

xPS˝
1xÝÑyp

λpxq
A xy.

Since dy ą 0, it follows that d ¨P k
“ d ¨P

k`1 if and only if the equality
ř

xPS˝ 1xÝÑyp
λpxq
A

holds for all y P S˝.

If A` is not a dihedral monoid, i.e. if it is generated by a family tσ1, . . . , σnu such
that n ě 3, then the set tx P S˝ : x ÝÑ ∆tσ1,σ2uu is a strict subset of tx P S˝ : x ÝÑ σ1u,
and therefore the above equality cannot hold simultaneously for both elements σ1 and
∆tσ1,σ2u of S˝. However, if A` is a dihedral monoid, with W “ I2paq, then we check easily
that

ÿ

xPS˝
1xÝÑyp

λpxq
A “

a´1
ÿ

i“1

piA “
pA ´ p

a
A

1´ pA
“ 1`

HAppAq

1´ pA
“ 1

for all braids y P S˝, which proves that the second part of Conjecture 7.61 holds if and
only if A` is a dihedral monoid.

Finally, observe that, in all cases, and when i Ñ `8, the distribution of the condi-
tioned random process pΘipνpAqqiě1q converges towards the stationary measure πP of P .
This completes the proof of Proposition 7.62.

However, finer convergence results, such as variants of the central limit theorem, are
not provided by Theorem 7.57. They will be the focal point of Section 7.2.
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7.2 Asymptotics and Conditioned Weighted Graphs

7.2.1 General Framework

Definition 7.63 (Conditioned weighted graph).
Let M be a primitive matrix of size n ˆ n, where n ě 2. We may interpret the matrix
M as an oriented, labelled graph, with vertices t1, . . . , nu and arcs pi, jq labelled by Mi,j

whenever Mi,j ą 0.

Let win and wout be two non-zero vectors of length n. We call them respectively input
weight and output weight. We say that the triple G :“ pM,win,woutq is a conditioned
weighted graph.

In addition, we define the transpose of G as the triple GJ :“ pMJ,wout,winq, where MJ

is the transpose of the matrix M .

Definition 7.64 (Weight of a path).
Let G :“ pM,win,woutq be a conditioned weighted graph. A path in G is a non-empty,
finite sequence p :“ p1 ¨ . . . ¨ pk, whose terms belong to t1, . . . , nu. We denote by PG the
set of paths in G, by |p| the length of the path p (here, we have |p| “ k), and by PGpkq
the set of paths of length k in G.

The weight of p is defined as

wppq :“ win
p1
Mp1,p2 . . .Mpk´1,pkw

out
pk
.

Moreover, since M is primitive and since win and wout are non-zero, the set t|p| : p
is a path such that wppq ą 0u is cofinite, which justifies the following definition.

Definition 7.65 (Uniform distribution on paths).
Let G “ pM,win,woutq be a conditioned weighted graph. For each integer k ě 1, let PGpkq
denote the set of paths of length k in G, i.e. PGpkq :“ t1, . . . , nuk.

Let wpPGpkqq :“
ř

qPPGpkq
wpqq be the cumulated weight of all paths of length k. If

wpPGpkqq ą 0, which happens if k is large enough, then we define the uniform distri-
bution on PGpkq as the probability distribution µk on PGpkq such that: µk : p ÞÑ

wppq

wpPGpkqq
.

Like Artin–Tits monoids of FC type, families of paths of increasing lengths give rise
to a notion of projective limit.

Definition & Proposition 7.66 (Extended paths).
Let G “ pM,win,woutq be a conditioned weighted graph. Consider the sets Γk, for k ě 0,
and maps ξk,` : Γ` ÞÑ Γk, for ` ě k ě 0, defined by:

Γk “
k
ď

i“1

PGpiq and ξk,` : p1 ¨ . . . ¨ pi ÞÑ p1 ¨ . . . ¨ pmintk,iu.
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We have ξk,k “ IdΓk and ξk,` ˝ ξ`,m “ ξk,m for all k ď ` ď m. Hence, the families pΓkqkě1

and pξk,`q`ěkě0 form a projective system.

We call extended paths the elements of the projective limit

PG :“

#

ppkqkě1 P
ź

kě1

Γk : @k, ` ě 0, ` ě k ñ ξk,`pp
`
q “ pk

+

.

We equip each (finite) set Γk with the discrete topology, from which the projective limit
PG inherits a projective topology.

Note that, as mentioned in the proof of Proposition 7.24, the set PG is metric and
compact for the projective topology (see [17]). However, in general, the collection of
probability measures pµkqkě1 attached to the sets Γk do not satisfy consistency relations
µk “ ξk,`pµ`q, and therefore do not form a projective system of probability measures, as
shown below.

Example 7.67.
Let G “ pM,win,woutq be the conditioned weighted graph defined by

M :“

ˆ

1 1
1 1

˙

and win
“ wout

“
`

1 2
˘

.

Straightforward computations show that wpPGp1qq “ 5 and wpPGp2qq “ 9, whence

µ1pt1uq “
1

5
‰

1

3
“ µ2pt1 ¨ 1, 1 ¨ 2uq “ µ2pξ

´1
1,2pt1uqq.

However, in this case, weak limits of probability measures are still an adequate sub-
stitute to projective limits of probability measures. Indeed, each set PGpkq is naturally
embedded into Γk and PG. Hence, we identify the distribution µk with a discrete proba-
bility measure on the set PG equipped with its Borel σ-algebra.

Mimicking Section 7.1, we consider the mappings ξk,8 : PG ÞÑ Γk and Ξk : PG ÞÑ

t1, . . . , nu defined by:

ξk,8 : ppiqiě0 ÞÑ pk, Ξ1 “ ξ1,8 and ξk,8pxq ¨ Ξk`1pxq :“ ξk`1,8pxq for all x P PG.

In other words, Ξk maps the extended path x to its pk ` 1q-th leftmost letter, or to the
empty word if |x| ă k.

Theorem 7.68.
Let G “ pM,win,woutq be a conditioned weighted graph. Let ρ be the Perron eigenvalue
of M , and let l and r be Perron eigenvectors, with positive entries, and such that l ¨r “ 1.

The sequence pµkqkě1 converges weakly towards a probability measure µ8 on PG, which is
concentrated on the set of infinite paths BPG :“ PGzPG. In addition, the random process
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pΞkpµ8qqkě1 is an ergodic Markov chain, whose initial distribution ι and transition matrix
P are respectively defined by:

ι : x ÞÑ
win
x rx

win ¨ r
and Px,y :“

Mx,yry
ρrx

.

The stationary measure of the Markov chain pΞkpµ8qqkě1 is given by x ÞÑ lxrx.

Proof. Let κ be an integer such that, for all k ě κ, the matrix Mk is positive, and
therefore the measure µk is well-defined. The projective topology on PG is generated by
the (simultaneously closed and) open sets ò x :“ ty P PG : ξ|x|,8pyq “ xu, for all paths
x P PG.

Hence, let x “ x1 ¨ . . . ¨ xj be a path of length j. Let δ be the (column) vector defined
by δz :“ 1z“xj , and let us consider the real number w̃pxq :“ win

x1
Mx1,x1 . . .Mxj´1,xj . Note

that both win ¨ r and l ¨wout are positive real numbers.

Therefore, Theorem 7.37 proves that, whenever k ě maxtκ, j ` 1u, we have:

µkpò xq “
1

wpPGpkqq

ÿ

xj`1,...,xk

win
x1

k´1
ź

i“1

Mxi,xi`1
wout
xk
“ w̃pxq

δ ¨Mk´j´1 ¨wout

win ¨Mk´1 ¨wout

„ w̃pxq
ρk´j´1pδ ¨ rqpl ¨woutq

ρk´1pwin ¨ rqpl ¨woutq
“ w̃pxq

ρ´j rxj
win ¨ r

.

Hence, since PG is a metric, compact set, let µ8 be a probability measure towards
which some subsequence of pµkqkě1 converges weakly. We necessarily have µ8pò xq “
w̃pxqρ´jrxj

win¨r
. Furthermore, along with the empty set, the family ò x, for x P PG, forms a

π-system, and therefore two finite measures on PG coincide if and only if they coincide
on those sets. This proves that the sequence pµkqkě1 itself converges weakly towards µ8.

Moreover, since µkptxuq “ 0 whenever k ą |x|, it follows that µkptxuq Ñ 0 when
k Ñ `8, and therefore that µ8ptxuq “ 0. This equality holds for all finite paths, which
shows that µ8pPGq “ 0, i.e. that µ8 is concentrated on BPG.

In addition, observe that

Pµ8pΞ1 “ x1, . . . ,Ξj “ xjq “ µ8pò xq “ w̃pxq
ρ´j rxj
win ¨ r

“
win
x1
rx1

win ¨ r

j´1
ź

i“1

Mxi,xi`1
rxi`1

ρ rxi
“ ιpx1q

j´1
ź

i“1

Pxi,xi`1
,

which proves that pΞkpµ8qqkě1 is indeed a Markov chain with initial distribution ι and
transition matrix P .

Finally, since M is primitive, the matrix P is the irreducible transition matrix of a
Markov chain. Hence, the Markov chain pΞkpµ8qqkě1 is ergodic, and converges towards
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the (unique) stationary measure of P . Furthermore, let π be the (row) vector such that
πx :“ lxrx. Observe that

ř

x πx “ l ¨ r “ 1 and that, for all y P t1, . . . , nu, we have

pπ ¨ P qy :“
ÿ

x

πxPx,y “ ρ´1
ÿ

x

lxMx,yry “ ρ´1
pl ¨Mqyry “ lyry “ πy.

This proves that π is invariant under P , i.e. that y ÞÑ πy is indeed the stationary measure
of P , and completes the proof.

Definition 7.69 (Uniform measure at infinity).
Let G “ pM,win,woutq be a conditioned weighted graph. We call uniform measure at
infinity of G the weak limit µ8 of the sequence pµkqkě1.

The transformation applied onM in order to get the matrix P was first introduced by
Parry [69, 72, 79] in its construction of a stationary Markov chain reaching the maximum
entropy. It also has the same form as the transition matrix of the survival process of a
discrete time, absorbing Markov chain [30, 33] with finitely many states.

Definition 7.70 (Survival process).
Let P “ pPx,yq0ďx,yďn be a stochastic matrix, i.e. a matrix such that Px,y ě 0 and
ř

z Px,z “ 1 for all x, y P t0, . . . , nu, whose restriction to entries in t1, . . . , nu is primitive,
and such that P0,0 “ 1. We say that 0 is an absorbing state of P .

Let pYiqiě1 be the Markov chain with initial distribution x ÞÑ 1x“1 and transition matrix
P . We say that pYiqiě1 is a finite absorbing Markov chain, which survives after k steps
if Yk ‰ 0. The survival process of pYiqiě1, if it exists, is the process pXiqiě1 such that

PrX1 “ x1, . . . , Xj “ xjs “ lim
kÑ`8

PrY1 “ x1, . . . , Yj “ xj | Yk ‰ 0s.

Proposition 7.71.
Let pYiqiě1 be a finite absorbing Markov chain with transition matrix P , and let M be
the restriction of P to the states t1, . . . , nu. In addition, let G “ pM,win,woutq be the
conditioned weighted graph defined by win

x :“ 1x“1 and wout
x :“ 1. For all k ě 1, let µk

be the uniform measure on PGpkq, if such a measure exists, and let µ8 be the uniform
measure at infinity of G.

For all paths x1 ¨ . . . ¨ xj, we have

PrY1 “ x1, . . . , Yj “ xj | Yk ‰ 0s “ PµkrΘ1 “ x1, . . . ,Θj “ xjs;

lim
kÑ`8

PrY1 “ x1, . . . , Yj “ xj | Yk ‰ 0s “ Pµ8rΘ1 “ x1, . . . ,Θj “ xjs.

In addition, the lack of symmetry between the initial and the final weights in the
statement of Theorem 7.68 might seem surprising at first. This lack of symmetry comes
from the fact that we considered weak limits obtained when focusing on the first elements
of paths. Hence, analogous results hold when focusing on the last elements of paths.
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Corollary 7.72.
Let G “ pM,win,woutq be a conditioned weighted graph. Let ρ be the Perron eigenvalue
of M , and let l and r be Perron eigenvectors, with positive entries, and such that l ¨r “ 1.

For all integers k ě j ě 0, let consider the mapping Ξ̃k,j “ Ξk´j. For all finite paths,
x1 ¨ . . . ¨ x`, we have

PµkrΞ̃k,1 “ x1, . . . , Ξ̃k,` “ x`s ÞÑ PrX̃1 “ x1, . . . , X̃` “ x`s,

where pX̃iqiě1 is the Markov chain associated to the uniform measure at infinity of the
transpose GJ, i.e. the ergodic Markov chain, whose initial distribution ι̃ and transition
matrix P̃ are respectively defined by:

ι̃ : x ÞÑ
wout
x lx

wout ¨ l
and P̃x,y :“

My,xly
ρlx

.

The stationary measure of the Markov chain pX̃iqiě1 is given by x ÞÑ lxrx.

7.2.2 Concentration Theorems and Generalisations

We focus now on answering the questions raised at the end of Section 7.1.4.

Definition 7.73 (Ergodic mean).
Let G :“ pM,win,woutq be a conditioned weighted graph, whose matrix M is of size
n ˆ n. Consider a function f : t1, . . . , nu ÞÑ C, which we call cost function. For all
integers k ě 0, the ergodic mean xfy of f along a path x “ x1 ¨ . . . ¨ xk of length k is
defined by:

xfy : x ÞÑ
1

k

k
ÿ

i“1

fpxiq.

Hence, the ergodic mean xfy is a random variable defined on the set PG, and we may
look for convergences in law of the distributions xfypµkq. In order to do so, we will need
to use a result from perturbation theory [61, 66].

Theorem 7.74.
Let P be a primitive matrix, with Perron eigenvalue ρ and Perron eigenvectors l and r,
such that l ¨ r “ 1. In addition, let } ¨ } denote the L2 norm on vectors, and let u ÞÑ P puq
be an analytic perturbation of P , such that P “ P p0q.

There exists real numbers ε ą 0 and λ P p0, 1q, as well as analytic perturbations u ÞÑ ρpuq,
u ÞÑ lpuq and u ÞÑ rpuq of ρ “ ρp0q, l “ lp0q and r “ rp0q such that, whenever |u| ď ε:

• ρpuq is a simple eigenvalue of P puq, with associated eigenvectors lpuq and rpuq;
• lpuq ¨ rpuq “ l ¨ rpuq “ 1;
• the matrix Epuq :“ P puq ´ ρpuqrpuq ¨ lpuq is such that }Epuq ¨ x} ď λρpuq}x} for all
vectors x.
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From Theorem 7.74 follows a first result about the convergence of xfypµkq.

Theorem 7.75.
Let G :“ pM,win,woutq be a conditioned weighted graph, whose matrix M is of size nˆn,
and let f : t1, . . . , nu ÞÑ C be a cost function. In addition, let m be the stationary measure
associated with the uniform measure at infinity of G, and let µk be the uniform measure
on PGpkq.

The sequence of ergodic means pxfypµkqqkě0 converges in law towards the Dirac measure
at γf , where γf :“ fpmq “

řn
j“1 mpjqfpjq.

Proof. Using characteristic functions, it is enough to prove that the convergence relations
Eµkrexppi t xfyqs Ñ exppi t γf q hold for all real numbers t.

Consider the variable u :“ t
k
. Let l and r be left and right Perron eigenvectors of

M , such that l ¨ r “ 1, and let ω be the Perron eigenvalue of M . In addition, let P
be the transition matrix of the random process pΞkpµ8qqkě1, i.e. the matrix defined by
Px,y :“ Mx,yry

ωrx
, and let L and R be left and right Perron eigenvectors of P . According to

Theorem 7.68, we choose Li :“ liri and Ri :“ 1 for all i P t1, . . . , nu, which provides us
with the equality L ¨R “ 1.

Then, for all u, consider amodified matrix P puq andmodified input and output weights
win, winpuq and wout defined by:

D :“ Diagpfpjqq1ďjďn, P puq :“ P ¨ exppi u Dq,

win
x :“ win

x rx, win
puq :“ win

¨ exppi u Dq and wout
x :“

wout
x

rx
.

Since P puq is an analytic perturbation of P “ P p0q, let us apply Theorem 7.74, and
reuse its notations: we denote by ρpuq, Lpuq and Rpuq the Perron eigenvalue and the left
and right Perron eigenvectors of P puq. In particular, note that the Perron eigenvalue of
P is ρ :“ ρp0q “ 1.

For all u P R such that |u| ď ε, we have

Lpuq ¨ Epuq “ Lpuq ¨ P puq ´ ρpuqLpuq ¨Rpuq ¨ Lpuq “ 0,

and therefore

P puqk “ pρpuqRpuq ¨ Lpuq ` Epuqqk “ ρpuqkpRpuq ¨ Lpuqqk ` Epuqk

“ ρpuqkRpuq ¨ Lpuq ` Epuqk

for all integers k ě 0.

Moreover, note that the scalar products winpuq¨Rpuq and Lpuq¨wout converge respec-
tively towards the positive real numbers win ¨R and L ¨ wout when u Ñ 0. Meanwhile,
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observe that |winpuq ¨ Epuqk ¨ wout| ď ρpuqkλk}winpuq} }wout}. Therefore, if ε is small
enough, and whenever |u| ď ε, we can ensure that the inequalities

|win
puq ¨Rpuq| ě

1

2
|win

¨R|, |Lpuq ¨wout
| ě

1

2
|L ¨wout

| and }win
puq} ď 2}win

}

simultaneously hold. It follows that

win
puq ¨ P puqk ¨wout

“ ρpuqkpwin
puq ¨RpuqqpLpuq ¨wout

q `win
puq ¨ Epuqk ¨wout

„ ρpuqkpwin
puq ¨RpuqqpLpuq ¨wout

q

uniformly in u P p´ε, εq, when k Ñ `8. Hence, we compute, for all integers k ě 1, that

Eµkpexppi t xfyqq “

ř

x1,...,xk
win
x1

exppi u fpx1qq
śk´1

j“1 Mxj ,xj`1
exppi u fpxj`1qqw

out
xk

wpPGpkqq

“
ωk´1winpuq ¨ P puqk´1 ¨wout

ωk´1win ¨ P k´1 ¨wout

„ ρpuqk´1 pw
inpuq ¨RpuqqpLpuq ¨woutq

pwin ¨RqpL ¨woutq
„ ρpuqk´1

when k Ñ `8. Moreover, since u “ t
k
, we have

ρpuqk´1
“ pρ` uρ1p0q `Opk´2

qq
k´1

Ñ expptρ1p0qq

when k Ñ `8. Hence, it remains to evaluate the derivative ρ1p0q.

We proceed by deriving the equality P puq ¨Rpuq “ ρpuqRpuq, obtaining P 1p0q ¨R `

P ¨R1p0q “ ρ1p0qR` ρR1p0q. Then, multiplying both members to the left by L, and since
L ¨ P ¨R1p0q “ ρL ¨R1p0q, it follows that

ρ1p0q “ ρ1p0qL ¨R “ L ¨ P 1p0q ¨R “ i L ¨ P ¨D ¨R

“ i L ¨D ¨R “ i
n
ÿ

j“1

fpjqLjRj “ iγf .

It follows that Eµkpexppi t xfyqq Ñ exppi t γf q, which completes the proof.

Pushing this analysis further, we obtain a Central limit theorem.

Theorem 7.76.
Let G :“ pM,win,woutq be a conditioned weighted graph, whose matrix M is primitive
and of size n ˆ n, let f : t1, . . . , nu ÞÑ C be a cost function. In addition, let µk be the
uniform measure on PGpkq, and let γf be defined as in Theorem 7.75.

If γf “ 0, then there exists a non-negative real σ2 such that the sequence p
?
kxfypµkqqkě1

converges in law towards a normal law N p0, σ2q when k Ñ `8. Moreover, we have σ2 “ 0
if and only if there exists a function g : t1, . . . , nu ÞÑ C such that fpjq “ gpiq ´ gpjq for
all pairs pi, jq such that Mi,j ą 0.
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Proof. Let us keep the notations used in the proof of Theorem 7.75, and let us consider
the variable v :“

?
ku “ t?

k
, and σ2 :“ ´ρ2p0q

2
. Since ρ1p0q “ iγf “ 0, it follows that

Eµkpexppi t
?
k xfyqq „ ρpvqk “

ˆ

1` v2ρ
2p0q

2
` opk´3{2

q

˙k

Ñ expp´σ2t2q

when k Ñ `8. Since x ÞÑ exppi t
?
k xfypxqq takes it values in tz P C : |z| “ 1u, it

follows that |Eµkpexppi t
?
k xfyqq| ď 1 for all k, hence that | expp´σ2t2q| ď 1. Since this

holds for all t P R, it follows that σ2 ě 0.

Then, let ∆ be the diagonal matrix such that ∆ ¨R :“ D ¨R´ i R1p0q, and let ∆ be
the diagonal matrix such that ∆ ¨R :“ P ¨∆ ¨R.

Moreover, deriving the equality P pvq ¨Rpvq “ ρpvqRpvq, and recalling that ρ “ 1 and
ρ1p0q “ 0, we obtain

R1
p0q “ P 1p0q ¨R` P ¨R1

p0q “ i P ¨D ¨R` P ¨R1
p0q “ i P ¨∆ ¨R “ i ∆ ¨R.

It follows that ∆ ¨R “ ´i R1p0q “ p∆´Dq ¨R. Since D, ∆ and ∆ are diagonal matrices,
and since R has positive coefficients, it follows that ∆ “ ∆´D.

Then, deriving twice the equality P pvq ¨Rpvq “ ρpvqRpvq, we obtain

ρ2p0qR “ P 2p0q ¨R` 2P 1p0q ¨R1
p0q ` P ¨R2

p0q ´R2
p0q

“ ´P ¨D2
¨R` 2i P ¨D ¨R1

p0q ` P ¨R2
p0q ´R2

p0q.

Multiplying this equality to the left by the vector L, we obtain

ρ2p0q “ ´L ¨D2
¨R` 2i L ¨D ¨R1

p0q “ ´L ¨D2
¨R´ 2L ¨D ¨∆ ¨R

“ ´L ¨D ¨ pD ` 2∆q ¨R “ ´L ¨ p∆´∆q ¨ p∆`∆q ¨R “ L ¨ p∆
2
´∆2

q ¨R.

Since ν : i ÞÑ Li is the invariant probability of P , let px1, x2, . . .q be a Markov chain
with initial distribution ν and transition matrix P . Moreover, consider the functions
g, g : t1, . . . , nu ÞÑ C defined by g : i ÞÑ ∆i,i and g : i ÞÑ ∆i,i. It follows immediately that
gpiq “ ∆i,i “ Ergpx2q | x1 “ is for all integers i P t1, . . . , nu.

By construction, for all i P t1, . . . , nu, we have Ergpx2q
2 | x1 “ is ě gpiq2, with equality

if and only if gpx2q “ gpx1q almost surely when x1 “ i. It follows that Eνrgpx2q
2´gpx1q

2s ě

0, with equality if and only if gpx2q “ gpx1q almost surely, Hence, we compute

ρ2p0q “ L ¨ p∆
2
´∆2

q ¨R “

n
ÿ

i“1

Eνrgpx1q
2
s ´ Eνrgpx2q

2
s “ Eνrgpx1q

2
´ gpx2q

2
s.

Besides proving (again) that σ2 :“ ´
ρ2p0q

2
must be non-negative, this equality also

proves that σ2 “ 0 if and only if gpx2q “ gpx1q almost surely. Using the equality ∆ “

D `∆, i.e. g “ f ` g, this amounts to saying that fpx2q “ gpx1q ´ gpx2q almost surely.
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Conversely, if there exists a function g : t1, . . . , nu ÞÑ C such that fpjq “ gpiq ´ gpjq
for all pairs pi, jq such that Mi,j ą 0, it follows immediately that xfyppq “ 0 whenever p
is a cycle, and therefore that

ˇ

ˇ|p|xfyppq
ˇ

ˇ ď }f}1 “
řn
i“1 |fpiq| for all paths p. This proves

that
?
k |xfypµkq| ď

}f}1?
k

converges in law towards a Dirac measure at 0, i.e. the normal
law N p0, 0q.

In addition, similar results hold if we release slightly the assumption that M is prim-
itive, as follows.

Definition 7.77 (Semi-primitive matrix).
Let M “ pMx,yq1ďx,yďn be a square matrix with non-negative coefficients, and let x and y
be two indices of M . Considering the matrix M as a labelled oriented graph, we say that
y is accessible from x if there exists an integer i ą 0 such that M i

x,y ą 0. We also say
that x is essential if it is accessible from each index of M .

Let us assume that there exists a partition S0, S1 of t1, . . . , nu and an integer κ ě 1 such
that:

• S0 is the set of essential indices of M , is non-empty, and the restriction pMx,yqx,yPS0

of M to indices in S0 is primitive; we denote its Perron eigenvalue by ρ;
• each eigenvalue of the restriction pMx,yqx,yPS1 of M to indices in S1 has a modulus
less than ρ.

We say that M is semi-primitive, and ρ is called the Perron eigenvalue of M

It is from the word essential that we derived the locutions “essential set” and “essential
element” for denoting the set E and its elements.

Moreover, it comes immediately that the spectrum ofM is the union of the spectra of
the two submatrices pMx,yqx,yPS0 and pMx,yqx,yPS1 , and that ρ is the (unique) eigenvalue
of M with maximal modulus, with left and right eigenvectors l and r whose entries are
positive on S0 and zero on S1. In this slightly broader framework, most of the above
definitions and theorems remain unchanged. In particular, Theorems 7.75 and 7.76 can
be rephrased as follows.

Theorem 7.78.
Let G :“ pM,win,woutq be a conditioned weighted graph, whose matrix M is a semi-
primitive matrix of size nˆ n, and let f : t1, . . . , nu ÞÑ C be a cost function. In addition,
let m be the (unique) stationary measure associated with the uniform measure at infinity
of G, and let µk be the uniform measure on PGpkq. Finally, let us assume that there exists
essential indices i1 and i2 of M such that win

i1
ą 0 and wout

i2
ą 0.

The sequence of ergodic means pxfypµkqqkě0 converges in law towards the Dirac measure
at γf , where γf :“ fpmq “

řn
j“1 mpjqfpjq. In addition, there exists a non-negative real

σ2 such that the sequence p
?
kpxfypµkq ´ γf qqkě1 converges in law towards a normal law

N p0, σ2q when k Ñ `8. We have σ2 “ 0 if and only if there exists a function g : t1, . . . , nu
such that fpjq “ gpjq ´ gpiq for all pairs pi, jq of essential indices such that Mi,j ą 0.
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7.2.3 Asymptotics in Artin–Tits Monoids of FC Type

We proceed now to applying the above results to the framework of uniform distributions
in Artin–Tits monoids of FC type. Henceforth, we will always consider an Artin–Tits
monoid of FC type A` and and a Möbius valuation r : A` ÞÑ C. Hence, in this context,
there exists one Bernoulli measure νr such that νrpÒ xq “ rpxq for all x P A` and
νrpA

`q “ 0.

In particular, we focus on the asymptotic behaviour of Garside-additive functions.

Definition 7.79 (Garside-additive function).
et A` be an Artin–Tits monoid of FC type. A function f : A` ÞÑ C is said to be Garside-
additive if, for all left Garside words x1 ¨. . .¨xk, we have fpx1q`. . .`fpxkq “ fpx1 . . . xkq.

Garside-additive functions are generalisations of additive functions such as the Garside
length, but also of non-additive functions such as the length of the Garside normal forms,
i.e. x ÞÑ }x}.

Aiming to apply the above results to the framework of Garside-additive functions,
we first introduce meaningful combinatorial structures that will bridge the gap between
conditioned weighted graphs and Artin–Tits monoids of FC type.

Lemma 7.80.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators and let
r : A` ÞÑ C be a positive valuation. The expanded Garside matrix of parameter r is semi-
primitive if A` is an Artin–Tits monoid of spherical type, and is primitive otherwise.

Proof. If A` is not an Artin–Tits monoid of spherical type, then its expanded Garside
matrix or parameter r is equal to is essential Garside matrix or parameter r, hence is
primitive. Therefore, we focus on the case where A` is an Artin–Tits monoid of spherical
type.

Let M be the expanded Garside matrix of parameter r. The non-negativity of M is
immediate, and its essential states are the pairs pi,xq such that x P E . In particular, the
restriction of M to essential states is if A` is primitive, as shown in Lemma 7.41, and
the Perron eigenvalue of this restriction is p´1

A , as mentioned in Proposition 7.55. The set
of its non-essential states is S1 :“ tpi,∆q : 1 ď i ď λp∆qu, and the restriction of M to
indices in S1 is a permutation matrix, hence its eigenvalues have modulus 1 ă p´1

A , which
completes the proof.

Definition 7.81 (Expanded Garside graph).
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators and
let r : A` ÞÑ C be a positive valuation. We call expanded Garside graph of parameter r
the conditioned weighted graph G “ pM,win,woutq such that M is the expanded Garside
matrix of parameter r, and whose weights win and wout are defined by win

pi,xq :“ 1i“1rpxq

and wout
pi,xq :“ 1i“λpxq.
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Paths of positive weight and of length k in PG are in bijection with elements of A`pkq,
and each element x is associated to a unique word x of positive weight, which satisfies
wpxq “ rpxq. Therefore, the uniform distribution µk on paths of length k corresponds
to the uniform distribution on A`pkq, and there is a natural isomorphism between the
projective limits A` and PG. Theorems 7.57 and 7.68 both provide us with weak limits
fot the sequence of uniform distributions. Hence, these limits must coincide, i.e. the
uniform measure at infinity for braids corresponds to the uniform measure at infinity of
the expanded Garside graph.

However, the two families of elementary cylinders ò x (for x P A`) and ò x (for
x P PG) do not correspond to each other. Instead, the elementary cylinder ò x corresponds
to the open set B2p}x}γ,xq of A

`. Hence, Proposition 7.25 proves that µ8pò xq “ rpxq

in A
` and that µ8pò xq “ pMγrqpxq in P G.

Lemma 7.82.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators and let
r : A` ÞÑ C be a positive valuation. Let P be the Markov Garside matrix of r. The matrix
P is semi-primitive if A` is an Artin–Tits monoid of spherical type, and P is primitive
otherwise. In both cases, its essential indices are the elements of E.

In addition, let M be the Garside matrix of parameter r, and let g and h be right and
left Perron eigenvectors of M , such that h ¨ g “ 1. The invariant probability of P is the
distribution π defined by π : x ÞÑ hxgx for all x P E, and π : x ÞÑ 0 for all x R E.

Proof. The case where A` is not an Artin–Tits monoid of spherical type is immediate.
Hence, we focus on the case where A` is an Artin–Tits monoid of spherical type. First,
it comes immediately that the essential indices of P are the elements of E , and that the
restriction of P to indices in E is a primitive stochastic matrix. Hence, ∆ is the only
non-essential index of P , and since P∆,σ1 ą 0, it follows that the restriction of P to the
index ∆ is the 1ˆ 1 matrix pP∆,∆q, with only eigenvalue P∆,∆ ă 1. This proves the first
part of Lemma 7.82.

Let us now prove the second part, which has the flavour of Theorem 7.68. First, since
h ¨ g “ 1, it follows that π is a probability distribution. In addition, abusing notation
and denoting by π the column vector such that πx :“ hxgx, and since Proposition 7.44
states that we can define g by the relations gx “ gpxq “

ř

yPSpxqpMγrqpyq “
pMγrqpxq

rpxq
, we

compute that

pπ ¨ P qy “
ÿ

xPE
1xÝÑyhxgpxqrpxq

pMγrqpyq

pMγrqpxq
“ pMγrqpyq

ÿ

xPE
1xÝÑyhx

“
pMγrqpyq

rpyq
ph ¨Mqy “ gyhy “ πy

for all y P E . By construction, we have pπ ¨P qy “ 0 “ πy for all y R E , which proves that
π is the (unique) stationary measure of P and completes the proof.
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Lemma 7.83.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators and let
r : A` ÞÑ C be a positive valuation. Let M be the Garside matrix of parameter r, and
let N be the essential Garside matrix of parameter r. In addition, let g “ pgxqxPE and
h “ phxqxPE be right and left Perron eigenvectors of M .

The vectors g “ pgpi,xqq and h “ phpi,xqq, whose indices range over the set tpi,xq : x P

E , 1 ď i ď λpxqu, and defined by gpi,xq :“ gx and hpi,xq :“ gx are right and left Perron
eigenvectors of N , whose Perron eigenvalue is 1.

Proof. By construction, both vectors g and h have positive entries. Moreover, Proposi-
tion 7.44 proves that M has Perron eigenvalue 1, i.e. that M ¨ g “ g and that h ¨M “ h.
For all cliques y P E , we compute that

pN ¨ gqp1,yq “
ÿ

xPE
1xÝÑyrpyqgy “ pM ¨ gqy “ gy “ gp1,yq, and

pN ¨ gqpi,yq “ gpi´1,yq “ gpi,yq if i ě 2;

ph ¨Nqp1,yq “
ÿ

xPE
hx1xÝÑyrpyq “ ph ¨Mqy “ hy “ hp1,yq, and

ph ¨Nqpi,yq “ hpi´1,yq “ hpi,yq if i ě 2.

This proves that g and h are Perron eigenvectors of N , whose Perron eigenvalue must be
1.

Theorem 7.84.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Let
r : A` ÞÑ C be a Möbius valuation let κ : A` ÞÑ C be a Garside-additive function, and
let µk denote the uniform probability distribution of parameter r on the set A`pkq. In
addition, let P be the Markov Garside matrix of r, and let π be the stationary distribution
associated with P .

The random variables 1
k
κpµkq converge in law towards the Dirac measure at κ :“ κpπq

λpπq
.

Furthermore, there exists a non-negative real number σ2 such that the convergence in law

?
k

ˆ

1

k
κpµkq ´ κ

˙

L
ÝÑ N p0, σ2

q

holds when k Ñ `8, and σ2 “ 0 if and only if κpxq “ κλpxq for all x P E.

Proof. Let M be the Garside matrix of parameter r, and let N be the extended Gar-
side matrix of parameter r. In addition, consider the conditioned weighted graph G “
pN,win,woutq such that win

pi,xq :“ 1i“1rpxq and wout
pi,xq :“ 1i“λpxq. Let νk be the uniform

distribution on PGpkq, i.e. on paths of length k. By construction of G, the distribution νk
corresponds to the uniform probability distribution µk of parameter r.

Moreover, consider the function Fκ : pi,xq ÞÑ κpxq1i“λpxq, and let ` be some positive
integer. For all elements y of A` or Artin length `, let p :“ pi1, p1q ¨ . . . ¨ pi`, p`q be the
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(unique) associated path in G of length ` and with positive weight. By construction, we
have

ř`
j“1 Fκpij, pjq “ κpyq, and therefore xFκyppq “ κpyq

`
. It follows that xFκypν`q “

1
`
κpµ`q.

Then, let g and h be right and left Perron eigenvectors of M , and let g and h
be the vectors defined in Lemma 7.83. Lemma 7.82 states that πpxq “ gxhx for all
x P E , and Lemma 7.83 states that g and h are right and left Perron eigenvectors of N .
Then, Theorem 7.68 states that the invariant probability measure θ of N is defined by
θpi,xq :“

gpi,xqhpi,xq

h¨g
“

gxhx

h¨g
.

Consequently, Theorem 7.75 proves that the ergodic means 1
k
κpµkqxFκypνkq converge

in law towards the Dirac measure at κ :“
ř

xPE
řλpxq
i“1 θpi,xqFκpi,xq, and Theorem 7.76

proves that there exists a non-negative real σ2 such that p
?
kp 1

k
κpµkq ´ κqkě1 converges

in law towards a normal law N p0, σ2q when k Ñ `8, with σ2 “ 0 if κ “ κλ on E and
σ2 ą 0 otherwise.

Finally, one computes that h ¨ g “
ř

xPE
řλpxq
i“1 hxgx “ λpπq, whence

κ “
ÿ

xPE

λpxq
ÿ

i“1

θpi,xqFκpi,xq “
ÿ

xPE
θpλpxq,xqκpxq “

ř

xPE gxhxκpxq

h ¨ g
“
κpπq

λpπq
,

which completes the proof.

It remains to apply Theorem 7.84 to various Garside-additive functions. First, as
mentioned above, Theorem 7.84 directly applies to additive cost functions. However, we
can also derive theorems that do not concern directly Garside-additive functions, such as
the mean length of the Garside normal forms.

Proposition 7.85.
Let A` be an irreducible Artin–Tits monoid of FC type with at least 2 generators. Con-
sider the positive valuation s : x ÞÑ 1, such that Φpsq “ pλA, i.e. Φpsq : x ÞÑ p

λpxq
A . Let

µk denote the “standard” uniform probability distribution on the set A`pkq of elements
of length k. In addition, let P be the Markov Garside matrix of Φpsq, and let π be the
stationary distribution associated with P .

Finally, for all elements x P A`, let us denote by Λpxq the ratio λpxq
}x}γ

. The random vari-
ables Λpµkq converge towards the Dirac measure at λpπq “

ř

xPE πpxqλpxq. Furthermore,
there exists a positive real number σ2 such that the convergence in law

?
kpΛpµkq ´ λpπqq

L
ÝÑ N p0, σ2

q

holds when k Ñ `8.

Proof. Since the function Γ : x ÞÑ }x}γ is Garside-additive, Theorem 7.84 proves that
Λ´1pµkq “

1
k
Γpµkq converges towards the Dirac measure at Γpπq

λpπq
“ 1

λpπq
, and that

?
kpΛ´1

pµkq ´ λpπq
´1
q
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converges towards a normal distribution N p0, τ 2q, for some non-negative real number τ 2,
with τ 2 “ 0 if and only if λpπq “ λpxq for all x P E , which is not the case.

It follows that Λpµkq converges towards the Dirac measure at λpπq. Hence, for all real
numbers a ă b, it follows that

Pµkra ď
?
kpΛ´ λpπqq ď bs “ Pµkr´

b

Λλpπq
ď
?
kpΛ´1

´ λpπq´1
q ď ´

a

Λλpπq
s

Ñ Pµkr´λpπq
´2b ď

?
kpΛ´1

´ λpπq´1
q ď ´λpπq´2as

Ñ PN p0,τ2qr´λpπq
´2b ď z ď ´λpπq´2as

Ñ PN p0,τ2λpπq´4qra ď z ď bs

when k Ñ `8. This proves that
?
kpΛpµkq´λpπqq

L
ÝÑ N p0, τ 2λpπq´4q, which completes

the proof.

In particular, in the framework of heap monoids, the study of the ratio Λ has an inter-
pretation in terms of speed-up. If generators σi correspond to elementary computations,
then two generators are independent if the associated computations can be performed in
parallel. The length λpxq corresponds thus to the sequential computation time, whereas
the height }x} corresponds to the parallel execution time of a computational process.
Hence, Proposition 7.85 states that the speed-up converges (in distribution) and obeys a
Central limit theorem.

7.3 Computations in B`
n andM`

n

We focus here on specific cases of the above framework, namely the case of the monoids
A` “ B`3 , B

`
4 ,M`

3 andM`
4 , choosing the trivial valuation r : x ÞÑ 1 and its associated

Möbius valuation s : x ÞÑ p
λpxq
A . We compute explicitly the Markov Garside matrix P of

s, its invariant probability measure π, and the limit κ of the random variables 1
k
κpµkq,

when κ is a Garside-additive function. In particular, we also compute the limit λpπq of
the random variables Λpµkq, where Λ : x ÞÑ λpxq

}x}γ
.

Furthermore, when A` “ M`
3 or M`

4 , we also compute simple expressions of κ
when κ is an additive function and of the limit convergence manifold RBA of A. We do
not perform these additional computations when A` “ B`3 or B`4 , since in this case
all additive functions are multiples of the Artin length λ, and RBA is the singleton set
tppA, . . . , pAqu.

7.3.1 Computations in B`3

We focus here on the monoidB`3 :“ xσ1, σ2 | σ1σ2σ1 “ σ2σ1σ2y
`, whose Garside element is

∆3 :“ σ1σ2σ1 and whose two-way Garside family is the set S :“ t1, σ1, σ2, σ1σ2, σ2σ1,∆3u
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of the divisors of ∆3.

The Hasse diagram of the lattice pS,ď`q is represented in Fig. 7.86.

1

σ1 σ2

σ1σ2 σ2σ1

∆3

Figure 7.86 – Hasse diagram of the lattice pS,ď`q in B`3

Hence, the Möbius polynomial of B`3 is

HB3pzq “ 1´ 2z ` z3
“ pz ´ 1q

ˆ

z ´

?
5´ 1

2

˙ˆ

z ´

?
5` 1

2

˙

,

with smallest positive root p3 “
?

5´1
2

« 0.618. In particular, the Möbius valuation
associated with the trivial valuation x ÞÑ 1 is the valuation s : x ÞÑ p

λpxq
3 .

Using the equality 1´ p3 ´ p2
3 “ 0, we provide in Fig. 7.87 expressions of the graded

Möbius transform of s, of the Markov Garside matrix P of s, and of the invariant prob-
ability measure π of P . Functions are represented by column vectors indexed by Szt1u,
and the entries of the vectors and matrices are indexed by the braids σ1, σ2, σ1σ2, σ2σ1

and ∆, in this order.

Mγs “

»

—

—

—

—

–

2p3´1
2p3´1
2´3p3

2´3p3

2p3´1

fi

ffi

ffi

ffi

ffi

fl

;P “

»

—

—

—

—

–

p3 0 1´ p3 0 0
0 p3 0 1´ p3 0
0 p3 0 1´ p3 0
p3 0 1´ p3 0 0

2p3´1 2p3´1 2´3p3 2´3p3 2p3´1

fi

ffi

ffi

ffi

ffi

fl

; π “
1

2

»

—

—

—

—

–

p3

p3

1´ p3

1´ p3

0

fi

ffi

ffi

ffi

ffi

fl

.

Figure 7.87 – Möbius transform Mγs, Markov Garside matrix P and its invariant prob-
ability measure π (in B`3 )

Hence, the random variables Λpµkq converge (in distribution) towards the Dirac mea-
sure at λpπq and, for all Garside-additive functions κ : A` ÞÑ C, the random variables
1
k
κpµkq converge towards the Dirac measure at κ, where

λpπq “ 2´ p3 “
5´

?
5

2
« 1.382 and

κ “
κpπq

λpπq
“
κpσ1q ` κpσ2q

2
?

5
`
κpσ1σ2q ` κpσ2σ1q

5`
?

5
.
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7.3.2 Computations in B`4

We focus here on the monoid

B`4 “ xσ1, σ2, σ3 | σ1σ2σ1 “ σ2σ1σ2, σ2σ3σ2 “ σ3σ2σ3, σ1σ3 “ σ3σ1y
`,

whose Garside element is ∆4 “ σ1σ2σ1σ3σ2σ1 and whose two-way Garside family is the
set

S “ t1, σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ1, σ2σ3, σ3σ2, σ1σ2σ1, σ1σ2σ3,

S “ tσ1σ3σ2, σ2σ1σ3, σ2σ3σ2, σ3σ2σ1, σ1σ2σ1σ3, σ1σ3σ2σ1, σ1σ3σ2σ3,

S “ tσ2σ1σ3σ2, σ2σ3σ2σ1, σ1σ2σ1σ3σ2, σ1σ3σ2σ1σ3, σ2σ1σ3σ2σ1,∆4u

of the divisors of ∆4.

The Hasse diagram of the lattice pS,ď`q is already represented in Fig. 2.92, and we
draw it again below, in Fig. 7.88.

1

σ1 σ2 σ3

σ1σ2 σ2σ1 σ1σ3 σ2σ3 σ3σ2

σ1σ2σ3 σ1σ2σ1 σ1σ3σ2 σ2σ1σ3 σ2σ3σ2 σ3σ2σ1

σ1σ2σ1σ3 σ1σ2σ3σ2 σ2σ1σ3σ2 σ1σ3σ2σ1 σ2σ3σ2σ1

σ1σ2σ1σ3σ2 σ1σ2σ3σ2σ1 σ2σ1σ3σ2σ1

∆4

Figure 7.88 – Hasse diagram of the lattice pS,ď`q in B`4

Hence, the Möbius polynomial of B`4 is

HB4pzq “ 1´ 3z ` z2
` 2z3

´ z6
“ ´pz ´ 1qpz5

` z4
` z3

´ z2
´ 2z ` 1q,

with smallest positive root p4 « 0.479. In particular, the Möbius valuation associated
with the trivial valuation x ÞÑ 1 is the valuation s : x ÞÑ p

λpxq
4 .

Using the equality 1 ´ 2p4 ´ p2
4 ` p3

4 ` p4
4 ` p5

4, we provide in Figures 7.89 and 7.90
expressions of the graded Möbius transform of s, of the Markov Garside matrix P of s,
of the invariant probability measure π of P , and of auxiliary polynomials A1, . . . , A20.
These polynomials are coefficients of the matrix P , and we decided to represent them as
auxiliary data so that the matrix P (of size 23ˆ 23) could fit on one page. Functions are
represented by row vectors indexed by Szt1u, and the entries of the vectors and matrices
are indexed by elements of Szt1u in the Short-Lex order (i.e. the order in which they are
enumerated in the above expression of the set S).
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P “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

p4 0 0 A1 0 0 0 0 0 p34 0 0 0 0 0 0 0 0 0 0 0 0 0

0 p4 0 0 0 A2 A2 0 0 0 0 A3 0 0 0 0 0 p44 0 0 0 0 0

0 0 p4 0 0 0 0 A1 0 0 0 0 0 p34 0 0 0 0 0 0 0 0 0

0 p4 0 0 0 A2 A2 0 0 0 0 A3 0 0 0 0 0 p44 0 0 0 0 0

A4 0 A4 A5 p24 0 0 A5 0 A6 A7 0 0 A6 0 p44 p44 0 0 0 A8 0 0

p4 0 0 A1 0 0 0 0 0 p34 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 p4 0 0 0 0 A1 0 0 0 0 0 p34 0 0 0 0 0 0 0 0 0

0 p4 0 0 0 A2 A2 0 0 0 0 A3 0 0 0 0 0 p44 0 0 0 0 0

A4 A9 0 A5 0 A10 A10 0 p34 A6 0 p34 0 0 p44 0 0 A11 0 A8 0 0 0

0 0 p4 0 0 0 0 A1 0 0 0 0 0 p34 0 0 0 0 0 0 0 0 0

0 p4 0 0 0 A2 A2 0 0 0 0 A3 0 0 0 0 0 p44 0 0 0 0 0

A4 0 A4 A5 p24 0 0 A5 0 A6 A7 0 0 A6 0 p44 p44 0 0 0 A8 0 0

0 A9 A4 0 0 A10 A10 A5 0 0 0 p34 p34 A6 0 0 0 A11 p44 0 0 A8 0

p4 0 0 A1 0 0 0 0 0 p34 0 0 0 0 0 0 0 0 0 0 0 0 0

A4 0 A4 A5 p24 0 0 A5 0 A6 A7 0 0 A6 0 p44 p44 0 0 0 A8 0 0

0 A9 A4 0 0 A10 A10 A5 0 0 0 p34 p34 A6 0 0 0 A11 p44 0 0 A8 0

A4 A9 0 A5 0 A10 A10 0 p34 A6 0 p34 0 0 p44 0 0 A11 0 A8 0 0 0

0 p4 0 0 0 A2 A2 0 0 0 0 A3 0 0 0 0 0 p44 0 0 0 0 0

A4 0 A4 A5 p24 0 0 A5 0 A6 A7 0 0 A6 0 p44 p44 0 0 0 A8 0 0

0 A9 A4 0 0 A10 A10 A5 0 0 0 p34 p34 A6 0 0 0 A11 p44 0 0 A8 0

A4 0 A4 A5 p24 0 0 A5 0 A6 A7 0 0 A6 0 p44 p44 0 0 0 A8 0 0

A4 A9 0 A5 0 A10 A10 0 p34 A6 0 p34 0 0 p44 0 0 A11 0 A8 0 0 0

A12 A13 A12 A14 A5 A15 A15 A14 A7 A16 A17 A7 A7 A16 A11 A11 A11 A18 A11 A19 A19 A19 A20

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Figure 7.89 – Markov Garside matrix P (in B`4 )

Hence, the random variables Λpµkq converge (in distribution) towards the Dirac mea-
sure at λpπq and, for all Garside-additive functions κ : A` ÞÑ C, the random variables
1
k
κpµkq converge towards the Dirac measure at κ, where κ “ λpπq´1κpπq and

λpπq “
11086100´ 12019728p4 ` 8470263p2

4 ` 11669838p3
4 ` 5899597p4

4

4935059
« 1.797.

The expressions of κpπq and of κ are not so enlightening and consist in summing 14
different terms (using symmetries in the expression of π that are due to the isomorphism
of monoids φ∆), which makes them hard to read. Moreover, they follow directly from the
values of κ on Szt1,∆u and from the expression of the invariant probability measure π.
Consequently, we do not write them explicitly here.

Observe that limit λpπq is a polynomial in p4, with rational coefficients. This is not
coincidental nor specific to the monoid B4, as outlined by the following result.
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Mγs “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

A12

A13

A12

A14

A5

A15

A15

A14

A7

A16

A17

A7

A7

A16

A11

A11

A11

A18

A11

A19

A19

A19

A20

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; π “ 1
4935059

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

263236`882180p4´249748p24´671138p34`328026p44

1636548`83720p4´2006161p24´838931p34´749927p44

263236`882180p4´249748p24´671138p34`328026p44

146252`1457662p4´604750p24´1473442p34´1012652p44

´359221`1227568p4´317678p24`112746p34´377032p44

´285893`1083510p4`744510p24´929027p34´220414p44

´285893`1083510p4`744510p24´929027p34´220414p44

146252`1457662p4´604750p24´1473442p34´1012652p44

´115150´313535p4`844758p24`483609p34`427337p44

999164´2326354p4´79876p24`2209370p34`421390p44

866810´2469873p4`1474043p24´301404p34`920202p44

1124824´374897p4´1363027p24´904410p34´1035820p44

´115150´313535p4`844758p24`483609p34`427337p44

999164´2326354p4´79876p24`2209370p34`421390p44

´427337`739524p4`113802p24`417421p34`56272p44

´489778`1356588p4´623507p24`360758p34´430424p44

´489778`1356588p4´623507p24`360758p34´430424p44

1167230´2245456p4´595311p24`1214920p34`590027p44

´427337`739524p4`113802p24`417421p34`56272p44

´56272´314793p4`795796p24`57530p34`361149p44

430424´1350626p4`926164p24´193083p34`791182p44

´56272´314793p4`795796p24`57530p34`361149p44

0

fi

ffi

ffi

ffi
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ffi
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´1`2p4`p
2
4´3p44

3´7p4´p
2
4`4p34`3p44

´2`5p4´3p34´p
4
4

1´3p4`p
2
4`2p34

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Figure 7.90 – Möbius transform Mγs, invariant probability π of P and auxiliary data (in
B`4 )

Proposition 7.91.
Let A` be an Artin–Tits monoid of FC type with at least 2 generators and let pA be the
smallest positive root of the Möbius polynomial HApzq. The limit λpπq, towards which the
random variables Λpµkq converge, belongs to the field QrpAs, i.e. can be expressed under
the form QppAq, where Q is a polynomial with rational coefficients.

Proof. First, note that pA is an algebraic number, since it is a root of the integer-valued
polynomial HA. Consequently, the field generated by pA is the set QrpAs “ tz P R : DQ P
QrXs, z “ QppAqu. By construction, the valuation s, its Möbius transform Mγs, and
therefore the Markov Garside matrix P have entries in the field QrpAs. Consequently,
the probability π, which can be seen as the unique normalised vector of the kernel of
the matrix P ´ Id, can be obtained from P by Gaussian elimination, hence its entries
also belong to the field QrpAs. Since the function λ is integer-valued, it follows that λpπq
belongs to QrpAs too.
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7.3.3 Computations in M`
3

We focus here on the monoidM`
3 “ xσ1, σ2, σ3 | σ1σ3 “ σ3σ1y

`, whose two-way Garside
family is the set S “ t1, σ1, σ2, σ3, σ1σ3u. The value of λpπq was already computed in [2,
71], and the parametrisation of RBM3

was also performed in [2].

The Hasse diagram of the partially ordered set pS,ď`q is represented in Fig. 7.92.

1

σ1 σ2 σ3

σ1σ3

Figure 7.92 – Hasse diagram of the partially ordered set pS,ď`q inM`
3

Hence, the Möbius polynomial ofM`
3 is

HM3pzq “ 1´ 3z ` z2
“

ˆ

z ´
3´

?
5

2

˙ˆ

z ´
3`

?
5

2

˙

,

with smallest positive root q3 “
3´
?

5
2
« 0.382. In particular, the Möbius valuation asso-

ciated with the trivial valuation x ÞÑ 1 is the valuation s : x ÞÑ q
λpxq
3 .

Mγs “

»

—

—

–

1´2q3

q3

1´2q3

3q3´1

fi

ffi

ffi

fl

;P “

»

—

—

–

q3 1´ q3 0 0
1´2q3 q3 1´2q3 3q3´1

0 1´ q3 q3 0
1´2q3 q3 1´2q3 3q3´1

fi

ffi

ffi

fl

; π “
1

11

»

—

—

–

2` q3

8´7q3

2` q3

5q3´1

fi

ffi

ffi

fl

.

Figure 7.93 – Möbius transform Mγs, Markov Garside matrix P and its invariant prob-
ability measure π (inM`

3 )

Using the equality 1´ 3q3 ` q
2
3 “ 0, we provide in Fig. 7.93 expressions of the graded

Möbius transform of s, of the Markov Garside matrix P of s, and of the invariant prob-
ability measure π of P . Functions are represented by column vectors indexed by Szt1u,
and the entries of the vectors and matrices are indexed by the elements σ1, σ2, σ3 and
σ1σ3, in this order.

Hence, the random variables Λpµkq converge (in distribution) towards the Dirac mea-
sure at λpπq and, for all Garside-additive functions κ : A` ÞÑ C, the random variables
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1
k
κpµkq converge towards the Dirac measure at κ, where

λpπq “
10` 5q3

11
“

35´ 5
?

5

22
« 1.083 and

κ “
κpπq

λpπq
“

2pκpσ1q ` κpσ3qq

7`
?

5
`

10κpσ2q

5` 7
?

5
`

2κpσ1σ3q

13` 5
?

5

κ “
5pκpσ1q ` κpσ3qq

10` 3
?

5
`

10κpσ2q

5` 7
?

5
if κ is additive.

Moreover, applying the algorithm used for proving Theorem 7.51, it follows that the
convergence manifold and the limit convergence manifold of M`

3 are The multivariate
Möbius polynomial of M`

3 is HM3px, y, zq “ 1 ´ x ´ y ´ z ` xz “ p1 ´ xqp1 ´ zq ´ y.
The set tpx, y, zq P p0, 1q3 : HM3px, y, zq ą 0u is therefore connected, and, according to
Corollary 7.34, is equal to the convergence manifold RM3 itself. It follows that

RM3 “ tpx, y, zq P p0, 1q3 : HM3px, y, zq ą 0u

“ tpx, p1´ xqy, p1´ yqz : 0 ă x, y, z ă 1u

RBM3
“ tpx, y, zq P p0, 1q3 : HM3px, y, zq “ 0u

“ tp1´ x, ux, 1´ uq : 0 ă x, u ă 1u.

1

1

1

x

y

z

Figure 7.94 – Limit convergence manifold ofM`
3

The latter equation shows that RBM3
is in fact a fragment of hyperbolic paraboloid.

Figure 7.94 represents the limit convergence manifold RBM3
in gray.

7.3.4 Computations in M`
4

We focus now on the monoid

M`
4 “ xσ1, σ2, σ3, σ4 | σ1σ3 “ σ3σ1, σ1σ4 “ σ4σ1, σ2σ4 “ σ4σ2y

`,
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whose two-way Garside family is the set S “ t1, σ1, σ2, σ3, σ4, σ1σ3, σ1σ4, σ2σ4u. Once
again, the value of λpπq had already be computed in [71].

The Hasse diagram of the partially ordered set pS,ď`q is represented in Fig. 7.95.

1

σ1 σ2 σ3 σ4

σ1σ3 σ1σ4 σ2σ4

Figure 7.95 – Hasse diagram of the partially ordered set pS,ď`q inM`
4

Hence, the Möbius polynomial ofM`
4 is

HM4pzq “ 1´ 4z ` 3z2
“ pz ´ 1qp3z ´ 1q,

with smallest positive root q4 “
1
3
. In particular, the Möbius valuation associated with

the trivial valuation x ÞÑ 1 is the valuation s : x ÞÑ q
λpxq
4 .

We provide in Fig. 7.96 expressions of the graded Möbius transform of s, of the Markov
Garside matrix P of s, and of the invariant probability measure π of P . Functions are
represented by column vectors indexed by Szt1u, and the entries of the vectors and
matrices are indexed by the elements σ1, σ2, σ3, σ4, σ1σ3, σ1σ4 and σ2σ4, in this order.

Mγs “
1

9

»

—

—

—

—

—

—

—

—

–

1
2
2
1
1
1
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;P “
1

18

»

—

—

—

—

—

—

—

—

–

6 12 0 0 0 0 0
3 6 6 0 3 0 0
0 6 6 3 0 0 3
0 0 12 6 0 0 0
2 4 4 2 2 2 2
2 4 4 2 2 2 2
2 4 4 2 2 2 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; π “
1

57

»

—

—

—

—

—

—

—

—

–

6
18
18
6
4
1
4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Figure 7.96 – Möbius transform Mγs, Markov Garside matrix P and its invariant prob-
ability measure π (inM`

4 )

Hence, the random variables Λpµkq converge (in distribution) towards the Dirac mea-
sure at λpπq and, for all Garside-additive functions κ : A` ÞÑ C, the random variables
1
k
κpµkq converge towards the Dirac measure at κ, where

λpπq “
22

19
« 1.158 and

κ “
κpπq

λpπq
“

2pκpσ1q ` κpσ4qq

19
`

6pκpσ2q ` κpσ3qq

19
`

4pκpσ1σ3q ` κpσ2σ4qq

57
`
κpσ1σ4q

57

κ “
11

57
pκpσ1q ` 2κpσ2q ` 2κpσ3q ` κpσ4qq if κ is additive.
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Applying the algorithm used for proving Theorem 7.51, we compute the following
parametrisations of the convergence manifold and the limit convergence manifold ofM`

3 :

RM3 “ tpx, p1´ xqy, p1´ yqz, p1´ zqtq : 0 ă x, y, z, t ă 1u;

RBM3
“ tpx, p1´ xqy, p1´ yqz, 1´ zq : 0 ă x, y, z ă 1u.

7.3.5 Radius of Convergence in B`n and M`
n

We focus here on studying the radii of convergence of the braid monoids B`n and of dimer
modelsM`

n , pursuing investigations on the growth of these monoids performed by Xu [94]
or Berceanu and Iqbal [10].

Let us focus now on all the monoid

M`
n “ xσ1, . . . , σn | @i, j, |i´ j| ě 2 ñ σiσj “ σjσiy

`,

whose smallest two-way Garside family is the set S “ t∆I : I Ď tσ1, . . . , σnu and @σi, σj P
I, i´ j ‰ ˘1u.

Proposition 7.97.
LetM`

n be the dimer model with n generators, and let HMnpzq be the Möbius polynomial
ofM`

n . The smallest positive root of the polynomial HMnpzq is qn :“ 1
4 cosp π

n`2
q2
. This root

is rational if and only if n P t1, 2, 4u, and is such that qn Ñ 1
4
when nÑ `8.

Proof. An induction analogous to that used for proving Proposition 7.3 shows that
the Möbius polynomial of M`

n obeys the induction relation HMnpzq “ HMn´1pzq ´
zHMn´2pzq, with HM´1pzq “ HM0pzq “ 1. Solving this linear recurrent equation on
HMnpzq, we find

HMnpzq “
1

2n`2
?

1´ 4z

`

p1`
?

1´ 4zqn`2
´ p1´

?
1´ 4zqn`2

˘

“
1

2n`1

tpn`1q{2u
ÿ

k“0

ˆ

n` 2

2k ` 1

˙

p1´ 4zqk.

Hence, let θn`2 :“ π
n`2

and ωn`2 :“ exppiθn`2q. The roots of HMn are the complex
numbers r P Czt1

4
u such that 1 `

?
1´ 4r “ p1 ´

?
1´ 4rqω2k

n`2 for some k P Z or,
equivalently, such that r “ 1

4 cospkθn`2q2
. Consequently, the smallest positive root ofHMnpzq

is qn :“ 1
4 cospθn`2q2

“ 1
4 cosp π

n`2
q2
, and qn Ñ 1

4
when nÑ `8.

The first values of qn are q1 “ 1, q2 “
1
2
, q3 “

3´
?

5
2

and q4 “
1
3
. Then, assume that qn

is rational for some integer n ě 5. Let bX´a be its minimal polynomial in ZrXs, so that
qn “

a
b
. Since qn cancels HMnpzq, it follows that bX ´ a divides HMnpzq in ZrXs, and

since HMnp0q “ 1, it follows that a “ ˘1, i.e. that 1
qn
“ ˘b is an integer. This contradicts

the fact that 1
4
ă qn ă q4 “

1
3
, which proves the irrationality of qn and completes the

proof.
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In addition, using the above equation HMnpzq “ HMn´1pzq ´ zHMn´2pzq, the algo-
rithm used for proving Theorem 7.51 provides us with parametrisations of the convergence
manifold and the limit convergence manifold ofM`

n :

RMn “ tpx1, p1´ x1qx2, . . . , p1´ xn´2qxn´1, p1´ xn´1qxnq : 0 ă x1, . . . , xn ă 1u ;

RBMn
“ tpx1, p1´ x1qx2, . . . , p1´ xn´2qxn´1, 1´ xn´1q : 0 ă x1, . . . , xn´1 ă 1u .

The situation is analogous in the braid monoid B`n , whose smallest two-way Garside
family is the set S “ tβ : β ď ∆u. However, the Bronfman formula for computing the
Möbius polynomials is more complex for braids than for heaps, which explains why our
results may seem weaker.

Proposition 7.98.
Let B`n be the n-strand braid monoid, let HBnpzq be the Möbius polynomial of B`n , and
let pn be the smallest positive root of the polynomial HBnpzq. The sequence ppnqně1 is
non-increasing, and converges towards a limit P such that 2

5
ą P ą 1

4
.

Proof. First, observe that, for all integers n ě 1, the monoid B`n is a submonoid of B`n`1,
and therefore that GBn`1pzq ě GBnpzq, hence that HBn`1pzq ď HBnpzq, when 0 ď z ă
mintpn, pn`1u. It follows that pn`1 ď pn, i.e. that ppnqně1 is non-increasing. Likewise,
since B`n is a quotient monoid of the dimer modelM`

n´1, it follows that qn ď pn´1, which
proves that P ě 1

4
. However, it is not yet clear whether the two sequences ppnqně1 and

pqnqně1 might have the same limit.

Proposition 7.3 shows that the Möbius polynomial of B`n obeys the induction relation
HBnpzq “

ř

kě0p´1qkzkpk`1q{2HBn´1pzq, with HB0pzq “ HB1pzq “ 1 and HBnpzq “ 0 if
n ď ´1. Hence, a simple yet cumbersome computation shows that HB5

`

2
5

˘

ă 0, and
therefore that P ă 2

5
.

Now, consider the polynomial P pzq “ 1´ 4z ` 4z3 ´ 8z6. Since

P

ˆ

1

4

˙

“
31

512
ą 0 ą ´

143

729
“ P

ˆ

1

3

˙

,

let ρ be the smallest root of P in the interval
`

1
4
, 1

3

˘

, and let z be an element of the closed
real interval

“

1
4
, ρ
‰

. We prove by induction that 2HBn`1pzq ě HBnpzq ě 0 for all n P Z.
First, the result is immediate when n ď 0. Moreover, a straightforward computation
shows that

HB2pzq “ 1´ z “ p1´ zqHB1pzq ě p1´ ρqHB1pzq ě
2

3
HB1pzq.

Hence, let us assume that n ě 2. Since ρ ě z, note that zk ď ρk ď 3´k ď 1
2

whenever k ě 1. In addition, since z ě 1
4
and 0 ď HBn´1pzq ď HBn´2pzq, observe that
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p1
2
´ 2zqHBn´1pzq ě p

1
2
´ 2zqHBn´2pzq. Finally, since P pzq ě 0, It follows that:

2HBn`1pzq ´HBnpzq “ HBnpzq ` 2
ÿ

kě1

p´1qkzkpk`1q{2HBn´kpzq

“ HBnpzq ´ 2zHBn´1pzq ` 2z3HBn´2pzq ´ 2z6HBn´3pzq `
ÿ

kě2

zkp2k`1q
`

2HBn´2k
pzq ´ 2z2k`1HBn´2k´1

pzq
˘

ě
1´ 4z

2
HBn´1pzq ` 2z3HBn´2pzq ´ 2z6HBn´3pzq `

ÿ

kě2

zkp2k`1q
p1´ 2z2k`1

qHBn´2k´1
pzq

ě
1´ 4z ` 4z3

2
HBn´2pzq ´ 2z6HBn´3pzq

ě
P pzq ` 8z6

2
HBn´2pzq ´ 2z6HBn´3pzq

ě 2z6
p2HBn´2pzq ´HBn´3pzqq ě 0,

which completes the induction.

It follows that HBnpzq ą 0 for all n ě 0, which proves that pn ě ρ, and therefore that
P ě ρ ą 1

4
.

Obtaining further approximations of pn seems difficult. However, partial results allow
us to prove some results and to formulate conjectures, as follows.

Lemma 7.99.
Let B`n be the n-strand braid monoid, let HBnpzq be the Möbius polynomial of B`n , let
pn be the smallest positive root of the polynomial HBnpzq, and let P be the limit of the
sequence ppnqně0. The inequalities

HBn`2pzq

HBn`1pzq
ď
HBn`1pzq

HBnpzq

hold for all integers n ě 1 and for all real numbers z such that 0 ď z ă P.

Proof. Let us write the generating series GBn`2pzqGBnpzq and GBn`1pzq
2 respectively as

sums
ř

kě0 an,kz
k and

ř

kě0 bn,kz
k, where an,k is the cardinality of the set An,k :“ tpγ, γ1q P

B`n`2 ˆ B`n : λpγq ` λpγ1q “ ku and bn,k is the cardinality of the set Bn,k :“ tpα, βq P
B`n`1 ˆB`n`1 : λpαq ` λpβ1q “ ku.

Consider the homomorphism of monoids φ : B`n`1 ÞÑ B`n`2 such that φ : σi ÞÑ σi`1.
In addition, for all braids β P B`n`1, let δ1,npβq denote the greatest element of the set
tx P xσ1, . . . , σn´1y

` : x ď` βu, and let δ2,npβq denote the braid δ´1
1,npβqβ. Note that δ1,n

induces a mapping from B`n`1 to B`n . We prove now that the function Θ : Bn,k ÞÑ An,k
defined by Θ : pα, βq ÞÑ pαφpδ2,npβqq, δ1,npβqq is injective.
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Let us denote by γ the braid αφpδ2,npβqq and by γ1 the braid δ1,npβq. By construction,
we know that leftpδ2,npβqq Ď tσnu, i.e. that leftpφpδ2,npβqqq Ď tσn`1u and therefore that
δ1,n`1pγq ď` α. Conversely, it is straightforward that α ď` δ1,n`1pγq, which proves that
α “ δ1,n`1pγq and that β “ γ1α´1γ, i.e. that Θ is indeed injective.

It follows that an,k ě bn,k for all integers n and k, and therefore that GBn`2pzqGBnpzq ě
GBn`1pzq

2 for all z P r0, pn`2q, thereby proving Lemma 7.99.

Proposition 7.100.
Let z be an element of the interval r0,Pq, and let Fz be the generating function Fz : θ ÞÑ
ř

kě0p´1qkzkpk`1q{2θk, which converges on the entire complex plane.

The equation 1 “ θFzpθq has some complex root. Moreover, let Θ :“ mint|θ| : 1 “ θFzpθqu.
We have 1 “ ΘFzpΘq, and

HBn`2pzq

HBn`1pzq
Ñ

1

Θ
when nÑ `8.

Proof. Let us define the generating function S : θ ÞÑ 1
1´θFzpθq

, and let Θ :“ `8 if
the equation 1 “ θFzpθq has no complex root. By construction, we know that Θ is the
radius of convergence of S, and that Θ ą 0. Let Hn be the coefficients of S, i.e. the real
numbers such that Spθq “

ř

ně0Hnθ
n. We also defineHn :“ 0 when n ď ´1. Observe that

Spθq “ 1`θSpθqFzpθq when |θ| ă Θ, i.e. thatH0 “ 1 andHn “
ř

kě0p´1qkzkpk`1q{2Hn´k´1

when n ě 1. It follows immediately that Hn “ HBnpzq for all n ě 0, and therefore that
Hn ą 0. Moreover, the sequence

HBn`2
pzq

HBn`1
pzq

is non-increasing, hence it has a limit when

nÑ `8, and therefore that limit must be 1
Θ
.

Furthermore, the equality p1 ´ θFzpθqqSpθq “ 1 holds on the open complex disk
tz P C : |z| ă Θu. It follows that the function θ ÞÑ 1´θFzpθq is decreasing on the interval
r0,Θq. Moreover, if Θ ă `8, then 1 ´ ΘFzpΘq “ 0, and therefore Θ is the smallest
positive root of the equation 1 “ θFzpθq. Hence, we finish by proving that Θ ă `8.

Since 0 ă z ă 2
5
, the inequality

22k`2
´ 1´ p22k`3

´ 1qz2k`1
ě 22k`1

´ 22k`3z2k`1
“ 22k`1

p1´ 4z2k`1
q

ě 22k`1
p1´ 4z3

q ě
93 ¨ 22k`1

125
ą 0

holds whenever k ě 1. Moreover, consider the functions f : z ÞÑ ´2 ` 7z ´ 15z3 ` 31z6

and g : z ÞÑ ´2 ` 7z ´ 13z3. When 0 ă z ă 2
5
, we know that 31z3 ď 31¨8

125
“ 248

125
ă 2,

whence fpzq “ gpzq ` z3p31z3 ´ 2q ď gpzq. Since the derivative of g is such that g1pzq “
7´ 39z2 ě 7´ 39¨4

25
“ 19

25
ą 0, it follows that fpzq ď gpzq ď g

`

2
5

˘

“ ´ 4
53 ă 0.
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Consequently, we observe that

2Fz

ˆ

2

z

˙

´ Fz

ˆ

1

z

˙

“
ÿ

kě0

p´1qkzkpk´1q{2
p2k`1

´ 1q

“ 1´ 3` 7z ´ 15z3
` 31z6

´
ÿ

kě2

`

22k`2
´ 1´ p22k`3

´ 1qz2k`1
˘

z2k2`k

ď fpzq ă 0.

This proves that 1 ´ 1
z
Fz

`

1
z

˘

ă 1 ´ 2
z
Fz

`

2
z

˘

, and therefore that θ ÞÑ 1 ´ θFzpθq is not
decreasing on

“

0, 2
z

˘

. It follows that Θ ă 2
z
, which completes the proof.

These results lead to the following conjecture.

Conjecture 7.101.
Let z be an element of the real interval r0, 1q, and let Fz be the generating function
Fz : θ ÞÑ

ř

kě0p´1qkzkpk`1q{2θk, which converges on the entire complex plane. In addition,
let B`n be the n-strand braid monoid, let HBnpzq be the Möbius polynomial of B`n , let
pn be the smallest positive root of the polynomial HBnpzq, and let P be the limit of the
sequence ppnqně0.

We conjecture that P “ Q, where

Q :“ suptz P r0, 1q : Dθ P Rą0, 1 “ θFzpθq and @ζ P C, |ζ| ă |θ| ñ 1 ‰ ζFzpζqu.

Note that Proposition 7.100 already proves that P ď Q. Hence, it remains to prove
the converse inequality P ě Q, i.e. showing that, whenever the root of 1 ´ θFzpθq with
smallest modulus is a positive real number, then HBnpzq ą 0 for all n ě 0. This question
seems wide open so far.





Bibliography 285

Bibliography

[1] Samy Abbes and Klaus Keimel. Projective topology on bifinite domains and appli-
cations. Theoretical Computer Science, 365(3):171–183, 2006.

[2] Samy Abbes and Jean Mairesse. Uniform and Bernoulli measures on the boundary
of trace monoids. Journal of Combinatorial Theory, Series A, 135:201–236, 2015.

[3] Sergei Adian. Fragments of the word δ in the braid group. Matematicheskie Zametki,
36(1):25–34, 1984.

[4] Marie Albenque. Bijective combinatorics of positive braids. Electronic Notes in
Discrete Mathematics, 29:225–229, 2007.

[5] Marie Albenque and Philippe Nadeau. Growth function for a class of monoids.
Number 01, pages 25–38, 2009.

[6] Joseph Altobelli. The word problem for Artin groups of FC type. Journal of Pure
and Applied Algebra, 129(1):1–22, 1998.

[7] Joseph Altobelli and Ruth Charney. A geometric rational form for Artin groups of
FC type. Geometriae Dedicata, 79(3):277–289, 2000.

[8] Emil Artin. Theorie der Zöpfe. Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg, 4(1):47–72, 1925.

[9] Emil Artin. Theory of braids. Annals of Mathematics, pages 101–126, 1947.

[10] Barbu Berceanu and Zaffar Iqbal. Universal upper bound for the growth of Artin
monoids. Communications in Algebra, 43(5):1967–1982, 2015.

[11] Mladen Bestvina. Non-positively curved aspects of Artin groups of finite type. Ge-
ometry & Topology, 3(1):269–302, 1999.

[12] Patrick Billingsley. Probability and Measure, 3rd edition. Wiley, 1995.

[13] Joan Birman. Braids, Links and Mapping Class Groups. Annals of Mathematical
Studies, Princeton University Press, 1974.

[14] Joan Birman and Tara Brendle. Braids: a survey. Handbook of Knot Theory, pages
19–103, 2005.



286 Bibliography

[15] Joan Birman, Ki Hyoung Ko, and Sang Jin Lee. A new approach to the word and
conjugacy problems in the braid groups. Advances in Mathematics, 139(2):322–353,
1998.

[16] Anders Bjorner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231.
Springer Science & Business Media, 2006.

[17] Nicolas Bourbaki. Topologie générale, Chapitre I. Hermann, 1961.

[18] Mireille Bousquet-Mélou and Andrew Rechnitzer. Lattice animals and heaps of
dimers. Journal of Discrete Mathematics, 258(1–3):235–274, 2002.

[19] Xavier Bressaud. A normal form for braids. Journal of Knot Theory and its Rami-
fications, 17(6):697–732, 2008.

[20] Egbert Brieskorn and Kyoji Saito. Artin-gruppen und Coxeter-gruppen. Inventiones
Mathematicae, 17(4):245–271, 1972.

[21] Aaron Bronfman. Growth functions of a class of monoids. Preprint, 2001.

[22] Janusz Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. Mathematical Theory of Automata, 12:529–561, 1962.

[23] Colin Campbell, Edmund Robertson, Nikola Ruškuc, and Richard Thomas. Auto-
matic semigroups. Theoretical Computer Science, 250(1):365–391, 2001.

[24] Pierre Cartier and Dominique Foata. Problèmes combinatoires de commutation et
réarrangements, volume 85 of Lecture Notes in Mathematics. Springer, 1969.

[25] Sandrine Caruso. Algorithmes et généricité dans les groupes de tresses. Thèse,
Université Rennes 1, Oct 2013.

[26] Sandrine Caruso and Bert Wiest. On the genericity of pseudo-Anosov braids II:
conjugations to rigid braids. arXiv preprint arXiv:1309.6137, 2013.

[27] Ruth Charney. Artin groups of finite type are biautomatic. Mathematische Annalen,
292(1):671–683, 1992.

[28] Ruth Charney. Geodesic automation and growth functions for Artin groups of finite
type. Mathematische Annalen, 301:307–324, 1995.

[29] Ruth Charney and Michael Davis. The k (π, 1)-problem for hyperplane complements
associated to infinite reflection groups. Journal of the American Mathematical Soci-
ety, pages 597–627, 1995.

[30] Pierre Collet, Servet Martínez, and Jaime San Martín. Quasi-Stationary Distribu-
tions. Markov Chains, Diffusions and Dynamical Systems. Springer, 2013.

[31] Harold Coxeter. The polytopes with regular-prismatic vertex figures. Proceedings of
the London Mathematical Society, 2(1):126–189, 1932.



Bibliography 287

[32] Harold Coxeter. The complete enumeration of finite groups of the form. Journal of
the London Mathematical Society, 1(1):21–25, 1935.

[33] John N. Darroch and Eugene Seneta. On quasi-stationary distributions in absorbing
discrete-time Markov chains. Journal of Applied Probability, 2:88–100, 1965.

[34] Patrick Dehornoy. Deux propriétés des groupes de tresses. Comptes Rendus de
l’Académie des Sciences. Série I. Mathématique, 315(6):633–638, 1992.

[35] Patrick Dehornoy. Braid groups and left distributive operations. Transactions of the
American Mathematical Society, 345(1):115–150, 1994.

[36] Patrick Dehornoy. Efficient solutions to the braid isotopy problem. Discrete Applied
Mathematics, 156(16):3091–3112, 2008.

[37] Patrick Dehornoy, Francois Digne, Eddy Godelle, Daan Krammer, and Jean Michel.
Foundations of Garside theory. arXiv preprint arXiv:1309.0796, 2013.

[38] Patrick Dehornoy, Matthew Dyer, and Christophe Hohlweg. Garside families in
Artin–Tits monoids and low elements in Coxeter groups. Comptes Rendus Mathe-
matique, 353(5):403–408, 2015.

[39] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest. Why are braids or-
derable?, volume 14 of Panoramas et Synthèses [Panoramas and Syntheses]. Société
Mathématique de France, Paris, 2002.

[40] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest. Ordering braids.
Number 148. American Mathematical Society, 2008.

[41] Patrick Dehornoy and Eddy Godelle. A conjecture about Artin–Tits groups. Journal
of Pure and Applied Algebra, 217(4):741–756, 2013.

[42] Pierre Deligne. Les immeubles des groupes de tresses généralisés. Inventiones Math-
ematicae, 17(4):273–302, 1972.

[43] Volker Diekert. Combinatorics on traces, volume 454. Springer Science & Business
Media, 1990.

[44] Volker Diekert and Grzegorz Rozenberg. The book of traces, volume 15. World
Scientific, 1995.

[45] Andrew Duncan, Edmund Robertson, and Nikola Ruškuc. Automatic monoids and
change of generators. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 127, pages 403–409. Cambridge Univ Press, 1999.

[46] Ivan Dynnikov and Bert Wiest. On the complexity of braids. Journal of the European
Mathematical Society, 9(4):801–840, 2007.

[47] David Epstein, Mike Paterson, James Cannon, Derek Holt, Silvio Levy, and William
Thurston. Word Processing in Groups. A. K. Peters, Ltd., Natick, MA, USA, 1992.



288 Bibliography

[48] Roger Fenn, Michael Greene, Dale Rolfsen, Colin Rourke, and Bert Wiest. Ordering
the braid groups. Pacific Journal of Mathematics, 191(1):49–74, 1999.

[49] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, New York, NY, USA, 1 edition, 2009.

[50] Jean Fromentin. A well-ordering of dual braid monoids. Comptes Rendus Mathema-
tique, 346(13):729–734, 2008.

[51] Jean Fromentin. The cycling normal form on dual braid monoids. arXiv preprint
math.GR/0712.3836, 2010.

[52] Jean Fromentin. Every braid admits a short sigma-definite expression. Journal of
the European Mathematical Society, 13(6):1591–1631, 2011.

[53] Frank Garside. The braid group and other groups. The Quarterly Journal of Math-
ematics, 20(1):235–254, 1969.

[54] Stéphane Gaubert and Jean Mairesse. Task resource models and (max,+) automata.
In J. Gunawardena, editor, Idempotency, volume 11, pages 133–144. Cambridge Uni-
versity Press, 1998.

[55] Volker Gebhardt and Stephen Tawn. Normal forms of random braids. Journal of
Algebra, 408:115–137, 2014.

[56] Volker Gebhardt and Stephen Tawn. On the penetration distance in Garside
monoids. Journal of Algebra, 451:544–576, 2016.

[57] Eddy Godelle. Artin–Tits groups with Deligne complex. Journal of Pure and Applied
Algebra, 208(1):39–52, 2007.

[58] Eddy Godelle and Luis Paris. PreGarside monoids and groups, parabolicity, amal-
gamation, and FC property. International Journal of Algebra and Computation,
23(06):1431–1467, 2013.

[59] Juan González-Meneses and Bert Wiest. Reducible braids and Garside theory. Al-
gebraic & Geometric Topology, 11(5):2971–3010, 2011.

[60] Godfrey Hardy and Edward Wright. An Introduction to the Theory of Numbers.
Clarendon, Oxford, 1960. Autres tirages avec corrections : 1962, 1965, 1968, 1971,
1975.

[61] Hubert Hennion and Loïc Hervé. Limit theorems for Markov chains and stochastic
properties of dynamical systems by quasi-compactness, volume 1766 of Lecture Notes
in Mathematics. Springer, 2001.

[62] James Humphreys. Reflection groups and Coxeter groups, volume 29. Cambridge
University Press, 1992.

[63] Vincent Jugé. The relaxation normal form of braids is regular. arXiv preprint
arXiv:1507.03248, 2015.



Bibliography 289

[64] Vincent Jugé. Curve diagrams, laminations, and the geometric complexity of braids.
Journal of Knot Theory and its Ramifications, 24(08), 2015.

[65] Vadim Kaimanovich. Invariant measures of the geodesic flow and measures at infinity
on negatively curved manifolds. In Annales de l’IHP Physique théorique, volume 53,
pages 361–393, 1990.

[66] Tosio Kato. Perturbation theory for linear operators. Springer Science & Business
Media, 2012.

[67] Harry Kesten. Symmetric random walks on groups. Transactions of the American
Mathematical Society, 92(2):pp. 336–354, 1959.

[68] Konstantin Khanin, Sergei Nechaev, Gleb Oshanin, Andrei Sobolevski, and Oleg
Vasilyev. Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang in-
terface. Physical Review E, 82, 2010.

[69] Bruce Kitchens. Symbolic dynamics. One-sided, two-sided and countable state
Markov shifts. Springer, 1997.

[70] Daan Krammer. Braid groups. Lecture notes. http://homepages.warwick.ac.uk/
„masbal/MA4F2Braids/braids.pdf, 2005.

[71] Daniel Krob, Jean Mairesse, and Ioannis Michos. Computing the average parallelism
in trace monoids. Journal of Discrete Mathematics, 273:131–162, 2003.

[72] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding.
Cambridge University Press, 1995.

[73] Davide Maglia, Nicoletta Sabadini, and Robert Walters. Blocked-braid groups. Ap-
plied Categorical Structures, 23(1):53–61, 2015.

[74] Jean Mairesse and Frédéric Mathéus. Growth series for Artin groups of dihedral
type. International Journal of Algebra and Computation, 16(06):1087–1107, 2006.

[75] Jean Mairesse and Frédéric Mathéus. Randomly growing braid on three strands and
the manta ray. The Annals of Applied Probability, pages 502–536, 2007.

[76] Jean Mairesse, Anne Micheli, and Dominique Poulalhon. Minimizing braids on four
strands. In Braids, 2011.

[77] Andryi Malyutin. The Poisson-Furstenberg boundary of the locally free group. Jour-
nal of Mathematical Sciences, 129(2):3787–3795, 2005.

[78] Jean Michel. A note on words in braid monoids. Journal of Algebra, 215:366377,
1999.

[79] William Parry. Intrinsic Markov chains. Transactions of the American Mathematical
Society, pages 55–66, 1964.

[80] Michael Paterson and Alexander Razborov. The set of minimal braids is co-NP-
complete. Journal of Algorithms, 12(3):393–408, 1991.

http://homepages.warwick.ac.uk/~masbal/MA4F2Braids/braids.pdf
http://homepages.warwick.ac.uk/~masbal/MA4F2Braids/braids.pdf


290 Index

[81] Samuel Patterson. The limit set of a Fuchsian group. Acta Mathematica, 136(1):241–
273, 1976.

[82] Gordon Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(452–
487), 1976.

[83] Gian-Carlo Rota. On the foundations of combinatorial theory I. Theory of Möbius
functions. Probability Theory and Related Fields, 2(4):340–368, 1964.

[84] Lucas Sabalka. Geodesics in the braid group on three strands. Group Theory,
Statistics, and Cryptography, 360:133, 2004.

[85] Eugene Seneta. Non-negative Matrices and Markov Chains. Revised printing.
Springer, 1981.

[86] Richard Stanley. Enumerative combinatorics, vol. 1. Cambridge University Press,
1997.

[87] Dennis Sullivan. The density at infinity of a discrete group of hyperbolic motions.
Publications Mathématiques de l’IHÉS, 50:171–202, 1979.

[88] Nicholas Varopoulos. Isoperimetric inequalities and Markov chains. Journal of Func-
tional Analysis, 63(2):215–239, 1985.

[89] Anatolii Vershik. Dynamic theory of growth in groups: entropy, boundaries, exam-
ples. Russian Mathematical Surveys, 55(4):667–733, 2000.

[90] Anatolii Vershik and Andryi Malyutin. Boundaries of braid groups and the Markov-
Ivanovsky normal form. Izvestiya: Mathematics, 72(6):1161, 2008.

[91] Anatolii Vershik, Sergei Nechaev, and Ruslan Bikbov. Statistical properties of lo-
cally free groups with applications to braid groups and growth of random heaps.
Communications in Mathematical Physics, 212(2):469–501, 2000.

[92] Xavier Viennot. Heaps of pieces, I : basic definitions and combinatorial lemmas.
In Combinatoire énumérative, volume 1234 of Lecture Notes in Mathematics, pages
321–350. Springer, 1986.

[93] Wolfgang Woess. Random walks on infinite graphs and groups, volume 138. Cam-
bridge University Press, 2000.

[94] Peijun Xu. Growth of the positive braid semigroups. Journal of Pure and Applied
Algebra, 80(2):197–215, 1992.



Index 291

Index

A
Algebraic generating function and Möbius polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Alternative stable Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Approximately polynomial sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Arcs, adjacent endpoints and bigons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Arcs, real projection and shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Artin length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Artin–Tits group or monoid of spherical type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Artin–Tits monoid and Artin–Tits group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Artin–Tits monoid of FC type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B
Bifinite domain and Lawson topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Bilateral Garside automaton and paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Blinding ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Blocking patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Blocking permutation and blocking heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Braid monoid and braid group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C
Cell map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Cells and boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Cliques of a heap group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Cliques of a heap monoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Closed laminated norm and tight closed lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Closed lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Composition of virtual coordinates and of generalised diagrams . . . . . . . . . . . . . . . . . . . . . 158
Conditioned weighted graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Configuration space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Conjugation by ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Convergence manifold and limit convergence manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Coxeter group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Curve diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Curve diagram coordinates and braid coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D
∆-free Garside normal forms in the braid group A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



292 Index

Diagrammatic norm and tight curve diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Divisibility relations and left and right (outgoing) sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

E
Elementary cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Endpoints ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Ergodic mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Essential left Garside acceptor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Expanded Garside graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Extended Artin–Tits monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Extended Garside normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Extended paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Extensions of an arc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

F
Finite and infinite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Finite irreducible Coxeter system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

G
Garside element and Garside monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Garside family and two-way Garside family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Garside group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Garside matrix and expanded Garside matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Garside normal forms in the group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Garside normal forms in the heap groupM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Garside normal forms in the monoid A` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Garside normal forms in the monoid G` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Garside normal forms in the monoidM` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Garside-additive function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
Generalised curve diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Geometric generating functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
Graded Möbius transform and inverse graded Möbius transform . . . . . . . . . . . . . . . . . . . . 232

H
Heap monoid and heap group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

I
Incompatibility set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Incremental difference sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Index of a bigon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

L
λ-relaxed lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Lamination trees and arc trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Left and right (outgoing) sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Left and right sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Left Garside acceptor automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



Index 293

Left random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168, 182
Left-right order in L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Lower semilattice and conditional upper semilattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

M
Möbius transform and inverse Möbius transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
Möbius valuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
Markov Garside matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Multivariate generating function and Möbius polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

N
Neighbour points and arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Neighbour trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

O
Open laminated norm and tight open lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Open lamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

P
Penetration distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Positive matrix and primitive matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Positive signed symmetric group and twisted descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Product length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Product length on heap groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Projection on A`{∆2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Projective topology on A

` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

R
Relaxation normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Right Garside acceptor automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Right-relaxation move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Rightmost bigon and rightmost index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

S
σi-positivity and σ-positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Second right arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Self-independent element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Semi-group of braid diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Semi-primitive matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Shadow and extended shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Signed symmetric group and non-negative descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Simple elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Sliding braid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Stable limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Stable Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Stretched integer, suffix time, witness time and witness word . . . . . . . . . . . . . . . . . . . . . . . 193
Successor Garside set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Survival process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



294 Index

Symmetric Garside normal form in the group A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Symmetric group and positive descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Synchronously automatic normal form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

T
t-witness time and t-witness word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Tight generalised curve diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Translation and translated cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

U
Uniform distribution on paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Uniform distribution on spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Uniform measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Uniform measure at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

V
Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Valuation manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

W
Weight of a path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Z
Zones and adjacent points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134


	1 Introduction (Français)
	1 Introduction (English)
	2 Preliminaries
	2.1 Some Notations About Words
	2.2 Braids, Configuration Spaces and Braid Diagrams
	2.3 An Algebraic Approach to Braids
	2.3.1 From Braid Monoids to Garside Monoids
	2.3.2 Garside Monoids, Groups and Normal Forms
	2.3.3 Normal Forms in Artin–Tits Monoids and Groups of Spherical Type
	2.3.4 Heap Monoids
	2.3.5 Artin–Tits Monoids of FC Type

	2.4 A Geometric Approach to Braids
	2.4.1 Braids, Laminations and Curve Diagrams
	2.4.2 Norms of Laminations, of Curve Diagrams and of Braids
	2.4.3 Arcs, Bigons and Tightness


	3 The Relaxation Normal Form of Braids is Regular
	3.1 Closed Lamination, Cell Map and Lamination Tree
	3.1.1 Arcs and Bigons of a Closed Lamination
	3.1.2 Cells, Boundaries and Cell Map
	3.1.3 Lamination Trees

	3.2 The Relaxation Normal Form is Regular
	3.2.1 A Prefix-Closed Normal Form
	3.2.2 One Letter Further
	3.2.3 An Automaton for the Relaxation Normal Form

	3.3 Is This Automaton Really Efficient?
	3.4 Relaxation Normal Form and Braid Positivity
	3.5 Experimental Data, Conjectures and Open Questions

	4 Counting Braids According to Their Geometric Norm
	4.1 Counting Braids With a Given Norm
	4.1.1 Generalising Curve Diagrams
	4.1.2 From Diagrams to Coordinates
	4.1.3 From Coordinates to Diagrams

	4.2 Actually Counting Braids
	4.2.1 An Introductory Example: The Braid Group B2
	4.2.2 A Challenging Example: The Braid Group B3

	4.3 Estimated and Asymptotic Values
	4.3.1 Asymptotic Values in B3
	4.3.2 Estimates in Bn (n 4)

	4.4 Experimental Data, Conjectures and Open Questions

	5 Random Walks in Braid Groups Converge
	5.1 Random Walk in Heap Monoids and Groups
	5.1.1 Random Walk in Heap Monoids
	5.1.2 Random Walk in Heap Groups

	5.2 Combinatorics of Garside Normal Forms
	5.2.1 Connectedness of the Bilateral Garside Automaton
	5.2.2 Blocking patterns

	5.3 Stabilisation of the Random Walk
	5.3.1 First Results
	5.3.2 Density of Garside Words
	5.3.3 Stabilisation in the Artin–Tits Monoid
	5.3.4 From Artin–Tits Monoids to Groups
	5.3.5 Deleting Occurrences of 

	5.4 The Limit of the Random Walk
	5.4.1 The Limit as a Markov Process
	5.4.2 The Stable Markov Process is Infinite
	5.4.3 Ergodicity
	5.4.4 Consequences of Ergodicity
	5.4.5 The Stable Suffix Grows Quickly

	5.5 Experimental Data in the Braid Monoid Bn+

	6 The Diameter of the Bilateral Garside Automaton
	6.1 Case W= An
	6.2 Case W= Bn
	6.3 Case W= Dn
	6.4 Exceptional Cases

	7 Building Uniform Measures on Braids
	7.1 Uniform Measures on Artin–Tits Monoids of FC Type
	7.1.1 Algebraic Generating Function and Möbius Transforms
	7.1.2 Extended Artin–Tits Monoid and Finite Measures
	7.1.3 Uniform Measures on Extended Monoids
	7.1.4 Uniform Measures on Spheres
	7.1.5 Applications to Artin–Tits Monoids of Spherical Type

	7.2 Asymptotics and Conditioned Weighted Graphs
	7.2.1 General Framework
	7.2.2 Concentration Theorems and Generalisations
	7.2.3 Asymptotics in Artin–Tits Monoids of FC Type

	7.3 Computations in B+n and Mn+
	7.3.1 Computations in B+3
	7.3.2 Computations in B+4
	7.3.3 Computations in M+3
	7.3.4 Computations in M+4
	7.3.5 Radius of Convergence in B+n and M+n


	Bibliography

