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ABSTRACT | This paper analyzes the information disclosure

problems originated in economics through the lens of infor-

mation theory. Such problems are radically different from the

conventional communication paradigms in information theory

since they involve different objectives for the encoder and

the decoder, which are aware of this mismatch and act ac-

cordingly. This leads, in our setting, to a hierarchical commu-

nication game, where the transmitter announces an encoding

strategy with full commitment, and its distortion measure de-

pends on a private information sequence whose realization is

available at the transmitter. The receiver decides on its de-

coding strategy that minimizes its own distortion based on

the announced encoding map and the statistics. Three prob-

lem settings are considered, focusing on the quadratic distor-

tion measures, and jointly Gaussian source and private

information: compression, communication, and the simple

equilibrium conditions without any compression or communi-

cation. The equilibrium strategies and associated costs are

characterized. The analysis is then extended to the receiver

side information setting and the major changes in structure

of optimal strategies are identified. Finally, an extension of

the results to the broader context of decentralized stochastic

control is presented.

KEYWORDS | Game theory; Gaussian random variables; hierar-

chical decision making; information theory; optimality; side in-

formation; strategic communication

I . INTRODUCTION

The field of information economics (IE) has considered

several different models of “communication” (informa-

tion transmission) between two agents, a transmitter and

a receiver, with different objectives; see, for example,

the well-known strategic information transmission (SIT)

and information disclosure models [3], [4], [6].

The conclusions of such studies (especially the

structure of transmitter/receiver policies achieving equi-
librium) are particularly interesting from an information-

theoretic (IT) viewpoint, given the relative dearth of

results in this field related to mismatched goals between

the transmitter and the receiver. Indeed, most IT models

to date that have considered source compression with

mismatched distortion measures have done so in a con-

text where mismatch was caused either by Nature (as in

the worst case or robust design approaches of [7] and
[8]) or by a secondary adversarial decoder [9]. On the

other hand, communication models in IE do not consider

compression or actual physical channel which are of

main interest in IT [10]. This work studies the interplay

of the game and the communication aspects of such stra-

tegic communication models in IE and IT.

More specifically, this work focuses on compression

and communication scenarios where the better informed
transmitter communicates with a receiver who makes

the ultimate decision concerning both agents. The objec-

tives of the transmitter and the receiver are only partially
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aligned. As opposed to the classical work in economics,
which is strategic information transmission [6], we con-

sider the problem as a Stackelberg game [11] where the

transmitter is committed to its policy1 ex-ante, and the re-

ceiver (the follower) is aware of the transmitter (the

leader) policy and optimizes it as a function of the en-

coding policy and the statistics. In this sense, our model

is along the lines of some recent works in IE, namely in-

formation disclosure [4] and Bayesian persuasion [3].
This framework is similar to the conventional communi-

cation settings analyzed in IT (see, e.g., [10]), in terms

of the commitment based on statistics (not realization)

as opposed to [6]. Hence, it enables the use of Shannon-

theoretic arguments [10] to derive fundamental limits of

compression and communication.

As a side note, we note that very recently the optimal-

ity of linear policies for a generalized version of this prob-
lem was independently shown in the working paper [5],

using tools from convex optimization. We also note that

Stackelberg games with quadratic objectives and Gaussian

variables [which will be referred to as quadratic-Gaussian

(Q-G) setting throughout the paper] have been well stud-

ied in the control literature; see, e.g., [12]. However, the

problems we consider here involve communication (and

hence, in a sense, nonclassical information structures [13])
and are therefore fundamentally different from the ones in

control without any communication. Control problems

with communication (cf., [14]), particularly ones with

Gaussian channels have been analyzed in nonstrategic set-

tings employing the Shannon bounds. However, there are

no known Shannon-like bounds in the strategic settings,

and this is indeed the main subject of this paper.

Highlights of the contributions of this paper are as
follows.

• We show, using statistical tools widely used in in-

formation theory, that linear policies are uniquely
optimal for the Q-G simple equilibrium (without

any compression or noise in the communication).

• We determine the single-letter characterization of

the fundamental limits of strategic compression, and

explicitly compute this quantity for the Q-G setting.
• We show optimality of single-letter linear strat-

egies in the Q-G communication setting. This

result parallels the well-known optimality of

single-letter mappings for the same setting, but

without the strategic aspect of the problem [15].

• We analyze the impact of the receiver side infor-

mation on the structure of the results.

• Finally, we demonstrate the use of information-
theoretic results in strategic decision making/control

problems involving the Gaussian test channel.

Earlier versions of some parts of this work have ap-

peared in [1] and [2], and were presented in the respec-

tive conferences.

II . PRELIMINARIES

A. Notation
R and Rþ denote the respective sets of real numbers

and positive real numbers. We let Eð�Þ denote the expec-

tation operator. The Gaussian density with mean � and

variance �2 is denoted by Nð�; �2Þ. All logarithms in

the paper are natural logarithms, and the integrals are,

in general, Lebesgue integrals. S denotes the set of Borel
measurable, square integrable functions ff : R ! Rg. All
the alphabets used in this paper are the real line, but for

clarity we denote them by separate letters X , �, and X̂
for the source, the private information, and the recon-

struction, respectively. We use standard information-

theoretic and game-theoretic notations for the related

results throughout this paper (cf. [11], [16]).

B. Overview of Communication Games in
Economics

There exists a vast amount of literature in economics

on communicating information in transmitter–receiver

games: using as advertising [17], [18], education [19],

disclosure of verifiable information [20], or cheap talk

[6], or information disclosure [3], [4]. Here, we review

two distinct, well-known models: The cheap talk model

of [6] and the more relevant information disclosure

model in [3] and [4].

1) Strategic Information Transmission (Cheap Talk): In

the SIT model [6], there are two players: a transmitter

and a receiver. The state information X is drawn from a

population with density fð�Þ with bounded support, say

[0,1]. X is available only to the transmitter. The receiver,

based on the transmitter output, takes action a 2 R. The
utility functions of the transmitter and the receiver are,
respectively, UTðx; a; bÞ and URðx; aÞ, where b is a deter-

ministic bias parameter that measures the differences in

the preferences of the agents. All aspects of the game,

except the realization of X, are common knowledge.

The game is described as follows: the transmitter ob-

serves the source output X and transmits a message

y 2 Y, where Y is an infinite set. The receiver observes

y and chooses an action a 2 R which determines the pay-
offs. A pure strategy2 equilibrium comprises an encoding

strategy g� : ½0; 1� ! Y and a decoding (action) strategy

h� : Y ! R (hence, a ¼ hðYÞ) such that

g�ðXÞ ¼ argmax
g

UT X; h� gðXÞ� �
; b

� �
h�ðYÞ ¼ argmax

h

E UR X; hðYÞð ÞjY� �
(1)

1In this paper, we use “policy” and “strategy” interchangeably.

2Limitation to pure strategies does not introduce any loss of gener-
ality here.
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where Y ¼ g�ðXÞ. Note that the pair ðg�; h�Þ constitutes
a Nash equilibrium for the underlying two-player game.

We also note that such a pair is not necessarily unique.

In fact, there may exist multiple Nash equilibria, each

one leading to a different cost pair; see, e.g., [21] on the

selection of the “best” equilibrium among these. An in-

teresting aspect is that there is no cost associated with

the message y, which is why this setting has also been re-

ferred to as “cheap talk” [22]. The main result of [6]
states that the mappings at the equilibrium have

structure:

Theorem 1 [6]: Any g�ðXÞ and h�ðYÞ that satisfy (1)

are noninjective (quantizer-based) mappings.

This result has several interesting aspects. First, in

contrast with the classical communication setting, where

quantization is imposed by rate constraint or channel
noise, here quantization occurs solely because of the mis-

match between agents’ objectives. Second, this structural

result holds for any arbitrary source,3 even for the Q-G

setting. Third, a frequently exploited result in estimation

and control theory states optimality of linear strategies

for the Q-G setting; see, e.g., [24]; hence, it is surprising

to see that such an optimal structure breaks down in a

strategic setting.
An important aspect of the SIT model is that the

transmitter is not committed to any mappings before see-

ing the realization of X, i.e., the transmitter decides on

the mapping gð�Þ after seeing the realization of X. Hence,
a Nash equilibrium is sought among all transmitter/

receiver strategies. While the conclusions of the SIT

model are very interesting for an information theorist

(e.g., the main mathematical tool in lossy source coding,
the quantizer, arises entirely from strategic aspect of the

problem), the model does not apply to settings in com-

munication where the transmitter is committed to its

encoding map which is designed purely based on statis-

tics and used repeatedly.

2) Overview of Information Disclosure Model (Bayesian
Persuasion): Consider now the Stackelberg solution as op-
posed to the Nash equilibrium considered in [6] (keeping

all other features of the cheap talk game described above

unaltered), where the transmitter is the leader and the

receiver is the follower. The game proceeds as follows:

the transmitter plays first and announces an encoding

mapping. As opposed to the game in [6], the transmitter

is committed to its encoding mapping, i.e., the transmit-

ter cannot change it after the receiver plays. The re-
ceiver, knowing this commitment, determines its own

mapping that maximizes its payoff, given the encoding

mapping. The transmitter, of course, will anticipate this,

and pick its mapping accordingly.

In [3], this setting is studied with scalar state and

mappings, and conditions for which full or no disclosure

are optimal are characterized. In [4], the same problem

setting is studied with 2-D state and private information

available only to the receiver. Both of these works ana-

lyze the optimal strategies for discrete variables. In [5]

and [25], noiseless Stackelberg equilibrium involving
Gaussian variables and quadratic payoff functions is

studied.

C. Setting-1: Simple (Noiseless) Equilibrium
Here we introduce one of the problems studied in

this paper. Consider the general communication system

whose block diagram is depicted in Fig. 1. The source X
and private information � are mapped into U 2 R which

is fully determined by the conditional distribution

pð�jx; �Þ. For the sake of brevity, and with a slight abuse

of notation, we refer to this as a stochastic mapping

U ¼ gðX; �Þ, so that

P gðX; �Þ 2 U� � ¼ Z
u02U

pðu0jx; �Þdu0 8 U � R (2)

holds almost everywhere in X and �. Let the set of all

such mappings be denoted by � (which has a one-to-one

correspondence to the set of all the conditional distribu-

tions that construct the transmitter output U).
In the most general communication setting (see

Sections II-E and III-C), we consider an additive noise

channel as shown in Fig. 1, with Gaussian noise

N � Nð0; �2
NÞ, hence the input to the receiver is

Y ¼ U þ N. Here, however, we focus on the simpler

problem where there is no channel noise, i.e., we effec-

tively assume �2
N ¼ 0, and hence Y ¼ U (almost every-

where). The receiver produces an estimate of the source

X̂ through a mapping h 2 S as X̂ ¼ hðYÞ. The objective
of the receiver is to pick h 2 S so as to minimize

DD ¼ E dDðX; X̂Þ
n o

(3)

where dD : X � X̂ ! Rþ is the distortion measure asso-

ciated with the receiver’s distortion. The objective of the

3When the distortion measures are quadratic, the technical re-
quirement on the source statistics, that is having a density with
bounded support, can be removed; see, e.g., [23].

Fig. 1. The strategic variant of the Gaussian test channel, with or

without receiver side information W.
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transmitter is to minimize

DE ¼ E dEðX; �; X̂Þ
n o

(4)

using the freedom in the choice of the mapping

gð�; �Þ 2 �, given that the receiver chooses h 2 S as
above, where dE : X � �� X̂ ! Rþ is the transmitter’s

distortion metric. In the following, we present this opti-

mization problem formally.

Problem 1: Find essentially unique4 g�ð�; �Þ 2 � and

h�ð�Þ 2 S that satisfy

g�ðX; �Þ ¼ argmin
g2�

dE X; �; h�ðgðX; �Þ� �
h�ðYÞ ¼ argmin

h2S
E dDðX; hðYÞjY
� �

where Y ¼ gðX; �Þ.

Quadratic-Gaussian Setting: Most of our results concern

the setting where the source and the private information

are jointly Gaussian, i.e., ðX; �Þ � N ð0; RX�Þ where,

without any loss of generality, RX� is parametrized as

RX� ¼ �2
X

1 �
� r

� 	
, with r 9 �2, and the distortion mea-

sures are given as follows:

dEðx; �; yÞ ¼ ðxþ �� yÞ2; dDðx; yÞ ¼ ðx� yÞ2: (5)

Hence, in the Q-G setting, we have the following cost

functions:

DE ¼ E ðX þ �� X̂Þ2
n o

; DD ¼ E ðX � X̂Þ2
n o

: (6)

Remark 1: The Q-G setting formulation (without any

noise or compression) can be viewed as a special case of

the problem analyzed in [5]. However, as shown later in

Theorem 4, the information-theoretic approach taken in

this paper provides more conclusive results, namely the

uniqueness of the optimal strategies, for this noiseless

setting, and also allows for an extension of the analysis

to noisy settings.

Our result regarding this equilibrium is that, in sharp
contrast with the original SIT which considers the Nash

equilibrium, the Stackelberg solution for the Q-G setting

entails linear encoding–decoding strategies as the essen-
tially unique optimal strategy pair (see Theorem 4). While

the existence of a linear optimal strategy can be shown

using tools from convex optimization (see [5]), proving

the essential uniqueness of the optimal policy poses a

significant challenge, which can be circumvented using
two tools from probability theory. In the following, we

present an overview of these powerful tools.

1) Functional Representation Lemma: Like many ideas

in information theory, the functional representation

lemma has its roots in Shannon’s original pioneering

work [26]. Since then, different variations of this lemma

have been used for different problems in information
theory; see, e.g., [27]. The following variation can be

found in [28, p. 626].

Lemma 1: For a given set of random variables X; Y;W,

there exist a random variable Z distributed independent

of Y, and a deterministic function � such that W can be

expressed as

W ¼ �ðY; ZÞ

and X � ðY;WÞ � Z forms a Markov chain in this order.

2) Maximal Correlation Coefficient: The maximal corre-

lation coefficient between two random variables5 X and

Y, introduced in [29], is

fmðX; YÞ ¼ supE fðXÞgðYÞ� �
(7)

where the supremum is taken over all (Borel) measur-

able functions f ; g with

E fðXÞ� � ¼ E gðYÞ� � ¼ 0 (8)

E f 2ðXÞ
n o

¼ E g2ðYÞ
n o

¼ 1: (9)

The following is a well-known result; see, e.g., [30] for a

proof.

Lemma 2: For jointly Gaussian random variables �1
and �2

fmð�1; �2Þ ¼ Ef�1�2g


 

 (10)

4In this noiseless setting, the encoding/decoding mappings
FðgðX; �ÞÞ and F�1ðhðYÞÞ yield the same costs as gðX; �Þ and hðYÞ,
where Fð�Þ is any invertible function. This function corresponds to dif-
ferent permutations of labels if the message space is finite as assumed
in most prior work in IE [3], [4], [6]. To account for such trivially
equivalent pairs of mappings, we use the term “essentially unique.”

5We assume, without any loss of generality, that the variables are
zero mean.

208 Proceedings of the IEEE | Vol. 105, No. 2, February 2017

Akyol et al.: Information-Theoretic Approach to Strategic Communication as a Hierarchical Game



where the supremum in fm is achieved uniquely by linear
(identity) mappings.

Due to Lemma 2 and the tensorization6 property

(shown in [31]), maximal correlation has played a signifi-

cant role in several problems in information theory; see,

e.g., [32].

D. Setting-2: Strategic Compression
Let us first present an overview of the basic (nonstra-

tegic) results in source compression. Assume a memory-

less source and a single-letter, bounded, and additive

distortion measure d : X � Y�!Rþ, i.e.,

dðXn; YnÞ ¼ 1

n

Xn
t¼1

dðXt; YtÞ: (11)

A block code pair ðfE; fDÞ consists of an encoding function
fE : X n�!M which maps the source to index set M,

and a decoding function fD : M�!Yn. A rate–distortion

pair ðR;DÞ is called achievable if for every � 9 0 and suffi-

ciently large n, there exists a block code ðfE; fDÞ such that

1

n
log jMj 	 R þ �

E d Xn; fD fEðXnÞð Þð Þ� � 	 Dþ �:

The fundamental result in information theory [16] is that

the rate–distortion R�D function expressing the mini-

mum achievable rate R for a prescribed level of distortion

D, denoted as RðDÞ, is given by minimizing the mutual in-

formation IðX; YÞ over all conditional distributions

PYjXðyjxÞ that maintain the prescribed distortion

RðDÞ ¼ inf
PYjXðyjxÞ:E dðX;YÞf g	D

IðX; YÞ: (12)

Now, we define the strategic compression problem

similar to its nonstrategic counterpart where a memory-

less source Xn and a private information sequence �n are

mapped to an index set M by fE : Xn � �n�!M. The

decoder applies fD : M�!Yn to generate the recon-

struction sequence X̂n. An achievable triple ðR;DE;DDÞ
satisfies

1

n
log jMj 	 R þ �

E dnE Xn; �n; fD fEðXn; �nÞð Þð Þ� � 	 DE þ �

E dnD Xn; fD fEðXn; �nÞð Þð Þ� � 	 DD þ �

for every � 9 0 and sufficiently large n. The set of

achievable triples ðR;DE;DDÞ is denoted here as RDS .

Problem 2: Find the equilibrium points ðR;DE;DDÞ in

RDS achieved by the mappings that satisfy

f�E ðXn; �nÞ ¼ argmin
fE

E dnEðXn; �n; f�D fEðXn; �nÞð Þ� �
f �D fEðXn; �nÞð Þ ¼ argmin

fD

E dnDðXn; fD fEðXn; �nÞð Þ� �
:

E. Setting-3: Gaussian Test Channel and
Equilibrium With Noisy Channel

Consider the general communication system whose

block diagram is shown in Fig. 2, where the source X �
Nð0; �2

XÞ is to be transmitted to the receiver via g 2 S as

U ¼ gðXÞ over an additive Gaussian channel; hence the

input to the receiver is Y ¼ U þ N, where N � Nð0; �2
NÞ

is statistically independent of X. The receiver produces
its output X̂ through an h 2 S as X̂ ¼ hðYÞ.7 The objec-

tive of both agents is to minimize EfðX � X̂Þ2g, while
the transmitter has an average power constraint

EfU2g 	 PT .
Although this problem is formulated in a single-letter

setting, the solution is obtained by expanding the feasible

solution space to n-letter strategies, i.e., by solving the

information-theoretic version of the problem (Shannon
sense optimality). Obviously allowing more delay, the

Shannon sense optimal solution should perform at least

as well as the zero-delay one. The following well-known

result of Goblick [15] states that these solutions are in

fact identical.

Theorem 2 [15]: For the Gaussian test channel prob-

lem, single-letter mappings

gðXÞ ¼
ffiffiffiffiffi
PT
�2
X

s
X; hðYÞ ¼ �2

X

PT þ �2
N

ffiffiffiffiffi
PT
�2
X

s
Y

6A measure of dependence �ðX; YÞ is said to have tensorization
property if for any n independent identically distributed (i.i.d.) tuples
of X and Y, �ðXn; YnÞ ¼ �ðX; YÞ.

Fig. 2. The (nonstrategic) Gaussian test channel, with or without

receiver side information W.

7Here, by a slight abuse of notation, we take g and h belonging to
the same set of mappings S, which is the set of all Borel measurable,
square integrable functions.
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are the essentially unique,8 Shannon sense optimal
encoding/decoding mappings.

Remark 2: This optimality breaks down in the pres-

ence of receiver side information (a situation which will

be referred to as SI throughout the paper), shown as W
in Fig. 2, and in that case, linear strategies are no longer

optimal even in the set of zero-delay strategies (see, e.g.,

[33]). This observation highlights the fact that conclu-
sions on optimality of linear strategies in noiseless set-

tings do not directly carry over to noisy settings. As we

will analyze in Section IV, the strategic aspect brings up

cases where an optimality result, similar to the one in

Theorem 2, holds in the strategic SI setting, depending

on the problem parameters.

In Section III-C, we investigate whether such a result

holds also for the strategic variant of the same problem
depicted in Fig. 1. We refer to this setting as the “noisy

equilibrium” (see Section III-C) since this is essentially a

noisy version of the problem described in Section II-C.

In the following, we formalize this problem.

Problem 3: Find g�ð�; �Þ 2 � and h�ð�Þ 2 S that satisfy

g�ðX; �Þ ¼ argmin
g2�

E dEðX; �; h�ðYÞ
� �

h�ðYÞ ¼ argmin
h2S

E dDðX; hðYÞ
� �

where Y ¼ gðX; �Þ þ N, N � Nð0; �2
NÞ, and dE and dD

are as given in (5).

F. Decentralized Stochastic Control Problems
The optimality of linear strategies plays a central role

in many problems in control and economics, particularly

in team decision theory. While the solutions to linear,

quadratic, and Gaussian (LQG) team problems with clas-

sical or quasi-classical information structures are well

known to be linear, when the information structure is

nonclassical, such problems may or may not admit linear
(or affine) optimal solutions (cf., [14]). The celebrated

1968 counterexample of Witsenhausen, where optimal

solution is not affine, belongs to this family of problems

[34]. Another example (of a problem with nonclassical

information) is the Gaussian test channel, which how-

ever admits a linear optimal solution (see Section II-E).

In the following, we present a generic setting associated

with these problems.
Consider the communication setting depicted in

Fig. 2 (without SI). All variables are Gaussian and the

agents operate through the mappings g; h 2 S. The com-

mon objective of both agents is minimization of

J ¼ Ef’ðX;U; X̂Þg: an expectation of a function ’ in the
form of a second-order polynomial of X, U, and X̂, over
the mappings g; h, where expectation is over all random

quantities involved. The Gaussian test channel, which ad-

mits a linear optimal solution, corresponds to ’ ¼
ðX � X̂Þ2 þ k1U

2 with k1 9 0 (see Theorem 2). The coun-

terexample of Witsenhausen, which corresponds to ’ ¼
ðX þ U � X̂Þ2 þ k1U

2 with k1 9 0, still admits an optimal

solution but it is not linear [34]. In [13], these two re-
sults have been generalized to obtain the conditions on

’ which guarantee that the problem admits a linear (or

affine) optimal solution.

Theorem 3 [13]: The problem admits a linear optimal

solution if, and only if, ’ does not involve any product

term between U and X̂.
In Section V, we extend this result, which can be

viewed as a generalization of the Gaussian test channel,

to strategic settings. More formally, we have the follow-

ing problem.

Problem 4: Find g�ð�; �Þ 2 � and h�ð�Þ 2 S that satisfy

g�ðX; �Þ ¼ argminE ’EðX; �;U; X̂Þ
n o

h�ðYÞ ¼ argminE ’DðX; �;U; X̂Þ
n o

(13)

where Y ¼ gðX; �Þ þ N, N � Nð0; �2
NÞ, and ’E and ’D

are second-order polynomials of X; �;U; X̂.

III . MAIN RESULTS

A. Equilibrium Conditions
We first characterize the Q-G equilibrium with the

noiseless channel.

Theorem 4: In the noiseless Q-G setting, the essen-

tially unique solution to Problem 1 is given as g�ðX; �Þ ¼
X þ 	� and h�ðYÞ ¼ 
Y, where 	 and 
 are constants

given as

	 ¼ A� 1

2ðrþ �Þ ; 
 ¼ 1þ 	�

1þ 	2rþ 2	�
: (14)

Costs at this Stackelberg solution are

DE ¼ �2
X 1þ ðA� 3Þðrþ �Þ

A� 1

� 
(15)

DD ¼ �2
X

ðr� �2ÞðA� 1Þ
Að2rþ A�þ �Þ

 !
(16)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðrþ �Þp

.

8If the pair gðXÞ ¼ cX and hðYÞ ¼ dY is a solution to this problem,
the pair gðXÞ ¼ �cX and hðYÞ ¼ �dY is also a solution due to symme-
try, which is why the solution is “essentially” unique.
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Proof: The optimal decoding mapping is hðYÞ ¼
EfXjYg regardless of the choice of encoder’s policy g.
Hence, the problem simplifies to an optimization over

the encoding mapping g. Consider the dual (equivalent)

problem of minimizing DE subject to a fixed DD. Expand-

ing DE, we have

DE¼E X�EfXjYgð Þ2
n o

þ2E � X�EfXjYgð Þ� �þEf�2g:

Noting that the first term is DD, and the last term is

Ef�2g (constant with respect to the optimization vari-

ables), the problem simplifies to minimizing Ef��g over
the joint distribution of �;� (with fixed marginal for �),
subject to

Ef�2g ¼ DD; Ef�g ¼ 0 (17)

where � is defined as � ¼4 X � EfXjYg. Next, let us de-
fine �G as the Gaussian reconstruction error that sat-

isfies the constraints in (17), i.e., the encoder generates
Y ¼ X þ 	�þ T, where 	 is a constant and T �
Nð0; �2

TÞ is independent, of � and X, and the decoder

uses the optimal estimator which is linear and hence

yields jointly Gaussian reconstruction X̂ and reconstruc-

tion error X � X̂ ¼4 �G. Using Lemma 1, we relate the

two random variables �;�G as

� ¼ �ð�G; ZÞ (18)

where � : R� R ! R is a deterministic function and Z
is a random variable distributed independently from �G,
and Z� ð�G;�Þ � � forms a Markov chain in this order.

Hence, the objective can be expressed as: minimize

J ¼ E ��ð�G; ZÞ
� �

(19)

over �ð�; �Þ and the joint distribution of Z and � which is

denoted here as fZ;�ðz; �Þ. Next, we expand J0 ¼
min�ð�;�Þ;fZ;� J

J0 ¼ min
�;fZ;�

E ��ð�G; ZÞ
� �

(20)

¼ min
�;fZ;�

Z
E ��ð�G; ZÞjZ ¼ z
� �

fZðzÞdz (21)



Z

inf
�;fZ;�

E E ��ð�G; ZÞjZ ¼ z;�G;�
� �n o

fZðzÞdz (22)

¼ min
fZ

Z
inf
�z

E ��zð�GÞ
� �

fZðzÞdz (23)

where �z : R ! R is a deterministic function that de-
pends on the realization Z ¼ z, (22) is due to Fatou’s

lemma (cf., [35]), and (23) is a consequence of the

Markov chain Z� ð�;�GÞ � �, and independence of Z
and �G. Note that

Z
E �2z ð�GÞ
n o

fZðzÞdz ¼ DDZ
E �zð�GÞ
� �

fZðzÞdz ¼ 0 (24)

hold due to (17). We can equivalently consider an in-

stance of Z ¼ z, where we have Ef�zð�GÞg ¼ 0 and

Ef�2z ð�GÞg is fixed. Noting that � and �G are jointly

Gaussian, we invoke Lemma 2 to conclude that � ¼ �G

minimizes (19). Hence, without loss of generality, we

take Y ¼ X þ 	�þ T where T � Nð0; �2
TÞ is indepen-

dent of X and �. Next, we find the value of 	 and �2T at

the equilibrium. We first expand DE as

DE¼E ðX þ �� X̂Þ2
n o

¼E ðXþ�Þ2
n o

�E ð2�þXÞX̂
n o

�E ðX � X̂ÞX̂
n o

: (25)

Note that the last term in (25) vanishes due to orthogo-

nality of the MSE error to the reconstruction X̂. The

first term in (25) is constant with respect to the optimi-
zation variables (�2

T and 	); hence the objective can be

reexpressed as maximizing Efð2�þ XÞX̂g, and by re-

placing the expression for X̂ as: maximize

J 	; �2
T

� �
¼ 1þ	�

1þr	2þ2	�þ�2T
�2X

0
B@

1
CAE ð2�þXÞðXþ	�þTÞ� �

¼ �2
X

ð1þ 	�Þð1þ 2	rþ 	�þ 2�Þ
1þ r	2 þ 2	�þ �2T

�2X

0
B@

1
CA (26)

over 	 and �2
T . Clearly, the choice of �2

T ¼ 0 maximizes

J irrespective of 	. The solutions to dJ=d	 ¼ 0 are

	� ¼ �1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðrþ �Þp

2ðrþ �Þ : (27)

Noting that d2J=d	2 9 0 for 	 9 0 and d2J=d	2 G 0 for

	 G 0, the global maximizer of J is either on the bound-

ary or the one in (14). Noting lim	!�1 Jð	; 0Þ G Jð	�; 0Þ
we obtain (14). Plugging (14) into (6), and after some

algebraic manipulations, we arrive at (15) and (16).
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Remark 3: An interesting aspect of the equilibrium is

that j	j G 1 for all problem parameters. This implies that

although the transmitter wants the receiver to recon-

struct X þ � as its estimate, it does not directly transmit

X þ �. A high level interpretation of this observation is

that at the equilibrium the transmitter never flat out lies.

We next focus on the impact of r on DD. We plot the

costs as a function of r for � ¼ 0 in Fig. 3(a). The follow-
ing result is a direct consequence of Theorem 4.

Corollary 1: As r ! 1, DD ! �2
X=2, and as r ! �2,

DD ! 0.

The effect of correlation � on DE and DD is illustrated

in Fig. 3(b). As can be seen in Fig. 3(b), DD is an increas-

ing function of � while DE is decreasing in �, as intui-

tively expected: if � ¼ �1, the objective of the
transmitter is to make X̂ ¼ 0 (for r ¼ 1), which can be

achieved by transmitting nothing. This equilibrium in

this case is referred to as the “babbling equilibrium” in

the cheap talk literature [22]. As � increases, DE in-

creases as well and the transmitted message becomes

more informative for the receiver. At the extremal point

of � ¼ 1, the receiver can reconstruct X perfectly.

B. Compression
We next characterize RDS for general sources and

distortion measures.

Theorem 5: RDS is the convex hull of the set of all

triplets ðR;DE;DDÞ for which there exists a (determinis-

tic) function h : Y ! X̂ and a conditional distribution

pðYjX; �Þ such that

R 
 IðX; �; YÞ
DE 
 E dE X; �; hðYÞð Þ� �

; DD 
 E dD X; hðYÞð Þ� �
:

The proof of Theorem 5 directly follows from the

standard R–D arguments and is omitted here (see, e.g.,

[16]). Next, we specialize to the quadratic-Gaussian case.

Lemma 3: All equilibrium points of RDS are achieved,

uniquely, by the jointly Gaussian ðX; Y; �Þ triplet.
The proof follows from the well-known property of

Gaussian distribution achieving maximum entropy under

a variance constraint and the proof of Theorem 4. The

following theorem characterizes the strategic R�D func-

tion for the quadratic-Gaussian equilibrium.

Theorem 6: For the Q-G setting of Problem 2, the

equilibrium ðDE;DDÞ pair in terms of R is

DD ¼ �2
X2

�2R 1þ ð2�2R � 1Þ ðr� �2ÞðA� 1Þ
Að2rþ A�þ �Þ

 !0
@

1
A (28)

DE ¼ �2
X 1þ 2�þ r� ð1� 2�2RÞ Aðrþ �Þ þ �

A� 1

� 
(29)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðrþ �Þp

.

Proof: From Lemma 3, we have Y ¼ X þ ��þ S for
some � 2 R where S � Nð0; �2

SÞ is independent of X
and �. Plugging this representation in Theorem 5, we ob-

tain the following characterization of R;DD;DE in terms

of �2
S:

R ¼ 1

2
log 1þ �2

X

�2
S

ð1þ �2rþ 2��Þ
 !

(30)

DD ¼ �2
X

�2ðr� �2Þ þ �2S
�2X

1þ 2��þ �2rþ �2S
�2X

0
B@

1
CA (31)

DE ¼ �2
X 1þ 2�þ r� ð1þ ��Þð1þ 2�rþ ��þ 2�Þ

1þ r�2 þ 2��þ �2S
�2X

0
B@

1
CA:

(32)

Fig. 3. Numerical analysis of the equilibrium. (a) Costs versus r, for fixed � ¼ 0. (b) Costs versus �, for fixed r ¼ 1. (c) R�D functions for

varying r, for � ¼ 0.
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Using (44), we have

�2S ¼ �2
X

1þ �2rþ 2��

22R � 1

 !
: (33)

We next note that the objective of the encoder is to min-

imize DE over the possible choices of �, which is equiva-

lent to maximizing

Jð�Þ ¼ ð1þ ��Þð1þ 2�rþ ��þ 2�Þ
1þ r�2 þ 2��

(34)

which is the same expression as (26) with � replacing 	,
and with �2

T ¼ 0 (and �2
X ¼ 1). The maximizer of Jð�Þ

then follows from the proof of Theorem 4 as

�� ¼ �1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðrþ �Þp

2ðrþ �Þ : (35)

Plugging (45) into (31) and (45), and using (35), we ar-

rive at (28) and (29).

Remark 4: An interesting aspect of strategic Q-G com-

pression is that the forward test channel of the R–D

function can be expressed as Y ¼ X þ ���þ S, where ��

[given in (35)] is independent of the allowed rate and

S � Nð0; �2
SÞ is independent of X and �. Moreover,

�� ¼ 	, where 	 is the coefficient in the simple equilib-

rium, given in Theorem 4. Hence, the problem of strate-

gic compression simplifies to compressing X þ 	�. This
enables, in practice, the use of standard encoding codes

for strategic compression operating on the effective

source X þ 	�. We note that such simplifications do not

carry out to settings with receiver SI, as analyzed in

Section IV.

The strategic R�D functions, for fixed � ¼ 0, and

r ¼ 1 or r ¼ 0:1, are plotted in Fig. 3(c).

C. Equilibrium With Noisy Channel
We next analyze the Q-G equilibrium with noisy

channel (described in Section II-E), where we investigate

whether the single-letter strategies similar to ones in

Theorem 2 continue to have Shannon sense optimality.

Theorem 7: For the equilibrium of Q-G Problem 3

with noisy channel, the strategies

g�ðX; �Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT
�2Xð1þ2	�þ	2rÞ

s
ðXþ	�Þ; h�ðYÞ

¼ EfXjYg (36)

with 	 ¼ ð�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðrþ �Þp Þ=2ðrþ �Þ are Shannon

sense optimal for all power levels.

Remark 5: If a single-letter strategy is Shannon sense

optimal, it is also optimal among all single-letter

strategies.

Proof: Using data processing inequality [16]

RðDEÞ 	 CðPTÞ (37)

one obtains a lower bound on the distortion of any

source-channel coding scheme [10, Th. 21]. The capacity

of the AWGN channel is given by

CðPTÞ ¼ 1

2
log 1þ PT

�2
N

� 
: (38)

The strategic R�D function is given in (29). Plugging

(29) and (38) into (37), we obtain

DE 
 �2
X 1þ 2�þ r� ð1þ 	�Þð1þ 2	rþ 	�þ 2�Þ

ð1þ r	2 þ 2	�Þ 1þ �2N
PT�

2
X

� �
0
B@

1
CA:

Computing distortion associated with the mappings in

(36) yields a lower bound on DE

DE 	 �2
X 1þ 2�þ r� ð1þ 	�Þð1þ 2	rþ 	�þ 2�Þ

ð1þ r	2 þ 2	�Þ 1þ �2N
PT�

2
X

� �
0
B@

1
CA:

Noting that inner and outer bounds match, we arrive at

the desired result. h

Remark 6: Note that the encoding map at the equilib-

rium does not depend on the channel noise variance.

Moreover, paralleling Remark 4, the solution in Theorem 7
also admits an “effective source” interpretation: the op-

timal encoding strategy is identical to the one in the

nonstrategic setting stated in Theorem 2, applied to the

effective source X þ 	�.

IV. IMPACT OF RECEIVER SIDE
INFORMATION

Next, we extend our analysis to the receiver side infor-

mation setting as shown in Fig. 1. We begin with the

noiseless channel case with receiver SI. The focus of
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our results is the quadratic-Gaussian setting, i.e.,
ðX; �;WÞ � N ð0; RX�WÞ, where RX�W is parametrized as

RX�W ¼ �2
X

1 �X;� �X;W
�X;� r� ��W
�X;W ��W rW

2
4

3
5

and the distortion measures are given as in (5). The fol-

lowing lemma states that mappings at the equilibrium

are linear (affine if variables have nonzero mean).

Lemma 4: The equilibrium for the Q-G noiseless chan-
nel setting is achieved by mappings

gðX; �Þ ¼ X þ 	SI�; hðY;WÞ ¼ bY þ cW (39)

for some 	SI; b; c 2 R.
The proof follows steps identical to those of Theorem 4.

The coefficients 	SI; b; c at this equilibrium can be explicitly

computed as in the case of Theorem 4, but this computation

is rather involved and not included here. Instead, we focus
on the high level impact of SI. We first analyze the benefit

of the presence of receiver SI at the transmitter side. This

question is intimately related to the feedback scenarios in

strategic communication: if the receiver has the option of

conveying its SI to the transmitter, should it choose to do

so? Let us define DSI
E and DSI

D as the distortions of the trans-

mitter and the receiver at the equilibrium with receiver SI;

and DRSI
E and DRSI

D as the distortions of the transmitter and
the receiver in the setting where SI is also available at the

transmitter. The following theorem states that in the Q-G

setting, the presence of the receiver SI at the transmitter is

not useful to the transmitter or to the receiver.

Theorem 8: In the Q-G setting, the following holds:

DRSI
E ¼ DSI

E ; DRSI
D ¼ DSI

D :

Proof: We begin by showing optimality of linear

strategies in the setting where SI is available at both the

transmitter and the receiver. First, we constrain the set

of encoding strategies so that the encoding strategy takes

ðX0 ¼4 X � EfXjWg; �0 ¼4 �� Ef�jWgÞ as its arguments

[as opposed to ðX; �;WÞ]. Due to the jointly Gaussian

statistics, ðX0; �0Þ are statistically independent of W. The
receiver has also access to W (hence W is common infor-

mation), and there is no loss of generality imposed by

this constraint on the encoding strategy, i.e., the prob-

lem is equivalent to the one without any SI with distor-

tion function of the transmitter EfðX0 þ k�0 � X̂Þ2g for

some k 2 R. The optimality of linear strategies, in X0; �0,
then follows from Theorem 4. Since X0; �0 are linear

functions of X; �;W , due to the jointly Gaussian statis-
tics, the encoding strategy is linear in X; �;W as well.

Given that the encoding strategy is in the form of

Y ¼ X þ a�þ bW (for some a; b 2 R), and W is also

available at the receiver, Y ¼ X þ a� and Y ¼
X þ a�þ bW yield identical costs since the receiver can

simply subtract bW from Y. Hence, there is no need for

the transmitter to use W in its encoding strategy.

Remark 7: We note the absence of the constraint asso-

ciated with Y in Theorem 8. A constraint on Y, such as

an average power constraint in the form of EfY2g 	 P
for some P 2 Rþ renders the realization of W useful to

the transmitter and also to the receiver as will be shown

in Theorem 11.

We next consider the compression problem in this

setting (see [36] for the analogous nonstrategic prob-
lem). The achievable R–D region ðR;DE;DDÞ, denoted by

RDSI
S , can be characterized following the arguments in

[36] and is presented in the following theorem.

Theorem 9: RDSI
S is the convex hull of the set of all

triplets ðR;DE;DDÞ for which there exist a function h :
X �W ! X̂ and a conditional distribution pðYjX; �Þ
such that

R 
 IðX; �; YÞ � IðY;WÞ (40)

DE 
 E dE X; �; hðY;WÞð Þ� �
(41)

DD 
 E dD X; hðY;WÞð Þ� �
: (42)

Remark 8: In general IT problems, side information has
two types of benefits for the receiver, as demonstrated in

Theorem 9 (for a detailed analysis, see [28, Sec. 11]).

The first one is estimation benefit, which corresponds to

the receiver using W (in addition to Y) to generate X̂, as
shown in (41) and (42). This benefit also exists in the

single-letter case. The second one, namely the rate reduc-
tion benefit only exists in the IT setting, and is demon-

strated by the term IðY;WÞ in (40). In nonstrategic
settings, the encoder makes Y correlated with W to maxi-

mize this rate reduction. However, in strategic settings,

there exist problem parameters that render Y indepen-

dent of W due to the misalignments of the objectives, dE
and dD, and hence make IðY;WÞ vanish. This observation
plays a pivotal role in the equilibrium with noisy channel

and the receiver SI.

Next, we extend our analysis to the Q-G setting, as
shown in Fig. 1, where X; �;W is jointly Gaussian. The

following lemma characterizes the forward test channel

that achieves the RDSI
S .

Lemma 5: In the Q-G setting, RDSI
S is achieved by

Y ¼ X þ �ðRÞ�þ S
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where S � Nð0; �2
SÞ is statistically independent of X, �,

and W. The equilibrium coefficient �ðRÞ and �2S depend

on R.
Proof: The fact that jointly Gaussian X; �; Y triple

achieves RDSI
S follows from Lemma 4 and the entropy

maximization property of jointly Gaussian distributions

subject to second order constraints [37]. From the defini-

tion of the problem, we have the natural Markov chain

Y � ðX; �Þ �W (see, e.g., [38]). Hence, we have

Y ¼ X þ ��þ S (43)

for some � 2 R, and S � Nð0; �2
SÞ is independent of

X; � and W. Plugging (43) into (40), we have

R¼ 1

2
log 1þ�2

X

�2
S

1þ�2r�þ2��X��ð�XWþ���WÞ2
rW

 !0
@

1
A
(44)

and into (41), we obtain

DE ¼ �2
X 1þ 2�X� þ r� � ð1þ ��X�Þð�2r� þ 2��X�Þ

1þ �2r� þ 2��X� þ �2S
�2X

0
B@

1
CA

noting that hðY;WÞ ¼ EfXjY;Wg due to quadratic dD
and is linear due to jointly Gaussian X; Y;W. Using (44),

we have

�2
S

�2
X

¼ 1

22R � 1
1þ �2r� þ 2��X� � ð�XW þ ���WÞ2

rW

 !
:

(45)

We next note that the objective of the encoder is to min-

imize DE over the possible choices of �, which is equiva-
lent to maximizing

Jð�Þ ¼ � ð1þ ��X�Þð�2r� þ 2��X�Þ
1þ �2r� þ 2��X� þ �2S

�2X

(46)

over �. Plugging (45) into (46) we observe that �� ¼
argmax Jð�Þ depends on R. Note that J is continuous in
� and is bounded above, and hence it admits a maximum

by Weierstrass theorem [35].

Remark 9: As stated in Remark 4, the compression co-
efficient (without SI) �� is independent of the allowed

rate, and identical to the equilibrium coefficient 	 in

Theorems 4 and 7. Here, due to SI, particularly, the

IðY;WÞ term, � depends on the allowed rate, and is obvi-

ously different from 	SI in Lemma 4 where there is no

rate constraint.

Next, we analyze the benefit of the presence of SI at

the transmitter side. At first sight, it might seem that
due to the strategic aspect of the problem at hand, the

presence of this SI should help the transmitter. The fol-

lowing theorem states that this intuition is not correct;

specifically, there is no benefit of the presence of the re-

ceiver SI at the transmitter side.

Theorem 10: In the Q-G setting, the following holds:

RDSI
S ¼ RDRSI

S :

Proof: We first note that, following the arguments

in the proof of Theorem 8, the transmitter SI does not

affect the distortions (DE and DD). When SI is available

at both ends, it can be shown using the arguments in

[39] and Theorem 3 that the rate expression simplifies to

R ¼ min IðX; �; YjWÞ where minimization is over all con-

ditional probability distributions pðYjX; �;WÞ, while
when SI is only available at the encoder we have the

same minimization over pðYjX; �Þ. Hence, the only dif-

ference is due to the additional Markov chain constraint

Y � ðX; �Þ �W . It is well known that for jointly Gaussian

variables this constraint is always satisfied (see, e.g.,

[36]), and hence it does not affect the minimization.

Finally, we study the Q-G equilibrium with noisy

channel and receiver SI. We first investigate the optimal
single-letter strategy within the set of linear strategies.

Lemma 6: Optimal linear strategies in the case of the

noisy Q-G setting with SI are

gðX; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT

�2X 1þ 2	SI�X;� þ 	2
SIr�

� �
s

ðX þ 	SI�Þ

hðY;WÞ ¼ EfXjY;Wg

where 	SI is the same coefficient as in Lemma 4.

The proof of Lemma 6 follows from standard mini-
mum mean-squared error (MMSE) computations, very

similar to the derivation of DE in the proof of Lemma 5.

Next, we present our main result pertaining to this

setting.

Theorem 11: In the strategic Q-G setting with channel

noise and receiver SI, single-letter linear strategies
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provided in Lemma 6 are Shannon sense optimal if and
only if

�X;W ¼ ���;W�ðRÞ (47)

where R is given as

R ¼ 1

2
log 1þ PT

�2
N

� 
: (48)

Proof: Equating the outer bound obtained via data
processing inequality RSI

S ðDÞ 	 CðPÞ to the inner bound

achieved by the linear mapping in Lemma 6, we get a

matching condition which states that for the Shannon

sense optimality, the communication channel in Fig. 1

must be identical to the R�D test channel provided in

Lemma 5.9 Note that 	SI does not depend on the chan-

nel parameters PT or �2
N. However, �ðRÞ depends on

the rate, and hence on the channel parameters, due to
(48). The only way to make the R�D test channel iden-

tical to the actual one is to operate at the rate which

satisfies �ðRÞ ¼ 	. By Theorem 9, �ðRÞ ¼ 	 implies

that IðY;WÞ ¼ 0, which is equivalent to statistical inde-

pendence of Y and W , which implies uncorrelated vari-

ables (due to the joint Gaussian statistics), and hence

we have (47).

Remark 10: Theorem 11 does not preclude the possibil-

ity of optimality of the mappings in Lemma 6 within the

set of single-letter strategies even if they do not satisfy

(47) in which case they are strictly suboptimal in the

Shannon sense (i.e., among n-letter strategies).

V. DECENTRALIZED STOCHASTIC
CONTROL PROBLEMS

In this section, we focus on Problem 4. The following

theorem extends the main result of [13] to the strategic

setting.

Theorem 12: The essentially unique solution to Prob-

lem 4 comprises linear mappings gðXÞ ¼ cðX þ 	�Þ and

hðYÞ ¼ dY for some 	; c; d 2 R, if, and only if, ’E and

’D do not involve any product terms in U and X̂.

Remark 11: Before delving into the proof, we note that

the proof does not directly follow from Theorem 7. This

is because the cross term in the objective functions,
EfUða1X þ a2�Þg, for some a1; a2 2 R, cannot be upper

bounded using Cauchy–Schwarz inequality (as done in

[13] for the term EfXUg), since a linear mapping for

gðX; �Þ does not necessarily imply gðX; �Þ ¼ 
ða1X þ
a2�Þ for some 
 2 R. Hence, in the proof, we address

the problem from the beginning.

Proof: First, we follow very similar steps to ones in

[13] to show that the problem is equivalent to the one

with:

’0
E ¼ ðX þ �� X̂Þ2 þ k1U

2 þ k2UX þ k3U� (49)

’0
D ¼ ðX � X̂Þ2 (50)

as the objective functions in the underlying stochastic

game. The optimal mapping for the second agent is

hðYÞ ¼ EfXjYg, and hence, the problem simplifies to op-

timization over the encoding mapping g. Consider the
dual (equivalent) problem of minimizing JE ¼ Ef’0

Eg
subject to a fixed JD ¼ Ef’0

Dg. Let us expand JE

JE ¼ DE þ Efk1U2 þ k2UX þ k3U�g (51)

where

DE¼E X�EfXjYgð Þ2
n o

þ2E � X�EfXjYgð Þ� �þ Ef�2g:

We follow the same steps as those in the proof of

Theorem 4 to conclude that jointly Gaussian triplet

Y;X; � minimizes DE for any given, fixed JD. Let us now
consider the original problem of minimizing JE. For any
given JD, DE, the problem simplifies to minimization of

Efk1U2 þ k2UX þ k3U�g

subject to fixed DE. Here, Efk1U2g corresponds to a

power constraint of the form EfU2g ¼ PT for some

PT 2 Rþ, hence the problem can be transformed into a
minimization problem with hard constraints: minimize

EfUðX þ ðk3=k2Þ�Þg subject to fixed DE and EfU2g ¼
PT . The power constraint ensures that the optimal U is

zero mean. Noting that ðX þ ðk3=k2Þ�Þ is Gaussian, and

first- and second-order moments of U are fixed (power

constraint fixes EfU2g), the same steps that led to

joint Gaussianity of X; Y; � for fixed JD in the preceding

part of the proof, also yield joint Gaussianity of X; �
and U (and thus Y). Hence, for any JD and DE constraint,

we can find a jointly Gaussian U;X; � that minimizes the

cross terms which are products of a fixed Gaussian ran-

dom variable and an optimization variable. The only

mapping that yields jointly Gaussian U;X; � is linear (or

affine if the underlying variables are not zero mean).

The “only if” part follows from the observation that an

9The same matching condition was obtained in [40] for the non-
strategic variant of the same problem.
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optimal linear strategy implies the optimality of a linear
strategy in the nonstrategic setting, by casting X þ k� as

the effective X for some k 2 R. This contradicts the

“only if” part of Theorem 3. h

VI. DISCUSSION

In this paper, we have addressed some fundamental stra-

tegic communication problems. Tools from information
theory have played a key role in the derivation of our re-

sults as follows.

• The Q-G equilibrium entails unique linear opti-

mal strategies. The proof is nontrivial and re-

quires results from probability theory, namely

functional representation lemma and maximal corre-
lation measure, which have been extensively used

in information theory.
• The noisy Q-G equilibrium with noise in the

channel also admits linear optimal strategies. The

proof relies on the fundamental concepts of infor-

mation theory: data processing inequality, and

the notions of R–D and channel capacity [10].

• The Q-G equilibrium with receiver SI admits lin-

ear optimal strategies, if there is no channel noise

present. For the noisy channel case, it does so for
the very specific, matched case of the channel

noise, the allowed power and the joint statistics

of source-private information-side information. It

is well known that the nonstrategic analog of this
problem does not admit linear optimal strategies.

This sharp contrast between the noiseless and

noisy strategic settings highlights the need for de-

tailed information-theoretic analysis for such

noisy settings.

• We have identified necessary and sufficient con-

ditions under which general strategic games ad-

mit linear optimal strategies, in a similar
manner to nonstrategic stochastic team decision

problems [13].

Some future directions include extensions to multi-

dimensional and networked settings, to other (than

Gaussian) statistics; and applications of the developed

SIT framework to other problem areas (for some pre-

liminary work, see [41] for problems involving privacy

constraints). h
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“On the role of side information in strategic
communication,” in Proc. IEEE Int. Symp.
Inf. Theory, Barcelona, Spain, 2016,
pp. 1626–1630.

[3] M. Gentzkow and E. Kamenica, “Bayesian
persuasion,” Amer. Econ. Rev., vol. 101,
no. 6, pp. 2590–2615, 2011.

[4] L. Rayo and I. Segal, “Optimal information
disclosure,” J. Political Econ., vol. 118, no. 5,
pp. 949–987, 2010.

[5] W. Tamura, “A theory of multidimensional
information disclosure,” Working paper,
available at SSRN 1987877, 2014.

[6] V. Crawford and J. Sobel, “Strategic
information transmission,” Econometrica,
J. Econom. Soc., vol. 50, pp. 1431–1451, 1982.

[7] A. Lapidoth, “On the role of mismatch in
rate distortion theory,” IEEE Trans. Inf.
Theory, vol. 43, no. 1, pp. 38–47, 1997.

[8] A. Dembo and T. Weissman, “The minimax
distortion redundancy in noisy source
coding,” IEEE Trans. Inf. Theory, vol. 49,
no. 11, pp. 3020–3030, 2003.

[9] H. Yamamoto, “A rate-distortion problem
for a communication system with a
secondary decoder to be hindered,” IEEE
Trans. Inf. Theory, vol. 34, no. 4,
pp. 835–842, 1988.

[10] C. Shannon, “A mathematical theory of
communication,” Bell Syst. Tech. J., vol. 27,
no. 1, pp. 379–423, 1948.
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