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Abstract
In this paper we focus on a meshfree formulation for the solution of
time-harmonic acoustic scattering problems and verify the stability of the proce-
dure. The sound waves propagate in nonhomogeneous media, giving rise to dis-
continuities in the gradients of the pressure field across the interfaces between
regions of different material properties. Meshfree methods usually do not repro-
duce accurately the discontinuities in a numerical solution. We overcome this
issue by introducing Lagrange multiplier fields defined at the interfaces in order
to treat the discontinuities in the gradients of the pressure field. The method does
not depend on any kind of adjustable parameter. We show by a numerical study
of the applicable inf-sup conditions that the resulting mixed formulation leads to
well-posed problems. The use of the proposed method is illustrated in the solu-
tion of a number of problems of wave propagation through nonhomogeneous
media.
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1 INTRODUCTION

1.1 Overview of the problem

Finite element methods (FEMs) constitute the most successful family of approximation methods in the numerical
analysis and solution of models in computational mechanics.1,2 Standard FEMs require meshing a geometric domain,
usually into unstructured meshes.1 Despite the fact that meshing techniques are experiencing an ever-increasing level
of sophistication,3 the creation of suitable finite element meshes can pose a challenge, particularly when compli-
cated three-dimensional geometries are considered4 or when frequent remeshing is necessary, as in crack propagation
problems.5-8 The possibility of avoiding meshing procedures motivated the introduction of a family of approximation
methods, known collectively as meshfree or meshless methods.9,10
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Among the different meshfree methods, the Smoothed Particle Hydrodynamics (SPH),11 the Element-Free Galerkin
(EFG),12 the Meshless Local Petrov-Galerkin method (MLPG),13 and the Method of Finite Spheres (MFS)14 have since
been applied to a range of problems. In this work, we use the MFS as the underlying meshfree method due to its demon-
strated good performance in handling wave propagation problems.15,16 A further development of the MFS is given by
the overlapping finite elements (OFE), more recently proposed.17-22 Since we use the MFS in this paper, the techniques
discussed herein are also applicable to the OFE.

The propagation of linear sound waves (or electromagnetic waves in two dimensions) in the harmonic regime is
described by the Helmholtz equation. Among the methods of solution, Boundary Element Methods (BEMs) are quite
common.23 These methods use a mesh over the surface/boundary of the computational domain only, so that the cost
of producing a fully volumetric mesh (as in FEM) is eliminated. However, these methods are applicable only when the
Green’s function associated with the given differential operator is available. Even when it is available, difficulties with
hypersingular integrals and non-uniqueness of solutions may occur, which demand special techniques of treatment.24

BEMs are usually employed in the solution of fields in linear and homogeneous media, and lead to fully populated
matrices. If we are interested in nonhomogeneous media (like those studied in this work), some transformations may be
necessary.25 Finite element methods of solution have also been proposed26,27; they can be extended to nonhomogeneous
media, in addition to leading to sparse matrices.

In this work, we consider sound waves propagating in a homogeneous host medium, in which objects of different
material properties are immersed. The properties (density and bulk modulus) are usually discontinuous across the inter-
faces separating the host medium and the objects. According to the corresponding physical model,28,29 the discontinuity
in the density leads to jumps in the gradient of the pressure field across the interfaces. The same phenomenon occurs in
other scalar physical models (e.g., in the thermal analysis of polycrystals30).

1.2 Finite elements and Lagrange multipliers

The standard FEM tackles this kind of problem by setting up a mesh which conforms to the interfaces, that is, a
mesh in which the edges of the elements follow the contour of the interfaces. The construction of such a mesh may
be challenging if the interfaces have complex boundaries, and the elements in the resulting mesh may have unaccept-
able aspect ratios.30,31,32 It is possible to address this problem using the Generalized Finite Element Method (GFEM).
The idea is to use enrichment functions that contain discontinuous gradients.31,33 In this way, the edges of the ele-
ments do not need to conform to the interface. In fact, the interface just cuts through the elements, so that the
resulting mesh can be constructed independently of the geometry of the interface.30,32,34 A similar approach is used
in embedded interface methods, where the discontinuity in the gradients is enforced using Nitsche’s method.35 The
results are accurate, but stabilization parameters are required. The partition of unity finite element method (PUFEM)
enriched with plane wave functions has also been considered.36 Since the objects in the problem have different values
for density (and bulk modulus), the plane waves have distinct wavenumbers within each object. Instead of defin-
ing approximation spaces with particular wavenumbers within each region and then applying some method to match
the solution at the interfaces, all enrichment functions are combined into the same approximation space and applied
over the entire computational domain. This approach yields good results, but if the problem is characterized by many
objects with different material properties, the number of enrichment functions in the approximation space may become
large.

Another tool popular with FEM is the use of Lagrange multipliers. They can be used to enforce boundary condi-
tions and different types of interface conditions (such as jumps in constitutive laws across the interface,37 and in contact
problems38). The use of Lagrange multipliers leads to problems in mixed formulations, which must be solved for two
fields simultaneously: The primary field (i.e., the field associated with the quantity we are interested in, such as pressure),
and the Lagrange multiplier field. These fields cannot be approximated independently. The finite-dimensional subspaces
used in the discretization of both fields must satisfy the corresponding inf-sup conditions. It is an established fact that
a discrete problem is well-posed (its solution exists, is unique, and depends continuously on the data) if and only if the
applicable inf-sup conditions (particular to each kind of problem) hold. Failure to satisfy the conditions leads to ill-posed
discrete problems, and hence to numerical instabilities. More details can be found in authoritative discussions of this
topic.1,2,39,40,41

Lagrange multipliers are used to impose Dirichlet boundary conditions in the extended finite element method
(XFEM),37 where a careful procedure is presented in order to construct a stable Lagrange multiplier space on the
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boundary with the purpose of satisfying the inf-sup condition. These ideas are extended and compared to other
techniques,42 together with an algorithm (the vital vertex algorithm) proposed to construct a stable space for the Lagrange
multipliers.

The use of Lagrange multipliers is also a popular procedure for the treatment of discontinuities in the solution and/or
in its gradients. It is widely used in the context of finite element formulations,43,44,45,46 discontinuous enrichment schemes
(DE-FEMs),47,48 XFEMs,32 and discontinuous Galerkin methods (DG-FEMs).49,50 In discontinuous Galerkin methods, the
local approximation spaces defined within each element are discontinuous across element interfaces, and Lagrange mul-
tipliers are used to impose inter-element continuity of the solution. These methods usually require judicious selection of
numerical fluxes and stabilization parameters.51 Lagrange multipliers also play a prominent role in mortar methods,52,53

and have also been used with the OFE method which, being based on the MFS, naturally can also carry enrichment
functions.22

1.3 Meshfree methods and discontinuous gradients

Despite the effectiveness of the FEMs described above, they all rely on meshes set over the domain prior to the discretiza-
tion stage. Our aim in this paper is to conceive of a totally meshfree procedure able to solve problems whose solution may
have discontinuous gradients.

There are many different meshfree methods, and distinct ways to classify them.9,10,54 In this work, we shall focus on
meshfree methods based on weak forms, or meshfree Galerkin methods, which are a suitable alternative to FEMs55,56 (in
opposition to meshfree methods based on strong forms, usually employed together with collocation procedures,57 and
which are a suitable alternative to finite difference methods).

If the solution of a problem is expected to exhibit discontinuous gradients across an interface, the application of mesh-
free Galerkin methods without any special procedure to treat the discontinuities leads to approximate solutions usually
marked by some oscillations akin to Gibb’s phenomenon close to the interface.58 These oscillations usually begin at the
curve’s ‘knee’ and decrease as one moves away from the interface. There are at least three ways in which the discontin-
uous gradients can be treated in meshfree Galerkin methods. The first is based on the idea of jump functions.58,59 Extra
nodes are placed along the interface, with which certain jump functions are associated. These jump functions are included
in the subspace used to approximate the solution. They are compactly supported and continuous across the interface.
Their derivatives, on the other hand, must be discontinuous across the interface. The second way to treat discontinuous
gradients is based on Lagrange multipliers.60 The third way is the use of some penalty method,61 which requires the specifi-
cation of numerical parameters. Comparisons between jump functions and Lagrange multipliers,60 and between Lagrange
multipliers and penalty methods61 have been made. The use of Lagrange multipliers yields slightly better results,60 using
also less quadrature points in the numerical integration. However, these works do not discuss the inf-sup conditions to
be satisfied.

Our procedure is based on the MFS, which is a ‘truly meshfree method’. Moreover, the basis (or shape) functions in the
MFS are easier to construct than the basis functions in other meshfree methods, such as the moving least squares shape
functions,9 since inverting matrices is not necessary. The MFS has been applied thus far only to problems posed in media
with homogeneous material properties.14-16,62-71 In this work we choose an approach based on Lagrange multipliers and
extend the MFS to problems for which discontinuous gradients are present in the solution. The resulting procedure is
free of any stabilization parameter.

1.4 Inf-sup testing

A rigorous derivation of the mixed problem associated with the Helmholtz equation, and specialized to the particu-
lar geometrical setting considered here, is presented in one of our works,72 which is a companion paper to this one.
In that work we show that the Lagrange multipliers arise naturally in the formulation, thus rendering this approach
more straightforward to implement (since there are no ‘amendments’ like jump functions and tunable penalty factors).
In the companion paper we also present a detailed derivation of the applicable inf-sup conditions. Once established,
these conditions serve as the basis for the application of the inf-sup test, which is discussed in Sections 7 and 8 of the
present work. This numerical test allows us to evaluate the well-posedness of the discrete problems as the discretization
is refined.
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1.5 Organization of the manuscript

Section 2 discusses the physical model of the problem. The weak form of the governing equations is stated in Section 3.
Section 4 is devoted to the meshfree discretization scheme, used in Section 5 for the numerical solutions of a number
of boundary value problems. The well-posedness of the variational problem is discussed briefly in Section 6. The inf-sup
stability analysis is formally discussed in Section 7. In Section 8, all problems from Section 5 are revisited, and their
stability is assessed in the light of the results from the previous two sections. Concluding remarks are given in Section 9.

2 THE PHYSICAL PROBLEM AND THE REFERENCE GEOMETRY USED

We state the problem considered and establish the model differential equations, for the interior of the domains and the
boundary conditions. The corresponding variational equations are given in Section 3.

2.1 Geometrical considerations

In order to make for a cleaner presentation, all aspects of the formulation and of the discretization process will be stated
using the geometrical setting depicted in Figure 1 as a basis. The reasoning can be generalized to other geometrical set-
tings, as long as their properties satisfy the assumptions made when constructing the model in Figure 1. When specialized
to the setting in Figure 1, these assumptions become:

Assumption 1. In R2, we consider an open ball B(0; R), centered at the origin 0 and with a finite radius R. The boundary
of this ball is denoted by ΓR, see Figure 1.

Assumption 2. There is a collection of M = 3 regions, or objects, that is, bounded and open sets Ω1, Ω2, Ω3, whose
closures are contained within B(0; R) and do not touch ΓR, see Figure 1.

Assumption 3. The regions Ω1, Ω2, Ω3 are mutually disjoint.

Assumption 4. The region ΩM + 1 = Ω4 is defined as the set difference between B(0; R) and the union of the closures of
all M = 3 regions, that is,

Ω4
def
= B(0;R) ∖

3⋃
r=1

Ωr, (1)

The region Ω4 represents the host medium.

F I G U R E 1 A setting with M = 3 objects, constructed
according to the assumptions made in Section 2.1, resulting in a
total of four regions (Ω4 is the host medium). The interfaces Γ1,2

(between regions Ω1 and Ω2), Γ2,4 (between Ω2 and Ω4),and Γ3,4

(between Ω3 and Ω4) are closed Lipschitz curves
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F I G U R E 2 Examples of ruled out cases. (A) A setting for which M = 3. The intersection Γ1,3 of 𝜕Ω1 and 𝜕Ω3 is a single point, and 𝜕Ω4

is not Lipschitz continuous. (B) A setting for which M = 2. The intersection Γ1,2 of 𝜕Ω1 and 𝜕Ω2 is an open curve

Assumption 5. The boundary of each one of these M + 1 = 4 regions is the union of a certain number of connected
components (‘pieces’). In the geometric setting from Figure 1, we have

𝜕Ω1 = Γ1,2, (2a)

𝜕Ω2 = Γ1,2 ∪ Γ2,4, (2b)

𝜕Ω3 = Γ3,4, (2c)

𝜕Ω4 = Γ2,4 ∪ Γ3,4 ∪ ΓR, (2d)

where Γ1,2 is the interface between regions Ω1 and Ω2. Interfaces Γ2,4 and Γ3,4 are defined in a similar man-
ner. Each connected component in the problem must satisfy two properties: First, it is a closed curve (i.e.,
a curve whose endpoints coincide). Second, it can be decomposed into a finite number of arcs or line seg-
ments, that is, it has a finite number of vertices, see Γ1,2 and Γ2,4 in Figure 1. The component is then
Lipschitz continuous.73-75 Boundaries of not simply-connected regions (i.e., regions with holes, such as Ω2
and Ω4) have more than one connected component. The host medium is clearly not simply-connected.

Assumption 6. Considering the boundaries of all the M + 1 = 4 regions, if we take any two of them, then only two
mutually exclusive possibilities exist: First, they do not intersect (i.e., they are located at a certain distance from each
other, such as 𝜕Ω1 and 𝜕Ω3 in Figure 1). Second, if they do intersect, then the intersection is a single closed curve (as 𝜕Ω1
and 𝜕Ω2 or 𝜕Ω3 and 𝜕Ω4 in Figure 1). We rule out the cases for which the intersection is a single point (as in Figure 2(A),
which shows that 𝜕Ω4 fails to be Lipschitz continuous), or an open curve (i.e., a curve whose beginning and end points
are different, as in Figure 2(B)).

2.2 Equations of acoustic scattering

For each r = 1, · · ·, 4, we must solve the differential equation29: Find pr ∶ Ωr −→ C such that for any x ∈Ωr,

𝛁 ⋅
(

1
𝜌r(x)

𝛁pr(x)
)
+ 𝜔2

Kr(x)
pr(x) = 0, (3)

where pr is the phasor field associated with the time-harmonic pressure 𝓅r(x, t) (in N/m2). The latter can be recovered
from the first via 𝓅r(x, t) = Re{pr(x)ej𝜔t}, where 𝜔 = 2𝜋f is the angular frequency (in rad/s), f is the frequency (in Hz),
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and Re{⋅} denotes the real part of a complex quantity. Moreover, 𝜌r :Ωr −→R+ is the density (in kg/m3), and Kr :Ωr −→R+

is the bulk modulus (in Pa) within region Ωr.
In this work, we assume that the material filling up the host medium Ω4 has constant density 𝜌4 and bulk modulus

K4. We normalize the density and bulk modulus for all other regions, that is, we define, for all r = 1, · · ·, 4 and for x∈Ωr,

𝜌r,rel(x)
def
= 𝜌r(x)∕𝜌4, (4a)

Kr,rel(x)
def
= Kr(x)∕K4, (4b)

where 𝜌r,rel and Kr,rel are the ‘relative’ values of the density and bulk modulus with respect to the host medium Ω4. Both
𝜌r,rel and Kr,rel are dimensionless quantities. Substituting (4a) and (4b) in (3), we get a new set of equations: For each r = 1,
· · ·, 4, find pr ∶ Ωr −→ C such that for any x ∈Ωr,

𝛁 ⋅
(

1
𝜌r,rel(x)

𝛁pr(x)
)
+ k2

Kr,rel(x)
pr(x) = 0, (5)

where k = 𝜔/c is the wavenumber associated with the host medium (in rad/m), and c =
√

K4∕𝜌4 is the speed of sound in
the host medium.29

2.3 Radiation boundary conditions

Because we assumed that both the density and the bulk modulus in the host medium are constant, it follows from (4a)
and (4b) that 𝜌4,rel(x) = K4,rel(x) = 1, for any x∈Ω4. Using this in (5) reveals that p4 is governed by the homogeneous
Helmholtz equation within Ω4, that is, 𝛁2p4(x)+ k2p4(x) = 0, for any x ∈Ω4.

The pressure p4 can be decomposed into two parts: For any x ∈ Ω4, p4(x) = pinc(x)+ ps(x), where pinc ∶ Ω4 −→ C

represents the incident pressure field. It is a function known in advance, and it must be chosen as one of the possible solu-
tions of the Helmholtz equation within Ω4, that is, 𝛁2pinc(x)+ k2pinc(x) = 0, for any x ∈Ω4. In this work, possible sources
for this field must be located outside the boundary ΓR, see Figure 1. This incident field will be scattered, or perturbed by
the materials immersed in the host medium. The result is the scattered pressure field ps ∶ Ω4 −→ C. It follows from the
discussion above that ps will also be a solution to the Helmholtz equation within Ω4.

If Ω4 were unbounded, that is, if the radius R became arbitrarily large (with R→∞), the correct boundary condition to
be satisfied by ps would be given by Sommerfeld’s radiation condition,26,28 which represents scattered waves propagating
away from the origin. But since Ω4 defined in (1) is bounded (R is finite, see Assumption 1 in Section 2.1), we use the
approximate first-order Bayliss-Turkel absorbing boundary condition (ABC)26,55,76 along the circle ΓR. The condition to
be satisfied by the total field p4 thus becomes

𝛁p4(x) ⋅ n4,∞(x) +
(

jk + 1
2R

)
p4(x) = F(x), (6a)

for all x ∈ΓR. In (6a), n4,∞ is the outward-pointing unit normal vector at x (see Figure 1), and the function F is given in
terms of the incident field pinc: For all x ∈ΓR,

F(x)
def
= 𝛁pinc(x) ⋅ n4,∞(x) +

(
jk + 1

2R

)
pinc(x). (6b)

2.4 Interface conditions

The correct interface conditions26,28,29 can be mathematically expressed as follows. If the assumptions made in the con-
struction of the geometrical setting in Figure 1 are satisfied, then for the interface Γ1,2, it is the case that the normal unit
vector pointing from region Ω1 into region Ω2 is defined almost everywhere (a.e.)74 along Γ1,2, and is denoted by n1,2.
Points in Γ1,2 like vertices of polygons are excluded. For x ∈Γ1,2 a.e., and for an arbitrarily small 𝜀> 0, we define the two
points:

x1;𝜀
def
= x − 𝜀n1,2(x), and x2;𝜀

def
= x + 𝜀n1,2(x), (7a)
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F I G U R E 3 A closer look at the interface Γ1,2 between regions
Ω1 and Ω2. The normal unit vector pointing from region Ω1 into
region Ω2 evaluated at x∈Γ1,2 is denoted by n1,2(x). Given a small
𝜀> 0, the points x1;𝜀 ∈Ω1 and x2;𝜀 ∈Ω2 in (7a) are shown

that is, point x1;𝜀 is in Ω1, immediately ‘below’ Γ1,2, and point x2;𝜀 is in Ω2, immediately ‘above’ Γ1,2 (see Figure 3). The
first interface condition to be enforced along Γ1,2 is:

lim
𝜀→0

(p2(x2;𝜀) − p1(x1;𝜀)) = 0, (7b)

that is, the pressure field shall remain continuous as we move across the interface Γ1,2. The second interface condition to
be enforced along Γ1,2 is:

lim
𝜀→0

(
1

𝜌2,rel(x2;𝜀)
𝛁p2(x2;𝜀) ⋅ n2,1(x) +

1
𝜌1,rel(x1;𝜀)

𝛁p1(x1;𝜀) ⋅ n1,2(x)
)

= 0, (7c)

where n2,1(x) = −n1,2(x). Since the ‘relative’ densities 𝜌1,rel and 𝜌2,rel may assume different values at each side of the
interfaceΓ1,2, it is clear from (7c) that the gradients of the pressure fields p1 and p2 will be discontinuous. The two interface
conditions to be enforced along Γ2,4 and Γ3,4 are obtained by the same reasoning, and are equal in form to (7b) and (7c).

3 WEAK FORMS

The differential equations given above are in this section recast into variational form.

3.1 Function spaces

The solution of the problem in strong form must be determined pointwise. We relax this requirement and look for weak
solutions, which are expressed in terms of elements from Lebesgue and Sobolev spaces77 specified over a given domain
(an open and bounded subset) in R2. Elements from these spaces are not defined pointwise.78,79 Moreover, throughout
this paper, we are going to use only complex-valued versions of these spaces. Keeping the setting of Figure 1 in mind,
given a region Ωr, where r = 1, · · ·, 4, we write L2(Ωr) instead of L2(Ωr; C), and likewise for the other spaces.80 Throughout
this section, we remove the explicit dependence on position x in the equations. In Section 2.2, the pressure fields in the
pointwise sense were defined up to the boundary of Ωr (i.e., defined in the closure of Ωr). In the weak case, the pressure
fields are defined in the interior of Ωr only; their behavior at the boundary 𝜕Ωr is given by their traces. From now on we
assume pr :Ωr −→C. For all r = 1, · · ·, 4, we look for weak solutions pr regular enough so that pr ∈H1(Ωr), and assume
material properties regular enough to satisfy (1∕𝜌r,rel) ∈ C(Ωr) and (Kr,rel) ∈ C(Ωr).72 More details about the regularity of
weak solutions to the Helmholtz equation can be found in the literature.28,73,81 We next introduce the spaces  and 
defined as:

 def
= H1(Ω1) × H1(Ω2) × H1(Ω3) × H1(Ω4), (8a)

 def
= H−1∕2(Γ1,2) × H−1∕2(Γ2,4) × H−1∕2(Γ3,4). (8b)

It is useful to represent vectors from the spaces  and  by lowercase boldface letters, like:

v
def
= (v1, v2, v3, v4) ∈  , (9a)
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𝛍
def
= (𝜇1,2, 𝜇2,4, 𝜇3,4) ∈  . (9b)

We equip these spaces with the following norms: For any v ∈  , and for any 𝛍 ∈  ,

||v||2 def
= ||v1||2H1(Ω1)

+ ||v2||2H1(Ω2)
+ ||v3||2H1(Ω3)

+ ||v4||2H1(Ω4)
, (10a)

||𝛍||2 def
= ||𝜇1,2||2H−1∕2(Γ1,2)

+ ||𝜇2,4||2H−1∕2(Γ2,4)
+ ||𝜇3,4||2H−1∕2(Γ3,4)

. (10b)

The standard norm41,78,80 in the H1 space is given by:

||v1||2H1(Ω1)
def
= ∫Ω1

(𝛁v1 ⋅ 𝛁v∗1 + v1v∗1)dΩ, (11a)

and likewise for the other terms in (10a). The standard norm in the H−1/2 space is given by

||𝜇1,2||H−1∕2(Γ1,2)
def
= sup

t∈H1∕2(Γ1,2)
t≠0

|⟨ 𝜇1,2 | t ⟩H1∕2(Γ1,2)|||t||H1∕2(Γ1,2)
. (11b)

The norm || ⋅ ||H−1∕2(Γ1,2) defined in (11b) is a dual norm (since H−1/2 is the dual space of H1/2). The term ⟨ 𝜇1,2 | t ⟩H1∕2(Γ1,2)
represents the duality pairing80 between the functional 𝜇1,2 ∈H−1/2(Γr, s) and the function t ∈H1/2(Γ1,2). The norm|| ⋅ ||H1∕2(Γ1,2) in (11b) is given in Appendix B. The H−1/2 norm of the other terms in (10b) are calculated likewise.

3.2 The problem in weak form

The problem in weak form consists in finding a vector of pressure fields p
def
= (p1p2p3p4) ∈  , and a vector of Lagrange

multiplier fields 𝛌
def
= (𝜆1,2𝜆2,4𝜆3,4) ∈  . After a lengthy reasoning,72 and considering geometrical domains in which the

assumptions made in Section 2.1 hold true, it can be shown that the weak problem derived from (5), (6a), and the interface
conditions discussed in Section 2.4 is given by

Find (p, 𝛌) ∈  ×  such that

a(p, v) + b(v, 𝛌) = ⟨Q′ ∣ v⟩⋆, , for any v ∈  ,

b(p,𝛍) = 0, for any 𝛍 ∈  . (12a)

In (12a), the bilinear form a ∶  ×  −→ C is given by:

a(w, v)
def
=

4∑
r=1∫Ωr

(
1

𝜌r,rel
𝛁vr ⋅ 𝛁wr −

k2

Kr,rel
vrwr

)
dΩ + ∫ΓR

(
jk + 1

2R

)
(𝛾𝜕Ω4(v4))|ΓR(𝛾𝜕Ω4(w4))|ΓR dΓ, (12b)

for any (w, v) ∈  ×  . The term 𝛾𝜕Ω4(w4) represents the (interior) trace of w4 along 𝜕Ω4. Since w4 ∈H1(Ω4), it follows
from the Trace theorem (Appendix A) that this trace belongs to H1/2(𝜕Ω4). Its restriction to ΓR ⊂𝜕Ω4 belongs to H1/2(ΓR),
see Appendix B. The same applies to the term 𝛾𝜕Ω4(v4). The bilinear form b ∶  ×  −→ C is given by

b(v,𝛍)
def
= ⟨ 𝜇1,2 | 𝛾𝜕Ω2(v2)|Γ1,2 − 𝛾𝜕Ω1(v1) ⟩H1∕2(Γ1,2)

+ ⟨ 𝜇2,4 | 𝛾𝜕Ω4(v4)|Γ2,4 − 𝛾𝜕Ω2(v2)|Γ2,4 ⟩H1∕2(Γ2,4)

+ ⟨ 𝜇3,4 | 𝛾𝜕Ω4(v4)|Γ3,4 − 𝛾𝜕Ω3(v3) ⟩H1∕2(Γ3,4), (12c)

for any (v𝛍) ∈  ×  . The term 𝛾𝜕Ω2(v2) represents the trace of v2 along 𝜕Ω2. Since v2 ∈H1(Ω2), it follows from the Trace
theorem that this trace belongs to H1/2(𝜕Ω2). Moreover, since Γ1,2 ⊂𝜕Ω2 according to (2b), it follows that the restriction
of the trace 𝛾𝜕Ω2(v2) to Γ1,2 belongs to H1/2(Γ1,2). The other traces in (12c) are treated similarly. Finally, the functional Q′



NICOMEDES et al. 3149

is defined as: For any v ∈  ,

Q′(v)
def
= ∫ΓR

(𝛾𝜕Ω4(v4))|ΓR F dΓ, (12d)

where the function F is given in (6b). It can be shown that if F ∈L2(ΓR), then the functional Q′ is linear and bounded,
that is, there is a constant C1 > 0 such that |Q′(v)| ≤ C1||v|| , for any v ∈  . In this way, Q′ belongs to ⋆, the dual space
of  . Using duality pairing, we therefore write ⟨ Q′ | v ⟩⋆, = Q′(v), for any v ∈  . It can also be shown from (6b) that
if the incident field pinc is given by plane wave solutions of the type pinc(x) = e−jk ⋅ x, where k = kk̂ and x = [x, y], then
F ∈L2(ΓR). In this last expression, k̂ is a unit vector in the direction the plane wave propagates. The problem (12a) is cast
in what is called a mixed formulation.1,39,40,41,82

4 MESHFREE DISCRETIZATION PROCESS

There are many meshfree discretization schemes, some still require a background mesh for the numerical integration,
like the EFG method.12 We use the MFS which is a truly meshfree procedure.

4.1 Method of finite spheres

The discretization process adopted in this work follows the guidelines outlined in the MFS.14-16,62,69-71 The MFS is a
Galerkin method with local enrichment properties. It is a totally meshfree method (in the sense that the numerical integra-
tions are carried out locally in the subdomains). In the aforementioned references, the MFS showed a good performance
when applied to problems posed in homogeneous media. We now extend it to nonhomogeneous media.

4.2 Meshfree finite dimensional subspaces for the pressure fields

For each r = 1, · · ·, 4, a finite sphere system over region Ωr is the pair

(Ωr)
def
= ((Ωr),(Ωr)), (13a)

where (Ωr) = {B(r1; x1),B(r2; x2) · · ·} is a finite collection of (overlapping) open balls, each one centered at point
xi = (xi, yi) and with radius ri, see Figure 4. The number of balls (also called subdomains, or spheres) in (Ωr) is denoted
by |(Ωr)|. The union of all balls in (Ωr) is represented by Ur, and must cover the closure14 of Ωr, that is,

Ωr ⊂ Ur
def
=

|(Ωr)|⋃
i=1

B(ri; xi). (13b)

The element (Ωr) in (13a) is a meshfree finite-dimensional subspace of real-valued functions spanned by the basis
functions defined on Ωr.

In order to construct (Ωr), we first choose a relatively smooth real-valued weight function w : [0,∞)−→ [0,∞), such
as the quartic spline9: For any t ∈ [0,∞),

w(t) =

{
1 − 6t2 + 8t3 − 3t4, t ∈ [0, 1],
0, t ∈ (1,∞).

(14a)

The support of the weight function (14a) is supp w = [0, 1]. Both w and its first derivative are continuous on
[0,∞), and therefore w∈C1([0,∞)). First we associate with each ball B(ri; xi) the transformed weight function w̃r

i ,
defined as

w̃r
i (x)

def
= w

(||x − xi||
ri

)
, (14b)
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F I G U R E 4 The same setting from Figure 1. We see the
collection of balls (Ω1), whose union U1 covers Ω1 (closure of
region Ω1). In the same way, separate collections of balls must be
set up in order to cover Ω2, Ω3, and Ω4 (not shown)

for any x ∈R2, where || • || denotes the Euclidean norm of a vector in R2. Since supp w = [0, 1], it follows that
supp w̃r

i = {x ∈ R2| ||x − xi|| ≤ ri}, that is, the closure of the ith ball. It can be shown that each w̃r
i ∈ C1(R2). After all

transformed weight functions have been constructed, a collection of partition of unity (PU) functions can be defined. Next
we associate with each ball B(ri; xi) the PU function 𝜑r

i ,defined as

𝜑r
i (x)

def
= w̃r

i (x)∕
|(Ωr)|∑

j=1
w̃r

j (x), (14c)

for any x ∈Ur. The domain of definition of 𝜑r
i is the union Ur. (Outside of Ur, the denominator in (14c) is zero). It can be

verified that both 𝜑r
i and its derivatives are continuous on all of Ur, that is, 𝜑r

i ∈ C1(Ur). The support of the PU function
𝜑r

i is also given by the closure of ball B(ri; xi). With each ball B(ri; xi) in (Ωr), we also associate a collection ℒ (Ur; i)
of six linearly independent local enrichment functions, that is, ℒ (Ur; i) = {lr

i,1lr
i,2lr

i,3lr
i,4lr

i,5lr
i,6}, where lr

i,m ∶ Ur −→ R, m =
1, · · · , 6. The elements from ℒ (Ur; i) are defined as: For any x ∈Ur,

lr
i,1(x)

def
= 1, lr

i,2(x)
def
= (x − xi)∕ri, lr

i,4(x)
def
= (x − xi)2∕r2

i ,

lr
i,3(x)

def
= (y − yi)∕ri, lr

i,5(x)
def
= (x − xi)(y − yi)∕r2

i , (15)

lr
i,6(x)

def
= (y − yi)2∕r2

i .

For each function lr
i,m listed above, it can be verified that both lr

i,m and its derivatives are continuous on all of Ur, that is,
lr
i,m ∈ C1(Ur). The meshfree finite-dimensional subspace (Ωr) introduced in (13a) is defined as

(Ωr)
def
= span {hr

i,m ∶ i = 1, · · · , |(Ωr)|, and m = 1, · · · , 6}, (16)

where each basis function hr
i,m ∶ Ωr −→ R (indexed by i and m) is given by the restriction of the product 𝜑r

i lr
i,m to Ωr, that

is, hr
i,m

def
= (𝜑r

i lr
i,m)|Ωr , or equivalently, hr

i,m(x) = 𝜑r
i (x)l

r
i,m(x), for any point x ∈Ωr. The collection of basis functions hr

i,m just
defined is linearly independent,14 and the dimension of space (Ωr) is dim(Ωr) = 6|(Ωr)|. The support of the basis
function hr

i,m is the closure of the intersection between the ball B(ri; xi) and the region Ωr. Since this ball is usually much
smaller than the domain Ωr (see Figure 4), the basis function hr

i,m is zero over a large portion of Ωr. The typical form of
these basis functions can be seen in some of the references.14,62 The basis function hr

i,m belongs to H1(Ωr).14 This implies
that its trace 𝛾𝜕Ωr (h

r
i,m) along the boundary 𝜕Ωr belongs to H1/2(𝜕Ωr). Due to the smoothness of the product 𝜑r

i lr
i,m, it can be
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shown that the resulting basis function hr
i,m also belongs to the space C0,1(Ωr), and therefore its trace is well defined and

given by the continuous extension of hr
i,m to the boundary 𝜕Ωr (see Appendix A). An arbitrary function vr;h from (Ωr)

can therefore be represented as

vr;h = HT
r Ṽr, (17a)

where the vector function Hr ∶ Ωr −→ Rdim(Ωr) collects all basis functions hr
i,m (i.e., the function Hr receives a point

x ∈Ωr and returns a vector in Rdim(Ωr) whose ith component is given by hr
i,m(x) = 𝜑r

i (x)l
r
i,m(x)), and Ṽr ∈ Cdim(Ωr) is a

(column) vector of coefficients. The trace of vr;h along the boundary 𝜕Ωr is represented as

𝛾𝜕Ωr (vr;h) = TT
r Ṽr, (17b)

where the vector function Tr ∶ 𝜕Ωr −→ Rdim(Ωr) collects the traces of all basis functions hr
i,m along the boundary 𝜕Ωr

(i.e., Tr receives a point x ∈ 𝜕Ωr and returns a vector in Rdim(Ωr) whose ith component is given by (𝛾𝜕Ωr (h
r
i,m))(x) =

𝜑r
i (x)l

r
i,m(x), since hr

i,m can be continuously extended to the boundary). In addition to the trace along 𝜕Ωr, the gradient of
vr;h is calculated via the matrix function Gr ∶ Ωr −→ Rdim(Ωr)×2 as

𝛁vr;h = Ṽ
T
r Gr = Ṽ

T
r

[
𝜕Hr

𝜕x
,

𝜕Hr

𝜕y

]
. (17c)

After all finite sphere systems (Ω1), · · · ,(Ω4) in (13a) have been constructed, we define a finite dimensional
subspace h of  in (8a) as:

h
def
= (Ω1) ×(Ω2) ×(Ω3) ×(Ω4). (18a)

The norm in h is that inherited from  in (10a). Since dim(Ωr) = 6|(Ωr)| (see above), the dimension of h is

dimh =
4∑

r=1
dim(Ωr) = 6

4∑
r=1

|(Ωr)|. (18b)

4.3 Meshfree finite dimensional subspaces for the Lagrange multiplier fields

Since the Lagrange multiplier fields in problem (12a) are functionals (and not functions), we present a way to construct
meshfree spaces of functionals. The Lagrange multiplier fields are elements of the space  in (8b), and we consider now
how the discretized versions of the functionals in the individual spaces H−1/2(Γ1,2), H−1/2(Γ2,4), and H−1/2(Γ3,4) can be
characterized. We shall focus on the space H−1/2(Γ1,2) first. A finite sphere system over the interface Γ1,2 is the pair

(Γ1,2)
def
= ((Γ1,2),(Γ1,2)), (19)

which is constructed exactly as described in Section 4.2. The union U1,2 of all balls in the collection (Γ1,2) must cover
the curve Γ1,2, that is, Γ1,2 ⊂U1,2, see Figure 5. With each ball B(ri; xi) in (Γ1,2) we associate a transformed weight
function as in (14b); after these weight functions are defined, we construct a collection of PU functions 𝜑1,2

i ∶ U1,2 −→
R, i = 1, · · · |(Γ1,2)| (one for each ball) as in (14c). However, with each ball B(ri; xi) in (Γ1,2), we associate only one
constant local enrichment function, that is, we make ℒ (U1,2; i) = {l1,2

i,1 }, where l1,2
i,1 (x)

def
= 1, for any x ∈U1,2. The meshfree

finite-dimensional subspace (Γ1,2) introduced in (19) is defined as

(Γ1,2)
def
= span{h1,2

i ∶ i = 1, · · · , |(Γ1,2)|}, (20)

where the basis function h1,2
i ∶ Γ1,2 −→ R (indexed by i only) is given by the restriction of the product 𝜑1,2

i l1,2
i,1 = 𝜑1,2

i to

Γ1,2, that is, h1,2
i

def
= 𝜑1,2

i |Γ1,2 , or equivalently, h1,2
i (x)

def
= 𝜑1,2

i (x), for any point x ∈Γ1,2. The dimension of space (Γ1,2) is
therefore dim(Γ1,2) = |(Γ1,2)|, that is, equal to the number of balls in (Γ1,2). The support of the basis function h1,2

i
is the closure of the intersection between the ball B(ri; xi) and the curve Γ1,2. This ball is usually much smaller than Γ1,2
(see Figure 5), and consequently h1,2

i is zero over a large portion of Γ1,2. Using the notion of tangential gradients83,84 along
the curve Γ1,2, it can be shown that the basis function h1,2

i belongs to H1(Γ1,2). We use the fact41 that H1(Γ1,2)⊂H1/2(Γ1,2)
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F I G U R E 5 The interface between regions Ω1 and Ω2 is
given by the closed curve Γ1,2. We show the collection of balls
(Γ1,2), whose union U1,2 covers Γ1,2. Separate collections of
balls must also be set up in order to cover the interfaces Γ2,4 and
Γ3,4 (not shown)

to conclude that h1,2
i ∈ H1∕2(Γ1,2), for i = 1, · · · |(Γ1,2)|. With each basis function h1,2

i , we can associate the functional
𝜏1,2

i ∈ H−1∕2(Γ1,2) characterized as: ⟨ 𝜏1,2
i | v ⟩H1∕2(Γ1,2)

def
= ∫Γ1,2

h1,2
i v dΓ, (21)

for any v∈H1/2(Γ1,2). We define a meshfree space of functionals as

(Γ1,2)′
def
= span{𝜏1,2

i ∶ i = 1, · · · , |(Γ1,2)|}. (22)

The collection of basis functions h1,2
i is linearly independent, and it can be shown that the collection of functionals 𝜏1,2

i
is also linearly independent. Therefore, dim(Γ1,2)′ = dim(Γ1,2) = |(Γ1,2)|. Since each 𝜏1,2

i belongs to H−1/2(Γ1,2),
it follows that (Γ1,2)′ is a finite-dimensional subspace of H−1/2(Γ1,2). Let 𝜇1,2;h be a generic functional from the space
(Γ1,2)′ in (22), which can be expressed as a linear combination of functionals 𝜏1,2

i as

𝜇1,2;h =
|(Γ1,2)|∑

i=1
𝜏1,2

i ũ1,2
i , (23a)

where ũ1,2
i ∈ C denotes the ith expansion coefficient. Using (21) and (23a), it is straightforward to show that the action of

𝜇1,2;h on an arbitrary function v∈H1/2(Γ1,2) is given by

⟨ 𝜇1,2;h | v ⟩H1∕2(Γ1,2) = Ũ
T
1,2∫Γ1,2

H1,2v dΓ. (23b)

In (23b), all basis functions h1,2
i have been ordered and collected into a vector function H1,2 ∶ Γ1,2 −→ Rdim(Γ1,2), that

is, the function H1,2 receives a point x ∈Γ1,2 and returns a vector of real numbers whose ith component is given by
h1,2

i (x) = 𝜑1,2
i (x). The expansion coefficients have also been ordered and collected into the vector Ũ1,2 ∈ Cdim(Γ1,2).

The same procedure described above can be applied to the interfacesΓ2,4 andΓ3,4 in order to construct the finite-sphere
systems (Γ2,4) and (Γ3,4), respectively. In complete analogy with (23b), if the generic functionals 𝜇2,4;h and 𝜇3,4;h
from the meshfree subspaces (Γ2,4)′ and (Γ3,4)′ are determined by the expansion coefficients Ũ2,4 ∈ Cdim(Γ2,4) and
Ũ3,4 ∈ Cdim(Γ3,4), respectively, then

⟨ 𝜇2,4;h | u ⟩H1∕2(Γ2,4) = Ũ
T
2,4∫Γ2,4

H2,4u dΓ, (23c)

⟨ 𝜇3,4;h | t ⟩H1∕2(Γ3,4) = Ũ
T
3,4∫Γ3,4

H3,4t dΓ, (23d)
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for any u∈H1/2(Γ2,4) and t ∈H1/2(Γ3,4). We define the finite dimensional subspace h of  in (8b) as:

h
def
= (Γ1,2)′ ×(Γ2,4)′ ×(Γ3,4)′. (24)

The norm in h is that inherited from  in (10b). The reasoning above gives us the dimension of h:

dimh = |(Γ1,2)| + |(Γ2,4)| + |(Γ3,4)|. (25)

4.4 Discretization

The finite-dimensional counterpart to problem (12a) is

Find (ph, 𝛌h) ∈ h × h such that
a(ph, vh) + b(vh, 𝛌h) = ⟨ Q′ | vh ⟩⋆, , for any vh ∈ h,

b(ph,𝛍h) = 0, for any 𝛍h ∈ h. (26)

Since the finite-dimensional spaces h and h are isomorphic to Cdimh and Cdimh , respectively, there are vectors P̃, Ṽ ∈
Cdimh that uniquely determine ph, vh ∈ h, and vectors L̃, Ũ ∈ Cdimh that uniquely determine 𝛌h,𝛍h ∈ h. Our goal is
to derive a linear system in the unknowns P̃ ∈ Cdimh and L̃ ∈ Cdimh .

We represent vh = (v1;h, v2;h, v3;h, v4;h) and ph = (p1;h, p2;h, p3;h, p4;h), after (9a) and (18a). For each r = 1, · · ·, 4, we expand
vr;h and pr;h as in (17a), that is, vr;h = HT

r Ṽr and pr;h = HT
r P̃r, where Ṽr, P̃r ∈ Cdim(Ωr). The traces of vr;h and of pr;h are

expanded in accordance with (17b), that is, 𝛾𝜕Ωr (vr;h) = TT
r Ṽr and 𝛾𝜕Ωr (pr;h) = TT

r P̃r.
The vectors 𝛍h and 𝛌h are represented as 𝛍h = (𝜇1,2;h, 𝜇2,4;h, 𝜇3,4;h) and 𝛌h = (𝜆1,2;h, 𝜆2,4;h, 𝜆3,4;h), after (9b) and (24). We

assume that the coefficients in the expansion of 𝜇1,2;h, 𝜇2,4;h, and 𝜇3,4;h are ordered and collected into the vectors Ũ1,2 ∈
Cdim(Γ1,2), Ũ2,4 ∈ Cdim(Γ2,4), and Ũ3,4 ∈ Cdim(Γ3,4), respectively, as in Section 4.3. In the same way, the coefficients in
the expansion of 𝜆1,2;h, 𝜆2,4;h, and 𝜆3,4;h are ordered and collected into the vectors L̃1,2, L̃2,4, and L̃3,4, respectively. Using
(12b)-(12d), we write

a(ph, vh) = Ṽ
T

A P̃, (27a)

b(ph,𝛍h) = Ũ
T

B P̃, (27b)

b(vh, 𝛌h) = L̃
T

B Ṽ = Ṽ
T

B
T

L̃, (27c)

⟨ Q′ | vh ⟩⋆, = Ṽ
T

F, (27d)

where the symmetric matrix A, the matrix B, and the vector F belong to Cdimh×dimh , Rdimh×dimh , and Cdimh , respec-
tively. The coefficient vectors are recombined back into the ‘parent’ vectors as Ṽ

T
= [Ṽ

T
1 Ṽ

T
2 Ṽ

T
3 Ṽ

T
4 ], P̃

T
= [P̃

T
1 P̃

T
2 P̃

T
3 P̃

T
4 ],

Ũ
T
= [Ũ

T
1,2Ũ

T
2,4Ũ

T
3,4], and L̃

T
= [L̃

T
1,2L̃

T
2,4L̃

T
3,4]. We used (23b)-(23d) in (27b) and (27c). From (26) and (27a)-(27d), we obtain

the linear system:

Find (P̃, L̃) ∈ C
dimh × C

dimh such that[
A B

T

B 0

][
P̃
L̃

]
=

[
F
0

]
. (28)

The system in (28) above is a saddle point linear system. Other problems in mechanics,1,41 and electromagnetics16 are also
associated with linear systems having this structure. Since the support of each basis function used in the construction of
the meshfree spaces is small when compared to the size of the domain (see Sections 4.2 and 4.3), the matrices A and B
in the system above are sparse. In this particular application, dimh is much smaller than dimh. The integrals in
(12b)-(12d) can be evaluated numerically by any of the techniques routinely used in the MFS.14-16,63,64,71 The solvability
and stability of the numerical solutions derived from (26) and (28) will be discussed in Sections 6 and 7.
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4.5 The discretization length

Suppose the finite-sphere systems have been set up over all regions and all interfaces in the problem according to the
principles outlined in Sections 4.2 and 4.3, respectively. For each r = 1, · · ·, 4, let the set Xr list the centers xi of all balls in
(Ωr). Analogously, let the sets X1,2, X2,4, and X3,4 list the centers of all balls in (Γ1,2), (Γ2,4), and (Γ3,4), respectively.
We next form the union of these sets:

X
def
=

( 4⋃
r=1

Xr

)⋃
(X1,2 ∪ X2,4 ∪ X3,4). (29a)

The set X collects the centers xi of all balls in the problem (i.e., the balls covering all regions and all interfaces). The
discretization length h is calculated as

h
def
= max

i=1,···,|X| min
j=1,···,|X|

j≠i

||xi − xj||, (29b)

where |X| is the number of elements in the set X (or the total number of balls in the problem).

5 NUMERICAL EXAMPLES: SCATTERING PROBLEMS

In the examples to follow, we depart from the basic geometry given in Figure 1, and specialize the procedures to other
geometries. However, these geometries are such that, in each particular instance, the assumptions made in Section 2.1 are
satisfied. The solution times for the examples in Sections 5.1–5.3 are approximately 2 min, when the codes are executed
on a 4 GB, 2.4 GHz laptop.

5.1 Numerical error in the solution of a model problem

In order to study the approximation error, we construct a problem that, although not properly a scattering problem, it
nevertheless possesses the same form of the scattering problems described in Sections 2.2–2.4. Consider the geometrical
setting in Figure 6(A), for which M = 1. In this problem, we assume all quantities to be dimensionless. The material
parameters of regions Ω1 and Ω2 are 𝜌1 = 4 and 𝜌2 = 1 (density), and K1 = 2 and K2 = 1 (bulk modulus). Consequently,
the ‘relative’ values are 𝜌1,rel = 4 and 𝜌2,rel = 1, and K1,rel = 2 and K2,rel = 1, according to (4a) and (4b). We choose a unitary
frequency, or f = 1. In these circumstances, the wavenumber associated with the host medium ΩM + 1 = Ω2 becomes
k = 𝜔∕c = 2𝜋f

√
𝜌2∕K2 = 2𝜋 (see Section 2.2). The wavelength of a (hypothetical) plane wave propagating in the host

medium with frequency f = 1 is𝜆= 2𝜋/k= 1. RegionΩ1 is a circle with radius equal to𝜆, whereas the circleΓR has its radius
adjusted to R= 1.5𝜆. RegionΩ1 is simply connected, and regionΩ2 (the host medium) is not simply connected, as expected
(see Assumption 5 in Section 2.1). This problem has a single interface, indicated by Γ1,2 in Figure 6(A), representing the
interface between regions Ω1 and Ω2. Since the relative densities are constant, Equation (5) becomes: For r = 1, 2, find
pr ∶ Ωr −→ C such that for any x ∈Ωr,

𝛁2pr(x) + k2 𝜌r,rel

Kr,rel
pr(x) = 0. (30a)

We define the new wavenumbers k1
def
= k

√
𝜌1,rel∕K1,rel and k2

def
= k

√
𝜌2,rel∕K2,rel. The boundary condition along ΓR is chosen

as: For all x ∈ΓR,

𝛁p2(x) ⋅ n̂2,∞(x) + jk2p2(x) = 1, (30b)

where n̂2,∞ is the outward-pointing unit normal vector at x. The interface conditions along Γ1,2 are the same as those in
(7b) and (7c). It can be verified that the solution to this problem is

p1(x) = A1J0(k1||x||), x ∈ Ω1,

p2(x) = A2J0(k2||x||) + B2Y0(k2||x||), x ∈ Ω2, (30c)
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F I G U R E 6 A (dimensionless)
model problem for the purpose of
studying the error analysis. (A)
Geometry of the problem, with M = 1
object. (B) Real part of the solution
(meshfree). (C) Imaginary part of the
solution (meshfree). (D) Numerical
and analytical solutions along the
line segment 0≤ x ≤R, y = 0 (shown
in white in Figure 6(B),(C))

where J0 and Y 0 are the zero-order Bessel functions of the first and second kinds, respectively, and ||x|| is the Euclidean
norm of vector x. The constants A1, A2, and B2 can be found by inserting (30c) into the two interface conditions along Γ1,2
and into the boundary condition (30b).

In order to approximate the pressure fields p1 and p2 (in regions Ω1 and Ω2), and the Lagrange multiplier field 𝜆1,2
(alongΓ1,2), we employ the three finite sphere systems(Ω1),(Ω2), and(Γ1,2), respectively. The number of balls in
each system is |(Ω1)| = 627 balls, |(Ω2)| = 852 balls, and |(Γ1,2)| = 87 balls, so that |X| = 1566 balls (see Section 4.5).
The corresponding discretization length is h = 0.0732, see (29b). The solution to this problem is radially symmetric,
see Figure 6(B),(C). Figure 6(D) shows both the real and imaginary parts of the solution along the line 0≤ x ≤R, y = 0
(the white segment in Figure 6(B),(C)). The numerical solution quite closely matches the analytical solution (30c). The
interface between Ω1 and Ω2 is at x = 1, and there are no oscillations close to this point (at the curve’s ‘knee’). Finally, we
vary the number of balls in each finite sphere system so that the total number of balls in the problem |X| ranges from 172
to 1566. For each numerical solution ph = (p1;h, p2;h), we calculate the relative error

eh
def
=

||p − ph||||p|| =
(||p1 − p1;h||2H1(Ω1)

+ ||p2 − p2;h||2H1(Ω2)
)1∕2

(||p1||2H1(Ω1)
+ ||p2||2H1(Ω2)

)1∕2
, (30d)

as a function of the discretization length h, where the norm in space  is defined in (10a), and p = (p1, p2) is the vector
collecting the analytical solutions (30c). Figure 7 shows how the error in (30d) decreases with h.

5.2 Scattering by a kite-shaped object

We again have a single object (M = 1), corresponding to the kite-shaped artifact shown in Figure 8(A). The material
properties in regions Ω1 and Ω2 are 𝜌1 = 2.80× 103 kg/m3 and 𝜌2 = 1× 103 kg/m3 (density), and K1 = 70× 109 Pa and
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F I G U R E 7 The relative error calculated in the -norm (10a) as a function
of the discretization length h

K2 = 2.28× 109 Pa (bulk modulus). The ‘relative’ values are 𝜌1,rel = 2.8 and 𝜌2,rel = 1, and K1,rel = 30.70 and K2,rel = 1,
according to (4a) and (4b). Let the reference frequency be f 0 = 5 kHz. The reference wavenumber k0 associated with the
host medium Ω2 is k0 = 𝜔0∕c = 2𝜋f0

√
𝜌2∕K2 = 20.81 rad∕m (see Section 2.2). The reference wavelength of a (hypotheti-

cal) plane wave propagating in Ω2 with frequency f 0 is given by 𝜆0 = 2𝜋/k0 = 3.02× 10−1 m. Points x = (xkite, ykite) along
the contour of region Ω1 in Figure 8(A) are described parametrically as

xkite(𝜃) = 𝜆0
(cos 𝜃 + 0.65 cos 2𝜃 − 0.65)

1.5
, ykite(𝜃) = 𝜆0 sin 𝜃, (31)

where 0≤ 𝜃 ≤ 2𝜋 is the polar angle measured counterclockwise around the origin of R2. The radius of the outer circular
boundary ΓR is R = 2.3𝜆0. Region Ω1 is simply connected, and region Ω2 (the host medium) is not simply connected, as
expected (see Assumption 5 in Section 2.1). As in Section 5.1, this problem has a single interface, indicated by Γ1,2 in
Figure 8(A).

The actual incident field is given by a plane wave with frequency equal to the reference frequency, that is, f = f 0.
The wavenumber of the problem is then given by k = k0, and the direction of propagation of the plane wave is from
the left to the right, that is, along the unit vector k̂ = [1, 0]. The incident field is therefore pinc(x) = e−jkk̂⋅x = e−jkx N∕m2,
x ∈ Ω2.

We again set up three finite sphere systems such that |(Ω1)| = 386 balls, |(Ω2)| = 2531 balls, and |(Γ1,2)| = 80
balls, resulting in |X| = 2997 balls (see Section 4.5). The modulus of the total field ph = (p1;h, p2;h), the real part, and the
imaginary part are plotted throughout the computational domain in Figure 8(B)–(D), respectively. A zoom is applied to
the solutions along the line segment xkite(𝜋)− 0.2𝜆0 ≤ x ≤ xkite(𝜋)+ 0.2𝜆0, y = 0 (see Equation (31)), shown in white in
Figure 8(C),(D). The real and imaginary parts of the meshfree and FEM reference solutions (for the finite element analysis
we used a fine mesh of triangular quadratic Lagrangian elements) are calculated along this line segment (which crosses
the interface), and are shown in Figure 8(E),(F), respectively. The agreement is very good, and the meshfree solution does
not present oscillations close to the interface.

5.3 Scattering by a cladded object

In this example the geometric setting consists of two objects (M = 2). It corresponds to a square column Ω1 surrounded by
a circular cladding Ω2, shown in Figure 9(A). The structure is immersed in the host medium Ω3. The material densities in
regions Ω1, Ω2, and Ω3 are 𝜌1 = 1.20 kg/m3, 𝜌2 = 8× 103 kg/m3, and 𝜌3 = 1× 103 kg/m3, respectively. The bulk moduli are
K1 = 1.01× 105 Pa, K2 = 200× 109 Pa, and K3 = 2.28× 109 Pa. The ‘relative’ values for the densities are 𝜌1,rel = 1.2× 10−3,
𝜌2,rel = 8, and 𝜌3,rel = 1, whereas the ‘relative’ values for the bulk moduli are K1,rel = 4.43× 10−5, K2,rel = 87.72, and
K3,rel = 1, according to (4a) and (4b). The reference frequency is chosen as f 0 = 1 kHz, and consequently the reference
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F I G U R E 8 Scattering by a kite-shaped object. (A) Geometry of the problem. (B) The modulus of the meshfree solution throughout the
computational domain. (C) Real part of the meshfree solution. (D) Imaginary part of the meshfree solution. (E) Real part of meshfree and
FEM solutions along the segment xkite(𝜋)− 0.2𝜆0 ≤ x ≤ xkite(𝜋)+ 0.2𝜆0, y = 0 (shown in white in Figure 8(C)). (F) Imaginary part of meshfree
and FEM solutions along the same segment (shown in white in Figure 8(D))

wavenumber k0 associated with the host medium Ω3 is k0 = 𝜔0∕c = 2𝜋f0
√
𝜌3∕K3 = 4.16 rad∕m (see Section 2.2). The

reference wavelength of a (hypothetical) plane wave propagating in Ω3 with frequency f 0 is given by 𝜆0 = 2𝜋/k0 = 1.51 m.
The side of the square column is 𝜆0, and the radius of the circular cladding is also 𝜆0, see Figure 9(A). The radius of the
outer circular boundary ΓR is R = 1.75𝜆0. Region Ω1 is simply connected, whereas regions Ω2 and Ω3 are not simply con-
nected. This problem has two interfaces, indicated by Γ1,2 and Γ2,3 in Figure 9(A), representing the interfaces between
regions Ω1 and Ω2, and between regions Ω2 and Ω3, respectively.

The actual incident field is given by a plane wave with frequency equal to three times the reference frequency, that
is, f = 3f 0. The wavenumber of the problem is then given by k = 𝜔∕c = 2𝜋f

√
𝜌3∕K3 = 12.48 rad/m (see Section 2.2). The

direction of propagation of the plane wave is from the left to the right, that is, along the unit vector k̂ = [1, 0]. The incident
field is therefore pinc(x) = e−jkk̂⋅x = e−jkx N∕m2, x ∈ Ω3.

In order to approximate the pressure fields p1, p2, and p3 (in regions Ω1, Ω2, and Ω3), and the Lagrange multiplier
fields 𝜆1,2 (along Γ1,2) and 𝜆2,3 (along Γ2,3), we employ the five finite sphere systems (Ω1), (Ω2), (Ω3), (Γ1,2),
and (Γ2,3), respectively. The number of balls in each system is |(Ω1)| = 192 balls, |(Ω2)| = 417 balls, |(Ω3)| = 1195
balls, |(Γ1,2)| = 48 balls, and |(Γ2,3)| = 81 balls, so that |X| = 1933 balls (see Section 4.5). The modulus, the real
part, and the imaginary part of the total field ph = (p1;h, p2;h, p3;h) are plotted throughout the computational domain in
Figure 9(B)–(D), respectively. A zoom is applied to the solutions along the line segment −1.25𝜆0 ≤ x ≤ − 0.25𝜆0, y = 0,
shown in white in Figure 9(C),(D). This segment crosses the two interfaces Γ1,2 and Γ2,3. We calculate the real and imagi-
nary parts of the meshfree and FEM reference solutions (using a fine mesh of triangular quadratic Lagrangian elements)
along this segment. They agree with each other, as shown in Figure 9(E),(F), and again there are no oscillations close to
the interfaces in the meshfreesolutions.
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F I G U R E 9 Scattering by a square column surrounded by a circular cladding. (A) Geometry of the problem. (B) The modulus of the
meshfree solution throughout the computational domain. (C) Real part of the meshfree solution. (D) Imaginary part of the meshfree
solution. (E) Real part of meshfree and FEM solutions along the line segment −1.25𝜆0 ≤ x ≤ −0.25𝜆0, y = 0 (shown in white in Figure 9(C)).
(F) Imaginary part of meshfree and FEM solutions along the same segment (shown in white in Figure 9(D))

F I G U R E 10 Dimensions of an object centered at the origin O′

5.4 Scattering by a group of objects

In this example, the geometric setting consists of three objects (M = 3). They are ‘torpedo-like’ in form, as shown in
Figure 10. These objects occupy the regions corresponding to Ω1, Ω2, and Ω3 in Figure 11(A), and are immersed in the
host medium Ω4. The material densities in the problem are 𝜌1 = 𝜌2 = 𝜌3 = 8× 103 kg/m3, and 𝜌4 = 1× 103 kg/m3. The
bulk moduli are given by K1 = K2 = K3 = 200× 109 Pa, and K4 = 2.28× 109 Pa. The ‘relative’ values for the densities are
𝜌1,rel = 𝜌2,rel = 𝜌3,rel = 8, and 𝜌4,rel = 1, whereas the ‘relative’ values for the bulk moduli are K1,rel = K2,rel = K3,rel = 87.72,
and K4,rel = 1, according to (4a) and (4b).
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F I G U R E 11 Scattering by a group of three objects. (A) Geometry of the problem. (B) The modulus of the meshfree solution throughout
the computational domain. (C) Real part of the meshfree solution. (D) Imaginary part of the meshfree solution. (E) Real part of the meshfree
solution in the small square region shown in (C). (F) Imaginary part of the meshfree solution in the small square region shown in (D). (G)
Real part of meshfree and FEM solutions along the segment −4.625𝜆0 ≤ x ≤ −4.375𝜆0, y = 2𝜆0 (shown in white in (E)). (H) Imaginary part of
meshfree and FEM solutions along the same segment (shown in white in (F))

We choose a reference frequency of f 0 = 4 kHz, and the reference wavenumber k0 associated with the host medium Ω4
is k0 = 𝜔0∕c = 2𝜋f0

√
𝜌4∕K4 = 16.65 rad∕m (see Section 2.2). The reference wavelength of a (hypothetical) plane wave

propagating in Ω4 with frequency f 0 is given by 𝜆0 = 2𝜋/k0 = 0.37 m. Each object is formed by a semicircle of radius 𝜆0
connected to an isosceles triangle with base 2𝜆0 (the diameter of the semicircle) and height 3𝜆0, see Figure 10. Figure
10 shows a single object drawn in a relative coordinate system x′y′ whose origin O′ coincides with the center of the
semicircle. In the absolute coordinate system xy (in which the problem is posed), object 1 is located in such a way that
O′ = (−3.5𝜆0, 2𝜆0), object 2 is such that O′ = (−𝜆0, 0), and object 3 is such that O′ = (1.5𝜆0,−2𝜆0), see Figure 11(A).
The radius of the outer circular boundary ΓR is R = 5.5𝜆0. Regions Ω1, Ω2, and Ω3 are simply connected, whereas region
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Ω4 (the host medium) is not simply connected (see Figure 11(A)). This problem has three interfaces, indicated by Γ1,4,
Γ2,4, and Γ3,4 in Figure 11(A), which represent the interfaces between regions Ω1 and Ω4, between regions Ω2 and Ω4, and
between regions Ω3 and Ω4, respectively.

The actual incident field is given by a plane wave with frequency equal to the reference frequency, that is, f = f 0, so that
the wavenumber of the problem is given by k = k0 = 16.65 rad/m (see Section 2.2). The incident plane wave propagates in
the direction of the unit vector k̂ = [cos 30◦ sin 30◦] = [

√
3∕2, 1∕2], and the expression for the incident field is therefore

given by pinc(x) = e−jkk̂⋅x = e−jk(
√

3x+y)∕2 N∕m2, x ∈ Ω4.
In order to approximate the pressure fields p1, p2, p3, and p4 (in regions Ω1, Ω2, Ω3, and Ω4), and the

Lagrange multiplier fields 𝜆1,4 (along Γ1,4), 𝜆2,4 (along Γ2,4), and 𝜆3,4 (along Γ3,4), we use the seven finite sphere
systems (Ω1), (Ω2), (Ω3), (Ω4), (Γ1,4), (Γ2,4), and (Γ3,4), respectively. The number of balls in
each system is |(Ω1)| = 487 balls, |(Ω2)| = 470 balls, |(Ω3)| = 474 balls, |(Ω4)| = 8011 balls, and |(Γ1,4)| =|(Γ2,4)| = |(Γ3,4)| = 90 balls, so that |X| = 9712 balls (see Section 4.5). The modulus, the real part, and the
imaginary part of the total field ph = (p1;h, p2;h, p3;h, p4;h) are plotted throughout the computational domain in
Figure 11(B)–(D), respectively. We examine the fields closely in a small box placed at the front end of object 1
(see Figure 11(C),(D)). This square box is centered at the point (−4.5𝜆0, 2𝜆0) (the front end of object 1), and its
side is 𝜆0/2 in length, so that it corresponds to the region −4.75𝜆0 ≤ x ≤ − 4.25𝜆0, 1.75𝜆0 ≤ y≤ 2.25𝜆0. A zoom is
applied to this region, and the fields are shown in Figure 11(E),(F). The interface Γ1,4 cuts through this box, and
the line segment described by −4.625𝜆0 ≤ x ≤ − 4.375𝜆0, y = 2𝜆0, by its turn, crosses the interface Γ1,4 as illustrated
in Figure 11(E),(F). This segment is shown in white. Meshfree and FEM solutions (using a fine mesh of triangular
quadratic Lagrangian elements) are calculated along this line segment, and the results are given in Figure 11(G),(H).
Again, the meshfree solutions are able to reproduce the discontinuity in the gradients, without oscillations close to the
interface.

6 THE INF-SUP CONDITIONS

The well-posedness of problems (12a) and (26) is described by the classical theory of mixed (or hybrid)
formulations.1,2,39-41,82,85,86 When the results of this theory are specialized to the scattering problems studied in this
work, it can be shown that the well-posedness of the finite-dimensional problem (26) is governed by the following
theorem:

Theorem 1. Consider the finite-dimensional subspaces h ⊂  and h ⊂  . Let a ∶  ×  −→ C and b ∶  ×  −→ C

be the two bounded bilinear forms introduced in (12b) and (12c), respectively. The finite-dimensional saddle-point
problem (26) is well-posed (i.e., its solution exists, is unique, and depends continuously on the data) if and only if the
following two conditions are satisfied:

1. There is a constant 𝛼h > 0 such that inf
wh∈ker Bh

wh≠0

sup
vh∈ker Bh

vh≠0

|a(wh, vh)|||wh|| ||vh|| ≥ 𝛼h,

2. There is a constant 𝛽h > 0 such that inf
𝛍h∈h
𝛍h≠0

sup
vh∈h
vh≠0

|b(vh,𝛍h)|||𝛍h|| ||vh|| ≥ 𝛽h,

where the spaces , ,h, andh are given in (8a), (8b), (18a), and (24), respectively. These are referred to as the (discrete)
inf-sup conditions. ■

In (32a), Bh is the operator Bh ∶ h −→ ⋆
h , which is defined as: For any (vh𝛍h) ∈ h × h,

⟨ Bh(vh) | 𝛍h ⟩⋆
h ,h

def
= b(vh,𝛍h). (33)

The kernel (or nullspace) of Bh is denoted by ker Bh, and⋆
h is the dual space ofh.

40,41,80,82 These conditions are discussed
in detail in another paper.72 In that work, we touch on subjects like the non-coercivity (or non-ellipticity87) of the bilinear
form a derived from the Helmholtz equation,88 and also on ways to overcome the difficulty of dealing with norms in
the fractional Sobolev space H−1/2, which are embedded in the norm of the space  , according to (8b), (10b), and (11b).
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Then we finally derive72 stronger and simplified inf-sup conditions, in which only real-valued numbers (i.e., real-valued
vectors and matrices) are used (we no longer use complex numbers). These are given by:

1. There is a constant 𝛼h > 0 such that inf
�̃�∈R2K

�̃�≠0

sup
�̃�∈R2K

�̃�≠0

�̃�T
A �̃�√

�̃�T
D �̃�

√
�̃�T

D �̃�
≥ 𝛼h, (34a)

2. There is a constant 𝛽h > 0 such that inf
�̃�∈R2 dimh

�̃�≠0

sup
�̃�∈R2 dimh

�̃�≠0

�̃�T
B �̃�√

�̃�T
M �̃�

√
�̃�T

X �̃�
≥ 𝛽h, (34b)

where K is the dimension of Bh.72 We show72 that condition (34a) is sufficient to imply condition (32a), that is, if (34a)
holds true, then (32a) also holds true. In the same way, (34b) is sufficient to imply (32b). These new conditions form the
basis of the inf-sup testing procedure, described in Section 7. The matrices A, D, B, M, and X are given by

A
def
= Re{J

T
K𝚿

T
A 𝚿 JK}, (35a)

D
def
= Re{J

†
K𝚿

†
S 𝚿 JK}, (35b)

B
def
= Re{J

T
dimh B Jdimh}, (35c)

M
def
= Re{J

†
dimh N

T
Q

−1
N Jdimh}, (35d)

X
def
= Re{J

†
dimh S Jdimh}, (35e)

where the matrices A and B in (35a) and (35c) are the same as those in (27a) and (27b), respectively. The matrices A, D,
M, and X are symmetric. Specifically, the matrices D, M, and X are used in appropriate norms.72 The symbols JK , 𝚿, S,
Jdimh , Jdimh , N, and Q denote other auxiliary matrices.72

7 INF-SUP TESTING

7.1 First inf-sup condition

In order to evaluate if condition (34a) holds, we first verify if ker A
T
= {0}.

Case 1. ker A
T ≠ {0}. This implies that there are vectors �̃� ∈ R2K such that �̃� ≠ 0 and A

T
�̃� = 0. If we pick up one of

these vectors �̃�, it follows that for any vector �̃� ∈ R2K , it is the case that �̃�T
A �̃� = �̃�T

A
T
�̃� = 0, and (34a) cannot be

satisfied.

Case 2. ker A
T
= {0}. In this case, it can be proven40,41 (since we are left with real-valued matrices and vectors)

that

inf
�̃�∈R2K

�̃�≠0

sup
�̃�∈R2K

�̃�≠0

�̃�T
A �̃�√

�̃�T
D �̃�

√
�̃�T

D �̃�
=
√
𝜎min(h), (36a)

where 𝜎min(h) is the smallest eigenvalue in the problem:

A D
−1

A
T
�̃�i = 𝜎iD �̃�i. (36b)

This smallest eigenvalue depends on the matrices A and D, constructed with basis functions from spaces h and h in
(18a) and (24), respectively, which are characterized by the discretization length h (29b). So 𝜎min can be ‘indexed’ by
h, and we write 𝜎min(h). Therefore, according to (36a), condition (34a) is satisfied if

√
𝜎min(h) > 0, that is, the choice

𝛼h =
√
𝜎min(h) satisfies (34a).
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7.2 Second inf-sup condition

Condition (34b) is verified likewise, that is, we first check if ker B
T
= {0}.

Case 1. ker B
T ≠ {0}. This implies that there are vectors �̃� ∈ R2 dimh such that �̃� ≠ 0 and B

T
�̃� = 0. If we pick up one

of these vectors �̃�, it follows that for any vector �̃� ∈ R2 dimh , it is the case that �̃�T
B �̃� = �̃�T

B
T
�̃� = 0, and (34b) cannot be

satisfied.

Case 2. ker B
T
= {0}. In this case, it can be shown that

inf
�̃�∈R2 dimh

�̃�≠0

sup
�̃�∈R2 dimh

�̃�≠0

�̃�T
B �̃�√

�̃�T
M �̃�

√
�̃�T

X �̃�
=
√
𝜏min(h), (37a)

where 𝜏min(h) is the smallest eigenvalue in the problem:

B X
−1

B
T
�̃�i = 𝜏iM �̃�i. (37b)

According to (37a), condition (34b) is satisfied if
√
𝜏min(h) > 0, that is, the choice 𝛽h =

√
𝜏min(h) satisfies (34b).

7.3 Stability analysis and testing

In the stability analysis, we are concerned with the ability of the discrete problems to retain their well-posedness as the
finite-dimensional subspaces h and h are successively refined, or as the discretization length h becomes successively
smaller.1,39,40 In order for the discrete problem (26) to retain its well-posedness, four hypotheses must be satisfied. They
are:

1. ker A
T
= {0}, for all h> 0,

2. ker B
T
= {0}, for all h> 0.

These two hypotheses come from Case 2 in Sections 7.1 and 7.2, respectively. If they hold true, the inf-sup values
√
𝜎min(h)

and
√
𝜏min(h) in (36a) and (37a) can be calculated for any h. The third and fourth hypotheses are:

3. inf
h>0

√
𝜎min(h) > 0,

4. inf
h>0

√
𝜏min(h) > 0.

The last two hypotheses guarantee that the inf-sup values do not approach zero as h becomes smaller.
From a practical viewpoint, it is unreasonable to directly verify these four hypotheses for all h> 0, because the number

of tests to be performed is infinite. In the practical stability testing, we do not prove that the third and fourth hypotheses are
satisfied, but evaluate the likelihood that they will not be violated.1 This is accomplished by verifying the four hypotheses
above for a finite sequence of Ktest values for h. If it is the case that the kernels of A

T
and B

T
are always zero, it suffices

to investigate the smallest eigenvalues 𝜎min(h) and 𝜏min(h) until a trend is detected. Ideally, these terms should ‘lock’, or
stabilize at a given value greater than zero, which allows us to conclude that the third and fourth hypotheses are unlikely
to be violated. In this case, we say that the inf-sup test has been passed. Experience shows that a choice of Ktest between
5 and 10 is sufficient to reveal the trend.

The first ideas concerning the practical stability testing were introduced by Chapelle and Bathe,89 and then discussed
and successfully applied in later works69,90-95 in the context of FEMs. We make the following remark: According to (35a),
the matrix A depends on the matrix A. The matrix A in turn depends on the wavenumber k, since it comes from the
discretization of the bilinear form a, see (12b) and (27a). But k = 𝜔/c, where 𝜔 = 2𝜋f and c is a constant (the speed of
sound in the host medium, see Section 2.2). In this way, A depends on the frequency f of the incident field. Therefore,
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F I G U R E 12 The inf-sup
values for the model problem
solved in Section 5.1. (A) First
inf-sup condition,
log10

√
𝜎min(h, 1) as a function of

log10h. (B) Second inf-sup
condition, log10

√
𝜏min(h) as a

function of log10h

the smallest eigenvalue 𝜎min in (36b) also depends on f . We write 𝜎min(h, f ) in order to show the dependence of 𝜎min on
h and f . These testing procedures will now be applied to the four examples studied in Section 5.

8 NUMERICAL EXAMPLES: THE INF-SUP TEST

We report that in all four examples examined in Section 5, the matrices A
T

and B
T

have only the zero vector in their
kernels, for each one of the Ktest times the tests were performed. In this way, the first and second hypotheses from Section 7
have been verified. The next subsections are devoted to testing the third and fourth hypotheses.

8.1 Solution of a model problem (Section 5.1)

In this example, we use Ktest = 7. The sequence of finite sphere systems is such that the number of balls over Ω1
varies from 57 to 164, the number of balls over Ω2 varies from 90 to 240, and the number of balls over Γ1,2 varies from
25 to 43.

In Section 5.1, we chose a unitary frequency, or f = 1 (dimensionless), so that the wavenumber associated with the
host medium Ω2 becomes k = 𝜔∕c = 2𝜋f

√
𝜌2∕K2 = 2𝜋 (see Section 2.2). In testing the first inf-sup condition, the entries

in matrix A are calculated using this value for k. We plot the values
√
𝜎min(h, 1) from (36b) in Figure 12(A). They are all

positive and stabilized around a positive value as h decreases, so that the third hypothesis (Section 7.3) is satisfied. In
Figure 12(B) we plot the values

√
𝜏min(h) from (37b) relative to the second inf-sup condition. They are also all positive

and stabilized at a positive value, so that the fourth hypothesis (Section 7.3) is satisfied. We conclude that the inf-sup test
has been passed, or that this problem keeps its well-posedness as h decreases.

8.2 Scattering by a kite-shaped object (Section 5.2)

For this example, we have Ktest = 9. The sequence of finite sphere systems is such that the number of balls over Ω1 varies
from 64 to 275, the number of balls over Ω2 varies from 389 to 1763, and the number of balls over Γ1,2 varies from 31 to 67.

In Section 5.2, the incident plane wave has a frequency of f = f 0 = 5 kHz, so that the wavenumber of the
problem is k = k0 = 20.81 rad/m. When testing the first inf-sup condition, we consider a range of frequencies
from 1.5 to 15 kHz, with increments of 500 Hz. For each value of frequency f , we determine the wavenumber k =
𝜔∕c = 2𝜋f

√
𝜌2∕K2 (see Section 2.2) and calculate the smallest eigenvalues 𝜎min(h, f ) in (36b) for the sequence of

Ktest = 9 discretizations. The graph corresponding to the values
√
𝜎min(h, f ) is shown in Figure 13(A). We observe

that for each frequency f , they are positive and stabilized around a positive value as h decreases. At any given
point on the graph, there is variation in the direction of f , but not in the direction of h. The graph shows a pro-
file with almost parallel lines along the h axis, as shown in Figure 13(A). The results allow us to conclude that
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F I G U R E 13 The inf-sup values, scattering by a kite-shaped object (Section 5.2). (A) First inf-sup condition, log10
√
𝜎min(h, f ) as a

function of log10h and f . (B) Second inf-sup condition, log10
√
𝜏min(h) as a function of log10h

for any given fixed frequency f , the inf-sup values do not decrease with h. In this way, for each fixed frequency f ,
the third hypothesis (Section 7.3) is satisfied. In Figure 13(B) we show the values

√
𝜏min(h) relative to the second inf-sup

condition. They are all positive and stabilized at a positive value, so that the fourth hypothesis (Section 7.3) is satisfied.
We therefore conclude that for the range of frequencies considered, the inf-sup test has been passed.

8.3 Scattering by a cladded object (Section 5.3)

In this example, we use Ktest = 8. The sequence of finite sphere systems is such that the number of balls over Ω1 varies
from 45 to 140, the number of balls over Ω2 varies from 97 to 279, and the number of balls over Ω3 varies from 274 to 821.
In what concerns the interfaces, the number of balls over Γ1,2 varies from 20 to 40, and the number of balls over Γ2,3 varies
from 37 to 67.

In Section 5.3, the incident plane wave has a frequency of f = 3f 0 = 3 kHz, so that the wavenumber of the problem
is k = 12.48 rad/m. In order to test the first inf-sup condition, we consider a range of frequencies from 500 Hz to
5 kHz, with increments of 125 Hz. We proceed as in Section 8.2: For each value of frequency f , we find the wavenum-
ber k = 𝜔∕c = 2𝜋f

√
𝜌3∕K3 (Section 2.2) and calculate the smallest eigenvalues 𝜎min(h, f ) in (36b) for the sequence of

Ktest = 8 discretizations. The graph corresponding to the values
√
𝜎min(h, f ) is shown in Figure 14(A). For each fre-

quency f , they are positive and stabilized around a positive value as h decreases. Therefore, for each fixed frequency f ,
the third hypothesis (Section 7.3) is satisfied. We observe the same pattern described in Section 8.2, that is, the values√
𝜎min(h, f ) vary with f , but there is almost no variation with h (a parallel profile along the h axis). In Figure 14(B) we

show the values
√
𝜏min(h) relative to the second inf-sup condition. They are all positive and stabilized at a positive value.

It follows that the fourth hypothesis (Section 7.3) is satisfied. For this range of frequencies, the inf-sup test has been
passed.

8.4 Scattering by a group of objects (Section 5.4)

In this example, Ktest = 8. The sequence of finite sphere systems is such that the number of balls over Ω1 varies from 54 to
135, the number of balls over Ω2 varies from 57 to 137, the number of balls over Ω3 varies from 56 to 138, and the number
of balls over Ω4 varies from 767 to 2115. In what concerns the interfaces, the number of balls over Γ1,4, Γ2,4, and Γ3,4 varies
from 27 to 45.

In Section 5.4, the incident plane wave has a frequency of f = f 0 = 4 kHz, so that the wavenumber of the problem is
k = k0 = 16.65 rad/m. When testing the first inf-sup condition, we consider a range of frequencies from 2 kHz to 10 kHz,
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F I G U R E 14 The inf-sup values, scattering by a cladded object (Section 5.3). (A) First inf-sup condition, log10
√
𝜎min(h, f ) as a function

of log10h and f . (B) Second inf-sup condition, log10
√
𝜏min(h) as a function of log10h

F I G U R E 15 The inf-sup values, scattering by a group of objects (Section 5.4). (A) First inf-sup condition, log10
√
𝜎min(h, f ) as a function

of log10h and f . (B) Second inf-sup condition, log10
√
𝜏min(h) as a function of log10h

with increments of 250 Hz. The procedure is the same as that from Sections 8.2 and 8.3: For each value of frequency f ,
we find the wavenumber k = 𝜔∕c = 2𝜋f

√
𝜌4∕K4 (Section 2.2) and calculate the smallest eigenvalues 𝜎min(h, f ) in (36b)

for the sequence of Ktest = 8 discretizations. In Figure 15(A) we plot the graph with the values
√
𝜎min(h, f ). For each

frequency f , they are positive and stabilized around a positive value as h decreases. In this way, for each fixed frequency f ,
the third hypothesis (Section 7.3) is satisfied. We again observe the same pattern described in Sections 8.2 and 8.3, that is,
the values

√
𝜎min(h, f ) vary with f , but there is almost no variation with h (the profile is essentially parallel to the h axis).

Figure 15(B) shows the values
√
𝜏min(h) relative to the second inf-sup condition. They are all positive and stabilized at

a positive value. Therefore the fourth hypothesis (Section 7.3) is satisfied. For the range of frequencies considered, the
discretization passed the inf-sup test.

9 CONCLUDING REMARKS

The focus of this work is on the design of a completely meshfree procedure able to deal with the problem of discontinuous
gradients in acoustic scattering. The procedure does not depend on any kind of adjustable parameter. We used the MFS
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as the underlying meshfree method, extending it for the first time to problems posed in nonhomogeneous media. Other
meshfree methods could of course also be used as the underlying method. But the ease in constructing basis functions
(no need for inverting matrices as in the moving-least squares shape functions9) and in incorporating local enrichment
functions, together with its superior performance (as attested by a number of earlier works, see Section 1), make the MFS
an attractive choice.

The discontinuous gradients are treated with Lagrange multipliers, and the final variational problem is written as
a saddle-point problem (mixed formulation). The solutions provided by our method are in good agreement with those
provided by the FEM, and the meshfree solutions present no oscillations close to the interface.

The second part of the paper deals with the inf-sup stability of the discrete mixed problems. The well-established
general theory of inf-sup stability of mixed methods is specialized to our mixed formulation of the acoustic scattering
problem, which is a two-field problem, posed in terms of the pressure fields and the Lagrange multiplier fields. Two inf-sup
conditions are needed, since the standard bilinear form originating from the Helmholtz equation is not coercive. Based
on stronger inf-sup conditions that are sufficient to imply the original conditions,72 we move next to the linear algebraic
level, and a subsequent application of the inf-sup test reveals that the discrete problems are inf-sup stable. A variety of
geometries is investigated (considering both simply connected and not simply-connected domains).

In future works, different functions (e.g., plane waves) can be added to the collections of local enrichment functions15

(in addition to the quadratic functions used here), as done for the OFE,20,22 and their possible impact on the inf-sup
stability of the discrete problems can be evaluated. The solution technique described in this paper can be extended to
three-dimensional scattering problems,16 but the required numerical operations may be large. Other directions of research
include inquiries into the connection between the characteristics of the bilinear forms involved in our problem and the
inf-sup constants.96 Another line of investigation is the application of the proposed method to scattering problems posed in
nonhomogeneous media in which the interfaces are open curves (as in Figure 2(B)). Despite the fact that the discretization
procedures proposed in Section 4 could in principle yield good results, we point out that the treatment of open curves may
lead to different function spaces. The Lagrange multiplier fields may no longer be elements of the Sobolev space H−1/2,
but may belong to the Lions-Magenes space H−1∕2

00 instead.32 Since the derivation of the correct inf-sup conditions may
depend on these spaces, further theoretical work is required.
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APPENDIX A. THE TRACE THEOREM

Let D be an open and bounded subset of R2. We introduce the spaces of continuous functions77:

C(D)
def
= {u ∶ D −→ C | u is continuous on D}, (A1)

C1(D)
def
= {u ∈ C(D) |𝜕u∕𝜕x, 𝜕u∕𝜕y ∈ C(D)}, (A2)

C(D)
def
=

{
u ∈ C(D) | sup

x∈D
u(x) < ∞

}
, (A3)

C0,1(D)
def
=

⎧⎪⎨⎪⎩u ∈ C(D) | sup
x,y∈D

x≠y

|u(x) − u(y)||x − y| < ∞
⎫⎪⎬⎪⎭ . (A4)

In (A3), D = D ∪ 𝜕D. If u ∈ C(D), then u can be continuously extended to the boundary,97 that is, there exists a function
ũ ∶ D −→ R such that ũ|D = u. Moreover, for any point x ∈ 𝜕D and any sequence of points (yn)n ∈ N in D converging to
x, the limit lim

n→∞
u(yn) is well-defined, and we can define ũ(x)

def
= lim

n→∞
u(yn). The Trace theorem74,75,97 affirms that if D is

a bounded and open subset of R2 with a Lipschitz continuous boundary 𝜕D, then there is a continuous linear operator
𝛾𝜕D : H1(D)−→L2(𝜕D), whose image is H1/2(𝜕D)⊂L2(𝜕D), and such that 𝛾𝜕D(u) = ũ|𝜕D, for any u ∈ H1(D) ∩ C0,1(D).
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APPENDIX B. THE SPACE H1/2

Let D be an open and bounded subset of R2 with Lipschitz continuous boundary 𝜕D. A function t ∈L2(𝜕D) belongs to
the fractional Sobolev space W1/2, 2(𝜕D), usually denoted by H1/2(𝜕D), if the Slobodeckij seminorm

|t|H1∕2(𝜕D)
def
=

(
∫𝜕D∫𝜕D

|t(x) − t(y)|2||x − y||2 dΓxdΓy

) 1
2

(B1)

is finite, where dΓx and dΓy denote the length measure on 𝜕D parametrized by x and y, respectively.78 The norm in
H1/2(𝜕D) is given by. ||t||H1∕2(𝜕D)

def
= (||t||2L2(𝜕D) + |t|2H1∕2(𝜕D))

1
2 . (B2)

For any t ∈H1/2(𝜕D) and for any subset Γ0 ⊂𝜕D (with nonzero measure), it follows from (B1) that the restriction of t to Γ0
belongs to H1/2(Γ0), that is, t|Γ0 ∈ H1∕2(Γ0).


