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Abstract—Neural architecture search (NAS) is usually divided
into two phases: model search, where candidate architectures
go through an early training for a small number of epochs
(e.g., 20) and a search strategy is used to find one or multiple
top candidates, and model tuning, where the top candidates are
trained fully (e.g., for 600 epochs) and one final best architecture
is chosen. The top M-best strategy (M-Best) is typically used
to help find better candidates during model search. However,
the top M best solutions may concentrate in narrow similar
areas and do not have enough diversity. Furthermore, empirical
evidence suggests that performance distribution of the models
which only go through the early training does not have a strong
correlation with that of the models trained fully. Therefore,
many of the M best solutions may turn out to be sub-optimal
simultaneously because of their similarity, which limits the ability
to find true top architectures. To alleviate the problems, we
define diverse M-best architectures that are both of high quality
and sufficiently different from each other based on a novel
graph-based architecture distance. The concept is very general
and is applicable to existing architecture search methods using
top M-Best. To the best of our knowledge, this is the first
time that diversity is introduced into architecture search. We
applied the method in the progressive neural architecture search
(PNAS) algorithm (Liu et al. 2018a). Experimental results show
that our diverse M-Best is indeed beneficial for finding better
architectures.

Index Terms—diversity, architecture search, deep learning

I. INTRODUCTION

Neural networks have been proven effective at solving
many difficult problems, but designing good architectures can
be challenging. Recently, many neural architecture search
methods have been proposed to find effective architectures
for convolution neural networks and recurrent neural networks
[1]-[5]. Due to time complexity, many of these methods do
an early training for candidate architectures with just a few
epochs (e.g 20) during model search, and then perform full
training (e.g. for 600 epochs) only for the top candidate.
However, empirical evidence suggests that the performance
distribution of the models after early training is different from
that of the models trained fully. Even if we can perform
optimal inference during model search, the best solution might
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Fig. 1. Motivation for diverse M-Best: M best solutions found during model
search within the green area do not perform well in the end, while diverse
M best solutions may contain the solution performing really well, such as
solutions in cyan circles. The x-axis represents some space distribution, and
the y-axis represents the accuracy.

be sub-optimal after fully trained. One way to mitigate this
problem is to produce M best solutions. However, as shown in
Fig. 1, top M best solutions found after early training may not
perform well in the end. Furthermore, the M best architectures
often concentrate in narrow areas and tend to be similar to
the top solution. When one of these models fail, many other
models fail simultaneously. This is an undesirable property.

Different from top M-Best, we aim to find a set of solutions
that are both of high quality and are qualitatively different from
each other. Such a solution set has been proven effective in
many other works [6]—-[8], but it has not been considered in
NAS before. There are two main challenges in finding such
a solution set: one is how to evaluate the distance between
different architectures, and the other is how to enforce diversity
during architecture search.

A neural network can be viewed as a directed graph [9]. To
evaluate the similarity, a natural way is to consider network
alignment, which identifies similar regions of networks. How-



ever, different from traditional network alignment, we concern
about a scalar distance in diverse M-Best. In this paper, we
borrow ideas from network alignment and propose a method
to select diverse M-best architectures. We make the following
contributions:

« We introduce a graph based method to evaluate similarity
as well as distance between two neural network architec-
tures.

e We introduce diverse M-Best into architecture search.
Experiments confirm the effectiveness of diversity. To
the best of our knowledge, this is also the first time that
diverse M-Best is introduced into architecture search.

II. RELATED WORK
A. Architecture Search

There has been a recent surge of interest in generating
neural network architecture automatically. A popular direction
is reinforcement learning that generally utilize a recurrent
neural network (RNN) to design the network architecture, e.g.
[2] uses a RNN as controller to sequentially generate coded
architectures, and the RNN is trained to maximize the expected
accuracy of the generated architectures on a validation set.
Several further improved methods were developed based on
this idea, including progressive search [4] and parameter
share [9]. There are also some other methods that use RNNs
to generate architectures, such as [3], [10]. Yet another
heavily investigated approach is using evolutionary algorithm
to explore the architecture space, such as [5], [11], [12]. More
recently, gradient based methods have been developed. [13]
developed a Bayesian optimization method for architecture
search. [14] selects connections for neurons using a softmax
classifier.

B. Network Alignment

Network alignment forms a matching or alignment be-
tween two graphs by identifying similar regions of networks.
It is deeply intertwined with many classical computational
problems, such as graph isomorphism, maximum common
subgraph and quadratic assignment. Usually, network align-
ment solves an optimization problem, e.g minimizing ||A —
PBPT||p, where A and B are the adjacency matrices of two
respective networks [15].

A classic approach is IsoRank algorithm [16], which prop-
agates the pairwise node similarity in the Kronecker product
graph. Then, several works extend the algorithm. For example,
[17] extends the algorithm to align multiple networks; [18]
proposes a fast and scalable network alignment by uncoupling
and decomposition; and [19] uses sequence similarity and
matrix tri-factorization to incorporate network structure into
alignment.

[20] formulates network alignment as an integer quadratic
programming problem. [21] utilizes the alternating projected
gradient descent to solve a bipartite network alignment prob-
lem. [22] uses prior information about possible relationships
and generates the concept of the facility location. [23] and
[24] explore fast alignment on attribute networks.

ITI. ARCHITECTURE DIVERSITY

There are two technical challenges in order to introduce
diversity into neural architecture search. One is how to define
architecture distance, i.e., how to evaluate the distance be-
tween different architectures. The other is how to select diverse
architectures. We tackle the challenges in the following.

A. Architecture Distance

Since architectures can be viewed as directed graphs, a
natural way is to consider network alignment, which iden-
tifies similar regions of networks. However, different from
traditional network alignment, we need a scalar distance.
Borrowing ideas from network alignments, we propose an
architecture distance as follow.

In this section we introduce an attribute-based architecture
distance. Let G1(V1,&1) and G2 (Va, E3) be two graphs with
node sets V1, Vs and edge sets &1, & representing two neural
architectures ¢ and ¢ respectively. In an architecture, nodes
represent operations, and edges represent dataflows. Building
on existing research on graph alignment [15], [23], [24],
we define architecture distance based on both dataflows and
operations.

1) Dataflow Representation: In graph alignment, the basic
assumption is that aligned nodes have similar connections or
degrees. Here we consider both the node’s in-degrees and out-
degrees. For a node v in V in graph G, A*~ is the node set
within k-steps from v in the upstream graph, and N** is the
node set within k-steps in the downstream graph. We define
the k-step neighborhood N¥, where N* = NEk=[JNET,
to capture the degree information of node v. We store the
in-degree information and out-degree information in vectors
d*~ and d** respectively, where the i-th entry of d*~ is the
number of nodes in the k-step neighborhood with in-degree
i, and the i-th entry of dﬁ* is the number of nodes in the
k-step neighborhood with out-degree ¢. To capture a regional
feature, we define the dataflow representation of node v with
K different level neighborhoods as follows,

K K
d; = Zykfldf;*,dj = Zy’“ldﬁt (1)
k=1 k=1

where v € (0,1) is the attenuation factor controlling the
influence of different neighborhoods.

2) Operation Representation: In an architecture graph G,
different nodes stand for different operations. They may come
from different types of layers, e.g., convolution, pooling or
concatenating. Even if they have the same type, they may be
different in other aspects, e.g. number of output channels or
kernel size. To account for these factors, we extract features
for nodes. For a node v in V, f, is the feature vector, with
the i-th entry of f, (namely f!) corresponding to the value
of the i-th attribute. We consider several basic but important
attributes for the node representation, including type of layer,
channels, kernel size, stride and padding. Note that features
of different nodes have the same length. If a node does not
have certain attribute (e.g. a concatenating layer does not have



kernel sizes), we set the corresponding value to a default value
(say 0.0).

3) Node Similarity: Based on the above representations of
operations and dataflows, we define the following similarity
function to compare two nodes (v; and vs) across different
graphs:

s(vi,v2) = exp(—Yin - din — Yout * dout — V5 - dy), (2)
din = ||d1)1 - d;2||§7 (3)

dout = ||d - + ||%7 (4)

dy = S KL # L) + D(filo, o) (5)
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where i, Your and <y are constants controlling the effect
of dataflow representations and operatlon features, Ay is an
index set of categorical features, fv1 and f;g“ are feature
vectors removing corresponding values in set Ag, and D(-)
can be Minkowski distance or Cosine distance. We use Cosine
distance in our experiments. Such a similarity function has a
comprehensive coverage of both connections and operations.

4) Graph Distance: To calculate the distance of graphs
G1(V1,&1) and G3(Va,&2), a common approach is to make
use of the similarity matrix S of all pairs of nodes in both
graphs, which takes ©(n?) time.

In network alignment, some existing approaches factorize
the similarity matrix S, embed nodes (e.g by minimizing
||[S — FZ"||%) and align nodes using embedding features.
Following existing research on network alignment [23], [24],
we also calculate distance in an embedding space. Due to
the high complexity of graphs and huge number of possible
architectures, we reduce the complexity of similarity matrix
computation by using SVD in computing the embedding
features. Our approach is based on the Nystrom method [25].
The method chooses ¢ columns from a matrix M uniformly
at random, and constructs an approximation of the form
M = CW1'CT, where C is the n X ¢ matrix consisting
of the ¢ chosen columns and W' is the pseudo-inverse of
matrix that consists of the intersection of those ¢ columns
with the corresponding ¢ rows. To alleviate uncertainty intro-
duced by the random selection when calculating distance and
diversity, we extend the Nystrom method with fixed landmark
nodes. From our point of view, nodes with many connections,
namely dataflow hubs, are important nodes. We therefore
select top p nodes with the highest degrees as landmarks.
For an architecture graph G(V,€&), we empirically choose
p = logy(|V|) landmark nodes in our experiments. Let I'y
and 'y be the landmark sets of G;(Vi1,&1) and G (Vs, &)
respectively. Sr is the similarity matrix of landmark node set
I, where I' =Ty |T'2 and

SF(Z7.7) = S(U“’l}j),v’l‘,j € [07 |F|)7Ui S F,Uj cl. (6)

Then the similarity matrix S € R™"*" (n = [V; + V4|) of each
graphs is approximated by S =~ CS] LCT, where Slt is the
pseudo-inverse of Sr and C' € R"*P, Let SJr UXVT, the
singular value decomposition of Sf. I We have

S~cCsicT = (cusz) - (cvs)T. 7)

Let F = CUYz=. It can be simply regarded as a solution
of minimizing ||S — FZT||%. So we respectively get the
embedding features of nodes in G; and G» as follows,
F = 5 U3,
Fy = S,U%3,

Sy € RMibxp, (8)
Sy € RIV2Ixp, )
where S is the similarity matrix between G; and I, S is the

similarity matrix between G5 and I'. In the embedding space,
we define distance between GG; and G5 as follow,

V1] [Va|

1
)4 —— in(D,;), (10
(G17G2 ‘V | Zmln J |V2| jzz:lmiln( ]) ( )

where Dy; = ||y (i) — Fa(j)|, D € RV X1,

Algorithm 1 Architecture Distance
Require:
Architecture Gy (V1,&1) and Ga(Va, E3);
Neighborhood level K;
Ensure:
V=W U Va;
2: for node v in V do
3. compute dataflow representations d;, d;;
4:  extract operation features f,;
5: end for
6
7
8
9

: choose landmark node set I' =Ty |JT's;

: compute the full similarity matrix Sr for I';

. [U,3,V] = SVD(S]);

: compute the similarity matrix S and Ss;
10: Slez Py = SoUT3;
11 dzst = |v | Zwl min;(D;;) + |le\ 2‘7121‘ min, (D;;);
12: return dist

The time complexity of computing the architecture distance
is O(np), where n is the number of nodes and p is the number
of landmark nodes (p < n). Generally, compared to the whole
architecture search, the overhead is typically negligible.

B. Diverse M-Best

In this section, we introduce a method called diverse M-Best
in the context of architecture search. M-Best is the problem
of finding the M architectures with highest potential. For
example, RL-based TreeCell [10] finds top 10 candidate cells
discovered in the search; the evaluation method [11] finds top
1000 individuals; and PNAS [4] finds top 256 architectures in
the search.

Given a scale parameter J, we define the J-architectures as
follows.

Definition 1: (§-architectures). The d-neighborhood of an
architecture ¢, Ns(¢), is the ball centered at architecture ¢
with radius d, formally, {s|A(s, ¢) < §}. An architecture is a
d-architecture if and only if its performance is higher than all
other elements in N(¢).

Let p(¢) : ¥ — R be function defining the performance of
architecture ¢, where W is the architecture space. We measure
the performance of an architecture using accuracy, and aim



to find the architecture with the highest maximum a perfor-
mance (MAP). In most of search methods, the performance
mentioned here is the accuracy on validation set.

1) General Solution: With the key concept defined, we now
describe the proposed diverse M-Best method. Recall that the
goal is to produce a diverse set of solutions. We introduce
an iterative algorithm to solve this problem, where the next
best solution is defined as the MAP at least some minimum
distance away from current MAPs. Let {¢1, ..., ¢;} denote the
incumbent solutions, and let us search for the next solution.
We propose the following general formulation:

max

S, p(Prs1)
st ¢ur1 € Ns(¢4),Vi € {1,2,...,t},

Y

where N5(¢;) is the complementary set of Ns(¢;). Intuitively,
we can see that the above formulation searches for the solution
that are at least § away from the current solutions. The top M-
Best can be seen as a special case of this formulation, where
A(-,-) is a 0-1 similarity (e.g A(G1,G2) = ¥(G1 == G3))
and 6 = 0. Thus the formulation simply select the next MAP.

2) Relaxation: The general version of diverse M-Best is
suitable only for known distributions. Usually we do not know
the distribution exactly. We therefore define the following
relaxed version of diverse M-Best:

max

Jmax, p(Pe41)
s.t Gry1 %P N5(¢i)7Vi € {172’ ...,f},

where ¢, indicates ¢;1 does not belong to Nj(¢;) with
probability p. The general formulation above can be seen as
a special case of the relaxation formulation with p = 1.

12)

IV. EXPERIMENTS

In this section, we present experimental evaluations of
the effectiveness of diversity in neural network architecture
search. We first study the relation between the performance
distribution of models trained for just a few epochs and those
trained fully on the CIFAR-10 dataset to motivate the necessity
of diversity. We then present accuracy results of diverse M-
Best on the classification tasks on CIFAR-10 and ImageNet.
Finally, we study the sensitivity of hyper-parameters in the
diverse M-Best search.

A. Experimental Details

We conducted most of our experiments on the popular
CIFAR-10 dataset except the classification experiments that
are on both CIFAR-10 and ImageNet. It contains 60,000
images consisting of 32 x 32 pixels, including 50,000 training
images and 10,000 test images in 10 different classes. During
our architecture search, we randomly sample 5,000 images
from the training set without replacement as a validation set.
All images are processed by the standard data pre-processing
and augmentation techniques, e.g., subtracting the mean, di-
viding the standard deviation, cropping the 32 x 32 patches

TABLE I
SUBSPACE OF PNAS-LIKE ARCHITECTURES FOR OUR RANDOMLY
SAMPLING, WHERE N IS THE NUMBER OF CELLS, F' IS THE NUMBER OF
FILTERS,H ¢! IS THE OUTPUT OF PREVIOUS CELL,H¢~2 IS THE OUTPUT
OF PREVIOUS-PREVIOUS CELL AND b[: ¢ — 1] ARE THE OUTPUTS OF
PREVIOUS BLOCKS IN THE SAME CELL.

Parameters Values
N 2~5
F 20 ~ 50
Operations [conv1x1,sep3x3,sepSx5,sep7x7,
avg pool3x3,max pool3x3,iden,dil3x3.]
Connection He=1 H =2 b[: c — 1]

from images up-sampled to 40x40 and randomly flipping
horizontally.

We follow the setting in PNAS [4]. The maximum number
of epochs used on CIFAR-10 is 600. During full-step training,
we use auxiliary classifier located at 2/3 of the total number
of cells with 0.4 loss weight. Probability of dropping is 0.4
and clipping gradient exceeding 5 is used for regularization.
We train models using a learning rate of 0.025 with cosine
decay.

B. Distribution Exploration

In neural architecture search, researchers usually train mod-
els for a small number of epochs, evaluate these models on
validation set, pick up the best one or M and then take
a full training for the selected top candidates. It builds on
the implicit assumption that performances of models after
early training are strongly correlated to those trained fully.
In this section, we randomly select 100 models (with different
connections, operations and depths) from a subspace of PNAS-
like architecture for 5 times, which removes some extreme
hyperparameter values and is described in Table I . Then we
display the relationship between their performances after being
trained for just a few epochs and after being fully trained. What
we reported is the average performance.

Fig 2(a) displays the scatter plot of sampled architectures.
The x-axis are their ranks by validation error after being
trained for 20 epochs (search phase), and the y-axis are
their ranks after being fully trained for 600 epochs (tuning
phase). The correlation coefficient of these points is 0.347.
It is hard to argue that an architecture performing well with
a small number of epochs will likely remain strong after
being fully trained. Otherwise, points in Fig 2(a) should locate
on the line y=x.In Fig 2(b), we can see that the correlation
coefficient increases with training epochs. But even if the
number of epochs increased to 100, the correlation coefficient
is only about 0.5. Further more, researchers usually take an
epoch far less than 100. Fig 2(c) shows the probability of
successfully hitting the real best architecture from the early
training (less than 100) distribution, which performs best after
full training. The x-axis k is the number of selected top M-
Best architectures. We can see that diversity indeed improved
the probability of successfully selecting the best architecture
during the early training. The gap between diverse M-Best
and simple M-Best seems to enlarge with & as well. Fig 2(d)
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Fig. 2. (a) ~ (d) depict PNAS-like architectures,(e) ~ (h) depict Dense-like architectures. (a) and (e) display the scatter plot of random sampled architectures.
The x-axis is their validation ranks after being trained for 20 epochs (model search), and the y-axis the rank after being fully trained (model tuning). (b) and
(f) display the relationship between correlation coefficients and epoch. (c) and (g) display the probability of hitting the best architecture with less than 100
epoch training.(d) and (h) display the probability of hitting the best architectures within different epochs.
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Fig. 3. Visualizations of architectures selected by PNAS and Divs-PNAS. Red circles are architectures by PNAS which uses top M-Best. Green crosses are

from Divs-PNAS that uses diverse M-Best.

illustrates the probability of successfully selecting the best
architecture within different numbers of epochs in the early
training. Compared to top M-Best, it is clear that diverse M-
Best improved the probability.

Similarly, we do an experiment in a Dense-like architecture
space. Results shown in Fig 2 (e) ~ (h) also present that
architecture which performs well after fully trained may not
perform well with only a small number of epochs.

C. Diverse Search

Diversity not only improves the probability of hitting the
best architecture but also the overall quality of the solution set.
To illustrate that, we select the PNAS method [4], which keeps
M Best solutions during its search, as the baseline. PNAS
sequentially picks up top M cells and then expands the selected

TABLE 11
STUDENT’S T HYPOTHESIS TEST FOR THE MEANS OF DIVS-PNAS AND
PNAS. Hy : Mpnas Z Hdivspans-

#Block5
0.0001

#Block3
0.026

#Block4
0.010

P-value

cells by increasing the number of blocks. There are 5.6 x
10** possible cell architectures in the search space. We simply
replace M-Best with our diverse M-Best method. We name our
architecture search method as Divs-PNAS.

Following settings used in PNAS, we fitted an ensemble of
5 LSTM predictors and trained CNNs for 20 epochs during
the architecture search. We ran both PNAS and Divs-PNAS
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Fig. 5. (a) Frequency charts of PNAS and Divs-PNAS with #Block=4.(b)
Frequency charts of PNAS and Divs-PNAS with #Block=5.

for a maximal number of blocks being 5. Considering our
limited computational resources, we only kept top 64 (diverse)
mode solutions instead of 256 modes as in [4]. To overcome
the difference introduced by predictors, we use the relaxation
version of diverse M-Best by fixing the relaxing probability
to be 0.5. We repeated the experiments 5 times and reported
the average performance.

We provide several concrete examples of the difference
between PNAS and Divs-PNAS. Fig 3 provides a spatial
distribution of architectures with 5 blocks drawn with t-SNE.
Red dots are top M architectures selected by PNAS, while
green crosses are architectures found by Divs-PNAS. The
proximity of the solutions represent graph distances between
them. Some of these architectures are visualized. It is easy to
see the architectures are similar. Architecture 1, 2 and 3 are
three of the top M-Best architectures. However, Architecture
3 only differs slightly from Architecture 1 in merely two op-
erations indicated by the green circles. Similarly, Architecture
2 only differs from Architecture 1 in merely one operation
and one connection indicated by the red circle and arrow. In
comparison, architectures selected by Divs-PNAS are much
more different from each other.

Fig 4 presents the box-plot of our diverse strategy and
the top strategy on Cifar-10. As illustrated in Fig 4, our
diverse strategy generally picks up more high performance
architectures than the top strategy. We calculate the Student’s
T-test for the means of Divs-PNAS and PNAS. P-values are

TABLE III
RESULTS ON CIFAR10.(A) PRESENTS THE COMPARISON OF PNAS AND
D1vs-PNAS WITH DIFFERENT NUMBER OF BLOCKS. COLUMNS WITH “}"
ARE DIRECTLY TAKEN FROM [4]. (B) GIVES SOME OTHER RECENT
METHODS TO SHOW THE SIGNIFICANCE OF THE IMPROVEMENT BROUGHT
BY DIVERSE STRATEGY.

PNAS Divs-PNAS
#Block | NT  Ff Errorf Params' Error Params
3 6 32 | 3.70+0.12 1.8M 3.49+0.08 2.4M
4 4 66 | 3.5010.10 3.0M 3.154+0.09 2.7M
5 3 48 | 3.4140.09 3.2M 3.05+0.07 2.8M
@
Method Error Params
NAONet [27] 3.18 10.6M
DSO-NAS-full [28] 2.95 3.0M
AmoebaNet-A [5] 3.34 3.2M
DARTS(1st-order) [14] 3.00 3.3M
PNAS [4] 341 3.2M
Divs-PNASNet-5 3.05 2.8M

(®)

presented in Table II, which also indicate that architectures
picked by Divs-PNAS are generally better than PNAS. Fig 5 is
the frequency-plot of different number of blocks. From Fig 5,
we can see that Divs-PNAS has a tendency to identify more
architectures with better validation performance in comparison
to PNAS. Moreover, the tendency is more clear with increasing
number of blocks.

To illustrate the effectiveness of diversity strategy, we also
do a simple ensemble experiment .In general, ensemble of
diverse learners can get a better learner [26]. We simply take
top 5 models and diverse 5 models in model search, and
then we respectively do classification on CIFAR-10 by voting
after model tuning. Compared to the ensemble of top models,
ensemble of diverse models get 10.8% relative error reduction
(top 3.7 £ 0.22% vs diverse 3.3 + 0.16%), which shows the
diversity of models exists. Thus, to find a set of architectures
are both of high quality and are qualitatively different from
each other is significant.

D. Results on CIFAR-10 and ImageNet

We now discuss the final model selected by our Divs-PNAS,
and compare it to the one selected by PNAS. We implement
Divs-PNAS with K=256 (namely diverse 256-Best Modes) as
the setting in PNAS. For simplicity, we used the same N and
F optimized for PNAS after selecting the cell structure. The
results of CIFAR10 are shown in Table III. In Table III (a),
we see that diverse M-Best indeed improved the accuracy in
comparison to top M-Best. When using the same number of
blocks, Divs-PNAS reduced the relative error rate by 9% on
average. Table III (b) presents a comparison of Divs-PNAS
and some recent methods. Compared to the improvement of
these recent results, we can see that the improvement bought
by our diverse strategy is significant. Note that our diverse
M-Best method is not applicable to algorithms that do use the
M-Best strategy.

The best 5-block cell we discovered on CIFAR10, which we
call Divs-PNASNet-5, is visualized in Fig 6. We applied the
cell to ImageNet classification. We conducted experiment un-
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Fig. 6. (a)Visualize Divs-PNAS-3.(b)Visualize Divs-PNAS-4.(c)Visualize Divs-PNAS-5.

TABLE IV
IMAGENET RESULTS IN THE MOBILE SETTING.

Model Params Topl TopS Mult-Adds Search Method
MobileNet-224 [29] 4.2M 70.6 89.5 56OM manual
ShuffleNet 2x(V1) [30] ~ 5M 73.7 89.8 524M manual

NASNet-A(N=4,F=44) [2] 5.3M 74.0 91.6 564M RL

AmoebaNet-A(N=4,F=50) [5] 5.1M 74.5 92.0 555M evolution
AmoebaNet-B(N=3,F=62) [5] 5.3M 74.0 91.5 555M evolution

DARTS [14] 4.9M 73.1 91.0 595M gradient-based
PNASNet-5(N=3,F=54) [4] 5.IM 74.2 91.9 588M SMBO
Divs-PNASNet-5(N=3,F=54)(ours) 4.6M 74.4 91.8 552M SMBO
Divs-PNASNet-5(N=4,F=48)(ours) 4.8M 74.7 92.0 578M SMBO

der the Mobile setting where the input image size is 224 x 224.
The results are summarized in Table IV. Divs-PNASNet-5
achieved slightly better performance than PNASNet-5 with
fewer parameters (74.4% top-1 accuracy for Divs-PNASNet-5
vs 74.2% for PNASNet-5) under the same N and F. However,
the top-5 accuracy is 0.1% lower than PNASNet-5. Because
we did not optimize N and F for Divs-PNAS and simply used
the same combination optimized for PNAS. After optimiza-
tion, we get a better Divs-PNASNet-5(74.7% top-1 accuracy,
92.0% top-5 accuracy) as shown in Table IV.Compared to the
improvement of some other recent results, we can see that the
improvement bought by the diverse strategy is significant.

E. Exploring the values of o

An important parameter in defining diversity is the radius
0. Following the setting in Section Diverse Search IV-C, we
ran Divs-PNAS on CIFARI10 with different §s. Experiments
were repeated for 5 times, and we report the average values
in Fig 7.

Given other parameters, as J increases, different statistics
(including quartile, median, best one-Mode, average of best
10-Modes) of architectures with 5 blocks show that the per-
formance of diverse M-Best improved significantly. However,
the performance started deteriorating when § became too large.
The reason is that a relatively small § increases the available
architecture space areas. However, as § kept increasing, diverse
M-Best may include more weak architectures. The optimal

value of § is highly domain dependent and should be tuned
for optimal performance.

Given 6, as 7Yin, Your and s change, the performance of
best one has a dynamic range as show in Fig 7 (a). Fig 7 (b)
shows the effect of 7;;, (Or You¢, OF ) in comparison with a
baseline parameter setting.

A practical way to obtain an appropriate setting is to do
some simple experiments, such as searching for architectures
with just only 2 blocks.

V. DISCUSSION AND FUTURE WORK

The main contributions of this work are two folds: (1) a
novel graph based distance for architectures and (2) the diverse
M-Best method in architecture search. In our experiments,
we mainly tested our method with PNAS which uses top M-
Best in the search process. Another possible baseline is the
evolution-based algorithm, although we have not done such
experiments due to the time cost. Since our proposed method
is agnostic of the underlying search procedure, we believe our
current findings should be equally applicable there.

Note that the major overhead of our method is only com-
puting the architecture distances, and its time complexity is
O(np), where n is the number of nodes and p is the number
of critical points in the architecture (p < n). In the Divs-
PNAS, since we usually limit K to be relatively small, the
total number of architecture distances we need to calculate
is also quite reasonable. Compared to the whole architecture
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Fig. 7. (a)lmprovement with delta. The x-axis is values of logd, and the

y-axis is the improvement compared to top M-Best Mode.(b) The effect of
Yins Yout, Vf

search, the overhead is typically negligible. In other words,
the searching complexity of the algorithm remains in the same
order when diversity is used.

There are many possible directions for future work. An
interesting avenue of research is to investigate how to take an
adaptive adjustment to the radius. An adaptive adjustment may
make the method more effective. More node features may also
contribute to the architecture distance and neural architecture
search. More distances and how to introduce diverse strategy
into methods without M-Best strategy are also interesting.

VI. CONCLUSION

In this paper, we do not aim to propose a brand new search
algorithm, but to introduce the diverse M-Best concept into
NAS. We empirically explore the relationship between the per-
formance distribution of models trained for just a few epochs
versus those trained fully. Results show they are not very
strongly correlated. Then, we introduce a novel graph based
method to evaluate the distance between two architectures,
and introduce diverse M-Best into neural architecture search
for the first time. Experiments show that diversity did help in
improving the probability of finding the best architecture.
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