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Abstract

Radiometric variations between input images can seri-
ously degrade the performance of stereo matching algo-
rithms. In this situation, mutual information is a very pop-
ular and powerful measure which can find any global rela-
tionship of intensities between two input images taken from
unknown sources. The mutual information-based method,
however, is still ambiguous or erroneous as regards local
radiometric variations, since it only accounts for global
variation between images, and does not contain spatial in-
formation properly. In this paper, we present a new method
based on mutual information combined with SIFT descrip-
tor to find correspondence for images which undergo lo-
cal as well as global radiometric variations. We transform
the input color images to log-chromaticity color space from
which a linear relationship can be established. To incor-
porate spatial information in mutual information, we utilize
the SIFT descriptor which includes near pixel gradient his-
togram to construct a joint probability in log-chromaticity
color space. By combining the mutual information as an ap-
pearance measure and the SIFT descriptor as a geometric
measure, we devise a robust and accurate stereo system. Ex-
perimental results show that our method is superior to the
state-of-the art algorithms including conventional mutual
information-based methods and window correlation meth-
ods under various radiometric changes.

1. Introduction

The performance of stereo algorithms depends on the

choice of matching cost. For images taken from radio-

metrically calibrated circumstances, corresponding pixels

should have similar intensity values. For these images, sim-

ple matching costs such as absolute difference of intensities

do not degrade the performance of stereo algorithms. In a

real situation, however, image color values can be affected

by radiometric variations including global intensity change

(caused by camera gain and exposure or gamma correc-

tion variation) and local intensity change (caused by vary-

ing light, vignetting and non-Lambertian surface) and noise

[7]. These variations often occur in general and practical

settings and seriously degrade the performance of stereo.

Therefore, robust matching methods to these radiometric

variations are demanded and become inevitable for various

applications such as the general multi-view stereo (for ex-

ample, PhotoTourism [14], PhotoModeler [2], etc.) and the

stereo matching of aerial images.

For this problem, mutual information (MI) can be a good

candidate as a matching cost, since it can find correspon-

dence for any globally transformed images captured from a

wide variety of sensors. Owing to this advantage, MI has

been successfully applied to various vision problems such

as registration [16, 12, 13] and stereo matching [4, 9, 6].

Viola and Wells [16] adopted it to register MR (Magnetic

Resonance) images and CT (Computed Tomography) im-

ages. For stereo matching, Egnal [4] used it to find the dis-

parity among the local matching windows. It suffers, how-

ever, from the fixed window problem at low-texture region

and discontinuities. To resolve it, Kim et al. [9] suggested a

pixel-wise data cost based on MI in a global energy min-

imization framework. They approximated the MI of the

whole images as a sum of pixel-wise MI using the Taylor

expansion and the Parzen window technique. Hirschmuller

[6] improved the work of [9] to handle the occlusion in a

semi-global energy framework. Zitnick et al. [18] used ap-

proximative segment-wise MI for stereo matching. They

defined a matching function by creating the histogram of

the ratios of the corresponding pixel intensity values in case

the gain difference of cameras dominates.

From the recent evaluation of various matching costs [7],

however, it is shown that MI is weak at local radiometric

variations, though it is the best measure at global variation.

Hirschmuller and Scharstein [7] evaluated the performance

and insensitivity of widely used matching costs with respect

to various radiometric variations. They found that none of

the matching costs are very robust to strong local variations.

Heo et al. [5] suggested an Adaptive Normalized Cross Cor-

relation (ANCC) measure that can handle local variation as
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Figure 1. (a) and (b) are the left and right images taken by different camera exposures. (c) Disparity map of stereo image (a) and (b)

using conventional MI-based method. (d) Joint pdf corresponding to (c). (e) and (f) are the left and right images taken by different light

configurations. (g) Disparity map of stereo image (e) and (f) using conventional MI-based method. (h) Joint pdf corresponding to (g).

well as global one. ANCC is, however, still weak at camera

exposure variations.

On the other hand, most conventional MI-based methods

use only pixel brightness statistics, and ignore rich spatial

information to find correspondence. To increase robustness

and accuracy, spatial information can be naturally incorpo-

rated. Pluim et al. [12] combined MI with the gradient in-

formation for registration of medical images by multiplying

the MI with a gradient weight that accounted for gradient

magnitude and orientation of the matching pixel. Russakoff

et al. [13] suggested a regional mutual information to take

the region information into account in MI, and applied it

to medical image registration. Jeon et al. [8] suggested a

MI-based local description method to find global correspon-

dence between two images.

In this paper, we propose a new stereo matching al-

gorithm that is based on MI combined with SIFT de-

scriptor [11] to cope with the two problems; weakness in

local radiometric variations and lack of spatial informa-

tion. Our method can find correspondence under local as

well as global radiometric variations by employing log-

chromaticity color space. To incorporate spatial informa-

tion, we utilize the SIFT descriptor [11] in constructing the

joint probability. Finally, we also combine MI as an appear-

ance measure and SIFT descriptor distance as a geometric

measure in our data cost to make it further accurate and ro-

bust.

2. Mutual Information as a Stereo Correspon-
dence Measure in MAP-MRF Framework

In MAP-MRF framework, the disparity map
�

can be

found by minimizing the following energy � � � �
:

� � � � � � 
 � � � � � � � � � � � � � � � � � �
(1)

where the data energy � 
 � � � � � �
and the smoothness energy� � � � � � � � � �

are defined by

� 
 � � � � � � � �  "  
� �  � �

� � � � � � � � � � � �  �$ % ' )  + -  $ � �  � � $ � � (2)

where . � 0 �
is the neighborhood pixels of the pixel 0 ."  

� �  �
is the data cost that encodes the penalty for the dis-

similarity of two corresponding pixels 1 2 � 0 �
and 1 5 � 0 � �  �

in the left image 1 2 and the right image 1 5 , respectively.-  $ � �  � � $ �
is the smoothness cost that penalizes the dis-

continuity of disparities between neighboring pixels.

Mutual information can be used as a data cost by defining

� 
 � � � � � � � 6 7 1 � 1 2 � 1 5 � � � �
(3)

since maximization of mutual information implies min-

imization of the data cost. Given a disparity map
�

,7 1 � 1 2 � 1 5 � � �
between the left and right images is defined

by 7 1 � 1 2 � 1 5 � � � � : � 1 2 � � : � 1 5 � 6 : > � 1 2 � 1 5 � �
(4)

where
: � 1 �

is the entropy of image 1 , and
: > � 1 2 � 1 5 �

is

the joint entropy of images 1 2 and 1 5 . Entropy and joint

entropy are defined by: � 1 � � 6 @ B � D � E F G � B � D � � I D �: > � 1 2 � 1 5 � � 6 @ @ B > � D 2 � D 5 � E F G � B > � D 2 � D 5 � � I D 2 I D 5 �
(5)

respectively.
B � D �

is the marginal probability of intensityD . Joint probability
B > � D 2 � D 5 �

is computed by counting the

number of corresponding pixels between intensity D 2 in the

left image and D 5 in the right image by warping the dispar-

ity.
B > � D 2 � D 5 �

can be represented by

B > � D 2 � D 5 � � NO Q  S T � D 2 � D 5 � � � 1 2 � 0 � � 1 5 � 0 � �  � � W �
(6)

where S T X W
is one if the argument is true, zero otherwise.

O
is the total number of corresponding pixels in the images.

Since (4) is the mutual information of the whole images,1 2 and 1 5 , it is difficult to use it as a data cost in an en-

ergy minimization framework. To use it as a data cost,

Kim et al. [9] approximated the whole mutual information7 1 � 1 2 � 1 5 � � �
as the sum of the pixel-wise mutual infor-

mation Y D � X � X �
as follows.7 1 � 1 2 � 1 5 � � � [ Q  Y D � 1 2 � 0 � � 1 5 � 0 � �  � � \

(7)

Hence, from (2), (3) and (7), the pixel-wise data cost be-

comes negative of the pixel-wise mutual information as"  
� �  � � 6 Y D � 1 2 � 0 � � 1 5 � 0 � �  � � \

(8)
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To compute pixel-wise mutual information, Kim et al.
assumed that

� � � � �
and

� � � 	 �
are nearly constant and

only approximated the joint entropy
� � � � � � � 	 �

as follows.

� � � � � � � 	 � � � � � � � � � � � � � 	 � � � � � � � �
(9)

where � � � � � �
is a pixel-wise joint entropy that is defined by

� � � � � � � � � 	 � � � � � � � �
�  ! " # % ' ) � , � � � � � � � � 	 � � � � � � � / 1 � � � � � � � � 	 � � � � � � � 3

/ 1 � � � � � � � � 	 � � � � � � � �
(10)

where
1 � � � � �

is a 2D Gaussian function and
) � , � � � � �

is a

joint probability distribution using the disparity map
� 6

es-

timated from the previous iteration. Then the pixel-wise

mutual information is represented by

7 9 � � � � � � � � 	 � � � � � � � � � � � � � � � � � � 	 � � � � � � � � = �
(11)

where
=

is a constant value.

To take occlusion into account, Hirschmuller [6] mod-

ified the work of [9] by considering the marginal entropy

term
� � � �

explicitly which was assumed constant in [9].� � � �
is also approximated as a sum of pixel-wise marginal

entropy as follows.

� � � � � � � � � � � � � � �
(12)

where � � � �
is a pixel-wise marginal entropy that is defined

by

� � � � � � � � �  ! " # % ' ) � � � � � � / 1 � � � � � � 3 / 1 � � � � � � �
(13)

where
1 � � �

is 1D Gaussian function and
) � � � � � �

is com-

puted by marginalizing the joint probability
) � � � � � �

as fol-

lows.

) � � � � � � � � � � C ) � � � � � � � � 9 � �
) 	 � � 	 � � � � � � � � � C ) � � 9 � � 	 � � � � � � � F (14)

Consequently, pixel-wise mutual information is defined by

7 9 � � � � � � � � 	 � � � � � � �
� � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � 	 � � � � � � � F

(15)

There are two problems in the conventional MI-based

methods described above. First, they cannot handle the

local radiometric variations caused by light configuration

change, because they collect correspondences in the joint

probability assuming that there is a global transformation.

Figure 2. Overview of the proposed algorithm

Fig. 1 (a) and (b) show an example of a global variation ow-

ing to exposure change. In this case, conventional MI-based

methods produce relatively good disparity map as shown in

Fig. 1 (c). The corresponding joint probability (Fig. 1 (d))

clearly shows that there is a global nonlinear transformation

between images.

However, when there exist local radiometric variations in

images owing to the light configuration change as shown in

Fig. 1 (e) and (f), the conventional MI-based methods fail

to give reliable results as depicted in Fig. 1 (g). Note that

as can be seen in Fig. 1 (h), in this case, the shape of the

corresponding joint probability is very sparse, which means

that the global relationship between the input images cannot

be found. Second, they do not encode spatial information,

and only gather corresponding intensities in the normalized

joint probability given an estimated disparity map. If the

disparity is not correct, the joint probability tends to be in-

correct.

In this work, we propose a new algorithm that can cope

with these two problems. Our approach is described in de-

tail in the following section.

3. Proposed Algorithm
The whole procedure of the proposed algorithm is de-

picted in Fig 2. First, we transform the input color images

to log-chromaticity color space in order to deal with local

as well as global radiometric variations. In this color space,

linear relationship between corresponding color values can

be established. To incorporate spatial information in our

framework, similarly to [12] we use the gradient informa-

tion near the pixel. Instead of using only center pixel gradi-

ent information [12], we use a broader gradient histogram

from the SIFT descriptor [11]. We compute the SIFT de-

scriptor for both intensity and log-chromaticity color space.

From the disparity map estimated in the previous itera-

tion, we compute the joint probability. At this stage, to in-

clude the spatial gradient information, the joint probability

is weighted by the distance of the SIFT descriptor. Mutual
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information is computed by means of the joint probability.

Finally the disparity map is computed combining the MI

and the SIFT distance as our data cost in the MAP-MRF

framework, and this disparity map is used to find the joint

probability iteratively.

3.1. Transformation to log-chromaticity color space
and discretization

As a first step, we transform the input color image � to

the log-chromaticity color image �� [5]. As in [5], the color

model is defined by

� � � � � 
 �� � � � �  � � � � � � � � � � � � � � � � � �  � # � % ' �
(16)

where we assume that the original
�

-channel image � � � � �
at

pixel � is changed to
�� � � � �

by various unknown radiometric

variations, and
� � � �

is the brightness factor for the pixel � ,� � is the illuminant color factor, and ) is the gamma correc-

tion factor.

After transforming the observed input image
�� � � � �

into

the log-chromaticity color space, we can obtain �� � � � �
,

which can be formulated as the following linear equation.

�� � � � �  , � - ) / � � � � �
(17)

where ) and
, � are constant for each channel

�
and / � � � �

is an invariant color value for pixel � under radiometric vari-

ations. Log-chromaticity color space is used to establish

a linear relationship between color values of input images

that are affected by unknown radiometric variations. Fig. 3

shows some examples of the linear relationship in the joint

probability in the log-chromaticity color space for the two

images in Fig. 1 (a) and (b).

Since pixel values in the transformed image �� � have

floating point numbers, we must remap those values to inte-

ger domain to make a joint probability. For that purpose, we

multiply by scale factor 4 and round it off to get integer val-

ues. In our experiment, we set 4 as 1000. The final size of

the joint probability matrix is determined by the maximum

between the left maximum integer value �� 6 8 � 8 : < = and the

right maximum integer value �� > 8 � 8 : < = . This process does

not affect the linearity between the two log-chromaticity

color images.

3.2. Joint probability using SIFT descriptor

A joint probability is computed at each channel inde-

pendently by use of the estimated disparity map from the

previous iteration. In this case, wrong disparity can induce

an incorrect joint probability. To prevent this problem, we

incorporate the spatial information in the joint probability

computation step. For spatial information, we adopt the

SIFT descriptor which is robust and accurately depicts local

gradient information. The SIFT descriptor is computed for

Figure 3. Linear relationship in joint probability. From left to

right, R,G,B channel joint probability in log-chromaticity color

space

every pixel in the log-chromaticity color space. Though the

left image �� 6 8 � and the right image �� > 8 � have different )
and

, � values, the SIFT descriptor distance between corre-

sponding pixels is unaffected by this difference, since com-

puting gradient eliminates
, � and the histogram normaliza-

tion step normalizes ) during the SIFT descriptor computa-

tion step. Then,
�

-channel SIFT-weighted joint probability@ B C D F� � H 6 8 � � H > 8 � �
is defined by

@ B C D F� � H 6 8 � � H > 8 � � 
IJ K L N � 8

L
� O L � P Q S � H 6 8 � � H > 8 � �  � �� 6 8 � � � � � �� > 8 � � � - O L � � V �

(18)

where
J

is a normalization constant and N � 8
L

� O L �
is defined

by

N � 8
L

� O L �  X Y Z � [ \ ] 6 8 � � � � [ ] > 8 � � � - O L � \_ � �
(19)

where \ P \ is the Euclidean distance, ] 6 8 � � � �
and ] > 8 � � � -O L �

are the SIFT descriptors for the pixel � in the left
�

-

channel image and the pixel � - O L
in the right

�
-channel im-

age, respectively, in the log-chromaticity color space, and
_

is the SIFT descriptor size. Therefore,
@ B C D F� � H 6 8 � � H > 8 � �

is

governed by the constraint that corresponding pixels should

have similar gradient structures.

3.3. Disparity map estimation in MAP-MRF

From our SIFT-weighted joint probability in (18), the

marginal probabilities for the left and right
�

-channel im-

ages can be computed using (14). Then the pixel-wise

marginal entropies ` � �� 6 8 � � � � �
, ` � �� > 8 � � � - O L � �

and the

pixel-wise joint entropy ` � �� 6 8 � � � � � �� > 8 � � � - O L � �
can be

computed by (13) and (10), respectively. Consequently, the

pixel-wise mutual information c H � 8
L

� O L �
is computed from

(15) for each
�

-channel as follows.

c H � 8
L

� O L �  c H � �� 6 8 � � � � � �� > 8 � � � - O L � � 
` � �� 6 8 � � � � � - ` � �� > 8 � � � - O L � � [ ` � �� 6 8 � � � � � �� > 8 � � � - O L � � f

(20)

To increase robustness, similarly to [15, 10], we also utilize

the local descriptor such as SIFT in our data cost. Finally,
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we define our data cost
� �

� � � �
as follows :

� �
� � � � � 	 �

� � � � �  � � �
� � � � �

(21)

where


is a weighting constant and
	 �

� � � �
and � �

� � � �
are

defined as follows :

	 �
� � � � � �� � �

� � � � � � ! # � � % � � � & # � � % � � � � � � + , �
(22)

where
+

is a constant value.

� �
� � � � �

�� � �
. / ! # � � % � � / & # � � % � � � � .

1 � . 2 ! � % � � 2 & � % � � � � .
1 �

(23)

where
. � .

is the L1 norm, / ! # � � % �
and / & # � � % � � � �

are the

SIFT descriptors for the pixel % in the left
6

-channel im-

age and the pixel % � � �
in the right

6
-channel image, re-

spectively, in the log-chromaticity color space,
2 ! � % �

and2 & � % � � � �
are the SIFT descriptors for the pixel % in the left

gray (intensity) image and the pixel % � � �
in the right gray

(intensity) image, respectively, and
1

is the SIFT descriptor

size.

Note that our data cost
� �

� � � �
consists of two terms;

mutual information
	 �

� � � �
as an appearance measure and

SIFT descriptor distance � �
� � � �

as a geometric measure,

and both are quite robust to linear transformation estab-

lished in log-chromaticity color. At this stage, the SIFT

descriptor distance is computed for both log-chromaticity

color space and intensity space to fully utilize the color in-

formation.

For the smoothness cost, we use a truncated quadratic

cost defined by

: � ; � � � � � ; � � = � � � ? � . � � � � ; . @ � : A B C � D
(24)

The total energy (1) is minimized by the Graph-cuts expan-

sion algorithm [3].

4. Experimental Results
To evaluate our method for various radiometric varia-

tions, similarly to [7, 5], we used the four data sets with

ground truth disparity maps including Aloe, Moebius, Dolls

and Art [1]. Each data set has three different camera expo-

sures and three different configurations of the light source

[1, 7]. The exposure is indexed from 0 to 2, and index 0

indicates the shortest exposure (darkest), while index 2 is

the longest exposure (brightest). Light source configura-

tion is indexed from 1 to 3, and each index has different

light configuration. For the input images, for example, “L,

illum(1)-exp(0)” means that “the left image with the light

configuration index 1 and the exposure index 0”. We eval-

uated our method with other matching costs including BT

with Rank transformation (Rank/BT) [17], BT with LoG fil-

tering (LoG/BT), mutual information (MI) [6], Normalized

Cross Correlation (NCC) and Adaptive Normalized Cross

Correlation (ANCC) [5]. For all matching costs, energy was

minimized by the Graph-cuts expansion algorithm [3]. The

parameters of each method were tuned individually to pro-

duce optimal results using image without radiometric vari-

ation similarly to [7]. The parameters of our method are set

constant as follows: The std. dev E of the Gaussian function

in (13) and (10) is � G ,
+ � � G ,

1 � I J I J M � � P M
, the win-

dow size of the SIFT descriptor is Q J Q ,
 � G D � ,

= � � D �
and

: A B C � U
. The total running time of our method for

most images does not exceed 8 minutes. For example, for

Aloe image (size :
I P V J � V G , disparity range : 0-70), it is

about 6 minutes on a PC with PENTIUM-4 2.4GHz CPU.

4.1. MI vs. SIFT

In Fig. 4, we compared the results using only MI (
	 �

� � �
term in (21)), using only SIFT ( � �

� � �
term in (21)) and us-

ing MI combined with SIFT (
� �

� � �
in (21)) in our frame-

work. Note that MI and SIFT play complementary roles to

each other, since MI is an appearance measure, while SIFT

serves as a geometric measure. The MI term only suffers

from the discretization error due to the floating-point values

of log-chromaticity color during the construction of joint

probability. In this case, SIFT helps to find correct matches

and boosts accurate convergence of MI. On the other hand,

SIFT term only is weak on textureless regions and blurs the

boundaries. In these regions, pixel-wise MI helps it to find

correct matches. Therefore, both terms are necessary to get

more accurate and robust results.

4.2. Different exposures

To evaluate the effects of exposure changes, we only

changed the index of exposure while fixing the index of the

light configuration to 1. Fig. 5 (f)-(j) show the comparison

of the performance of various matching costs for the input

images in Fig. 5 (a)-(b). Similarly, Fig. 6 (f)-(j) are the

results for input images in Fig. 6 (a)-(b) and Fig. 7 (f)-(j)

are the results for input images in Fig. 7 (a)-(b). Fig. 8 (a)-

(d) show the error ratio for the unoccluded region of each

method for the left/right combination of exposure changes.

Exposure changes cause a global transformation between

input images. Most methods still show stable results to

some extent, except for LoG/BT. Our method produces the

most stable and accurate results against these global varia-

tions.

4.3. Different configurations of the light source

To evaluate the effects of the light configuration changes,

we only changed the index of the light configuration while

fixing the index of the exposure to 1. Fig. 5 (k)-(o) show the
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(a) (b) (c) (d) (e) (f)

Figure 4. (a)-(c) are results for Aloe stereo image (L, illum(1)-exp(1) and R, illum(3)-exp(1)) in Fig. 5 (c)-(d). (d)-(f) are results for Dolls

stereo image (L, illum(1)-exp(1) and R, illum(3)-exp(1)) in Fig. 7 (c)-(d). (a) using only MI (error : 17.6 %). (b) using only SIFT (error :

11.97 %). (c) using MI combined with SIFT (error : 9.27 %). (d) using only MI (error : 26.45 %). (e) using only SIFT (error : 17.87 %).

(f) using MI combined with SIFT (error : 11.83 %).

comparison of the performance of various matching costs

for input images in Fig. 5 (c)-(d). Similarly, Fig. 6 (k)-(o)

are the results for input images in Fig. 6 (c)-(d) and Fig.

7 (k)-(o) are the results for input images in Fig. 7 (c)-(d).

Fig. 8 (e)-(h) show the error ratio for the unoccluded region

of each method for the combination of the left/right light

configuration changes. In general, different configurations

of the light source cause different local variations in the in-

put images, and this is a more difficult factor in establish-

ing correspondences than the exposure change. MI shows

very sensitive results to the local variation, since the global

variation assumption is no longer valid. Note that the local

correlation-based and filtering-based methods show better

results than MI. Those methods, however, fail in extreme

light-varying regions. Our method is still accurate and ro-

bust for these local variations.

5. Conclusion

In this paper, we propose a new stereo matching algo-

rithm based on mutual information (MI) combined with

SIFT descriptor. Our method utilizes MI as an appearance

measure and SIFT as a geometric cue. By transforming

original colors into the log-chromaticity color space, MI can

establish robust and accurate correspondence irrespective of

any radiometric variations. To impose spatial information,

the SIFT descriptor is employed in both the joint probability

construction and data cost computation stages. Experimen-

tal results demonstrate that our proposed algorithm is quite

robust and accurate to local as well as global radiometric

variations.
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(a) L, illum(1)-exp(0) (b) R, illum(1)-exp(2) (c) L, illum(1)-exp(1) (d) R, illum(3)-exp(1) (e) Ground truth

(f) Rank/BT (g) NCC (h) ANCC (i) MI (j) Proposed method

(k) Rank/BT (l) NCC (m) ANCC (n) MI (o) Proposed method

Figure 5. Results of test stereo matching costs on Aloe image pair with varying camera exposure and light configurations. (f) - (j) are the

results from the image pair (a) and (b). (k) - (o) are the results from the image pair (c) and (d). (e) is the ground truth disparity map.

(a) L, illum(1)-exp(0) (b) R, illum(1)-exp(2) (c) L, illum(1)-exp(1) (d) R, illum(3)-exp(1) (e) Ground truth

(f) Rank/BT (g) NCC (h) ANCC (i) MI (j) Proposed method

(k) Rank/BT (l) NCC (m) ANCC (n) MI (o) Proposed method

Figure 6. Results of test stereo matching costs on Moebius image pair with varying camera exposure and light configurations. (f) - (j) are

the results from the image pair (a) and (b). (k) - (o) are the results from the image pair (c) and (d). (e) is the ground truth disparity map.
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(a) L, illum(1)-exp(0) (b) R, illum(1)-exp(2) (c) L, illum(1)-exp(1) (d) R, illum(3)-exp(1) (e) Ground truth

(f) Rank/BT (g) NCC (h) ANCC (i) MI (j) Proposed method

(k) Rank/BT (l) NCC (m) ANCC (n) MI (o) Proposed method

Figure 7. Results of test stereo matching costs on Dolls image pair with varying camera exposure and light configurations. (f) - (j) are the

results from the image pair (a) and (b). (k) - (o) are the results from the image pair (c) and (d). (e) is the ground truth disparity map.
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