
OrCAD PSpice A/D
How to use this online manual

 How to print this online manual

Welcome to OrCAD

Overview

Commands

Analog devices

Digital devices

Customizing device equations

Glossary

Index

R
ef

er
en

ce
 M

an
ua

l

Version 9.0, October, 1998.

Copyright 1998, OrCAD, Inc. All rights reserved.
Printed in the United States of America.

OrCAD trademarks

OrCAD, OrCAD Layout, and OrCAD Simulate are registered trademarks, and EDA for the Windows NT Enterprise,
Enterprise CIS, Enterprise Component Information System, OrCAD Capture CIS, OrCAD Express, OrCAD Express CIS,
OrCAD Layout Engineer's Edition, OrCAD Optimizer, SmartRoute, OrCAD Capture, OrCAD Design Desktop, OrCAD
Express, SmartDrag, SmartPlace, SmartRoute, and SmartWire are trademarks of OrCAD, Inc.

Referenced herein are the trademarks used by OrCAD, Inc., to identify its products. OrCAD is the exclusive owners of
“MicroSim,” “PSpice,” “PLogic,” “PLSyn.”

Additional marks of OrCAD include: “StmEd,” “Stimulus Editor,” “Probe,” “Parts,” “Monte Carlo,” “Analog Behavioral
Modeling,” “Device Equations,” “Digital Simulation,” “Digital Files,” “Filter Designer,” “Schematics,”
“PLogic,” ”PCBoards,” “PSpice Optimizer,” and “PLSyn” and variations theron (collectively the “Trademarks”) are used
in connection with computer programs. OrCAD owns various trademark registrations for these marks in the United States
and other countries.

SPECCTRA is a registered trademark of Cooper & Chyan Technology, Inc.

All other trademarks

Microsoft, MS-DOS, Windows, Windows NT and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange and PostScript are trademarks of Adobe Systems Incorporated
or its subsidiaries and may be registered in certain jurisdictions.

ShapeBased is a trademark and SPECCTRA and CCT are registered trademarks of Cooper & Chyan Technologies Inc.
(CCT). Materials related to the CCT SPECCTRA Autorouter have been reprinted by permission of Cooper & Chyan
Technology, Inc.

Xilinx is a registered trademark of Xilinx Inc. All, X- and XC- prefix product designations are trademarks of Xilinx, Inc.

EENET is a trademark of Eckert Enterprises.

All other brand and product names mentioned herein are used for identification purposes only, and are trademarks or
registered trademarks of their respective holders.

Copyright notice

Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of
OrCAD, Inc.

As described in the license agreement, you are permitted to run one copy of the OrCAD software on one computer at a time.
Unauthorized duplication of the software or documentation is prohibited by law. Corporate Program Licensing and multiple
copy discounts are available.

Contact information

Technical support (503) 671-9400 Technical support e-mail techsupport@orcad.com
Corporate offices (503) 671-9500 General e-mail info@orcad.com
Fax (503) 671-9501 World Wide Web http://www.orcad.com

Contents
How to Use This
Online Manual
How to print this online manual . xiv
Welcome to OrCAD . xv
Overview . xvi

Typographical conventions . xvi
Command syntax formats . xvii
Numeric value conventions . xviii
Numeric expression conventions xix

Command line options
for OrCAD applications . xxii

Command files . xxii
Creating and editing command files xxii

Log files . xxiii
Editing log files . xxiv

Simulation command line specification format xxv
Simulation command line options xxvi
Specifying simulation command line options. xxvii

Commands
Command reference

for PSpice and PSpice A/D . 30
.AC (AC analysis) . 32
.ALIASES, .ENDALIASES

(aliases and endaliases) . 33
.DC (DC analysis) . 34

Linear sweep . 35
Logarithmic sweep . 35
Nested sweep . 36

.DISTRIBUTION (user-defined distribution) 37
Deriving updated parameter values 37

Usage example . 38
.END (end of circuit) . 39
.EXTERNAL (external port) . 40
.FOUR (Fourier analysis) . 41
.FUNC (function) . 42
.IC (initial bias point condition) . 43
.INC (include file) . 44
.LIB (library file) . 45
.LOADBIAS (load bias point file) . 46
.MC (Monte Carlo analysis) . 47
.MODEL (model definition) . 50

Parameters for setting temperature 53
Model parameters for device temperature 53
Examples . 53

Contents

4

Special considerations. 54
.NODESET (set approximate node voltage for bias point) 55
.NOISE (noise analysis) . 56
.OP (bias point) . 58
.OPTIONS (analysis options) . 59

Flag options . 59
Option with a name as its value 60
Numerical options with their default values 61

PSpice A/D digital simulation condition messages 63
.PARAM (parameter) . 65
.PLOT (plot) . 66
.PRINT (print) . 68
.PROBE (Probe) . 69

DC Sweep and transient analysis output variables 70
Multiple-terminal devices . 71

AC analysis . 73
Noise analysis . 74

.SAVEBIAS (save bias point to file) . 75
Usage examples . 76

.SENS (sensitivity analysis) . 78

.STEP (parametric analysis) . 79
Usage examples . 81

.STIMLIB (stimulus library file) . 82

.STIMULUS (stimulus) . 83

.SUBCKT (subcircuit) . 84

.ENDS (end subcircuit) . 84
Usage examples . 86

.TEMP (temperature) . 87

.TEXT (text parameter) . 88

.TF (transfer) . 89

.TRAN (transient analysis) . 90

.VECTOR (digital output) . 92

.WATCH (watch analysis results) . 94

.WCASE (sensitivity/worst-case analysis) 95
* (comment) . 99
; (in-line comment) . 100
+ (line continuation) . 101
Differences between PSpice and Berkeley SPICE2 102

Analog devices
Analog devices . 106
Device types . 107

Analog device summary . 107
GaAsFET . 110

Capture parts . 111
Setting operating temperature 111

Model parameters . 112
GaAsFET model parameters for all levels 112
GaAsFET model parameters specific to model levels 113

5

Contents

Auxiliary model parameters BTRK, DVT, and DVTT 116
GaAsFET equations . 117

GaAsFET equations for DC current: all levels 117
GaAsFET equations for DC current: specific to model levels . . 118
GaAsFET equations for capacitance 123
GaAsFET equations for temperature effect 125
GaAsFET equations for noise. 126

References . 127
Capacitor . 128

Capture parts . 129
Breakout parts . 129

Capacitor model parameters . 130
Capacitor equations . 130

Capacitor value formula. 130
Capacitor equation for noise 130

Diode . 131
Capture parts . 132

Setting operating temperature 132
Diode model parameters . 133
Diode equations . 134

Diode equations for DC current 134
Diode equations for capacitance 134
Diode equations for noise . 135

References . 135
Diode equations for temperature effects 135

Voltage-controlled voltage source . 136
Voltage-controlled current source . 136

Basic SPICE polynomial expressions (POLY) 138
Basic controlled source properties 138
Implementation examples . 139

Current-controlled current source . 141
Current-controlled voltage source . 141

Basic SPICE polynomial expressions (POLY) 141
Independent current source & stimulus 142
Independent voltage source & stimulus 142

Independent current source & stimulus (EXP) 144
Independent current source and stimulus

exponential waveform formulas 144
Independent current source & stimulus (PULSE) 145

Independent current source and stimulus
pulse waveform formulas 146

Independent current source & stimulus (PWL) 147
Independent current source & stimulus (SFFM) 150
Independent current source & stimulus (SIN) 151

Independent current source and stimulus
sinusoidal waveform formulas 152

Junction FET . 153
Capture parts . 154

Setting operating temperature 154

Contents

6

Model parameters . 155
JFET equations . 156

JFET equations for DC current 157
JFET equations for capacitance 158
JFET equations for temperature effects 159
JFET equations for noise . 159

Reference . 159
Inductor coupling (and magnetic core) 160
Transmission line coupling . 160

Inductor coupling . 161
Capture parts . 163

Breakout parts . 163
Inductor coupling: Jiles-Atherton model 165

Inductor coupling model parameters 165
Including air-gap effects in the inductor coupling model. 166
Getting core inductor coupling model values 167

Transmission line coupling . 167
Example . 168
Lossy lines . 168

References . 169
Inductor . 170

Capture parts . 171
Breakout parts . 172

Inductor equations . 173
Inductance value formula . 173
Inductor equation for noise . 173

Inductor model parameters . 173
MOSFET . 174

Capture parts . 177
Setting operating temperature 177

MOSFET model parameters . 178
For all model levels . 178
Model levels 1, 2, and 3 . 178
Model level 4 . 178
Model level 5 (EKV version 2.6) 179
Model level 6 (BSIM3 version 2.0) 181
Model level 7 (BSIM3 version 3.1) 181
MOSFET model parameters 184

MOSFET Equations . 198
MOSFET equations for DC current. 199
MOSFET equations for capacitance 200
MOSFET equations for temperature effects 201
MOSFET equations for noise 202

References . 203
Bipolar transistor . 204

Capture parts . 205
Setting operating temperature 205

Bipolar transistor model parameters 206
Distribution of the CJC capacitance 208

7

Contents

Bipolar transistor equations . 209
Bipolar transistor equations for DC current. 210
Bipolar transistor equations for capacitance 211
Bipolar transistor equations for quasi-saturation effect 212
Bipolar transistor equations for temperature effect 213
Bipolar transistor equations for noise 214

References . 214
Resistor . 215

Capture parts . 215
Breakout parts . 216

Resistor model parameters . 217
Resistor equations . 218

Resistor value formulas . 218
Resistor equation for noise . 218

Voltage-controlled switch . 219
Capture parts . 220

Ideal switches . 220
Voltage-controlled switch model parameters 220

Special considerations. 220
Voltage-controlled switch equations 221

Voltage-controlled switch equations for switch resistance 222
Voltage-controlled switch equation for noise 222

Transmission line . 223
Ideal line . 224
Lossy line . 225
Capture parts . 226

Ideal and lossy transmission lines. 226
Coupled transmission lines . 227
Simulating coupled lines . 228
Simulation considerations. 228

Transmission line model parameters 229
References . 230

Independent voltage source & stimulus 231
Current-controlled switch . 232

Capture parts . 233
Ideal switches . 233

Current-controlled switch model parameters 234
Special considerations. 234

Current-controlled switch equations 234
Current-controlled switch equations for switch resistance 235
Current-controlled switch equation for noise 235

Subcircuit instantiation . 236
IGBT . 237

Capture parts . 238
Setting operating temperature 238

IGBT device parameters . 239
IGBT model parameters . 240
IGBT equations . 241

IGBT equations for DC current 242

Contents

8

IGBT equations for capacitance 243
References . 244

Digital devices
Digital device summary . 246
Digital primitive summary . 247

General digital primitive format 250
Timing models . 252

Treatment of unspecified propagation delays. 252
Treatment of unspecified timing constraints 253

Gates . 254
Standard gates . 255
Standard gate timing model parameters. 257
Tristate gates . 258
Tristate gate types . 259
Tristate gate timing model parameters 260
Bidirectional transfer gates . 261

Flip-flops and latches . 264
Initialization . 264
Timing violations . 264
Edge-triggered flip-flops . 265
Edge-triggered flip-flop timing model parameters 267
Edge-triggered flip-flop truth tables DFF and JKFF 268
Edge-triggered flip-flop truth tables DFFDE and JKFFDE. . . . 269
Gated latch . 270
Gated latch truth tables . 272

Pullup and pulldown . 273
Delay line . 274
Programmable logic array . 275
Read only memory . 279
Random access read-write memory 283
Multi-bit A/D and D/A converter 286

Multi-bit analog-to-digital converter 287
Multi-bit digital-to-analog converter 289

Behavioral primitives . 291
Logic expression . 292
Pin-to-pin delay . 295
Constraint checker . 304

Stimulus devices . 310
Stimulus generator . 311

Time units . 312
Stimulus generator examples 313

File stimulus . 317
Stimulus file format . 317
Transition format . 318
File stimulus device . 319

Input/output model . 322
Input/output model parameters 322

Digital/analog interface devices . 324

9

Contents

Digital input (N device) . 324
Digital input model parameters 325

Digital output (O Device) . 328
Digital output model parameters 328

Digital model libraries . 332
7400-series TTL and CMOS library files 333
4000-series CMOS library . 333
Programmable array logic devices 334

Customizing device equations
Introduction to Device Equations . 336
Making device model changes . 337

Changing a parameter name . 338
Giving a parameter an alias . 338
Adding a parameter . 338
Changing the device equations . 339

Functional subsections of the device source file 340
Adding a new device . 341
Specifying new internal device structure 342

Example . 342
Procedure . 343

Recompiling and linking the
Device Equations option . 345

Personalizing your DLL . 345
Simulating with the Device Equations option 346

Selecting which models to use from a Device Equations DLL . . . 346

Glossary

Index

10

Contents

11

Contents

Contents

12

How to Use This
Online Manual

Click this toolbar
button or book icon...

To do this...

Go back and forth between pages.

Go back and forth between views.

Go back to the beginning of the section.

Go back to the beginning of the chapter.

Go to the Commands chapter.
(Other chapters have similar icons.)

Go to the Index.

Go to the Glossary.

Go to the Contents.

Commands

How to Use This Online Manual How to print this online manual

xiv

How to print this online manual
You can print any portion of this manual, or the entire book, to keep as a printed reference.
The pages are desgined to print on 8.5"-by-11" paper, with a left margin wide enough to punch
holes for use in a binder.

To print this manual

1 In Acrobat Reader, from the File menu, choose Print.

2 Under Print Range, choose one of the following:

• All Pages, if you want to print the entire book

• Current Page, if you want to print the current page only

• Pages, if you want to print a range of pages (such as a chapter—see the table below)

3 Click OK.

To print this chapter... Print this range of pages...
How to Use This Online Manual xiii to xxviii

Commands 29 to 103

Analog devices 105 to 244

Digital devices 245 to 334

Customizing device equations 335 to 346

Glossary 347 to 351

Index 353 to the last page of this manual

xv

How to Use This Online Manual Welcome to OrCAD

Welcome to OrCAD
OrCAD offers a total solution for your core design tasks: schematic- and VHDL-based
design entry; FPGA and CPLD design synthesis; digital, analog, and mixed-signal simulation;
and printed circuit board layout. What's more, OrCAD's products are a suite of applications
built around an engineer's design flow—not just a collection of independently developed
point tools. PSpice and PSpice A/D are just one element in OrCAD's total solution design
flow.

Welcome to OrCAD. With OrCAD's products, you'll spend less time dealing with the details
of tool integration, devising workarounds, and manually entering data to keep files in sync.
Our products will help you build better products, faster, and at lower cost.

How to Use This Online Manual Overview

xvi

Overview
This manual contains the reference material needed when working with special circuit
analyses in PSpice A/D.

Included in this manual are detailed command descriptions, start-up option definitions, and a
list of supported devices in the digital and analog device libraries.

This manual has comprehensive reference material for all of the PSpice circuit analysis
applications, which include:

• PSpice A/D

• PSpice A/D Basics

• PSpice

This manual assumes that you are familiar with Microsoft Windows (NT or 95), including
how to use icons, menus and dialog boxes. It also assumes you have a basic understanding
about how Windows manages applications and files to perform routine tasks, such as starting
applications and opening and saving your work. If you are new to Windows, please review
your Microsoft Windows User’s Guide.

Typographical conventions
This manual generally follows the conventions used in the Microsoft Windows User’s Guide.
Procedures for performing an operation are generally numbered with the following
typographical conventions.

Notation Examples Description

monospace font mydiodes.slb Library files and file names.

key cap or letter Press J ... A specific key or key stroke on the
keyboard.

monospace font Type VAC... Output produced by a printer and
commands/text entered from the
keyboard.

xvii

How to Use This Online Manual Overview

Command syntax formats
The following table provides the command syntax formats.

Notation Examples Description

monospace font abcd User input including keypad symbols,
numerals, and alphabetic characters as
shown; alphabetic characters are not case
sensitive.

< > <model name> A required item in a command line. For
example, <model name> in a command
line means that the model name parameter
is required.

< >* <value>* The asterisk indicates that the item shown
in italics must occur one or more times in
the command line.

[] [AC] Optional item.

[]* [value]* The asterisk indicates that there is zero or
more occurrences of the specified subject.

< | > <YES | NO> Specify one of the given choices.

[|] [ON | OFF] Specify zero or one of the given choices.

How to Use This Online Manual Overview

xviii

Numeric value conventions
The numeric value and expression conventions in the following table not only apply to the
PSpice Commands, but also to the device declarations and interactive numeric entries
described in subsequent chapters.

Literal numeric values are written in standard floating point notation. PSpice applies the
default units for the numbers describing the component values and electrical quantities.
However, these values can be scaled by following the number using the appropriate scale
suffix as shown in the following table.

Scale Symbol Name

10-15 F femto-

10-12 P pico-

10-9 N nano-

10-6 U micro-

25.4*10-6 MIL --

10-3 M milli-

C clock cycle*

* Clock cycle varies and must be set where applicable.

10+3 K kilo-

10+6 MEG mega-

10+9 G giga-

10+12 T tera-

xix

How to Use This Online Manual Overview

Numeric expression conventions
Numeric values can also be indirectly represented by parameters; see the
.PARAM (parameter) command. Numeric values and parameters can be used together to
form arithmetic expressions. PSpice expressions can incorporate the intrinsic functions shown
in the following table.

The Function column lists expressions that PSpice and PSpice A/D recognize. The Meaning
column lists the mathematical definition of the function. There are also some differences
between the intrinsic functions available for simulation and those available for waveform
analysis. Refer to your PSpice user’s guide for more information about waveform analysis.

Function* Meaning Comments

ABS(x) |x|

ACOS(x) arccosine of x -1.0 <= x <= +1.0

ARCTAN(x) tan-1(x) result in radians

ASIN(x) arcsine of x -1.0 <= x <= +1.0

ATAN(x) tan-1(x) result in radians

ATAN2(y,x) arctan of (y/x) result in radians

COS(x) cos(x) x in radians

COSH(x) hyperbolic cosine of
x

x in radians

DDT(x) time derivative of x transient analysis only

EXP(x) ex

IF(t, x, y) x if t=TRUE

y if t=FALSE

t is a Boolean expression that evaluates to TRUE
or FALSE and can include logical and relational
operators (see Command line options for
OrCAD applications). X and Y are either
numeric values or expressions. For example,
{IF (v(1)<THL, v(1), v(1)*v(1)/THL)}

Care should be taken in modeling the
discontinuity between the IF and ELSE parts, or
convergence problems can result.

IMG(x) imaginary part of x returns 0.0 for real numbers

LIMIT(x,min,ma
x)

result is min if x < min, max if x > max, and x
otherwise

LOG(x) ln(x) log base e

LOG10(x) log(x) log base 10

M(x) magnitude of x this produces the same result as ABS(x)

MAX(x,y) maximum of x and y

MIN(x,y) minimum of x and y

P(x) phase of x returns 0.0 for real numbers

How to Use This Online Manual Overview

xx

PWR(x,y) |x|y

or, {x**y}

the binary operator ** is interchangeable with
PWR(x,y)

PWRS(x,y) +|x|y (if x>0),
-|x|y (if x<0)

R(x) real part of x

SDT(x) time integral of x transient analysis only

SGN(x) signum function

SIN(x) sin(x) x in radians

SINH(x) hyperbolic sine of x x in radians

STP(x) 1 if x>0.0

0 if x<0.0

The unit step function can be used to suppress a
value until a given amount of time has passed.
For instance,

{v(1)*STP(TIME-10ns)}

gives a value of 0.0 until 10ns has elapsed, then
gives v(1).

SQRT(x) x1/2

TAN(x) tan(x) x in radians

TANH(x) hyperbolic tangent
of x

x in radians

TABLE
(x,x1,y1,x2,y2,...xn
,yn)

Result is the y value corresponding to x, when
all of the xn,yn points are plotted and connected
by straight lines. If x is greater than the max xn,
then the value is the yn associated with the
largest xn. If x is less than the smallest xn, then
the value is the yn associated with the smallest
xn.

* Most numeric specifications in PSpice allow for arithmetic expressions. Some exceptions do exist and are sum-
marized in your PSpice user’s guide. There are also some differences between the intrinsic functions available for
simulation and those available for waveform analysis. Refer to your PSpice user’s guide for more information about
waveform analysis.

Function* Meaning Comments

xxi

How to Use This Online Manual Overview

Expressions can contain the standard operators as shown in the following table.

Operators Meaning

arithmetic

+ addition (or string concatenation)

- subtraction

* multiplication

/ division

** exponentiation

logical

~ unary NOT

| boolean OR

^ boolean XOR

& boolean AND

relational (within IF() functions)

== equality test

!= non-equality test

> greater than test

>= greater than or equal to test

< less than test

<= less than or equal to test

How to Use This Online Manual Command line options for OrCAD applications

xxii

Command line options
for OrCAD applications

Command files
A command file is an ASCII text file which contains a list of commands to be executed. A
command file can be specified in multiple ways:

• at the command line when starting PSpice, Stimulus Editor, or the Model Editor,

• by choosing Run Commands from the File menu and entering a command file name (for
PSpice and Stimulus Editor only), or

• at the PROBECMD or STMEDCMD command line, found in the configuration file
pspice.ini.

The command file is read by the program and all of the commands contained within the file
are performed. When the end of the command file is reached, commands are taken from the
keyboard and the mouse. If no command file is specified, all of the commands are received
from the keyboard and mouse.

The ability to record a set of commands can be useful when using PSpice, the Model Editor,
and Stimulus Editor. This is especially useful in PSpice, if you are repeatedly doing the same
simulation and looking at the same waveform with only slight changes to the circuit before
each run. It can also be used to automatically create hardcopy output at the end of very long
(such as overnight) simulation runs.

Creating and editing command files
You can create your own command file using a text editor (such as Notepad). In PSpice and
Stimulus Editor, you can choose Log Commands from the File menu (see Log files for an
example) to record a list of transactions in a log file, then choose Run Commands from the
File menu to run the logged file.

After you activate cursors (from the Tools menu, choose Cursor), any mouse or
keyboard movements that you make for moving the cursor will not be recorded in the
command file.

If you choose to create a command file using a text editor, note that the commands in the
command file are the same as those available from the keyboard with these differences:

• The name of the command or its first capitalized letter can be used.

• Any line that begins with an * is a comment.

• Blank lines are ignored, therefore, they can be added to improve the readability of the
command file.

• The commands @CR, @UP, @DWN, @LEFT, @RIGHT, and @ESC are used to
represent the <Enter>, <↑>, <↓>, <←>, <→>, and <Esc> keys, respectively.

xxiii

How to Use This Online Manual Command line options for OrCAD applications

• The command PAUSE causes PSpice, the Model Editor, or Stimulus Editor to wait until
any key on the keyboard is pressed. In the case of PSpice, this can be useful to examine a
waveform before the command file draws the next one.

The commands are one to a line in the file, but comment and blank lines can be used to make
the file easier to read.

Assuming that a waveform data file has been created by simulating the circuit example.dsn,
you can manually create a command file (using a text editor) called example.cmd which
contains the commands listed below. This set of commands draws a waveform, allows you to
look at it, and then exits PSpice.

* Display trace v(out2) and wait
Trace Add
v(out2)
Pause
* Exit Probe environment
File Exit

See Simulation command line specification format and Specifying simulation command
line options for specifying command files on the simulation command line. See Simulation
command line specification format and Specifying simulation command line options for
details on specifying the /C or -c option for PSpice.

The Search Commands feature is a Cursor option for positioning the cursor at a
particular point. You can learn more about Search Commands by consulting PSpice
Help.

Log files
Instead of creating command files by hand, using a text editor, you can generate them
automatically by creating a log file while running PSpice, the Model Editor, or Stimulus
Editor. While executing the particular package, all of the commands given are saved in the
log file. The format of the log file is correct for use as a command file.

To create a .log file in PSpice or Stimulus Editor, from the File menu, choose Log
Commands and enter a log file name. This turns logging on. Any action taken after starting
Log Commands is logged in the named file and can be run in another session by choosing Run
Commands.

You can also create a log file for PSpice, Stimulus Editor, or the Model Editor by using the /l
or -l option at the command line. For example:

PROBE /L EXAMPLE.LOG

Of course, you can use a name for the log file that is more recognizable, such as acplots.cmd
(to PSpice, the Model Editor, and Stimulus Editor, the file name is any valid file name for your
computer).

You can use either (/) or (-) as separators, and file names can be in upper or lower
case.

How to Use This Online Manual Command line options for OrCAD applications

xxiv

Editing log files
After PSpice, the Model Editor, or Stimulus Editor is finished, the log file is available for
editing to customize it for use as a command file. You can edit the following items:

• Add blank lines and comments to improve readability (perhaps a title and short discussion
of what the file does).

• Add the Pause command for viewing waveforms before proceeding.

• Remove the Exit command from the end of the file, so that PSpice, the Model Editor, and
Stimulus Editor do not automatically exit when the end of the command file is reached.

You can add or delete other commands from the file or even change the file name to be more
recognizable. It is possible to build onto log files, either by using your text editor to combine
files or by running PSpice, the Model Editor, and Stimulus Editor with both a command and
log file:

PROBE /C IN.CMD /L OUT.LOG

The file in.cmd gives the command to PSpice, and PSpice saves the (same) commands into
the out.log file. When in.cmd runs out of commands, and PSpice is taking commands from
the keyboard, these commands also go into the out.log file.

To log commands in PSpice

Use command logging in PSpice to record and save frequently used actions to a command file.
Command files are useful when you need to remember the steps taken in order to display a set
of waveforms for any given data file.

1 From the File menu, choose Log Commands.

2 In the Log File Name text box, type 2traces, then click OK.

A check mark appears next to Log Command to indicate that logging is turned on.

3 From the File menu, choose Open.

4 Select example.dat (located in the examples directory), then click OK.

5 From the Trace menu, choose Add.

6 Select V(OUT1) and V(OUT2), then click OK.

7 From the File menu, choose Log Commands to turn command logging off.

The check mark next to the command disappears. Subsequent actions performed are not
logged in the command file.

You can view the command file using an ASCII text editor, such as Notepad. Command files
can be edited or appended, depending on the types of commands you want to store for future
use. The file 2traces.cmd should look as shown below (with the exception of a different file
path).

*Command file created by Probe - Wed Apr 17 10:33:55
File Open
/orcad/probe/example.dat
OK
Trace Add
V(OUT1) V(OUT2)
OK

xxv

How to Use This Online Manual Command line options for OrCAD applications

To run the command log

1 From the File menu, choose Run Command.

2 Select 2traces.cmd, then click OK. The two traces appear.

Simulation command line specification format
The format for specifying command line options for PSpice and PSpice A/D are as follows.

pspice [options] [input file(s)]

input file
Specifies the name of a circuit file for PSpice or PSpice A/D to simulate after it starts. The
input file can be a simulation file (.sim, .cir, .net), data files (.dat), output files (.out),
or any files (*.*). PSpice opens any files whose extension PSpice does not recognize as
a text file.

You can specify multiple input files, but if the output file or data file options are specified,
they apply only to the first specified input file.

The input file name can include wildcard characters (* and ?), in which case all file names
matching the specification are simulated.

options
One or more of the options listed in Simulation command line options.

How to Use This Online Manual Command line options for OrCAD applications

xxvi

Simulation command line options
Options can be entered using the dash (-) or slash (/) separator.

Option Description

-bf<flush interval> Determines how often (in minutes) the simulator will flush
the buffers of the waveform data file to disk. This is useful
when a long simulation is left running and the machine
crashes or is restarted. In this case, the data file will be
readable up to the last flush. The default is to flush every 10
minutes. The <flush interval> can be set between 0 and 1440
minutes. A value of zero means not to write unless necessary.

-bn<number of buffers> Determines the number of buffers to potentially allocate for
the waveform data file. Zero buffers means to do all writing
directly to disk. Allocating a large number of buffers can
speed up a large simulation, but will increase memory
requirements. Exceeding physical memory will either slow
down the simulation, or will make it fail. The default number
of buffers is 4 (1 buffer if you are using the CSDF option).

-bs<buffer size factor> Determines the size of the individual buffers for writing the
waveform data file. Using a larger buffer size can reduce
execution time, but at the expense of increasing the memory
requirements. The values for the buffer files work as follows:

option:-bs0 -bs1 -bs2 -bs3 -bs4 -bs5 -bs6

value: 256 512 1024 2048 4096 8192 16384

The default is 4K (8K if you are using CSDF).

-@ <command file> Specifies the name of the command file to run.

-c <file name> Specifies the command file, which runs the session until the
command file ends or PSpice stops.

-d <data file> Specifies the name of the waveform data file to which PSpice
saves the waveform data from the simulation. By default, the
name of the waveform data file is the name of the input file
with a .dat extension.

-e Exits PSpice after all specified files have been simulated.

This option replaces the -wONLY option.

-i <ini file name> Specifies the name of an alternate initialization file. If not
specified, the simulator uses:

\windows\pspice.ini

-l <file name> Creates a log file, which saves the commands from this
session. This log file can later be used as an input command
file for PSpice.

-o <output file> Specifies the output file to which PSpice saves the simulation
output. By default, the name of the output file name defaults
to the name of the input file with an .out extension.

xxvii

How to Use This Online Manual Command line options for OrCAD applications

Specifying simulation command line options

Using the pspice.ini configuration file

You can customize your initialization file to include command line options by editing the
PSPICECMDLINE line in the file pspice.ini, using any ASCII text editor, such as Notepad.
These options take effect the next time PSpice A/D starts.

PSpice options can also be specified on the PSpice command line by typing the executable
names.

The command line options can be separated by spaces or in a continuous string, therefore:

-c makeplot.cmd -p newamp.prb
-cmakeplot.cmd-pnewamp.prb

are equivalent. The order of the options does not matter.

The command line options that use <file name> assume default extensions. These command
line options can be used without specifying the extension to <file name>. For example:

-c makeplot -p newamp
-c makeplot.cmd -p newamp.prb

are equivalent. However, PSpice searches first for the exact <file name> specified for these
command line options, and if that <file name> exists, PSpice uses it. If the exact <file name>

-p <file name> Specifies a file that contains goal functions for Performance
Analysis, macro definitions, and display configurations. This
file is loaded after the global .prb file (specified in the .ini
file by the line PRBFILE=pspice.prb), and the local .prb file
(<file name>.prb), have been loaded. Definitions in this
file will replace definitions from the global or local .prb files
that have already been loaded.

-r Runs simulation files. If this option is not specified, the
specified files are opened but not simulated.

-t <temp directory name> Specifies a directory where PSpice can write temporary files.

This option replaces the -wTEMP option.

-wOUT=<suffix> Specifies the file suffix for the simulation output file. If
<suffix> is not specified, the default .out file is used.

-wDAT=<suffix> Specifies the file suffix for the waveform data file. If
<suffix> is not specified, the default .dat file is used.

-wTXT=<suffix> Specifies the file suffix for the CSDF file. If <suffix> is not
specified, the default .txt file is used.

-wNO_NOTIFY Indicates that the simulator should not display the status
message dialog after completion of each circuit file.

-wPAUSE=<seconds> Specifies the maximum time that the status dialog box should
be displayed. If <seconds> elapses before you click one of
the buttons, the dialog will close.

Option Description

How to Use This Online Manual Command line options for OrCAD applications

xxviii

does not exist, PSpice adds default extensions to <file name> and searches for those. The
following default extensions are used:

You can learn more about PSpice macros by consulting PSpice Help.

<file name[.dat]> waveform data file

-c<file name[.cmd]> command file

-l<file name[.log]> log file

-p<file name[.prb]> displays, goal functions, and macros file

Commands
standard analyses

.AC (AC analysis)

.DC (DC analysis)

.FOUR (Fourier analysis)

.NOISE (noise analysis)

.OP (bias point)

.SENS (sensitivity analysis)

.TF (transfer)

.TRAN (transient analysis)

output control

.PLOT (plot)

.PRINT (print)

.PROBE (Probe)

.VECTOR (digital output)

.WATCH (watch analysis results)

simple multi-run analyses

.STEP (parametric analysis) .TEMP (temperature)

circuit file processing

.END (end of circuit)

.FUNC (function)

.INC (include file)

.LIB (library file)

.PARAM (parameter)

statistical analyses

.MC (Monte Carlo analysis) .WCASE (sensitivity/ worst-case analysis)

device modeling

.ENDS (end subcircuit)

.DISTRIBUTION
(user-defined distribution)

.MODEL (model definition)

.SUBCKT (subcircuit)

initial conditions

.IC (initial bias point condition)

.LOADBIAS (load bias point file)

.NODESET
(set approximate node voltage for bias point)
.SAVEBIAS (save bias point to file)

miscellaneous

.ALIASES, .ENDALIASES
(aliases and endaliases)
.EXTERNAL (external port)
.OPTIONS (analysis options)
.STIMLIB (stimulus library file)

.STIMULUS (stimulus)

.TEXT (text parameter)
* (comment)
; (in-line comment)
+ (line continuation)

Analog devices Digital devices Device equations

Commands Command reference for PSpice and PSpice A/D

30

Command reference
for PSpice and PSpice A/D

Schematics users enter analysis specifications through the Analysis Setup dialog box (from
the Analysis menu, select Setup).

Function PSpice command Description

standard analyses .AC (AC analysis)

.DC (DC analysis)

.FOUR (Fourier analysis)

.NOISE (noise analysis)

.OP (bias point)

.SENS (sensitivity analysis)

.TF (transfer)

.TRAN (transient analysis)

frequency response

DC sweep

Fourier components

noise

bias point

DC sensitivity

small-signal DC transfer function

transient

simple multi-run
analyses

.STEP (parametric analysis)

.TEMP (temperature)

parametric

temperature

statistical analyses .MC (Monte Carlo analysis)

.WCASE (sensitivity/worst-case
analysis)

Monte Carlo

sensitivity/worst-case

initial conditions .IC (initial bias point condition)

.LOADBIAS (load bias point file)

.NODESET (set approximate node
voltage for bias point)

.SAVEBIAS (save bias point to file)

clamp node voltage for bias point calculation

to restore a .NODESET bias point

to suggest a node voltage for bias calculation

to store .NODESET bias point information

device modeling .ENDS (end subcircuit)

.DISTRIBUTION (user-defined distrib
ution)

.MODEL (model definition)

.SUBCKT (subcircuit)

end of subcircuit definition

model parameter tolerance distribution

modeled device definition

to start subcircuit definition

output control .PLOT (plot)

.PRINT (print)

.PROBE (Probe)

.VECTOR (digital output)

.WATCH (watch analysis results)

to send an analysis plot to output file
(line printer format)

to send an analysis table to output file

to send simulation results to Probe data file

digital state output

view numerical simulation results in progress

31

Commands Command reference for PSpice and PSpice A/D

circuit file
processing

.END (end of circuit)

.FUNC (function)

.INC (include file)

.LIB (library file)

.PARAM (parameter)

end of circuit simulation description

expression function definition

include specified file

reference specified library

parameter definition

miscellaneous .ALIASES, .ENDALIASES (aliases
and endaliases)

.EXTERNAL (external port)

.OPTIONS (analysis options)

.STIMLIB (stimulus library file)

.STIMULUS (stimulus)

.TEXT (text parameter)

* (comment)

; (in-line comment)

+ (line continuation)

to begin and end an alias definition

to identify nets representing the outermost (or
peripheral) connections to the circuit being
simulated

to set miscellaneous simulation limits,
analysis control parameters, and output
characters

to specify a stimulus library name containing
.STIMULUS information

stimulus device definition

text expression, parameter, or file name used
by digital devices

to create a comment line

to add an in-line comment

to continue the text of the previous line

Function PSpice command Description

Commands .AC (AC analysis)

32

.AC (AC analysis)

Purpose The .AC command calculates the frequency response of a circuit over a range of frequencies.

General form .AC <sweep type> <points value>
+ <start frequency value> <end frequency value>

Examples .AC LIN 101 100Hz 200Hz
.AC OCT 10 1kHz 16kHz
.AC DEC 20 1MEG 100MEG

Arguments and options

<sweep type>
Must be LIN, OCT, or DEC, as described below.

Parameter Description Description

LIN linear sweep The frequency is swept linearly from the
starting to the ending frequency. The
<points value> is the total number of points in
the sweep.

OCT sweep by octaves The frequency is swept logarithmically by
octaves. The <points value> is the number of
points per octave.

DEC sweep by decades The frequency is swept logarithmically by
decades. The <points value> is the number of
points per decade.

<points value>
Specifies the number of points in the sweep, using an integer.

<start frequency value> <end frequency value>
The end frequency value must not be less than the start frequency value, and both must be
greater than zero. The whole sweep must include at least one point. If a group delay (G
suffix) is specified as an output, the frequency steps must be close enough together that
the phase of that output changes smoothly from one frequency to the next. Calculate group
delay by subtracting the phases of successive outputs and dividing by the frequency
increment.

Comments A .PRINT (print), .PLOT (plot), or .PROBE (Probe) command must be used to get the
results of the AC sweep analysis.

AC analysis is a linear analysis. The simulator calculates the frequency response by
linearizing the circuit around the bias point.

All independent voltage and current sources that have AC values are inputs to the circuit.
During AC analysis, the only independent sources that have nonzero amplitudes are those
using AC specifications. The SIN specification does not count, as it is used only during
transient analysis.

To analyze nonlinear functions such as mixers, frequency doublers, and AGC, use
.TRAN (transient analysis).

33

Commands .ALIASES, .ENDALIASES (aliases and endaliases)

.ALIASES, .ENDALIASES
(aliases and endaliases)

Purpose The Alias commands set up equivalences between node names and pin names, so that traces
in the Probe display can be identified by naming a device and pin instead of a node. They are
also used to associate a net name with a node name.

General form .ALIASES
<device name> <device alias> (<<pin>=<node>>)
_ _ (<<net>=<node>>)
.ENDALIASES

Examples .ALIASES
R_RBIAS RBIAS (1=$N_0001 2=VDD)
Q_Q3 Q3 (c=$N_0001 b=$N_0001 e=VEE)
_ _ (OUT=$N_0007)
.ENDALIASES

The first alias definition shown in the example allows the name RBIAS to be used as an alias
for R_RBIAS, and it relates pin 1 of device R_RBIAS to node $N_0001 and pin 2 to VDD.

The last alias definition equates net name OUT to node name $N_0007.

Commands .DC (DC analysis)

34

.DC (DC analysis)

Purpose The .DC command performs a linear, logarithmic, or nested DC sweep analysis on the circuit.
The DC sweep analysis calculates the circuit’s bias point over a range of values for
<sweep variable name>.

Sweep type The sweep can be linear, logarithmic, or a list of values.

Parameter Description Meaning

LIN linear sweep The sweep variable is swept linearly from the
starting to the ending value.

OCT sweep by octaves Sweep by octaves. The sweep variable is swept
logarithmically by octaves.

DEC sweep by decades Sweep by decades. The sweep variable is swept
logarithmically by decades.

LIST list of values Use a list of values.

35

Commands .DC (DC analysis)

Linear sweep

Logarithmic sweep

General form .DC [LIN] <sweep variable name>
+ <start value> <end value> <increment value>
+ [nested sweep specification]

Examples .DC VIN -.25 .25 .05
.DC LIN I2 5mA -2mA 0.1mA
.DC VCE 0V 10V .5V IB 0mA 1mA 50uA
.DC RES RMOD(R) 0.9 1.1 .001

Arguments and options

<start value>
Can be greater or less than <end value>: that is, the sweep can go in either direction.

<increment value>
The step size. This value must be greater than zero.

Comments The sweep variable is swept linearly from the starting to the ending value.

The keyword LIN is optional.

General form .DC <logarithmic sweep type> <sweep variable name>
+ <start value> <end value> <points value>
+ [nested sweep specification]

Examples .DC DEC NPN QFAST(IS) 1E-18 1E-14 5

Arguments and options

<logarithmic sweep type>
Must be specified as either DEC (to sweep by decades) or OCT (to sweep by octaves).

<start value>
Must be positive and less than <end value>.

<points value>
The number of steps per octave or per decade in the sweep. This value must be an integer.

Comments Either OCT or DEC must be specified for the <logarithmic sweep type>.

Commands .DC (DC analysis)

36

Nested sweep
General form .DC <sweep variable name> LIST <value>*

+[nested sweep specification]

Examples .DC TEMP LIST 0 20 27 50 80 100 PARAM Vsupply 7.5 15 .5

Arguments and options

<sweep variable name>
After the DC sweep is finished, the value associated with <sweep variable name> is set
back to the value it had before the sweep started. The following items can be used as sweep
variables in a DC sweep:

Parameter Description Meaning

Source A name of an independent
voltage or current source.

During the sweep, the source’s voltage or
current is set to the sweep value.

Model
Parameter

A model type and model
name followed by a model
parameter name in
parenthesis.

The parameter in the model is set to the
sweep value. The following model
parameters cannot be (usefully) swept: L
and W for the MOSFET device (use LD
and WD as a work around), and any
temperature parameters, such as TC1 and
TC2 for the resistor.

Temperature Use the keyword TEMP for
<sweep variable name>.

Set the temperature to the sweep value.
For each value in the sweep, all the
circuit components have their model
parameters updated to that temperature.

Global
Parameter

Use the keyword PARAM,
followed by the parameter
name, for
<sweep variable name>.

During the sweep, the global parameter’s
value is set to the sweep value and all
expressions are reevaluated.

Comments For a nested sweep, a second sweep variable, sweep type, start, end, and increment values can
be placed after the first sweep. In the nested sweep example, the first sweep is the inner loop:
the entire first sweep is performed for each value of the second sweep.

When using a list of values, there are no start and end values. Instead, the numbers that follow
the keyword LIST are the values that the sweep variable is set to.

The rules for the values in the second sweep are the same as for the first. The second sweep
generates an entire .PRINT (print) table or .PLOT (plot) plot for each value of the sweep.
Probe displays nested sweeps as a family of curves.

37

Commands .DISTRIBUTION (user-defined distribution)

.DISTRIBUTION (user-defined distribution)

Deriving updated parameter values
The updated value of a parameter is derived from a combination of a random number, the
distribution, and the tolerance specified. This method permits distributions which have
different excursions in the positive and negative directions. It also allows the use of one
distribution even if the tolerances of the components are different so long as the general shape
of the distributions are the same.

1 Generate a <temporary random number> in the range (0, 1).

2 Normalize the area under the specified distribution.

3 Set the <final random number> to the point where the area under the normalized
distribution equals the <temporary random number>.

4 Multiply this <final random number> by the specified tolerance.

Purpose The .DISTRIBUTION command defines a user distribution for tolerances, and is only used
with Monte Carlo and sensitivity/worst-case analyses. The curve described by a
.DISTRIBUTION command controls the relative probability distribution of random numbers
generated by PSpice to calculate model parameter deviations.

General form DISTRIBUTION <name> (<deviation> <probability>)*

Examples .DISTRIBUTION bi_modal (-1,1) (-.5,1) (-.5,0) (.5,0)
+ (.5,1) (1,1)

.DISTRIBUTION triangular (-1,0) (0,1) (1,0)

Arguments and options

 (<deviation> <probability>)
Defines the distribution curve by pairs, or corner points, in a piecewise linear fashion. You
can specify up to 100 value pairs.

<deviation>
Must be in the range (-1,+1), which matches the range of the random number generator.
No <deviation> can be less than the previous <deviation> in the list, although it can repeat
the previous value.

<probability>
Represents a relative probability, and must be positive or zero.

Comments When using Schematics, several distributions can be defined by configuring an include file
containing the .DISTRIBUTION command. For details on how to do this, refer to your PSpice
user’s guide.

If you are not using Schematics, a user-defined distribution can be specified as the default by
setting the DISTRIBUTION parameter in the .OPTIONS (analysis options) command.

Commands .DISTRIBUTION (user-defined distribution)

38

Usage example
To illustrate, assume there is a 1.0 µfd capacitor that has a variation of -50% to +25%, and
another that has tolerances of -10% to +5%. Note that both capacitors’ tolerances are in the
same general shape, i.e., both have negative excursions twice as large as their positive
excursions.

.distribution cdistrib (-1,1) (.5, 1) (.5, 0) (1, 0)
c1 1 0 cmod 11u
c2 1 0 cmod2 1u
.model cmod1 cap (c=1 dev/cdistrib 50%)
.model cmod2 cap (c=1 dev/cdistrib 10%)

The steps taken for this example are as follows:

1 Generate a <temporary random value> of 0.3.

2 Normalize the area under the cdistrib distribution (1.5) to 1.0.

3 The <final random number> is therefore -0.55 (the point where the normalized area
equals 0.3).

4 For c1, this -0.55 is then scaled by 50%, resulting in -0.275; for c2, it is scaled by 10%,
resulting in -0.055.

Separate random numbers are generated for each parameter that has a tolerance
unless a tracking number is specified.

39

Commands .END (end of circuit)

.END (end of circuit)

Purpose The .END command marks the end of the circuit. All the data and every other command must
come before it. When the .END command is reached, PSpice does all the specified analyses
on the circuit.

General form .END

Examples * 1st circuit in file
... circuit definition
.END
* 2nd circuit in file
... circuit definition
.END

Comments There can be more than one circuit in an input file. Each circuit is marked by an .END
command. PSpice processes all the analyses for each circuit before going on to the next one.

Everything is reset at the beginning of each circuit. Having several circuits in one file gives
the same results as having them in separate files and running each one separately. However,
all the simulation results go into one .OUT file and one .DAT file. This is a convenient way to
arrange a set of runs for overnight operation.

The last statement in an input file must be an .END command.

Commands .EXTERNAL (external port)

40

.EXTERNAL (external port)

Purpose External ports are provided as a means of identifying and distinguishing those nets
representing the outermost (or peripheral), connections to the circuit being simulated. The
external port statement .EXTERNAL applies only to nodes that have digital devices
attached to them.

General form .EXTERNAL <attribute> <node-name>*

Examples .EXTERNAL INPUT Data1, Data2, Data3
.EXTERNAL OUTPUT P1
.EXTERNAL BIDIRECTIONAL BPort1 BPort2 BPort3

Arguments and options

<attribute>
One of the keywords INPUT, OUTPUT, or BIDIRECTIONAL, describing the usage of
the port.

<node_name>
One or more valid PSpice A/D node names.

Comments When a node is included in a .EXTERNAL statement it is identified as a primary
observation point. For example, if you are modeling and simulating a PCB-level
description, you could place an .EXTERNAL (or its Capture symbol counterparts) on the
edge pin nets to describe the pin as the external interface point of the network.

PSpice recognizes the nets marked as .EXTERNAL when reporting any sort of timing
violation. When a timing violation occurs, PSpice analyzes the conditions that would permit
the effects of such a condition to propagate through the circuit. If, during this analysis, a net
marked external is encountered, PSpice reports the condition as a Persistent Hazard,
signifying that it has a potential effect on the externally visible behavior of the circuit. For
more information on Persistent Hazards, refer to your PSpice user’s guide.

Port specifications are inserted in the netlist by Capture whenever an external port symbol,
EXTERNAL_IN, EXTERNAL_OUT, or EXTERNAL_BI is used. Refer to your PSpice
user’s guide for more information.

41

Commands .FOUR (Fourier analysis)

.FOUR (Fourier analysis)

Purpose Fourier analysis decomposes the results of a transient analysis into Fourier components.

General form .FOUR <frequency value> [no. harmonics value] <output variable>

Examples .FOUR 10kHz V(5) V(6,7) I(VSENS3)
.FOUR 60Hz 20 V(17)
.FOUR 10kHz V([OUT1],[OUT2])

Arguments and options

<output variable>
An output variable of the same form as in a .PRINT (print) command or .PLOT (plot)
command for a transient analysis.

 <frequency value>
The fundamental frequency. Not all of the transient results are used, only the interval from
the end, back to 1/<frequency value> before the end is used. This means that the transient
analysis must be at least 1/<frequency value> seconds long.

Comments The analysis results are obtained by performing a Fourier integral on the results from a
transient analysis. The analysis must be supplied with specified output variables using evenly
spaced time points. The time interval used is <print step value> in the .TRAN (transient
analysis) command, or 1% of the <final time value> (TSTOP) if smaller, and a 2nd-order
polynomial interpolation is used to calculate the output value used in the integration. The DC
component, the fundamental, and the 2nd through 9th harmonics of the selected voltages and
currents are calculated by default, although more harmonics can be specified.

A .FOUR command requires a .TRAN command, but Fourier analysis does not require
.PRINT, .PLOT, or .PROBE (Probe) commands. The tabulated results are written to the
output file (.out) as the transient analysis is completed.

The results of the .FOUR command are only available in the output file. They
cannot be viewed in Probe.

Commands .FUNC (function)

42

.FUNC (function)

Purpose The .FUNC command defines functions used in expressions. Besides their obvious flexibility,
they are useful for where there are several similar subexpressions in a circuit file.

General form .FUNC <name> ([arg]*) {<body>}

Examples .FUNC E(x) {exp(x)}
.FUNC DECAY(CNST) {E(-CNST*TIME)}
.FUNC TRIWAV(x) {ACOS(COS(x))/3.14159}
.FUNC MIN3(A,B,C) {MIN(A,MIN(B,C))}

Arguments and options

.FUNC
Does not have to precede the first use of the function name. Functions cannot be redefined
and the function name must not be the same as any of the predefined functions (e.g., SIN
and SQRT). See How to Use This Online Manual for a list of valid expressions. .FUNC
arguments cannot be node names.

<body>
Refers to other (previously defined) functions; the second example, DECAY, uses the first
example, E.

[arg]
Specifies up to 10 arguments in a definition. The number of arguments in the use of a
function must agree with the number in the definition. Functions can be defined as having
no arguments, but the parentheses are still required. Parameters, TIME, other functions,
and the Laplace variable s are allowed in the body of function definitions.

Comments The <body> of a defined function is handled in the same way as any math expression; it is
enclosed in curly braces {}. Previous versions of PSpice did not require this, so for
compatibility the <body> can be read without braces, but a warning is generated.

Creating a file of frequently used .FUNC definitions and accessing them using
an .INC command near the beginning of the circuit file can be helpful. .FUNC
commands can also be defined in subcircuits. In those cases they only have
local scope.

43

Commands .IC (initial bias point condition)

.IC (initial bias point condition)

Purpose The .IC command sets initial conditions for both small-signal and transient bias points. Initial
conditions can be given for some or all of the circuit’s nodes.

.IC sets the initial conditions for the bias point only. It does not affect a .DC (DC analysis)
sweep.

General form .IC < V(<node> [,<node>])=<value> >*
.IC <I(<inductor>)=<value>>*

Examples .IC V(2)=3.4 V(102)=0 V(3)=-1V I(L1)=2uAmp
.IC V(InPlus,InMinus)=1e-3 V(100,133)=5.0V

Arguments and options

<value>
A voltage assigned to <node> (or a current assigned to an inductor) for the duration of the
bias point calculation.

Comments The voltage between two nodes and the current through an inductor can be specified. During
bias calculations, PSpice clamps the voltages to specified values by attaching a voltage source
with a 0.0002 ohm series resistor between the specified nodes. After the bias point has been
calculated and the transient analysis started, the node is released.

If the circuit contains both the .IC command and .NODESET (set approximate node
voltage for bias point) command for the same node or inductor, the .NODESET command is
ignored (.IC overrides .NODESET).

Refer to your PSpice user’s guide for more information on setting initial conditions.

An .IC command that imposes nonzero voltages on inductors cannot work
properly, since inductors are assumed to be short circuits for bias point
calculations. However, inductor currents can be initialized.

Commands .INC (include file)

44

.INC (include file)

Purpose The .INC command inserts the contents of another file.

General form .INC <file name>

Examples .INC "SETUP.CIR"
.INC "C:\LIB\VCO.CIR"

Arguments and options

<file name>
Any character string that is a valid file name for your computer system.

Comments Including a file is the same as bringing the file’s text into the circuit file. Everything in the
included file is actually read in. The comments of the included file are then treated just as if
they were found in the parent file.

Included files can contain any valid PSpice statements, with the following conditions:

• The included files should not contain title lines unless they are commented.

• Included files can be nested up to 4 levels.

Every model and subcircuit definition, even if not needed, takes up memory.

45

Commands .LIB (library file)

.LIB (library file)

Purpose The .LIB command references a model or subcircuit library in another file.

General form .LIB [file_name]

Examples .LIB
.LIB linear.lib
.LIB "C:\lib\bipolar.lib"

Arguments and options

[file_name]
Any character string that is a valid file name for the computer system.

Comments Library files can contain any combination of the following:

• comments

• .MODEL (model definition) commands

• subcircuit definitions (including the .ENDS (end subcircuit) command)

• .PARAM (parameter) commands

• .FUNC (function) commands

• .LIB commands

No other statements are allowed. For further discussion of library files, refer to your PSpice
user’s guide.

If [file_name] is left off, all references point to the master library file, nom.lib. When a library
file is referenced in Schematics, PSpice first searches for the file in the current working
directory, then searches in the directory specified by the LIBPATH variable (set in msim.ini).

When any library is modified, PSpice creates an index file based on the first use of the library.
The index file is organized so that PSpice can find a particular .MODEL or .SUBCKT
(subcircuit) quickly, despite the size of the library file.

The index files have to be regenerated each time the library is changed.
Because of this, it is advantageous to configure separately any frequently
changed libraries.

Nom.lib normally contains references to all parts in the MicroSim Standard Model Library.
You can edit nom.lib to include your custom model references.

Commands .LOADBIAS (load bias point file)

46

.LOADBIAS (load bias point file)

Purpose The .LOADBIAS command loads the contents of a bias point file. It is helpful in setting initial
bias conditions for subsequent simulations. However, the use of .LOADBIAS does not
guarantee convergence.

General form .LOADBIAS <file name>

Examples .LOADBIAS "SAVETRAN.NOD"
.LOADBIAS "C:\PROJECT\INIT.FIL"

Arguments and options

<file name>
Any character string which is a valid computer system file name, but it must be enclosed
in quotation marks.

Comments Normally, the bias point file is produced by a previous circuit simulation using the
.SAVEBIAS (save bias point to file) command.

The bias point file is a text file that contains one or more comment lines and a
.NODESET (set approximate node voltage for bias point) command setting the bias point
voltage or inductor current values. If a fixed value for a transient analysis bias point needs to
be set, this file can be edited to replace the .NODESET command with an
.IC (initial bias point condition) command.

Any nodes mentioned in the loaded file that are not present in the circuit are
ignored, and a warning message will be generated.

To echo the .LOADBIAS file contents to the output file, use the EXPAND option on the
.OPTIONS (analysis options) command.

47

Commands .MC (Monte Carlo analysis)

.MC (Monte Carlo analysis)

Purpose The .MC command causes a Monte Carlo (statistical) analysis of the circuit and causes PSpice
to perform multiple runs of the selected analysis (DC, AC, or transient).

General form .MC <#runs value> <analysis> <output variable> <function> [option]*
+ [SEED=value]

Examples .MC 10 TRAN V(5) YMAX
.MC 50 DC IC(Q7) YMAX LIST
.MC 20 AC VP(13,5) YMAX LIST OUTPUT ALL
.MC 10 TRAN V([OUT1],[OUT2]) YMAX SEED=9321

Arguments and options

<#runs value>
The total number of runs to be performed (for printed results the upper limit is 2,000, and
for results to be viewed in Probe, the limit is 400).

<analysis>
Specifies at least one analysis type: .DC (DC analysis), .AC (AC analysis), or
.TRAN (transient analysis). This analysis is repeated in subsequent passes. All analyses
that the circuit contains are performed during the nominal pass. Only the selected analysis
is performed during subsequent passes.

<output variable>
Identical in format to that of a .PRINT (print) output variable.

<function>
Specifies the operation to be performed on the values of <output variable> to reduce these
to a single value. This value is the basis for the comparisons between the nominal and
subsequent runs.The <function> can be any one of the following:

Function Definition

YMAX Find the absolute value of the greatest difference in each
waveform from the nominal run.

MAX Find the maximum value of each waveform.

MIN Find the minimum value of each waveform.

RISE_EDGE(<value>) Find the first occurrence of the waveform crossing above the
threshold <value>. The waveform must have one or more points
at or below <value> followed by one above; the output value
listed is the first point that the waveform increases above <value>.

FALL_EDGE(<value>) Find the first occurrence of the waveform crossing below the
threshold <value>. The waveform must have one or more points
at or above <value> followed by one below; the output value
listed is where the waveform decreases below <value>.

Commands .MC (Monte Carlo analysis)

48

<function> and all [option]s (except for <output type>) have no effect on the
Probe data that is saved from the simulation. They are only applicable to the
output file.

[option]*
Can include zero or more of the following options:

Option Definition Example

LIST Lists, at the beginning of each
run, the model parameter values
actually used for each
component during that run.

OUTPUT
<output type>

Asks for an output from
subsequent runs, after the
nominal (first) run. The output
from any run is governed by a
.PRINT, .PLOT, and .PROBE
command in the file. If OUTPUT
is omitted, then only the
nominal run produces output.
The <output type> is one of the
ones shown in the examples to
the right.

ALL forces all output to be generated
(including the nominal run).

FIRST <N> generates output only
during the first n runs.

EVERY <N> generates output every nth
run.

RUNS <N>* does analysis and
generates output only for the listed
runs. Up to 25 values can be specified
in the list.

RANGE*

(<low value>,
<high value>)

* If RANGE is omitted, then <function> is evaluated over the whole sweep range. This is equivalent to
RANGE(*,*).

Restricts the range over which
<function> is evaluated. An
asterisk (*) can be used in place
of a <value> to show for all
values.

YMAX RANGE(*,.5) YMAX is evaluated
for values of the sweep variable (e.g.,
time and frequency) of .5 or less.

MAX RANGE(-1,*) The maximum of
the output variable is found for values
of the sweep variable of -1 or more.

[SEED=value]
Defines the seed for the random number generator within the Monte Carlo analysis (The
Art of Computer Programming, Donald Knuth, vol. 2, pg. 171, “subtractive method”).

<value>
Must be an odd integer ranging from 1 to 32,767. If the seed value is not set, its default
value is 17,533.

For almost all analyses, the default seed value is adequate to achieve a
constant set of results. The seed value can be modified within the integer value
as required.

49

Commands .MC (Monte Carlo analysis)

Comments The first run uses nominal values of all components. Subsequent runs use variations on model
parameters as specified by the DEV and LOT tolerances on each .MODEL (model
definition) parameter.

The other specifications on the .MC command control the output generated by the Monte
Carlo analysis.

For more information on Monte Carlo analysis, refer to your PSpice user’s guide.

Commands .MODEL (model definition)

50

.MODEL (model definition)

Purpose The .MODEL command defines a set of device parameters that can be referenced by devices
in the circuit.

General form .MODEL <model name> [AKO: <reference model name>]
+ <model type>
+ ([<parameter name> = <value> [tolerance specification]]*
+ [T_MEASURED=<value>] [[T_ABS=<value>] or
+ [T_REL_GLOBAL=<value>] or [T_REL_LOCAL=<value>]])

Examples .MODEL RMAX RES (R=1.5 TC1=.02 TC2=.005)
.MODEL DNOM D (IS=1E-9)
.MODEL QDRIV NPN (IS=1E-7 BF=30)
.MODEL MLOAD NMOS(LEVEL=1 VTO=.7 CJ=.02pF)
.MODEL CMOD CAP (C=1 DEV 5%)
.MODEL DLOAD D (IS=1E-9 DEV .5% LOT 10%)
.MODEL RTRACK RES (R=1 DEV/GAUSS 1% LOT/UNIFORM 5%)
.MODEL QDR2 AKO:QDRIV NPN (BF=50 IKF=50m)

Arguments and options

<model name>
The model name which is used to reference a particular model.

<reference model name>
The model types of the current model and the AKO (A Kind Of) reference model must be
the same. The value of each parameter of the referenced model is used unless overridden
by the current model, e.g., for QDR2 in the last example, the value of IS derives from
QDRIV, but the values of BF and IKF come from the current definition. Parameter values
or formulas are transferred, but not the tolerance specification. The referenced model can
be in the main circuit file, accessed through a .INC command, or it can be in a library file;
see .LIB (library file).

<model type>
Must be one of the types outlined in the table that follows.

Devices can only reference models of a corresponding type; for example:

• A JFET can reference a model of types NJF or PJF, but not of type NPN.

• There can be more than one model of the same type in a circuit, although they must
have different names.

Following the <model type> is a list of parameter values enclosed by parentheses. None,
any, or all of the parameters can be assigned values. Default values are used for all
unassigned parameters. The lists of parameter names, meanings, and default values are
found in the individual device descriptions.

51

Commands .MODEL (model definition)

Model type Instance name Type of device

CAP Cxxx capacitor

CORE Kxxx nonlinear, magnetic core (transformer)

D Dxxx diode

DINPUT Nxxx digital input device (receive from digital)

DOUTPUT Oxxx digital output device (transmit to digital)

GASFET Bxxx N-channel GaAs MESFET

IND Lxxx inductor

ISWITCH Wxxx current-controlled switch

LPNP Qxxx lateral PNP bipolar transistor

NIGBT Zxxx N-channel insulated gate bipolar transistor (IGBT)

NJF Jxxx N-channel junction FET

NMOS Mxxx N-channel MOSFET

NPN Qxxx NPN bipolar transistor

PJF Jxxx P-channel junction FET

PMOS Mxxx P-channel MOSFET

PNP Qxxx PNP bipolar transistor

RES Rxxx resistor

TRN Txxx lossy transmission line

UADC Uxxx multi-bit analog-to-digital converter

UDAC Uxxx multi-bit digital-to-analog converter

UDLY Uxxx digital delay line

UEFF Uxxx edge-triggered flip-flop

UGATE Uxxx standard gate

UGFF Uxxx gated flip-flop

UIO Uxxx digital I/O model

UTGATE Uxxx tristate gate

VSWITCH Sxxx voltage-controlled switch

Commands .MODEL (model definition)

52

[tolerance specification]
Appended to each parameter, using the format:
[DEV [track&dist] <value>[%]] [LOT [track&dist] <value>[%]]
to specify an individual device (DEV) and the device lot (LOT) parameter value
deviations. The tolerance specification is used by the .MC (Monte Carlo analysis)
analysis only.

The LOT tolerance requires that all devices that refer to the same model use the same
adjustments to the model parameter. DEV tolerances are independent, that is each device
varies independently. The % shows a relative (percentage) tolerance. If it is omitted,
<value> is in the same units as the parameter itself.

[track & dist]
Specifies the tracking and non-default distribution, using the format:

[/<lot #>][/<distribution name>].

These specifications must immediately follow the keywords DEV and LOT (without
spaces) and are separated by /.

<lot #>
Specifies which of ten random number generators, numbered 0 through 9, are used to
calculate parameter value deviations. This allows deviations to be correlated between
parameters in the same model, as well as between models. The generators for DEV and
LOT tolerances are distinct: there are ten generators for DEV tracking and ten generators
for LOT tracking. Tolerances without <lot #> are assigned individually generated random
numbers.

<distribution name>
The distribution name is one of the following. The default distribution can be set by using
the DISTRIBUTION parameter of the .OPTIONS (analysis options) command.

Distribution
name Function

UNIFORM Generates uniformly distributed deviations over the range
±<value>.

GAUSS Generates deviations using a Gaussian distribution over the range
±3σ and <value> specifies the ±1σ deviation (i.e., this generates
deviations greater than ±<value>).

<user name> Generates deviations using a user-defined distribution and
<value> specifies the ±1 deviation in the user definition; see the
.DISTRIBUTION (user-defined distribution).

Comments The examples are for the .MODEL parameter. The last example uses the AKO syntax to
reference the parameters of the model QDRIV in the third example.

For more information, refer to your PSpice user’s guide.

53

Commands .MODEL (model definition)

Parameters for setting temperature
Some passive and semiconductor devices (C, L, R, B, D, J, M, and Q) have two levels of
temperature attributes that can be customized on a model-by-model basis.

First, the temperature at which the model parameters were measured can be defined by using
one of the following model parameter formats in the .MODEL command line:

T_MEASURED = <literal value>
T_MEASURED = { <parameter> }

This overrides the nominal TNOM value which is set in the .OPTIONS (analysis options)
command line (default = 27°C). All other parameters listed in the .MODEL command are
assumed to have been measured at T_MEASURED.

In addition to the measured model parameter temperature, current device temperatures can be
customized to override the circuit’s global temperature specification defined by the
.TEMP (temperature) command line (or equivalent .STEP TEMP or .DC TEMP). There are
three forms, as described below.

Model parameters for device temperature

For all formats, <value> can be a literal value or a parameter of the form
{<parameter name>}. A maximum of one device temperature customization can coexist
using the T_MEASURED customization. For example,

.MODEL PNP_NEW PNP(T_ABS=35 T_MEASURED=0 BF=90)

defines a new model PNP_NEW, where BF was measured at 0°C. Any bipolar transistor
referencing this model has an absolute device temperature of 35°C.

Examples

One This example demonstrates device temperatures set relative to the global
temperature of the circuit:

.TEMP 10 30 40

.MODEL PNP_NEW PNP(T_REL_GLOBAL=-5 BF=90)

This produces three PSpice runs where global temperature changes from 10° to 30° to 40°C,
respectively, and any bipolar transistor that references the PNP_NEW model has a device
temperature of 5°, 25°, or 35°C, respectively.

Description .MODEL
format Parameter format

Referencing
device
temperature

absolute temperature standard T_ABS=<value> T_ABS

relative to current
temperature

standard T_REL_GLOBAL=<value> global temperature
+ T_REL_GLOBAL

relative to AKO
model temperature

AKO T_REL_LOCAL=<value> T_ABS(AKO Model)
+ T_REL_LOCAL

Commands .MODEL (model definition)

54

Two This example sets the device temperature relative to a referenced AKO model:

.MODEL PNP_NEW PNP(AKO:PNP_OLD T_REL_LOCAL=10)

.MODEL PNP_OLD PNP(T_ABS=20)

Any bipolar transistor referencing the PNP_NEW model has a device temperature of 30°C.

Special considerations
There are a few special considerations when using these temperature parameters:

• If the technique for current device temperature is using the value relative to an AKO
model’s absolute temperature (T_ABS), and the AKO referenced model does not specify
T_ABS, then the T_REL_LOCAL specification is ignored and the standard global
temperature specification is used.

• These temperature parameters cannot be used with the DEV and LOT model parameter
tolerance feature.

• A DC sweep analysis can be performed on these parameters so long as the temperature
parameter assignment is to a variable parameter. For example:

.PARAM PTEMP 27

.MODEL PNP_NEW PNP (T_ABS={PTEMP})

.DC PARAM PTEMP 27 35 1

This method produces a single DC sweep in PSpice where any bipolar transistor referencing
the PNP_NEW model has a device temperature which is swept from 27°C to 35°C in 1°C
increments.

A similar effect can be obtained by performing a parametric analysis. For instance:

.PARAM PTEMP 27

.MODEL PNP_NEW PNP(T_ABS={PTEMP})

.STEP PARAM PTEMP 27 35 1

This method produces nine PSpice runs where the PNP_NEW model temperature steps from
27°C to 35°C in increments of 1°C, one step per run.

• The effect of a temperature parameter is evaluated once prior to the bias point calculation,
unless parameters are swept by means of a .DC PARAM or .STEP PARAM analysis
described above. In these cases, the temperature parameter’s effect is reevaluated once for
each value of the swept variable.

55

Commands .NODESET (set approximate node voltage for bias point)

.NODESET (set approximate node voltage for bias point)

Purpose The .NODESET command helps calculate the bias point by providing an initial best guess for
some node voltages and/or inductor currents. Some or all of the circuit’s node voltages and
inductor currents can be given the initial guess, and in addition, the voltage between two nodes
can be specified.

General form .NODESET < V(<node> [,<node>])=<value> >*
.NODESET <I(<inductor>)=<value>>

Examples .NODESET V(2)=3.4 V(102)=0 V(3)=-1V I(L1)=2uAmp
.NODESET V(InPlus,InMinus)=1e-3 V(100,133)=5.0V

Comments This command is effective for the bias point (both small-signal and transient bias points) and
for the first step of the DC sweep. It has no effect during the rest of the DC sweep, nor during
a transient analysis.

Unlike the .IC (initial bias point condition) command, .NODESET provides only an initial
guess for some initial values. It does not clamp those nodes to the specified voltages. However,
by providing an initial guess, .NODESET can be used to break the tie in, for instance, a
flip-flop, and make it come up in a required state.

If both the .IC command and .NODESET command are present, the .NODESET command is
ignored for the bias point calculations (.IC overrides .NODESET).

For Capture-based designs, refer to your PSpice user’s guide for more
information on setting initial conditions.

Commands .NOISE (noise analysis)

56

.NOISE (noise analysis)

Purpose The .NOISE command performs a noise analysis of the circuit.

General form .NOISE V(<node> [,<node>]) <name> [interval value]

Examples .NOISE V(5) VIN
.NOISE V(101) VSRC 20
.NOISE V(4,5) ISRC
.NOISE V([OUT1],[OUT2]) V1

Arguments and options

V(<node> [,<node>])
Output voltage. It has a form such as V(5), which is the voltage at the output node five, or
a form such as V(4,5), which is the output voltage between two nodes four and five.

<name>
The name of an independent voltage or current source where the equivalent input noise is
calculated. The <name> is not itself a noise generator, but only a place where the
equivalent input noise is calculated.

[interval value]
Integer that specifies how often the detailed noise analysis data is written to the output file.

Comments A noise analysis is performed in conjunction with an AC sweep analysis and requires an
.AC (AC analysis) command. When .NOISE is used, noise data is recorded in the Probe .DAT
file for each frequency in the AC sweep.

The simulator computes:

• Device noise for every resistor and semiconductor in the circuit (propagated to a specified
output node)

• Total input and output noise

At each frequency, each noise generator’s contribution is calculated and propagated to the
output node. At that point, all the propagated noise values are RMS-summed to calculate the
total output noise. The gain from the input source to the output voltage, the total output noise,
and the equivalent input noise are all calculated.

For more information, refer to the AC Analyses chapter of your PSpice user’s guide.

If:

<name> is a voltage source

then:

the input noise units are volt/hertz
1/2

If:

<name> is a current source

then:

the input noise units are amp/hertz
1/2

The output noise units are always volt/hertz
1/2

.

57

Commands .NOISE (noise analysis)

Every nth frequency, where n is the print interval, a detailed table is printed showing the
individual contributions of all the circuit’s noise generators to the total noise. These values are
the noise amounts propagated to the output node, not the noise amounts at each generator. If
[interval value] is not present, then no detailed table is printed.

The detailed table is printed while the analysis is being performed and does not need a
.PRINT (print) command or a .PLOT (plot) command. The output noise and equivalent
input noise can be printed in the output by using a .PRINT command or a .PLOT command.

Commands .OP (bias point)

58

.OP (bias point)

Purpose The .OP command causes detailed information about the bias point to be printed.

General form .OP

Examples .OP

Comments This command does not write output to the Probe data file. The bias point is calculated
regardless of whether there is a .OP command. Without the .OP command, the only
information about the bias point in the output is a list of the node voltages, voltage source
currents, and total power dissipation.

Using a .OP command can cause the small-signal (linearized) parameters of all the nonlinear
controlled sources and all the semiconductor devices to be printed in the output file.

The .OP command controls the output for the regular bias point only. The .TRAN (transient
analysis) command controls the output for the transient analysis bias point.

If no other analysis is performed, then no Probe data file is created.

59

Commands .OPTIONS (analysis options)

.OPTIONS (analysis options)

Flag options
The default for any flag option is off or no (i.e., the opposite of specifying the option). Flag
options affect the output file unless otherwise specified.

Purpose The .OPTIONS command is used to set all the options, limits, and control parameters for the
simulator.

General form .OPTIONS [option name]* [<option name>=<value>]*

Examples .OPTIONS NOECHO NOMOD DEFL=12u DEFW=8u DEFAD=150p
+ DEFAS=150p

.OPTIONS ACCT RELTOL=.01

.OPTIONS DISTRIBUTION=GAUSS

.OPTIONS DISTRIBUTION=USERDEF1

Comments The options can be listed in any order. There are two kinds of options: those with values, and
those without values. Options without values are flags that are activated by simply listing the
option name.

The .OPTIONS command is cumulative. That is, if there are two (or more) of the .OPTIONS
command, the effect is the same as if all the options were listed together in one .OPTIONS
command. If the same option is listed more than once, only its last value is used.

For SPICE options not available in PSpice, see Differences between PSpice and Berkeley
SPICE2.

Flag option Meaning

ACCT Summary and accounting information is printed at the end of all the analyses
(refer to your PSpice user’s guide for further information on ACCT).

EXPAND Lists devices created by subcircuit expansion and lists contents of the bias
point file; see .SAVEBIAS (save bias point to file) and
.LOADBIAS (load bias point file).

LIBRARY Lists lines used from library files.

LIST Lists a summary of the circuit elements (devices).

NOBIAS Suppresses the printing of the bias point node voltages.

NODE Lists a summary of the connections (node table).

NOECHO Suppresses a listing of the input file(s).

Commands .OPTIONS (analysis options)

60

Option with a name as its value
The following option has a name as its value.

Default distribution values

The default distribution is used for all of the deviations throughout the Monte Carlo analyses,
unless specifically overridden for a particular tolerance. The default value for the default
distribution is UNIFORM, but can also be set to GAUSS or to a user-defined (<user name>)
distribution. If a user-defined distribution is selected (as illustrated in the last example on
page 1-59), a .DISTRIBUTION (user-defined distribution) command must be included in
the circuit file to define the user distribution for the tolerances. An example would be:

.DISTRIBUTION USERDEF1 (-1,1) (.5,1) (.5,0) (1,0)

NOICTRANSLATE Suppresses the translation of initial conditions (IC attributes) specified on
capacitors and inductors into .IC statements (IC pseudocomponents). This
means that IC attributes are ignored if the keyword Skip Bias Point (SKIPBP)
is not put at the end of the .TRAN statement. See .TRAN (transient
analysis).

NOMOD Suppresses listing of model parameters and temperature updated values.

NOOUTMSG Suppresses simulation error messages in output file.

NOPAGE Suppresses paging and the banner for each major section of output.

NOPRBMSG Suppresses simulation error messages in Probe data file.

NOREUSE Suppresses the automatic saving and restoring of bias point information
between different temperatures, Monte Carlo runs, worst-case runs, and
.STEP (parametric analysis). See also
.SAVEBIAS (save bias point to file) and
.LOADBIAS (load bias point file).

OPTS Lists values for all options.

STEPGMIN Enables GMIN stepping. This causes a GMIN stepping algorithm to be
applied to circuits that fail to converge. GMIN stepping is applied first, and if
that fails, the simulator falls back to supply stepping.

Option Meaning Default

DISTRIBUTION default distribution for Monte Carlo deviations UNIFORM

Flag option (continued) Meaning (continued)

61

Commands .OPTIONS (analysis options)

.OPTIONS DISTRIBUTION=USERDEF1

Numerical options with their default values
Options Description Units Default

ABSTOL best accuracy of currents amp 1.0 pA

CHGTOL best accuracy of charges coulomb 0.01 pC

CPTIME* CPU time allowed for this run sec 0.0**

DEFAD MOSFET default drain area (AD). meter2 0.0

DEFAS MOSFET default source area (AS). meter2 0.0

DEFL MOSFET default length (L). meter 100.0 u

DEFW MOSFET default width (W). meter 100.0 u

DIGFREQ minimum digital time step is 1/DIGFREQ hertz 10.0
GHz

DIGDRVF minimum drive resistance
(Input/Output UIO type model, DRVH (high) and DRVL (low)
values)

ohm 2.0

DIGDRVZ maximum drive resistance
(UIO type model, DRVH and DRVL values)

ohm 20K

DIGERRDEFAULT default error limit per digital constraint device 20.0

DIGERRLIMIT maximum digital error message limit 0**

DIGINITSTATE sets initial state of all flip-flops and latches in circuit: 0=clear,
1=set, 2=X

2.0

DIGIOLVL default digital I/O level: 1-4; see UIO in .MODEL (model
definition)

1.0

DIGMNTYMX*** default delay selector: 1=min, 2-typical, 3=max, 4=min/max 2.0

DIGMNTYSCALE scale factor used to derive minimum delays from typical delays 0.4

DIGOVRDRV ratio of drive resistances required to allow one output to
override another driving the same node

3.0

DIGTYMXSCALE scale factor used to derive maximum delays from typical delays 1.6

GMIN minimum conductance used for any branch ohm-1 1.0E-12

ITL1 DC and bias point blind repeating limit 150.0

ITL2 DC and bias point educated guess repeating limit 20.0

ITL4 the limit at any repeating point in transient analysis 10.0

ITL5* total repeating limit for all points for transient analysis
(ITL5=0 means ITL5=infinity)

0.0**

Commands .OPTIONS (analysis options)

62

LIMPTS* maximum points allowed for any print table or plot
(LIMPTS=0 means LIMPTS=infinity)

0.0**

NUMDGT number of digits output in print tables
(maximum of 8 useful digits)

4.0

PIVREL* relative magnitude required for pivot in matrix solution 1.0E-3

PIVTOL* absolute magnitude required for pivot in matrix solution 1.0E-13

RELTOL relative accuracy of V and I 0.001

TNOM default nominal temperature (also the temperature at which
model parameters are assumed to have been measured)

°C 27.0

VNTOL best accuracy of voltages volt 1.0 uV

WIDTH same as the .WIDTH OUT= statement
(can be set to either 80 or 132)

80.0

*These options are available for modification in PSpice, but it is recommended that the program defaults be used.

**For these options zero means infinity.

***Setting the DIGMNTYMX=4 (min/max) directs PSpice to perform digital worst-case timing simulation. Refer to your
PSpice user’s guide for a complete description.

Numerical options with their default values (continued)
Options Description Units Default

63

Commands .OPTIONS (analysis options)

PSpice A/D digital simulation condition messages
Other PSpice features produce warning messages in simulations (e.g., for the digital
CONSTRAINT devices monitoring timing relationships of digital nodes). These messages
are directed to the PSpice output file (and in Windows, to the Probe data file).

You can use options to control where and how many of these messages are generated. Below
is a summary of the PSpice message types and a brief description of their meaning. The
condition messages are specific to digital device timing violations and digital worst-case
timing hazards. Refer to the Digital Simulation chapter of your PSpice user’s guide for more
information on digital worst-case timing.

Message type Meaning

Timing violations

FREQUENCY The minimum or maximum frequency specification for a signal has not been
satisfied. Minimum frequency violations show that the period of the measured
signal is too long, while maximum frequency violations describe signals
changing too rapidly.

GENERAL A boolean expression described within the GENERAL constraint checker was
evaluated and produced a true result.

HOLD The minimum time required for a data signal to be stable after the assertion of a
clock, has not been met.

SETUP The minimum time required for a data signal to be stable prior to the assertion of
a clock, has not been met.

RELEASE The minimum time for a signal that has gone inactive (usually a control such as
CLEAR) to remain inactive before the asserting clock edge, has not been met.

WIDTH The minimum pulse width specification for a signal has not been satisfied. That
is, a pulse that is too narrow was observed on the node.

Hazards

AMBIGUITY
CONVERGENCE

The convergence of conflicting rising and falling states (timing ambiguities)
arriving at the inputs of a primitive, have produced a pulse (glitch) on the output.

CUMULATIVE
AMBIGUITY

Signal ambiguities are additive, increased by propagation through each level of
logic in the circuit. When the ambiguities associated with both edges of a pulse
increase to the point where they would overlap, this is flagged as a cumulative
ambiguity hazard.

DIGITAL INPUT
VOLTAGE

When a voltage is out of range on a digital pin, PSpice uses the state whose
voltage range is closest to the input voltage and continues using the simulation. A
warning message is reported.

NET-STATE CONFLICT When two or more outputs attempt to drive a net to different states, PSpice
represents the conflict as an X (unknown) state. This usually results from
improper selection of a bus driver’s enable inputs.

Commands .OPTIONS (analysis options)

64

SUPPRESSED GLITCH A pulse applied to the input of a primitive that is shorter than the active
propagation delay is ignored by PSpice. This can or cannot be significant,
depending upon the nature of the circuit. The reporting of the suppressed glitch
hazard shows that there might be a problem with either the stimulus, or the path
delay configuration of the circuit.

PERSISTENT HAZARD If the effects of any of the other logic hazard messages mentioned in the output
file are able to propagate to either an EXTERNAL port, or to any storage device
in the circuit, they are flagged as PERSISTENT HAZARDs. (Refer to your
PSpice user’s guide for more details on PERSISTENT HAZARDs.)

ZERO-DELAY-
OSCILLATION

If the output of a primitive changes more than 50 times within a single digital
time step, the node is considered to be oscillating. PSpice reports this and cancels
the run.

65

Commands .PARAM (parameter)

.PARAM (parameter)

Purpose The .PARAM statement defines the value of a parameter. A parameter name can be used in
place of most numeric values in the circuit description. Parameters can be constants, or
expressions involving constants, or a combination of these, and they can include other
parameters.

General form .PARAM < <name> = <value> >*
.PARAM < <name> = { <expression> } >*

Examples .PARAM VSUPPLY = 5V
.PARAM VCC = 12V, VEE = -12V
.PARAM BANDWIDTH = {100kHz/3}
.PARAM PI = 3.14159, TWO_PI = {2*3.14159}
.PARAM VNUM = {2*TWO_PI}

Arguments and options

<name>
Cannot begin with a number, and it cannot be one of the following predefined parameters,
or TIME, or .TEXT (text parameter) names.

There are several predefined parameters. The parameter values must be either constants
or expressions:

Predefined parameter Meaning

TEMP temperature
(works using ABM expressions and digital models only)

VT thermal voltage (reserved)

GMIN shunt conductance for semiconductor p-n junctions

<value>
Constants (<value>) do not need braces { }.

<expression>
Can contain constants or parameters.

Comments The .PARAM statements are order independent. They can be used inside a subcircuit definition
to create local subcircuit parameters. Once defined, a parameter can be used in place of almost
all numeric values in the circuit description with the following exceptions:

• Not in the in-line temperature coefficients for resistors (parameters can be used for the TC1
and TC2 resistor model parameters).

• Not in the PWL values for independent voltage and current source (V and I device)
parameters.

• Not the E, F, G, and H device SPICE2G6 syntax for polynomial coefficient values and gain.

A .PARAM command can be in a library. The simulator can search libraries for parameters not
defined in the circuit file, in the same way it searches for undefined models and subcircuits.

Parameters cannot be used in place of node numbers, nor can the values on an
analysis command (e.g., TRAN and AC) be parameterized.

Commands .PLOT (plot)

66

.PLOT (plot)

Purpose The .PLOT command causes results from DC, AC, noise, and transient analyses to be line
printer plots in the output file.

This command is included for backward compatibility with earlier versions of
PSpice. It is more effective to print plots from within Probe. Printing from Probe
yields higher-resolution graphics and provides an opportunity to preview the
plot before printing.

General form .PLOT <analysis type> [output variable]*
+ ([<lower limit value> , <upper limit value>])*

Examples .PLOT DC V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)

.PLOT AC VM(2) VP(2) VM(3,4) VG(5) VDB(5) IR(D4)

.PLOT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)

.PLOT TRAN V(3) V(2,3) (0,5V) ID(M2) I(VCC) (-50mA,50mA)

I.PLOT TRAN D(QA) D(QB) V(3) V(2,3)
.PLOT TRAN V(3) V(R1) V([RESET])

Arguments and options

<analysis type>
DC, AC, NOISE, or TRAN. Only one analysis type can be specified.

<output variable>
Following the analysis type is a list of the output variables and (possibly) Y axis scales. A
maximum of 8 output variables are allowed on one .PLOT command. However, an
analysis can have any number of a .PLOT command. See .PROBE (Probe) for the syntax
of the output variables.

(<lower limit value>, <upper limit value>)
Sets the range of the y-axis. This forces all output variables on the same y-axis to use the
specified range.

The same form, (<lower limit value>, <upper limit value>), can also be inserted one or
more times in the middle of a set of output variables. Each occurrence defines one Y axis
that has the specified range. All the output variables that come between it and the next
range to the left in the .PLOT command are put on its corresponding Y axis.

Comments Plots are made by using text characters to draw the plot, which print on any kind of printer.
However, plots printed from within Probe look much better.

The range and increment of the x-axis is fixed by the analysis being plotted. The y-axis default
range is determined by the ranges of the output variables. In the fourth example, the two
voltage outputs go on the y-axis using the range (0,5V) and the two current outputs go on the
y-axis using the range (-5mMA, 50mA).

Lower and upper limit values do not apply to AC Analysis.

67

Commands .PLOT (plot)

If the different output variables differ considerably in their output ranges, then the plot is given
more than one y-axis using ranges corresponding to the different output variables.

The y-axis of frequency response plots (AC) is always logarithmic.

The last example illustrates how to plot the voltage at a node that has a name rather than a
number. The first item to plot is a node voltage, the second item is the voltage across a resistor,
and the third item is another node voltage, even though the second and third items both begin
with the letter R. The square brackets force the interpretation of names to mean node names.

Commands .PRINT (print)

68

.PRINT (print)

Purpose The .PRINT command allows results from DC, AC, noise, and transient analyses to be an
output in the form of tables, referred to as print tables in the output file.

General form .PRINT[/DGTLCHG] <analysis type> [output variable]*

Examples .PRINT DC V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)
.PRINT AC VM(2) VP(2) VM(3,4) VG(5) VDB(5) IR(6) II(7)
.PRINT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)
.PRINT TRAN V(3) V(2,3) ID(M2) I(VCC)
.PRINT TRAN D(QA) D(QB) V(3) V(2,3)
.PRINT/DGTLCHG TRAN QA QB RESET
.PRINT TRAN V(3) V(R1) V([RESET])

The last example illustrates how to print a node that has a name, rather than a number. The first
item to print is a node voltage, the second item is the voltage across a resistor, and the third
item to print is another node voltage, even though the second and third items both begin with
the letter R. The square brackets force the names to be interpreted as node names.

Arguments and options

[/DGTLCHG]
For digital output variables only. Values are printed for each output variable whenever one
of the variables changes.

<analysis type>
Only one analysis type— DC, AC, NOISE, or TRAN—can be specified for each .PRINT
command.

<output variable>
Following the analysis type is a list of the output variables. There is no limit to the number
of output variables: the printout is split up depending on the width of the data columns (set
using NUMDGT option) and the output width (set using WIDTH option). See
.PROBE (Probe) for the syntax of output variables.

Comments The values of the output variables are printed as a table where each column corresponds to one
output variable. You can change the number of digits printed for analog values by using the
NUMDGT option of the .OPTIONS (analysis options) command.

An analysis can have multiple .PRINT commands.

69

Commands .PROBE (Probe)

.PROBE (Probe)

Purpose The .PROBE command writes the results from DC, AC, and transient analyses to a data file
used by Probe.

General form .PROBE[/CSDF][output variable]*

Examples .PROBE

.PROBE V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)

.PROBE/CSDF

.PROBE V(3) V(R1) V([RESET])

.PROBE D(QBAR)

The first example (with no output variables) writes all the node voltages and all the device
currents to the data file. The list of device currents written is the same as the device currents
allowed as output variables.

The second example writes only those output variables specified to the data file, to restrict the
size of the data file.

The third example creates a data file in a text format using the Common Simulation Data File
(CSDF) format, not a binary format. This format is used for transfers between different
computer families. CSDF files are larger than regular text files.

The fourth example illustrates how to specify a node that has a name rather than a number. The
first item to output is a node voltage, the second item is the voltage across a resistor, and the
third item to output is another node voltage, even though the second and third items both begin
with the letter R. The square brackets force the interpretation of names to mean node names.

The last example writes only the output at digital node QBAR to the data file, to restrict the
size of the data file.

Arguments and options

[output variable]
This section describes the types of output variables allowed in a .PRINT (print),
.PLOT (plot), and .PROBE command. Each .PRINT or .PLOT can have up to 8 output
variables. This format is similar to that used when calling up waveforms while running
Probe.

See the tables below for descriptions of the possible output variables. If .PROBE is used
without specifying a list of output variables, all of the circuit voltages and currents are
stored for post-processing. When an output variable list is included, the data stored is
limited to the listed items. This form is intended for users who want to limit the size of the
Probe data file.

Comments Refer to your PSpice user’s guide for a description of Probe, for information about using the
Probe data file, and for more information on the use of text files in Probe. You can also consult
Probe Help.

Unlike the .PRINT and .PLOT commands, there are no analysis names before
the output variables. Also, the number of output variables is unlimited.

Commands .PROBE (Probe)

70

DC Sweep and transient analysis output variables
For DC sweep and transient analysis, these are the available output variables:

General form Meaning of output variable

D(<name>) digital value of <name> (a digital node)*

*These values are available for transient and DC analysis only. For the .PRINT/DGTLCHG statement, the
D() is optional.

I(<name>) current through a two terminal device

Ix(<name>) current into a terminal of a three or four terminal device
(x is one of B, D, G, or S)

Iz(<name>) current into one end of a transmission line (z is either A or B)

V(<node>) voltage at a node

V(<+ node>, <- node>) voltage between two nodes

V(<name>) voltage across a two-terminal device

Vx(<name>) voltage at a non-grounded terminal of a device (see Ix)

Vz(<name>) voltage at one end of a transmission line (z is either A or B)

Vxy(<name>) voltage across two terminals of a three or four terminal device
type

Example Meaning

D(QA) the value of digital node QA

I(D5) current through diode D5

IG(J10) current into gate of J10

V(3) voltage between node three and ground

V(3,2) voltage between nodes three and two

V(R1) voltage across resistor R1

VA(T2) voltage at port A of T2

VB(Q3) voltage between base of transistor Q3 and ground

VGS(M13) gate-source voltage of M13

71

Commands .PROBE (Probe)

Multiple-terminal devices
For the V(<name>) and I(<name>) forms, where <name> must be the name of a two-terminal
device, the devices are:

For the Vx(<name>), Vxy(<name>), and Ix(<name>) forms, where <name> must be the
name of a three or four-terminal device and x and y must each be a terminal abbreviation, the
devices and the terminals areas follows. For the Vz(<name>) and Iz(<name>) forms, <name>
must be the name of a transmission line (T device) and z must be A or B.

Character ID Two-terminal device

C capacitor

D diode

E voltage-controlled voltage source

F current-controlled current source

G voltage-controlled current source

H current-controlled voltage source)

I independent current source

L inductor

R resistor

S voltage-controlled switch

V independent voltage source

W current-controlled switch

Three & four-terminal device type Terminal abbreviation

B (GaAs MESFET) D (drain)

G (gate)

S (source)

J (Junction FET) D (drain)

G (gate)

S (source)

M (MOSFET) D (drain)

G (gate)

S (source)

B (bulk, substrate)

Q (Bipolar transistor) C (collector)

B (base)

E (emitter)

S (substrate)

Commands .PROBE (Probe)

72

T (transmission line) Va (near side voltage)

Ia (near side current)

Vb (far side voltage)

Ib (far side current)

Z (IGBT) C (collector)

G (gate)

E (emitter)

Three & four-terminal device type Terminal abbreviation

73

Commands .PROBE (Probe)

AC analysis
For AC analysis, the output variables listed in the preceding section are augmented by adding
a suffix.

For AC analysis, the suffixes are ignored for a .PROBE command, but can be used
in a .PRINT (print) command and a .PLOT (plot) command, and when adding a
trace in Probe. For example, in a .PROBE command, VDB(R1) is translated to V(R1),
which is the raw data.

For these devices, you need to put a zero-valued voltage source in series with the device (or
terminal) of interest before you can print or plot the current through this voltage source.

Current outputs for the F and G devices are not available for DC and transient
analyses.

Suffix Meaning of output variables

none magnitude

DB magnitude in decibels

G group delay (-dPHASE/dFREQUENCY)

I imaginary part

M magnitude

P phase in degrees

R real part

Examples Meaning of output variables for AC analysis

II(R13) imaginary part of current through R13

IGG(M3) group delay of gate current for M3

IR(VIN) real part of I through VIN

IAG(T2) group delay of current at port A of T2

V(2,3) magnitude of complex voltage across nodes 2 & 3

VDB(R1) db magnitude of V across R1

VBEP(Q3) phase of base-emitter V at Q3

VM(2) magnitude of V at node 2

Commands .PROBE (Probe)

74

Noise analysis
For noise analysis, the output variables are predefined as follows:

.PRINT (print) and .PLOT (plot) cannot be used for the noise from any one device.
However, the print interval on the .NOISE (noise analysis) command can be used
to output this information.

Output variable Meaning of output variables for noise analysis

INOISE Total RMS summed noise at input node

ONOISE INOISE equivalent at output node

DB(INOISE) INOISE in decibels

DB(ONOISE) ONOISE in decibels

75

Commands .SAVEBIAS (save bias point to file)

.SAVEBIAS (save bias point to file)

Purpose The .SAVEBIAS command saves the bias point node voltages and inductor currents, to a file.
It is used concurrently with .LOADBIAS (load bias point file).

Only one analysis is specified in a .SAVEBIAS command, which can be OP, TRAN, or DC.
However, a circuit file can contain a .SAVEBIAS command for each of the three analysis
types. If the simulation parameters do not match the keywords and values in the .SAVEBIAS
command, then no file is produced.

General form .SAVEBIAS <“file_name”> <[OP] [TRAN] [DC]> [NOSUBCKT]
+[TIME=<value> [REPEAT]] [TEMP=<value>]
+ [STEP=<value>] [MCRUN=<value>] [DC=<value>]
+ [DC1=<value>] [DC2=<value>]

Examples .SAVEBIAS "OPPOINT" OP

For the first example, the small-signal operating point (.AC or .OP) bias point is saved.

.SAVEBIAS "TRANDATA.BSP" TRAN NOSUBCKT TIME=10u

In the second example, the transient bias point is written out at the time closest to, but not less
than 10.0 u/sec. No bias point information for subcircuits is saved.

.SAVEBIAS "SAVETRAN.BSP" TRAN TIME=5n REPEAT TEMP=50.0

Use of the [REPEAT] keyword in the third example causes the bias point to be written out
every 5.0 ns when the temperature of the run is 50.0 degrees.

.SAVEBIAS "DCBIAS.SAV" DC

In the fourth example, because there are no parameters supplied, only the very first DC bias
point is written to the file.

.SAVEBIAS "SAVEDC.BSP" DC MCRUN=3 DC1=3.5 DC2=100

The fifth example saves the DC bias point when the following three conditions are all met: the
first DC sweep value is 3.5, the second DC sweep value is 100, and the simulation is on the
third Monte Carlo run. If only one DC sweep is being performed, then the keyword DC can be
substituted for DC1.

Arguments and options

<“file name”>
Any valid file name for the computer system, which must be enclosed in quotation marks.

[NOSUBCKT]
When used, the node voltages and inductor currents for subcircuits are not saved.

[TIME=<value> [REPEAT]]
Used to define the transient analysis time at which the bias point is to be saved.

[TEMP=<value>]
Defines the temperature at which the bias point is to be saved. [STEP=<value>]
The step value at which the bias point is to be saved.

Commands .SAVEBIAS (save bias point to file)

76

Usage examples
A .SAVEBIAS command and a .LOADBIAS (load bias point file) command can be used to
shorten the simulation time of large circuits, and also to aid in convergence.

A typical application for a .SAVEBIAS and a .LOADBIAS command is for a simulation that
takes a considerable amount of time to converge to a bias point. The bias point is saved using
a .SAVEBIAS command so that when the simulation is run again, the previous bias point
calculated is used as a starting point for the bias solution, to save processing time.

The following example illustrates this procedure for a transient simulation.

.SAVEBIAS "SAVEFILE.TRN" TRAN

When the simulation is run, the transient analysis bias point information is saved to the file
savefile.trn in the form of a .NODESET command. This .NODESET command provides
the simulator with a starting solution for determining the bias point calculation for future
simulations. To use this file, replace the .SAVEBIAS command in the circuit file using the
following .LOADBIAS (Load Bias Point File) command.

.LOADBIAS "SAVEFmILE.TRN"

A .SAVEBIAS and .LOADBIAS command should not refer to the same file during the
same simulation run. Use the .SAVEBIAS during the first simulation and the
.LOADBIAS for subsequent ones.

The simulator algorithms have been changed to provide an automatic saving and loading of
bias point information under certain conditions. This automatic feature is used in the

[MCRUN=<value>]
The number of the Monte Carlo or worst-case analysis run for which the bias point is to
be saved.

[DC=<value>], [DC1=<value>], and [DC2=<value>]
Used to specify the DC sweep value at which the bias point is to be saved.

Comments If REPEAT is not used, then the bias at the next time point greater than or equal to
TIME=<value> is saved. If REPEAT is used, then TIME=<value> is the interval at which the
bias is saved. However, only the latest bias is saved; any previous times are overwritten. The
[TIME=<value> [REPEAT]] can only be used with a transient analysis.

The [DC=<value>] should be used if there is only one sweep variable. If there are two sweep
variables, then [DC1=<value>] should be used to specify the first sweep value and
[DC2=<value>] should be used to specify the second sweep value.

The saved bias point information is in the following format: one or more comment lines that
list items such as:

• circuit name, title, date and time of run, analysis, and temperature, or

• a single .NODESET (set approximate node voltage for bias point) command
containing the bias point voltage values and inductor currents.

Only one bias point is saved to the file during any particular analysis. At the specified time,
the bias point information and the operating point data for the active devices and controlled
sources are written to the output file. When the supplied specifications on the .SAVEBIAS
command line match the state of the simulator during execution, the bias point is written out.

77

Commands .SAVEBIAS (save bias point to file)

following analysis types: .STEP (parametric analysis), .DC (DC analysis),
.WCASE (sensitivity/worst-case analysis), .MC (Monte Carlo analysis),
.TEMP (temperature).

A typical application is a transient analysis where the bias point is calculated at several
temperatures (such as .TEMP 0 10 20 30). As each new temperature is processed, the bias
point for the previous temperature is used to find the new bias point. Since this process is
automatic, the user does not have to change anything in the circuit file. However, there is some
memory overhead since the bias point information is saved during the simulation. Disable the
automatic saving feature, using the NOREUSE flag option in the
.OPTIONS (analysis options) command as follows:

.OPTIONS NOREUSE

Another application for the .LOADBIAS and .SAVEBIAS command is the handling of
convergence problems. Consider a circuit which has difficulty in starting a DC sweep. The
designer has added a .NODESET command as shown below to help the simulator determine
the bias point solution.

.NODESET V(3)=5.0V V(4)=2.75V

Even though this helps the simulator determine the bias point, the simulator still has to
compute the starting values for each of the other nodes. These values can be saved using the
following statement:

.SAVEBIAS "DCOP.NOD" DC

The next time the simulation is run, the .NODESET and .SAVEBIAS command should be
removed and replaced using the following:

.LOADBIAS "DCOP.NOD"

This provides the starting values for all of the nodes in the circuit, and can assist the simulator
in converging to the correct bias point for the start of the sweep. If convergence problems are
caused by a change in the circuit topology, the designer can edit the bias point save file to
change the values for specific nodes or to add new nodes.

Commands .SENS (sensitivity analysis)

78

.SENS (sensitivity analysis)

Purpose The .SENS command performs a DC sensitivity analysis.

General form .SENS <output variable>*

Examples .SENS V(9) V(4,3) V(17) I(VCC)

Arguments and options

<output variable>
Same format and meaning as in the .PRINT command for DC and transient analyses.
However, when <output variable> is a current, it is restricted to be the current through a
voltage source.

Comments By linearizing the circuit about the bias point, the sensitivities of each of the output variables
to all the device values and model parameters is calculated and output data generated. This can
generate large amounts of output data.

Device sensitivities are only provided for the following device types:

• resistors

• independent voltage and current sources

• voltage and current-controlled switches

• diodes

• bipolar transistors

The results of the .SENS command are only available in the output file. They
cannot be viewed in Probe.

79

Commands .STEP (parametric analysis)

.STEP (parametric analysis)

Purpose The .STEP command performs a parametric sweep for all of the analyses of the circuit.

The .STEP command is similar to the .TEMP (temperature) command in that all of the
typical analyses—such as .DC (DC analysis), .AC (AC analysis), and .TRAN (transient
analysis)— are performed for each step.

Once all the runs finish, the specified .PRINT (Print) table or .PLOT (Plot) plot for each
value of the sweep is an output, just as for the .TEMP or .MC (Monte Carlo Analysis)
command.

Probe displays nested sweeps as a family of curves.

General form .STEP LIN <sweep variable name>
+ <start value> <end value> <increment value>

.STEP [DEC |OCT] <sweep variable name>
+ <start value> <end value> <points value>

.STEP <sweep variable name> LIST <value>*

The first general form is for doing a linear sweep. The second form is for doing a logarithmic
sweep. The third form is for using a list of values for the sweep variable.

Examples .STEP VCE 0V 10V .5V
.STEP LIN I2 5mA -2mA 0.1mA
.STEP RES RMOD(R) 0.9 1.1 .001
.STEP DEC NPN QFAST(IS) 1E-18 1E-14 5
.STEP TEMP LIST 0 20 27 50 80 100
.STEP PARAM CenterFreq 9.5kHz 10.5kHz 50Hz

The first three examples are for doing a linear sweep. The fourth example is for doing a
logarithmic sweep. The fifth example is for using a list of values for the sweep variable.

Arguments and options

Sweep type
The sweep can be linear, logarithmic, or a list of values. For [linear sweep type], the
keyword LIN is optional, but either OCT or DEC must be specified for the
<logarithmic sweep type>. The sweep types are described below.

Sweep types Meaning

LIN Linear sweep. The sweep variable is swept linearly from the starting
to the ending value. The <increment value> is the step size

OCT Sweep by octaves. The sweep variable is swept logarithmically by
octaves. The <points value> is the number of steps per octave.

DEC Sweep by decades. The sweep variable is swept logarithmically by
decades. The <points value> is the number of steps per decade.

LIST Use a list of values. In this case there are no start and end values.
Instead, the numbers that follow the keyword LIST are the values that
the sweep variable is set to.

Commands .STEP (parametric analysis)

80

The LIST values must be in either ascending or descending order.

<sweep variable name>
The <sweep variable name> can be one of the types described below.

Sweep Variable
Name Meaning

source A name of an independent voltage or current source. During
the sweep, the source’s voltage or current is set to the sweep
value.

model parameter A model type and model name followed by a model parameter
name in parenthesis. The parameter in the model is set to the
sweep value.

temperature Use the keyword TEMP for <sweep variable name>. The
temperature is set to the sweep value. For each value in the
sweep, all the circuit components have their model parameters
updated to that temperature.

global parameter Use the keyword PARAM, followed by the parameter name,
for <sweep variable name>). During the sweep, the global
parameter’s value is set to the sweep value and all expressions
are reevaluated.

<start value>
Can be greater or less than <end value>: that is, the sweep can go in either direction.

<increment value> and <points value>
Must be greater than zero.

Comments The .STEP command is similar to the .DC (DC analysis) command and immediately raises
the question of what happens if both .STEP and .DC try to set the same value. The same
question can come up using .MC (Monte Carlo analysis). The answer is that this is not
allowed: no two analyses (.STEP, .TEMP (temperature), .MC,
..WCASE (sensitivity/worst-case analysis), and .DC) can try to set the same value. This is
flagged as an error during read-in and no analyses are performed.

You can use the .STEP command to look at the response of a circuit as a parameter varies, for
example, how the center frequency of a filter shifts as a capacitor varies. By using .STEP, that
capacitor can be varied, producing a family of AC waveforms showing the variation. Another
use is for propagation delay in transient analysis.

81

Commands .STEP (parametric analysis)

Usage examples

One The .STEP command only steps the DC component of an AC source. In order to step
the AC component of an AC source, a variable parameter has to be created. For example,

Vac 1 0 AC {variable}
.param variable=0
.step param variable 0 5 1
.ac dec 100 1000 1e6

Two This is one way of stepping a resistor from 30 to 50 ohms in steps of 5 ohms, using
a global parameter:

.PARAM RVAL = 1
R1 1 2 {RVAL}
.STEP PARAM RVAL 30,50,5

The parameter RVAL is global and PARAM is the keyword used by the .STEP command
when using a global parameter.

Three The following example steps the resistor model parameter R. This is another way
of stepping a resistor from 30 to 50 ohms in steps of 5 ohms.

R1 1 2 RMOD 1
.MODEL RMOD RES(R=30)
.STEP RES RMOD(R) 30,50,5

Do not use R={30}.

Here RMOD is the model name, RES is the sweep variable name (a model type), and R is the
parameter within the model to step. To step the value of the resistor, the line value of the
resistor is multiplied by the R parameter value to achieve the final resistance value, that is:

final resistor value = line resistor value · R

Therefore, if the line value of the resistor is set to one ohm, the final resistor value is 1 · R or
R. Stepping R from 30 to 50 ohms then steps the resistor value from 1 · 30 ohms to 1 · 50 ohms.

In examples 2 and 3 , all of the ordinary analyses (e.g., .DC, .AC, and .TRAN) are run for each
step.

Commands .STIMLIB (stimulus library file)

82

.STIMLIB (stimulus library file)

Purpose The .STIMLIB command makes stimulus library files created by StmEd available to PSpice.

General form .STMLIB <file name[.stl]>

Examples .STMLIB mylib.stl
.STMLIB volts.stl
.STMLIB dgpulse

Arguments and options

<file name>
Specification that identifies a file containing .STIMULUS commands.

83

Commands .STIMULUS (stimulus)

.STIMULUS (stimulus)

Purpose The .STIMULUS command encompasses only the Transient specification portion of what is
allowed in the V or I device syntax.

General form .STIMULUS <stimulus name> <type> <type-specific parameters>*

Examples .STIMULUS InputPulse PULSE (-1mv 1mv 2ns 2ns 50ns 100ns)

.STIMULUS DigitalPulse STIM (1,1)
+ 0S 1
+ 10NS 0
+ 20NS 1

.STIMULUS 50KHZSIN SIN (0 5 50KHZ 0 0 0)

Arguments and options

<stimulus name>
The name by which the stimulus is referred to by the source devices (V or I), or by the
digital STIM device.

Comments .STIMULUS commands generally appear within stimulus libraries created by StmEd.

Commands .SUBCKT (subcircuit)

84

.SUBCKT (subcircuit)

.ENDS (end subcircuit)

Purpose The .SUBCKT command/statement starts the subcircuit definition by specifying its name, the
number and order of its terminals, and the names and default parameters that control its
behavior. Subcircuits are instantiated using X (Subcircuit instantiation) devices. The .ENDS
command marks the end of a subcircuit definition.

General form .SUBCKT <name> [node]*
+ [OPTIONAL: < <interface node> = <default value> >*]
+ [PARAMS: < <name> = <value> >*]
+ [TEXT: < <name> = <text value> >*]
...
.ENDS

Examples .SUBCKT OPAMP 1 2 101 102 17
...
.ENDS

.SUBCKT FILTER INPUT, OUTPUT PARAMS: CENTER=100kHz,
+ BANDWIDTH=10kHz
...
.ENDS

.SUBCKT PLD IN1 IN2 IN3 OUT1
+ PARAMS: MNTYMXDLY=0 IO_LEVEL=0
+ TEXT: JEDEC_FILE="PROG.JED"
...
.ENDS

.SUBCKT 74LS00 A B Y
+ OPTIONAL: DPWR=$G_DPWR DGND=$G_DGND
+ PARAMS: MNTYMXDLY=0 IO_LEVEL=0
...
.ENDS

Arguments and options

<name>
The name is used by an X (Subcircuit Instantiation) device to reference the subcircuit.

[node]*
An optional list of nodes (pins). This is optional because it is possible to specify a
subcircuit that has no interface nodes.

OPTIONAL:
Allows specification of one or more optional nodes (pins) in the subcircuit definition.

85

Commands .ENDS (end subcircuit)

Comments The subcircuit definition ends with a .ENDS command. All of the netlist between .SUBCKT
and .ENDS is included in the definition. Whenever the subcircuit is used by an X (Subcircuit
Instantiation) device, all of the netlist in the definition replaces the X device.

There must be the same number of nodes in the subcircuit calling statements as in its
definition. When the subcircuit is called, the actual nodes (the ones in the calling statement)
replace the argument nodes (the ones in the defining statement).

Do not use 0 (zero) in this node list. Zero is reserved for the global ground
node.

The optional nodes are stated as pairs consisting of an interface node and its default value. If
an optional node is not specified in an X device, its default value is used inside the subcircuit;
otherwise, the value specified in the definition is used.

This feature is particularly useful when specifying power supply nodes, because the same
nodes are normally used in every device. This makes the subcircuits easier to use because the
same two nodes do not have to be specified in each subcircuit statement. This method is used
in the libraries provided with the Digital Simulation feature.

Subcircuits can be nested. That is, an X device can appear between .SUBCKT and .ENDS
commands. However, subcircuit definitions cannot be nested. That is, a .SUBCKT statement
cannot appear in the statements between a .SUBCKT and a .ENDS.

Subcircuit definitions should contain only device instantiations (statements without a leading
period) and possibly these statements:

• .IC (initial bias point condition)

• .NODESET (set approximate node voltage for bias point)

• .MODEL (model definition)

• .PARAM (parameter)

• .FUNC (function)

Models, parameters, and functions defined within a subcircuit definition are available only
within the subcircuit definition in which they appear. Also, if a .MODEL, .PARAM, or a
.FUNC statement appears in the main circuit, it is available in the main circuit and all
subcircuits.

Node, device, and model names are local to the subcircuit in which they are defined. It is
acceptable to use a name in a subcircuit which has already been used in the main circuit. When
the subcircuit is expanded, all its names are prefixed using the subcircuit instance name: for
example, Q13 becomes X3.Q13 and node 5 becomes X3.5 after expansion. After expansion
all names are unique. The only exception is the use of global node names (refer to your PSpice
user’s guide) that are not expanded.

Commands .ENDS (end subcircuit)

86

Usage examples

One In the example of the 74LS00 subcircuit, the following subcircuit reference uses the
default power supply nodes $G_DPWR and $G_DGND:

X1 IN1 IN2 OUT 74LS00

Two To specify your own power supply nodes MYPOWER and MYGROUND, use the
following subcircuit instantiation:

X2 IN1 IN2 OUT MYPOWER MYGROUND 74LS00

Three If wanted, one optional node in the subcircuit instantiation can be provided. In the
following subcircuit instantiation, the default $G_DGND would be used:

X3 IN1 IN2 OUT MYPOWER 74LS00

Four However, to specify values beyond the first optional node, all nodes previous to that
node must be specified. For example, to specify your own ground node, the default power
node before it must be explicitly stated:

X4 IN1 IN2 OUT $G_DPWR MYGROUND 74LS00

The keyword PARAMS: passes values into subcircuits as arguments and uses them in
expressions inside the subcircuit. The keyword TEXT: passes text values into subcircuits as
arguments and uses them as expressions inside the subcircuit. Once defined, a text parameter
can be used in the following places:

• To specify a JEDEC file name on a PLD device.

• To specify an Intel Hex file name to program a ROM device or initialize a RAM device.

• To specify a stimulus file name or signal name on a FSTIM device.

• To specify a text parameter to a (lower level) subcircuit.

• As part of a text expression used in one of the above.

The text parameters and expressions are currently only used in Digital
Simulation.

87

Commands .TEMP (temperature)

.TEMP (temperature)

Purpose The .TEMP command sets the temperature at which all analyses are done.

General form .TEMP <temperature value>*

Examples .TEMP 125
.TEMP 0 27 125

Comments The temperatures are in degrees Centigrade. If more than one temperature is given, then all
analyses are performed for each temperature.

It is assumed that the model parameters were measured or derived at the nominal temperature,
TNOM (27°C by default). See the .OPTIONS (analysis options) command for setting
TNOM.

.TEMP behaves similarly to the list variant of the .STEP (parametric analysis) statement,
with the stepped variable being the temperature.

Commands .TEXT (text parameter)

88

.TEXT (text parameter)

Purpose The .TEXT command precedes a list of names and text values.

General form .TEXT < <name> = "<text value>" >*
.TEXT < <name> = | <text expression> | >*

Examples .TEXT MYFILE = "FILENAME.EXT"
.TEXT FILE = "ROM.DAT", FILE2 = "ROM2.DAT"
.TEXT PROGDAT = |"ROM"+TEXTINT(RUN_NO)+".DAT"|
.TEXT DATA1 = "PLD.JED", PROGDAT = |"\PROG\DAT\"+FILENAME|

Arguments and options

<name>
Cannot be a .PARAM name, or any of the reserved parameters names.

<text expression>
Text expressions can contain the following:

Text expressions Definition

enclosed in “ ” text constants

text parameters previously defined parameters

+ the operator that concatenates two text values

TEXTINT
(<value or
expression>)

a function which returns a text string which is the integer value
closest to the value of the <value or expression>; (<value or
expression> is a floating-point value)

Comments The values can be text constants (enclosed in quotation marks “ “) or text expressions
(enclosed in |). Text expressions can contain only text constants or previously defined
parameters. Once defined, a text parameter has the following uses:

• To specify a JEDEC file name on a PLD device.

• To specify an Intel Hex file name to program a ROM device or initialize a RAM device.

• To specify a stimulus file name or signal name on an FSTIM device.

• To specify a text parameter to a subcircuit.

• As part of a text expression used in one of the above.

Text parameters and expressions are only used in digital simulation.

89

Commands .TF (transfer)

.TF (transfer)

Purpose The .TF command/statement causes the small-signal DC gain to be calculated by linearizing
the circuit around the bias point.

General form .TF <output variable> <input source name>

Examples .TF V(5) VIN
.TF I(VDRIV) ICNTRL

Arguments and options

<output variable>
This has the same format and meaning as in the .PRINT (print) statement.

Comments The gain from <input source name> to <output variable> and the input and output resistances
are evaluated and written to the output file. This output does not require a .PRINT (Print),
.PLOT (plot), or .PROBE (Probe) statement.When <output variable> is a current, it is
restricted to be the current through a voltage source.

The results of the .TF command are only available in the output file. They
cannot be viewed in Probe.

Commands .TRAN (transient analysis)

90

.TRAN (transient analysis)

Purpose The .TRAN command causes a transient analysis to be performed on the circuit and specifies
the time period for the analysis.

General form .TRAN[/OP] <print step value> <final time value>
+[no-print value [step ceiling value]][SKIPBP]

Examples .TRAN 1ns 100ns
.TRAN/OP 1ns 100ns 20ns SKIPBP
.TRAN 1ns 100ns 0ns .1ns

Arguments and options

[/OP]
Causes the same detailed printing of the bias point that the .OP (bias point) command
does for the regular bias point. Without using this option, only the node voltages are
printed for the transient analysis bias point.

<print step value>
Sets the time interval used for printing (.PRINT), plotting (.PLOT), or performing a
Fourier integral on (.FOUR) the results of the transient analysis.

Since the results are computed at different times than they are printed, a 2nd-order
polynomial interpolation is used to obtain the printed values. This applies only to
.PRINT (print), .PLOT (plot), and .FOUR (Fourier analysis) outputs and does not
affect Probe.

<final time value>
Sets the end time for the analysis.

[no-print value]
Sets the time interval (from TIME=0) that is not printed, plotted, or given to Probe.

[step ceiling value]
Overrides the default ceiling on the internal time step with a lower value.

[SKIPBP]
Skips calculation of the bias point.

When this option is used, the bias conditions are fully determined by the
IC= specifications for capacitors and inductors.

91

Commands .TRAN (transient analysis)

Comments The transient analysis calculates the circuit’s behavior over time, always starting at TIME=0
and finishing at <final time value>, but you can suppress the output of a portion of the
analysis. Use a .PRINT (print), .PLOT (plot), .FOUR (Fourier analysis), or
.PROBE (Probe) to get the results of the transient analysis.

Prior to performing the transient analysis, PSpice computes a bias point for the circuit separate
from the regular bias point. This is necessary because at the start of a transient analysis, the
independent sources can have different values than their DC values.

The internal time step of the transient analysis adjusts as the analysis proceeds: over intervals
when there is little activity, the time step is increased, and during busy intervals it is decreased.
The default ceiling on the internal time step is <final time value>/50, but when there are no
charge storage elements, inductances, or capacitances in the circuit, the ceiling is
<print step value>.

The .TRAN command also sets the variables TSTEP and TSTOP, which are used in defaulting
some waveform parameters. TSTEP is equal to <print step value> and TSTOP is equal to
<final time value>.

Refer to your PSpice user’s guide for more information on setting initial conditions.

Commands .VECTOR (digital output)

92

.VECTOR (digital output)

Purpose The .VECTOR command creates files containing digital simulation results.

General form .VECTOR <number of nodes> <node>*
+ [POS = <column position>]
+ [FILE = <filename>]
+ [RADIX = "Binary" | "Hex" | "Octal"
+ [BIT = <bit index>]]
+ [SIGNAMES = <signal names>]

Examples .VECTOR 1 CLOCK SIGNAMES=SYSCLK
.VECTOR 4 DATA3 DATA2 DATA1 DATA0
.VECTOR 1 ADDR3 POS=2 RADIX=H BIT=4
.VECTOR 1 ADDR2 POS=2 RADIX=H BIT=3
.VECTOR 1 ADDR1 POS=2 RADIX=H BIT=2
.VECTOR 1 ADDR0 POS=2 RADIX=H BIT=1

Arguments and options

<filename>
Specifies the name of the file to which the simulation results are saved. If left blank, the
simulator creates a file named <circuit filename>.vec, where
<circuit filename>.cir is the name of the netlist file.

<number of nodes>
This means the number of nodes in the list.

<node>
This defines the nodes whose states are to be stored.

<column position>
Specifies the column position in the file. By default, the column position is determined
through the order in which the .VECTOR command appears in the circuit file, and by the
order of the signals within a .VECTOR command. Valid values for <column position> are
1-255.

RADIX
The radix of the values for the specified nodes is defined if <number of nodes> is greater
than one. Valid values are BINARY, OCTAL, or HEX (you can abbreviate to the first
letter). If <number of nodes> is one, and a radix of OCTAL or HEX is specified, a bit
position within the octal or hex digit via the BIT parameter can also be specified. A
separate .VECTOR command can be used to construct multi-bit values out of single
signals, provided the same POS value is specified. The default radix is BINARY if
<number of nodes> is one. Otherwise, the default radix is HEX. If a radix of OCTAL or
HEX is specified, the simulator creates dummy entries in the vector file header to fill out
the value if <number of nodes> is not an even power of two.

<bit index>
Defines the bit position within a single hex or octal digit when the VECTOR symbol is
attached to a wire. Valid values are one through four if RADIX=HEX, and one through
three if RADIX=OCTAL.

93

Commands .VECTOR (digital output)

<signal names>
Defines the names of the signals which appear in the header of the vector file. If
SIGNAMES is not specified, the <node> names are used in the vector file header. If
<number of nodes> is greater than one, names are defined positionally, msb to lsb. If
fewer signal names than <number of nodes> are specified, the <node> names are used for
the remaining unspecified names.

Comments The resulting file contains time and state values for the circuit nodes specified in the statement.
The file format is identical to that used by the digital file stimulus device (FSTIM). Thus, the
results of one simulation can be used to drive inputs of a subsequent simulation. See File
stimulus for more information on the file stimulus file format.

The optional parameters on the .VECTOR command can be used to control the file name,
column order, radix of the state values, and signal names which appear in the file header. Each
parameter is described in detail in the following table.

A different file name can be specified by using the FILE parameter. You can use multiple
.VECTOR commands to specify nodes for the same file.

Commands .WATCH (watch analysis results)

94

.WATCH (watch analysis results)

Purpose The .WATCH command/statement outputs results from DC, AC, and transient analyses to the
PSpice display in text format while the simulation is running.

General form .WATCH [DC][AC][TRAN]
+ [<output variable> [<lower limit value>,<upper limit value>]]*

Examples .WATCH DC V(3) (-1V,4V) V(2,3) V(R1)
.WATCH AC VM(2) VP(2) VMC(Q1)
.WATCH TRAN VBE(Q13) (0V,5V) ID(M2) I(VCC) (0,500mA)
.WATCH DC V([RESET]) (2.5V,10V)

Arguments and options

DC, AC, and TRAN
The analysis types whose results are displayed during the simulation. You only need to
specify one analysis type per .WATCH command, but there can be a .WATCH command
for each analysis type in the circuit.

<output variable>
A maximum of eight output variables are allowed on a single .WATCH statement.

<lower limit value>,<upper limit value>
Specifies the normal operating range of that particular output variable. If the range is
exceeded during the simulation, the simulator beeps and pauses. At this point, the
simulation can be canceled or continued. If continued, the check for that output variable’s
boundary condition is eliminated. Each output variable can have its own value range.

Comments The first example displays three output variables on the screen. The first variable, V(3), has an
operating range set from minus one volt to four volts. If during the simulation the voltage at
node three exceeds four volts, the simulation will pause. If the simulation is allowed to
proceed, and node three continues to rise in value, the simulation is then not interrupted.
However, if the simulation is allowed to continue and V(3) falls below -1.0 volt, the simulation
would again pause because a new boundary condition was exceeded.

Up to three output variables can be seen on the display at one time. More than three variables
can be specified, but they are not all displayed.

The possible output variables are given in .PROBE (Probe), with the exception that digital
nodes cannot be used and group delay is not available.

95

Commands .WCASE (sensitivity/worst-case analysis)

.WCASE (sensitivity/worst-case analysis)

Purpose The .WCASE statement causes a sensitivity and worst-case analysis of the circuit to be
performed.

General form .WCASE <analysis> <output variable> <function> [option]*

Examples .WCASE TRAN V(5) YMAX
.WCASE DC IC(Q7) YMAX VARY DEV
.WCASE AC VP(13,5) YMAX DEVICES RQ OUTPUT ALL
.WCASE TRAN V([OUT1],[OUT2]) YMAX RANGE(.4u,.6u)
 + LIST OUTPUT ALL VARY DEV HI

Arguments and options

<analysis>
Only one of DC, AC, or TRAN must be specified for <analysis>. This analysis is repeated
in subsequent passes of the worst-case analysis. All requested analyses are performed
during the nominal pass. Only the selected analysis is performed during subsequent
passes.

<output variable>
Identical in format to that of a .PRINT (print) output variable.

<function>
Specifies the operation to be performed on the values of the <output variable> to reduce
these to a single value. This value is the basis for the comparisons between the nominal
and subsequent runs. The <function> must be one of the following:

Function Meaning

YMAX Find the absolute value of the greatest difference in each
waveform from the nominal run.

MAX Find the maximum value of each waveform.

MIN Find the minimum value of each waveform.

RISE_EDGE(<value>) Find the first occurrence of the waveform crossing above the
threshold <value>. The waveform must have one or more
points at or below <value> followed by one above; the
output value listed is where the waveform increases above
<value>.

FALL_EDGE(<value>) Find the first occurrence of the waveform crossing below the
threshold <value>. The waveform must have one or more
points at or above <value> followed by one below; the
output value listed is where the waveform decreases below
<value>.

Commands .WCASE (sensitivity/worst-case analysis)

96

[option]*
Could have any number of the following.

[option] Meaning

LIST Prints the updated model parameters for the sensitivity analysis.
This does not affect the Probe data generated by the simulation.

OUTPUT ALL Prints output from the sensitivity runs, after the nominal (first) run.
The output from any run is governed by the .PRINT, .PLOT, and
.PROBE command in the file. If OUTPUT ALL is omitted, then only
the nominal and worst-case runs produce output. OUTPUT ALL
ensures that all sensitivity information is saved for Probe.

RANGE*

(<low value>,
<high value>)

* If RANGE is omitted, then <function> is evaluated over the whole sweep range. This is equivalent to
RANGE(*,*).

Restricts the range over which <function> can be evaluated. An
asterisk * can be used in place of a <value> to show for all values.
For example see the next two rows.

YMAX

 RANGE(*,.5)
YMAX is evaluated for values of the sweep variable (e.g., time, and
frequency) of .5 or less.

MAX RANGE(-1,*) The maximum of the output variable is found for values of the
sweep variable of -1 or more.

HI or LOW Specify the direction which <function> should move for the
worst-case run is to go (relative to the nominal). If <function> is
YMAX or MAX, the default is HI, otherwise the default is LOW.

VARY DEV|
VARY LOT|
VARY BOTH

By default, any device which has a model parameter specifying
either a DEV tolerance or a LOT tolerance is included in the
analysis. The analysis can be limited to only those devices which
have DEV or LOT tolerances by specifying the appropriate option.
The default is VARY BOTH. When VARY BOTH is used, sensitivity to
parameters using both DEV and LOT specifications is checked only
with respect to LOT variations. The parameter is then maximized or
minimized using both DEV and LOT tolerances for the worst-case.
All devices referencing the model have the same parameter values
for the worst-case simulation.

DEVICES
(list of device types)

By default, all devices are included in the sensitivity and worst-case
analyses. The devices considered can be limited by listing the device
types after the keyword DEVICES. Do not use any spaces or tabs in
the devices list. For example, to only perform the analysis on
resistors and MOSFETs, enter:

DEVICES RM

97

Commands .WCASE (sensitivity/worst-case analysis)

Commands .WCASE (sensitivity/worst-case analysis)

98

Comments Multiple runs of the selected analysis (DC, AC, or transient) are performed while parameters are
varied. Unlike .MC (Monte Carlo analysis), .WCASE varies only one parameter per run. This
allows PSpice to calculate the sensitivity of the output waveform to each parameter. Once all
the sensitivities are known, one final run is performed using all parameters varied so as to
produce the worst-case waveform. The sensitivity and worst-case runs are performed using
variations on model parameters as specified by the DEV and LOT tolerances on each
.MODEL (model definition) parameter (see page 1-52 for details on the DEV and LOT
tolerances). Other specifications on the .WCASE command control the output generated by the
analysis.

You can run either .MC or .WCASE for a circuit, but not both in the same circuit.

99

Commands * (comment)

* (comment)

Purpose A statement beginning with an asterisk * is a comment line, which PSpice ignores.

General form * [any text]

Examples * This is an example of
* a multiple-line comment

Comments Use an asterisk at the beginning of each line you want to be a comment. A single asterisk does
not extend to subsequent lines. For example:

* .MODEL ABC NMOS (. . . .
+)

produces an error message, because the second line is not covered by the first asterisk.

The use of comment statements throughout the input is recommended. It is good practice to
insert a comment line just before a subcircuit definition to identify the nodes, for example:

* +IN -IN V+ V- +OUT -OUT
.SUBCKT OPAMP 100 101 1 2 200 201

or to identify major blocks of circuitry.

100

Commands ; (in-line comment)

; (in-line comment)

Purpose A semicolon ; is treated as the end of a line.

General form circuit file text ;[any text]

Examples R13 6 8 10 ; R13 is a
 ; feedback resistor
C3 15 0 .1U ; decouple supply

Comments The simulator moves on to the next line in the circuit file. The text on the line after the
semicolon ; is a comment and has no effect. The use of comments throughout the input is
recommended. This type of comment can also replace comment lines, which must start with *
in the first column.

Trailing in-line comments that extend to more that one line can use a semicolon to mark the
beginning of the subsequent comment lines, as shown in the example.

101

Commands + (line continuation)

+ (line continuation)

Purpose A plus sign + is treated as the continuation of the previous line.

General form circuit file text
+ more text

Examples .DISTRIBUTION bi_modal (-1,1) (-.5,1) (-.5,0) (.5,0)
+ (.5,1) (1,1)

Comments Because the simulator reads the line preceded by a plus sign as a continuation of the previous
line, you can use the plus sign to break up long lines of command text.

102

Commands Differences between PSpice and Berkeley SPICE2

Differences between PSpice and Berkeley
SPICE2

The version of SPICE2 referred to is SPICE2G.6 from the University of California at
Berkeley.

PSpice runs any circuit that SPICE2 can run, with these exceptions:

1 Circuits that use .DISTO (small-signal distortion) analysis. U.C. Berkeley SPICE
supports the .DISTO analysis, but contains errors. Also, the special distortion output
variables (e.g., HD2 and DIM3) are not available. Instead of the .DISTO analysis,
MicroSim recommends running a transient analysis and looking at the output spectrum
using the Fourier transform mode in Probe. This technique shows the distortion (spectral)
products for both small-signal and large-signal distortion.

2 These options on the .OPTIONS (analysis options) statement are not available in
PSpice:

• LIMTIM: it is assumed to be 0.

• LVLCOD: no in-line machine code is generated.

• METHOD: a combination of trapezoidal and gear integration is always used.

• MAXORD: a combination of trapezoidal and gear integration is always used.

• LVLTIM: truncation error time step control is always used.

• ITL3: truncation error time step control is always used.

3 The IN= option on the .WIDTH statement is not available. PSpice always reads the entire
input file regardless of how long the input lines are.

4 Voltage coefficients for capacitors, and current coefficients for inductors must be put into
a .MODEL (model definition) statement instead of on the device statement.

5 PSpice does not allow the use of nested subcircuit definitions.

If this construct is used:

.SUBCKT ABC 1 2 3

...

.SUBCKT DEF 4 5 6

...

.ENDS

...

.ENDS

It is recommended that the definitions be separated into:

.SUBCKT ABC 1 2 3

...
X1 ... DEF
...
.ENDS

.SUBCKT DEF 4 5 6

...

.ENDS

103

Commands Differences between PSpice and Berkeley SPICE2

You can nest subcircuit calls.

6 The .ALTER command is not supported in PSpice. Instead, use the
.STEP (parametric analysis) command to modify specific parameters over multiple
PSpice runs.

7 The syntax for the one-dimensional POLY form of E, F, G, and H (Voltage-controlled
voltage source and Current-controlled current source) devices is different. PSpice
requires a dimension specification of the form POLY(1), while SPICE does not.

PSpice produces basically the same results as SPICE. There can be some small differences,
especially for values crossing zero, due to the corrections made for convergence problems.

The semiconductor device models are the same as in SPICE.

Commands Differences between PSpice and Berkeley SPICE2

104

Analog devices

2

Letter Device type Letter Device type

B GaAsFET N Digital input (N device)
C Capacitor O Digital output (O device)
D Diode Q Bipolar transistor

E
Voltage-controlled
voltage source

R Resistor

F
Current-controlled
current source

S Voltage-controlled switch

G
Voltage-controlled
current source

T Transmission line

H
Current-controlled
voltage source

U Digital primitive summary

I
Independent current
source & stimulus

U STIM Stimulus devices

J Junction FET V
Independent voltage
source & stimulus

K
Inductor coupling
(and magnetic core)

W Current-controlled switch

K
Transmission line
coupling

X Subcircuit instantiation

L Inductor Z IGBT
M MOSFET

Commands Digital devices Device Equations

Analog devices

106

Analog devices
This chapter describes the different types of analog devices supported by PSpice and
PSpice A/D. These device types include analog primitives, independent and controlled
sources, and subcircuit calls. Each device type is described separately, and each description
includes the following information as applicable:

• A description and an example of the proper netlist syntax.

• The corresponding model types and their description.

• The corresponding list of model parameters and their descriptions.

• The equivalent circuit diagram and characteristic equations for the model (as required).

• References to publications that the model is based on.

These analog devices include all of the standard circuit components that normally are not
considered part of the two-state (binary) devices that are found in the digital devices.

The model library consists of analog models of off-the-shelf parts that you can use directly in
your circuit designs. Refer to the online Library List for available device models and the
libraries they are located in. You can also implement models using the .MODEL (model
definition) statement and implement macromodels as subcircuits using the .SUBCKT
(subcircuit) statement.

The Device types summary table lists all of the analog device primitives supported by
PSpice A/D. Each primitive is described in detail in the sections following the table.

107

Analog devices

Device types
PSpice supports many types of analog devices, including sources and general subcircuits.
PSpice A/D also supports digital devices. The supported devices are categorized into device
types. each of which can have one or more model types. For example, the BJT device type has
three model types: NPN, PNP, and LPNP (Lateral PNP). The description of each devices type
includes a description of any of the model types it supports.

The device declarations in the netlist always begin with the name of the individual device
(instance). The first letter of the name determines the device type. What follows the name
depends on the device type and its requested characteristics. Below is a summary of the device
types and the general form of their declaration formats.

The table below includes the designator (letter) used in device modeling for each
device type.

Analog device summary
Device type Letter Declaration format

Bipolar transistor Q Q<name> <collector node> <base node> <emitter node>
+ [substrate node] <model name> [area value]

Capacitor C C<name> <+ node> <- node> [model name] <value>
+ [IC=<initial value>]

Voltage-controlled voltage
source

E E<name> <+ node> <- node> <+ controlling node>
+ <- controlling node> <gain>

(additional Analog Behavioral Modeling forms: VALUE,
TABLE, LAPLACE, FREQ, and CHEBYSHEV; additional
POLY form)

Voltage-controlled current
source

G G<name> <+ node> <- node> <+ controlling node>
+ <- controlling node> <transconductance>

(additional Analog Behavioral Modeling forms: VALUE,
TABLE, LAPLACE, FREQ, and CHEBYSHEV; additional
POLY form)

Current-controlled current
source

F F<name> <+ node> <- node> <controlling V device name>
+ <gain>

(additional POLY form)

Current-controlled switch W W<name> <+ switch node> <- switch node>
+ <controlling V device name> <model name>

Current-controlled voltage
source

H H<name> <+ node> <- node> <controlling V device name>
+ <transresistance>

(additional POLY form)

Digital input (N device) N N<name> <interface node> <low level node> <high level
node>
+ <model name> <input specification>

Analog devices

108

Digital output (O Device) O O<name> <interface node> <low level node> <high level
node>
+ <model name> <output specification>

Digital primitive summary U U<name> <primitive type> ([parameter value]*)
+ <digital power node> <digital ground node> <node>*
+ <timing model name>

Stimulus devices* U STIM U<name> STIM (<width value>, <format value>)
+ <digital power node> <digital ground node> <node>*
+ <I/O model name> [TIMESTEP=<stepsize value>]
+ <waveform description>

Diode D D<name> <anode node> <cathode node> <model name>
[area value]

GaAsFET B B<name> <drain node> <gate node> <source node>
+ <model name> [area value]

Independent current source &
stimulus

I I<name> <+ node> <- node> [[DC] <value>]
+ [AC <magnitude value> [phase value]] [transient
specification]

Independent voltage source &
stimulus

V V<name> <+ node> <- node> [[DC] <value>]
+ [AC <magnitude value> [phase value]] [transient
specification]

Inductor L L<name> <+ node> <- node> [model name] <value>
+ [IC=<initial value>]

Inductor coupling (and
magnetic core)

K K<name> L<inductor name> <L<inductor name>>*
+ <coupling value>

K<name> <L<inductor name>>* <coupling value>
+ <model name> [size value]

IGBT Z Z<name> <collector> <gate> <emitter> <model name>
+ [AREA=<value>] [WB=<value>] [AGD=<value>]
+ [KP=<value>] [TAU=<value>]

Junction FET J J<name> <drain node> <gate node> <source node>
+ <model name> [area value]

MOSFET M M<name> <drain node> <gate node> <source node>
+ <bulk/substrate node> <model name>
+ [common model parameter]*

Resistor R R<name> <+ node> <- node> [model name] <value>
+ [TC=<linear temp. coefficient>[,<quadratic temp.
coefficient]]

Subcircuit instantiation X X<name> [node]* <subcircuit name>
+ [PARAMS: <<name>=<value>>*] [TEXT:<<name>=<text
value>>*]

Analog device summary (continued)
Device type Letter Declaration format

109

Analog devices

Transmission line T T<name> <A port + node> <A port - node>
+ <B port + node> <B port - node> <ideal or lossy
specification>

Transmission line coupling K K<name> T<line name> <T<line name>>*
+ CM=<coupling capacitance> LM=<coupling inductance>

Voltage-controlled switch S S<name> <+ switch node> <- switch node>
+ <+ controlling node> <- controlling node> <model name>

Analog device summary (continued)
Device type Letter Declaration format

Analog devices B

110

GaAsFET
General form B<name> <drain node> <gate node> <source node> <model name> [area value]

Examples BIN 100 10 0 GFAST
B13 22 14 23 GNOM 2.0

Model form .MODEL <model name> GASFET [model parameters]

Description The GaAsFET is modeled as an intrinsic FET using an ohmic resistance (RD/area) in series
with the drain, another ohmic resistance (RS/area) in series with the source, and another
ohmic resistance (RG) in series with the gate.

Arguments and options

[area value]
The relative device area. Its default value is 1.0.

Comments The LEVEL model parameter selects among different models for the intrinsic GaAsFET as
follows:

LEVEL=1 “Curtice” model (see reference [1])

LEVEL=2 “Raytheon” or “Statz” model (see reference [3]), equivalent to
the GaAsFET model in SPICE3

LEVEL=3 “TOM” model by TriQuint (see reference [4])

LEVEL=4 “Parker-Skellern” model (see reference [5] and [6])

LEVEL=5 “TOM-2” model by TriQuint (see reference [7])

For more information, see References.

B

Drain

RD
Cgd

CDS

RS

Source

Cgs

RGGate

111

Analog devices B

The TOM-2 model is based on the original TriQuint TOM model, retaining the
desirable features of the TOM model, while improving accuracy in the subthreshold
near cutoff and knee regions (Vds of 1 volt or less). This model includes additional
temperature coefficients related to the drain current and corrects the major
deficiencies in the behavior of the capacitance as a function of temperature.

Capture parts
The following table lists the set of GaAsFET breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Setting operating temperature
Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter.

part name Model type Property Property description

BBREAK GASFET AREA
MODEL

area scaling factor
GASFET model name

Analog devices B

112

Model parameters
GaAsFET model parameters for all levels
Model parameter*

* For information on T_ABS, T_MEASURED, T_REL_GLOBAL, and T_REL_LOCAL, see the .MODEL (model defini-
tion) statement.

Description Units Default

AF flicker noise exponent 1

BETA transconductance coefficient amp/volt2 0.1

BETATCE BETA exponential temperature coefficient %/°C 0

CDS drain-source capacitance farad 0

CGD zero-bias gate-drain p-n capacitance farad 0

CGS zero-bias gate-source p-n capacitance farad 0

EG band gap voltage (barrier height) eV 1.11

FC forward-bias depletion capacitance
coefficient

0.5

IS gate p-n saturation current amp 1E-14

KF flicker noise coefficient 0

LEVEL model index (1, 2, 3, 4, or 5) 1

N gate p-n emission coefficient 1

RD drain ohmic resistance ohm 0

RG gate ohmic resistance ohm 0

RS source ohmic resistance ohm 0

TRD1 RD temperature coefficient (linear) °C-1 0

TRG1 RG temperature coefficient (linear) °C-1 0

TRS1 RS temperature coefficient (linear) °C-1 0

T_ABS absolute temperature °C

T_MEASURED measured temperature °C

T_REL_GLOBAL relative to current temperature °C

T_REL_LOCAL relative to AKO model temperature °C

VBI gate p-n potential volt 1.0

VTO pinchoff voltage volt -2.5

VTOTC VTO temperature coefficient volt/°C 0

XTI IS temperature exponent 0

113

Analog devices B

GaAsFET model parameters specific to model levels
Model parameter Description Units Default

level 1

ALPHA saturation voltage parameter volt-1 2.0

LAMBDA channel-length modulation volt-1 0

M gate p-n grading coefficient 0.5

TAU conduction current delay time sec 0

 level 2

ALPHA saturation voltage parameter volt-1 2.0

B doping tail extending parameter volt-1 0.3

LAMBDA channel-length modulation volt-1 0

M gate p-n grading coefficient 0.5

TAU conduction current delay time sec 0

VDELTA capacitance transition voltage volt 0.2

VMAX capacitance limiting voltage volt 0.5

level 3

ALPHA saturation voltage parameter volt-1 2.0

BTRK auxiliary parameter for Monte Carlo analysis* amp/volt3 0

DELTA output feedback parameter (amp·volt)-1 0

DVT auxiliary parameter for Monte Carlo analysis* volt 0

DVTT auxiliary parameter for Monte Carlo analysis* volt 0

Analog devices B

114

Model parameter Description Units Default

GAMMA static feedback parameter 0

M gate p-n grading coefficient 0.5

Q power-law parameter 2

TAU conduction current delay time sec 0

VDELTA capacitance transition voltage volt 0.2

VMAX gate diode capacitance limiting voltage volt 0.5

level 4

ACGAM capacitance modulation 0

DELTA output feedback parameter (amp·volt)-1 0

HFETA high-frequency VGS feedback parameter 0

HFE1 HFGAM modulation by VGD volt-1 0

HFE2 HFGAM modulation by VGS volt-1 0

HFGAM high-frequency VGD feedback parameter 0

HFG1 HFGAM modulation by VSG volt-1 0

HFG2 HFGAM modulation by VDG volt-1 0

IBD gate junction breakdown current amp 0

LAMBDA channel-length modulation volt-1 0

LFGAM low-frequency feedback parameter 0

LFG1 LFGAM modulation by VSG volt-1 0

LFG2 LFGAM modulation by VDG volt-1 0

MVST subthreshold modulation volt-1 0

MXI saturation knee-potential modulation 0

P linear-region power law exponent 2

Q power-law parameter 2

TAUD relaxation time for thermal reduction sec 0

TAUG relaxation time for GAM feedback sec 0

VBD gate junction breakdown potential volt 1

GaAsFET model parameters specific to model levels (continued)

115

Analog devices B

Model parameter Description Units Default

VST subthreshold potential volt 0

XC capacitance pinchoff reduction factor 0

XI saturation knee potential factor 1000

Z knee transition parameter 0.5

level 5

ALPHA saturation voltage parameter volt-1 2.0

ALPHATCE ALPHA temperature coefficient %/°C 0

BTRK auxiliary parameter for Monte Carlo analysis* amp/volt3 0

CGDTCE CGD temperature coefficient °C-1 0

CGSTCE CGS temperature coefficient °C-1 0

DELTA output feedback parameter (amp·volt)-1 0

DVT auxiliary parameter for Monte Carlo analysis* volt 0

DVTT auxiliary parameter for Monte Carlo analysis* volt 0

GAMMA static feedback parameter 0

GAMMATC GAMMA temperature coefficient °C-1 0

ND subthreshold slope drain pull parameter volt-1 0

NG subthreshold slope gate parameter 0

Q power-law parameter 2

TAU conduction current delay time sec 0

VBITC VBI temperature coefficient volt/°C 0

VDELTA capacitance transition voltage volt 0.2

VMAX gate diode capacitance limiting voltage volt 0.5

*See auxiliary model parameters BTRK, DVT, and DVTT.

GaAsFET model parameters specific to model levels (continued)

Analog devices B

116

Auxiliary model parameters BTRK, DVT, and DVTT
The parameters BTRK, DVT, and DVTT are auxiliary model parameters that are used to make
the Monte Carlo analysis easier when using PSpice. In the analysis, these affect the
parameters VTO and BETA as follows:

VTO = VTO + DVT + DVTT

BETA = BETA + BTRK · (DVT + DVTT)

In Monte Carlo analysis, DEV tolerances placed on the DVT or DVTT cause variations in both
VTO and BETA. PSpice does not support correlated DEV variations in Monte Carlo analysis.
Without DVT and DVTT, DEV tolerances placed on VTO and BETA can result in independent
variations; there is a definite correlation between VTO and BETA on real devices.

The BTRK, DVT, and DVTT parameters are also used to provide tracking between distinct
GaAsFETs, such as between depletion mode and enhancement mode. PSpice already
provides a limited mechanism for this, but only allows one DEV and one LOT (or LOT/n and
DEV/n) tolerance per model parameter. The added parameters circumvent this restriction by
extending the capability of Monte Carlo to model correlation between the critical model
parameters.

117

Analog devices B

GaAsFET equations
The equations in this section describe an N-channel GaAsFET. The following variables are
used:

Positive current is current flowing into a terminal (for example, positive drain current
flows from the drain through the channel to the source).

Vgs = intrinsic gate-intrinsic source voltage

Vgd = intrinsic gate-intrinsic drain voltage

Vds = intrinsic drain-intrinsic source voltage

Cds = drain-source capacitance

Cgs = gate-source capacitance

Cgd = gate-drain capacitance

Vt = k·T/q (thermal voltage)

k = Boltzmann constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set by using .OPTIONS (analysis options) TNOM=)

GaAsFET equations for DC current: all levels
Ig = gate current = area·(Igs+Igd)

Id = drain current = area·(Idrain-Igd)

Is = source current = area·(-Idrain-Igs)

where

Igs = gate-source leakage current

Igd = gate-drain leakage current

Analog devices B

118

GaAsFET equations for DC current: specific to model levels
levels 1, 2, 3, and 5

Igs = IS·(eVgs/(N·Vt)-1)

Igd = IS·(eVgd/(N·Vt)-1)

level 4

Igs = Igsf + Igsr

where
Igsf = IS · + Vgs · GMIN

and
Igsr = IBD ·

Igd = Igdf + Igdr

where
Igdf = IS · + Vgd · GMIN

and
Igdr = IBD ·

level 1: Idrain

Normal mode: Vds > 0

Case 1

for cutoff region: Vgs - VTO < 0

then: Idrain = 0

Case 2

for linear & saturation region: Vgs - VTO > 0

then: Idrain = BETA·(1+LAMBDA·Vds)·(Vgs-VTO)2·tanh(ALPHA·Vds)

Inverted mode: Vds < 0

Switch the source and drain in the Normal mode equations.

e

Vgs
N Vt⋅

1–

1 e–

Vgs
VBD
---------------–

e

Vgd
N Vt⋅

1–

1 e

Vgd
VBD
---------------–

–

119

Analog devices B

level 2: Idrain

Normal mode: Vds > 0

Case 1

for cutoff region: Vgs - VTO < 0

then: Idrain = 0

Case 2

for linear & saturation region: Vgs - VTO > 0

then: Idrain=BETA·(1+LAMBDA·Vds)·(Vgs-VTO)2·Kt/(1+B·(Vgs-VTO))

where
Kt is a polynomial approximation of tanh.

for linear region:
0 < Vds < 3/ALPHA

then:
Kt = 1 - (1 - Vds·ALPHA/3)3

for saturation region:
Vds > 3/ALPHA

then:
Kt = 1

Inverted mode: Vds < 0

Switch the source and drain in the Normal mode equations.

GaAsFET equations for DC current: specific to model levels

Analog devices B

120

level 3: Idrain

Normal mode: Vds > 0

Case 1

for cutoff region:
Vgs - Vto < 0

then:
Idrain = 0

Case 2

for linear & saturation region:
Vgs - Vto > 0

then:
Idrain = Idso/(1 + DELTA·Vds·Idso)

where
Idso = BETA·(Vgs-Vto)Q·Kt

and
Vto = VTO - GAMMA·Vds

where
Kt is the same as for Level 2.

Inverted mode: Vds < 0

Switch the source and drain in the Normal Mode equations.

level 4: Idrain

Normal mode: Vds > 0

Idrain =

Vgst = Vgs - VTO - γlf · Vgdavg - γhf · (Vgd – Vgdavg) - ηhf · (Vgs – Vgsavg)

Vdst = Vds

GaAsFET equations for DC current: specific to model levels

Ids
1 DELTA pavg⋅+
--

121

Analog devices B

Inverted mode: Vds < 0

Idrain =

Vgst = Vgd - VTO - γlf · Vgdavg - γhf · (Vgs - Vgdavg) - ηhf · (Vgd -Vgsavg)

Vdst = -Vds

where

Ids = BETA · (1 + LAMBDA · Vdst)·(VgtQ - (Vgt -Vdt)Q)

Pavg = Vds · Ids - TAUD · d/dt Pavg

γlf = LFGAM - LFG1 · Vgsavg - LFG2 · Vgdavg

Vgdavg= Vgd -TAUG · d/dt Vgdavg if: Vgd < Vgs
= Vgs - TAUG · d/dt Vgdavg if: Vgs < Vgd

γhf = HFGAM - HFG1 · Vgsavg - HFG2 · Vgdavg

ηhf = HFETA + HFE1 · Vgdavg + HFE2 · Vgsavg

Vgsavg = Vgs -TAUG · d/dt Vgsavg if: Vgd < Vgs
= Vgd - TAUG · d/dt Vgsavg if: Vgs < Vgd

Vgt =

Vdt =

Vdp =

Vsat =

GaAsFET equations for DC current: specific to model levels

Ids–
1 DELTA pavg⋅+
--

VST 1 MVST Vdst⋅+() Vgst
VST 1 MVST Vdst⋅+()⋅
--

 exp 1+
 ln⋅ ⋅

1
2
--- Vdp 1 Z+⋅ Vsat+()

2
Z Vsat

2⋅+⋅ 1
2
--- Vdp 1 Z+⋅ Vsat–()

2
Z Vsat

2⋅+⋅–

Vdst P
Q
---- Vgt

VBI VTO–

 P Q–
⋅ ⋅

Vgt Vgt MXI XI VBI VTO–()⋅+⋅()⋅
Vgt Vgt MXI XI VBI VTO–()⋅+⋅+

--

Analog devices B

122

level 5: Idrain

Normal mode: Vds > 0

Case 1

For cutoff region:
Vgs - VTO + GAMMA · Vds ≤ 0 AND NG + ND · Vds = 0

then:
Idrain = 0

Case 2

For linear and saturation region:
Vgs - VTO + GAMMA · Vds > 0 OR NG + ND · Vds ≠ 0

then:
Idrain = Idso / (1 + DELTA · Vds · Idso)

where
Idso =

Vg =

Vst =

Inverted mode: Vds < 0

Switch the source and drain in the Normal mode equations.

GaAsFET equations for DC current: specific to model levels

BETA Vg()Q ALPHA Vds⋅

1 ALPHA Vds⋅()2
+

---⋅ ⋅

Q Vst
Vgs VTO GAMMA Vds⋅+()–

Q Vst⋅
--

 exp 1+
 log⋅ ⋅

NG ND Vds⋅+() kT
q

 ⋅

123

Analog devices B

GaAsFET equations for capacitance
All capacitances are between terminals of the intrinsic GaAsFET (i.e., to the inside of the
ohmic drain, source, and gate resistances).

all levels

For all conditions: Cds = area·CDS

level 1

For: Vgs < FC·VBI Cgs = area·CGS·(1-Vgs/VBI)-M

For: Vgs > FC·VBI Cgs = area·CGS·(1-FC)-(1+M)·(1-FC·(1+M)+M·Vgs/VBI)

For: Vgd < FC·VBI Cgd = area·CGD·(1-Vgd/VBI)-M

For: Vgd > FC·VBI Cgd = area·CGD·(1-FC)-(1+M)·(1-FC·(1+M)+M·Vgd/VBI)

levels 2, 3, and 5

Cgs = area·(CGS·K2·K1/(1-Vn/VBI)
1/2

 + CGD·K3)

Cgd = area·(CGS·K3·K1/(1-Vn/VBI)
1/2

+ CGD·K2)

where:

K1 = (1 + (Ve-VTO)/((Ve-VTO)2+VDELTA2)
1/2

)/2

K2 = (1 + (Vgs-Vgd)/((Vgs-Vgd)2+(1/ALPHA)2)
1/2

)/2

K3 = (1 - (Vgs-Vgd)/((Vgs-Vgd)2+(1/ALPHA)2)
1/2

)/2

Ve = (Vgs + Vgd + ((Vgs-Vgd)2+(1/ALPHA)2)
1/2

)/2

if: (Ve + VTO + ((Ve-VTO)2+VDELTA2)
1/2

)/2 < VMAX

then: Vn = (Ve + VTO + ((Ve-VTO)2+VDELTA2)
1/2

)/2

else: Vn = VMAX

Analog devices B

124

If the source and drain potentials swap, the model reverses over a range set by α.The
model maintains a straight line relation between gate-source capacitance and gate
bias in the region Vgs > FC · VBI.

level 4

Charge storage is implemented using a modified Statz model.

Cgs =

Cgd =

where:

K1 =

if: Vx < FC · VBI then: Vge = Vx

if: Vx > FC · VBI then: Vge =

Vx =

Vgn =

where:

1
2
--- K1 1 2ACGAM Vds

Vds
2 α2

+

------------------------------+ +

⋅ ⋅ 1
2
--- CGD area 1 2ACGAM Vds

Vds
2 α2

+

------------------------------–+

⋅ ⋅ ⋅+

1
2
--- K1 1 2ACGAM– Vds

Vds
2 α2

+

------------------------------–

⋅ ⋅ 1
2
--- CGD area 1 2ACGAM– Vds

Vds
2 α2

+

------------------------------+

⋅ ⋅ ⋅+

1
2
--- CGS

1 Vge VBI⁄–
------------------------------------ 1 XC 1 XC–()

Vgn

Vgn
2

0.2
2

+

------------------------------+ +

VBI 1 4 1 FC–()3

2 3FC
Vx
VBI
---------+–

2

--–

Vgs ACGAM Vds 1
2
--- Vgn Vgn

2
0.2

2
+–

 1
2
--- Vgn Vgn

2
0.2

2
+–

 ––⋅+

Vgs ACGAM+() Vds VTO–⋅ 1
2
--- Vds Vds

2 α2
+–

 – 1 XC–()⋅

α XI
XI 1+
-------------- VBI VTO–

2
---------------------------⋅=

125

Analog devices B

GaAsFET equations for temperature effect
all levels

VTO(T) = VTO+VTOTC·(T-Tnom)

BETA(T) = BETA·1.01BETATCE·(T-Tnom)

IS(T) = IS·e(T/Tnom-1)·EG/(N·Vt)·(T/Tnom)XTI/N

RG(T) = RG·(1 + TRG1·(T-Tnom))

RD(T) = RD·(1 + TRD1·(T-Tnom))

RS(T) = RS·(1 + TRS1·(T-Tnom))

levels 1, 2, 3, and 4

CGS(T) = CGS·(1+M·(.0004·(T-Tnom)+(1-VBI(T)/VBI)))

CGD(T) = CGD·(1+M·(.0004·(T-Tnom)+(1-VBI(T)/VBI)))

VBI(T) = VBI·T/Tnom - 3·Vt·ln(T/Tnom) - EG(Tnom)·T/Tnom + EG(T)

where:

EG(T) = silicon bandgap energy = 1.16 - .000702·T2/(T+1108)

level 5

ALPHA(T) = ALPHA · 1.01ALPHATCE·(T-Tnom)

GAMMA(T)= GAMMA + GAMMATC · (T-Tnom)

VBI(T) = VBI + VBITC · (T-Tnom)

VMAX(T) = VMAX + VBITC · (T-Tnom)

CGS(T) = CGS · (1 + CGSTCE · (T-Tnom))

CGD(T) = CGD · (1 + CGDTCE · (T-Tnom))

Analog devices B

126

GaAsFET equations for noise
Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

parasitic resistance thermal noise

Is2 = 4·k·T/(RS/area)

Id2 = 4·k·T/(RD/area)

Ig2 = 4·k·T/RG

intrinsic GaAsFET shot and flicker noise

Id2 = 4·k·T·gm·2/3 + KF·IdAF/FREQUENCY

where:

gm = dIdrain/dVgs (at the DC bias point)

127

Analog devices B

References
For more information on this GaAsFET model, refer to:

[1] W. R. Curtice, “A MESFET model for use in the design of GaAs integrated circuits,” IEEE
Transactions on Microwave Theory and Techniques, MTT-28, 448-456 (1980).

[2] S. E. Sussman-Fort, S. Narasimhan, and K. Mayaram, “A complete GaAs MESFET
computer model for SPICE,” IEEE Transactions on Microwave Theory and Techniques,
MTT-32, 471-473 (1984).

[3] H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, “GaAs FET Device and
Circuit Simulation in SPICE,” IEEE Transactions on Electron Devices, ED-34, 160-169
(1987).

[4] A. J. McCamant, G. D. McCormack, and D. H. Smith, “An Improved GaAs MESFET
Model for SPICE,” IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 6,
822-824 (June 1990).

[5] A. E. Parker and D. J. Skellern “Improved MESFET Characterization for Analog Circuit
Design and Analysis,” 1992 IEEE GaAs IC Symposium Technical Digest, pp. 225-228,
Miami Beach, October 4-7, 1992.

[6] A. E. Parker, “Device Characterization and Circuit Design for High Performance
Microwave Applications,” IEE EEDMO’93, London, October 18, 1993.

[7] D. H. Smith, “An Improved Model for GaAs MESFETs,” Publication forthcoming.
(Copies available from TriQuint Semiconductors Corporation or MicroSim.)

Analog devices C

128

Capacitor
General form C<name> <(+) node> <(-) node> [model name] <value> [IC=<initial value>]

Examples CLOAD 15 0 20pF

C2 1 2 .2E-12 IC=1.5V

CFDBCK 3 33 CMOD 10pF

Model form .MODEL <model name> CAP [model parameters]

Arguments and options

(+) and (-) nodes
Define the polarity when the capacitor has a positive voltage across it. The first node listed
(or pin one in Capture) is defined as positive. The voltage across the component is
therefore defined as the first node voltage, less the second node voltage.

[model name]
If [model name] is left out, then <value> is the capacitance in farads. If [model name] is
specified, then the value is given by the model parameters; see Capacitor value formula.

<initial value>
The initial voltage across the capacitor during the bias point calculation. It can also be
specified in a circuit file using a .IC command as follows:

.IC V(+node, -node) <initial value>

Comments Positive current flows from the (+) node through the capacitor to the (-) node. Current flow
from the first node through the component to the second node is considered positive.

For details on using the .IC command in a circuit file, see .IC (initial bias point condition)
and refer to your PSpice user’s guide for more information.

The initial voltage across the capacitor can also be set in Capture by using the IC1 part if the
capacitor is connected to ground or by using the IC2 part for setting the initial conditions
between two nodes. These parts can be found in SPECIAL.OLB.

For more information about setting initial conditions, refer to the Capture User’s Guide if you
are using Capture, or refer to your PSpice user’s guide if you are using PSpice.

C

CLoad

15v 0v

129

Analog devices C

Capture parts
For standard C parts, the effective value of the part is set directly by the VALUE property.
For the variable capacitor, C_VAR, the effective value is the product of the base value
(VALUE) and multiplier (SET).

In general, capacitors should have positive component values (VALUE property). In all cases,
components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often
in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming
from the real to the RLC equivalent, it is possible to end up with negative component values.

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise
analyses. A transient analysis may fail for a circuit with negative components. Negative
capacitors may create instabilities in time that the analysis cannot handle.

Breakout parts
For non-stock passive and semiconductor devices, Capture provides a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters. Another approach is to use the model editor to derive an
instance model and customize this. For example, you could add device and/or lot tolerances
to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model which is derived from the intrinsic PSpice A/D D model
(.MODEL DBREAK D).

For breakout part CBREAK, the effective value is computed from a formula that is a function
of the specified VALUE property.

Part name Model
type Property Property description

C capacitor VALUE capacitance

IC initial voltage across the capacitor during bias
point calculation

C_VAR VALUE base capacitance

SET multiplier

Device
type

Part
name Part library Property Property description

capacitor CBREAK BREAKOUT.OLB VALUE capacitance

IC initial voltage across the
capacitor during bias point
calculation

MODEL CAP model name

Analog devices C

130

Capacitor model parameters

Capacitor equations

Capacitor value formula
If [model name] is specified, then the value is given by:

<value>·C·(1+VC1·V+VC2·V2)·(1+TC1·(T-Tnom)+TC2·(T-Tnom)2)

where <value> is normally positive (though it can be negative, but not zero). Tnom is the
nominal temperature (set using TNOM option).

Capacitor equation for noise
The capacitor does not have a noise model.

Model parameters*

* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

Description Units Default

C capacitance multiplier 1.0

TC1 linear temperature coefficient °C-1 0.0

TC2 quadratic temperature coefficient °C-2 0.0

T_ABS absolute temperature °C

T_MEASURED measured temperature °C

T_REL_GLOBAL relative to current temperature °C

T_REL_LOCAL relative to AKO model temperature °C

VC1 linear voltage coefficient volt-1 0.0

VC2 quadratic voltage coefficient volt-2 0.0

131

Analog devices D

Diode
General form D<name> <(+) node> <(-) node> <model name> [area value]

Examples DCLAMP 14 0 DMOD
D13 15 17 SWITCH 1.5

Model form .MODEL <model name> D [model parameters]

Description The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode.
Positive current is current flowing from the anode through the diode to the cathode.

Arguments and options

<(+) node>
The anode.

<(-) node>
The cathode.

[area value]
Scales IS, ISR, IKF,RS, CJO, and IBV, and has a default value of 1.
IBV and BV are both specified as positive values.

D

C
I

RS

Analog devices D

132

Capture parts
The following table lists the set of diode breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Setting operating temperature
Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information, see Special considerations.

Part name Model type Property Property description

DBREAK
DBREAK3
DBREAKCR
DBREAKVV
DBREAKZ

D, X MODEL D model name

133

Analog devices D

Diode model parameters

Model parameters*

* For more information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

Description Unit Default

AF flicker noise exponent 1.0

BV reverse breakdown knee voltage volt infinite

CJO zero-bias p-n capacitance farad 0.0

EG bandgap voltage (barrier height) eV 1.11

FC forward-bias depletion capacitance coefficient 0.5

IBVL low-level reverse breakdown knee current amp 0.0

IBV reverse breakdown knee current amp 1E-10

IKF high-injection knee current amp infinite

IS saturation current amp 1E-14

ISR recombination current parameter amp 0.0

KF flicker noise coefficient 0.0

M p-n grading coefficient 0.5

N emission coefficient 1.0

NBV reverse breakdown ideality factor 1.0

NBVL low-level reverse breakdown ideality factor 1.0

NR emission coefficient for isr 2.0

RS parasitic resistance ohm 0.0

TBV1 bv temperature coefficient (linear) °C-1 0.0

TBV2 bv temperature coefficient (quadratic) °C-2 0.0

TIKF ikf temperature coefficient (linear) °C-1 0.0

TRS1 rs temperature coefficient (linear) °C-1 0.0

TRS2 rs temperature coefficient (quadratic) °C-2 0.0

TT transit time sec 0.0

T_ABS absolute temperature °C

T_MEASURED measured temperature °C

T_REL_GLOBAL relative to current temperature °C

T_REL_LOCAL Relative to AKO model temperature °C

VJ p-n potential volt 1.0

XTI IS temperature exponent 3.0

Analog devices D

134

Diode equations
The equations in this section use the following variables:

Other variables are listed in Diode model parameters.
.

Vd = voltage across the intrinsic diode only

Vt = k·T/q (thermal voltage)

k = Boltzmann’s constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option)

Diode equations for DC current
Id = area·(Ifwd - Irev)

Ifwd = forward current = Inrm·Kinj + Irec·Kgen

Inrm = normal current = IS·(eVd/(N·Vt)-1)

if: IKF > 0
then: Kinj = high-injection factor = (IKF/(IKF+Inrm))

1/2

else: Kinj = 1

Irec = recombination current = ISR·(eVd/(NR·Vt)-1)

Kgen = generation factor = ((1-Vd/VJ)2+0.005)M/2

Irev = reverse current = Irevhigh + Irevlow

Irevhigh = IBV·e-(Vd+BV)/(NBV·Vt)

Irevlow = IBVL·e-(Vd+BV)/(NBVL·Vt)

Diode equations for capacitance
Cd = Ct + area·Cj

Ct = transit time capacitance = TT·Gd

Gd = DC conductance = area ·

Kinj = high-injection factor

Cj = CJO·(1-Vd/VJ)-M IF: Vd < FC·VJ

Cj = CJO·(1-FC)-(1+M)·(1-FC·(1+M)+M·Vd/VJ) IF: Vd > FC·VJ

Cj = junction capacitance

d Inrm Kinj Irec Kgen⋅+⋅()
dVd

--

135

Analog devices D

Diode equations for noise
Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

References
For a detailed description of p-n junction physics, refer to:

[1] A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons,
Inc., 1967.

Also, for a generally detailed discussion of the U.C. Berkeley SPICE models, including the
diode device, refer to:

[2] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE,
McGraw-Hill, 1988.

Diode equations for temperature effects
IS(T) = IS·e(T/Tnom-1)·EG/(N·Vt)·(T/Tnom)XTI/N

ISR(T) = ISR·e(T/Tnom-1)·EG/(NR·Vt)·(T/Tnom)XTI/NR

IKF(T) = IKF·(1 + TIKF·(T-Tnom))

BV(T) = BV·(1 + TBV1·(T-Tnom) + TBV2·(T-Tnom)2)

RS(T) = RS·(1 + TRS1·(T-Tnom) + TRS2·(T-Tnom)2)

VJ(T) = VJ·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

Eg(T) = silicon bandgap energy = 1.16 - .000702·T2/(T+1108)

CJO(T) = CJO·(1 + M·(.0004·(T-Tnom)+(1-VJ(T)/VJ)))

parasitic resistance thermal noise

In2 = 4·k·T/(RS/area)

intrinsic diode shot and flicker noise

In2 = 2·q·Id + KF·IdAF/FREQUENCY

Analog devices E/G

136

Voltage-controlled voltage source

Voltage-controlled current source
General form E<name> <(+) node> <(-) node> <(+) controlling node> <(-) controlling node>

<gain>

E<name> <(+) node> <(-) node> POLY(<value>)
+ < <(+) controlling node> <(-) controlling node> >*
+ < <polynomial coefficient value> >*

E<name> <(+) <node> <(-) node> VALUE = { <expression> }

E<name> <(+) <node> <(-) node> TABLE { <expression> } =
+ < <input value>,<output value> >*

E<name> <(+) node> <(-) node> LAPLACE { <expression> } =
+ { <transform> }

E<name> <(+) node> <(-) node> FREQ { <expression> } = [KEYWORD]
+ < <frequency value>,<magnitude value>,<phase value> >*
+ [DELAY = <delay value>]

E<name> <(+) node> <(-) node> CHEBYSHEV { <expression> } =
+ <[LP] [HP] [BP] [BR]>,<cutoff frequencies>*,<attenuation>*

Examples EBUFF 1 2 10 11 1.0
EAMP 13 0 POLY(1) 26 0 0 500
ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
ESQROOT 5 0 VALUE = {5V*SQRT(V(3,2))}
ET2 2 0 TABLE {V(ANODE,CATHODE)} = (0,0) (30,1)
ERC 5 0 LAPLACE {V(10)} = {1/(1+.001*s)}
ELOWPASS 5 0 FREQ {V(10)}=(0,0,0)(5kHz, 0,0)(6kHz -60, 0) DELAY=3.2ms
ELOWPASS 5 0 CHEBYSHEV {V(10)} = LP 800 1.2K .1dB 50dB

GBUFF 1 2 10 11 1.0
GAMP 13 0 POLY(1) 26 0 0 500
GNONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
GPSK 11 6 VALUE = {5MA*SIN(6.28*10kHz*TIME+V(3))}
GT ANODE CATHODE VALUE = {200E-6*PWR(V(1)*V(2),1.5)}
GLOSSY 5 0 LAPLACE {V(10)} = {exp(-sqrt(C*s*(R+L*s)))}

Description The voltage-controlled voltage source (E) and the voltage-controlled current source (G)
devices have the same syntax. For a voltage-controlled current source just substitute G for E.
G generates a current, whereas E generates a voltage.

E/G

EBuff GBuff

1v

2v

10v

11v

1v

2v

10v

11v

137

Analog devices E/G

Arguments and options

POLY(<value>)
Specifies the number of dimensions of the polynomial. The number of pairs of controlling
nodes must be equal to the number of dimensions.

(+) and (-) nodes
Output nodes. Positive current flows from the (+) node through the source to the (-) node.

The <(+) controlling node> and <(-) controlling node>
Are in pairs and define a set of controlling voltages. A particular node can appear more
than once, and the output and controlling nodes need not be different. The TABLE form
has a maximum size of 2048 input/output value pairs.

FREQ
If a DELAY value is specified, the simulator modifies the phases in the FREQ table to
incorporate the specified delay value. This is useful for cases of tables which the simulator
identifies as being non-causal. When this occurs, the simulator provides a delay value
necessary to make the table causal. The new syntax allows this value to be specified in
subsequent simulation runs, without requiring the user to modify the table.

If a KEYWORD is specified for FREQ tables, it alters the values in the table. The
KEYWORD can be one of the following:

• MAG causes magnitude of frequency response to be interpreted as a raw value instead
of dB.

• DB causes magnitude to be interpreted as dB (the default).

• RAD causes phase to be interpreted in radians.

• DEG causes phase to be interpreted in degrees (the default).

• R_I causes magnitude and phase values to be interpreted
as real and imaginary magnitudes.

Comments The first form and the first two examples apply to the linear case; the second form and the third
example are for the nonlinear case. The last five forms and examples are analog behavioral
modeling (ABM) that have expression, look up table, Laplace transform, frequency response,
and filtering. Refer to your PSpice user’s guide for more information on analog behavioral
modeling.

Chebyshev filters have two attenuation values, given in dB, which specify the pass band ripple
and the stop band attenuation. They can be given in either order, but must appear after all of
the cutoff frequencies have been given. Low pass (LP) and high pass (HP) have two cutoff
frequencies, specifying the pass band and stop band edges, while band pass (BP) and band
reject (BR) filters have four. Again, these can be given in any order.

You can get a list of the filter Laplace coefficients for each stage by enabling
the LIST option in the Simulation Settings dialog box. (Click the Options tab,
then select the Output file Category and select Device Summary.) The output
is written to the .out file after the simulation is complete.

For the linear case, there are two controlling nodes and these are followed by the gain. For all
cases, including the nonlinear case (POLY), refer to your PSpice user’s guide.

Expressions cannot be used for linear and polynomial coefficient values in a
voltage-controlled voltage source device statement.

Analog devices E/G

138

Basic SPICE polynomial expressions (POLY)
PSpice A/D (and SPICE) use the following syntax:

<controlled source> <connecting nodes>
+POLY(<dimension>) <controlling input> <coefficients>

where

If the source is one-dimensional (there is only one controlling source), POLY(1) is required
unless the linear form is used. If the source is multidimensional (there is more than one
controlling source), the dimension needs to be included in the keyword, for instance
POLY(2).

Caution must be exercised with the POLY form. For instance,

EWRONG 1 0 POLY(1) (1,0) .5 1.0

tries to set node 1 to .5 volts greater than node 1. In this case, any analyses which you specify
will fail to calculate a result. In particular, PSpice A/D cannot calculate the bias point for a
circuit containing EWRONG. This also applies to the VALUE form of EWRONG:

(EWRONG 1 0 VALUE = {0.5 * V(1)}).

Basic controlled source properties

PSpice A/D has a built-in capability allowing controlled sources to be defined with a
polynomial transfer function of any degree and any dimension. Polynomials have associated

<controlled source> is <[E][F][G][H]device name>, meaning the device type is one of
E, F, G, or H

<connecting nodes> specifies <(+node_name, -node_name)> pair between which the
device is connected

<dimension> is the dimension <value> of the polynomial describing the
controlling function

<controlling input> specifies <(+node_name, -node_name)>* pairs used as input to the
voltage controlled source (device types E and G), or
<V device name>* for the current controlled source (device types
F and H), and where the number of controlling inputs for either
case equals <dimension>

<coefficients> specifies the coefficient <values>* for the polynomial transfer
function

Part name Property Description

E

F

G

H

GAIN gain

gain

transconductance

transresistance

EPOLY, FPOLY,
GPOLY, HPOLY

COEFF polynomial coefficient

139

Analog devices E/G

coefficients for each term. Consider a voltage-controlled source with voltages V1, V2, ... Vn.
The coefficients are associated with the polynomial according to this convention:

Vout = P0 +

P1·V1 + P2·V2 + ··· Pn·Vn +

Pn+1·V1·V1 + Pn+2·V1·V2 + ··· Pn+n·V1·Vn +

P2n+1·V2·V2 + P2n+2·V2·V3 + ··· P2n+n-1·V2·Vn +

.

.

.

Pn!/(2(n-2)!)+2n·Vn·Vn +

Pn!/(2(n-2)!)+2n+1·V1
2·V1 + Pn!/(2(n-2)!)+2n+2·V1

2·V2 + ···

.

.

.

The above is written for a voltage-controlled voltage source, but the form is similar for the
other sources.

The POLY device types shown in Basic controlled source properties are defined with a
dimension of one, meaning there is only one controlling source. However, similar devices can
be defined of any degree and dimension by creating parts with appropriate coefficient and
TEMPLATE properties and the appropriate number of input pins.

The current-controlled device models (F, FPOLY, H, and HPOLY) contain a current-sensing
voltage source. When netlisted, they generate two device declarations to the circuit file set:
one for the controlled source and one for the independent current-sensing voltage source.

When defining a current-controlled source part of higher dimension, the TEMPLATE
property must account for the same number of current-sensing voltage sources (equal to the
dimension value). For example, a two dimensional current-controlled voltage source is
described by the following polynomial equation:

Vout = C0 + C1I1 + C2I2 + C11I1
2 + C12I1I2 + C22I2

2

To create the two dimensional HPOLY2 part, these properties must be defined:

COEFF0 = 1
COEFF1 = 1
COEFF2 = 1
COEFF11 = 1
COEFF12 = 1
COEFF22 = 1
COEFFS = @COEFF0 @COEFF1 @COEFF2 @COEFF11 @COEFF12 @COEFF22
TEMPLATE = H^@REFDES %5 %6 POLY(2) VH1^@REFDES VH2^@REFDES
\n+ @COEFFS \nVH1^@REFDES %1 %2 0V \nVH2^@REFDES %3 %4 0V

The TEMPLATE definition is actually contained on a single line. The VH1 and VH2
fragments after the \n characters represent the device declarations for the two current-sensing
voltage sources required by this part. Also, the part graphics must have the appropriate
number of pins. When placing an instance of HPOLY2 in your schematic, the COEFFn
properties must be appropriately set.

Implementation examples
Following are some examples of traditional SPICE POLY constructs and equivalent ABM
parts which could be used instead.

Analog devices E/G

140

Example 1: four-input voltage adder

This is an example of a device which takes four input voltages and sums them to provide a
single output voltage.

The representative polynomial expression would be as follows:

Vout = 0.0 + (1.0)V1 + (1.0)V2 + (1.0)V3 + (1.0)V4

The corresponding SPICE POLY form would be as follows:

ESUM 100 101 POLY(4) (1,0) (2,0) (3,0) (4,0) 0.0 1.0 1.0
+ 1.0 1.0

This could be represented with a single ABM expression device configured with the following
expression properties:

EXP1 = V(1,0) +
EXP2 = V(2,0) +
EXP3 = V(3,0) +
EXP4 = V(4,0)

Following template substitution for the ABM device, the output becomes:

V(OUT) = { V(1,0) + V(2,0) + V(3,0) + V(4,0) }

Example 2: two-input voltage multiplier

This is an example of a device which takes two input voltages and multiplies them together
resulting in a single output voltage.

The representative polynomial expression would be as follows:

Vout = 0.0 + (0.0)V1 + (0.0)V2 + (0.0)V1
2 + (1.0)V1V2

The corresponding SPICE POLY form would be as follows:

EMULT 100 101 POLY(2) (1,0) (2,0) 0.0 0.0 0.0 0.0 1.0

This could be represented with a single MULT device. For additional examples of a voltage
multiplier device, refer to the Analog Behavioral Modeling chapter of your PSpice user’s
guide.

Example 3: voltage squarer

This is an example of a device that outputs the square of the input value.

For the one-dimensional polynomial, the representative polynomial expression reduces to:

Vout = P0 + P1·V + P2·V2 + ... Pn·Vn

The corresponding SPICE POLY form would be as follows:

ESQUARE 100 101 POLY(1) (1,0) 0.0 0.0 1.0

This could be represented by a single instance of the MULT part, with both inputs from the
same net. This results in the following:

Vout = (Vin)
2

141

Analog devices F/H

Current-controlled current source

Current-controlled voltage source

Basic SPICE polynomial expressions (POLY)
For more information on the POLY form, see Basic SPICE polynomial expressions
(POLY).

General form F<name> <(+) node> <(-) node>
+ <controlling V device name> <gain>

F<name> <(+) node> <(-) node> POLY(<value>)
+ <controlling V device name>*
+ < <polynomial coefficient value> >*

Examples FSENSE 1 2 VSENSE 10.0
FAMP 13 0 POLY(1) VIN 0 500
FNONLIN 100 101 POLY(2) VCNTRL1 VCINTRL2 0.0 13.6 0.2 0.005

Description The Current-Controlled Current Source (F) and the Current-Controlled Voltage Source (H)
devices have the same syntax. For a Current-Controlled Voltage Source just substitute an H
for the F. The H device generates a voltage, whereas the F device generates a current.

Arguments and options

(+) and (-)
Output nodes. A positive current flows from the (+) node through the source to the (-)
node. The current through the controlling voltage source determines the output current.
The controlling source must be an independent voltage source (V device), although it
need not have a zero DC value.

POLY(<value>)
Specifies the number of dimensions of the polynomial. The number of controlling voltage
sources must be equal to the number of dimensions.

Comments The first General Form and the first two examples apply to the linear case. The second form
and the last example are for the nonlinear case.

For the linear case, there must be one controlling voltage source and its name is followed by
the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user’s guide.

In a current-controlled current source device statement, expressions cannot
be used for linear and polynomial coefficient values.

F/H

Analog devices I/V

142

Independent current source & stimulus

Independent voltage source & stimulus
General form I<name> <(+) node> <(-) node>

+ [[DC] <value>]
+ [AC <magnitude value> [phase value]]
+ [STIMULUS=<stimulus name>]
+ [transient specification]

Examples IBIAS 13 0 2.3mA
IAC 2 3 AC .001
IACPHS 2 3 AC .001 90
IPULSE 1 0 PULSE(-1mA 1mA 2ns 2ns 2ns 50ns 100ns)
I3 26 77 DC .002 AC 1 SIN(.002 .002 1.5MEG)

Description This element is a current source. Positive current flows from the (+) node through the source
to the (-) node: in the first example, IBIAS drives node 13 to have a negative voltage. The
default value is zero for the DC, AC, and transient values. None, any, or all of the DC, AC,
and transient values can be specified. The AC phase value is in degrees. The pulse and
exponential examples are explained later in this section.

The independent current source & stimulus (I) and the independent voltage
source & stimulus (V) devices have the same syntax. For an independent
voltage source & stimulus just substitute a V for the I. The V device functions
identically and has the same syntax as the I device, except that it generates
voltage instead of current.

The variables TSTEP and TSTOP, which are used in defaulting some waveform parameters,
are set by the .TRAN (transient analysis) command. TSTEP is <print step value> and
TSTOP is <final time value>. The .TRAN command can be anywhere in the circuit file; it
need not come after the voltage source.

I/V

IBias VBias

13v

0v

13v

0v

143

Analog devices I/V

Arguments and options

<stimulus name>
References a .STIMULUS (stimulus) definition.

[transient specification]

Use this value... To produce this result...

EXP (<parameters>) an exponential waveform
PULSE (<parameters>) a pulse waveform
PWL (<parameters>) a piecewise linear waveform
SFFM (<parameters>) a frequency-modulated waveform
SIN (<parameters>) a sinusoidal waveform

Analog devices I/V

144

Independent current source & stimulus (EXP)
General form EXP (<i1> <i2> <td1> <tc1> <td2> <tc2>)

Examples IRAMP 10 5 EXP(1 5 1 .2 2 .5)

Waveform parameters

Parameter Description Units Default

<i1> Initial current amp none

<i2> Peak current amp none

<td1> Rise (fall) delay sec 0

<tc1> Rise (fall) time constant sec TSTEP

<td2> Fall (rise) delay sec <td1>+TSTEP

<tc2> Fall (rise) time constant sec TSTEP

Description The EXP form causes the current to be <i1> for the first <td1> seconds. Then, the current
decays exponentially from <i1> to <i2> using a time constant of <tc1>. The decay lasts
td2-td1 seconds. Then, the current decays from <i2> back to <i1> using a time constant of
<tc2>. Independent current source and stimulus exponential waveform formulas
describe the EXP waveform.

Independent current source and stimulus
exponential waveform formulas

Time period Value

0 to <td1> i1

<td1> to <td2> i1 + (i2-i1)·(1-e-(TIME-td1)/tc1)

<td2> to TSTOP i1 + (i2-i1)·((1-e-(TIME-td1)/tc1)-(1-e-(TIME-td2)/tc2))

145

Analog devices I/V

Independent current source & stimulus (PULSE)

General form PULSE (<i1> <i2> <td> <tr> <tf> <pw> <per>)

Example ISW 10 5 PULSE(1A 5A 1sec .1sec .4sec .5sec 2sec)

Waveform parameters

Parameters Description Units Default

<i1> Initial current amp none

<i2> Pulsed current amp none

<td> Delay sec 0

<tf> Fall time sec TSTEP

<tr> Rise time sec TSTEP

<pw> Pulse width sec TSTOP

<per> Period sec TSTOP

Description The PULSE form causes the current to start at <i1>, and stay there for <td> seconds. Then, the
current goes linearly from <i1> to <i2> during the next <tr> seconds, and then the current
stays at <i2> for <pw> seconds. Then, it goes linearly from <i2> back to <i1> during the next
<tf> seconds. It stays at <i1> for per-(tr+pw+tf) seconds, and then the cycle is repeated except
for the initial delay of <td> seconds. Independent current source and stimulus pulse
waveform formulas describe the PULSE waveform.

Analog devices I/V

146

Independent current source and stimulus
pulse waveform formulas

Time Value

0 i1

td i1

td+tr i2

td+tr+pw i2

td+tr+pw+tf i1

td+per i1

td+per+tr i2

. .

. .

. .

147

Analog devices I/V

Independent current source & stimulus (PWL)
General form PWL

+ [TIME_SCALE_FACTOR=<value>]
+ [VALUE_SCALE_FACTOR=<value>]
+ (corner_points)*

where corner_points are:

(<tn>, <in>) to specify a point
FILE <filename> to read point values from a file
REPEAT FOR <n> (corner_points)*
ENDREPEAT to repeat <n> times
REPEAT FOREVER (corner_points)*
ENDREPEAT to repeat forever

Examples v1 1 2 PWL (0,1) (1.2,5) (1.4,2) (2,4) (3,1)

v2 3 4 PWL REPEAT FOR 5 (1,0) (2,1) (3,0) ENDREPEAT
v3 5,6 PWL REPEAT FOR 5 FILE DATA1.TAB
+ ENDREPEAT
v4 7 8 PWL TIME_SCALE_FACTOR=0.1
+ REPEAT FOREVER
+ REPEAT FOR 5 (1,0) (2,1) (3,0) ENDREPEAT
+ REPEAT FOR 5 FILE DATA1.TAB
+ ENDREPEAT
+ ENDREPEAT

n volt square wave (where n is 1, 2, 3, 4, then 5); 75% duty cycle; 10 cycles; 1 microseconds
per cycle:

.PARAM N=1

.STEP PARAM N 1,5,1
V1 1 0 PWL
+ TIME_SCALE_FACTOR=1e-6 ;all time units are scaled to
+ microseconds
+ REPEAT FOR 10
+ (.25, 0)(.26, {N})(.99, {N})(1, 0)
+ ENDREPEAT

5 volt square wave; 75% duty cycle; 10 cycles; 10 microseconds per cycle; followed by 50%
duty cycle n volt square wave (where n is 1, 2, 3, 4, then 5) lasting until the end of simulation:

.PARAM N=.2

.STEP PARAM N .2, 1.0, .2
V1 1 0 PWL
+ TIME_SCALE_FACTOR=1e-5 ; all time units are
+ scaled to 10 us
+ VALUE_SCALE_FACTOR=5
+ REPEAT FOR 10
+ (.25, 0)(.26, 1)(.99, 1)(1, 0)
+ ENDREPEAT

+ REPEAT FOREVER
+ (+.50, 0)
+ (+.01, {N}) ; iteration time .51
+ (+.48, {N}) ; iteration time .99
+ (1, 0)
+ ENDREPEAT

Analog devices I/V

148

Assuming that a PWL specification has been given for a device to generate two triangular
waveforms:

V3 1 0 PWL (1ms, 1)(2ms, 0)(3ms, 1)(4ms, 0)

Or, to replace the above with

V3 1 0 PWL FILE TRIANGLE.IN

where the file triangle.in would need to contain:

(1ms, 1)(2ms, 0)(3ms, 1)(4ms, 0)

Waveform parameters

Parameter*

* <tn> and <n> cannot be expressions; <vn> may be an expression.

Description Units Default

<tn> time at corner seconds none

<vn> voltage at corner volts none

<n> number of repetitions positive integer, 0, or -1 none

Description The PWL form describes a piecewise linear waveform. Each pair of time-current values
specifies a corner of the waveform. The current at times between corners is the linear
interpolation of the currents at the corners.

Arguments and options

<time_scale_factor> and/or <value_scale_factor>
Can be included immediately after the PWL keyword to show that the time and/or current
value pairs are to be multiplied by the appropriate scale factor. These scale factors can be
expressions, in which case they are evaluated once per outer simulation loop, and thus
should be composed of expressions not containing references to voltages or currents.

<tn> and <in>
The transient specification corner points for the PWL waveform, as shown in the first
example. The <in> can be an expression having the same restrictions as the scaling
keywords, but <tn> must be a literal.

149

Analog devices I/V

<file name>
The text file that supplies the time-current (<tn> <in>) pairs. The contents of this file are
read by the same parser that reads the circuit file, so that engineering units (e.g., 10us) are
correctly interpreted. Note that the continuation + signs in the first column are unnecessary
and therefore discouraged.

A typical file can be created by editing an existing PWL specification, replacing all + signs
with blanks (to avoid unintentional +time). Only numbers (with units attached) can appear
in the file; expressions for <tn> and <n> values are invalid. All absolute time points in
<file name> are with respect to the last (<tn> <in>) entered. All relative time points are
with respect to the last time point.

REPEAT ... ENDREPEAT
These loops permit repetitions.

They can appear anywhere a (<tn> <in>) pair can appear. Absolute times within REPEAT
loops are with respect to the start of the current iteration. The REPEAT ... ENDREPEAT
specifications can be nested to any depth. Make sure that the current value associated with
the beginning and ending time points (within the same REPEAT loop or between adjacent
REPEAT loops), are the same when 0 is specified as the first point in a REPEAT loop.

<n>
A REPEAT FOR -1 ... ENDREPEAT is treated as if it had been REPEAT FOREVER ...
ENDREPEAT. A REPEAT FOR 0 ... ENDREPEAT is ignored (other than syntax checking of
the enclosed corner points).

Analog devices I/V

150

Independent current source & stimulus (SFFM)

General form SFFM (<ioff> <iampl> <fc> <mod> <fm>)

Example IMOD 10 5 SFFM(2 1 8Hz 4 1Hz)

Waveform parameters

Parameters Description Units Default

<ioff> offset current amp none

<iampl> peak amplitude of current amp none

<fc> carrier frequency hertz 1/TSTOP

<mod> modulation index 0

<fm> modulation frequency hertz 1/TSTOP

Description The SFFM (Single-Frequency FM) form causes the current, as illustrated below, to follow the
formula:

ioff + iampl·sin(2p·fc·TIME + mod·sin(2p·fm·TIME))

151

Analog devices I/V

Independent current source & stimulus (SIN)
General form SIN (<ioff> <iampl> <freq> <td> <df> <phase>)

Examples ISIG 10 5 SIN(2 2 5Hz 1sec 1 30)

Waveform parameters

Parameters Description Units Default

<ioff> offset current amp none

<iampl> peak amplitude of current amp none

<freq> frequency hertz 1/TSTOP

 <td> delay sec 0

<df> damping factor sec-1 0

<phase> phase degree 0

Description The sinusoidal (SIN) waveform causes the current to start at <ioff> and stay there for <td>
seconds.

Then, the current becomes an exponentially damped sine wave. Independent current
source and stimulus sinusoidal waveform formulas describe the SIN waveform.

The SIN waveform is for transient analysis only. It does not have any effect on AC analysis.
To give a value to a current during AC analysis, use an AC specification, such as:

IAC 3 0 AC 1mA

where IAC has an amplitude of one milliampere during AC analysis, and can be zero during
transient analysis. For transient analysis use, for example:

ITRAN 3 0 SIN(0 1mA 1kHz)

where ITRAN has an amplitude of one milliampere during transient analysis and is zero
during AC analysis. Refer to your PSpice user’s guide.

Analog devices I/V

152

Independent current source and stimulus
sinusoidal waveform formulas

Time period Value

 to <td> ioff+iampl·sin(2π·phase/360°)

<td> to TSTOP ioff+iampl·sin(2π·(freq·(TIME-td)+phase/360°))·e-(TIME-td)·df

153

Analog devices J

Junction FET
General form J<name> <drain node> <gate node> <source node> <model name> +[area value]

Examples JIN 100 1 0 JFAST
J13 22 14 23 JNOM 2.0

Model form .MODEL <model name> NJF [model parameters]
.MODEL <model name> PJF [model parameters]

Description The JFET is modeled as an intrinsic FET using an ohmic resistance (RD/area) in series with
the drain, and using another ohmic resistance (RS/area) in series with the source. Positive
current is current flowing into a terminal.

Arguments and options

[area value]
The relative device area. It has a default value of 1.0.

J

Drain

RD

Id

RS

Source

Cgs

Gate

Cgd

Analog devices J

154

Capture parts
The following table lists the set of JFET breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Setting operating temperature
Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information, see Model parameters.

Part name Model type Property Property description

JBREAKN NJF AREA
MODEL

area scaling factor
NJF model name

JBREAKP PJF AREA
MODEL

area scaling factor
PJF model name

155

Analog devices J

Model parameters

VTO < 0 means the device is a depletion-mode JFET (for both N-channel and
P-channel) and VTO > 0 means the device is an enhancement-mode JFET. This
conforms to U.C. Berkeley SPICE.

Model
parameters*

* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

Description Units Default

AF flicker noise exponent 1

ALPHA ionization coefficient volt-1 0

BETA transconductance coefficient amp/volt2 1E-4

BETATCE BETA exponential temperature coefficient %/°C 0

CGD zero-bias gate-drain p-n capacitance farad 0

CGS zero-bias gate-source p-n capacitance farad 0

FC forward-bias depletion capacitance coefficient 0.5

IS gate p-n saturation current amp 1E-14

ISR gate p-n recombination current parameter amp 0

KF flicker noise coefficient 0

LAMBDA channel-length modulation volt-1 0

M gate p-n grading coefficient 0.5

N gate p-n emission coefficient 1

NR emission coefficient for isr 2

PB gate p-n potential volt 1.0

RD drain ohmic resistance ohm 0

RS source ohmic resistance ohm 0

T_ABS absolute temperature °C

T_MEASURED measured temperature °C

T_REL_GLOBAL relative to current temperature °C

T_REL_LOCAL relative to AKO model temperature °C

VK ionization knee voltage volt 0

VTO threshold voltage volt -2.0

VTOTC VTO temperature coefficient volt/°C 0

XTI IS temperature coefficient 3

Analog devices J

156

JFET equations
The equations in this section describe an N-channel JFET. For P-channel devices, reverse the
sign of all voltages and currents.

The following variables are used:

Other variables are listed in Model parameters.

Positive current is current flowing into a terminal (for example, positive drain current
flows from the drain through the channel to the source).

Vgs = intrinsic gate-intrinsic source voltage

Vgd = intrinsic gate-intrinsic drain voltage

Vds = intrinsic drain-intrinsic source voltage

Cgs = gate-source capacitance

Cgd = gate-drain capacitance

Vt = k·T/q (thermal voltage)

k = Boltzmann’s constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option)

157

Analog devices J

JFET equations for DC current
all levels

Ig = gate current = area·(Igs + Igd)

Igs = gate-source leakage current = In + Ir·Kg

In = normal current = IS·(eVgs/(N·Vt)-1)

Ir = recombination current = ISR·(eVgs/(NR·Vt)-1)

Kg = generation factor = ((1-Vgs/PB)2+0.005)M/2

Igd = gate-drain leakage current = In + Ir·Kg + Ii

In = normal current = IS·(eVgd/(N·Vt)-1)

Ir = recombination current = ISR·(eVgd/(NR·Vt)-1)

Kg = generation factor = ((1-Vgd/PB)2+0.005)M/2

Ii = impact ionization current

for forward saturation region:
0 < Vgs-VTO < Vds

then:
Ii = Idrain·ALPHA·vdif·e-VK/vdif

where
vdif = Vds - (Vgs-VTO)

else:
Ii = 0

Id = drain current = area·(Idrain-Igd)

Is = source current = area·(-Idrain-Igs)

Analog devices J

158

JFET equations for capacitance
All capacitances are between terminals of the intrinsic JFET (that is, to the inside of the ohmic
drain and source resistances).

all levels: Idrain

Normal mode: Vds > 0

Case 1

for cutoff region: Vgs-VTO < 0

then: Idrain = 0

Case 2

for linear region: Vds < Vgs-VTO

then: Idrain = BETA·(1+LAMBDA·Vds)·Vds·(2·(Vgs-VTO)-Vds)

Case 3

for saturation region: 0 < Vgs-VTO < Vds

then: Idrain = BETA·(1+LAMBDA·Vds)·(Vgs-VTO)2

Inverted mode: Vds < 0

Switch the source and drain in the normal mode equations above.

gate-source depletion capacitance

For: Vgs < FC·PB
Cgs = area·CGS·(1-Vgs/PB)-M

For: Vgs > FC·PB
Cgs = area·CGS·(1-FC)-(1+M)·(1-FC·(1+M)+M·Vgs/PB)

gate-drain depletion capacitance

For: Vgd < FC·PB
Cgd = area·CGD·(1-Vgd/PB)-M

For: Vgd > FC·PB
Cgd = area·CGD·(1-FC)-(1+M)·(1-FC·(1+M)+M·Vgd/PB)

JFET equations for DC current (continued)

159

Analog devices J

JFET equations for temperature effects
The drain and source ohmic (parasitic) resistances have no temperature dependence.

JFET equations for noise
Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

Reference
For more information about the U.C. Berkeley SPICE models, including the JFET device,
refer to:

[1] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE,
McGraw-Hill,
1988.

VTO(T) = VTO+VTOTC·(T-Tnom)

BETA(T) = BETA·1.01BETATCE·(T-Tnom)

IS(T) = IS·e(T/Tnom-1)·EG/(N·Vt)·(T/Tnom)XTI/N

where EG = 1.11

ISR(T) = ISR·e(T/Tnom-1)·EG/(NR·Vt)·(T/Tnom)XTI/NR

where EG = 1.11

PB(T) = PB·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

where Eg(T) = silicon bandgap energy = 1.16- .000702·T2/(T+1108)

CGS(T) = CGS·(1+M·(.0004·(T-Tnom)+(1-PB(T)/PB)))

CGD(T) = CGD·(1+M·(.0004·(T-Tnom)+(1-PB(T)/PB)))

parasitic resistance thermal noise

Is2 = 4·k·T/(RS/area)

Id2 = 4·k·T/(RD/area)

intrinsic JFET shot and flicker noise

Idrain2= 4·k·T·gm·2/3 + KF·IdrainAF/FREQUENCY

where gm = dIdrain/dVgs (at the DC bias point)

Analog devices K

160

Inductor coupling (and magnetic core)

Transmission line coupling
General form K<name> L<inductor name> <L<inductor name>>* <coupling value>

K<name> <L<inductor name>>* <coupling value> <model name> [size value]

K<name>T<transmission line name>T<transmission line name>
+ Cm=<capacitive coupling> Lm=<inductive coupling>

Examples KTUNED L3OUT L4IN .8

KTRNSFRM LPRIMARY LSECNDRY 1

KXFRM L1 L2 L3 L4 .98 KPOT_3C8

K2LINES T1 T2 Lm=1m Cm=.5p

Model form .MODEL <model name> CORE [model parameters]

Description

This device can be used to define coupling between inductors (transformers) or between
transmission lines. This device also refers to a nonlinear magnetic core (CORE) model to
include magnetic hysteresis effects in the behavior of a single inductor (winding), or in
multiple coupled windings.

K

KTuned

L3out L4in

161

Analog devices K

Inductor coupling
Arguments and options

K<name> L<inductor name>
Couples two or more inductors.

Place a period (.) on the first node of each inductor. For example:

I1 1 0 AC 1mA
L1 1 0 10uH
L2 2 0 10uH
R2 2 0 .1
K12 L1 L2 1

The current through L2 is in the opposite direction as the current through L1. The polarity
is determined by the order of the nodes in the L devices and not by the order of inductors
in the K statement.

<coupling value>
This is the coefficient of mutual coupling, which must be between -1.0 and 1.0.

This coefficient is defined by the equation

<coupling value> = Mij/(Li·Lj)
1/2

where

Li,Lj = a coupled-pair of inductors
Mij = the mutual inductance between Li and Lj

For transformers of normal geometry, use 1.0 as the value. Values less than 1.0 occur in
air core transformers when the coils do not completely overlap.

<model name>
If <model name> is present, four things change:

• The mutual coupling inductor becomes a nonlinear, magnetic core device. The
magnetic core’s B-H characteristics are analyzed using the Jiles-Atherton model (see
Inductor coupling: Jiles-Atherton model).

• The inductors become windings, so the number specifying inductance now specifies the
number of turns.

• The list of coupled inductors could be just one inductor.

• A model statement is required to specify the model parameters.

[size value]
Has a default value of 1.0 and scales the magnetic cross-section. It is intended to represent
the number of lamination layers, so only one model statement is needed for each
lamination type. For example:

L1 5 9 20 ; inductor having 20 turns
K1 L1 1 K528T500_3C8; Ferroxcube toroid core
L2 3 8 15 ; primary winding having

; 15 turns
L3 4 6 45 ; secondary winding having

; 45 turns
K2 L2 L3 1 K528T500_3C8; another core (not the same as K1)

Analog devices K

162

Here is a Probe B-H display of 3C8 ferrite (Ferroxcube).

Comments The linear branch relation for transient analysis is

Vi = Li· + Mij· + Mik· +···

For U.C. Berkeley SPICE2: if there are several coils on a transformer, then there must be K
statements coupling all combinations of inductor pairs. For instance, a transformer using a
center-tapped primary and two secondaries could be written:

* PRIMARY
L1 1 2 10uH
L2 2 3 10uH
* SECONDARY
L3 11 12 10uH
L4 13 14 10uH
* MAGNETIC COUPLING
K12 L1 L2 1
K13 L1 L3 1
K14 L1 L4 1
K23 L2 L3 1
K24 L2 L4 1
K34 L3 L4 1

This older technique is still supported, but not required, for simulation. The same transformer
can also be written:

* PRIMARY
L1 1 2 10uH
L2 2 3 10uH
* SECONDARY
L3 11 12 10uH
L4 13 14 10uH
* MAGNETIC COUPLING
KALL L1 L2 L3 L4 1

Do not mix the two techniques.

dIi
dt

dIj
dt

dIk
dt

163

Analog devices K

Capture parts
See your PSpice user’s guide for information about using nonlinear magnetic cores with
transformers.

Breakout parts
For non-stock passive and semiconductor devices, Capture provides a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters. Another approach is to use the model editor to derive an
instance model and customize this. For example, you could add device and/or lot tolerances
to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model which is derived from the intrinsic PSpice A/D D model
(.MODEL DBREAK D)

Using the KBREAK part

The inductor coupling part, KBREAK, can be used to couple up to six independent inductors
on a schematic. A MODEL property is provided for using nonlinear magnetic core (CORE)

The simulator uses the Jiles-Atherton model (see Inductor coupling: Jiles-Atherton model)
to analyze the B-H curve of the magnetic core and calculate values for inductance and flux
for each of the windings.

The state of the nonlinear core can be viewed in Probe by specifying B(Kxxx) for the
magnetization or H(Kxxx) for the magnetizing influence. These values are not available for
.PRINT (print) or .PLOT (plot) output.

Part name Model
type Property Property description

XFRM_LINEAR transformer L1_VALUE
L2_VALUE

winding inductances in Henries

COUPLING coefficient of mutual coupling
(must lie between 0 and 1)

K_LINEAR transformer Ln inductor reference designator

XFRM_NONLINEAR transformer L1_TURNS
L2_TURNS

number of turns on each winding

COUPLING coefficient of mutual coupling
(must lie between 0 and 1)

MODEL nonlinear CORE model name

Analog devices K

164

models, if desired. By default, KBREAK references the KBREAK model contained in
breakout.lib; this model, in turn, uses the default CORE model parameters.

The KBREAK part can be used to:

• Provide linear coupling between inductors.

• Reference a CORE model in a configured model library file.

• Define a user-defined CORE model with custom model parameter values.

The dot convention for the coupling is related to the direction in which the inductors are
connected. The dot is always next to the first pin to be netlisted. For example, when the
inductor part L is placed without rotation, the dotted pin is the left one. Rotate on the Edit
menu (C+r) rotates the inductor +90°, making this pin the bottom pin.

Nonlinear coupling is not included in PSpice A/D Basics+.

For nonlinear coupling L1 must have a value; the rest may be left blank. The
model must reference a CORE model such as those contained in MAGNETIC.LIB or other
user-defined models. VALUE is set to the number of windings.

For linear coupling L1 and at least one other Li must have values; the rest may be
left blank. The model reference must be blank. VALUE must be in Henries.

Device type Part
name Part library Property Description

inductor coupling KBREAK BREAKOUT.OLB COUPLING coupling factor

Li inductor reference
designator

165

Analog devices K

Inductor coupling: Jiles-Atherton model
The Jiles-Atherton model is based on existing ideas of domain wall motion, including flexing
and translation. The model derives an anhysteric magnetization curve by using a mean field
technique, in which any domain is coupled to the magnetic field (H) and the bulk
magnetization (M). This anhysteric value is the magnetization that would be reached in the
absence of domain wall pinning. Hysteresis is modeled by the effects of pinning of domain
walls on material defect sites. This impedance to motion and flexing due to the differential
field exhibits all of the main features of real, nonlinear magnetic devices, such as the initial
magnetization curve (initial permeability), saturation of magnetization, coercivity,
remanence, and hysteresis loss.

A magnetic material that is comprised of loosely coupled domains has an equilibrium B-H
curve, called the anhysteric. This curve is the locus of B-H values generated by superimposing
a DC magnetic bias and a large AC signal that decays to zero. It is the curve representing
minimum energy for the domains and is modeled, in theory, by

Man= MS·H/(|H| + A)

where

Man= the anhysteric magnetization
MS = the saturation magnetization
H = the magnetizing influence (after GAP correction)
A = a thermal energy parameter

For a given magnetizing influence (H), the anhysteric magnetization is the global flux level
the material would attain if the domain walls could move freely. The walls, however, are
stopped or pinned on dislocations in the material. The wall remains pinned until enough
magnetic potential is available to break free, and travel to the next pinning site. The theory

Inductor coupling model parameters
Model parameters* Description Units Default

A Thermal energy parameter amp/meter 1E+3

AREA Mean magnetic cross-section cm2 0.1

C Domain flexing parameter 0.2

GAP Effective air-gap length cm 0

K Domain anisotropy parameter amp/meter 500

LEVEL Model index 2

MS Magnetization saturation amp/meter 1E+6

PACK Pack** (stacking) factor 1.0

PATH Mean magnetic path length cm 1.0

*See .MODEL (model definition).

**Flux is proportional to PACK.

Analog devices K

166

supposes a mean energy required, per volume, to move domain walls. This is analogous to
mechanical drag. A simplified equation of this is

change-in-magnetization = potential/drag

The irreversible domain wall motion can, therefore, be expressed as

dMirr/dH = (Man - M)/K

where K is the pinning energy per volume (drag).

Reversible wall motion comes from flexing in the domain walls, especially when it is pinned
at a dislocation due to the magnetic potential (that is, the magnetization is not the anhysteric
value).

The theory supposes spherical flexure to calculate energy values and arrives at the
(simplified) equation:

dMrev/dH = C·d(Man-M)/dH

where C is the domain flexing parameter.

The equation for the total magnetization is the sum of these two state equations:

dM/dH = (1/(1 + C))·(Man - M)/K) + (C/(1 + C))·dMan/dH

Including air-gap effects in the inductor coupling model
If the gap thickness is small compared with the other dimensions of the core, you can assume
that all of the magnetic flux lines go through the gap directly and that there is little fringing
flux (having a modest amount of fringing flux only increases the effective air-gap length).
Checking the field values around the entire magnetic path gives the equation:

Hcore·Lcore + Hgap·Lgap = n·I

where n·I is the sum of the amp-turns of the windings on the core. Also, the magnetization in
the air-gap is negligible, so that Bgap = Hgap and Bgap = Bcore. These combine in the
previous equation to yield:

Hcore·Lcore + Bcore·Lgap = n·I

This is a difficult equation to solve, especially for the Jiles-Atherton model, which is a state
equation model rather than an explicit function (which one would expect, because the B-H
curve depends on the history of the material). However, there is a graphical technique that
solves for Bcore and Hcore, given n·I, which is to:

1 Take the non-gapped B-H curve.

2 Extend a line from the current value of n·I having a slope of -Lcore/Lgap (this would
be vertical if Lgap = 0).

3 Find the intersection of the line using the B-H curve.

The intersection is the value for Bcore and Hcore for the n·I of the gapped core. The n·I
value is the apparent or external value of Hcore, but the real value of Hcore is less. The result
is a smaller value for Bcore and for the sheared-over B-H curves of a gapped core. The
simulator implements the numerical equivalent of this graphical technique.

The resulting B-H values are recorded in the Probe data file as Bcore and Happarent.

167

Analog devices K

Getting core inductor coupling model values
Characterizing core materials can be performed using Parts, and verified by using PSpice and
Probe. The model uses MKS (metric) units, however the results for Probe are converted to
Gauss and Oersted, which can be displayed using B(Kxxx) and H(Kxxx). The traditional B-H
curve is made by a transient run, ramping current through a test inductor, then displaying
B(Kxxx) and setting the X axis to H(Kxxx).

For more information on the Jiles-Atherton model, see Reference [1] of References.

Transmission line coupling
If a K device is used to couple two transmission lines, then two coupling parameters are
required.

These parameters can be thought of as the off-diagonal terms of a capacitive coupling matrix,
[C], and an inductive coupling matrix, [L], respectively. [C] and [L] are both symmetric
matrices, and for two coupled lines, the following relationships hold:

Cm = C12 = C21Lm = L12 = L21

C12 represents the charge induced on the first conductor when the second conductor has a
potential of one volt. In general, for a system of N coupled lines, Cij is the charge on the ith
conductor when the jth conductor is set to one volt, and all other conductors are grounded. The
diagonal of the matrix is determined with the understanding that the self-capacitance is really
the capacitance between the conductor and ground, so that:

where Cig is equal to the capacitance per unit length for the ith transmission line, and is
provided along with the T device that describes the ith line. The simulator calculates Cii from
this.

The values of Cij in the matrix are negative values. Note that the simulator assigns -|Cm| to the
appropriate Cij, so that the sign used when specifying Cm is ignored.

L12 is defined in terms of the flux between the 1st conductor and the ground plane, when the
2nd conductor carries a current of one ampere. If there are more than two conductors, all other
conductors are assumed to be open.

L11 is equal to the inductance per unit length for the 1st line and is obtained directly from the
appropriate T device.

Device Description Units Default

Cm capacitive coupling farad/length*

* Length units must be consistent using the LEN parameter for the transmission lines being coupled.

none

Lm inductive coupling henries/length* none

C
C11 C12

C21 C22

= L
L11 L12

L21 L22

=

Cii Cig Cij∑+=

Analog devices K

168

Example
The following circuit fragment shows an example using two coupled lines:

T1 1 0 2 0 R=.31 L=.38u G=6.3u C=70p LEN=1
T2 3 0 4 0 R=.29 L=.33u G=6.0u C=65p LEN=1
K12 T1 T2 Lm=.04u Cm=6p

This fragment leads to the following [C] and [L]:

The model used to simulate this system is based on the approach described by Tripathi and
Rettig in Reference [1] of References and is extended for lossy lines by Roychowdhury and
Pederson in Reference [2]. The approach involves computing the system propagation modes
by extracting the eigenvalues and eigenvectors of the matrix product [L][C].

This model is not general for lossy lines.

Lossy lines
For the lossy line case, the matrix product to be decoupled is actually:

[R+sL][G+sC]

where:

s = the Laplace variable
R = the resistance per unit length matrix
G = the conductance per unit length matrix.

The modes obtained from [L][C] represent a high frequency asymptote for this system.
Simulation results should be good approximations for low-loss lines. However, as shown in
reference [2], the approximation becomes exact for homogeneous, equally-spaced lossy lines,
provided that coupling beyond immediately adjacent lines is negligible (i.e., the coupling
matrices are tridiagonal and Toeplitz).

Coupled ideal lines can be modeled by setting R and G to zero. The Z0/TD parameter
set is not supported for coupled lines.

C
76p 6p–

6p– 71p
= L

0.38u 0.04u

0.04u 0.33u
=

169

Analog devices K

References
For a further description of the Jiles-Atherton model, refer to:

[1] D.C. Jiles, and D.L. Atherton, “Theory of ferromagnetic hysteresis,” Journal of
Magnetism and Magnetic Materials, 61, 48 (1986).

For more information on transmission line coupling, refer to:

[1] Tripathi and Rettig, “A SPICE Model for Multiple Coupled Microstrips and Other
Transmission Lines,” IEEE MTT-S Internal Microwave Symposium Digest, 1985.

[2] Roychowdhury and Pederson, “Efficient Transient Simulation of Lossy Interconnect,”
Design Automation Conference,
1991.

Analog devices L

170

Inductor
General form L<name> <(+) node> <(-) node> [model name] <value>

+ [IC=<initial value>]

Examples LLOAD 15 0 20mH
L2 1 2 .2E-6
LCHOKE 3 42 LMOD .03
LSENSE 5 12 2UH IC=2mA

Model form .MODEL <model name> IND [model parameters]

Arguments and options

(+) and (-) nodes
Define the polarity when the inductor has a positive voltage across it.

The first node listed (or pin one in Capture), is defined as positive. The voltage across the
component is therefore defined as the first node voltage less the second node voltage.

Positive current flows from the (+) node through the inductor to the (-) node. Current flow
from the first node through the component to the second node is considered positive.

[model name]
If [model name] is left out, then the effective value is <value>.

If [model name] is specified, then the effective value is given by the model parameters;
see Inductance value formula.

If the inductor is associated with a Core model, then the effective value is the number of
turns on the core. Otherwise, the effective value is the inductance. See the Model Form
statement for the K device in Inductor coupling (and magnetic core) for more
information on the Core model.

<initial value>
Is the initial current through the inductor during the bias point calculation.

It can also be specified in a circuit file using a .IC statement as follows:

.IC I(L<name>) <initial value>

For details on using the .IC statement in a circuit file, see
.IC (initial bias point condition) and refer to your PSpice user’s guide for more
information.

L

0v15v
LLoad

171

Analog devices L

Capture parts
For standard L parts, the effective value of the part is set directly by the VALUE property.

In general, inductors should have positive component values (VALUE property). In all cases,
components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often
in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming
from the real to the RLC equivalent, it is possible to end up with negative component values.

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise
analyses. A transient analysis may fail for a circuit with negative components. Negative
inductors may create instabilities in time that the analysis cannot handle.

Part name Model
type Property Property description

L inductor VALUE inductance

IC initial current through the inductor during
bias point calculation

XFRM_LINEAR transformer L1_VALUE
L2_VALUE

winding inductances in Henries

COUPLING coefficient of mutual coupling (must be
between 0 and 1)

K_LINEAR transformer Ln inductor reference designator

Analog devices L

172

Breakout parts
For non-stock passive and semiconductor devices, Capture provides a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters. Another approach is to use the model editor to derive an
instance model and customize this. For example, you could add device and/or lot tolerances
to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model, which is derived from the intrinsic PSpice A/D D model
(.MODEL DBREAK D).

For breakout part LBREAK, the effective value is computed from a formula that is a function
of the specified VALUE property.

Device
type

Part
name Part library file Property Description

inductor LBREAK BREAKOUT.OLB VALUE inductance

IC initial current through the
inductor during bias point
calculation

MODEL IND model name

173

Analog devices L

Inductor equations

Inductance value formula
If [model name] is specified, then the effective value is given by:

<value>·L·(1+IL1·I+IL2·I2)·(1+TC1·(T-Tnom)+TC2·(T-Tnom)2)

where <value> is normally positive (though it can be negative, but not zero). Tnom is the
nominal temperature (set using TNOM option).

Inductor equation for noise
The inductor does not have a noise model.

Inductor model parameters
Model parameters* Description Units Default

L Inductance multiplier 1.0

IL1 Linear current coefficient amp-1 0.0

IL2 Quadratic current coefficient amp-2 0.0

TC1 Linear temperature coefficient °C-1 0.0

TC2 Quadratic temperature coefficient °C-2 0.0

T_ABS Absolute temperature °C

T_MEASURED Measured temperature °C

T_REL_GLOBAL Relative to current temperature °C

T_REL_LOCAL Relative to AKO model temperature °C

* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

Analog devices M

174

MOSFET
General form M<name> <drain node> <gate node> <source node>

+ <bulk/substrate node> <model name>
+ [L=<value>] [W=<value>]
+ [AD=<value>] [AS=<value>]
+ [PD=<value>] [PS=<value>]
+ [NRD=<value>] [NRS=<value>]
+ [NRG=<value>] [NRB=<value>]
+ [M=<value>] [N=<value>]

Examples M1 14 2 13 0 PNOM L=25u W=12u
M13 15 3 0 0 PSTRONG
M16 17 3 0 0 PSTRONG M=2
M28 0 2 100 100 NWEAK L=33u W=12u
+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10

Model form .MODEL <model name> NMOS [model parameters]
.MODEL <model name> PMOS [model parameters]

Description The MOSFET is modeled as an intrinsic MOSFET using ohmic resistances in series with the
drain, source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel
with the drain-source channel.

Arguments and options

L and W
are the channel length and width, which are decreased to get the effective channel
length and width. They can be specified in the device, .MODEL (model definition), or
.OPTIONS (analysis options) statements. The value in the device statement supersedes
the value in the model statement, which supersedes the value in the .OPTIONS statement.
Defaults for L and W can be set in the .OPTIONS statement. If L or W defaults are not
set, their default value is 100 u.

[L=<value>] [W=<value>] cannot be used in conjunction with Monte Carlo
analysis.

M

Drain

RD

Cgb

Cgd Cbd

RB

Bulk
Idrain

CbsCgs

RG
Gate

Source

RS

175

Analog devices M

AD and AS
The drain and source diffusion areas. Defaults for AD and AS can be set in the .OPTIONS
statement. If AD or AS defaults are not set, their default value is 0.

PD and PS
The drain and source diffusion perimeters. Their default value is 0.

JS
Can specify the drain-bulk and source-bulk saturation currents. JS is multiplied by AD
and AS.

IS
Can also specify the drain-bulk and source-bulk saturation currents. IS is an absolute
value.

 CJ
Can specify the zero-bias depletion capacitances. CJ is multiplied by AD and AS.

CJSW
Can also specify the zero-bias depletion capacitances. CJSW is multiplied by PD and PS.

CBD and CBS
Can also specify the zero-bias depletion capacitances. CBD and CBS are absolute values.

NRD, NRS, NRG, and NRB
Multipliers (in units of squares) that can be multiplied by RSH to yield the parasitic
(ohmic) resistances of the drain (RD), source (RS), gate (RG), and substrate (RB),
respectively. NRD, NRS, NRG, and NRB default to 0.

Consider a square sheet of resistive material. Analysis shows that the resistance between
two parallel edges of such a sheet depends upon its composition and thickness, but is
independent of its size as long as it is square. In other words, the resistance will be the
same whether the square’s edge is 2 mm, 2 cm, or 2 m. For this reason, the sheet resistance
of such a layer, abbreviated RSH, has units of ohms per square.

M (NP)
A parallel device multiplier (default = 1), which simulates the effect of multiple devices
in parallel. (NP is an alias for M.)

The effective width, overlap and junction capacitances, and junction currents of the
MOSFET are multiplied by M. The parasitic resistance values (e.g., RD and RS) are
divided by M. Note the third example: it shows a device twice the size of the second
example.

Analog devices M

176

N (NS)
A series device multiplier (default value= 1.0) for the Level 5 model only, which
simulates an approximation of the effect of multiple devices in series. NS is an aliased
name for N.

There are some things to keep in mind while using this parameter. The parameter N is used
to derive the effective length, Leff = N · (L+DL), of a transistor drawn as N elements of
width W and length L in series (in other words, the drain of element [K] is the source of
element [K+1], and the gates are tied together). The short-channel effects included in the
pinch-off voltage calculation, however, are evaluated using the effective length L+DL of
each element. Except for this, everything is calculated as if the transistor were laid out as
a single element of length L=Leff-DL=N · (L+DL)-DL.

In this compact formulation, the intermediate drain/source diffusions appearing along the
channel are ignored (that is, junction capacitance and diffusion resistances are assumed to
be zero). As a consequence, DC, AC and transient analyses can yield different results
compared with the standard device declaration, particularly at higher frequencies. A
closer match is obtained for long devices, or devices with low RS and RD and high
UCRIT. Be sure to evaluate the accuracy of this compact formulation and to check the
validity of the underlying approximations.

Comments The simulator provides six MOSFET device models, which differ in the formulation of the
I-V characteristic. The LEVEL parameter selects among different models as shown below. For
more information, see References.

LEVEL=1 Shichman-Hodges model (see reference [1])

LEVEL=2 geometry-based, analytic model (see reference [2])

LEVEL=3 semi-empirical, short-channel model (see reference [2])

LEVEL=4 BSIM model (see reference [3])

LEVEL=5 EKV model version 2.6 (see reference [10])

LEVEL=6 BSIM3 model version 2.0 (see reference [7])

LEVEL=7 BSIM3 model version 3.1 (see reference [8])

177

Analog devices M

Capture parts
The following table lists the set of MOSFET breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Setting operating temperature
Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information, see MOSFET model parameters.

Part name Model
type Property Property description

MBREAKN NMOS L channel length

MBREAKN3 W channel width

MBREAKN4 AD drain diffusion area

MBREAKP PMOS AS source diffusion area

MBREAKP3 PD drain diffusion perimeter

MBREAKP4 PS source diffusion perimeter

NRD relative drain resistivity (in squares)

NRS relative source resistivity (in squares)

NRG relative gate resistivity (in squares)

NRB relative substrate resistivity (in squares)

M device multiplier
(simulating parallel devices)

MODEL NMOS or PMOS model name

Analog devices M

178

MOSFET model parameters

For all model levels
The parameters common to all model levels are primarily parasitic element values such as
series resistance, overlap and junction capacitance, and so on.

Model levels 1, 2, and 3
The DC characteristics of the first three model levels are defined by the parameters VTO, KP,
LAMBDA, PHI, and GAMMA. These are computed by the simulator if process parameters
(e.g., TOX, and NSUB) are given, but the user-specified values always override. VTO is positive
(negative) for enhancement mode and negative (positive) for depletion mode of N-channel
(P-channel) devices.

The default value for TOX is 0.1 µ for Levels 2 and 3, but is unspecified for Level 1,
which discontinues the use of process parameters.

For MOSFETs the capacitance model has been changed to conserve charge, affecting only the
Level 1, 2, and 3 models.

Effective length and width for device parameters are calculated with the formula:

Pi = P0 + PL/Le + PW/We

where:

Le = effective length = L - (LD · 2)
We = effective width = W - (WD · 2)

See .MODEL (model definition) for more information.

Model level 4

Unlike the other models in PSpice, the BSIM model is designed for use with a process
characterization system that provides all parameters. Therefore, there are no
defaults specified for the parameters, and leaving one out can cause problems.

The LEVEL=4 (BSIM1) model parameters are all values obtained from process
characterization, and can be generated automatically. Reference [4] of References describes
a means of generating a process file, which must then be converted into .MODEL (model
definition) statements for inclusion in the Model Library or circuit file. (The simulator does
not read process files.)

The level 4 (BSIM) and level 6 (BSIM3 version 2) models have their own capacitance model,
which conserves charge and remains unchanged. References [6] and [7] describe the
equations for the capacitance due to channel charge.

In the following MOSFET model parameters list, parameters marked with a ζ in the Default
column also have corresponding parameters with a length and width dependency. For

179

Analog devices M

example, VFB is a basic parameter using units of volts, and LVFB and WVFB also exist and
have units of volt·µ. The formula

Pi = P0 + PL/Le + PW/We

is used to evaluate the parameter for the actual device, where:

Le = effective length = L - DL
We = effective width = W - DW

Model level 5 (EKV version 2.6)
The EKV model is a scaleable and compact model built on fundamental physical properties
of the device. Use this model to design low-voltage, low-current analog, and mixed
analog-digital circuits that use sub-micron technologies. The charge-based static, quasi-static
dynamic, and noise models are all derived from the normalized transconductance-to-current
ratio, which is accurately described for all levels of current, including the moderate inversion
region. A single I-V expression preserves the continuity of first- and higher-order derivatives
with respect to any terminal voltage in all regions of device operation.

Version 2.6 models the following:

• geometrical and process related aspects of the device (oxide thickness, junction depth,
effective channel length and width, and so on)

• effects of doping profile and substrate effects

• weak, moderate, and strong inversion behavior

• mobility effects due to vertical and lateral fields and carrier velocity saturation

• short-channel effects such as channel-length modulation, source and drain charge sharing,
and the reverse short channel effect

• thermal and flicker noise modeling

• short-distance geometry and bias-dependent device matching for Monte Carlo analysis.

For more detailed model information, see reference [10] of References.

Additional notes

Note 1 The DL and DW parameters usually have a negative value.

Note 2 0 (zero) and O (the letter O) are not interchangeable. For example, use VTO, not
VT0 (VTO is referenced to the bulk); use E0, not EO; use Q0, not QO.

Note 3 Use the AVTO, AKP, and AGAMMA model parameters with a DEV tolerance to
perform Monte Carlo and Sensitivity/Worst-Case analyses. Their default values cannot be
changed.

The device-to-device matching of MOSFETs depends on the gate area, W · L. Using AVTO,
AKP, and AGAMMA with a DEV tolerance applies the matching scaling law for the model
equations and derives the device matching statistics (DEV tolerance) from a single
normalized parameter. (Without these parameters, you would need to use a dedicated
.MODEL card with a DEV tolerance for VTO, KP and GAMMA for each value of the gate area
used in your design.)

Analog devices M

180

Do not apply the LOT specification, which is a measure of the ability of the process to control
the absolute value of a model parameter, to AVTO, AKP, and AGAMMA, because this would be
redundant with the LOT specification for VTO, KP, and GAMMA.

Note 4 Use the model parameter HDIF with the device parallel multiplier, M, to set
default values for AD, AS, PD, and PS. Use HDIF only for the MOSEKV (Level 5) model.

When HDIF is specified, the following equations are used.

For M = 1, the following equations are used.

For M ≥ 2 and even:

For M ≥ 2 and odd:

Note 5 If RGSH is specified, the default value for NRG is set to 0.5 · W/L.

Note 6 The model parameters TOX, NSUB, VFB, UO, and VMAX accomodate scaling
behavior of the process and basic intrinsic model parameters, as well as statistical circuit
simulation. These parameters are only used if COX, GAMMA, and/or PHI, VTO, KP, and UCRIT
are not specified, respectively. Furthermore, a simpler mobility reduction model due to
vertical field is accessible through the mobility reduction coefficient, THETA. THETA is only
used if E0 is not specified.

NRD HDIF W⁄=

NRS HDIF W⁄=

AD 2 HDIF⋅() W⋅=

AS 2 HDIF⋅() W⋅=

PD 2 2 HDIF⋅() W+()⋅=

PS 2 2 HDIF⋅() W+⋅=

AD HDIF W⋅=

AS HDIF 2 HDIF⋅()+ M⁄() W⋅=

PD 2 HDIF⋅() W+=

PS 2 HDIF⋅() W 2 2 HDIF⋅() W+() M⁄⋅+ +=

AD HDIF HDIF M⁄()+() W⋅=

AS HDIF HDIF M⁄()+() W⋅=

PD 2 HDIF⋅() W 2 HDIF⋅() W+() M⁄+ +=

PS 2 HDIF⋅() W 2 HDIF⋅() W+() M⁄+ +=

181

Analog devices M

Model level 6 (BSIM3 version 2.0)

The Level 6 Advanced parameters should not be changed unless the detail structure
of the device is known and has specific, meaningful values.

The BSIM3 model is a physical model using extensive built-in dependencies of important
dimensional and processing parameters. It includes the major effects that are important to
modeling deep-submicrometer MOSFETs, such as threshold voltage reduction, nonuniform
doping, mobility reduction due to the vertical field, bulk charge effect, carrier velocity
saturation, drain-induced barrier lowering (DIBL), channel length modulation (CLM),
hot-carrier-induced output resistance reduction, subthreshold conduction, source/drain
parasitic resistance, substrate current induced body effect (SCBE), and drain voltage
reduction in LDD structure. For additional, detailed model information, see References.

Additional notes

Note 1 If any of the following BSIM3 version 2.0 model parameters are not explicitly
specified, they are calculated using the following equations.

Note 2 Default values listed for the BSIM3 version 2.0 parameters UA, UB, UC, UA1,
AB1, and UC1 are used for simplified mobility modeling.

Model level 7 (BSIM3 version 3.1)
The BSIM3 version 3.1 model was developed by the University of California, Berkeley, as a
deep submicron MOSFET model with the same physical basis as the BSIM3 version 2 model,
but with a number of major enhancements, such as a single I-V expression to describe current
and output conductance in all regions of device operation, better modeling of narrow width
devices, a reformulated capacitance model to improve short and narrow geometry models, a

VTH0 VFB PHI K PHI+ +=

K1 GAMMA2 2 K2⋅ PHI VBM–()–=

K2 GAMMA1 GAMMA2–() PHI VBX– PHI–()
2 PHI PHI VBX– PHI–() VBM+

---=

VBF VTH0 PHI– K1 PHI–=

PHI 2Vtm
NPEAK

ni

 ln=

GAMMA1
2qεsiNPEAK

COX
--------------------------------------=

GAMMA2
2qεsiNSUB

COX
----------------------------------=

VBX PHI q NPEAK XT2⋅ ⋅ 2εsi()⁄–=

LITL
εsiTOXXj

εox
------------------------=

Analog devices M

182

new relaxation time model to improve transient modeling, and improved model fitting of
various W/L ratios using one parameter set. BSIM3 version 3.1 retains the extensive built-in
dependencies of dimensional and processing parameters of BSIM3 version 2. For additional,
detailed model information, see Reference [8] of References.

Additional notes

Note 1 If any of the following BSIM3 version 3.1 model parameters are not explicitly
specified, they are calculated using the following equations:

Note 2 If K1 AND K2 are not specified, they are calculated using the following
equations:

Note 3 If NCH is not given and GAMMA1 is given, then:

If neither GAMMA1 nor NCH is given, then NCH has a default value of
1.7e23 1/m3 and GAMMA1 is calculated from NCH:

If VTHO is not specified, then:

where:

VFB=-1.0

If VTHO is specified, then:

where
Eg(T)=the energy bandgap at temperature T=

where:

VTHO VFB φsK1 φs+=

VFB VTHO φs– K1 φs+=

VBX φs
q NCH XT2⋅ ⋅

2 εsi⋅
-----------------------------------–=

CF
2εox

π

 1 4 10 7–×
TOX

--------------------+
 ln=

1.16 7.02 10 4– T2⋅ ⋅()
T 1108+()

--–

K1 GAMMA2 2K2 φs VBM––=

K2
GAMMA1 GAMMA2–() φS VBX– φs–()

2 φs φs VBM– φs–() VBM+
--=

φs 2Vt NCH
ni

 ln⋅=

Vt k T⋅
q

-----------=

ni 1.45 1010 T
300.15

 1.5
⋅= 21.5565981

Eg T()
2Vt

---------------–
 exp

NCH GAMMA12 Cox()2⋅
2q εsi⋅

---=

GAMMA1
2q εsi NCH⋅ ⋅

Cox
--------------------------------------=

183

Analog devices M

If GAMMA2 is not given, then:

Note 3 If CGSO is not given and DLC>0, then:

If the previously calculated CGSO<0, then:

CGSO=0

Else:

CGSO=0.6 · XJ · Cox

Note 4 If CGDO is not given and DLC>0, then:

If the previously calculated CGDO<0, then

CGDO=0

Else:

CGDO=0.6 · XJ · Cox

GAMMA2
2q εsi NSUB⋅ ⋅

Cox
--=

CGSO DLC Cox⋅() CGSL–=

CGDO DLC Cox⋅() CGSL–=

Analog devices M

184

MOSFET model parameters
Parameter* Description Unit Default

all levels

AF flicker noise exponent 1

CBD zero-bias bulk-drain p-n capacitance farad 0

CBS zero-bias bulk-source p-n capacitance farad 0

CGBO gate-bulk overlap capacitance/channel length farad/meter 0

CGDO gate-drain overlap capacitance/channel width farad/meter 0

CGSO gate-source overlap capacitance/channel width farad/meter 0

CJ bulk p-n zero-bias bottom capacitance/area farad/meter2 0

CJSW bulk p-n zero-bias sidewall capacitance/length farad/meter 0

FC bulk p-n forward-bias capacitance coefficient 0.5

GDSNOI channel shot noise coefficient (use with NLEV=3) 1

IS bulk p-n saturation current amp 1E-14

JS bulk p-n saturation current/area amp/meter2 0

JSSW bulk p-n saturation sidewall current/length amp/meter 0

KF flicker noise coefficient 0

L channel length meter DEFL

LEVEL model index 1

MJ bulk p-n bottom grading coefficient 0.5

MJSW bulk p-n sidewall grading coefficient 0.33

N bulk p-n emission coefficient 1

NLEV noise equation selector 2

PB bulk p-n bottom potential volt 0.8

PBSW bulk p-n sidewall potential volt PB

RB bulk ohmic resistance ohm 0

RD drain ohmic resistance ohm 0

RDS drain-source shunt resistance ohm infinite

RG gate ohmic resistance ohm 0

RS source ohmic resistance ohm 0

RSH drain, source diffusion sheet resistance ohm/square 0

TT bulk p-n transit time sec 0

185

Analog devices M

T_ABS † absolute temperature °C

T_MEASURED † measured temperature °C

T_REL_GLOBAL † relative to current temperature °C

T_REL_LOCAL † relative to AKO model temperature °C

W channel width meter DEFW

levels 1, 2, and 3

DELTA width effect on threshold 0

ETA static feedback (Level 3) 0

GAMMA bulk threshold parameter volt
1/2

see page 178

KP transconductance coefficient amp/volt2 2.0E-5

KAPPA saturation field factor (Level 3) 0.2

LAMBDA channel-length modulation (Levels 1 and 2) volt-1 0.0

LD lateral diffusion (length) meter 0.0

NEFF channel charge coefficient (Level 2) 1.0

NFS fast surface state density 1/cm2 0.0

NSS surface state density 1/cm2 none

NSUB substrate doping density 1/cm3 none

PHI surface potential volt 0.6

THETA mobility modulation (Level 3) volt-1 0.0

TOX oxide thickness meter see page 178

TPG Gate material type:

+1 = opposite of substrate

-1 = same as substrate

0 = aluminum

+1

UCRIT mobility degradation critical field (Level 2) volt/cm 1.0E4

UEXP mobility degradation exponent (Level 2) 0.0

UTRA (not used)
mobility degradation transverse field coefficient

0.0

UO surface mobility
(The second character is the letter O, not the
numeral zero.)

cm2/volt·sec 600

VMAX maximum drift velocity meter/sec 0

MOSFET model parameters (continued)
Parameter* Description Unit Default

Analog devices M

186

VTO zero-bias threshold voltage volt 0

WD lateral diffusion (width) meter 0

XJ metallurgical junction depth (Levels 2 and 3) meter 0

XQC fraction of channel charge attributed to drain 1.0

level 4**

DL Channel shortening mu-m
(1E-6*m)

DW Channel narrowing mu-m
(1E-6*m)

ETA Zero-bias drain-induced barrier lowering
coefficient

ζ

K1 Body effect coefficient volt
1/2

ζ

K2 Drain/source depletion charge sharing coefficient ζ

MUS Mobility at zero substrate bias and Vds=Vdd cm2/volt·sec ζ

MUZ Zero-bias mobility cm2/volt·sec

N0 Zero-bias subthreshold slope coefficient ζ

NB Sens. of subthreshold slope to substrate bias ζ

ND Sens. of subthreshold slope to drain bias ζ

PHI Surface inversion potential volt ζ

TEMP Temperature at which parameters were measured °C

TOX Gate-oxide thickness mu-m
(1E-6*m)

U0 Zero-bias transverse-field mobility degradation volt-1 ζ

U1 Zero-bias velocity saturation µ/volt ζ

VDD Measurement bias range volts

VFB Flat-band voltage volt ζ

WDF Drain, source junction default width meter

X2E Sens. of drain-induced barrier lowering effect to
substrate bias

volt-1 ζ

X2MS Sens. of mobility to substrate bias @ Vds=0 cm2/volt2·sec ζ

X2MZ Sens. of mobility to substrate bias @ Vds=0 cm2/volt2·sec ζ

X2U0 Sens. of transverse-field mobility degradation
effect to substrate bias

volt-2 ζ

MOSFET model parameters (continued)
Parameter* Description Unit Default

187

Analog devices M

X2U1 Sens. of velocity saturation effect to substrate bias µ/volt2 ζ

X3E Sens. of drain-induced barrier lowering effect to
drain bias @ Vds = Vdd

volt-1 ζ

X3MS Sens. of mobility to drain bias @ Vds=Vdd cm2/volt2·sec ζ

X3U1 Sens. of velocity saturation effect on drain µ/volt2 ζ

XPART Gate-oxide capacitance charge model flag.

XPART=0 selects a 40/60 drain/source charge
partition in saturation, while XPART=1 selects a
0/100 drain/source charge partition.

level 5: process parameters

COX gate oxide capacitance per unit area F/m2 0.7E-3

XJ junction depth m 0.1E-6

DW channel width correction m 0.0
see page 179

DL channel length correction m 0.0
see page 179

HDIF length of heavily doped diffusion contact to gate m 0.0
see page 179

level 5: basic intrinsic parameters

VTO long-channel threshold voltage V 0.5
see page 179

GAMMA body effect parameter 1.0

PHI bulk Fermi potential (·2) V 0.7

KP transconductance parameter A/V2 50.0E-6

E0 mobility reduction coefficient V/m 1.0E12
see page 179

UCRIT longitudinal critical field V/m 2.0E6

level 5: channel length modulation and charge sharing parameters

LAMBDA depletion length coefficient (channel length
modulation)

0.5

WETA narrow-channel effect coefficient 0.25

LETA short-channel effect coefficient 0.1

MOSFET model parameters (continued)
Parameter* Description Unit Default

V

Analog devices M

188

level 5: impact ionization related parameters

IBA first impact ionization coefficient 1/m 0.0

IBB second impact ionization coefficient V/m 3.0E8

IBN saturation voltage factor for impact ionization 1.0

level 5: intrinsic temperature parameters

TCV threshold voltage temperature coefficient V/K 1.0E-3

BEX mobility temperature exponent -1.5

UCEX longitudinal critical field temperature exponent 0.8

IBBT temperature coefficient for IBB 1/K 9.0E-4

level 5: matching parameters

AVTO area related threshold voltage temperature
coefficient

V·m 1.0E-6
see page 179

AKP area related gain mismatch parameter m 1.0E-6
see page 179

AGAMMA area related body effect mismatch parameter 1.0E-6
see page 179

level 5: resistance parameters

RBC bulk contact resistance ohm 0.0

RBSH bulk layer sheet resistance ohm/square 0.0

RDC drain contact resistance ohm 0.0

RGC gate contact resistance ohm 0.0

RGSH gate layer sheet resistance ohm/square 0.0
see page 180

RSC source contact resistance ohm 0.0

level 5: temperature parameters

TR1 first-order temperature coefficient for drain, source
series resistance

°C–1 0.0

TR2 second-order temperature coefficient for drain,
source series resistance

°C–2 0.0

TRB temperature coefficient for bulk series resistance °C–1 0.0

TRG temperature coefficient for gate series resistance °C–1 0.0

XTI drain, source junction current temperature
exponent

0.0

MOSFET model parameters (continued)
Parameter* Description Unit Default

V m⋅

189

Analog devices M

level 5: optional parameters

NSUB channel doping meter see page 180

THETA mobility reduction coefficient volt-1 see page 180

TOX oxide thickness meter see page 180

UO low-field mobility see page 180

VFB flat-band voltage volt see page 180

VMAX saturation velocity meter/sec see page 180

level 5: setup parameters

SATLIM ratio defining the saturation limit if / ir 54.6

level 6

A0 bulk charge effect coefficient NMOS

bulk charge effect coefficient PMOS

1.0

4.4

A1 first non-saturation coefficient NMOS

first non-saturation coefficient PMOS

1/V

1/V

0.0

0.23

A2 second non-saturation coefficient NMOS

second non-saturation coefficient PMOS

1.0

0.08

AT saturation velocity temperature coefficient m/sec 3.3E4

BULKMOD bulk charge model selector:

NMOS

PMOS

1

2

CDSC drain/source and channel coupling capacitance F/m2 2.4E-4

CDSCB body bias sensitivity of CDSC F/Vm2 0.0

DL channel length reduction on one side m 0.0

DROUT channel length dependent coefficient of the DIBL
effect on Rout

0.56

DSUB subthreshold DIBL coefficient exponent DROUT

DVT0 first coefficient of short-channel effect on threshold
voltage

2.2

DVT1 second coefficient of short-channel effect on
threshold voltage

0.53

DVT2 body bias coefficient of short-channel effect on
threshold voltage

1/V -0.032

MOSFET model parameters (continued)
Parameter* Description Unit Default

cm
2

volt sec⋅

Analog devices M

190

DW channel width reduction on one side m 0.0

ETA0 DIBL coefficient in subthreshold region 0.08

ETAB body bias coefficient for the subthreshold DIBL
coefficient

1/V -0.07

K1 first-order body effect coefficient see page 181

K2 second-order body effect coefficient see page 181

K3 narrow width effect coefficient 80.0

K3B body effect coefficient of K3 1/V 0.0

KETA body bias coefficient of the bulk charge effect. 1/V -0.047

KT1 temperature coefficient for threshold voltage V -0.11

KT1L channel length sensitivity of temperature
coefficient for threshold voltage.

V-m 0.0

KT2 body bias coefficient of the threshold voltage
temperature effect

0.022

NFACTOR subthreshold swing coefficient 1.0

NGATE poly gate doping concentration 1/cm3

NLX lateral nonuniform doping coefficient m 1.74E-7

NPEAK peak doping concentration near interface 1/cm3 1.7E17

NSUB substrate doping concentration 1/cm3 6.0E16

PCLM channel length modulation coefficient 1.3

PDIBL1 first output resistance DIBL effect coefficient 0.39

PDIBL2 second output resistance DIBL effect coefficient 0.0086

PSCBE1 first substrate current body effect coefficient V/m 4.24E8

PSCBE2 second substrate current body effect coefficient m/V 1.0E-5

PVAG gate dependence of Early voltage 0.0

RDS0 contact resistance ohms 0.0

RDSW parasitic resistance per unit width ohms/
m

0.0

SATMOD saturation model selector:

For semi-empirical output:
resistance model 1

For physical output:
resistance model 2

2

MOSFET model parameters (continued)
Parameter* Description Unit Default

V

µ

191

Analog devices M

SUBTHMOD subthreshold model selector:

no subthreshold model 0
BSIM1 subthreshold model 1
BSIM3 subthreshold model 2
BSIM3 subthreshold model
 using log current 3

2

TNOM temperature at which parameters are extracted. deg. C 27

TOX gate oxide thickness m 1.5E-8

UA first-order mobility degradation coefficient m/V 2.25E-9

UA1 temperature coefficient for UA m/V 4.31E-9

UB second-order mobility degradation coefficient (m/V)2 5.87E-19

UB1 temperature coefficient for UB (m/V)2 -7.61E-18

UC body effect mobility degradation coefficient 1/V 0.0465

UC1 temperature coefficient for UC 1/V -0.056

UTE mobility temperature exponent -1.5

VOFF offset voltage in subthreshold region V -0.11

VSAT saturation velocity at Temp=TNOM cm/sec 8.0E6

VTH0 threshold voltage at Vbs=0 for large channel length V see page 181

W0 narrow width effect parameter m 2.5E-6

XJ junction depth m 1.5E-7

XPART charge partitioning coefficient:

no charge model < 0.0

40/60 partition = 0.0

50/50 partition = 0.5

0/100 partition = 1.0

0.0

level 6 advanced

CIT capacitance due to interface trapped charge F/m2 0.0

EM critical electrical field in channel V/m 4.1E7

ETA drain voltage reduction coefficient due to LDD 0.3

GAMMA1 body effect coefficient near the interface see page 181

GAMMA2 body effect coefficient in the bulk see page 181

LDD total length of the LDD region m 0.0

LITL characteristic length related to current depth m see page 181

MOSFET model parameters (continued)
Parameter* Description Unit Default

V

V

Analog devices M

192

PHI surface potential under strong inversion V see page 181

U0 mobility at Temp=TNOM:

NMOS

PMOS

cm2/V-sec

cm2/V-sec

670.0

250.0

VBM maximum applied body bias V -5.0

VBX vbs at which the depletion width equals XT V see page 181

VFB flat-band voltage V see page 181

VGHIGH voltage shift of the higher bound of the transition
region

V 0.12

VGLOW voltage shift of the lower bound of the transition
region

V -0.12

XT doping depth m 1.55E-7

level 7: control parameters

CAPMOD flag for the short-channel capacitance model none 2

MOBMOD mobility model selector none 1

NOIMOD flag for noise model none 1

NQSMOD flag for NQS model none 0

PARAMCHK flag for model parameter checking none 0

level 7: AC and capacitance parameters

CF fringing field capacitance F/m see page 182

CKAPPA coefficient for lightly doped region overlap
capacitance fringing field capacitance

F/m 0.6

CLC constant term for the short-channel model m 0.1E-6

CLE exponential term for the short-channel model none 0.6

CGBO gate-bulk overlap capacitance per unit channel
length

F/m 0.0

CGDL light-doped drain-gate region overlap capacitance F/m 0.0

CGDO non-LDD region drain-gate overlap capacitance
per channel length

F/m see page 183

CGSL light-doped source-gate region overlap capacitance F/m 0.0

CGSO non-LDD region source-gate overlap capacitance
per channel length

F/m see page 183

CJ bottom junction capacitance per unit area F/m2 5.0E-4

MOSFET model parameters (continued)
Parameter* Description Unit Default

193

Analog devices M

CJSW source/drain side junction capacitance per unit
periphery

F/m 5.0E-10

CJSWG source/drain gate sidewall junction capacitance per
unit width

F/m CJSW

DLC length offset fitting parameter from C-V m LINT

DWC width offset fitting parameter from C-V m WINT

MJ bottom junction capacitance grading coefficient none 0.5

MJSW source/drain side junction capacitance grading
coefficient

none 0.33

MJSWG source/drain gate sidewall junction capacitance
grading coefficient

none MJSW

PB bottom built-in potential V 1.0

PBSW source/drain side junction built-in potential V 1.0

PBSWG source/drain gate sidewall junction built-in
potential

V PBSW

VFBCV flat-band voltage parameter
(for CAPMOD = 0 only)

V -1.0

XPART charge partitioning rate flag none 0.0

level 7: bin description parameters

BINUNIT bin unit scale selector none 1.0

LMAX maximum channel length m 1.0

LMIN minimum channel length m 0.0

WMAX maximum channel width m 1.0

WMIN minimum channel width m 0.0

level 7: DC parameters

A0 bulk charge effect coefficient for channel length none 1.0

A1 first non-saturation effect parameter 1/V 0.0

A2 second non-saturation factor none 1.0

AGS gate-bias coefficient of Abulk 1/V 0.0

ALPHA0 first parameter of impact-ionization current m/V 0.0

B0 bulk charge effect coefficient for channel width m 0.0

B1 bulk charge effect width offset m 0.0

MOSFET model parameters (continued)
Parameter* Description Unit Default

Analog devices M

194

BETA0 second parameter of impact-ionization current V 30.0

CDSC drain/source to channel coupling capacitance F/m2 2.4E-4

CDSCB body-bias sensitivity of CDSC F/Vm2 0.0

CDSCD drain-bias sensitivity of CDSC F/Vm2 0.0

CIT interface trap capacitance F/m2 0.0

DELTA effective Vds parameter V 0.01

DROUT L-dependence coefficient of the DIBL correction
parameter in Rout

none 0.56

DSUB DIBL coefficient exponent in subthreshold region none DROUT

DVT0 first coefficient of short-channel effect on threshold
voltage

none 2.2

DVT0W first coefficient of narrow-width effect on threshold
voltage for small-channel length

1/m 0.0

DVT1 second coefficient of short-channel effect on
threshold voltage

none 0.53

DVT2 body-bias coefficient of short-channel effect on
threshold voltage

1/V -0.032

DVTW1 second coefficient of narrow-width effect on
threshold voltage for small channel length

1/m 5.3E6

DVTW2 body-bias coefficient of narrow-width effect for
small channel length

1/V -0.032

DWB coefficient of substrate body bias dependence of
Weff

m/V1/2 0.0

DWG coefficient of gate dependence of Weff m/V 0.0

ETA0 DIBL coefficient in subthreshold region none 0.08

ETAB body-bias coefficient for the subthreshold DIBL
effect

1/V -0.07

JS source-drain junction saturation current per unit
area

A/m2 1.0E-4

JSW sidewall saturation current per unit length A/m 0.0

K1 first-order body effect coefficient V1/2 0.5
see page 182

K2 second-order body effect coefficient none 0.0
see page 182

K3 narrow width coefficient none 80.0

MOSFET model parameters (continued)
Parameter* Description Unit Default

195

Analog devices M

K3B body effect coefficient of K3 1/V 0.0

KETA body-bias coefficient of bulk charge effect 1/V -0.047

LINT length offset fitting parameter from I-V without
bias

m 0.0

NFACTOR subthreshold swing factor none 1.0

NGATE poly gate doping concentration cm-3 0.0

NLX lateral non-uniform doping parameter m 1.74E-7

PCLM channel length modulation parameter none 1.3

PDIBLC1 first output resistance DIBL effect correction
parameter

none 0.39

PDIBLC2 second output resistance DIBL effect correction
parameter

none 0.0086

PDIBLCB body effect coefficient of DIBL correction
parameter

1/V 0.0

PRWB body effect coefficient of RDSW 1/V1/2 0.0

PRWG gate-bias effect coefficient of RDSW 1/V 0.0

PSCBE1 first substrate current body effect parameter V/m 4.24E8

PSCBE2 second substrate current body effect parameter V/m 1.0E-5

PVAG gate dependence of Early voltage none 0.0

RDSW parasitic resistance per unit width Ω-µmWR 0.0

RSH source-drain sheet resistance Ω/square 0.0

U0 mobility at Temp=TNOM
NMOS
PMOS

670.0
250.0

cm2/(V·sec)

UA first-order mobility degradation coefficient m/V 2.25E-9

UB second-order mobility degradation coefficient (m/V)2 5.87E-19

UC body effect of mobility degradation coefficient m/V2

1/V

-4.65E-11 when
MOBMOD=1 or 2

-0.046 when
MOBMOD=3

VBM maximum applied body-bias in threshold voltage
calculation

V -3.0

VOFF offset voltage in the subthreshold region at large W
and L

V -0.08

MOSFET model parameters (continued)
Parameter* Description Unit Default

Analog devices M

196

VSAT saturation velocity at Temp=TNOM m/sec 8.0E 4

VTH0 threshold voltage@Vbs=0 for large L V 0.7 (NMOS)
-0.7 (PMOS)
see page 181

W0 narrow-width parameter m 2.5E-6

WINT width-offset fitting parameter from I-V without
bias

m 0.0

WR width-offset from Weff for Rds calculation none 1.0

Level 7: flicker noise parameters

AF frequency exponent none 1.0

EF flicker exponent none 1.0

EM saturation field V/m 4.1E7

KF flicker noise parameter none 0.0

NOIA noise parameter A none 1.0E20 (NMOS)
9.9E18 (PMOS)

NOIB noise parameter B none 5.0E4 (NMOS)
2.4E3 (PMOS)

NOIC noise parameter C none -1.4E-12(NMOS)
1.4E-12 (PMOS)

level 7: NQS parameter

ELM Elmore constant of the channel none 5.0

level 7: process parameters

GAMMA1 body effect coefficient near the surface V1/2 see page 182

GAMMA2 body effect coefficient in the bulk V1/2 see page 182

NCH channel doping concentration 1/cm3 1.7E17

NSUB substrate doping concentration 1/cm3 6.0E16

TOX gate-oxide thickness m 1.5E-8

VBX Vbs at which the depletion region = XT V see page 182

XJ junction depth m 1.5E-7

XT doping depth m 1.55E-7

level 7: temperature parameters

AT temperature coefficient for saturation velocity m/sec 3.3E4

MOSFET model parameters (continued)
Parameter* Description Unit Default

197

Analog devices M

KT1 temperature coefficient for threshold voltage V -0.11

KT1L channel length dependence of the temperature
coefficient for threshold voltage

V*m 0.0

KT2 body-bias coefficient of threshold voltage
temperature effect

none 0.022

NJ emission coefficient of junction none 1.0

PRT temperature coefficient for RDSW Ω-µm 0.0

TNOM temperature at which parameters are extracted °C 27.0

UA1 temperature coefficient for UA m/V 4.31E-9

UB1 temperature coefficient for UB (m/V)2 -7.61E-18

UC1 temperature coefficient for UC m/V2

1/V

-5.6E -11 when
MOBMOD=1 or 2

-0.056 when
MOBMOD=3

UTE mobility temperature exponent none -1.5

XTI junction current temperature exponent coefficient none 3.0

level 7: W and L parameters

LL coefficient of length dependence for length offset mLLN 0.0

LLN power of length dependence for length offset none 1.0

LW coefficient of width dependence for length offset mLWN 0.0

LWL coefficient of length and width cross term for
length offset

mLWN+LLN 0.0

LWN power of width dependence for length offset none 1.0

WL coefficient of length dependence for width offset mWLN 0.0

WLN power of length dependence of width offset none 1.0

WW coefficient of width dependence for width offset mWWN 0.0

WWL coefficient of length and width cross term for width
offset

mWWN+WLN 0.0

WWN power of width dependence of width offset none 1.0

* See .MODEL (model definition).

**A ζ in the Default column indicates that the parameter may have corresponding parameters exhibiting length and width dependence.
See Model level 4.

† For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

MOSFET model parameters (continued)
Parameter* Description Unit Default

Analog devices M

198

MOSFET Equations
These equations describe an N-channel MOSFET. For P-channel devices, reverse the signs of
all voltages and currents.

In the following equations:

Other variables are from MOSFET model parameters.

Positive current is current flowing into a terminal (for example, positive drain current
flows from the drain through the channel to the source).

Vbs = intrinsic substrate-intrinsic source voltage

Vbd = intrinsic substrate-intrinsic drain voltage

Vds = intrinsic drain-intrinsic source voltage

Vdsat = saturation voltage

Vgs = intrinsic gate-intrinsic source voltage

Vgd = intrinsic gate-intrinsic drain voltage

Vt = k·T/q (thermal voltage)

Vth = threshold voltage

Cox = the gate oxide capacitance per unit area.

f = noise frequency

k = Boltzmann’s constant

q = electron charge

Leff = effective channel length

Weff = effective channel width

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option)

199

Analog devices M

MOSFET equations for DC current
all levels

Ig = gate current = 0

Ib = bulk current = Ibs+Ibd

where

Ibs = bulk-source leakage current = Iss·(eVbs/(N·Vt)-1)

Ibd = bulk-drain leakage current = Ids·(eVbd/(N·Vt)-1)

where
if

JS = 0, or AS = 0, or AD = 0

then
Iss = IS
Ids = IS

else
Iss = AS·JS + PS·JSSW
Ids = AD·JS + PD·JSSW

Id = drain current = Idrain-Ibd

Is = source current = -Idrain-Ibs

level 1: Idrain

Normal mode: Vds > 0

Case 1

for cutoff region: Vgs-Vto < 0

then: Idrain = 0

Case 2

for linear region: Vds < Vgs-Vto

then: Idrain = (W/L)·(KP/2)·(1+LAMBDA·Vds)·Vds·(2·(Vgs-Vto)-Vds)

Case 3

for saturation region: 0 < Vgs-Vto < Vds

then: Idrain = (W/L)·(KP/2)·(1+LAMBDA·Vds)·(Vgs-Vto)2

where
Vto = VTO+GAMMA·((PHI-Vbs)1/2-PHI1/2)

Inverted mode: Vds < 0

Switch the source and drain in the normal mode equations above.

 Levels 2 and 3: Idrain

See reference [2] of References for detailed information.

Analog devices M

200

MOSFET equations for capacitance

All capacitances are between terminals of the intrinsic MOSFET, in other words, to
the inside of the ohmic drain and source resistances. For levels 1, 2, and 3, the
capacitance model has been changed to conserve charge.

levels 1, 2, and 3

Cbs = bulk-source capacitance = area cap. + sidewall cap. + transit time cap.

Cbd = bulk-drain capacitance = area cap. + sidewall cap. + transit time cap.

where
if

CBS = 0 AND CBD = 0

then
Cbs = AS·CJ·Cbsj + PS·CJSW·Cbss + TT·Gbs
Cbd = AD·CJ·Cbdj + PD·CJSW·Cbds + TT·Gds

else
Cbs = CBS·Cbsj + PS·CJSW·Cbss + TT·Gbs
Cbd = CBD·Cbdj + PD·CJSW·Cbds + TT·Gds

where
Gbs = DC bulk-source conductance = dIbs/dVbs
Gbd = DC bulk-drain conductance = dIbd/dVbd

if
Vbs < FC·PB

then
Cbsj = (1-Vbs/PB)-MJ

Cbss = (1-Vbs/PBSW)-MJSW

if
Vbs > FC·PB

then
Cbsj = (1-FC)-(1+MJ)·(1-FC·(1+MJ)+MJ·Vbs/PB)
Cbss = (1-FC)-(1+MJSW)·(1-FC·(1+MJSW)+MJSW·Vbs/PBSW)

if
Vbd < FC·PB

then
Cbdj = (1-Vbd/PB)-MJ

Cbds = (1-Vbd/PBSW)-MJSW

if
Vbd > FC·PB

then
Cbdj = (1-FC)-(1+MJ)·(1-FC·(1+MJ)+MJ·Vbd/PB)
Cbds = (1-FC)-(1+MJSW)·(1-FC·(1+MJSW))

201

Analog devices M

MOSFET equations for temperature effects

The ohmic (parasitic) resistances have no temperature dependence.

Cgs = gate-source overlap capacitance = CGSO·W

Cgd = gate-drain overlap capacitance = CGDO·W

Cgb = gate-bulk overlap capacitance = CGBO·L

levels 4 and 6

See references [6] and [7] of References.

all levels

IS(T) = IS·e(Eg(Tnom)·T/Tnom - Eg(T))/Vt

JS(T) = JS·e(Eg(Tnom)·T/Tnom - Eg(T))/Vt

JSSW(T) = JSSW·e(Eg(Tnom)·T/Tnom - Eg(T))/Vt

PB(T) = PB·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

PBSW(T) = PBSW·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

PHI(T) = PHI·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

where
Eg(T) = silicon bandgap energy = 1.16 - .000702·T2/(T+1108)

CBD(T) = CBD·(1+MJ·(.0004·(T-Tnom)+(1-PB(T)/PB)))

CBS(T) = CBS·(1+MJ·(.0004·(T-Tnom)+(1-PB(T)/PB)))

CJ(T) = CJ·(1+MJ·(.0004·(T-Tnom)+(1-PB(T)/PB)))

CJSW(T) = CJSW·(1+MJSW·(.0004·(T-Tnom)+(1-PB(T)/PB)))

KP(T) = KP·(T/Tnom)-3/2

UO(T) = UO·(T/Tnom)-3/2

MUS(T) = MUS·(T/Tnom)-3/2

MUZ() = MUZ·(T/Tnom)-3/2

X3MS(T) = X3MS·(T/Tnom)-3/2

Analog devices M

202

MOSFET equations for noise
Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

The model parameter NLEV is used to select the form of shot and flicker noise, and GDSNOI is
the channel shot noise coefficient model parameter. When NLEV<3, the original SPICE2 shot
noise equation is used in both the linear and saturation regions, but the use of this equation
may produce inaccurate results in the linear region. When NLEV=3, a different equation is
used that is valid in both linear and saturation regions.

The model parameters AF and KF are used in the small-signal AC noise analysis to determine
the equivalent MOSFET flicker noise.

For more information, see reference [5] of References.

MOSFET channel shot and flicker noise

Ichan2 = Ishot2+Iflick2

intrinsic MOSFET flicker noise

for NLEV = 0

for NLEV = 1

for NLEV = 2, NLEV = 3

intrinsic MOSFET shot noise

for NLEV < 3

for NLEV = 3

where
for linear region:

a = 1 − (Vds/Vdsat)
for saturation region:

a = 0

parasitic resistance thermal noise

RD Id2 = 4·k·T/RD

RG Ig2 = 4·k·T/RG

RS Is2 = 4·k·T/RS

RB Ib2 = 4·k·T/RB

Iflick2 KF IdrainAF⋅
COX Leff2 f⋅ ⋅
-------------------------------------=

Iflick2 KF IdrainAF⋅
COX Weff Leff f⋅ ⋅ ⋅
---=

Iflick2 KF gm2⋅
COX Weff Leff fAF⋅ ⋅ ⋅
--=

Ishot2 8 k T gm⋅ ⋅ ⋅
3

--------------------------------=

Ishot2 8 k T⋅ ⋅
3

------------------- β Vgs Vth–()1 a a2+ +
1 a+

------------------------ GDSNOI×××≡

203

Analog devices M

References
For a more complete description of the MOSFET models, refer to:

[1] H. Shichman and D. A. Hodges, “Modeling and simulation of insulated-gate field-effect
transistor switching circuits,” IEEE Journal of Solid-State Circuits, SC-3, 285, September
1968.

[2] A. Vladimirescu, and S. Lui, “The Simulation of MOS Integrated Circuits Using SPICE2,”
Memorandum No. M80/7, February 1980.

[3] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “BSIM: Berkeley Short-Channel
IGFET Model for MOS Transistors,” IEEE Journal of Solid-State Circuits, SC-22, 558-566,
August 1987.

[4] J. R. Pierret, “A MOS Parameter Extraction Program for the BSIM Model,” Memorandum
No. M84/99 and M84/100, November 1984.]

[5] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE,
McGraw-Hill, 1993.

[6] Ping Yang, Berton Epler, and Pallab K. Chatterjee, “An Investigation of the Charge
Conservation Problem for MOSFET Circuit Simulation,” IEEE Journal of Solid-State
Circuits, Vol. SC-18, No.1, February 1983.

[7] J.H. Huang, Z.H. Liu, M.C. Jeng, K. Hui, M. Chan, P.K. KO, and C. Hu,
“BSIM3 Manual,” Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA 94720.

[8] Department of Electrical Engineering and Computer Science, “BSIM3v3.1 Manual,”
University of California, Berkeley, CA 94720.

[9] J. C. Bowers, and H. A. Neinhaus, SPICE2 Computer Models for HEXFETs, Application
Note 954A, reprinted in HEXFET Power MOSFET Databook, International Rectifier
Corporation #HDB-3.

[10] M. Bucher, C. Lallement, C. Enz, F. Theodoloz, F. Krummenacher. The EPFL–EKV MOSFET
Model Equations for Simulation Technical Report: Model Version 2.6. Electonics
Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Updated September, 1997.

For more information on References [2] and [4], contact:

Software Distribution Office
EECS/ERL Industrial Liaison Program
205 Cory Hall #1770
University of California
Berkeley, CA 94720-1770
(510) 643-6687

Analog devices Q

204

Bipolar transistor
General form Q<name> < collector node> <base node> <emitter node>

+ [substrate node] <model name> [area value]

Examples Q1 14 2 13 PNPNOM
Q13 15 3 0 1 NPNSTRONG 1.5
Q7 VC 5 12 [SUB] LATPNP

Model form .MODEL <model name> NPN [model parameters]
.MODEL <model name> PNP [model parameters]
.MODEL <model name> LPNP [model parameters]

Arguments and options

[substrate node]
is optional, and if not specified, the default is the ground.

Because the simulator allows alphanumeric names for nodes, and because there is no easy
way to distinguish these from the model names, the name (not a number) used for the
substrate node needs to be enclosed with square brackets []. Otherwise, nodes would be
interpreted as model names. See the third example.

[area value]
is the relative device area and has a default value of 1.

Description The bipolar transistor is modeled as an intrinsic transistor using ohmic resistances in series
with the collector (RC/area), with the base (value varies with current, see Bipolar transistor
equations), and with the emitter (RE/area).

Positive current is current flowing into a terminal.

Q

Emitter
Substrate
(LPNP only)

Substrate
(LPNP only)

RE

(Ibe - Ibc1)/Kqb

Iepi (if RCO > 0)

Cjs

Qw

Qo

Ibe1/BF

Ibc1/BR

Ibe2

Ibc2

Cje

Cjc

Rb

Base

Collector

205

Analog devices Q

Capture parts
The following table lists the set of bipolar transistor breakout parts designed for customizing
model parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Setting operating temperature
Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. See Bipolar transistor model parameters for more
information.

For model parameters with alternate names, such as VAF and VA (the alternate name is shown
by using parentheses), either name can be used.

For model types NPN and PNP, the isolation junction capacitance is connected between the
intrinsic-collector and substrate nodes. This is the same as in SPICE2, or SPICE3, and works
well for vertical IC transistor structures. For lateral IC transistor structures there is a third
model, LPNP, where the isolation junction capacitance is connected between the
intrinsic-base and substrate nodes.

Part name Model type Property Property description

QBREAKL LPNP AREA
MODEL

area scaling factor
LNP model name

QBREAKN
QBREAKN3
QBREAKN4

NPN AREA
MODEL

area scaling factor
NPN model name

QBREAKP
QBREAKP3
QBREAKP4

PNP AREA
MODEL

area scaling factor
PNP model name

Analog devices Q

206

Bipolar transistor model parameters

Model parameters* Description Units Default

AF flicker noise exponent 1.0

BF ideal maximum forward beta 100.0

BR ideal maximum reverse beta 1.0

CJC base-collector zero-bias p-n capacitance farad 0.0

CJE base-emitter zero-bias p-n capacitance farad 0.0

CJS (CCS) substrate zero-bias p-n capacitance farad 0.0

CN quasi-saturation temperature coefficient for hole
mobility

2.42 NPN
2.20 PNP

D quasi-saturation temperature coefficient for
scattering-limited hole carrier velocity

0.87 NPN
0.52 PNP

EG bandgap voltage (barrier height) eV 1.11

FC forward-bias depletion capacitor coefficient 0.5

GAMMA epitaxial region doping factor 1E-11

IKF (IK) corner for forward-beta high-current roll-off amp infinite

IKR corner for reverse-beta high-current roll-off amp infinite

IRB current at which Rb falls halfway to amp infinite

IS transport saturation current amp 1E-16

ISC (C4) † base-collector leakage saturation current amp 0.0

ISE (C2) † base-emitter leakage saturation current amp 0.0

ISS substrate p-n saturation current amp 0.0

ITF transit time dependency on Ic amp 0.0

KF flicker noise coefficient 0.0

MJC (MC) base-collector p-n grading factor 0.33

MJE (ME) base-emitter p-n grading factor 0.33

MJS (MS) substrate p-n grading factor 0.0

NC base-collector leakage emission coefficient 2.0

NE base-emitter leakage emission coefficient 1.5

NF forward current emission coefficient 1.0

NK high-current roll-off coefficient 0.5

NR reverse current emission coefficient 1.0

207

Analog devices Q

NS substrate p-n emission coefficient 1.0

PTF excess phase @ 1/(2π·TF)Hz degree 0.0

QCO epitaxial region charge factor coulomb 0.0

QUASIMOD quasi-saturation model flag for temperature
dependence

if QUASIMOD = 0, then no GAMMA, RCO, VO
temperature dependence

if QUASIMOD = 1, then include GAMMA, RCO, VO
temperature dependence

0

RB zero-bias (maximum) base resistance ohm 0.0

RBM minimum base resistance ohm RB

RC collector ohmic resistance ohm 0.0

RCO ‡ epitaxial region resistance ohm 0.0

RE emitter ohmic resistance ohm 0.0

TF ideal forward transit time sec 0.0

TR ideal reverse transit time sec 0.0

TRB1 RB temperature coefficient (linear) °C-1 0.0

TRB2 RB temperature coefficient (quadratic) °C-2 0.0

TRC1 RC temperature coefficient (linear) °C-1 0.0

TRC2 RC temperature coefficient (quadratic) °C-2 0.0

TRE1 RE temperature coefficient (linear) °C-1 0.0

TRE2 RE temperature coefficient (quadratic) °C-2 0.0

TRM1 RBM temperature coefficient (linear) °C-1 0.0

TRM2 RBM temperature coefficient (quadratic) °C-2 0.0

T_ABS absolute temperature °C

T_MEASURED measured temperature °C

T_REL_GLOBAL relative to current temperature °C

T_REL_LOCAL relative to AKO model temperature °C

VAF (VA) forward Early voltage volt infinite

VAR (VB) reverse Early voltage volt infinite

VG quasi-saturation extrapolated bandgap voltage at 0° K V 1.206

VJC (PC) base-collector built-in potential volt 0.75

VJE (PE) base-emitter built-in potential volt 0.75

Model parameters* Description Units Default

Analog devices Q

208

† The parameters ISE (C2) and ISC (C4) can be set to be greater than one. In this case, they are interpreted as multipliers of IS instead of
absolute currents: that is, if ISE is greater than one, then it is replaced by ISE·IS. Likewise for ISC.

‡ If the model parameter RCO is specified, then quasi-saturation effects are included.

Distribution of the CJC capacitance
The distribution of the CJC capacitance is specified by XCJC and XCJC2. The model
parameter XCJC2 is used like XCJC. The differences between the two parameters are as
follows.

When XCJC2 is specified in the range 0 < XCJC2 < 1.0, XCJC is ignored. Also, the extrinsic
base to extrinsic collector capacitance (Cbx2) and the gain-bandwidth product (Ft2) are
included in the operating point information (in the output listing generated during a Bias Point
Detail analysis, .OP (bias point)). For backward compatibility, the parameter XCJC and the
associated calculation of Cbx and Ft remain unchanged. Cbx and Ft appears in the output
listing only when XCJC is specified.

The use of XCJC2 produces more accurate results because Cbx2 (the fraction of CJC associated
with the intrinsic collector node) now equals the ratio of the device’s emitter area-to-base
area. This results in a better correlation between the measured data and the gain bandwidth
product (Ft2) calculated by PSpice.

XCJS, which is valid in the range 0 ≤ XCJS ≤ 1.0, specifies a portion of the CJS capacitance
to be between the external substrate and external collector nodes instead of between the
external substrate and internal collector nodes. When XJCS is 1, CJS is applied totally between
the external substrate and internal collector nodes. When XCJS is 0, CJS is applied totally
between the external substrate and external collector codes.

VJS (PS) substrate p-n built-in potential volt 0.75

VO carrier mobility knee voltage volt 10.0

VTF transit time dependency on Vbc volt infinite

XCJC fraction of CJC connected internally to Rb 1.0

XCJC2 fraction of CJC connected internally to Rb 1.0

XCJS fraction of CJS connected internally to Rc

XTB forward and reverse beta temperature coefficient 0.0

XTF transit time bias dependence coefficient 0.0

XTI (PT) IS temperature effect exponent 3.0

* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

Branch XCJC XCJC2

intrinsic base to intrinsic collector XCJC*CJC XCJC2*CJC

extrinsic base to intrinsic collector (1.0 – XCJC)*CJC not applicable

extrinsic base to extrinsic collector not applicable (1.0 – XCJC2)*CJC

Model parameters* Description Units Default

209

Analog devices Q

Bipolar transistor equations
The equations in this section describe an NPN transistor. For the PNP and LPNP devices,
reverse the signs of all voltages and currents.

The following variables are used:

Other variables are listed in Bipolar transistor model parameters.

Positive current is current flowing into a terminal.

Vbe = intrinsic base-intrinsic emitter voltage

Vbc = intrinsic base-intrinsic collector voltage

Vbs = intrinsic base-substrate voltage

Vbw = intrinsic base-extrinsic collector voltage (quasi-saturation only)

Vbx = extrinsic base-intrinsic collector voltage

Vce = intrinsic collector-intrinsic emitter voltage

Vjs = (NPN) intrinsic collector-substrate
voltage

= (PNP) intrinsic substrate-collector
voltage

= (LPNP) intrinsic base-substrate
voltage

Vt = k·T/q (thermal voltage)

k = Boltzmann’s constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set using the TNOM option)

Analog devices Q

210

Bipolar transistor equations for DC current
Ib = base current = area·(Ibe1/BF + Ibe2 + Ibc1/BR + Ibc2)

Ic = collector current = area·(Ibe1/Kqb - Ibc1/Kqb - Ibc1/BR - Ibc2)

Ibe1 = forward diffusion current = IS·(eVbe/(NF·Vt)-1)

Ibe2 = non-ideal base-emitter current = ISE·(eVbe/(NE·Vt)-1)

Ibc1 = reverse diffusion current = IS·(eVbc/(NR·Vt)-1)

Ibc2 = non-ideal base-collector current = ISC·(eVbc/(NC·Vt)-1)

Kqb = base charge factor = Kq1·(1+(1+4·Kq2)NK)/2

Kq1 = 1/(1 - Vbc/VAF - Vbe/VAR)

Kq2 = Ibe1/IKF + Ibc1/IKR

Is = substrate current = area·ISS·(eVjs/(NS·Vt)-1)

Rb = actual base parasitic resistance

Case 1

for: IRB = infinite (default value)

then: Rb = (RBM + (RB-RBM)/Kqb)/area

Case 2

For: IRB > 0

then:
Rb = (RBM + 3·(RB-RBM)·)/area

where:
x =

x() x–tan

x x()tan()2⋅

1 144 π2⁄() Ib area IRB⋅()⁄⋅+()1 2/ 1–

24 π2⁄() Ib area IRB⋅()⁄()1 2/⋅
--

211

Analog devices Q

Bipolar transistor equations for capacitance
All capacitances, except Cbx, are between terminals of the intrinsic transistor which is inside
of the collector, base, and emitter parasitic resistances. Cbx is between the intrinsic collector
and the extrinsic base.

base-emitter capacitance

Cbe = base-emitter capacitance = Ctbe + area·Cjbe

Ctbe = transit time capacitance = tf·Gbe

tf = effective TF = TF·(1+XTF·(Ibe1/(Ibe1+area·ITF))2·eVbc/(1.44·VTF))

Gbe = DC base-emitter conductance = (dIbe)/(dVb)

Ibe = Ibe1 + Ibe2

Cjbe = CJE·(1-Vbe/VJE)-MJE IF Vbe < FC·VJE

Cjbe = CJE·(1-FC)-(1+MJE)·(1-FC·(1+MJE) +MJE·Vbe/VJE) IF Vbe > FC·VJE

base-collector capacitance

Cbc = base-collector capacitance = Ctbc + area·XCJC·Cjbc

Ctbc = transit time capacitance = TR·Gbc

Gbc = DC base-collector conductance = (dIbc)/(dVbc)

Cjbc = CJC·(1-Vbc/VJC)-MJC IF Vbc < FC·VJC

Cjbc = CJC·(1-FC)-(1+MJC)·(1 FC·(1+MJC)+MJC·Vbc/VJC) IF Vbc > FC·VJC

extrinsic-base to intrinsic-collector capacitance

Cbx = extrinsic-base to intrinsic-collector capacitance = area·(1-XCJC)·Cjbx

Cjbx = CJC·(1-Vbx/VJC)-MJC IF Vbx < FC·VJC

Cjbx = CJC·(1-FC)-(1+MJC)·(1-FC·(1+MJC)+MJC·Vbx/VJC) IF Vbx > FC·VJC

substrate junction capacitance

Cjs = substrate junction capacitance = area·Cjjs

Cjjs = CJS·(1-Vjs/VJS)-MJS(assumes FC = 0) IF Vjs < 0

Cjjs = CJS·(1+MJS·Vjs/VJS) IF Vjs > 0

Analog devices Q

212

Bipolar transistor equations for quasi-saturation effect
Quasi-saturation is an operating region where the internal base-collector metallurgical
junction is forward biased, while the external base-collector terminal remains reverse biased.

This effect is modeled by extending the intrinsic Gummel-Poon model, adding a new internal
node, a controlled current source, Iepi, and two controlled capacitances, represented by the
charges Qo and Qw. These additions are only included if the model parameter RCO is
specified. See reference [3] of References for the derivation of this extension.

Iepi = area·(VO·(Vt·(K(Vbc)-K(Vbn)-ln((1+K(Vbc))/(1+K(Vbn))))+Vbc-Vbn))/RCO·(|Vbc-Vbn|+VO)

Qo = area·QCO·(K(Vbc)-1-GAMMA/2)

Qw = area·QCO·(K(Vbn)-1-GAMMA/2)

where
K(v) = (1+GAMMA·e(v/Vt))

1/2

213

Analog devices Q

The development of the temperature dependencies for the quasi-saturation model
parameters GAMMA, RCO, and VO are described in reference [3] on page 214.
These temperature dependencies are only used when the model parameter
QUASIMOD = 1.0.

Bipolar transistor equations for temperature effect
IS(T) = IS·e(T/Tnom-1)·EG/(N·Vt)·(T/Tnom)XTI/N

where N = 1

ISE(T) = (ISE/(T/Tnom)XTB)·e(T/Tnom-1)·EG/(NE·Vt)·(T/Tnom)XTI/NE

ISC(T) = (ISC/(T/Tnom)XTB)·e(T/Tnom-1)·EG/(NC·Vt)·(T/Tnom)XTI/NC

ISS(T) = (ISS/(T/Tnom)XTB)·e(T/Tnom-1)·EG/(NS·Vt)·(T/Tnom)XTI/NS

BF(T) = BF·(T/Tnom)XTB

BR(T) = BR·(T/Tnom)XTB

RE(T) = RE·(1+TRE1·(T-Tnom)+TRE2·(T-Tnom)2)

RB(T) = RB·(1+TRB1·(T-Tnom)+TRB2·(T-Tnom)2)

RBM(T) = RBM·(1+TRM1·(T-Tnom)+TRM2·(T-Tnom)2)

RC(T) = RC·(1+TRC1·(T-Tnom)+TRC2·(T-Tnom)2)

VJE(T) = VJE·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

VJC(T) = VJC·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

VJS(T) = VJS·T/Tnom - 3·Vt·ln(T/Tnom) - Eg(Tnom)·T/Tnom + Eg(T)

where Eg(T) = silicon bandgap energy = 1.16 - .000702·T2/(T+1108)

CJE(T) = CJE·(1+MJE·(.0004·(T-Tnom)+(1-VJE(T)/VJE)))

CJC(T) = CJC·(1+MJC·(.0004·(T-Tnom)+(1-VJC(T)/VJC)))

CJS(T) = CJS·(1+MJS·(.0004·(T-Tnom)+(1-VJS(T)/VJS)))

GAMMA(T) = GAMMA(Tnom)·(T/Tnom)3·exp(-qVG/k·(1/T - 1/Tnom))

RCO(T) = RCO(Tnom)·(T/Tnom)CN

VO(T) = VO(Tnom)·(T/Tnom)CN - D

Analog devices Q

214

Bipolar transistor equations for noise
Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth):

References
For a more information on bipolar transistor models, refer to:

[1] Ian Getreu, Modeling the Bipolar Transistor, Tektronix, Inc. part# 062-2841-00.

For a generally detailed discussion of the U.C. Berkeley SPICE models, including the bipolar
transistor, refer to:

[2] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE,
McGraw-Hill, 1988.

For a description of the extension for the quasi-saturation effect, refer to:

[3] G. M. Kull, L. W. Nagel, S. W. Lee, P. Lloyd, E. J. Prendergast, and H. K. Dirks, “A
Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects,” IEEE
Transactions on Electron Devices, ED-32, 1103-1113 (1985).

parasitic resistances thermal noise

RC Ic2 = 4·k·T/(RC/area)

RB Ib2 = 4·k·T/RB

RE Ie2 = 4·k·T/(RE/area)

base and collector currents shot and flicker noise

IB Ib2 = 2·q·Ib + KF·IbAF/FREQUENCY

IC Ic2 = 2·q·Ic

215

Analog devices R

Resistor

Capture parts
For standard R parts, the effective value of the part is set directly by the VALUE property.
For the variable resistor, R_VAR, the effective value is the product of the base value
(VALUE) and multiplier (SET).

In general, resistors should have positive component values (VALUE property). In all cases,
components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often
in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming
from the real to the RLC equivalent, it is possible to end up with negative component values.

General form R<name> <(+) node> <(-) node> [model name] <value>
+ [TC = <TC1> [,<TC2>]]

Examples RLOAD 15 0 2K
R2 1 2 2.4E4 TC=.015,-.003
RFDBCK 3 33 RMOD 10K

Model form .MODEL <model name> RES [model parameters]

Arguments and options

(+) and (-) nodes
Define the polarity when the resistor has a positive voltage across it.

[model name]
Affects the resistance value; see Resistor value formulas.

Comments The first node listed (or pin 1 in Capture) is defined as positive. The voltage across the
component is therefore defined as the first node voltage minus the second node voltage.

Positive current flows from the (+) node through the resistor to the (-) node. Current flow from
the first node through the component to the second node is considered positive.

Temperature coefficients for the resistor can be specified in-line, as in the second example. If
the resistor has a model specified, then the coefficients from the model are used for the
temperature updates; otherwise, the in-line values are used. In both cases the temperature
coefficients have default values of zero. Expressions cannot be used for the in-line
coefficients.

R

RLoad

0v15v

Analog devices R

216

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise
analyses. In the case of resistors, the noise contribution from negative component values come
from the absolute value of the component (components are not allowed to generate negative
noise). A transient analysis may fail for a circuit with negative components. Negative
components may create instabilities in time that the analysis cannot handle.

The RBREAK part must be used if you want a LOT tolerance. In that case, use the
Model Editor to edit the RBREAK instance.

Breakout parts
For non-stock passive and semiconductor devices, Capture has a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model, which is derived from the intrinsic PSpice A/D D model
(.MODEL DBREAK D). Another approach is to use the model editor to derive an instance
model and customize this. For example, you could add device and/or lot tolerances to model
parameters.

For breakout part RBREAK, the effective value is computed from a formula that is a function
of the specified VALUE property.

Part name Model type Property Property description

R resistor VALUE resistance

TC linear and quadratic temperature
coefficients

TOLERANCE device tolerance (see page 52)

R_VAR variable resistor VALUE base resistance

SET multiplier

Device
type Part name Part library file Property Description

resistor RBREAK BREAKOUT.OLB VALUE resistance

MODEL RES model name

217

Analog devices R

Resistor model parameters

Model parameters*

* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (model definition).

Description Units Default

R resistance multiplier 1.0

TC1 linear temperature coefficient °C-1 0.0

TC2 quadratic temperature coefficient °C-2 0.0

TCE exponential temperature coefficient %/°C 0.0

T_ABS absolute temperature °C

T_MEASURED measured temperature °C

T_REL_GLOBAL relative to current temperature °C

T_REL_LOCAL relative to AKO model temperature °C

Analog devices R

218

Resistor equations

Resistor value formulas

One If [model name] is included and TCE is specified, then the resistance is given by:

<value>·R·1.01TCE·(T-Tnom)

where <value> is normally positive (though it can be negative, but not zero). Tnom is the
nominal temperature (set using TNOM option).

Two If [model name] is included and TCE is not specified, then the resistance is given by:

<value>·R·(1+TC1·(T-Tnom)+TC2·(T-Tnom)2)

where <value> is usually positive (though it can be negative, but not zero).

Resistor equation for noise
Noise is calculated assuming a 1.0-hertz bandwidth. The resistor generates thermal noise
using the following spectral power density (per unit bandwidth):

i2 =
4·k·T/resistance

219

Analog devices S

Voltage-controlled switch
General form S<name> <(+) switch node> <(-) switch node>

+ <(+) controlling node> <(-) controlling node>
+ <model name>

Examples S12 13 17 2 0 SMOD
SESET 5 0 15 3 RELAY

Model form .MODEL <model name> VSWITCH [model parameters]

Description The voltage-controlled switch is a special kind of voltage-controlled resistor. This switch
model was designed to minimize numerical problems. However, there are a few things to
consider; see Special considerations.

Comments The resistance between the <(+) switch node> and <(-) switch node> depends on the voltage
between the <(+) controlling node> and <(–) controlling node>. The resistance varies
continuously between the RON and ROFF model parameters.

A resistance of 1/GMIN is connected between the controlling nodes to keep them from
floating. See the .OPTIONS (analysis options) statement for setting GMIN.

Although very little computer time is required to evaluate switches, during transient analysis
the simulator must step through the transition region using a fine enough step size to get an
accurate waveform. Applying many transitions can produce long run times when evaluating
the other devices in the circuit at each time step.

S

S12

2v

0v

13v

17v

Analog devices S

220

Capture parts

Ideal switches
Summarized below is the available voltage-controlled switch part type in the breakout.slb
part library. To create a time-controlled switch, connect the switch control pins to a voltage
source with the appropriate voltage vs. time values (transient specification).

The VSWITCH model defines the on/off resistance and the on/off control voltage or current
thresholds. This switch has a finite on resistance and off resistance, and it changes smoothly
between the two as its control voltage (or current) changes. This behavior is important
because it allows PSpice A/D to find a continuous set of solutions for the simulation. You can
make the on resistance very small in relation to the other circuit impedances, and you can
make the off resistance very large in relation to the other circuit impedances.

Voltage-controlled switch model parameters

Special considerations
• Using double precision numbers, the simulator can only handle a dynamic range of about

12 decades. Making the ratio of ROFF to RON greater than 1E+12 is not recommended.

• Also, it not recommend to make the transition region too narrow. Remember that in the
transition region the switch has gain. The narrower the region, the higher the gain and the
greater the potential for numerical problems. The smallest allowed value for
 VON-VOFF is RELTOL·(MAX(VON , VOFF))+ VNTOL.

Part type Part Name Model type

Voltage-Controlled Switch SBREAK VSWITCH

Model Parameters*

* See .MODEL (model definition).

Description Units Default

ROFF **

**RON and ROFF must be greater than zero and less than 1/GMIN.

off resistance ohm 1E+6

RON on resistance ohm 1.0

VOFF control voltage for off state volt 0.0

VON control voltage for on state volt 1.0

221

Analog devices S

Voltage-controlled switch equations
In the following equations:

Vc = voltage across control nodes
Lm = log-mean of resistor values = ln((RON·ROFF)

1/2
)

Lr = log-ratio of resistor values = ln(RON/ROFF)
Vm = mean of control voltages = (VON+VOFF)/2
Vd = difference of control voltages = VON-VOFF
k = Boltzmann’s constant
T = analysis temperature (°K)

Analog devices S

222

Voltage-controlled switch equations for switch resistance

Voltage-controlled switch equation for noise
Noise is calculated assuming a 1.0-hertz bandwidth. The voltage-controlled switch generates
thermal noise as if it were a resistor having the same resistance that the switch has at the bias
point, using the following spectral power density (per unit bandwidth):

i2 = 4·k·T/Rs

Rs = switch resistance

For: VON > VOFF

if:
Vc > VON

then:
Rs = RON

if:
Vc < VOFF

then:
Rs = ROFF

if:
VOFF < Vc < VON

then:
Rs = exp(Lm + 3·Lr·(Vc-Vm)/(2·Vd) - 2·Lr·(Vc-Vm)3/Vd3)

For: VON < VOFF

if:
Vc < VON

then:
Rs = RON

if:
Vc > VOFF

then:
Rs = ROFF

if:
VOFF > Vc > VON

then:
Rs = exp(Lm - 3·Lr·(Vc-Vm)/(2·Vd) + 2·Lr·(Vc-Vm)3/Vd3)

223

Analog devices T

Transmission line
Description The transmission line device is a bidirectional delay line with two ports, A and B. The (+) and

(-) nodes define the polarity of a positive voltage at a port.

Comments During transient (.TRAN (transient analysis)) analysis, the internal time step is limited to
be no more than one-half the smallest transmission delay, so short transmission lines cause
long run times.

The simulation status window displays the properties of the three shortest transmission lines
in a circuit if a transient run’s time step ceiling is set more frequently by one of the
transmission lines. This is helpful when you have a large number of transmission lines. The
properties displayed are:

• % loss: percent attenuation at the characteristic
delay (i.e., the degree to which the line is lossy)

• time step ceiling: induced by the line

• % of line delay: time step size at percentage of characteristic delay

These transmission line properties are displayed only if they are slowing down the simulation.

For a line that uses a model, the electrical length is given after the model name. Example T5
of Examples uses TMOD to specify the line parameters and has an electrical length of one
unit.

All of the transmission line parameters from either the ideal or lossy parameter set can be
expressions. In addition, R and G can be general Laplace expressions. This allows the user to
model frequency dependent effects, such as skin effect and dielectric loss. However, this adds
to the computation time for transient analysis, since the impulse responses must be obtained
by an inverse FFT instead of analytically.

T

Analog devices T

224

Ideal line
General form T<name> <A port (+) node> <A port (-) node>

+ <B port (+) node> <B port (-) node>
+ [model name]
+ Z0=<value> [TD=<value>] [F=<value> [NL=<value>]]
+ IC= <near voltage> <near current> <far voltage> <far current>

Description As shown below, port A’s (+) and (-) nodes are 1 and 2, and port B’s (+) and (-) nodes are 3
and 4, respectively.

Comments For the ideal line, IC sets the initial guess for the voltage or current across the ports. The
<near voltage> value is the voltage across A(+) and A(-) and the <far voltage> is the voltage
across B(+) and B(-). The <near current> is the current through A(+) and A(-) and the
<far current> is the current through B(+) and B(-).

For the ideal case, Z0 is the characteristic impedance. The transmission line’s length can be
specified either by TD, a delay in seconds, or by F and NL, a frequency and a relative
wavelength at F. NL has a default value of 0.25 (F is the quarter-wave frequency). Although
TD and F are both shown as optional, one of the two must be specified.

Both Z0 (Z-zero) and ZO (Z-O) are accepted by the simulator.

delayed 13

delayed V3–V4

Z0 Z0

I1

2

-I3

4

delayed I1

delayed V1–V2

225

Analog devices T

Lossy line
General form T<name> <A port (+) node> <A port (-) node>

+ <B port (+) node> <B port (-) node>
+ [<model name> [electrical length value]]
+ LEN=<value> R=<value> L=<value>
+ G=<value> C=<value>

Examples T1 1 2 3 4 Z0=220 TD=115ns
T2 1 2 3 4 Z0=220 F=2.25MEG
T3 1 2 3 4 Z0=220 F=4.5MEG NL=0.5
T4 1 2 3 4 LEN=1 R=.311 L=.378u G=6.27u C=67.3p
T5 1 2 3 4 TMOD 1

Model form .MODEL <model name> TRN [model parameters]

Description The simulator uses a distributed model to represent the properties of a lossy transmission line.
That is, the line resistance, inductance, conductance, and capacitance are all continuously
apportioned along the line’s length. A common approach to simulating lossy lines is to model
these characteristics using discrete passive elements to represent small sections of the line.

This is the lumped model approach, and it involves connecting a set of many small subcircuits
in series as shown below:

This method requires that there is enough lumps to adequately represent the distributed
character of the line, and this often results in the need for a large netlist and correspondingly
long simulation times. The method also produces spurious oscillations near the natural
frequencies of the lumped elements.

An additional extension allows systems of coupled transmission lines to be simulated.
Transmission line coupling is specified using the K device. This is done in much the same way
that coupling is specified for inductors. See the description of Transmission line coupling for
further details.

The distributed model allows freedom from having to determine how many lumps are
sufficient, and eliminates the spurious oscillations. It also allows lossy lines to be simulated
in a fraction of the time necessary when using the lumped approach, for the same accuracy.

Comments For a lossy line, LEN is the electrical length. R, L, G, and C are the per unit length values of
resistance, inductance, conductance, and capacitance, respectively.

Example T4 specifies a lossy line one meter long. The lossy line model is similar to that of the
ideal case, except that the delayed voltage and current values include terms which vary with
frequency. These terms are computed in transient analysis using an impulse response
convolution method, and the internal time step is limited by the time resolution required to
accurately model the frequency characteristics of the line. As with ideal lines, short lossy lines
cause long run times.

Lumped line segment

R L

G C

Analog devices T

226

Capture parts

Ideal and lossy transmission lines
Listed below are the properties that you can set per instance of an ideal (T) or lossy (TLOSSY)
transmission line. The parts contained in the TLINE.SLB part library contain a variety of
transmission line types. Their part properties vary.

PSpice A/D uses a distributed model to represent the properties of a lossy transmission line.
That is, the line resistance, inductance, conductance, and capacitance are all continuously
apportioned along the line’s length.

A common approach to simulating lossy lines is to model these characteristics using discreet
passive elements to represent small sections of the line. This is the lumped model approach,
and it involves connecting a set of many small subcircuits in series. This method requires that
enough lumps exist to adequately represent the distributed characteristic of the line. This often
results in the need for a large netlist and correspondingly long simulation time. The method
also produces spurious oscillations near the natural frequencies of the lumped elements.

The distributed model used in PSpice A/D frees you from having to determine how many
lumps are sufficient, and eliminates the spurious oscillations. It also allows lossy lines to be
simulated with the same accuracy in a fraction of the time required by the lumped approach.

In addition, you can make R and G general Laplace expressions. This allows frequency
dependent effects to be modeled, such as skin effect and dielectric loss.

Part name Model type Property Property description

T transmission line Z0 characteristic impedance

TD transmission delay

F frequency for NL

NL number of wavelengths or wave number

TLOSSY*

*Not available for Basics+ users.

transmission line LEN electrical length

R per unit length resistance

L per unit length inductance

G per unit length conductance

C per unit length capacitance

227

Analog devices T

Coupled transmission lines
Listed below are the properties that you can set per instance of a coupled transmission line
part. The part library provides parts that can accommodate up to five coupled transmission
lines. You can also create new parts that have up to ten coupled lines.

Part name Model type Property Property description

T2COUPLED
T3COUPLED
T4COUPLED
T5COUPLED

coupled transmission line—
symmetric

LEN electrical length

R per unit length resistance

L per unit length inductance

G per unit length conductance

T2COUPLEDX*

T3COUPLEDX
T4COUPLEDX
T5COUPLEDX

*T2COUPLEDX is functionally identical to T2COUPLED. However, the T2COUPLEDX implementation uses
the expansion of the subcircuit referenced by T2COUPLED.

coupled transmission line—
asymmetric

LEN electrical length

R per unit length resistance

L per unit length inductance

G per unit length conductance

C per unit length capacitance

LM per unit length mutual
inductance

CM per unit length mutual
capacitance

KCOUPLE2 transmission line coupling
matrix

T1 name of first coupled line

T2 name of second coupled
line

LM per unit length mutual
inductance

CM per unit length mutual
capacitance

KCOUPLE3
KCOUPLE4
KCOUPLE5

T1 name of first coupled line

T2 name of second coupled
line

T3 name of third coupled line

LMij per unit length mutual
inductance between line Ti
and line Tj

CMij per unit length mutual
capacitance between line Ti
and line Tj

Analog devices T

228

Simulating coupled lines
Use the K device to simulate coupling between transmission lines. Each of the coupled
transmission line parts provided in the standard part library translate to K device and T device
declarations in the netlist. PSpice A/D compiles a system of coupled lines by assembling
capacitive and inductive coupling matrices from all of the K devices involving transmission
lines. Though the maximum order for any one system is ten lines, there is no explicit
limitation on the number of separate systems that may appear in one simulation.

The simulation model is accurate for:

• ideal lines

• low-loss lossy lines

• systems of homogeneous, equally spaced high-loss lines

For more information, see Transmission line coupling.

Simulation considerations
When simulating, transmission lines with short delays can create performance bottlenecks by
setting the time step ceiling to a very small value.

If one transmission line sets the time step ceiling frequently, PSpice A/D reports the three
lines with the shortest time step. The status window displays the percentage attenuation, step
ceiling, and step ceiling as percentage of transmission line delay.

If your simulation is running reasonably fast, you can ignore this information and let the
simulation proceed. If the simulation is slowed significantly, you may want to cancel the
simulation and modify your design. If the line is lossy and shows negligible attenuation,
model the line as ideal instead.

229

Analog devices T

Transmission line model parameters

Model
parameters*

* See.MODEL (model definition). The order is from the most commonly used to the least commonly used parameter.

Description Units**

** Any length units can be used, but they must be consistent. For instance, if LEN is in feet, then the units of R must be in ohms/foot.

*** A lossy line with R=G=0 and LEN=1 is equivalent to an ideal line with and .

Default

for all transmission lines

IC Sets the initial condition and all four values must
be entered.

Four values are expected when IC is specified: the
near-end voltage, the near-end current, the far-end
voltage, and the far-end current, given in that order.

for ideal transmission lines

ZO characteristic impedance ohms none

TD transmission delay seconds none

F frequency for NL Hz none

NL relative wavelength none 0.25

for lossy transmission lines

R per unit length resistance ohms/unit length none

L per unit length inductance henries/unit length none

G per unit length conductance mhos/unit length none

C per unit length capacitance farads/unit length none

LEN*** physical length agrees with RLGC
*

none

ZO L
C
---= TD LEN L C⋅⋅=

Analog devices T

230

References
For more information on how the lossy transmission line is implemented, refer to:

[1] Roychowdhury and Pederson, “Efficient Transient Simulation of Lossy Interconnect,”
Design Automation Conference,
1991.

231

Analog devices V

Independent voltage source & stimulus
The Independent Current Source & Stimulus (I) and the Independent Voltage Source &
Stimulus (V) devices have the same syntax. See Independent current source & stimulus.

V

Analog devices W

232

Current-controlled switch
General form W<name> <(+) switch node> <(-) switch node>

+ <controlling V device name> <model name>

Examples W12 13 17 VC WMOD
WRESET 5 0 VRESET RELAY

Model form .MODEL <model name> ISWITCH [model parameters]

Description The current-controlled switch is a special kind of current-controlled resistor.

This model was chosen for a switch to try to minimize numerical problems. However, there
are a few things to consider; see Special considerations.

Arguments and options

<controlling V device name>
The current that the resistance between the <(+) switch node> and <(-) switch node>
depends on.

RON and ROFF
Must be greater than zero and less than 1/GMIN. The resistance varies continuously
between them.

Comments A resistance of 1/GMIN is connected between the controlling nodes to keep them from
floating. See .OPTIONS (analysis options) for information on setting GMIN.

Although very little computer time is required to evaluate switches, during transient analysis
the simulator must step through the transition region using a fine enough step size to get an
accurate waveform. Having many transitions can produce long run times when evaluating the
other devices in the circuit for many times.

W

W12

13v

17v

233

Analog devices W

Capture parts

Ideal switches
Summarized below is the available current-controlled switch part type in the breakout.slb
part library. To create a time-controlled switch, connect the switch control pins to a voltage
source with the appropriate voltage vs. time values (transient specification).

The ISWITCH model defines the on/off resistance and the on/off control voltage or current
thresholds. This switch has a finite on resistance and off resistance, and it changes smoothly
between the two as its control voltage (or current) changes. This behavior is important
because it allows PSpice A/D to find a continuous set of solutions for the simulation. You can
make the on resistance very small in relation to the other circuit impedances, and you can
make the off resistance very large in relation to the other circuit impedances.

As with current-controlled sources (F, FPOLY, H, and HPOLY), WBREAK contains a
current-sensing voltage source. When netlisted, WBREAK generates two device declarations
to the circuit file set:

• one for the controlled switch

• one for the independent current-sensing voltage source

If you want to create a new part for a current-controlled switch (with, for example, different
on/off resistance and current threshold settings in the ISWITCH model), the TEMPLATE
property must account for the additional current-sensing voltage source.

Device type Part name Model type

Current-controlled switch WBREAK ISWITCH

Analog devices W

234

Current-controlled switch model parameters

Special considerations
Using double precision numbers, the simulator can handle only a dynamic range of about 12
decades. Therefore, it is not recommended making the ratio of ROFF to RON greater than
1.0E+12.

Similarly, it is also not recommended making the transition region too narrow. Remembering
that in the transition region the switch has gain. The narrower the region, the higher the gain
and the greater the potential for numerical problems. The smallest allowed value for ION
-IOFF is RELTOL·(MAX(ION , IOFF))+ ABSTOL.

Current-controlled switch equations
In the following equations:

Ic = controlling current
Lm = log-mean of resistor values = ln((RON·ROFF)

1/2
)

Lr = log-ratio of resistor values = ln(RON/ROFF)
Im = mean of control currents = (ION+IOFF)/2
Id = difference of control currents = ION-IOFF
k = Boltzmann’s constant
T = analysis temperature (°K)

Model
parameters*

* See .MODEL (model definition).

Description Units Default

IOFF control current for off state amp 0.0

ION control current for on state amp 1E-3

ROFF off resistance ohm 1E+6

RON on resistance ohm 1.0

235

Analog devices W

Current-controlled switch equations for switch resistance

Current-controlled switch equation for noise
Noise is calculated assuming a 1.0-hertz bandwidth. The current-controlled switch generates
thermal noise as if it were a resistor using the same resistance as the switch has at the bias
point, using the following spectral power density (per unit bandwidth):

i2 = 4·k·T/Rs

For: ION > IOFF

if:
Ic > ION

then:
Rs = RON

if:
Ic < IOFF

then:
Rs = ROFF

if:
IOFF < Ic < ION

then:
Rs = exp(Lm + 3·Lr·(Ic-Im)/(2·Id) - 2·Lr·(Ic-Im)3/Id3)

For: ION < IOFF

if:
Ic < ION

then:
Rs = RON

if:
Ic > IOFF

then:
Rs = ROFF

if:
IOFF > Ic > ION

then:
Rs = exp(Lm - 3·Lr·(Ic-Im)/(2·Id) + 2·Lr·(Ic-Im)3/Id3)

Analog devices X

236

Subcircuit instantiation
Purpose This statement causes the referenced subcircuit to be inserted into the circuit using the given

nodes to replace the argument nodes in the definition. It allows a block of circuitry to be
defined once and then used in several places.

General form X<name> [node]* <subcircuit name> [PARAMS: <<name> = <value>>*]
+ [TEXT: < <name> = <text value> >*]

Examples X12 100 101 200 201 DIFFAMP
XBUFF 13 15 UNITAMP
XFOLLOW IN OUT VCC VEE OUT OPAMP
XFELT 1 2 FILTER PARAMS: CENTER=200kHz
X27 A1 A2 A3 Y PLD PARAMS: MNTYMXDLY=1
+ TEXT: JEDEC_FILE=MYJEDEC.JED
XNANDI 25 28 7 MYPWR MYGND PARAMS: IO_LEVEL=2

Arguments and options

<subcircuit name>
The name of the subcircuit’s definition. See .SUBCKT (subcircuit).

PARAMS:
Passes values into subcircuits as arguments and into expressions inside the subcircuit.

TEXT:
Passes text values into subcircuits and into text expressions inside the subcircuit.

Comments There must be the same number of nodes in the call as in the subcircuit’s definition.

Subcircuit references can be nested; that is, a call can be given to subcircuit A, whose
definition contains a call to subcircuit B. The nesting can be to any level, but must not be
circular: for example, if subcircuit A’s definition contains a call to subcircuit B, then subcircuit
B’s definition must not contain a call to subcircuit A.

X

237

Analog devices Z

IGBT
General form Z<name> <collector> <gate> <emitter> <model name>

+ [AREA=<value>] [WB=<value>] [AGD=<value>]
+ [KP=<value>] [TAU=<value>]

Examples ZDRIVE 1 4 2 IGBTA AREA=10.1u WB=91u AGD=5.1u KP=0.381
Z231 3 2 9 IGBT27

Model form .MODEL <model name> NIGBT [model parameters]

Description The equivalent circuit for the IGBT is shown below. It is modeled as an intrinsic device (not
as a subcircuit) and contains five DC current components and six charge (capacitive)
components. An overview of the model equations is included below. For a more detailed
description of the defining equations see references [1] through [4] of References.

Z

G

dQdg/dt
Imos

dQds/dt
Imult

dQgs/dt

E(s)

dQmult/dt

dQcer/dtIcss Ibss dQeb/dt

e

C

IT

b(d)

Analog devices Z

238

Capture parts
The following table lists the set of IGBT breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Setting operating temperature
Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information, see IGBT model parameters.

Part name Model type Property Property description

ZBREAKN IGBT AGD gate-drain overlap area

AREA area of the device

KP MOS transconductance

TAU ambipolar recombination lifetime

WB Metallurgical base width

MODEL NIGBT model name

239

Analog devices Z

IGBT device parameters
The general form of the IGBT syntax allows for the specification of five device parameters.

These device parameters and their associated default values are defined in previous table. The
IGBT model parameters and their associated default values are defined in the table that
follows. Model parameters can be extracted from data sheet information by using the OrCAD
Model Editor. Also, a library of model parameters for commercially available IGBTs is
supplied with the software.

The parameters AGD, AREA, KP, TAU, and WB are specified as both device and model
parameters, and they cannot be used in a Monte Carlo analysis.

When specified as device parameters, the assigned values take precedence over those which
are specified as model parameters. Also, as device parameters (but not as model parameters),
they can be assigned a parameter value and used in conjunction with a .DC or .STEP analysis.

Device
parameters Description Units Default

AGD gate-drain overlap area m2 5.0E-6

AREA area of the device m2 1.0E-5

KP MOS transconductance A/V2 0.38

TAU ambipolar recombination lifetime sec 7.1E-6

WB metallurgical base width m 9.0E-5

Analog devices Z

240

IGBT model parameters

Model
parameters*

* See .MODEL (model definition) statement.

Description Units Default

AGD gate-drain overlap area m2 5.0E-6

AREA area of the device m2 1.0E-5

BVF avalanche uniformity factor none 1.0

BVN avalanche multiplication exponent none 4.0

CGS gate-source capacitance per unit area F/cm2 1.24E-8

COXD gate-drain oxide capacitance per unit area F/cm2 3.5E-8

JSNE emitter saturation current density A/cm2 6.5E-13

KF triode region factor none 1.0

KP MOS transconductance A/V2 0.38

MUN electron mobility cm2/(V·s) 1.5E3

MUP hole mobility cm2/(V·s) 4.5E2

NB base doping 1/cm3 2.E14

TAU ambipolar recombination lifetime sec 7.1E-6

THETA transverse field factor 1/V 0.02

VT threshold voltage V 4.7

VTD gate-drain overlap depletion threshold V 1.E-3

WB metallurgical base width m 9.0E-5

241

Analog devices Z

IGBT equations
In the following equations:

Imos = MOSFET channel current
IT = anode current
Icss = steady-state (bipolar) collector current
Ibss = Steady-state base current
Imult = avalanche multiplication current
Rb = conductivity modulated base resistance
b = ambipolar mobility ratio
Dp = diffusion coefficient for holes
W = quasi-neutral base width
Qeb = instantaneous excess carrier base charge
Qb = background mobile carrier charge
ni = intrinsic carrier concentration
M = avalanche multiplication factor
Igen = (bipolar)collector-base thermally generated current
εsi = dielectric permittivity of silicon
q = electron charge
Wbcj = base (bipolar) to collector depletion width

242

Analog devices Z

IGBT equations for DC current

MOSFET channel current

IMOS =

For Vgs<VT

For Vds ≤ (Vgs − VT)/KF

For Vds > (Vgs-VT)/KF

anode current: current through the resistor Rb

steady-state collector current

For Veb ≤ 0

For Veb > 0

steady-state base current

Ibss =

For Veb ≤ 0

For Veb > 0

avalanche multiplication current

0

KF KP Vgs VT–() Vds⋅
KF Vds

2⋅
2

-----------------------–

⋅ ⋅

1 THETA Vgs VT–()⋅+
--

KP Vgs VT–()2⋅
2 1 THETA Vgs VT–()⋅+()⋅
--

IT

VCe

Rb
----------=

Icss

0

1
1 b+

 IT⋅ b
1 b+

 4 Dp⋅

W
2

Qeb⋅ ⋅+

=

0

Qeb
TAU

Qeb
2

QB

 4 NB2⋅

ni
2

JSNE AREA⋅()⋅ ⋅+

Imult M 1–() Imos Icss+()⋅ M Igen⋅+=

243

Analog devices Z

IGBT equations for capacitance

gate source

Cgs = CGS

drain source

where

gate drain

For

Cdg = COXD

For

where

Ccer

Cmult

emitter base

Qgs CGS Vgs⋅=

Cds

AREA AGD–() εsi⋅
Wdsj

--= Qds q AREA AGD–() NB Wdsj⋅ ⋅ ⋅=

Wdsj

2 εsi Vds 0.6+()⋅ ⋅
q NB⋅

--=

Vds Vgs VTD–<

Qdg COXD Vdg⋅=

Vds Vgs VTD–≥

Cdg

Cdgj COXD⋅
Cdgj COXD+
----------------------------------=

Qdg

q NB εsi AGD2⋅ ⋅⋅
COXD

--
COXD Wdgj⋅

εsi AGD⋅
--------------------------------- 1

COXD Wdgj⋅
εsi AGD⋅

---------------------------------+
 log–

 COXD VTD⋅–=

Cdgj

AGD εsi⋅
Wdgj

-----------------------= Wdgj

2 εsi Vdg VTD+()⋅ ⋅
q NB⋅

--=

Ccer

Qeb C⋅
bcj

3 QB⋅
------------------------= Cbcj

εsi AREA⋅
Wbcj

---------------------------=

Cmult M 1–() Ccer⋅= Qmult M 1–() Qcer⋅=

Ceb Vd

dQeb=

244

Analog devices Z

References
For more information on the IGBT model, refer to:

[1] G.T. Oziemkiewicz, “Implementation and Development of the NIST IGBT Model in a
SPICE-based Commercial Circuit Simulator,” Engineer’s Thesis, University of Florida,
December 1995.

[2] A.R.Hefner, Jr., “INSTANT - IGBT Network Simulation and Transient Analysis Tool,”
National Institute of Standards and Technology Special Publication SP 400-88, June 1992.

[3] A.R.Hefner, Jr., “An Investigation of the Drive Circuit Requirements for the Power
Insulated Gate Bipolar Transistor (IGBT),” IEEE Transactions on Power Electronics, Vol. 6,
No. 2, April 1991, pp. 208-219.

[4] A.R.Hefner, Jr., “Modeling Buffer Layer IGBTs for Circuit Simulation,” IEEE
Transactions on Power Electronics, Vol. 10, No. 2, March 1995, pp. 111-123

Digital devices

Behavioral primitives Multi-bit A/D and D/A converter

Bidirectional transfer gates Programmable logic array

Delay line Pullup and pulldown

Digital input (N device) Random access read-write memory

Digital output (O device) Read only memory

File stimulus Standard gates

Flip-flops and latches Stimulus generator

Input/output model Tristate gates

Analog devicesCommands Device equations

Digital devices Digital device summary

246

Digital device summary

Primitives are primarily used in subcircuits to model complete devices.

Stimulus devices are used in the circuit to provide input for other digital devices during the
simulation.

Interface devices are mainly used inside subcircuits that model analog/digital and
digital/analog interfaces.

The digital devices are part of the digital simulation feature of PSpice A/D. For more
information on digital simulation and creating models, refer to your PSpice user’s
guide.

Device class Type Description

primitives U low-level digital devices (e.g., gates and flip-flops)

stimuli U digital stimulus generators

file-based stimulus

interface N

O

digital input device

digital output device

247

Digital devices Digital primitive summary

Digital primitive summary
Digital primitives are low-level devices whose main use is modeling off-the-shelf parts, often
in combination with each other.

Digital primitives should not be confused with the subcircuits in the libraries that use them.
For instance, the 74LS00 subcircuit in 74ls.lib uses a NAND digital primitive to model the
74LS00 part, but it also includes timing and interface information that makes the model
adapted for use in a circuit simulation. For more information, refer to your PSpice user’s
guide.

This section provides a reference for each of the digital primitives supported by the simulator,
to help you create digital parts that are not in the model library.

Primitive class Type Description

Standard gates BUF

INV

AND

NAND

OR

NOR

XOR

NXOR

BUFA

INVA

ANDA

NANDA

ORA

NORA

XORA

NXORA

AO

OA

AOI

OAI

buffer

inverter

AND gate

NAND gate

OR gate

NOR gate

exclusive OR gate

exclusive NOR gate

buffer array

inverter array

AND gate array

NAND gate array

OR gate array

NOR gate array

exclusive OR gate array

exclusive NOR gate array

AND-OR compound gate

OR-AND compound gate

AND-NOR compound gate

OR-NAND compound gate

Digital devices Digital primitive summary

248

Tristate gates BUF3

INV3

AND3

NAND3

OR3

NOR3

XOR3

NXOR3

BUF3A

INV3A

AND3A

NAND3A

OR3A

NOR3A

XOR3A

NXOR3A

buffer

inverter

AND gate

NAND gate

OR gate

NOR gate

exclusive OR gate

exclusive NOR gate

buffer array

inverter array

AND gate array

NAND gate array

OR gate array

NOR gate array

exclusive OR gate array

exclusive NOR gate array

Bidirectional transfer gates NBTG

PBTG

N-channel transfer gate

P-channel transfer gate

Flip-flops and latches JKFF

DFF

SRFF

DLTCH

J-K, negative-edge triggered

D-type, positive-edge triggered

S-R gated latch

D gated latch

Pullup and pulldown PULLUP

PULLDN

pullup resistor array

pulldown resistor array

Delay line DLYLINE delay line

Programmable logic array PLAND

PLOR

PLXOR

PLNAND

PLNOR

PLNXOR

PLANDC

PLORC

PLXORC

PLNANDC

PLNORC

PLNXORC

AND array

OR array

exclusive OR array

NAND array

NOR array

exclusive NOR array

AND array, true and complement

OR array, true and complement

exclusive OR array, true and
complement

NAND array, true and complement

NOR array, true and complement

exclusive NOR array, true and
complement

Primitive class Type Description

249

Digital devices Digital primitive summary

The format for specifying a digital primitive follows the general format described in the next
section. Primitive-specific formats are also described which includes parameters and nodes
that are specific to the primitive type.

Also listed is the specific timing model format for each primitive, along with the appropriate
timing model parameters.

For example, the 74393 part provided in the model library is defined as a subcircuit composed
of U devices as shown below.

subckt 74393 A CLR QA QB QC QD
+ optional: DPWR=$G_DPWR DGND=$G_DGND
+ params: MNTYMXDLY=0 IO_LEVEL=0
UINV inv DPWR DGND
+ CLR CLRBAR
+ D0_GATE IO_STD IO_LEVEL={IO_LEVEL}
U1 jkff(1) DPWR DGND
+ $D_HI CLRBAR A $D_HI $D_HI QA_BUF $D_NC
+ D_393_1 IO_STD MNTYMXDLY={MNTYMXDLY}=
+ IO_LEVEL={IO_LEVEL}
U2 jkff(1) DPWR DGND
+ $D_HI CLRBAR QA_BUF $D_HI $D_HI QB_BUF $D_NC
+ D_393_2 IO_STD MNTYMXDLY={MNTYMXDLY}
U3 jkff(1) DPWR DGND
+ $D_HI CLRBAR QB_BUF $D_HI $D_HI QC_BUF $D_NC
+ D_393_2 IO_STD MNTYMXDLY={MNTYMXDLY}
U4 jkff(1) DPWR DGND
+ $D_HI CLRBAR QC_BUF $D_HI $D_HI QD_BUF $D_NC
+ D_393_3 IO_STD MNTYMXDLY={MNTYMXDLY}
UBUFF bufa(4) DPWR DGND
+ QA_BUF QB_BUF QC_BUF QD_BUF QA QB QC QD
+ D_393_4 IO_STD MNTYMXDLY={MNTYMXDLY}IO_LEVEL={IO_LEVEL}
.ends

When adding digital parts to a part library, you can create corresponding digital device models
by connecting U devices in a subcircuit definition similar to the one shown above. OrCAD
recommends that these be saved in a custom model file. The model files can then be
configured into the model library or specified for use in a given design.

Read only memory

Random access read-write
memory

ROM

RAM

read-only memory

random access read-write memory

Multi-bit A/D and D/A
converter

ADC

DAC

multi-bit A/D converter

multi-bit D/A converter

Behavioral primitives LOGICEXP

PINDLY

CONSTRAIN
T

logic expression

pin-to-pin delay

constraint checking

Primitive class Type Description

Digital devices Digital primitive summary

250

General digital primitive format
The format of digital primitives is similar to that of analog devices. One difference is that most
digital primitives use two models instead of one. One of the models is the timing model, which
specifies propagation delays and timing constraints, such as setup and hold times. The other
model is the I/O model, which specifies information specific to the device’s input/output
characteristics. The reason for having two models is that, while timing information is specific
to a device, the input/output characteristics apply to a whole device family. Thus, many
devices in the same family reference the same I/O model, but each device has its own timing
model. If wanted, the timing models can be selected among primitives of the same class.

The general digital primitive format is shown below. Each statement can span one or more
lines by using the + (line continuation) character in the first column position. Comments can
be added to each line by using the ; (in-line comment). For specific information on each
primitive type, see the sections that follow.

General form U<name> <primitive type> [(<parameter value>*)]
+ <digital power node> <digital ground node>
+ <node>*
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Model form .MODEL <model name> UIO (<model parameters>*)

See Input/output model parameters for a list of the UIO model parameters.

Timing model format

.MODEL <model name> <model type> (<model parameters>*)

Examples U1 NAND(2) $G_DPWR $G_DGND 1 2 10 D0_GATE IO_DFT
U2 JKFF(1) $G_DPWR $G_DGND 3 5 200 3 3 10 2 D_293ASTD IO_STD
U3 INV $G_DPWR $G_DGND IN OUT D_INV IO_INV MNTYMXDLY=3 IO_LEVEL=2

Arguments and options

<primitive type> [(<parameter value>*)]
The type of digital device, such as NAND, JKFF, or INV. It is followed by zero or more
parameters specific to the primitive type, such as number of inputs. The number and
meaning of the parameters depends on the primitive type. See the sections that follow for
a complete description of each primitive type and its parameters.

<digital power node> <digital ground node>
These nodes are used by the interface subcircuits which connect analog nodes to digital
nodes or vice versa. Refer to your PSpice user’s guide for more information.

<node>*
One or more input and output nodes. The number of nodes depends on the primitive type
and its parameters. Analog devices, digital devices, or both can be connected to a node. If
a node has both analog and digital connections, then the simulator automatically inserts
an interface subcircuit to translate between logic levels and voltages. Refer to your PSpice
user’s guide for more information.

251

Digital devices Digital primitive summary

<timing model name>
The name of a timing model that describes the device’s timing characteristics, such as
propagation delay and setup and hold times. Each timing parameter has a minimum,
typical, or maximum value which can be selected using the optional MNTYMXDLY device
parameter (described below) or the DIGMNTYMX option (see
.OPTIONS (analysis options)). The type of the timing model and its parameters are
specific to each primitive type and are discussed in the following sections. (Note that the
PULLUP, PULLDN, and PINDLY primitives do not have timing models.)

<I/O model name>
The name of an I/O model, which describes the device’s loading and driving
characteristics. I/O models also contain the names of up to four DtoA and AtoD interface
subcircuits, which are automatically called by the simulator to handle interface nodes.
Refer to your PSpice user’s guide for a more detailed description of I/O models.

<model type>
Is specific to the primitive type. See the specific primitive for the correct <model type>
and associated <model parameters>. General timing model issues are discussed in the next
section.

MNTYMXDLY
An optional device parameter that selects either the minimum, typical, or maximum delay
values from the device’s timing model. A fourth option operates the primitive in Digital
Worst-Case (min/max) mode. If not specified, MNTYMXDLY defaults to 0. Valid values
are:

0 = Current value of .OPTIONS DIGMNTYMX (default=2)
1 = Minimum
2 = Typical
3 = Maximum
4 = Worst-case (min/max) timing

IO_LEVEL
An optional device parameter that selects one of the four AtoD or DtoA interface
subcircuits from the device’s I/O model. The simulator calls the selected subcircuit
automatically in the event a node connecting to the primitive also connects to an analog
device. If not specified, IO_LEVEL defaults to 0. Valid values are:

0 = the current value of .OPTIONS DIGIOLVL (default=1)
1 = AtoD1/DtoA1
2 = AtoD2/DtoA2
3 = AtoD3/DtoA3
4 = AtoD4/DtoA4

Refer to your PSpice user’s guide for more information.

Digital devices Digital primitive summary

252

Timing models
With the exception of the PULLUP, PULLDN, and PINDLY devices, all digital primitives
have a timing model that provides timing parameters to the simulator. Within a timing model,
there can be one or more types of parameters

• propagation delays (TP)

• setup times (TSU)

• hold times (TH)

• pulse widths (TW)

• switching times (TSW)

Each parameter is further divided into three values: minimum (MN), typical (TY), and
maximum (MX). For example, the typical low-to-high propagation delay on a gate is
specified as TPLHTY. The minimum data-to-clock setup time on a flip-flop is specified as
TSUDCLKMN.

One or more parameters can be missing from the timing model definition. Data books do not
always provide all three (minimum, typical, and maximum) timing specifications. The way
the simulator handles missing parameters depends on the type of parameter.

Treatment of unspecified propagation delays

This discussion applies only to propagation delay parameters (TP). All other timing
parameters, such as setup/hold times and pulse widths, are handled differently and
are described in Treatment of unspecified timing constraints.

Often, only the typical and maximum delays are specified in data books. If, in this case, the
simulator were to assume that the unspecified minimum delay just defaults to zero, the logic
in certain circuits could break down.

For this reason, the simulator provides two configurable options, DIGMNTYSCALE and
DIGTYMXSCALE (set using the .OPTIONS (analysis options) command), which are used to
extrapolate unspecified propagation delays in the timing models.

DIGMNTYSCALE

ThIS option computes the minimum delay when a typical delay is known, using the formula

TPxxMN = DIGMNTYSCALE · TPxxTY

DIGMNTYSCALE has a default value of 0.4, or 40% of the typical delay. Its value must be
between 0.0 and 1.0.

DIGTYMXSCALE

This option computes the maximum delay from a typical delay, using the formula

TPxxMX = DIGTYMXSCALE · TPxxTY

DIGTYMXSCALE has a default value of 1.6. Its value must be greater than 1.0.

253

Digital devices Digital primitive summary

When a typical delay is unspecified, its value is derived from the minimum and/or maximum
delays, in one of the following ways. If both the minimum and maximum delays are known,
the typical delay is the average of these two values. If only the minimum delay is known, the
typical delay is derived using the value of the DIGMNTYSCALE option. Likewise, if only the
maximum delay is specified, the typical delay is derived using DIGTYMXSCALE. Obviously,
if no values are specified, all three delays have a default value of zero.

Treatment of unspecified timing constraints
The remaining timing constraint parameters are handled differently from the propagation
delays. Often, data books state pulse widths, setup times, and hold times as a minimum value.
These parameters do not lend themselves to the extrapolation method used for propagation
delays.

Instead, when one or more timing constraints are omitted, the simulator uses the following
steps to fill in the missing values:

• If the minimum value is omitted, the default value is zero.

• If the maximum value is omitted, it takes on the typical value if one was specified,
otherwise it takes on the minimum value.

• If the typical value is omitted, it is computed as the average of the minimum and
maximum values.

Digital devices Digital primitive summary

254

Gates
Logic gates come in two types: standard and tristate. Standard gates always have their outputs
enabled, whereas tristate gates have an enable control. When the enable control is 0, the
output’s strength is Z and its level is X.

Logic gates also come in two forms: simple gates and gate arrays. Simple gates have one or
more inputs and only one output. Gate arrays contain one or more simple gates in one
component. Gate arrays allow one to work directly using parts that have several gates in one
package.

The usual Boolean equations apply to these gates having the addition of the X level. The rule
for X is: if an input is X, and if changing that input between one and zero would cause the
output to change, then the output is also X. In other words, X is only propagated to the output
when necessary. For example: 1 AND X = X; 0 AND X = 0; 0 OR X = X; 1 OR X = 1.

255

Digital devices Digital primitive summary

Standard gates

Device format U<name> <gate type> (<parameter value>*)
+ <digital power node> <digital ground node>
+ <input node>* <output node>*
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

The standard gate types and their parameters are listed in Standard Gate Types.

Timing model format

<timing model name> UGATE [model parameters]

Examples U5 AND(2) $G_DPWR $G_DGND IN0 IN1 OUT ; two-input AND gate
+ T_AND2 IO_STD

U2 INV $G_DPWR $G_DGND 3 5 ; simple INVerter
+ T_INV IO_STD

U13 NANDA(2,4) $G_DPWR $G_DGND ; four two-input NAND gates
+ INA0 INA1 INB0 INB1 INC0 INC1
+ IND0 IND1 OUTA OUTB OUTC OUTD
+ T_NANDA IO_STD

U9 AO(3,3) $G_DPWR $G_DGND ;three-input AND-OR gate
+ INA0 INA1 INA2 INB0 INB1 INB2 INC0 INC1 INC2
+ OUT T_AO IO_STD
+ MNTYMXDLY=1 IO_LEVEL=1

.MODEL T_AND2 UGATE ; AND2 Timing Model
+ TPLHMN=15ns TPLHTY=20ns TPLHMX=25ns
+ TPHLMN=10ns TPHLTY=15ns TPHLMX=20ns
+)

Arguments and options

<no. of inputs><no. of gates>
The <no. of inputs> is the number of inputs per gate and <no. of gates> is the number of
gates. in* and out* mean one or more nodes, whereas in and out refer to only one node.

In gate arrays the order of the nodes is: all inputs for the first gate, all inputs for the second
gate, ..., output for the first gate, output for the second gate, ... In other words, all of the
input nodes come first, then all of the output nodes. The total number of input nodes is
<no. of inputs>·<no. of gates>; the number of output nodes is <no. of gates>.

A compound gate is a set of <no. of gates> first-level gates which each have <no. of
inputs> inputs. Their outputs are connected to a single second-level gate. For example, the
AO component has <no. of gates> AND gates whose outputs go into one OR gate. The
OR gate’s output is the AO device’s output. The order of the nodes is: all inputs for the
first, first-level gate; all inputs for the second, first-level gate; ...; the output of the
second-level gate. In other words, all of the input nodes followed by the one output node.

Digital devices Digital primitive summary

256

Standard gates

Type Parameters Nodes Description

AND (<no. of inputs>) in*, out AND gate

ANDA (<no. of inputs>,<no. of gates>) in*, out* AND gate array

AO (<no. of inputs>,<no. of gates>) in*, out AND-OR compound gate

AOI (<no. of inputs>,<no. of gates>) in*, out AND-NOR compound
gate

BUF not applicable in, out buffer

BUFA (<no. of gates>) in*, out* buffer array

INV not applicable in, out inverter

INVA (<no. of gates>) in*, out* inverter array

NAND (<no. of inputs>) in*, out NAND gate

NANDA (<no. of inputs>,<no. of gates>) in*, out* NAND gate array

NOR (<no. of inputs>) in*, out NOR gate

NORA (<no. of inputs>,<no. of gates>) in*, out* NOR gate array

NXOR not applicable in1, in2,
out

exclusive NOR gate

NXORA (<no. of gates>) in*, out* exclusive NOR gate array

OA (<no. of inputs>,<no. of gates>) in*, out OR-AND compound gate

OAI (<no. of inputs>,<no. of gates>) in*, out OR-NAND compound
gate

OR (<no. of inputs>) in*, out OR gate

ORA (<no. of inputs>,<no. of gates>) in*, out* OR gate array

XOR not applicable in1, in2,
out

exclusive OR gate

XORA (<no. of gates>) in*, out* exclusive OR gate array

INA1

NAND gate array

AND-OR compound gate

OUTA

OUTB

OUTC

OUTD

INA0

INA1

INB0
INB1

INC0

INC1

IND0
IND1

INA0

INB0

INB1

INC0

INC1

OUT

257

Digital devices Digital primitive summary

Standard gate timing model parameters
Model parameters*

* See .MODEL (model definition)

Description Units Default

TPLHMN delay: low to high, min sec 0

TPLHTY delay: low to high, typ sec 0

TPLHMX delay: low to high, max sec 0

TPHLMN delay: high to low, min sec 0

TPHLTY delay: high to low, typ sec 0

TPHLMX delay: high to low, max sec 0

Digital devices Digital primitive summary

258

Tristate gates

Device format U<name> <tristate gate type> [(<parameter value>*)]
+ <digital power node> <digital ground node>
+ <input node>* <enable node> <output node>*
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Timing model format

.MODEL <timing model name> UTGATE [model parameters]

Examples U5 AND3(2) $G_DPWR $G_DGND IN0 IN1 ENABLE OUT two-input AND
+ T_TRIAND2 IO_STD
U2 INV3 $G_DPWR $G_DGND 3 100 5 ; INVerter
+ T_TRIINV IO_STD
U13 NAND3A(2,4) $G_DPWR $G_DGND ; four two-input NAND
+ INA0 INA1 INB0 INB1 INC0 INC1 IND0 IND1
+ ENABLE OUTA OUTB OUTC OUTD
+ T_TRINAND IO_STD

.MODEL T_TRIAND2 UTGATE ; TRI-AND2 Timing Model
+ TPLHMN=15ns TPLHTY=20ns TPLHMX=25ns ...
+ TPZHMN=10ns TPZHTY=15ns TPZHMX=20ns
+)

Arguments and options

<no. of inputs>
The number of inputs per gate.

<no. of gates>
The number of gates in model.

Comments In gate arrays the order of the nodes is: all inputs for the first gate, all inputs for the second
gate, ..., enable, output for the first gate, output for the second gate, ... In other words, all of
the input nodes come first, then the enable, then all of the output nodes. The total number of
input nodes is <no. of inputs>·<no. of gates>+1; the number of output nodes is <no. of gates>.
If a tristate gate is connected to a net that has at least one device input using an INLD I/O model,
or a device output using an OUTLD I/O model where both parameters are greater than zero, then
that net is simulated as a charge storage net.

259

Digital devices Digital primitive summary

Tristate gate types

Type Parameters Nodes*

* in* and out*—Mean one or more nodes present.
in and out—Refer to only one node.
en—Refers to the output enable node.

Description

AND3 (<no. of inputs>) in*, en, out AND gate

AND3A (<no. of inputs>,<no. of gates>) in*, en, out* AND gate array

BUF3 in, en, out Buffer

BUF3A (<no. of gates>) in*, en, out* Buffer array

INV3 in, en, out Inverter

INV3A (<no. of gates>) in*, en, out* Inverter array

NAND3 (<no. of inputs>) in*, en, out NAND gate

NAND3A (<no. of inputs>,<no. of gates>) in*, en, out* NAND gate array

NOR3 (<no. of inputs>) in*, en, out NOR gate

NOR3A (<no. of inputs>,<no. of gates>) in*, en, out* NOR gate array

NXOR3 in1, in2, en, out Exclusive NOR gate

NXOR3A (<no. of gates>) in*, en, out* Excl. NOR gate array

OR3 (<no. of inputs>) in*, en, out OR gate

OR3A (<no. of inputs>,<no. of gates>) in*, en, out* OR gate array

XOR3 in1, in2, en, out Exclusive OR gate

XOR3A (<no. of gates>) in*, en, out* Excl. OR gate array

Digital devices Digital primitive summary

260

Tristate gate timing model parameters

Model parameters*

* See .MODEL statement.

Description Units Default

TPLHMN Delay: low to high, min sec 0

TPLHTY Delay: low to high, typ sec 0

TPLHMX Delay: low to high, max sec 0

TPHLMN Delay: high to low, min sec 0

TPHLTY Delay: high to low, typ sec 0

TPHLMX Delay: high to low, max sec 0

TPHZMN Delay: high to Z, min sec 0

TPHZTY Delay: high to Z, typ sec 0

TPHZMX Delay: high to Z, max sec 0

TPLZMN Delay: low to Z, min sec 0

TPLZTY Delay: low to Z, typ sec 0

TPLZMX Delay: low to Z, max sec 0

TPZLMN Delay: Z to low, min sec 0

TPZLTY Delay: Z to low, typ sec 0

TPZLMX Delay: Z to low, max sec 0

TPZHMN Delay: Z to high, min sec 0

TPZHTY Delay: Z to high, typ sec 0

TPZHMX Delay: Z to high, max sec 0

261

Digital devices Digital primitive summary

Bidirectional transfer gates
The bidirectional transfer gate is a passive device that connects or disconnects two nodes.
Bidirectional transfer gates have no parameters.

The state of the gate input controls whether the gate connects the two digital nets. The device
type NBTG connects the nodes if the gate is one, and disconnects the nodes if the gate is zero.
Device type PBTG connects the nodes if the gate is zero and disconnects the nodes if the gate
is one.

The I/O Model DRVH and DRVL parameters are used as a ceiling on the strength of a one or
zero, which is passed through a bidirectional transfer gate. If a bidirectional transfer gate is
connected to a net which has at least one device input using an INLD I/O model parameter
greater than zero, or a device output using an OUTLD I/O model parameter greater than zero,
then that net is simulated as a charge storage net.

Special behavior when the NBTG or PBTG
is connected to an analog device

If a channel node of one of these bidirectional transfer gates is connected to an analog device,
then the bidirectional transfer gate is removed during simulation and is replaced with the
digital-to-analog subcircuit specified by the bidirectional transfer gate’s I/O model. Because
the bidirectional transfer gate is passive and bidirectional, this digital-to-analog subcircuit
must model the behavior of the whole bidirectional transfer gate, not just convert its digital
levels to analog signals. Use this format to define the digital-to-analog subcircuit:

.SUBCKT <DtoA subckt name> <gate node> <channel node 1> <channel node 2>
+ <digital power node> <digital ground node>
+ params: DRVL=0 DRVH=0 OutLD=0 InLD=0

The contents of the subcircuit must model the behavior of the transfer gate in the analog
domain, at least for the channel. If the subcircuit’s gate node is connected to analog devices,
then PSpice will simulate the gate node as an analog net. If this behavior is not desired (e.g.,
the gate will be connected to a clock signal, which will slow simulation if it is an analog
signal), then the subcircuit should not have any analog devices connected to the gate node.

Device format U<name> NBTG
+ <digital power node> <digital ground node>
+ <gate node> <channel node 1> <channel node 2>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY = <delay select value>]
+ [IO_LEVEL = <interface subckt select value>]

U<name> PBTG
+ <digital power node> <digital ground node>
+ <gate node> <channel node 1> <channel node 2>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY = <delay select value>]
+ [IO_LEVEL = <interface subckt select value>]

Examples U4 NBTG $G_DPWR $G_DGND GATE SD1 SD2
+ BTG1 IO_BTG
.MODEL BTG1 UBTG

Model form .MODEL <timing model name> UBTG

Digital devices Digital primitive summary

262

The gate node has the same behavior if it is connected to an analog net as other
digital device pins: the analog-to-digital subcircuit specified by the I/O model and
IO_LEVEL is connected between the analog net and the gate pin of the device.

Examples

The first example is a subcircuit that models the switch with an analog gate connection. In
some circuit topologies, this may cause large parts of a circuit to convert to analog if a single
net is connected to an analog part. To avoid this, use the _D version of the digital-to-analog
converter by setting IO_LEVEL to 3 or 4.

.model io_nbtg uio (drvh=200 drvl=200 inld=10pf outld=15pf
+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoA1="DtoA_NBTG"DtoA2="DtoA_NBTG"
+DtoA3="DtoA_NBTG_D"DtoA4="DtoA_NBTG_D"
.model io_pbtg uio (drvh=200 drvl=200 inld=10pf outld=15pf
+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoA1="DtoA_PBTG"DtoA2="DtoA_PBTG"
+DtoA3="DtoA_PBTG_D"DtoA4="DtoA_PBTG_D"
.model io_nbtgs uio (drvh=200 drvl=200
+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoA1="DtoA_NBTG"DtoA2="DtoA_NBTG"
+DtoA3="DtoA_NBTG_D"DtoA4="DtoA_NBTG_D"
.model io_pbtgs uio (drvh=200 drvl=200
+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoA1="DtoA_PBTG"DtoA2="DtoA_PBTG"
+DtoA3="DtoA_PBTG_D"DtoA4="DtoA_PBTG_D"
.model btg1 ubtg

The next two examples are switch models with digital gate inputs. The digital-to-analog
conversion of the gate inputs uses an I/O model (HC in this example) that is defined here, not
the I/O model of the device driving the gate.

Use these examples in cases where an using analog input would create too many analog
switches. Do not use these when the gate is analog, since this would make an
analog-to-digital-to-analog conversion, which may cause invalid simulation results. (This is
because the analog gate is squared up before being converted to analog again and applied to
the “gate” of the switch.)

263

Digital devices Digital primitive summary

.subckt DtoA_NBTG gate sd1 sd2 pwr gnd
+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=.9 VSAT=1.2
S1 sd1 sd2 gate gnd nbtg_smod
C1 sd1 gnd {.1pf+outld}
C2 sd2 gnd {.1pf+outld}
C3 gate gnd {.1pf+inld}
.model nbtg_smod vswitch
+ (ron={(drvl+drvh)/2} roff=1meg von={VSAT} voff={VTH})
.ends
.subckt DtoA_PBTG gate sd1 sd2 pwr gnd
+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=-0.9 VSAT=-1.2
S1 sd1 sd2 gate pwr pbtg_smod
C1 sd1 pwr {.1pf+outld}
C2 sd2 pwr {.1pf+outld}
C3 gate gnd {.1pf+inld}
.model pbtg_smod vswitch
+ (ron={(drvl+drvh)/2} roff=1meg von={VSAT} voff={VTH})
.ends

.subckt DtoA_NBTG_D gate sd1 sd2 pwr gnd
+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=.9 VSAT=1.2
X1 gate gate_a pwr gnd DtoA_HC
+ params: DRVL={DRVL} DRVH={DRVH} CAPACITANCE={INLD}
S1 sd1 sd2 gate_a gnd nbtg_smod
C1 sd1 gnd {.1pf+outld}
C2 sd2 gnd {.1pf+outld}
.model nbtg_smod vswitch
+ (ron={(drvl+drvh)/2} roff=1meg von={VSAT} voff={VTH})
.ends
.subckt DtoA_PBTG_D gate sd1 sd2 pwr gnd
+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=-.9 VSAT=-1.2
X1 gate gate_a pwr gnd DtoA_HC
+ params: DRVL={DRVL} DRVH={DRVH} CAPACITANCE={INLD}
S1 sd1 sd2 gate_a pwr pbtg_smod
C1 sd1 gnd {.1pf+outld}
C2 sd2 gnd {.1pf+outld}
.model pbtg_smod vswitch
+ (ron={(drvl+drvh)/2} roff=1meg von={VSAT} voff={VTH})
.ends

Digital devices Digital primitive summary

264

Flip-flops and latches
The simulator supports both edge-triggered and gated flip-flops. Edge-triggered flip-flops
change state when the clock changes: on the falling edge for JKFFs, on the rising edge for
DFFs. Gated flip-flops are often referred to as latches. The state of gated flip-flops follows the
input as long as the clock (gate) is high. The state is frozen when the clock (gate) falls.
Multiple flip-flops can be specified in each device. This allows direct modeling of parts which
contain more than one flip-flop in a package.

Initialization
By default, at the beginning of each simulation, all flip-flops and latches are initialized to the
unknown state (that is, they output an X). Each device remains in the unknown state until
explicitly set or cleared by an active-low pulse on either the preset or clear pins, or until a
known state is clocked in.

You can override the X start-up state by setting .OPTIONS (analysis options) DIGINITSTATE
to either zero or one. If set to zero, all flip-flops and latches in the circuit are cleared. Likewise,
if set to one, all such devices are preset. Any other values produce the default (X) start-up
state. The DIGINITSTATE option is useful in situations where the initial state of the flip-flop is
unimportant to the function of the circuit, such as a toggle flip-flop in a frequency divider.

It is important to note that if the initial state is set to zero or one, the device still outputs an X
at the beginning of the simulation if the inputs would normally produce an X on the output.
For example, if the initial state is set to one, but the clock is an X at time zero, Q and QBar
both go to X when the simulation begins.

X-level handling

The truth-table for each type of flip-flop and latch is given in the sections that follow.
However, how the flip-flops treat X levels on the inputs is not depicted in the truth tables
because it can depend on the state of the device.

The rule is as follows: if an input is X, and if changing that input between one and zero would
cause the output to change, then the output is set to X. In other words, X is only propagated
to the output when necessary. For example: if Q = 0 and PresetBar = X, then Q → X; but if Q
= 1 and PresetBar = X, then Q → 1.

Timing violations
The flip-flop and latch primitives have model parameters which specify timing constraints
such as setup/hold times and minimum pulse-widths. If these model parameter values are
greater than zero, the simulator compares measured times on the inputs against the specified
value. See Standard gate timing model parameters and Tristate gate timing model
parameters .

The simulator reports flip-flop timing violations as digital simulation warning messages in the
.out file. These messages can also be viewed using the Windows version of Probe.

265

Digital devices Digital primitive summary

Edge-triggered flip-flops
The simulator supports four types of edge-triggered flip-flops:

• D-type flip-flop (DFF), which is positive-edge triggered

• J-K flip-flop (JKFF), which is negative-edge triggered

• Dual-edge D flip-flop (DFFDE), which is selectively positive and/or negative edge
triggered

• Dual-edge J-K flip-flop (JKFFDE), which is selectively positive and/or negative edge
triggered

Device format U<name> DFF (<no. of flip-flops>)
+ <digital power node> <digital ground node>
+ <presetbar node> <clearbar node> <clock node>
+ <d node 1> ... <d node n>
+ <q output 1> ... <q output n>
+ <qbar output 1> ... <qbar output n>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

U<name> JKFF (<no. of flip-flops>)
+ <digital power node> <digital ground node>
+ <presetbar node> <clearbar node> <clockbar node>
+ <j node 1> ... <j node n>
+ <k node 1> ... <k node n>
+ <q output 1> ... <q output n>
+ <qbar output 1> ... <qbar output n>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

U<name> DFFDE(<no. of flip-flops>)
+ <digital power node> <digital ground node>
+ <presetbar node> <clrbar node> <clock node>
+ <positive-edge enable node> <negative-edge enable node>
+ <d node 1> ... <d node n>
+ <q output 1> ... <q output n>
+ <qbar output 1> ... <qbar output n>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY = <delay select value>]
+ [IO_LEVEL = <interface subckt select value>]

U<name> JKFFDE(<no. of flip-flops>)
+ <digital power node> <digital ground node>
+ <presetbar node> <clrbar node> <clock node>
+ <positive-edge enable node> <negative-edge enable node>
+ <j node 1> ... <j node n>
+ <k node 1> ... <k node n>
+ <q output 1> ... <q output n>
+ <qbar output 1> ... <qbar output n>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY = <delay select value>]
+ [IO_LEVEL = <interface subckt select value>]

Timing model format

.MODEL <timing model name> UEFF [model parameters]

Digital devices Digital primitive summary

266

Examples U5 JKFF(1) $G_DPWR $G_DGND PREBAR CLRBAR CLKBAR
* one JK flip-flop
+ J K Q QBAR
+ T_JKFF IO_STD
U2 DFF(2) $G_DPWR $G_DGND PREBAR CLRBAR CLK
* two DFF flip-flops
+ D0 D1 Q0 Q1 QBAR0 QBAR1
+ T_DFF IO_STD

.MODEL T_JKFF UEFF(...) ; JK Timing Model

Comments Use <no. of flip-flops> to specify the number of flip-flops in the device. The three nodes,
<presetbar node>, <clearbar node> and <clock(bar) node>, are common to all flip-flops in the
device.

The <positive-edge enable node> and <negative-edge enable node> are common to all
flip-flops in the dual-edge flip-flops.

267

Digital devices Digital primitive summary

Edge-triggered flip-flop timing model parameters

Model parameters* Description Units Default

THDCLKMN Hold: j/k/d after clk/clkb edge, min sec 0

THDCLKTY Hold: j/k/d after clk/clkb edge, typ sec 0

THDCLKMX Hold: j/k/d after clk/clkb edge, max sec 0

TPCLKQLHMN Delay: clk/clkb edge to q/qb low to hi, min sec 0

TPCLKQLHTY Delay: clk/clkb edge to q/qb low to hi, typ sec 0

TPCLKQLHMX Delay: clk/clkb edge to q/qb low to hi, max sec 0

TPCLKQHLMN Delay: clk/clkb edge to q/qb hi to low, min sec 0

TPCLKQHLTY Delay: clk/clkb edge to q/qb hi to low, typ sec 0

TPCLKQHLMX Delay: clk/clkb edge to q/qb hi to low, max sec 0

TPPCQLHMN Delay: preb/clrb to q/qb low to hi, min sec 0

TPPCQLHTY Delay: preb/clrb to q/qb low to hi, typ sec 0

TPPCQLHMX Delay: preb/clrb to q/qb low to hi, max sec 0

TPPCQHLMN Delay: preb/clrb to q/qb hi to low, min sec 0

TPPCQHLTY Delay: preb/clrb to q/qb hi to low, typ sec 0

TPPCQHLMX Delay: preb/clrb to q/qb hi to low, max sec 0

TSUDCLKMN Setup: j/k/d to clk/clkb edge, min sec 0

TSUDCLKTY Setup: j/k/d to clk/clkb edge, typ sec 0

TSUDCLKMX Setup: j/k/d to clk/clkb edge, max sec 0

TSUPCCLKHMN Setup: preb/clrb hi to clk/clkb edge, min sec 0

TSUPCCLKHTY Setup: preb/clrb hi to clk/clkb edge, typ sec 0

TSUPCCLKHMX Setup: preb/clrb hi to clk/clkb edge, max sec 0

TWPCLMN Min preb/clrb width low, min sec 0

TWPCLTY Min preb/clrb width low, typ sec 0

TWPCLMX Min preb/clrb width low, max sec 0

TWCLKLMN Min clk/clkb width low, min sec 0

TWCLKLTY Min clk/clkb width low, typ sec 0

TWCLKLMX Min clk/clkb width low, max sec 0

TWCLKHMN Min clk/clkb width hi, min sec 0

TWCLKHTY Min clk/clkb width hi, typ sec 0

TWCLKHMX Min clk/clkb width hi, max sec 0

TSUCECLKMN Setup: clock enable to clk edge, min sec 0

TSUCECLKTY Setup: clock enable to clk edge, typ sec 0

TSUCECLKMX Setup: clock enable to clk edge, max sec 0

Digital devices Digital primitive summary

268

Edge-triggered flip-flop truth tables DFF and JKFF

THCECLKMN Hold: clock enable after clk edge, min sec 0

THCECLKTY Hold: clock enable after clk edge, typ sec 0

THCECLKMX Hold: clock enable after clk edge, max sec 0

* See .MODEL (model definition).

D-type flip-flop (DFF) truth table
Inputs Outputs

D CLK PRE CLR Q Q

X X 1 0 0 1

X X 0 1 1 0

X X 0 0 1*

* Shows an unstable condition.

1*

X 0 1 1 Q′ Q′

X 1 1 1 Q′ Q′

0 ↑ 1 1 0 1

1 ↑ 1 1 1 0

J-K flip-flop (JKFF) truth table
Inputs Outputs

J K CLK PRE CLR Q Q

X X X 1 0 0 1

X X X 0 1 1 0

X X X 0 0 1*

* Shows an unstable condition.

1*

X X 0 1 1 Q′ Q′

X X 1 1 1 Q′ Q′

0 0 Ø 1 1 Q′ Q′

0 1 Ø 1 1 0 1

1 0 ↓ 1 1 1 0

1 1 ↓ 1 1 Q′ Q′

Model parameters* Description Units Default

269

Digital devices Digital primitive summary

Edge-triggered flip-flop truth tables DFFDE and JKFFDE

Dual-edge D flip-flop (DFFDE) truth table

Dual-edge J-K flip-flop (JKFFDE) truth table

Inputs Outputs

D CLK PENA NENA PRE CLR Q Q

X X X X 1 0 0 1

X X X X 0 1 1 0

X X X X 0 0 1*

* Shows an unstable condition.

1*

X 0 X X 1 1 Q' Q'

X 1 X X 1 1 Q' Q'

X X 0 0 1 1 Q' Q'

0 ↑ 1 X 1 1 0 1

1 ↑ 1 X 1 1 1 0

0 ↓ X 1 1 1 0 1

1 ↓ X 1 1 1 1 0

Inputs Outputs

J K CLK PENA NENA PRE CLR Q Q

X X X X X 1 0 0 1

X X X X X 0 1 1 0

X X X X X 0 0 1*

* Shows an unstable condition.

1*

X X 0 X X 1 1 Q' Q'

X X 1 X X 1 1 Q' Q'

X X X 0 0 1 1 Q' Q'

0 0 ↑ 1 X 1 1 Q' Q'

0 1 ↑ 1 X 1 1 0 1

1 0 ↑ 1 X 1 1 1 0

1 1 ↑ 1 X 1 1 Q' Q'

0 0 ↓ X 1 1 1 Q' Q'

0 1 ↓ X 1 1 1 0 1

1 0 ↓ X 1 1 1 1 0

1 1 ↓ X 1 1 1 Q' Q'

Digital devices Digital primitive summary

270

Gated latch
The simulator supports two types of gated latches: the S-R flip-flop (SRFF) and the D-type
latch (DLTCH).

Gated latch timing model parameters

Device format U<name> SRFF (<no. of flip-flops>)
+ <digital power node> <digital ground node>
+ <presetbar node> <clearbar node> <gate node>
+ <s node 1> ... <s node n>
+ <r node 1> ... <r node n>
+ <q output 1> ... <q output n>
+ <qbar output 1> ... <qbar output n>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

U<name> DLTCH (<no. of latches>)
+ <digital power node> <digital ground node>
+ <presetbar node> <clearbar node> <gate node>
+ <d node 1> ... <d node n>
+ <q output 1> ... <q output n>
+ <qbar output 1> ... <qbar output n>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Model form .MODEL <timing model name> UGFF [model parameters]

Examples U5 SRFF(4)$G_DPWR $G_DGND PRESET CLEAR GATE
* four S-R latches
+ S0 S1 S2 S3 R0 R1 R2 R3
+ Q0 Q1 Q2 Q3 QB0 QB1 QB2 QB3
+ T_SRFF IO_STD
U2 DLTCH(8) $G_DPWR $G_DGND PRESET CLEAR GATE
* eight D latches
+ D0 D1 D2 D3 D4 D5 D6 D7
+ Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
+ QB0 QB1 QB2 QB3 QB4 QB5 QB6 QB7
+ T_DLTCH IO_STD

.MODEL T_SRFF UGFF(...) ; SRFF Timing Model

Comments Use <no. of flip-flops> to specify the number of flip-flops in the device. The three nodes,
<presetbar node>, <clearbar node>, and <gate node>, are common to all of the flip-flops in
the device.

Model
parameters* Description Units Default

THDGMN Hold: s/r/d after gate edge, min sec 0

THDGTY Hold: s/r/d after gate edge, typ sec 0

THDGMX Hold: s/r/d after gate edge, max sec 0

TPDQLHMN Delay: s/r/d to q/qb low to hi, min sec 0

TPDQLHTY Delay: s/r/d to q/qb low to hi, typ sec 0

TPDQLHMX Delay: s/r/d to q/qb low to hi, max sec 0

271

Digital devices Digital primitive summary

TPDQHLMN Delay: s/r/d to q/qb hi to low, min sec 0

TPDQHLTY Delay: s/r/d to q/qb hi to low, typ sec 0

TPDQHLMX Delay: s/r/d to q/qb hi to low, max sec 0

TPGQLHMN Delay: gate to q/qb low to hi, min sec 0

TPGQLHTY Delay: gate to q/qb low to hi, typ sec 0

TPGQLHMX Delay: gate to q/qb low to hi, max sec 0

TPGQHLMN Delay: gate to q/qb hi to low, min sec 0

TPGQHLTY Delay: gate to q/qb hi to low, typ sec 0

TPGQHLMX Delay: gate to q/qb hi to low, max sec 0

TPPCQLHMN Delay: preb/clrb to q/qb low to hi, min sec 0

TPPCQLHTY Delay: preb/clrb to q/qb low to hi, typ sec 0

TPPCQLHMX Delay: preb/clrb to q/qb low to hi, max sec 0

TPPCQHLMN Delay: preb/clrb to q/qb hi to low, min sec 0

TPPCQHLTY Delay: preb/clrb to q/qb hi to low, typ sec 0

TPPCQHLMX Delay: preb/clrb to q/qb hi to low, max sec 0

TSUDGMN Setup: s/r/d to gate edge, min sec 0

TSUDGTY Setup: s/r/d to gate edge, typ sec 0

TSUDGMX Setup: s/r/d to gate edge, max sec 0

TSUPCGHMN Setup: preb/clrb hi to gate edge, min sec 0

TSUPCGHTY Setup: preb/clrb hi to gate edge, typ sec 0

TSUPCGHMX Setup: preb/clrb hi to gate edge, max sec 0

TWPCLMN Min preb/clrb width low, min sec 0

TWPCLTY Min preb/clrb width low, typ sec 0

TWPCLMX Min preb/clrb width low, max sec 0

TWGHMN Min gate width hi, min sec 0

TWGHTY Min gate width hi, typ sec 0

TWGHMX Min gate width hi, max sec 0

* See .MODEL (model definition).

Model
parameters* Description Units Default

Digital devices Digital primitive summary

272

Gated latch truth tables
The function tables for the SRFF and DLTCH primitives are given below.

D-type latch (DLTCH) truth table

S-R flip-flop (SRFF) truth table
Inputs Outputs

S R GATE PRE CLR Q Q

X X X 1 0 0 1

X X X 0 1 1 0

X X X 0 0 1*

* Shows an unstable condition.

1*

X X 0 1 1 Q′ Q′

0 0 1 1 1 Q′ Q′

0 1 1 1 1 0 1

1 0 1 1 1 1 0

1 1 1 1 1 1* 1*

Inputs Outputs

D GATE PRE CLR Q Q

X X 1 0 0 1

X X 0 1 1 0

X X 0 0 1*

* Shows an unstable condition.

1*

X 0 1 1 Q′ Q′

0 1 1 1 0 1

1 1 1 1 1 0

273

Digital devices Digital primitive summary

Pullup and pulldown
The PULLUP and PULLDN primitives function as digital pullup/pulldown resistors. They
have no inputs (other than the digital power and ground nodes). Their output is a one level
(pullup) or a zero level (pulldown), having a strength determined by the I/O model.

Device format U<name> <resistor type> (<number of resistors>)
+ <digital power node> <digital ground node>
+ <output node>*
+ <I/O model name>
+ [IO_LEVEL=<interface subckt select value>]

Examples U5 PULLUP(4) $G_DPWR $G_DGND ; four pullup resistors
+ BUS0 BUS1 BUS2 BUS3 R1K
U2 PULLDN(1) $G_DPWR $G_DGND ; one pulldown resistor
+ 15 R500

Arguments and options

<resistor type>
One of the following:

PULLUP pullup resistor array
PULLDN pulldown resistor array

<number of resistors>
Specifies the number of resistors in the array.

Comments Notice that PULLUP and PULLDN do not have Timing Models, just I/O
models.

Digital devices Digital primitive summary

274

Delay line
The output of a delay line follows the input after the delay specified in the Timing Model. Any
width pulse can propagate through a delay line. This behavior is different from gates, which
don’t propagate a pulse when its width is less than the propagation delay.

The delay line device has no parameters, and only one input and one output node.

Delay line timing model parameters

Device format U<name> DLYLINE
+ <digital power node> <digital ground node>
+ <input node> <output node>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Examples U5 DLYLINE $G_DPWR $G_DGND IN OUT; delay line
+ DLY20NS IO_STD
.MODEL DLY20NS UDLY(; delay line Timing Model
+ DLYMN=20ns DLYTY=20ns DLYMX=20ns
+)

Timing model format

.MODEL <timing model name> UDLY [model parameters]

Model parameters*

* See .MODEL (model definition).

Description Units Default

DLYMN Delay: min sec 0

DLYTY Delay: typical sec 0

DLYMX Delay: max sec 0

275

Digital devices Digital primitive summary

Programmable logic array
The programmable logic array is made up of a variable number of inputs, which form
columns, and a variable number of outputs, which form rows. Each output (row) is driven by
one logic gate. The “program” for the device determines which of the inputs (columns) are
connected to each gate. All of the gates in the array are the same type (e.g., AND, OR, NAND,
and NOR). Commercially available ICs (PALs, GALs, PEELs, and such) can have buffers,
registers, more than one array of gates, and so on, all on the same part. These would normally
be combined in a library subcircuit to make the part easier to use.

There are two ways to provide the program data for Programmable Logic Arrays. The normal
way is to give the name of a JEDEC format file which contains the program data. This file
would normally be produced by a PLD design package, or by using MicroSim PLSyn, which
translates logic design information into a program for a specific programmable logic part. The
other way to program the logic array is by including the program data, in order, on the device
line (using the DATA=... construct).

If one of the PAL or GAL devices are being used in the model library, you will not need to
use the Programmable Logic Array primitive directly, nor any of the model information
below, since the library contains all of the appropriate modeling information. Using a PLD
from the library is just like using any other logic device from the library, except that the
simulator needs to know the name of the JEDEC file which contains the program for that part.
A TEXT parameter name JEDEC_FILE is used to specify the file name, as shown in the
following example:

X1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12
+ IN13 IN14
+ OUT1 OUT2 OUT3 OUT4
+ PAL14H4
+ TEXT: JEDEC_FILE = "myprog.jed"

This example creates a 14H4 PAL which is programmed by the JEDEC file myprog.jed.

Device format U<name> <pld type> (<no. of inputs>, <no. of outputs>)
+ <digital power node> <digital ground node>
+ <input_node>* <output_node>*
+ <timing model name> <I/O model name>
+ [FILE=<(file name) text value>]
+ [DATA=<radix flag>$<program data>$]
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Timing model format

.MODEL <timing model name> UPLD [model parameters]

Digital devices Digital primitive summary

276

Examples UDECODE PLANDC(3, 8) ; 3 inputs, 8 outputs
+ $G_DPWR $G_DGND ; digital power supply and ground
+ IN1 IN2 IN3 ; the inputs
+ OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 ; the outputs
+ PLD_MDL ; the timing model name
+ IO_STD ; the I/O model name
+ DATA=B$; the programming data
* IN1 IN2 IN3
* TF TF TF
+ 01 01 01 ; OUT0
+ 01 01 10 ; OUT1
+ 01 10 01 ; OUT2
+ 01 10 10 ; OUT3
+ 10 01 01 ; OUT4
+ 10 01 10 ; OUT5
+ 10 10 01 ; OUT6
+ 10 10 10 $; OUT7

.MODEL PLD_MDL UPLD(...) ; PLD timing model definition

Arguments and options

<pld type>
One of the following:

PLD type Description

PLAND AND array

PLANDC AND array using true and complement columns
for each input

PLNAND NAND array

PLNANDC NAND array using true and complement columns
for each input

PLNOR NOR array

PLNORC NOR array using true and complement columns
for each input

PLNXOR Exclusive NOR array

PLNXORC Exclusive NOR array using true and complement
columns for each input

PLOR OR array

PLORC OR array using true and complement columns for
each input

PLXOR Exclusive OR array

PLXORC Exclusive OR array using true and complement
columns for each input

277

Digital devices Digital primitive summary

<file name text value>
The name of a JEDEC format file which specifies the programming data for
the array. The file name can be specified as a text constant (enclosed in
double quotes “ ”), or as a text expression (enclosed in vertical bars “|”). If
a FILE is specified, any programming data specified by a DATA section is
ignored. The mapping of addresses in the JEDEC file to locations in the
array is controlled by model parameters specified in the timing model.

<radix flag>
One of the following:

B binary data follows
O octal data follows (most significant bit has

the lowest address)
X hexadecimal data follows (most significant bit

has lowest address)

<program data>
A string of data values used to program the logic array. The values start at
address zero, which programs the array for the connection of the first input
pin to the gate which drives the first output. A 0 (zero) specifies that the
input is not connected to the gate, and a 1 specifies that the input is
connected to the gate. (Initially, all inputs are not connected to any gates.)
The next value programs the array for the connection of the complement of
the first input to the gate which drives the first output (if this is a
programmable gate having true and complement inputs) or, the second
input connection to the gate which drives the first output. Each additional
1 or 0 programs the connection of the next input or its complement to the
gate which drives the first output, until the connection of all inputs (and
their complements) to that gate have been programmed. Data values after
that, program the connection of inputs to the gate driving the second output,
and so on.

The data values must be enclosed in dollar signs ($), but can be separated
by spaces or continuation lines.

Comments The example defines a 3-to-8 line decoder. The inputs are IN1 (MSB), IN2, and
IN3 (LSB). If the inputs are all low, OUT0 is true. If IN1 and IN2 are low and
IN3 is high, then OUT1 is true, and so on. The programming data has been
typed in as an array, so that it is easier to read. The comments above the
columns identify the true and false (complement) inputs, and the comments at
the end of the line identify the output pin which is controlled by that gate. (Note,
the simulator does not process any of these comments—they just help make the
programming data readable.)

Digital devices Digital primitive summary

278

Programmable logic array timing model parameters

Model
parameters*

* See .MODEL (model definition).

Description Units Default

COMPOFFSET JEDEC file mapping: address of
complement of first input and first gate
program

1

INSCALE JEDEC file mapping: amount the
JEDEC file address changes for each
new input pin

std

true/cmp

1

2

OFFSET JEDEC file mapping: address of first
input and first gate program

0

OUTSCALE JEDEC file mapping: amount the
JEDEC file address changes for each
new output pin (gate)

std

true/cmp

<no. of inputs>

2*<no. of inputs>

TPHLMN delay: in to out, hi to low, min sec 0

TPHLTY delay: in to out, hi to low, typ sec 0

TPHLMX delay: in to out, hi to low, max sec 0

TPLHMN delay: in to out, low to hi, min sec 0

TPLHTY delay: in to out, low to hi, typ sec 0

TPLHMX delay: in to out, low to hi, max sec 0

279

Digital devices Digital primitive summary

Read only memory
There are two ways to provide the program data for ROMs. The normal way is to provide the
name of an Intel Hex Format file. This file is read before the simulation starts, and the ROM
is programmed to contain the data in the file. The other way to program the ROM is to include
the program data on the device line (with the DATA=... construct).

The example below defines a 4-bit by 4-bit to 8-bit multiplier ROM.

Device format U<name> ROM(<no. of address pins>, <no. of output pins>)
+ <digital power node> <digital ground node>
+ <enable_node> <address node msb> ... <address node lsb>
+ <output node msb> ... <output node lsb>
+ <timing model name> <I/O model name>
+ [FILE=<file name text value>]
+ [DATA=<radix flag>$<program data>$]
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Timing model format

.MODEL <timing model name> UROM (<model parameters>*)

Digital devices Digital primitive summary

280

Examples UMULTIPLY ROM(8, 8) ; 8 address bits, 8 outputs
+ $G_DPWR $G_DGND;digital power supply and ground
+ ENABLE ; enable node
+ AIN3 AIN2 AIN1 AIN0 ; the first 4 bits of
address
+ BIN3 BIN2 BIN1 BIN0 ; the second 4 bits of
address
+ OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0 ; the outputs
+ ROM_MDL ; the Timing Model name
+ IO_STD ; the I/O MODEL name
+ DATA=X$; the programming data
* B input value:

* 0 1 2 3 4 5 6 7 8 9 AB
C D E F
+ 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 ; A = 0
+ 00 01 02 03 04 05 06 07 08 09 0A
0B 0C 0D 0E 0F ; A = 1
+ 00 02 04 06 08 0A 0C 0E 10 12 14
16 18 1A 1C 1E ; A = 2
+ 00 03 06 09 0C 0F 12 15 18 1B 1E
21 24 27 2A 2D ; A = 3
+ 00 04 08 0C 10 14 18 1C 20 24 28
2C 30 34 38 3C ; A = 4
+ 00 05 0A 0F 14 19 1E 23 28 2D 32
37 3C 41 46 4B ; A = 5
+ 00 06 0C 12 18 1E 24 2A 30 36 3C
42 48 4E 54 5A ; A = 6
+ 00 07 0E 15 1C 23 2A 31 38 3F 46
4D 54 5B 62 69 ; A = 7
+ 00 08 10 18 20 28 30 38 40 48 50
58 60 68 70 78 ; A = 8

+ 00 08 12 1B 24 2D 36 3F 48 51 5A
63 6C 75 7E 87 ; A = 9
+ 00 0A 14 1E 28 32 3C 46 50 5A 64
6E 78 82 8C 96 ; A = A
+ 00 0B 16 21 2C 37 42 4D 58 63 6E
79 84 8F 9A A5 ; A = B
+ 00 0C 18 24 30 3C 48 54 60 6C 78
84 90 9C A8 B4 ; A = C
+ 00 0D 1A 27 34 41 4E 5B 68 75 82
8F 9C A9 B6 C3 ; A = D
+ 00 0E 1C 2A 38 46 54 62 70 7E 8C
9A A8 B6 C4 D2 ; A = E
+ 00 0F 1E 2D 3C 4B 5A 69 78 87 96
A5 B4 C3 D1 E1$; A = F

.MODEL ROM_MDL UROM(...); ROM Timing Model definition

281

Digital devices Digital primitive summary

Arguments and options

<file name text value>
The name of an Intel Hex format file which specifies the programming data for the ROM.
The file name can be specified as a text constant (enclosed in double quotes “ ”), or as a
text expression (enclosed in vertical bars “|”). If a FILE is specified, any programming
data specified by a DATA section is ignored.

<radix flag>
One of the following:

B binary data follows
O octal data follows (most significant bit has lowest

address)
X hexadecimal data follows (most significant bit has

lowest address)

<program data>
The program data is a string of data values used to program the ROM. The values start at
address zero, first output bit. The next bit specifies the next output bit, and so on until all
of the output bits for that address have been specified. Then the output values for the next
address are given, and so on.

The data values must be enclosed in dollar signs ($ $), but can be separated by spaces or
continuation lines.

Digital devices Digital primitive summary

282

Read only memory timing model parameters

Model
parameters*

* See .MODEL (model definition).

Description Units Defau
lt

TPADHMN delay: address to data, low to hi, min sec 0

TPADHTY delay: address to data, low to hi-Z, typ sec 0

TPADHMX delay: address to data, low to hi, max sec 0

TPADLMN delay: address to data, hi to low, min sec 0

TPADLTY delay: address to data, hi to low, typ sec 0

TPADLMX delay: address to data, hi to low, max sec 0

TPEDHMN delay: enable to data, hi-Z to hi, min sec 0

TPEDHTY delay: enable to data, hi-Z to hi, typ sec 0

TPEDHMX delay: enable to data, hi-Z to hi, max sec 0

TPEDLMN Delay: enable to data, hi-Z to low, min sec 0

TPEDLTY delay: enable to data, hi-Z to low, typ sec 0

TPEDLMX delay: enable to data, hi-Z to low, max sec 0

TPEDHZMN delay: enable to data, hi to hi-Z, min sec 0

TPEDHZTY delay: enable to data, hi to hi-Z, typ sec 0

TPEDHZMX delay: enable to data, hi to hi-Z, max sec 0

TPEDLZMN delay: enable to data, low to hi-Z, min sec 0

TPEDLZTY delay: enable to data, low to hi-Z, typ sec 0

TPEDLZMX delay: enable to data, low to hi-Z, max sec 0

283

Digital devices Digital primitive summary

Random access read-write memory
The RAM is normally initialized using unknown data at all addresses. There are two ways to
provide other initialization data for RAMs. The normal way is to give the name of an Intel
Hex Format file. This file is read before the simulation starts, and the RAM is initialized to
match the data in the file. The other way to initialize the RAM is to include the initialization
data on the device line (using the DATA=... construct).

Device format U<name> RAM(<no. of address bits>, <no. of output bits>)
+ <digital power node> <digital ground node>
+ <read enable node> <write enable node>
+ <address msb node>...<address lsb node>
+ <write-data msb node>...<write-data lsb node>
+ <read-data msb node>...<read-data lsb node>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]
+ [FILE=<file name text value>]
+ [DATA=<radix flag>$<initialization data>$]

Timing model format

.MODEL <timing model name> URAM (<model parameters>*)

Arguments and options

<file name text value>
The name of an Intel Hex format file which specifies the initialization data for the RAM.
The file name can be specified as a text constant (enclosed in double quotes “ ”), or as a
text expression (enclosed in vertical bars | |). If a FILE is specified, any initialization data
specified by a DATA section is ignored.

<radix flag>
One of the following:

B binary data follows
O octal data follows (most significant bit

has the lowest address)
X hexadecimal data follows (most significant bit

has the lowest address)

<initialization data>
A string of data values used to initialize the RAM. The values start at address zero, first
output bit. The next bit specifies the next output bit, and so on until all of the output bits
for that address have been specified. Then the output values for the next address are given,
and so on.

The data values must be enclosed in dollar signs ($ $), but can be separated by spaces or
continuation lines.

The initialization of a RAM using the DATA=... construct is the same as the programming
of a ROM. See Read only memory on the ROM primitive for an example.

Digital devices Digital primitive summary

284

 Random access memory timing model parameters

Comments The RAM has separate read and write sections, using separate data and enable pins, and shared
address pins. To write to the RAM, the address and write data signals must be stable for the
appropriate setup times, then write enable is raised. It must stay high for at least the minimum
time, then fall. Address and data must remain stable while write enable is high, and for the
hold time after it falls. Write enable must remain low for at least the minimum time before
changing.

To read from the RAM, raise read enable, and the outputs change from Z (high impedance) to
the appropriate value after a delay. The address can change while read enable is high, and if
it does, the new data is available at the outputs after the delay.

Nothing prevents both the read and write enable from being true at the same time, although
most real devices would not allow this. The new value from the write is sent to the read data
outputs on the falling edge of write enable.

Model
parameters* Description Units Default

TPADHMN delay: address to read data, low to hi, min sec 0

TPADHTY delay: address to read data, low to hi, typ sec 0

TPADHMX delay: address to read data, low to hi, max sec 0

TPADLMN delay: address to read data, hi to low, min sec 0

TPADLTY delay: address to read data, hi to low, typ sec 0

TPADLMX delay: address to read data, hi to low, max sec 0

TPERDHMN delay: read enable to read data, hi-Z to hi, min sec 0

TPERDHTY delay: read enable to read data, hi-Z to hi, typ sec 0

TPERDHMX delay: read enable to read data, hi-Z to hi, max sec 0

TPERDLMN delay: read enable to read data, hi-Z to low, min sec 0

TPERDLTY delay: read enable to read data, hi-Z to low, typ sec 0

TPERDLMX delay: read enable to read data, hi-Z to low, max sec 0

TPERDHZMN delay: read enable to read data, hi to hi-Z, min sec 0

TPERDHZTY delay: read enable to read data, hi to hi-Z, typ sec 0

TPERDHZMX delay: read enable to read data, hi to hi-Z, max sec 0

 THAEWTY min hold time:write enable fall to address change,
typ

sec 0

THAEWMX min hold time:write enable fall to address change,
max

sec 0

THDEWMN min hold time:write enable fall to data change, min sec 0

THDEWTY min hold time:write enable fall to data change, typ sec 0

THDEWMX min hold time:write enable fall to data change, max sec 0

THAEWMN min hold time:write enable fall to address change,
min

sec 0

285

Digital devices Digital primitive summary

TPERDLZMN delay: read enable to read data, low to hi-Z, min sec 0

TPERDLZTY delay: read enable to read data, low to hi-Z, typ sec 0

TPERDLZMX delay: read enable to read data, low to hi-Z, max sec 0

TSUDEWMN min setup time: data to write enable rise, min sec 0

TSUDEWTY min setup time: data to write enable rise, typ sec 0

TSUDEWMX min setup time: data to write enable rise, max sec 0

TSUAEWMN min setup time: address to write enable rise, min sec 0

TSUAEWTY min setup time: address to write enable rise, typ sec 0

TSUAEWMX min setup time: address to write enable rise, max sec 0

TWEWHMN min width: enable write hi, min sec 0

TWEWHTY min width: enable write hi, typ sec 0

TWEWHMX min width: enable write hi, max sec 0

TWEWLMN min width: enable write low, min sec 0

TWEWLTY min width: enable write low, typ sec 0

TWEWLMX min width: enable write low, max sec 0

* See .MODEL (model definition).

Model
parameters* Description Units Default

Digital devices Digital primitive summary

286

Multi-bit A/D and D/A converter
The simulator provides two primitives to model analog-to-digital converters and
digital-to-analog converters: the ADC and the DAC. These two primitives simplify the
modeling of these complex mixed-signal devices.

287

Digital devices Digital primitive summary

Multi-bit analog-to-digital converter

Multi-bit A/D converter timing model parameters

Device format U<name> ADC(<number of bits>)
+ <digital power node> <digital ground node>
+ <in node> <ref node> <gnd node> <convert node>
+ <status node> <over-range node>
+ <output msb node> ... <output lsb node>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Timing model format

.MODEL <timing model name> UADC [model parameters]

Examples U5 ADC(4) $G_DPWR $G_DGND ; 4-bit ADC
+ Sig Ref 0 Conv Stat OvrRng Out3 Out2 Out1 Out0
+ ADCModel IO_STD

.MODEL ADCModel UADC(...) ; Timing Model

Model
parameters*

* See .MODEL (model definition).

Description Units Default

TPCSMN propagation delay: rising edge of convert to rising
edge of status, min

sec 0

TPCSTY propagation delay: rising edge of convert to rising
edge of status, typ

sec 0

TPCSMX propagation delay: rising edge of convert to rising
edge of status, max

sec 0

TPDSMN propagation delay: data valid to falling edge of status,
min

sec 0

TPDSTY propagation delay: data valid to falling edge of status,
typ

sec 0

TPDSMX propagation delay: data valid to falling edge of status,
max

sec 0

TPSDMN propagation delay: rising edge of status to data valid,
min

sec 0

TPSDTY propagation delay: rising edge of status to data valid,
typ

sec 0

TPSDMX propagation delay: rising edge of status to data valid,
max

sec 0

Digital devices Digital primitive summary

288

ADC primitive device timing

DATA refers to both the data and over-range signals. The Convert pulse can be any width,
including zero. If the propagation delay between the rising edge of the Convert signal and the
Status signal (tpsd) is zero, the data and over-range do not go to unknown but directly to the
new value. There is a resistive load from <ref node> to <gnd node>, and from <in node> to
<gnd node>, of 1/GMIN.

The voltage at <in node> and <ref node> with respect to <gnd node> is sampled starting at
the rising edge of the Convert signal, and ending when the Status signal becomes high. This
gives a sample aperture time of tpcs plus any rising time for Convert. If, during the sample
aperture, the output calculated having the minimum <ref node> voltage and maximum <in
node> voltage is different from the output calculated having the maximum <ref node> voltage
and minimum <in node> voltage, the appropriate output bits are set to the unknown state and
a warning message is printed in the output file.

The output is the binary value of the nearest integer to

If this value is greater than 2nbits-1, then all data bits are 1, and over-range is 1. If this value is
less than zero, then all data bits are zero, and over-range is 1.

Convert

Status

DATA Old Valid Unknown New Valid

tpcs tpdstpsd

V in gnd,()
V ref gnd,()
----------------------------- 2nbits⋅

289

Digital devices Digital primitive summary

Multi-bit digital-to-analog converter

DAC primitive device timing

The DAC is a zero impedance voltage source from <out node> to <gnd node>. The voltage is

There is a resistance of 1/GMIN between <ref node> and <gnd node>.

Device format U<name> DAC(<number of bits>)
+ <digital power node> <digital ground node>
+ <out node> <ref node> <gnd node>
+ <input msb node> ... <input lsb node>
+ <timing model name> <I/O model name>
+ [MNTYMXDLY=<delay select value>]
+ [IO_LEVEL=<interface subckt select value>]

Timing model format

.MODEL <timing model name> UDAC [model parameters]

Examples U7 DAC(4) $G_DPWR $G_DGND ; 4-bit DAC
+ Sig Ref 0 In3 In2 In1 In0
+ DACModel IO_STD

.MODEL DACModel UDAC(...) ; Timing model

Multi-bit D/A converter timing model parameters
Model
parameters*

* See .MODEL (model definition).

Description Units Default

TSWMN Switching time: change in data to analog out
stable, min

sec 10ns

TSWTY Switching time: change in data to analog out
stable, typ

sec 10ns

TSWMX Switching time: change in data to analog out
stable, max

sec 10ns

V ref gnd,() binary value of inputs()
2nbits

---⋅

Digital devices Digital primitive summary

290

If any inputs are unknown (X), the output voltage is halfway between the output voltage if all
the X bits were 1 and the output voltage if all the X bits were 0. When an input bit changes,
the output voltage changes linearly to the new value during the switching time.

 Old Data New Data

 tsw

V(out,gnd)

291

Digital devices Digital primitive summary

Behavioral primitives
The simulator offers three primitives to aid in the modeling of complex digital devices: the
Logic Expression, Pin-to-Pin Delay, and Constraint Checker primitives. These devices are
distinct from other primitives in that they allow data-sheet descriptions to be specified more
directly, allowing a one-to-one correspondence using the function diagrams and timing
specifications.

The Logic Expression primitive, LOGICEXP, uses free-format logic expressions to describe
the functional behavior device.

The Pin-To-Pin Delay primitive, PINDLY, describes propagation delays using sets of rules
based on the activity on the device inputs.

The Constraint Checker primitive, CONSTRAINT allows a listing of timing rules such as
setup/hold times, and minimum pulse widths. When a violation occurs, the simulator issues a
message indicating the time of the violation and its cause.

Digital devices Digital primitive summary

292

Logic expression
The LOGICEXP primitive allows combinational logic to be expressed in an equation-like
style, using standard logic operators, node names, and temporary variables.

Device format U<name> LOGICEXP (<no. of inputs>, <no. of outputs>)
+ <digital power node> <digital ground node>
+ <input node 1> ... <input node n>
+ <output node 1> ... <output node n>
+ <timing model name>
+ <I/O model name>
+ [IO_LEVEL = <value>]
+ [MNTYMXDLY = <value>]
+ LOGIC:
+ <logic assignment>*

Timing model format

.MODEL <timing model name> UGATE [model parameters]

Arguments and options

LOGIC:
Marks the beginning of a sequence of one or more <logic assignments>. A <logic
assignment> can have one of the two following forms:

<output node> = { <logic expression > }
<temporary value> = { <logic expression> }

<output node>
One of the output node names as it appears in the interface list. Assignments to an
<output node> causes the result of the <logic expression> to be scheduled on that output
pin. Each <output node> must have exactly one assignment.

<temporary value>
Any target of an assignment which is not specified as one of the nodes attached to the
device defines a temporary variable. Once assigned, <temporary values> can be used
inside subsequent <logic expressions>. They are provided to reduce the complexity and
improve the readability of the model. The rules for node names apply to
<temporary value> names

<logic expression>
A C-like, infix-notation expression that returns one of the five digital logic levels. Like all
other expressions, <logic expressions> must be surrounded by curly braces { }. They can
span one or more lines using the + continuation character in the first column position.

The logic operators are listed below from highest-to-lowest precedence.

293

Digital devices Digital primitive summary

Logic Expression Operators

 ~ unary not
 & and
 ^ exclusive or
 | or

The allowed operands are:

• <input nodes>

• Previously assigned <temporary values>

• Previously assigned <output nodes>

• <logic constants>: 0, 1, X, R, F

As in other expressions, parentheses () can be used to group subexpressions. Note that these
logic operators can also be used in Probe trace definitions.

Comments The LOGICEXP primitive uses the same timing model as the standard gate primitives,
UGATE.

See Standard gate timing model parameters for the list of UGATE model parameters.

Digital devices Digital primitive summary

294

Simulation behavior

When a LOGICEXP primitive is evaluated during a transient analysis, the assignment
statements using in it are evaluated in the order they were specified in the netlist. The logic
expressions are evaluated using no delay. When the result is assigned to an output node, it is
scheduled on that output pin using the appropriate delay specified in the timing model.

Internal feedback loops are not allowed in expressions. That is, an expression cannot
reference a value which has yet to be defined. However, external feedback is allowed if the
output node also appears on the list of input nodes.

This example models the functionality of the 74181 Arithmetic/Logic Unit. The logic for the
entire part is contained in just one primitive. Timing would be handled by the PINDLY and
CONSTRAINT primitives. Refer to any major device manufacturer’s data book for a detailed
description of the operation of the 74181.

U74181 LOGICEXP(14, 8) DPWR DGND
+ A0BAR A1BAR A2BAR A3BAR B0BAR B1BAR B2BAR B3BAR S0 S1 S2 S3 M CN
+ LF0BAR LF1BAR LF2BAR LF3BAR LAEQUALB LPBAR LGBAR LCN+4
+ D0_GATE IO_STD
+
+ LOGIC:
*
* Intermediate terms:
*
+ I31 = { ~((B3BAR & S3 & A3BAR) | (A3BAR & S2 & ~B3BAR)) }
+ I32 = { ~((~B3BAR & S1) | (S0 & B3BAR) | A3BAR) }
+
+ I21 = { ~((B2BAR & S3 & A2BAR) | (A2BAR & S2 & ~B2BAR)) }
+ I22 = { ~((~B2BAR & S1) | (S0 & B2BAR) | A2BAR) }
+
+ I11 = { ~((B1BAR & S3 & A1BAR) | (A1BAR & S2 & ~B1BAR)) }
+ I12 = { ~((~B1BAR & S1) | (S0 & B1BAR) | A1BAR) }
+
+ I01 = { ~((B0BAR & S3 & A0BAR) | (A0BAR & S2 & ~B0BAR)) }
+ I02 = { ~((~B0BAR & S1) | (S0 & B0BAR) | A0BAR) }
+
+ MBAR = { ~M }
+ P = { I31 & I21 & I11 & I01 }
*
* Output Assignments
*
+ LF3BAR = {(I31 & ~I32) ^
+ ~((I21 & I11 & I01 & Cn & MBAR) | (I21 & I11 & I02 & MBAR) |
+ (I21 & I12 & MBAR) | (I22 & MBAR))}
+
+ LF2BAR = {(I21 & ~I22) ^
+ ~((I11 & I01 & Cn & MBAR) | (I11 & I02 & MBAR) |
+ (I12 & MBAR)) }
+
+ LF1BAR = {(I11 & ~I12) ^ ~((Cn & I01 & MBAR) |
+ (I02 & MBAR)) }
+
+ LF0BAR = { (I01 & ~I02) ^ ~(MBAR & Cn) }
+
+ LGBAR = { ~(I32 | (I31 & I22) | (I31 & I21 & I12) |
+ (I31 & I22 & I11 & I02)) }
+
+ LCN+4 = { ~LGBAR | (P & Cn) }
+ LPBAR = { ~P }
+ LAEQUALB = { LF3BAR & LF2BAR & LF1BAR & LF0BAR }

295

Digital devices Digital primitive summary

Pin-to-pin delay
The pin-to-pin (PINDLY) primitive is a general mechanism that allows the modeling of
complex device timing. It can be thought of as a set of delay-lines (paths) and rules describing
how to associate specific amounts of delay using each path.

A PINDLY primitive is used in the output path of a device model, typically at the output pins
of a subcircuit definition. A single PINDLY primitive can model the timing and output
characteristics of an entire part, including tristate behavior.

PINDLY primitives are expressed and evaluated in a manner similar to the LOGICEXP
primitive, except in this case a delay expression is assigned to each output. Whenever an
output path undergoes a transition, its delay expression is evaluated to determine the
propagation delay which is to be applied to that change.

A delay expression can contain one or more rules that determine which activity on the part’s
inputs is responsible for the output change, for example, “is the output changing because the
clock changed or the data changed?” This allows device models to be derived directly from
data sheets, which typically specify propagation delays based on which input is changing. The
PINDLY primitive uses its reference inputs to determine the logic state and recent transitions
on nodes which are not in the output path.

Pin-to-pin delay modeling is much simpler compared to earlier methods, in which
input-to-output delays had to be distributed among the low-level primitives used to model the
device. The latter method can require a great deal of trial and error because manufacturer’s
data sheets do not provide a one-to-one association between the logic diagram and the timing
specifications.

PINDLY primitives can also contain constraints such as setup/hold, width, and frequency
specifications, like those supported by the CONSTRAINT primitive. When used in the
PINDLY primitive, these constraints allow the simulator to propagate hazard conditions and
report violations in subsequent logic.

IN1

IN2

IN3

IN4

REF2

REF3

REF1

OUT1

OUT2

OUT3

OUT4

Delay Rules

Delay Rules

Delay Rules

Digital devices Digital primitive summary

296

Device format U<name> PINDLY (<no. of paths>, <no. of enables>, <no. of
refs>)
+ <digital-power-node> <digital-ground-node>
+ <input node 1> ... <input node n>
+ [<enable node 1> ... <enable node n>]
+ [<reference node 1> ... <reference node n>]
+ <output node 1> ... <output node n>
+ <I/O model name>
+ [MNTYMXDLY = <delay select value>]
+ [IO_LEVEL = <interface subckt select value>]
+ [BOOLEAN:
+ <boolean assignment>*]
+ PINDLY:
+ <delay assignment>*
+ [TRISTATE:
+ ENABLE LO | HI <enable node>
+ <delay assignment>*]
+ [SETUP_HOLD: <setup-hold-specification>]
+ [WIDTH: <width-specification>]
+ [FREQ: <frequency-specification>]
+ [GENERAL: <general-specification>]

Examples U1 PINDLY(4,0,3) $G_DPWR $G_DGND
+ IN1 IN2 IN3 IN4
+ REF1 REF2 REF3
+ OUT1 OUT2 OUT3 OUT4
+ IO_MODEL D0_GATE
+ PINDLY:
+ ...

Arguments and options

<no. of paths>
Specifies the number of input-to-output paths represented by the device;
the number of inputs must be equal to the number of outputs. A path is
defined as an input-to-output association, having the appropriate delay
rules started according to the described conditions.

<no. of enables>
Specifies the number of tristate enable nodes used by the primitive. Enable
nodes are used in TRISTATE sections. <no. of enables> can be zero.

<no. of refs>
Specifies the number of reference nodes used by the primitive. Reference
nodes are used within delay expressions to get state information about
signals which are not in the input-to-output paths. <no. of refs> can be zero.

Comments The example depicts the relationship and purpose of the different pins on the
PINDLY primitive.

The PINDLY primitive can be viewed as four buffers, IN1 to OUT1 through
IN4 to OUT4, and three reference nodes which are used by the output delay
rules. The figure shows how the reference nodes can be used in one or more
set of delay rules. In this case, REF1 and REF2 are used by the delay rules for
OUT2, and REF3 is used by the delay rules for OUT1 and OUT4. The figure
also shows that OUT2 and OUT3 can share the same delay rules. The
remainder of the format description describes how to create delay rules.

297

Digital devices Digital primitive summary

BOOLEAN: Marks the beginning of a section of one or more <boolean assignments>,
which define temporary variables that can be used in subsequent <delay expressions>.
BOOLEAN sections can appear in any order within the PINDLY primitive. A <boolean
assignment> has the following form:

<boolean variable> = { <boolean-expression> }

<boolean variable> can be any name which follows the node name rules.

<boolean expression> is a C-like, infix-notation expression which returns the boolean value
TRUE or FALSE. Like all other expressions, <boolean expressions> must be surrounded by
curly braces {...}. They can span one or more lines by using the + continuation character in
the first column position. The boolean operators are listed below from highest-to-lowest
precedence:

~ unary not
== equality
!= inequality
& and
^ exclusive or
| or

All boolean operators take the following boolean values as operands:

• Previously assigned <boolean variables>

• Reference functions (defined below)

• Transition functions (defined below)

• <boolean constants>: TRUE, FALSE

In addition, the == and != operators take logic values, such as <input nodes> and
<logic constants>. This allows for a check of the values on nodes; for example, CLEAR == 1
returns TRUE if the current level on the node CLEAR is a logic one and FALSE otherwise.

Digital devices Digital primitive summary

298

Reference functions

Reference functions are used to detect changes (transitions) on <reference nodes> or <input
nodes>. All reference functions return boolean values, and therefore can be used within any
<boolean expression>. Following is the list of available reference functions and their
arguments:

CHANGED <node>, <delta time>)
CHANGED_LH <node>, <delta time>)
CHANGED_HL <node>, <delta time>)

The CHANGED function returns TRUE if the specified <node> has undergone any state
transition within the past <delta time>, prior to the current simulation time; otherwise it
returns FALSE.

Similarly, CHANGED_LH returns TRUE if <node> has specifically undergone a low-to-high
transition within the past <delta time>; FALSE otherwise. Note that CHANGED_LH only
looks at the most recent (or current) transition. It cannot, for example, determine if 0 Æ 1
occurred two transitions ago.

Finally, CHANGED_HL is similar to CHANGED_LH, but checks for high-to-low
transitions.

If a <delta time> is specified zero, the reference functions return TRUE if the node has
changed at the current simulation time. This allows all of the functionality of a device to be
modeled in zero delay so that the total delay through the device can be described using the
delay expressions.

299

Digital devices Digital primitive summary

Transition functions

Transition functions are used to determine the state change occurring on the changing output,
that is, the <output node> for which the <delay expression> is being evaluated. Like reference
functions, transition functions return boolean values. However, they differ from reference
functions in that transition functions take no arguments, since they implicitly refer to the
changing output at the current time. The transition functions are of the general form:

TRN_pn

where p is the previous state value and n is the new state value. State values are taken from
the set { L H Z $ }. Where appropriate, the $ can be used to signify don’t care, e.g., a TRN_H$
matches a transition from H to ANY state. Rising states automatically map to High, and
Falling states automatically map to Low.

As a term in any boolean expression, for example, TRN_LH takes on a TRUE value if the
changing output is propagating a change from zero to one.

Following is the complete set of transition functions.

TRN_LH TRN_LZ TRN_L$ TRN_HL TRN_HZ TRN_H$ TRN_ZL TRN_ZH TRN_Z$ TRN_$L TRN
$H TRN$Z

The TRN_pZ and TRN_Zn functions return true only if it is used within a TRISTATE
section, described below. Although open-collector outputs also transition to a
high-impedance Z (instead of H), most data books describe propagation times on
open-collector outputs as TPLH or TPHL. Therefore, open-collector output devices
should use TRN_LH and TRN_HL, and tristate output devices should use TRN_LZ,
TRN_HZ, TRN_ZL, and TRN_ZH.

PINDLY: marks the beginning of a section of one or more <delay assignments>, which
are used to associate propagation delays using the PINDLY primitive’s outputs.
<delay assignments> are of the form:

<output node>* = { <delay expression> }

<output node> is one of the output node names as it appears in the interface list. Each <output
node> must have exactly one assignment. Several outputs can share the same delay rules by
listing them (separated by spaces or commas) on the left-hand side of the <delay expression>.

<delay expression> is an expression which, when evaluated, returns a triplet (min, typ, max)
of delay values. Like all other expressions, <delay expressions> must be surrounded by curly
braces {...}. They can span one or more lines by using the +222222222222 continuation
character in the first column position.

The simplest <delay expression> is a single <delay value>, defined as:

DELAY(<min>, <typ>, <max>)

where <min>, <typ>, and <max> are floating point constants or expressions (involving
parameters), expressed in seconds. To specify unknown values, use -1. For example,
DELAY(20ns,-1,35ns) specifies a minimum time of 20ns, a default (program-computed)
value for typical, and a maximum of 35ns. See Treatment of unspecified propagation
delays for more information on default delays.

Digital devices Digital primitive summary

300

The delay assignment below specifies the propagation delays through output Y to be:
min=2ns, typ=5ns, and max=9ns.

...
+ PINDLY:
+ Y = { DELAY(2ns, 5ns, 9ns) }
...

To define more complex, rule-based <delay expressions>, use the CASE function, which has
the form:

CASE(
<boolean expression>, <delay expression>,; Rule 1
<boolean expression>, <delay expression>,; Rule 2
... ; ...
<delay expression> ; Default delay
)

The arguments to the CASE function are pairs of <boolean expressions> and
<delay expressions>, followed by a final default <delay expression>. <boolean expressions>
(described above) can contain <boolean values>, reference functions, and transition
functions.

When the CASE function is evaluated, each <boolean expression> is evaluated in order of
appearance until one produces a TRUE result. When this occurs, the <delay expression> it is
paired with the result of the CASE function, and the evaluation of the CASE is ended. If none
of the <boolean expressions> return a TRUE result, the value of the final <delay expression>
is used. Because it is possible for all <boolean expressions> to evaluate FALSE, the default
delay value must be supplied. Note that each argument to the CASE function must be
separated by commas.

...
+ BOOLEAN:
+ CLOCK = { CHANGED_LH(CLK, 0) }
+ PINDLY:
+ QA QB QC QD = {
+ CASE (
+ CLOCK & TRN_LH, DELAY(-1,13ns,24ns),
+ CLOCK & TRN_HL, DELAY(-1,18ns,27ns),
+ CHANGED_HL(CLRBAR,0), DELAY(-1,20ns,28ns),
+ DELAY(-1,20ns,28ns) ; Default
+)
+ }

This example describes the delays through a four-bit counter. It shows how rules can be
defined to precisely isolate the cause of the output change. In this example, the boolean
variable CLOCK is being defined. It is TRUE whenever the reference input CLK changes
from low-to-high at the current simulation time. This is only true if the device functionality is
modeled in zero delay.

The four outputs QA through QD all share the same delay expression. The CASE is used to
specify different delays when the device is counting or clearing. The first two rules define
delays when the device is counting (CLK changing low-to-high); the first when the output
(QA through QD) is going from low-to-high, the second from high-to-low.

The third rule simply uses the CHANGED_HL function directly to determine whether
CLRBAR is changing, and in this case the specification applies to any change (low-to-high
or high-to-low) on the output. The default delay applies to all other output transitions which
are not covered by the first three rules.

301

Digital devices Digital primitive summary

TRISTATE: marks the beginning of a sequence of one or more <delay assignments>. The
TRISTATE section differs from the PINDLY section in that the outputs are controlled by the
specified enable node.

Immediately following the TRISTATE keyword, an enable node must be specified using its
polarity and the ENABLE keyword:

ENABLE HI <enable node>; Specifies active HI enable

ENABLE LO <enable node>; Specifies active LO enable

The specified <enable node> applies to all <output node> assignments in the current section.

Note that <delay expressions> within a TRISTATE section can contain the transition
functions pertaining to the Z state, for example TRN_ZL and TRN_HZ.

The following example demonstrates how an enable node can be used to control more than
one output. It also shows that some device outputs can use the standard output (PINDLY)
while others use the tristate output. (Delay values have been omitted.)

IN1

REF1

REF2

ENA

OUT1 Delay Rules

IN3 Delay Rules

 Delay RulesIN2 OUT2

OUT3

Digital devices Digital primitive summary

302

U1 PINDLY(3,1,2) $G_DPWR $G_DGND
+ IN1 IN2 IN3
+ ENA
+ REF1 REF2
+ OUT1 OUT2 OUT3
+ IO_MODEL
+ TRISTATE:
+ENABLE LO = ENA
+OUT1 = {
+ CASE(
+ CHANGED(REF1, 0) & TRN_LH, DELAY(...),
+ CHANGED(REF2, 0), DELAY(...),
+ TRN_ZL, DELAY(...),
+ ...
+)
+ }
+OUT3 = {
+ CASE(
+ TRN_LZ,DELAY(...),
+ TRN_HZ,DELAY(...),
+ ...
+)
+ }
+ PINDLY:
+OUT2 = {
+ CASE(
+ CHANGED(REF1,0),DELAY(...),
+ ...
+)
+ }

1 Each CONSTRAINT clause operates independently of all others within a device.

2 By default, for violations involving <input node>, the message tag propagates to the
<output node> having positional correspondence.

3 By default, for violations involving <reference node>, the message tag propagates to ALL
<output node>s.

4 The default behavior can be overridden by use of one of the following statements, which
can appear anywhere within any constraint clause proper:

AFFECTS (#OUTPUTS) = <output node> { ... }
AFFECTS_ALL

5 AFFECTS_NONE is always the default for the GENERAL constraint.

SETUP-HOLD: Marks the beginning of a constraint specification. These
WIDTH: constructs have the same syntax as those used in the
FREQ: CONSTRAINT primitive (see page 3-308).

GENERAL:When a PINDLY primitive is used, the constraint specifications allow the
simulator to not only report timing violations, but also to track the effects of the violations in
downstream logic. This allows more serious persistent hazards to be reported. This behavior
differs from the CONSTRAINT primitive, which only reports timing violations.

303

Digital devices Digital primitive summary

PINDLY primitive simulation behavior

A PINDLY primitive is evaluated whenever any of its <input nodes> or <enable nodes>
change. The <input node> is positionally associated using its corresponding <output node>.
The BOOLEAN statements up to the output assignment are evaluated first, then the
appropriate PINDLY or TRISTATE <delay expression> which has been assigned to the
changing <output node> is evaluated. The changing input’s state is then applied to the output,
using its delay value.

The following PINDLY primitive models the timing behavior of a 74LS160A counter. This
example is derived directly from the device model in the model library.

ULS160ADLY PINDLY(5,0,4) DPWR DGND
+ RCO QA QB QC QD ; Inputs
+ CLK LOADBAR ENT CLRBAR; Reference nodes
+ RCO_O QA_O QB_O QC_O QD_O; Outputs
+ IO_LS MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}
+
+ BOOLEAN:
+ CLOCK = { CHANGED_LH(CLK,0) }
+ CNTENT = { CHANGED(ENT,0) }
+
+ PINDLY:
+ QA_O QB_O QC_O QD_O = {
+ CASE(
+ CLOCK & TRN_LH, DELAY(-1,13NS,24NS),
+ CLOCK & TRN_HL, DELAY(-1,18NS,27NS),
+ CHANGED_HL(CLRBAR,0), DELAY(-1,20NS,28NS),
+ DELAY(-1,20NS,28NS); Default
+)
+ }
+
+ RCO = {
+ CASE(
+ CNTENT, DELAY(-1,9NS,14NS),
+ CLOCK & TRN_LH, DELAY(-1,18NS,35NS),
+ CLOCK & TRN_HL, DELAY(-1,18NS,35NS),
+ DELAY(-1,20NS,35NS); Default
+)
+ }

Digital devices Digital primitive summary

304

Constraint checker
The CONSTRAINT primitive provides a general constraint checking mechanism to the
digital device modeler. It performs setup and hold time checks, pulse width checks, frequency
checks, and includes a general mechanism to allow user-defined conditions to be reported.

The CONSTRAINT primitive only reports timing violations. It does not affect propagated or
stored logic state or propagation delays.

Timing specifications are usually given at the device (i.e., package pin) level. Thus, the inputs
to the constraint description typically are those of the subcircuit description of the device,
after any necessary buffering. CONSTRAINT devices can be used in conjunction with any
combination of digital primitives, including gates, logic expressions, and pin-to-pin delay
primitives.

BOOLEAN: marks the beginning of a section containing one or more <boolean
assignments>, of the form:

<boolean variable> = { <boolean expression> }

BOOLEAN sections can appear in any order within the CONSTRAINT primitive.

The syntax of the <boolean expression> is the same as that defined in the PINDLY primitive
reference, having the exception that transition functions have no meaning within the
CONSTRAINT primitive.

SETUP_HOLD:

Marks the beginning of a setup/hold constraint specification, which has the following format:

+ SETUP_HOLD:
+ CLOCK <assertion edge> = <input node>
+ DATA (<no. of data inputs>) = <input node j> ... <input node k>
+ [SETUPTIME = <time value>]
+ [HOLDTIME = <time value>]
+ [RELEASETIME = <time value>]
+ [WHEN {<boolean expression>}]
+ [MESSAGE = “<additional message text>"]
+ [ERRORLIMIT = <value>]
+ [AFFECTS_ALL | AFFECTS_NONE |
+ AFFECTS (#OUTPUTS) = <output-node-list>]

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in PINDLY primitives.

CLOCK defines the node to be used as the reference for setup/hold/release specification.
<assertion edge> is one of LH or HL, and specifies which edge of the CLOCK node the
setup/hold time is measured against. The CLOCK node must be specified.

Device format U<name> CONSTRAINT (<no. of inputs>)
+ <digital power node> <digital ground node>
+ <input node 1> ... <input node n>
+ <I/O model name>
+ [IO_LEVEL = <interface subckt select value>]
+ [BOOLEAN: <boolean assignment>*] ...
+ [SETUP_HOLD: <setup_hold specification>] ...
+ [WIDTH: <width specification>] ...
+ [FREQ: <frequency specification>] ...
+ [GENERAL: <general specification>] ...

305

Digital devices Digital primitive summary

DATA defines one or more nodes to be the nodes whose setup/hold time is being measured.
At least one DATA node must be specified.

SETUPTIME defines the minimum time that all DATA nodes must be stable prior to the
<assertion edge> of the clock. The <time value> must be a nonnegative constant or
expression, expressed in seconds. Some devices have different setup time requirements which
depend on whether the data is a low or a high at the time of the clock change. In this case, one
or both of the following can be used:

SETUPTIME_LO = <time value>
SETUPTIME_HI = <time value>

instead of SETUPTIME, which defines both low- and high-level specifications. If one or both
SETUPTIME_xx specifications is zero, the simulator does not perform a setup check for that
data level.

HOLDTIME defines the minimum time that all DATA nodes must be stable after the
<assertion edge> of the clock. The <time value> must be a nonnegative constant or
expression, expressed in seconds. Some devices have different hold time requirements which
depend on whether the data is a low or a high at the time of the clock change. In this case, one
or both of the following can be used:

HOLDTIME_LO = <time value>
HOLDTIME_HI = <time value>

instead of HOLDTIME, which defines both low- and high-level specifications. If one or both
HOLDTIME_xx specifications is zero, the simulator does not perform a hold check for that
data level.

RELEASETIME specifications cause the simulator to perform a special-purpose setup check.
In a data sheet, release time (also called recovery time) specifications refer to the minimum
time a signal (such as CLEAR) can go inactive before the active CLOCK edge. In other
words, release times refer to the position of a specific data edge in relation to the clock edge.
For this reason, one or both of the following can be used:

RELEASETIME_LH = <time value>
RELEASETIME_HL = <time value>

instead of RELEASETIME, which defines both LH- and HL-edge specifications. The
<time value> must be a nonnegative constant or expression, expressed in seconds.

The difference between the release-time checker and the setup-time checker is that
simultaneous CLOCK/DATA changes are never allowed in the release-time check. That is, a
nonzero hold time is assumed, even though the HOLDTIME is not specified. This feature
allows the data sheet values to be specified for release-times directly in a model. For this
reason, release times are usually given alone, and not in conjunction with SETUPTIME or
HOLDTIME specifications.

Digital devices Digital primitive summary

306

Simulation behavior: CLOCK

The sequence of setup/hold/release checks begins when the CLOCK node undergoes the
specified LH or HL transition. At that time, the WHEN expression is evaluated. If the result
is TRUE, all checks using nonzero specifications are performed for during this clock cycle. If
the result is FALSE, then no setup, hold, or release checks are performed. The WHEN
expression is used in device models to block the reporting of violations when the device is not
listening to the DATA inputs, such as during a clearing function.

The simulator performs setup-time checks when the CLOCK node undergoes an
<assertion edge>. If the HOLDTIME specification is zero, simultaneous CLOCK/DATA
transitions are allowed, however the previous value of DATA is still checked for setup-time.
If the HOLDTIME is not zero, simultaneous CLOCK/DATA transitions are reported as a
HOLDTIME violation.

The simulator performs hold-time checks on any DATA node that changes after the
<assertion edge> on the CLOCK node. If the SETUPTIME is zero, simultaneous
CLOCK/DATA changes are allowed, and the next transition on DATA which occurs before
the non-asserting clock edge is checked for a hold-time violation.

The simulator performs release-time checks when the CLOCK node undergoes an
<assertion edge>. Simultaneous CLOCK/DATA transitions are not allowed, and is flagged as
a violation.

If either the CLOCK or DATA node is unknown (X) at the time of a check, no violation is
reported for that node. This reduces the number of unnecessary warning messages: an X being
clocked into a device is usually a symptom of another problem which has already been
reported.

The sequence ends when the CLOCK node undergoes the other (non-asserting) edge. At this
time, any violations which occurred during that clock cycle are reported. (This makes it
possible for violations to appear out of time-order in the .out file.)

WIDTH:Marks the beginning of a minimum pulse-width constraint specification, which has
the following format:

+ WIDTH:
+ NODE = <input node>
+ [MIN_HI = <time value>]
+ [MIN_LO = <time value>]
+ [WHEN {<boolean expression>}]
+ [MESSAGE = "<additional message text>"]
+ [ERRORLIMIT = <value>]
+ [AFFECTS_ALL | AFFECTS_NONE |
+ AFFECTS (#OUTPUTS) = <output-node-list>]

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in the PINDLY primitive.

NODE defines the input node whose pulse width is to be checked.

MIN_HI specifies the minimum time that the <input node> can remain at a high (1) logic
level. The <time value> must be a nonnegative constant or expression, expressed in seconds.
If not specified, MIN_HI defaults to 0, meaning that any width HI pulse is allowed.

MIN_LO likewise specifies the minimum time that the <input node> can remain at a low (0)
logic level. The <time value> must be a nonnegative constant or expression, expressed in
seconds. If not specified, MIN_LO defaults to 0, meaning that any width LO pulse is allowed.

307

Digital devices Digital primitive summary

At least one instance of MIN_HI or MIN_LO must appear within a WIDTH specification.

FREQ: marks the beginning of a frequency constraint specification, which has the following
format:

+ FREQ:
+ NODE = <input node>
+ [MINFREQ = <frequency value>]
+ [MAXFREQ = <frequency value>]
+ [WHEN { <boolean expression> }]
+ [MESSAGE "<additional message text>"]
+ [ERRORLIMIT = <value>]
+ [AFFECTS_ALL | AFFECTS_NONE |
+ AFFECTS (#OUTPUTS) = <output-node-list>]

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in the PINDLY primitive.

NODE defines the input node whose frequency is to be checked.

MINFREQ specifies the minimum frequency allowed on <input node>. The
<frequency value> must be a nonnegative floating point constant or expression, expressed in
hertz.

MAXFREQ specifies the maximum frequency allowed on <input node>. The
<frequency value> must be a nonnegative floating point constant or expression, expressed in
hertz.

At least one of MINFREQ or MAXFREQ must be specified within a FREQ specification.

Simulation Behavior: FREQ

When performing a MINFREQ check, the simulator reports a violation whenever the duration
of a period on the <input node> is greater than 1/<frequency value>. Likewise, when
performing a MAXFREQ check, it reports a violation whenever any period is less than
1/<frequency value>. To avoid large numbers of violations, the simulator does not report
subsequent violations until after a valid cycle occurs.

Note that the use of maximum FREQ specifications provides a slightly different functionality
from that achieved by use of minimum pulse-width checks: in the FREQ specification case,
the duty-cycle characteristic of the signal is not measured or constrained in any way, whereas
the pulse-width check effectively defines the allowable duty-cycle.

Some clocked state-storage device specifications include information about maximum clock
frequency, but omit duty-cycle information.

GENERAL:Marks the beginning of a general condition test. GENERAL constraints have the
following form:

+ GENERAL:
+ WHEN { <boolean expression> }
+ MESSAGE = "<message text>"
+ [ERRORLIMIT = <value>]
+ [AFFECTS_ALL | AFFECTS_NONE |
+ AFFECTS (#OUTPUTS) = <output-node-list>]

Digital devices Digital primitive summary

308

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in the PINDLY primitive. The default for the GENERAL constraint is
AFFECTS_NONE.

WHEN is used to define a boolean expression, which can describe arbitrary signal
relationships that represent the error or condition of interest.

MESSAGE defines the message to be reported by the simulation whenever the WHEN
expression evaluates TRUE. The <message text> must be a text constant (enclosed by double
quotes “ ”) or a text expression.

The <boolean expression> is evaluated whenever the CONSTRAINT primitive is
evaluated, that is, whenever any of its inputs undergo a transition. If the result is
TRUE, the simulator produces a header containing the time of the occurrence,
followed by the <message text>.

General notes

Any or all of the constraint specifications (SETUP_HOLD, WIDTH, FREQ, GENERAL) can
appear, in any order, within a CONSTRAINT primitive. Further, more than one constraints
of the same type can appear (such as two WIDTH specifications). Each of the constraint
specifications is evaluated whenever any inputs to the CONSTRAINT primitive instance
change.

All constraint specifications can optionally include a WHEN statement, which is interpreted
as “only perform the check when result of <boolean expression> == TRUE.” The WHEN
statement is required in the GENERAL constraint.

Each constraint type (SETUP_HOLD, WIDTH, FREQ, and GENERAL) has an associated
built-in message. In addition, each instance can include a MESSAGE specification, which
takes a text constant (enclosed in double quotes “ ”) or text expression. The
<additional message text> is appended to the end of the internally-generated, type-specific
message which is output whenever a violation occurs. The MESSAGE clause is required for
the GENERAL constraint device.

All of the constraint specifications can accept an optional ERRORLIMIT specification. The
<value> must be a nonnegative constant or expression. The default <value> is obtained from
the value of the DIGERRDEFAULT (set using the .OPTIONS command), which defaults to 20.
A value of zero is interpreted as infinity, i.e., no limit. When more than <value> violations of
the associated constraint have occurred, no further message output is generated for that
constraint checker; other checkers within the CONSTRAINT primitive that have not
exceeded their own ERRORLIMITs continue to operate.

During simulation, if the total number of digital violations reported exceeds the value given
by DIGERRLIMIT (set using the .OPTIONS (analysis options) command), then the simulation
is halted. DIGERRLIMIT defaults to infinity.

309

Digital devices Digital primitive summary

This CONSTRAINT primitive example below was derived from the 74LS160A device in the
model library. It demonstrates how all of the timing checks can be performed by a single
primitive.

ULS160ACON CONSTRAINT(10) DPWR DGND
+ CLK ENP ENT CLRBAR LOADBAR A B C D EN
+ IO_LS
+ FREQ:
+ NODE = CLK
+ MAXFREQ = 25MEG
+ WIDTH:
+ NODE = CLK
+ MIN_LO = 25NS
+ MIN_HI = 25NS
+ WIDTH:
+ NODE = CLRBAR
+ MIN_LO = 20NS
+ SETUP_HOLD:
+ DATA(1) = LOADBAR
+ CLOCK LH = CLK
+ SETUPTIME = 20NS
+ HOLDTIME = 3NS
+ WHEN = { CLRBAR!=’0 }
+ SETUP_HOLD:
+ DATA(2) = ENP ENT
+ CLOCK LH = CLK
+ SETUPTIME = 20NS
+ HOLDTIME = 3NS
+ WHEN = { CLRBAR!=’0 & (LOADBAR!=’0 ^ CHANGED(LOADBAR,0))
+ & CHANGED(EN,20NS) }
+ SETUP_HOLD:
+ DATA(4) = A B C D
+ CLOCK LH = CLK
+ SETUPTIME = 20NS
+ HOLDTIME = 3NS
+ WHEN = { CLRBAR!=’0 & (LOADBAR!=’1 ^ CHANGED(LOADBAR,0)) }
+ SETUP_HOLD:
+ DATA(1) = CLRBAR
+ CLOCK LH = CLK
+ RELEASETIME_LH = 25NS

Digital devices Stimulus devices

310

Stimulus devices
Stimulus devices apply digital waveforms to a node. Their purpose is to provide the input to
a digital circuit or a digital portion of a mixed circuit. They play the same role in the digital
simulator that the independent voltage and current sources (V and I devices) do in the analog
simulator.

There are two types of stimulus devices: the stimulus generator (STIM), which uses a simple
command to generate a wide variety of waveforms; and the file stimulus (FSTIM), which
obtains the waveforms from an external file.

Unlike digital primitives, stimulus devices do not have a Timing Model. This is similar to the
analog V and I devices: the timing characteristics are described by the device itself, not in a
separate model.

311

Digital devices Stimulus devices

Stimulus generator
Device format U<name> STIM(<width>, <format array>)

+ <digital power node> <digital ground node>
+ <node>*
+ <I/O model name>
+ [STIMULUS=<stimulus name>]
+ [IO_LEVEL=<interface subckt select value>]
+ [TIMESTEP=<stepsize>]
+ <command>*

Arguments and options

<width>
Specifies the number of signals (nodes) output by the stimulus generator.

<format array>
Specifies the format of <value>s used in defining the stimulus. <format array> is a
sequence of digits which specifies the number of signals (nodes) that the corresponding
digit in a <value> represents. Each digit of <value> is assumed to be in base 2<m> where
<m> is the corresponding digit in <format array>. Each <value> must have the same
number of digits as <format array>. The sum of the digits in <format array> must be
<width>, and each digit must be either a 1, 3, or 4 (that is, binary, octal, or hexadecimal).

<digital power node> <digital ground node>
These nodes are used by the interface devices which connect analog nodes to digital nodes
or vice versa. Refer to your PSpice user’s guide for more information.

<node>*
One or more node names which are output by the stimulus generator. The number of
nodes specified must be the same as <width>.

<I/O model name>
The name of an I/O model, which describes the driving characteristics of the stimulus
generator. I/O models also contain the names of up to four DtoA interface subcircuits,
which are automatically called by the simulator to handle interface nodes. In most cases,
the I/O model named IO_STM can be used from the “dig_io.lib” library file. Refer to your
PSpice user’s guide for a more detailed description of I/O models.

STIMULUS
An optional parameter for referencing a stimulus definition.

IO_LEVELAn optional device parameter which selects one of the four DtoA interface
subcircuits from the I/O model. The simulator calls the selected subcircuit automatically
in the event a <node> connects to an analog device. If not specified, IO_LEVEL defaults
to 0. Valid values are:

0 = the current value of .OPTIONS DIGIOLVL (default=1)
1 = DtoA1
2 = DtoA2
3 = DtoA3
4 = DtoA4

Refer to your PSpice user’s guide for more information.

Digital devices Stimulus devices

312

Time units
Time values can be stated in seconds or in clock cycles (see TIMESTEP above). To specify a
time value in clock cycles, use the C suffix. Otherwise, the units default to seconds.

Absolute/relative times

Times can be absolute, such as 45ns or 10c, or relative to the previous time. To specify a
relative time, prefix the time using a “+” such as +5ns or +2c.

<value> is the value for each node (0, 1, R, F, X, or Z). <value> is interpreted using the
<format array>.

<label name> is the name used in GOTO statements. GOTO <label name> jumps to the next
non-label statement after the <LABEL = <label name>> statement.

<n> is the number of times to repeat a GOTO loop. Use a -1 to specify forever.

Keep the following in mind when using the stimulus command:

Transitions using absolute times within a GOTO loop are converted to relative times based on
the time of the previous command and the current step size.

• GOTO <label name> must specify a label that has been defined in a previous
LABEL=<label name> statement.

• Times must be in strictly ascending order, except that the transition after a GOTO can be
at the same time as the GOTO.

TIMESTEP
Number of seconds per clock cycle, or step. Transition times that are specified in clock
cycles (using the C suffix) are multiplied by this amount to determine the actual time of
the transition. (See <time> below.) If TIMESTEP is not specified, the default is zero
seconds. TIMESTEP has no effect on <time> values which are specified in seconds (using
the S suffix).

<command>*
A description of the stimuli to be generated, using one or more of the following.

<time> <value>
LABEL=<label name>
<time> GOTO <label name> <n> TIMES
<time> GOTO <label name> UNTIL GT <value>
<time> GOTO <label name> UNTIL GE <value>
<time> GOTO <label name> UNTIL LT <value>
<time> GOTO <label name> UNTIL LE <value>
<time> INCR BY <value>
<time> DECR BY <value>
REPEAT FOREVER
REPEAT <n> TIMES
ENDREPEAT
FILE=<file name>

<time>
Specifies the time for the new <value>, GOTO, or INCR/DECR command to occur.

313

Digital devices Stimulus devices

A simpler syntax for constructing counted loops in digital stimulus is to use the
REPEAT/ENDREPEAT construct. Specify the count value, for example:

REPEAT 3 TIMES
+ 5ns 0
+ 5ns 1
ENDREPEAT

For an infinite loop, use REPEAT FOREVER (equivalent to REPEAT -1 TIMES). All times
within REPEAT loops are interpreted as relative to the start of the loop.

Transition (i.e., time-value pairs) information can be placed in a FILE and accessed one or
more times from the STIM device by using the FILE= statement. The syntax for the file
contents is identical to what can appear directly in the body of the STIM device <command>
section.

Stimulus generator examples

One The first example creates a simple reset signal, which could be used to set or clear a
flip-flop at the beginning of a simulation. The node, named Reset, is set to a level zero at time
zero nanoseconds, and to a Z (high impedance) at 20 ns.

UReset STIM(1,1) $G_DPWR $G_DGND
+ Reset
+ IO_STM
+ 0s 0
+ 20ns Z

This is useful when the Reset node is being driven by another device which does not reset the
flip-flop at time zero. By using the library I/O model named IO_STM, the stimulus generator
drives with a high strength, and thus overpowers the other output. By outputting a Z for the
duration of the simulation, the stimulus generator cannot affect the node.

Two The second example is a simple example of a clock stimulus which pulses every 5
nanoseconds. It has one output node, OUT1, and the format is represented in binary notation.
This example specifies the time as relative to the previous step. IO_STM is an I/O model for
stimulus devices and is available in the dig_io.lib library file which comes with the digital
simulation feature.

UEx2 STIM(1, 1) $G_DPWR $G_DGND Out1 IO_STM
+ 0s 0; At time=0 initialize Out1 ; to zero.
+ REPEAT FOREVER;repeats loop indefinitely
+ +5ns 1 ;5ns later Out1 is set to 1
+ +5ns 0 ;5ns later Out1 is set to 0
+ ENDREPEAT

Digital devices Stimulus devices

314

Three The third example illustrates the use of the timestep; a cycle is equal to one
nanosecond:

UEx3 STIM(2, 11) $G_DPWR $G_DGND 1 2
+ IO_STM TIMESTEP=1ns
+ 0c 00 ;At time=0ns, both nodes are set to 0.
+ REPEAT 4 TIMES ;What’s in the loop is repeated

;4 times
+ +1c 01 ;1ns later node 1 is set to 0

;and node 2 is set to 1.
+ +2c 11 ;2ns later both nodes set to 1.
+ ENDREPEAT

Four The fourth example has four output nodes. The values of the nodes at each transition
are in hexadecimal notation. This is because the <format array> is set to 4, meaning <value>
is one digit representing the value of four nodes. Both the absolute and relative timing
methods are used, but, at the start of execution, the simulation converts all absolute values to
relative values based on the time of the command and the current step size. The timestep is
equal to one nanosecond, setting the cycle to one nanosecond:

UEx4 STIM(4, 4) $G_DPWR $G_DGND IN1 IN2 IN3 IN4
+ IO_STM TIMESTEP=1ns
+ 0s 0 ; At time=0 seconds, all nodes are set to 0.
+ LABEL=STARTLOOP
+ 10C 1 ; At time=10NS, IN1, IN2, & IN3 are set to 0 and IN4

;is set to 1.
+ +5NS 0 ; 5NS later, all nodes are set to 0.
+ 20NS A ; At time=20NS, nodes IN1 & IN3 are set to 1 and

;nodes IN2 &
; IN4 are to 0.

+ +5NS 0 ; 5NS later, all nodes are set to 0.
+ 30C GOTO STARTLOOP 1 TIMES ; At time=30NS, execute the

;first statement of the loop without
;a further delay.“1 TIMES” causes the logic to loop
; 1 time, actually executing the loop twice.

+ +10C 1 ; After the logic falls through the loop
;the second
; time and then waiting 10 additional cycles
; (or 10 nanoseconds),

;IN1, IN2, & IN3 are set to 0 and IN4 is set to 1.

315

Digital devices Stimulus devices

Example four produces the following transitions. Note how all of the time values are
calculated relative to the previous step:

TIME VALUE
0.00E+00 = 0000
1.00E-08 = 0001 ; STARTLOOP
1.50E-08 = 0000
2.00E-08 = 1010 ; 1010 in hex=A
2.50E-08 = 0000
3.00E-08 = 0001 ; The GOTO STARTLOOP 1 TIMES causes the

;first statement
; after the STARTLOOP label to be executed
;immediately.

3.50E-08 = 0000
4.00E-08 = 1010
4.50E-08 = 0000 ; At time 5.00E-08 we checked the

;GOTO STARTLOOP
 ; 1 TIMES statement, but did not execute it
 ; since it was already completed one time.
6.00E-08 = 0001 ;At 10C=1ns * 10=10ns later we

;execute the
;last statement.

Five The fifth example illustrates the use of the INCR BY command used to increment
the value of the 16 bit bus:

UEx5 STIM (16, 4444) $G_DPWR $G_DGND
+ 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
+ IO_STM TIMESTEP = 10ns
+ 0s 0000 ; At time=0 seconds, all nodes are set to 0.
+ LABEL=STARTLOOP
+ 10c INCR BY 0001 ; At 100ns, increment bus by 1.
+ 20c GOTO STARTLOOP UNTIL GE 000A ; If the bus value

;is less
; than 10, branch back to STARTLOOP and
; execute the line following the
; label without a further delay.

Digital devices Stimulus devices

316

Six The sixth example has seven output nodes: 1, 2, 3, 4, 5, 6, and 7. The <format array>
specifies the notation (1=binary, 3=octal, or 4=hex) used to define the output of those seven
nodes. The first two output signals are defined in binary, the next four are in hexadecimal, and
the last one is in binary.

In this example, at time equal to one nanosecond, the value of 0070 creates the bit pattern
0001110 on the output nodes. The first two zeros correspond to outputs one and two, the 0111
(7 in hex) corresponds to output signals 3 through 6, and the last zero
is the value of output signal 7.

UEx6 STIM(7, 1141) $G_DPWR $G_DGND 1 2 3 4 5 6 7 IO_STM
+ 0ns 0000 ; At time=0ns, all nodes are set to 0.
+ REPEAT 4 TIMES ; Repeats what’s in loop 4 times.
+ +1ns 0070 ; At time=1ns, nodes 1, 2, & 3 are set to 0,

; nodes 4, 5, & 6 are set to 1,
; and node 7 is set to 0.

+ +2ns 11F1; At time=2ns, all nodes are set to 1.
+ ENDREPEAT

317

Digital devices Stimulus devices

File stimulus
The file stimulus device, FSTIM, allows the digital stimuli to be obtained from a file. This is
often useful if the number of stimuli is very large, or if the inputs to one simulation come from
the output of another simulation (or even from another simulator). To make the discussion of
the FSTIM device more meaningful, the stimulus file format is discussed first.

Stimulus file format
The stimulus file has a simple format which allows outputs from other simulators, or the
simulation output file, to be used with little modification. The file consists of two sections: the
header, which contains a list of signal names, and the transitions, which is one or more lines
containing the transition time and columns of values. The header and transitions must be
separated by at least one blank line. Below is a simple example of the stimulus file format.

* Header, containing signal names (standard comments are
* allowed)
Clock, Reset, In1, In2; four signal names

* Beginning of the transitions - note the blank line
0 0000 ; values are in binary
10ns 1100
20ns 0101
30ns 1110
40ns 0111

Header format

[TIMESCALE=<value>]
<signame 1>...<signame n>...
OCT(<signame bit 3> ... <signame lsb>) ...
HEX(<signame bit 4> ... <signame lsb>) ...

The header consists of the list of signal names and an optional TIMESCALE value. The signal
names can be separated by commas, spaces, or tabs. The list can span several lines, but must
not include the + continuation character. The signal names listed correspond to the columns
of values in the order that they are listed. Up to 255 signals can be listed in the header,
however a maximum of 300 characters are allowed per line.

The OCT and HEX radix functions allows three or four signals to be grouped, respectively,
into a single octal or hexadecimal digit in the columns of values. Note that exactly three
signals must be included inside the parentheses in the OCT function, and that exactly four
signals must be included in the HEX function. Signal names listed without the radix functions
default to binary values.

The following example shows the use of the HEX radix function.

Clock Reset In1 In2
HEX(Addr7 Addr6 Addr5 Addr4) HEX(Addr3 Addr2 Addr1 Addr0)
ReadWrite

0 0000 00 0 ; spaces can be used to group values
10n 1100 4E 0
20n 0101 4E 1
30n 1110 4E 1
40n 0111 FF 0

Digital devices Stimulus devices

318

In this example, there are four binary signals, followed by two occurrences of the HEX radix
function, followed by a single binary signal. In the list of transitions following the header,
there are seven values which correspond, in order, to the list of signals.

The optional TIMESCALE assignment is used to scale the time values in the transitions. The
TIMESCALE assignment must be on a separate line. If unspecified, TIMESCALE defaults
to 1.0. See <time> below for more information on the use of TIMESCALE.

Transition format

<time> <value>* Following the first blank line after the header, the simulator looks
for one or more lines containing transitions. Transitions consist of a time value, followed by
one or more values corresponding to the signal names in the header. The <time> and list of
<values> must be separated by at least one space or tab.

<time> Transition times are always stated in seconds. Times can be absolute, such as
45ns, 1.2e-8, or 10; or relative to the previous time. To specify relative time, prefix the time
using a +, such as +5ns or +1e-9.

Time values are always scaled by the value of TIMESCALE. This is useful if the time values
in the file are expressed as whole numbers, but the actual units are, for example, 10ns. An
example showing the use of TIMESCALE is given below.

<value>* Each value corresponds to a single binary signal (the default) or the entire
group of signals inside the OCT or HEX radix functions. The number of values listed must
equal the total number of binary signals and radix functions which are specified in the header.
Valid <values> are:

Binary OCT HEX

Logic/Numeric 0,1 0-7 0-F

Unknown X X X

Hi-impedance Z Z Z

Rising R R

Falling F F

319

Digital devices Stimulus devices

When the <value> in a HEX or OCT column is a number, the simulator converts the number
to binary and assigns the appropriate logic value of each bit (either zero or one) to the signals
inside the radix function. The bits are assigned msb to lsb. When the <value> is X, Z, R, or F,
all signals in the radix function take on that value. Note that there can be no falling value in a
HEX column because F is used as a numeric value.

The following example shows the use of TIMESCALE and relative <time> values.

TIMESCALE=10ns ; must appear on separate line
Clock, Reset, In1, In2
HEX(Addr7 Addr6 Addr5 Addr4) HEX(Addr3 Addr2 Addr1 Addr0)
ReadWrite

0 0000 00 0
1 110R 4E 0 ; transition occurs at 10ns
2 0101 4E 1
+ 3 1111 4E 1 ; transition occurs at 50ns
7 011F C3 0 ; transition occurs at 70ns
8 11X0 C3 1

File stimulus device
The file stimulus device, FSTIM, is used to access one or more signals inside a stimulus file.
More than one FSTIM device can access the same file. An FSTIM device can even refer to
the same signal as another FSTIM device. Any number of stimulus files can be used during a
simulation.

Device format U<name> FSTIM(<# outputs>)
+ <digital power node> <digital ground node>
+ <node>*
+ <I/O model name>
+ FILE=<stimulus file name>
+ [IO_LEVEL=<interface subckt select value>]
+ [SIGNAMES=<stimulus file signal name>*]

Examples U1 FSTIM(1) $G_DPWR $G_DGND
+ IN1 IO_STM FILE=DIG1.STM

U2 FSTIM(4) $G_DPWR $G_DGND
+ ADDR3 ADDR2 ADDR1 ADDR0
+ IO_STM
+ FILE = DIG_2.STM
+ SIGNAMES = AD3 AD2 AD1 AD0

U3 FSTIM(4) $G_DPWR $G_DGND
+ CLK PRE J K
+ IO_STM
+ FILE = FLIPFLOP.STM
+ SIGNAMES = CLOCK PRESET

Digital devices Stimulus devices

320

Arguments and options

<# outputs>Specifies the number of nodes driven by this device.

<digital power node> <digital ground node>
These nodes are used by the interface devices which connect analog nodes to digital nodes
or vice versa. Refer to your PSpice user’s guide for more information.

<node>*
One or more node names which are output by the file stimulus. The number of nodes
specified must be the same as <# outputs>.

<I/O model name>
The name of an I/O model, which describes the driving characteristics of the stimulus
device. I/O models also contain the names of up to four DtoA interface subcircuits, which
are automatically called by the simulator to handle interface nodes. In most cases, the I/O
model named IO_STM can be used from the library dig_io.lib. Refer to your PSpice
user’s guide for a more detailed description of I/O models.

FILE
The name of the stimulus file to be accessed by this device. The <stimulus file name> can
be specified as a quoted string or as a text expression; see .TEXT (text parameter). Note
that the FILE device parameter is not optional.

IO_LEVEL
An optional device parameter which selects one of the four AtoD or DtoA interface
subcircuits from the device’s I/O model. The simulator calls the selected subcircuit
automatically in the event a node connecting to the primitive also connects to an analog
device. If not specified, IO_LEVEL defaults to 0. Valid values are:

0 = the current value of .OPTIONS DIGIOLVL (default=1)
1 = AtoD1/DtoA1
2 = AtoD2/DtoA2
3 = AtoD3/DtoA3
4 = AtoD4/DtoA4

Refer to your PSpice user’s guide for more information.

SIGNAMES
Used to specify the names of the signals inside the stimulus file which are to be referenced
by the FSTIM device. The signal names correspond, in order, to the <nodes> connected
to the device. If any or all SIGNAMES are unspecified, The simulator looks in the
stimulus file for the names of the <nodes> given. Because the number of signal names can
vary, the SIGNAMES parameter must be specified last. SIGNAMES can be a list of
names or text expressions (see .TEXT), or a mixture of the two.

321

Digital devices Stimulus devices

Comments The first example references a file named dig1.stm. This file must have a signal named IN1.

The second example references dig2.stm. This file would have to have signals named AD3
through AD0. These are mapped, in order, to the nodes ADDR3 through ADDR0, which are
driven by this device.

In the third example, the FSTIM device references the file flipflop.stm.

The contents of flipflop.stm are shown below:

J K PRESET CLEAR CLOCK

0 0 0 010
10ns 0 0 111
.
.
.

In this example, the first two nodes, CLK and PRE, reference the signals named CLOCK and
PRESET in the stimulus file. The last two nodes, J and K, directly reference the signals
named J and K in the file, and therefore do not need to be listed in SIGNAMES. Note that the
order of the SIGNAMES on the FSTIM device does not need to match the order of the names
listed in the header of the stimulus file. It is not required that every signal in the file be
referenced by an FSTIM device. In the example above, the signal named CLEAR is not
referenced. One, several, or all signals in a stimulus file can be referenced by one or more
FSTIM devices.

Digital devices Input/output model

322

Input/output model
Each digital device in the circuit must reference an I/O model. The I/O model describes the
device’s loading and driving characteristics. It also contains the names of up to four AtoD and
DtoA subcircuits that the simulator calls to handle interface nodes.

I/O models are common to device families. For example, of the digital devices in the model
library, there are only four I/O Models for the entire 74LS family: IO_LS, for standard inputs
and outputs; IO_LS_OC, for standard inputs and open-collector outputs; IO_LS_ST, for
schmitt trigger inputs and standard outputs; and IO_LS_OC_ST, for schmitt trigger inputs and
open-collector outputs. This is in contrast to timing models, which are unique to each device
in the library.

Model form .MODEL <I/O model name> UIO [model parameters]

Input/output model parameters
Model
Parameter Description Units Default

AtoD1 Name of level 1 AtoD interface subcircuit AtoDDefault

AtoD2 Name of level 2 AtoD interface subcircuit AtoDDefault

AtoD3 Name of level 3 AtoD interface subcircuit AtoDDefault

AtoD4 Name of level 4 AtoD interface subcircuit AtoDDefault

DIGPOWER Name of power supply subcircuit DIGIFPWR

DRVH Output high level resistance ohm 50

DRVL Output low level resistance ohm 50

DRVZ Output Z-state leakage resistance ohm 250 Kohm

DtoA1 Name of level 1 DtoA interface subcircuit DtoADefault

DtoA2 Name of level 2 DtoA interface subcircuit DtoADefault

DtoA3 Name of level 3 DtoA interface subcircuit DtoADefault

DtoA4 Name of level 4 DtoA interface subcircuit DtoADefault

INLD Input load capacitance farad 0

INR Input leakage resistance ohm 30 Kohm

OUTLD Output load capacitance farad 0

TPWRT Pulse width rejection threshold sec same as
propagation
delay

TSTOREMN Minimum storage time for net to be
simulated as a charge

sec 1.0 msec

TSWHL1 Switching time high to low for DtoA1 sec 0

TSWHL2 Switching time high to low for DtoA2 sec 0

TSWHL3 Switching time high to low for DtoA3 sec 0

323

Digital devices Input/output model

INLD and OUTLD are used in the calculation of loading capacitance, which factors into the
propagation delay. Refer to your PSpice user’s guide for more information.

DRVH and DRVL are used to determine the strength of the output. Refer to your PSpice user’s
guide for more information.

DRVZ, INR, and TSTOREMN are used to determine which nets should be simulated as charge
storage nets.

AtoD1 through AtoD4 and DtoA1 through DtoA4 are used to hold the names of interface
subcircuits. Note that INLD and AtoD1 through AtoD4 do not apply to stimulus generators
because they have no input nodes. Refer to your PSpice user’s guide for more information.

The switching times (TSWLHn and TSWHLn) are subtracted from a device’s propagation delay
on the outputs which connect to interface nodes. This compensates for the time it takes the
DtoA device to change its output voltage from its current level to that of the switching
threshold. By subtracting the switching time from the propagation delay, the analog signal
reaches the switching threshold at the correct time (that is, at the exact time of the digital
transition). The values for these model parameters should be obtained by measuring the time
it takes the analog output of the DtoA (using a nominal analog load attached) to change to the
switching threshold after its digital input changes. If the switching time is larger than the
propagation delay for an output, no warning is issued, and a delay of zero is used. Note that
the switching time parameters are not used when the output drives a digital node.

DIGPOWER specifies the name of the power supply subcircuit the simulator calls for when an
AtoD or DtoA interface is created. The default value is DIGIFPWR, which is the power supply
subcircuit used by the TTL and CMOS device libraries.

For more information on how to change the default power supplies, refer to your PSpice user’s
guide.

TSWHL4 Switching time high to low for DtoA4 sec 0

TSWLH1 Switching time low to high for DtoA1 sec 0

TSWLH2 Switching time low to high for DtoA2 sec 0

TSWLH3 Switching time low to high for DtoA3 sec 0

TSWLH4 Switching time low to high for DtoA4 sec 0

Input/output model parameters (continued)
Model
Parameter Description Units Default

Digital devices Digital/analog interface devices

324

Digital/analog interface devices
The simulator provides two devices for converting digital logic levels to analog voltages or
vice versa. These devices are at the heart of the interface subcircuits found in dig_io.lib.
These devices also provide the Digital Files interface for interfacing using external logic
simulators.

Digital input (N device)
The digital input device is used to translate logic levels (typically 1s, 0s, Xs, Zs, Rs, and Fs)
into representative voltage levels using series resistances. These voltages and resistances
model the output stage of a logic device (like a 74LS04) and hence form a digital input to the
analog circuit. The logic level information can come from two places: the digital simulator or
a file. (The file can be created by hand, or can be an output file from an external logic
simulator.)

The general form for a digital input device, and some of the model parameters, are different
for devices driven from a file and for those driven by the digital simulation feature. The digital
simulation inserts digital input devices automatically when a digital device’s output is
connected to an analog component. The automatic insertion of digital input devices is
discussed in your PSpice user’s guide. Examples of the devices that are inserted can be found
in the dig_io.lib library file.

General form for digital simulation
N<name> <interface node> <low level node> <high level node>
+ <model name>
+ DGTLNET = <digital net name>
+ <digital I/O model name>
+ [IS = initial state]
for digital files
N<name> <interface node> <low level node> <high level node>
+ <model name>
+ [SIGNAME = <digital signal name>]
+ [IS = initial state]

Examples N1 ANALOG DIGITAL_GND DIGITAL_PWR DIN74
+ DGTLNET=DIGITAL_NODE IO_STD
NRESET 7 15 16 FROM_TTL
N12 18 0 100 FROM_CMOS SIGNAME=VCO_GATE IS=0

Model form .MODEL <model name> DINPUT [model parameters]

325

Digital devices Digital/analog interface devices

For more information on using the digital input device to simulate mixed analog/digital
systems refer to your PSpice user’s guide.

Digital input model parameters
Model
parameters* Description Units Default

CHI capacitance to high level node farad 0

CLO capacitance to low level node farad 0

FILE digital input file name (digital files only)

FORMAT digital input file format (digital files only) 1

S0NAME state 0 character abbreviation

S0TSW state 0 switching time sec

S0RLO state 0 resistance to low level node ohm

S0RHI state 0 resistance to high level node ohm

S1NAME state 1 character abbreviation

S1TSW state 1 switching time sec

S1RLO state 1 resistance to low level node ohm

S1RHI state 1 resistance to high level node ohm

S2NAME state 2 character abbreviation

S2TSW state 2 switching time sec

S2RLO state 2 resistance to low level node ohm

S2RHI state 2 resistance to high level node ohm

.

.

.

.

.

.

S19NAME state 19 character abbreviation

S19TSW state 19 switching time sec

S19RLO state 19 resistance to low level node ohm

S19RHI state 19 resistance to high level node ohm

TIMESTEP digital input file step-size (digital files only) sec 1E-91

* See .MODEL (model definition).

Digital devices Digital/analog interface devices

326

As shown below, the digital input device is modeled as a time varying resistor from
<low level node> to <interface node>, and another time varying resistor from
<high level node> to <interface node>. Each of these resistors has an optional fixed value
capacitor in parallel: CLO and CHI. When the state of the digital signal changes, the values
of the resistors change (exponentially) from their present values to the values specified for the
new state over the switching time specified by the new state. Normally the low and high level
nodes would be attached to voltage sources which would correspond to the highest and lowest
logic levels. (Using two resistors and two voltage levels, any voltage between the two levels
can be created at any impedance.

For a digital simulation driven digital input, the parameters

DGTLNET = <digital net name> <digital I/O model name>

must be specified. Refer to your PSpice user’s guide for more information on digital I/O
models. The digital net must not be connected to any analog devices, otherwise the automatic
analog/digital interface process disconnects the digital input device from the digital net.

Digital simulation can send states named 0, 1, X, R, F, and Z to a digital input device. The
simulation stops if the digital simulation sends a state which is not modeled (does not have
SnNAME, SnTSW, SnRLO, and SnRHI specified) to a digital input device.

The initial state of a digital simulation driven digital input is controlled by the bias point
solution of the analog/digital system. It is sometimes necessary to override this solution (for
example, an oscillator which contains both analog and digital parts). The optional parameter

IS = <initial state name>

can be used to do this. The digital input remains in the initial state until the digital simulation
value changes from its TIME=0 value.

The model parameters FILE, FORMAT, and TIMESTEP are not used by digital simulation
driven digital input devices, and only the FILE parameter is used for VIEWsim A/D driven
digital inputs. For file driven digital inputs the FILE parameter defines the name of the file to
be read, and the FORMAT parameter defines the format of the data in that file. The
TIMESTEP parameter defines the conversion between the digital simulation’s integer timing
tick numbers and the simulation’s floating-point time values:

tick number · TIMESTEP = seconds

 Tick number must be an integer.

Digital Input Model

327

Digital devices Digital/analog interface devices

For a file driven or VIEWsim A/D driven digital input, the DGTLNET parameter must not be
specified, but the optional parameter

SIGNAME = <digital signal name>

is used to specify the name of the digital signal in the file (or the digital net name in VIEWsim
A/D). If no SIGNAME is given, then the portion of the device name after the leading N
identifies the name of the digital signal.

The parameter

IS=<initial state name>

can be used as described above to override the initial (TIME=0) values from the file.

The file name DGTLPSPC is used with VIEWsim A/D to tell the simulator to get digital state
values from the VIEWsim A/D interface, rather than a file.

Any number of digital input models can be specified, and both file driven and digital
simulation driven digital inputs can be used in the same circuit. Different digital input models
can reference the same file, or different files. If the models reference the same file, the file
must be specified in the same way, or unpredictable results occur. For example, if the default
drive is C:, then one model should not have FILE=C:TEST.DAT if another has
FILE=TEST.DAT.

For diagnostic purposes, the state of the digital input can be viewed in Probe by specifying
B(Nxxx). The value of B(Nxxx) is 0.0 if the current state is S0NAME, 1.0 if the current state
is S1NAME, and so on through 19.0. B(Nxxx) cannot be specified on a .PRINT, .PLOT, or
.PROBE line. (For digital simulation, the digital window of Probe provides a better way to
look at the state of the digital net connected to the digital input.)

Digital devices Digital/analog interface devices

328

Digital output (O Device)
The digital output device is used to translate analog voltages into digital logic levels (typically
1, 0, X, R, or F). The conversion of a voltage into a logic level, models the input stage of a
logic device (like a 74LS04) and hence forms a digital output from the analog circuit. The
logic level information can go to two places: the digital simulation, or a file. (The file can
simply be inspected manually, or can be used as a stimulus file for an external logic
simulator.)

General form for digital simulation
O<name> <interface node> <reference node> <model name>
+ DGTLNET = <digital net name> <digital I/O model name>
for digital files
O<name> <interface node> <reference node> <model name>
+ [SIGNAME = <digital signal name>]

Model form .MODEL <model name> DOUTPUT [model parameters]

Examples O12 ANALOG_NODE DIGITAL_GND DO74 DGTLNET=DIGITAL_NODE IO_STD
OVCO 17 0 TO_TTL
O5 22 100 TO_CMOS SIGNAME=VCO_OUT

Digital output model parameters

Model
parameters* Description Units Default

CHGONLY 0: write each timestep, 1: write upon
change

0

CLOAD output capacitor farad 0

FILE digital input file name (digital files only)

FORMAT digital input file format (digital files only) 1

RLOAD output resistor ohm 1/GMIN

S0NAME state 0 character abbreviation

S0VLO state 0 low level voltage volt

S0VHI state 0 high level voltage volt

S1NAME state 1 character abbreviation

S1VLO state 1 low level voltage volt

S1VHI state 1 high level voltage volt

S2NAME state 2 character abbreviation

S2VLO state 2 low level voltage volt

S2VHI state 2 high level voltage volt

S19NAME state 19 character abbreviation

S19VLO state 19 low level voltage volt

S19VHI state 19 high level voltage volt

329

Digital devices Digital/analog interface devices

The general form for a digital output device, and some of the model parameters, are different
for devices that drive a file (or VIEWsim A/D) and those that drive the digital simulation
feature. The digital simulation inserts digital output devices automatically when a digital
device’s input is connected to an analog component. The automatic insertion of digital output
devices is discussed in your PSpice user’s guide, and examples of the devices which are
inserted can be found in the dig_io.lib library file.

For more information on using the digital output device to simulate mixed
analog/digital systems, refer to your PSpice user’s guide.

As shown in Figure , the digital output device is modeled as a resistor and capacitor, of the
values specified in the model statement, connected between <interface node> and
<reference node>. At times which are integer multiples of TIMESTEP, the state of the device
node is determined and written to the specified file.

Digital output model

The process of converting the input node voltage to a logic state begins by first obtaining the
difference in voltage between the <interface node> and the <reference node>. The
DOUTPUT model defines a voltage range, form SxVLO to SxVHI, for each state. If the input
voltage is within the range defined for the current state, no state change occurs. Otherwise,
the simulator searches forward through the model, starting at the current state, to find the next
state whose voltage range contains the input voltage. This state then becomes the new state.
When the end of the list (S19) is reached, the simulator wraps around to S0 and continues.

SXNAME state applied when the interface node
voltage falls outside all ranges

“?”

TIMESTEP digital input file step-size sec 1E-9

TIMESCALE scale factor for timestep (digital files only) 1

* See .MODEL (model definition).

Digital output model parameters (continued)

Model
parameters* Description Units Default

Digital devices Digital/analog interface devices

330

If the entire model has been searched and no valid voltage range has been found, the simulator
generates a simulation warning message. Further if the O device is interfacing at the digital
simulator, and the SXNAME parameter has not been specified in the model, the simulator
uses the state whose voltage range is closed to the input voltage. Otherwise it uses SXNAME
as the new state.

This circular state searching mechanism allows hysteresis to be modeled directly. The
following model statement models the input thresholds of a 7400 series TTL Schmitt-trigger
input. Notice that the 0.8 volt overlap between the 0 state voltage range and the 1 state voltage
range.

.model D074_STd output (
+s0name=”0” s0vlo=1.5 s0vhi=1.7
+s1name=”1” s1vlo=0.9 s1vhi-7.0
+)

Starting from the 0 state, a positive-going voltage must cross 1.7 volts to get out of the 0
state’s voltage range. The next state which contains that voltage is 1. Once there, a
negative-going voltage must go below 0.9 volts to leave the 1 state’s range. Since no further
states are defined, the simulator wraps around back to state 0, which contains the new voltage

For a digital output driving digital simulation, the parameters

DGTLNET = <digital net name> <digital I/O model name>

must be specified. Refer to your PSpice user’s guide for more information on digital I/O
models. The digital net must not be connected to any analog devices, otherwise the automatic
analog/digital interface process disconnects the digital output device from the analog net.

For interfacing using digital simulation, the state names must be 0, 1, X, R, F, or Z (Z is
usually not used however, since high impedance is not a voltage level). Other state names
cause the simulator to stop if they occur; this includes the state ? that occurs if the voltage is
outside all the ranges specified.

The model parameters TIMESCALE, FILE, CHGONLY, and FORMAT are not used for
digital outputs which drive digital simulation, but the TIMESTEP is used. The TIMESTEP
value controls how accurately the analog simulator tries to determine the exact time at which
the node voltage crosses a threshold.

To be sure that the transition time is accurately determined, the analog simulator has to
evaluate the analog circuit at intervals no larger than TIMESTEP when a transition is about
to occur. The default value for TIMESTEP is 1ns, or 1/DIGFREQ (a
.OPTIONS (analysis options) option) if it is larger. In many circuits, this is a much greater
timing resolution than is required, and some analog simulation time can be saved by
increasing the TIMESTEP value.

For digital outputs which write files, or drive VIEWsim A/D, the parameter

SIGNAME = <digital signal name>

can be used to specify the name written to the file of the digital signal (or for VIEWsim A/D,
the name of the VIEWsim net). If SIGNAME is not specified, then the portion of the device
name after the leading O identifies the name of the digital signal.

For digital outputs which write files, the FILE parameter defines the name of the file to be
written, and the FORMAT parameter defines the format of the data written to that file.

The file name PSPCDGTL is used with VIEWsim A/D to tell the simulator to send the digital
state values to the VIEWsim A/D interface, rather than a file. For VIEWsim A/D, the
parameters FORMAT and CHGONLY are ignored.

331

Digital devices Digital/analog interface devices

The state of each device is written to the output file at times which are integer multiples of
TIMESTEP. The time that is written is the integer:

time = TIMESCALE·TIME/TIMESTEP

TIMESCALE defaults to 1, but if digital simulation is using a very small timestep compared
to the analog simulation timestep, it can speed up the simulation to increase the value of both
TIMESTEP and TIMESCALE. This is because the simulator must take timesteps no greater
than the digital TIMESTEP size when a digital output is about to change, in order to
accurately determine the exact time that the state changes. The value of TIMESTEP should
therefore be the time resolution required at the analog-digital interface. The value of
TIMESCALE is then used to adjust the output time to be in the same units as digital
simulation uses.

For example, if a digital simulation using a timestep of 100 ps is being run, but the circuit has
a clock rate of 1us, setting TIMESTEP to 0.1us should provide enough resolution. Setting
TIMESCALE to 1000 scales the output time to be in 100 ps units.

If CHGONLY = 1, only those timesteps in which a digital output state changes are written to
the file.

Any number of digital output models can be specified, and both file writing and digital
simulation driving digital outputs can be used in the same circuit. Different digital output
models can reference the same file, or different files. If the models reference the same file, the
file must be specified in the same way, or unpredictable results occur. For example, if the
default drive is C:, then one model should not have FILE=C:TEST.DAT if another has
FILE=TEST.DAT.

For diagnostic purposes, the state of the digital output can be viewed in Probe by specifying
B(Oxxx). The value of B(Oxxx) is 0.0 if the current state is S0NAME, 1.0 if the current state
is S1NAME, and so on through 19.0. B(Oxxx) cannot be specified on a .PRINT, .PLOT, or
.PROBE line. (For digital simulation, the digital window of Probe provides a better way to
look at the state of the digital net connected to the digital output.)

332

Digital devices Digital model libraries

Digital model libraries
File Contents

7400.LIB 7400-series TTL

74AC.LIB Advanced CMOS

74ACT.LIB TTL-compatible, Advanced CMOS

75ALS.LIB Advanced Low-Power Schottky TTL

74AS.LIB Advanced Schottky TTL

74F.LIB FAST

74H.LIB High-Speed TTL

74HCT.LIB TTL-compatible, High-Speed CMOS

74HC.LIB High-Speed CMOS

74L.LIB Low-Power TTL

74LS.LIB Low-Power Schottky TTL

74S.LIB Schottky TTL

CD4000.LIB CD4000 devices

DIG_ECL.LIB 10 K and 100K ECL devices

DIG_GAL.LIB GAL devices

DIG_IO.LIB I/O models, AtoD and DtoA interface subcircuits,
digital power supply subcircuits

DIG_MISC.LIB pull-up/down resistors, delay line

DIG_PAL.LIB PAL devices

DIG_PRIM.LIB Digital primitives

NOM.LIB master library: which references NOM_DIG.LIB,* which
references each of the above libraries.

*Depending upon the platform being worked on, NOM.LIB references the appropriate list of libraries. For “digital
only” platforms, NOM.LIB references NOM_DIG.LIB.

333

Digital devices Digital model libraries

7400-series TTL and CMOS library files
The online Library Reference List shows, by part type and technology, each item in the library
and gives the order of the pins for that function. This information is needed if a netlist is
created manually. Netlists normally are generated automatically by the schematic capture
package.

4000-series CMOS library
The online Library Reference List shows, by part type and technology, each item in the library
and gives the order of the pins for that function. This information is needed if a netlist is
created manually. Netlists normally are generated automatically by the schematic capture
package.

If power supply nodes on CD4000 devices are not specified in the circuit, they can use the
default power supply nodes $G_CD4000_VDD and $G_CD4000_VSS, which default to 5
volts. A new power supply can be created, and new power supply nodes can be specified to
the devices in the circuit. Refer to your PSpice user’s guide for more information on
specifying your own power supplies. Output drives and input thresholds are correctly
modeled for power supplies between 3 and 18 volts. Currently, propagation delays do not vary
using supply voltages. For correct propagation delays at supply voltages other than 5 volts,
the timing models in cd4000.lib have to be modified.

334

Digital devices Digital model libraries

Programmable array logic devices
Using a PLD from the library is just like using any other logic device from the library, except
that the simulator has to be told the name of the JEDEC file which contains the program for
the part. A TEXT parameter name JEDEC_FILE is used to specify the file name, as shown in
the following example:

X1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12
+ IN13 IN14
+ OUT1 OUT2 OUT3 OUT4
+ PAL14H4
+ TEXT: JEDEC_FILE = “myprog.jed”

This example creates a 14H4 PAL which is programmed by the JEDEC file myprog.jed.

Customizing device
equations

Introduction to device
equations

Specifying new internal device
structure

Making device model changes Recompiling and linking the device
equations option

Changing the device
equations

Simulating with the device
equations option

Adding a new device

Analog devices Digital devicesCommands

Customizing device equations Introduction to Device Equations

336

Introduction to Device Equations
The purpose of the Device Equations option is to change the built-in model equations for one
or more of the semiconductor devices (GaAsFET, Diode, Junction FET, MOSFET, and
Bipolar transistor). This means you can extend PSpice to support user-defined or proprietary
native device models.

This option is not an addition to PSpice: it is a different packaging of the program that includes
the source code for the device model subroutines. You need a Device Equations license to
modify and extend PSpice code, but you do not need a Device Equations license to use the
modified code.

There are several kinds of changes that can be made using the Device Equations option. These
include, in ascending order of complexity:

• Changing a parameter name

• Giving a parameter an alias

• Adding a parameter

• Changing the device equations

• Adding a new device

• Specifying new internal device structure

You need a supported C++ compiler to compile Device Equations extensions; for
Windows 95/98 and NT, you need Microsoft Visual C++ 32-bit Compiler 4.2 or later.

Device Equations extensions are implemented using a dynamic-link library, which means you
can share your models with other users by distributing just a DLL.

If you want to run PSpice on Windows 95 or NT with a Device Equations DLL developed by
someone else, then you do not need a compiler or a Device Equations license. Just copy the
DLL into the directory with your PSpice program file. For more information, see Simulating
with the Device Equations option.

337

Customizing device equations Making device model changes

Making device model changes
To get started, look at the files M.H and MOS.C, which implement the MOSFET equations. The
other devices have similar structures.

M.H contains two important data structure definitions:

• the structure for the MOS transistor (struct m_)

• the structure for the MOS model (struct M_)

During read-in, the simulator creates a copy of the transistor structure for every MOSFET in
the circuit and a copy of the model structure for every .MODEL statement of type NMOS or
PMOS. The transistor structure is set up using information particular to that transistor, such
as the nodes to which it is connected, its length and width, and the locations of its entries in
the circuit’s conductance matrix. All parameters of the model structure are set up using the
values from the .MODEL statement, if one exists; otherwise, the default values are used.

The transistor structure corresponds to the LOC, LOCV, and LX tables in U.C. Berkeley
SPICE2. The model structure corresponds to the LOC and LOCM tables in SPICE.

Do not change the transistor structure (struct_m), except when changing the internal
device topology. It is included only to allow compiling of MOS.C.

The simulator needs to associate each entry in the model structure with a model parameter
name (and default value) in the .MODEL statement. You can accomplish this by using the
ASSOCIATE macro. Just below the model structure in M.H there is a list of all the parameters,
each in an ASSOCIATE macro. The occurrence of ASSOCIATE binds together the structure entry,
the parameter name, and the default value. The read-in section of the simulator uses this
information to parse the .MODEL statement.

Customizing device equations Making device model changes

338

Changing a parameter name
This is the easiest change. Find the parameter in the list of ASSOCIATE macros. Change the
parameter’s name (last item on the line) and/or the default value (middle item). The names
and defaults of the model parameters that are supplied can be changed, as well as those
parameters that are added.

When the simulator runs, it prints the parameter values for each .MODEL statement unless
the NOMOD option is used in the .OPTIONS statement. Normally only parameters which
have not been defaulted are listed. A parameter can be forced to be listed, whether or not it
has been defaulted, by preceding its name using an asterisk (*). For example, VTO is listed
that way in M.H.

Giving a parameter an alias
Sometimes a parameter requires an alternate name (an alias). Several bipolar model
parameters, such as ISE, already have alternate names. The alias for ISE is C2. Look in Q.H at
the occurrences of the parameters ISE and C2 in the ASSOCIATE macros for an example of how
this is accomplished. There is only one entry in the model structure (Q_ise) for the parameter,
but there are two ASSOCIATE entries. This means that either name (ISE or C2) on the .MODEL
statement can put a number into the structure entry Q_ise.

When model parameters are listed, the first name found in the ASSOCIATE list
(searching downward) is the name which is echoed on the output.

Insert the new name first if it is the name to be printed.

Adding a parameter
Adding a parameter is probably the most common case. The parameter must be added to both
the model structure (e.g., struct M_) and the corresponding ASSOCIATE list. It is
recommended to follow the OrCAD naming convention (e.g., M_wd and M_vto), but it is not
required.

Model parameters are set forth as pairs of elements instead of simple floating point values.
This is to provide the use of expressions for model parameters. Because of this, when adding
a parameter (for example, M_new), the following line is required:

MXPR(M_new, Mx_new);

instead of

float M_new;

Do not modify the value of the Mx_new structure element.

The read-in mechanism can handle expressions for user-added parameters. By the time the
model code is called, the expressions have been evaluated and their value placed in the
appropriate fields. See the include file m.h for further examples and comments.

339

Customizing device equations Making device model changes

When the simulator is doing a read-in, model parameters are listed for each .MODEL statement
(unless NOMOD has been specified on the .OPTIONS statement). Normally, only those
parameters that have not been defaulted are listed. A parameter can be forced to be listed, even
if it has been defaulted, by preceding its name using an asterisk (*) in the ASSOCIATE macro.
For instance, VTO in M.H is listed in that manner.

The default value, OMITTED, is used by the simulator to force the calculation of a parameter’s
value during read-in. For instance, VTO is calculated from other values if it is not given a value.
These calculations are built into the read-in and are fixed. OrCAD recommends that
parameters that you add be given a normal default value and not be computed by using
OMITTED.

Once the parameter has been added, the model structure becomes one parameter longer, and
the read-in section of PSpice places a value in its entry. The parameter can now be used in the
device code (e.g., MOS.C).

Changing the device equations
The device equations are in the file that has the same name as the type of device (DIODE.C,
BJT.C, JFET.C, MOS.C, GASFET.C). The code in these subroutines use the model parameters
and the device’s terminal voltages to calculate the branch currents and conductances, and,
during transient analysis, the terminal charges and branch capacitances. These equations are
neither simple nor easy. A good understanding of U.C. Berkeley’s SPICE2G is recommended
before making such a change. Two useful references are:

[1] L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits,
Memorandum No. M520, May 1975.

[2] Ellis Cohen, Program Reference for SPICE2, Memorandum No. M592, June 1976.

which are available from:

Software Distribution Office
EECS/ERL Industrial Liaison Program
205 Cory Hall #1770
University of California
Berkeley, CA 94720-1770
(510) 643-6687

Customizing device equations Making device model changes

340

Functional subsections of the device source file
The code in each of the device source files is arranged into separate functional subsections.
Each subsection occurs at least once, but can occur several times for devices that have more
than one level. The subsections required are outlined below.

SPICE2G is written in FORTRAN, whereas PSpice is in C. For the device subroutines, as
much correspondence as possible has been maintained between the two. Because of
FORTRAN, SPICE kept integer and real numbers in different tables: NODPLC (indexed by
LOC) and VALUE (indexed by LOCV or LOCM). In PSpice, these have been combined into one
structure (e.g., struct m_).

The state vector information is constructed somewhat differently, though the overall pattern
is similar. In SPICE the state vector information is kept in a set of vectors in VALUE. There is
one vector for each time point “remembered” (from 4 to 7, depending on the order of the
integration method). Each device’s LOC table contains an offset, LX, to its portion of the
information in each state vector. In PSpice the number of state vectors is fixed, and each
device’s state information is kept in its own device structure (e.g., struct m_).

For example, for MOSFETs the state vectors are an array, struct msv_def m_sv[MSTVCT]
in struct m_. MSTVCT is the number of state vectors and is defined in TRAN.H to be equal to
4. The definition of msv_def (also in M.H) lists the various currents, conductances, charges,
and capacitances that are in the state vector. Finally, M.H contains a set of #defines, which
allows accessing of the entries to the state vectors by name. It is these (uppercase) names

Subsection Description

Initialization This consists of locating and binding the device instance and its
model, initializing any local variables, and obtaining appropriate
values for the device branch voltages. The branch voltages (e.g.,
vds, vgs) are set differently depending upon whether there are
user-specified initial conditions (using IC= or .IC), and on
whether the present Newton Raphson cycle has finished or not.

Computing new
nonlinear branch
voltage:

This is needed to monitor progress towards a Newton Raphson
solution.

Test if the solution has
changed:

If there is not significant change bypass the rest of the
computation. Otherwise, continue.

Limit any nonlinear
branch voltages:

This code uses the macro PNJLIM() to insure that the branch
voltages are in the appropriate operating region.

Compute currents and
conductances:

This is the meat of the Device Equations code, and involves
obtaining all the branch currents (e.g., ibs, ibd) as well as all the
derivatives to be used in the conductance matrix.

Charge calculations: Internal charges are calculated and updated.

Check convergence: Check to see if the nonlinear device branches now have values
that are within a small tolerance range of those obtained in the last
repeat cycle, and set a return flag to signal whether the device
converged.

Load the current vector
and conductance
matrix:

The macro Y_MATRIX () is used to obtain handles to the proper
matrix elements, and the elements are assigned their values based
on the present evaluation of the device equations and derivatives.

341

Customizing device equations Making device model changes

which are then used in MOS.C. This may seem like a roundabout way of constructing the state
vector information, but the actual usage (in MOS.C) is quite straightforward and is similar to
that in SPICE.

Adding a new device
The Device Equations option does not allow the addition of an entirely new device. However,
in many cases the same thing can be achieved by making use of an existing device.

Suppose, for example, that a lightning arrester device is to be added. The lightning arrester
has two terminals, therefore it can be built into the diode equations, because the diode also has
two terminals. This means that in the circuit (.CIR) file the lightning arresters would use the
letter D to start and would refer to a .MODEL statement of the type D.

At first glance it appears that this would preclude using diodes in circuits, since they have been
replaced by lightning arresters. This problem is avoided by keeping all the diode model
parameters, adding the lightning arrester parameters, adding a LEVEL parameter, and giving
the LEVEL parameter a default of 1. In the diode subroutine (in DIODE.C), a large if test would
select all the old diode code if LEVEL=1 and all the new lightning arrester code otherwise. The
new LEVEL parameter would switch between diode and lightning arrester.

This approach can be extended to as many devices as wanted. This could be:

• LEVEL=1 as a diode

• LEVEL=2 as a lightning arrester

• LEVEL=3 as a gas discharge tube

And so on. The restriction is that all of the devices added to the diode must have two terminals.
If the device to be added has three terminals, it must be built into a three terminal device, such
as the JFET. The highest number of terminals that can be modeled is four, using the MOSFET.
There is not a good way to add devices, such as pentodes, that have five or more terminals.

Customizing device equations Making device model changes

342

Specifying new internal device structure
You may want to change the topology of a device in order to accommodate a more elaborate
set of parasitic resistances and/or capacitances. To do this requires that positions in the
conductance matrix be assigned to include the terms that the additional equations generate.
This requires five steps:

1 Ensuring that all of the new internal nodes and matrix conductance terms are added to the
device structure in the device header file

2 Allocating the new matrix elements

3 Providing handles to access the new matrix elements and to bind the nodes to the branches

4 Including logic, if needed, to support device model parameter checking and updating

5 Adding the new device equations to the device code

Example
This process can be illustrated by looking at the PSpice JFET and GaAsFET devices, as
shown below. The topologies of these two devices are nearly identical, except that the
GaAsFET has an additional internal capacitance, CDS, between the source and drain, and an
additional internal resistance, RG, at the gate. This gives the GaAsFET topology one
additional node where RG joins the rest of the structure and two additional internal branches.

GaAsFET Model JFET Model

Gate
RG

Drain

RD

Id CDS

RS

Source

Cgs

Cgd

IdGate

Drain

RD

RS
Cgs

Cgd

Source

343

Customizing device equations Making device model changes

Procedure

Step one: editing the device header file

These differences are reflected in the device structure definitions in J.H and B.H. Each of the
device nodes is given a name and declared to be of type CKT_IDX.

The JFET device structure, j_, lists the two internal nodes j_d and j_s, while the GaAsFET
device structure, b_, has three internal nodes b_d, b_s, and a new one, b_g. The two additional
branches in the GaAsFET require three new matrix conductance terms.

The conductance terms are declared type MTX_IDX and are listed immediately following the
internal nodes.

The JFET has a term j_GG, which appears on the matrix diagonal for the external gate node.

The GaAsFET has an additional gate node which requires one additional matrix diagonal
conductance term, b_gg, along with two off-diagonal conductance terms, b_Gg and b_gG.
These are used by the source code in GASFET.C to designate where the conductance terms
associated with RG go when the matrix is loaded. CDS doesn’t need any additional nodes or
matrix terms because the items required are already in place to accommodate the parallel
current source, id.

With the nodes and conductance terms taken care of in the device header file, the first step is
completed.

Step two: setting up memory allocation for the new matrix elements

You can set up memory allocation to properly incorporate the new equations into the
conductance matrix by modifying DEMATPTR.C. In this file are the functions j_MatPtr() and
b_MatPtr(). These functions call the function Reserve() once for each conductance matrix
term that was declared in the header file. For instance, when b_gg, b_Gg, and b_gG are added
for the GaAsFET, these require corresponding code in b_MatPtr() as follows:

flag &= Reserve (ng,ng);
flag &= Reserve (nG,ng);
flag &= Reserve (ng,nG);

The arguments ng and nG are local variables that serve as aliases for the respective device
nodes, b_g and b_G, and are assigned at the beginning of b_MatPtr() as follows:

ng = bloc -> b_g;
nG = bloc -> b_G;

Step three: binding the nodes and branches

The mechanics of step three, binding the nodes and branches, are very similar to the
mechanics of step two. This time DEMATLOC.C is modified. The functions of interest are
j_MatLoc() and b_MatLoc(), and they now call Indxcl() instead of Reserve(). The
GaAsFET again has three more lines of code:

flag &= Indxcl (&(bloc->b_gg),ng,ng);
flag &= Indxcl (&(bloc->b_Gg),nG,ng);
flag &= Indxcl (&(bloc->b_gG),ng,nG);

Customizing device equations Making device model changes

344

Step four: handling model parameters

Step four, handling model parameters, is basically the same as it would be for a case not
involving topology changes, with one significant exception: this requires handling the case
where the parasitics associated with an internal node can be zero. In this case the node must
be generated conditionally. An instance of this is the GaAsFET internal resistance RG. If RG
is zero, the parasitic resistance between the internal node b_g and the external node b_G can
be removed from the circuit. This is accomplished in the function b_AddInternalNodes() in
DEMODCHK.C, using the following line of code:

INTERNAL_NODE(P->B_rg,b_g,b_G);

INTERNAL_NODE() is a macro that performs the required logic, depending on whether the
model parameter B_rg is zero or not. The other two calls to this macro in
b_AddInternalNodes() correspond to the RD and RS resistances that also exist for the JFET.

Step five: implementing the new device equations

The final step does not involve any further topological considerations and is carried out just
as it would be if the device internal topology weren’t being changed.

345

Customizing device equations Recompiling and linking the Device Equations option

Recompiling and linking the
Device Equations option

The object and source files needed to create the Device Equations DLL are installed in a
directory called DEVEQU. The MSVC++ 4.2 project files, deveq.mdp and deveq.mak, are
included to compile and link the DLL.

For information on obtaining the Microsoft compiler, contact Microsoft Corporation directly.

To create a new deveq.dll

1 Load deveq.mdp into the Visual C++ development environment.

2 From the Build menu, select Build Deveq.dll.

The project supports debug and release versions of the build target.

3 After deveq.dll is built, copy it to the directory that contains pspice.exe.

Personalizing your DLL
The function DLLMain() in deveqdll.c contains the following line of code:

DEVEQVERSIONINFO(““,VERSIONNUM);

To personalize your DLL, change the two arguments, as in:

DEVEQVERSIONINFO(“(c)Copyright 1998\nMyCorp”,”7.2.1”);

Customizing device equations Simulating with the Device Equations option

346

Simulating with the Device Equations option
After you obtain a working Device Equations DLL, place it in the directory that contains
pspice.exe.

If your PSpice license has the Device Equations option, PSpice will locate and load
deveq.dll when you start the program. The code in the DLL will be substituted for the device
model code that ships with the plain version of PSpice. The title bar will indicate that PSpice
is using the DLL by showing the program name as PSpice/DE. The presence of the DLL is
also noted in the About box and in the .out file.

If PSpice doesn’t find the DLL, it runs as the normally configured PSpice.

Selecting which models to use from a Device
Equations DLL

You can tell PSpice which device models to use from a custom DLL by adding an entry to the
pspice.ini configuration file; for any device type you do not specify, PSpice uses the
normally configured PSpice models.

To specify which models to use from a custom DLL

1 In a standard text editor (such as Notepad), open pspice.ini, located in the directory
with your PSpice program file.

2 Find the [ORCAD] section and add this line to the section:

USE_DEVEQ_MODELS="<device letters>"

where <device letters> is any or all of the following:

For example, to use all of the possible device models from your custom DLL, type the
following:

USE_DEVEQ_MODELS="BDJMQ"

3 Save pspice.ini.

4 Start PSpice and run a simulation.

For this device type... Use this device letter...
GaAsFET B

Diode D

Junction FET J

MOSFET M

Bipolar transistor Q

Glossary

ABM analog behavioral modeling

AKO “A Kind Of” symbol. Symbols must either contain graphics or refer to an
AKO symbol. The AKO defines the symbol in terms of the graphics and pins
of another part. Both must exist in the same Symbol Library file.

alias An alias relates local schematic names for parts and signals to netlist names
(simulation devices and nodes). An alias is an exact electrical equivalent that
can be used to reference a symbol. A command that sets up equivalences
between pin names or net names and node names. As a command, it is the
setup equivalences between node names and pin names or net names.

annotation Annotation is a means by which parts are labeled when they are placed, either
automatically or manually.

annotation symbol An annotation symbol has no electrical significance, and is used to clarify,
point out, or define items on the schematic.

argument A value or an expression used with an operator or passed to a subprogram
(subroutine, procedure, or function).

attributes Attributes are special characteristics (a name and an associated value)
contained in a part instance or definition. For example, a MOSFET may
contain specific length and width parameters which are represented as
attributes on the symbol or part. Attributes may be changed through the
Schematic Editor and/or the Symbol Editor.

block A block is a user defined rectangle placed on a schematic. It is used to
represent or hold the place for a collection of circuitry. The block is treated as
a black box by Schematics. Schematics is aware of the connections going into
and out of the block, but ignores the contents of the block until the netlist is
generated.

bus A bus is a collection of homogeneously named signals.

call To transfer a program execution to some section of code (usually a subroutine
of some sort), while saving the necessary information to allow execution to
resume at the calling point when the call section has completed execution.

circuit A circuit is a configuration of electrically connected components or devices.

comment A statement written into a program for documentation purposes only and not
for any functionality purposes.

compiler Translates between high-level computer language understood by humans and
machine language that is understood by computers.

component A device or part employed in a circuit to obtain some desired action. See
package.

Glossary

348

connector A connector is a physical device that is used for external connections to a
circuit board.

construct A computer program statement that produces a predetermined effect.

current source A current source can be an ideal current source (no limit on the supply
voltage) or a voltage source with a series resistor.

defined function A computer instruction specifying the operation to be done with
predetermined limits.

declarative statement A computer source program instruction specifying the size, format, and kind
of data elements and variables in a program for a complier.

device A simple or complex discrete electronic component. Sometimes, a subsystem
employed as a unit and, therefore, thought of as a single component. See
package.

DIBL drain-induced barrier lowering (MOSFET device)

dot command A type of formatting command typed into a document that is preceded by a
period (dot) to distinguish from other syntax text.

doping tail A changing amount of impurity in a semiconductor device. It is observed as a
change in the bulk resistance of the semiconductor material.

ELSE An operation used in BASIC computer programing. It specifies the operation
to be performed if the conditions given in the same program line didn’t occur.

flicker noise A repeating low-frequency noise.

Fourier analysis A mathematical method of transforming a function in such a way that the data
of the function is retained but the representation of that data is changed. It is
used to simplify the reduction of the data.

FSTIM digital file stimulus device

gate A gate is a subset of a package, and corresponds to a part instance. An
electronic switch that follows a rule of Boolean logic.

glitch An unwanted transient that recurs irregularly in the system.

global temperature Universally applied temperature (to all elements of a circuit)

global parameter Universally applied parameter (to all elements of a circuit)

icon A small graphics image displayed on the screen to represent an object that can
be manipulated by the user.

IF An operation used in BASIC computer programing. It specifies an IF-THEN
operation to be performed when a condition has changed from what was
expected in a program line.

ISAS independent current source and stimulus

included file A smaller file that is read into a larger source-code file at a specific spot and
becomes part of a statement within the larger source-code file.

instance name A name of an object in an object oriented programing. It is a unique name for
a part instance.

instantiate To create an instance of a class in object oriented programing.

349

Glossary

invocation To start a software program by invoking an initial power from a higher power

invoke To call or activate; used in reference to commands and subroutines.

ionization knee A bend in the response curve where ionization starts.

IS temperature The temperature of the JFET and other transistor types junction saturation
current or the input leakage current

iteration A repeating series of arithmetic operations to arrive at a solution.

Jiles-Atherton model A state equation model rather than an explicit function for an inductor

junction A junction graphically indicates that wires, buses, and/or pins are electrically
connected.

keyword The significant word in a syntax statement that directs the process of the
operation.

labels Is a word or symbol used to identify a file or other element defined in a
computer program.

LIBPATH A variable that specifies the directory that the model library is in, and is first
set in the msim.ini file.

link A branch instruction, or an address in such an instruction, used to leave a
subroutine to return to some point in the main program.

lot tolerance The tolerance of a group of items taken as one unit.

lsb least significant bit

metafile A file that contains or defines other files.

mobility movement of electrons in semiconductor devices such as MOSFETs

model library consists of analog models of off-the-shelf parts that can be used directly in
circuits that are being developed

mouse A common pointing device used in a windows environment. The physical
movement of the mouse will move the pointer (cursor) on the screen.

msb most significant bit

msim.ini The MicroSim configuration file that has the default elements that are used to
complete a simulation.

nesting The embedding of one construct (such as a table in a database; a data
structure, a control structure) inside another—for example, a nested procedure
is a procedure declared within a procedure.

NETLIST The netlist provides the circuit definition and connectivity information in
simulation netlist format.

NODESET A nodeset symbol contains one or two pins, permitting you to initialize a node
voltage for simulation.

NOREUSE flag A piece of information that tells the simulator that the automatic saving and
restoring of bias point information between different temperatures, Monte
Carlo runs, worst-case runs, or parametric analyses is suppressed. It is one of
the options in the .OPTIONS (analysis options) command.

Glossary

350

NOSUBCKT A variable that tells the simulator not to save the node voltages and inductor
currents for subcircuits.

NUMDGT An option that tells the simulator the number of digits that will be printed for
the analog values. It is one of the options in the
.OPTIONS (analysis options) command.

object A variable comprising both routines and data that is treated as a discrete
entity, in object-oriented programing.

operator A symbol (mathematical, as an example) or other character indicating an
operation that acts on one or more elements.

OUTPUT ALL An option that asks for an output from the sensitivity runs, after the nominal
(first) run. The output from any run is governed by the .PRINT (print),
.PLOT (plot), and .PROBE (Probe) command in the file. If OUTPUT ALL
is omitted, then only the nominal and worst-case runs produce output.
OUTPUT ALL ensures that all sensitivity information is saved for Probe.

package A package is an enclosure for an electronic device or subsystem. A physical
device consisting of one or more gates.

page A page may contain both parts (represented by symbols), port instances,
connectors, and annotation symbols. A page may or may not have a title. Each
schematic page represents a single page of a circuit design.

parameter A value that is given to a variable for programing.

part A part is an electrical component that is represented by a schematic symbol.
The term refers to the logical, rather than the physical, component.

part definition See symbol.

part instance A part instance refers to an occurrence of a symbol in a schematic.

pin Pins are contained in parts, ports, and offpage connectors. Parts can contain
multiple pins. Each part contains specific pin names associated with the part.
Pins may connect to a wire, a bus, or another pin.

pin current The current that flows into or out-of a defined pin.

POLY Specifies the number of dimensions of the polynomial.

port A port provides connectivity across schematic pages. A port provides the
anchor for a single pin. Ports are chosen from library files, placed, moved, and
deleted in the same way as are parts. Ports may have multiple connections.
Ports consist of three types: global, interface, and offpage.

run The execution of a computer routine or operation.

SCBE substrate current induced body effect (MOSFET device)

schematic A schematic consists of the following components: one or more pages, a set of
symbols representing local part definitions or parts in a library file, and/or
text.

setpoint A setpoint provides a graphical way of introducing
.IC (initial bias point condition) or .NODESET (set approximate node
voltage for bias point) commands for each instance of a symbol. These
commands set one or more node voltages for the bias point calculation.

351

Glossary

SIMLIBPATH A variable that defines the environment that the simulator is working in (path
to the directory that the library is in).

simulation The use of a mathematical model to represent a physical device or process.

skipbp (skip bias point)

statement The smallest executable entity within a programming language. In general,
each line of a program is an individual statement and is considered an
individual instruction. (Examples: command statements, option statements,
control statements, assignment statements, comment statements.)

Statz model A GaAsFET model

subcircuit A small collection of components working together to perform a task.

symbol A symbol consists of the graphical representation of a logical or physical
electronic part on the schematic page, and its definition. Symbols can be
created either for a specific schematic or extracted from a library file, and may
contain schematic pages nested within them.

syntax The grammar of a particular computer language, with rules that govern the
structure and content of the statement.

TEXTINT A function which returns a text string which is the integer value closest to the
value of the <value or expression>; (<value or expression> is a floating-point
value)

tick number The number generated from a regular recurring signal emitted by a clocking
circuit, or from the interrupt generated by this signal.

TOM model a GaAsFET device

VARY BOTH The default option is VARY BOTH. When VARY BOTH is used, sensitivity
to parameters using both DEV and LOT specifications is checked only with
respect to LOT variations. The parameter is then maximized or minimized
using both DEV and LOT tolerances for the worst-case. All devices
referencing the model have the same parameter values for the worst-case
simulation.

VARY DEV See VARY BOTH

VARY LOT See VARY BOTH

VTO temperature The temperature of the JFET or MOSFET device when there is zero-bias
threshold (pinchoff) voltage.

window An area on the screen in a graphical computer interface that contains
instructional documentation or a message.

Glossary

352

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

* (comment), 99
; (in-line comment), 100

Numerics
4000-series CMOS library, 333
7400-series TTL and CMOS libraries, 333
74181 model, 294
74393 subcircuit example, 249

A
A/D and D/A converters, 286
ABM, 137

defined, 347
polynomial transfer function, 138

absolute value (ABS), xix
ABSTOL (.OPTIONS), 61
.AC, 32
AC analysis, 32
ACCT (.OPTIONS), 59
ACOS(x), xix
ADC, 287
AFFECTS, 302
air-gap, 165, 166
AKO, 112, 155, 173, 185, 207, 217

defined, 347
alias, 338

defined, 347
.ALTER, 103
amplitude, peak, 150, 151
analog devices, 53

passive
semiconductor

analog parts
breakout parts, 129, 163, 172, 216
capacitors, 216
ideal switches, 220, 233
inductor coupling (KBREAK), 163
inductors, 216

resistors, 216
semiconductor parts, 132, 177

analog-to-digital converter, 51
analyses

AC, 32
bias point, 58
DC, 34
Fourier, 41
Monte Carlo, 47
noise, 56
parametric, 79
sensitivity, 78
sensitivity/worst-case, 95
temperature, 87
transient, 90

analysis options
flag options, 59

AND, 256
AND3, 259
anhysteric, 165
annotation

defined, 347
annotation symbol

defined, 347
AO, 256
arc tangent (ATAN and ARCTAN), xix
arccosine function, xix
ARCOS(x), xix
arcsine, xix
arctangent, xix
argument, 85, 86, 236, 347
arithmetic expressions, xx
ASIN(x), xix
ATAN2, xix
attributes

definition, 53, 60, 347

B
base-

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

354

emitter voltage, 73
terminal abbreviation, 71

behavioral primitives, 249, 291
constraint check, 304
logic expression, 292
pin-to-pin delay, 295

bias point, 58
.NODESET, 55
SKIPBP, 90
small-signal, 43

biaspoint
transient, 43

bidirectional delay line, 223
bidirectional transfer gates, 248, 261
binary notation format, 313
bipolar transistor, 204

summary, 105, 107
bipolar transistor model

quasi-saturation effect, 212
bipolar transistor, PNP, 51
block, 236, 347
BOOLEAN, 296, 297, 304
Boolean expression IF, xix
breakout parts, 129, 172, 216

inductor coupling, 163
BSIM3 model

advanced parameters, 181
BUF, 256
BUF3, 259
bulk, MOSFET terminal (substrate), 71
bus, 63

defined, 347

C
call, 69, 85, 106, 236, 347
CAP device model, 51
capacitor, 51, 128

summary, 105, 107
capacitors, 216

voltage coefficients, 102
CASE, 300
CHANGED

reference function, 298
CHANGED_HL

reference function, 298, 300
CHANGED_LH

reference function, 298
CHEBYSHEV, 136
CHGTOL (.OPTIONS), 61
circuit, 106, 128, 236, 237, 347
circuit topology, 77
CLEAR, 305
CLOCK, 304
CLRBAR, 300
Cohen, Ellis, 339
collector, 71
command

reference, 30
syntax format, xvii

command files
Probe, xxii

command line options
PLogic, xxvii
PSpice, xxvii
PSpice A/D, xxvii

comment, 99, 347
bias point files, 46
included files, 44
in-line, 100

comment line, 99
common simulation data file (CSDF), 69
compiler, 336, 345, 347
compiling, 345
complex digital devices, 291
component, 106, 170, 215, 237, 347
conductance, 61
conductance matrix, 337
connectors, 348
CONSTRAINT, 294, 302, 304, 308

PSpice messages, 63
constraint check, 304

FREQ, 307
GENERAL, 307
SETUP_HOLD, 304
WIDTH, 306

continuation line, 277, 281, 283
conventions, 30

expression, 30
numeric value, 30

convergence hazard, 63
convergence problems, 77

corrections, 103
converters, 286, 289

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

355

convolution, 225
CORE device model, 51
core model, 167, 170
cosine (COS), xix
CPTIME (.OPTIONS), 61
CPU time, 61
current source, 32, 348

EXP parameters, 144
PULSE parameters, 145
SIN parameters, 151
SSFM parameters, 150

current-controlled
current source, 105, 107, 141
resistor, 232
switch, 51, 105, 107, 232
voltage source, 105, 107, 141

D
D device model, 51
DAC, 289
damping factor

current source, 151
data

file, xxvi
.DC, 34
DC analysis, 34
DC gain, 89
DC sweep, 34
Ddt(x), xix
declarative statement, 348
DEFAD (.OPTIONS), 61
DEFAS, 61
default temperature (TNOM), 62
defined function, 37, 42, 348
DEFL (.OPTIONS), 61
DEFW (.OPTIONS), 61
DEG, 137
DELAY, 136
delay, 299

line, 248, 274
values, 251

DEV tolerance, 52, 98
DEVEQU, 345
device, 178, 179, 181, 348

header file, 342
model change, 337

topology, 342
device equations

adding a new device, 341, 342
adding a parameter, 338
changing a parameter’s name, 338
changing the device equations, 339
example, 342
giving a parameter an alias, 338
making device model changes, 337
recompiling and linking, 345

device temperatures, customized, 53
devices, 105, 107

A/D converter, 286
bipolar transistor, 204
capacitor, 128
complex digital, 291
current-controlled current source, 141
current-controlled switch, 232
current-controlled voltage source, 141
D/A converter, 286
digital input, 324
digital output, 328
digital primitive, 105
digital stimulus, 105
digital-to-analog interface, 324
diode, 131
GaAsFET, 110
independent current source & stimulus, 142
independent current source & stimulus

(sinusoidal waveform), 151
independent voltage source & stimulus, 142
inductor, 170
inductor coupling, 105
inductor coupling (transformer core), 160
input/output model, 322
insulated gate bipolar transistor, 237
interface, 246
JFET, 153
MOSFET, 105, 108, 174
passive, 53
primitives, 247
programmable array logic, 334
resistor, 215
semiconductor, 53
stimulus, 246
subcircuit instantiation, 236
subcircuits, 105

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

356

transmission line, 223
transmission line coupling, 105, 109, 160
voltage-controlled current source, 136
voltage-controlled switch, 219
voltage-controlled voltage source, 136

DFF, 265
DIBL, 181, 189, 190, 348
differential function, xix
DIGDRVF (.OPTIONS), 61
DIGDRVZ (.OPTIONS), 61
DIGERRDEFAULT (.OPTIONS), 61, 308
DIGERRLIMIT (.OPTIONS), 61, 308
DIGFREQ (.OPTIONS), 61
DIGINITSTATE (.OPTIONS), 61
DIGIOLVL, 251
DIGIOLVL (.OPTIONS), 61
digital delay line, 51
digital input, 51, 324
digital input model parameters, 325

C (capacitance), 325
FILE, 325
FORMAT, 325
Sn (state "n"), 325
TIMESTEP, 325

digital libraries, 332
digital output, 51, 328

.VECTOR, 92
digital output model parameters, 328

CHGONLY, 328
CLOAD, 328
FILE, 328
FORMAT, 328
RLOAD, 328
Sn (state "n"), 328
SXNAME, 329
TIMESCALE, 329
TIMESTEP, 329

digital power supplies, 322, 323, 333
digital primitives, 247

format, 250
digital simulation

results in files, 92
worst-case timing, 64

digital time step, 61
digital worst-case timing, 63

convergence hazard, 63
cumulative ambiguity hazard, 63

digital input voltage, 63
glitch suppression, 64
net state conflict, 63
persistent hazard, 64
zero-delay-oscillation, 64

digital-to-analog
converter, 51
interface devices, 324

DIGMNTYMX (.OPTIONS), 61, 251
DIGMNTYSCALE (.OPTIONS), 61, 252
DIGOVRDRV (.OPTIONS), 61
DIGTYMXSCALE (.OPTIONS), 61
DINPUT device model, 51, 324
diode model, 51, 105, 108, 131
display file, xxvii
.DISTO (small-signal distortion), 102
.DISTRIBUTION, 37, 60
distribution

user-defined, 37
using an include file, 37

distribution name
GAUSS, 52
user-defined, 52

distributions
UNIFORM tolerances name, 52

DLTCH, 270
DLYLINE, 274
doping tail, 190, 206, 348
dot command, 128, 142, 348
DOUTPUT device model, 51
drain, 71

area, 61
bulk, 175
induced, 186

drive resistance, 61

E
edge-triggered flip-flops, 51, 265

truth tables, 268, 269
ELSE, xix, 348
emitter, 71
ENABLE, 301
.END, 39
end of circuit, 39
end subcircuit definition, 84
ENDREPEAT, 313

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

357

.ENDS, 84
environment variables

LIBPATH, 45
equation

changing, 339
ERRORLIMIT, 308
examples

CONSTRAINT primitive, 309
EXPAND (.OPTIONS), 46, 59
exponential (EXP), xix
exponential temperature coefficient (TCE), 217
expressions, xx, 42

conventions, xviii
numeric conventions, xix
text, 88

.EXTERNAL, 40
external port specifications, 40

F
FALSE, 306
ferromagnetic, 169
Ferroxcube, 162
FET, 51
file, xxvi, 317

data, xxvi
header, 317
input, xxv
output, xxvi
stimulus, 317
transitions, 317

files
log, xxiii, xxvi
stimulus, 93

filter shift, 80
final time value, 90, 142
flicker noise, 126, 135, 159, 202, 214, 348
flip-flops and latches, 248, 264

initialize, 264
timing constraints, 264
X-level handling, 264

flush interval, xxvi
FORMAT, 326
format array, 316
.FOUR, 41
Fourier analysis, 30, 41, 90, 348
FREQ (constraint check), 307

frequency
expression, 136
modulation, 143
response, AC analysis, 32

FSTIM, 86, 88, 317, 319, 348
.FUNC, 42
function definition, 42
functions

absolute value (ABS), xix
arc tangent (ATAN and ARCTAN), xix
arccosine (ACOS), xix
arctangent (ARCTAN), xix
arsine (ASIN), xix
ATAN2, xix
cosine (COS), xix
cosine hyperbolic, xix
differential (Ddt), xix
exponential (EXP), xix
hyperbolic tangent (TANH), xx
IF, xix
imaginary (IMG), xix
integral (Sdt), xx
limit (LIMIT), xix
log base 10 (LOG10), xix
log base E (LOG), xix
MAX, xix
MIN, xix
phase (P), xix
power (PWR), xx, xxi
real (R), xx
signed power (PWRS), xx
signum (SGN), xx
sine (SIN), xx
square root (SQRT), xx
step (STP), xx
table (TABLE), xx
tangent (TAN), xx

G
GaAs MESFET, 51
GaAsFET, 105, 108, 110, 113, 343

device model, 51
illustration, 342
Level 1 parameters, 113
Level 2 parameters, 113
Level 3 parameters, 115

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

358

Level 4 parameters
parameters for all levels, 112

gate, 348
gated

latch, 270
gates, 51, 71, 254

bidirectional transfer, 261
flip-flops
number in model, 258
number of inputs, 255
standard, 255
tri-state, 258

gate-source
voltage, 70

Gaussian, 52
GENERAL (constraint check), 307
glitch, 348

suppression, 64
global

node names, 85
parameters, 348
ports, 348

GMIN (.OPTIONS), 61
goal functions

command line, xxvii
group delay, 73

AC analysis, 32
Gummel-Poon transistor model

quasi-saturation effect, 212

H
harmonics, 41
header

file, 317
HEX radix functions, 317
hexadecimal notation, 314
HEXFET, 203
HOLDTIME, 305
hyperbolic tangent (TANH), xx
hysteresis, 165

I
I/O model, 311
.IC, 43, 55
bias point

.IC setting, 43

IC=, 90, 128, 170
icon, xvi, 348
ideal transmission line, 224
IF, xix, 348
IGBT

extracting model parameters from data sheets,
239

imaginary part, 73
IMG(x), xix
.INC, 42, 44, 50
included file, 31, 85, 96, 348

.DISTRIBUTION command, 60
including files, 42, 44
INCR BY, 315
IND device model, 51
independent current source & stimulus, 105, 108,

142
sinusoidal waveform, 151

independent sources
AC analysis, 32

independent voltage source & stimulus, 105, 108,
142

inductor, 51, 105, 108, 170
coupling, 105, 108, 161
coupling (transformer core), 160

inductors, 216
current coefficients, 102

initial bias point condition, 43
in-line comment, 100
input file, xxv
input/output model parameters, 251, 322

AtoD, 322
DIGPOWER, 322
DRV, 322
DtoA, 322
OUT, 322
TPWRT, 322

instance name, 107, 348
instantiate, 84, 348
insulated gate bipolar transistor (IGBT), 105, 108,

237
integral (Sdt), xx
Intel hex format, 279, 283
interface, 246
internal time step, 91
INTERNAL_NODE, 344
INV, 256

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

359

INV3, 259
invoke, 349
IO_LEVEL, 251, 311
IO_STM, 311, 313, 320
ionization knee, 157, 349
IS =, 326
IS temperature, 112, 133, 155, 208, 349
ISAS, 348
ISWITCH device model, 51
iteration, 149, 349
ITL3, 102
ITLn (.OPTIONS), 61

J
JEDEC file, 86, 88, 275, 277, 278, 334
JFET, 105, 108, 153, 343

illustration, 342
Jiles-Atherton model, 163, 165, 349
JKFF, 265
job statistics (ACCT), 59
junction

definition, 175, 178, 349

K
KBREAK (inductor coupling), 163
KEYWORD, 136, 148, 349

DEG, 137
MAG, 137
PARAMS, 236
R_I, 137
RAD, 137

Knuth, Donald, 48

L
labels, 349
Laplace variable, 42, 136
latch, 264

gated, 270
lateral PNP, 51
.LIB, 45
LIBPATH, 45, 349
LIBRARY (.OPTIONS), 59
library file, 45
limit (LIMIT), xix
LIMPTS (.OPTIONS), 62

LIMTIM, 102
linear

temperature coefficient (TC1), 217
link, 345, 349
LIST (.OPTIONS), 59
.LOADBIAS, 76

load bias point file, 46
log (logarithmic)

base 10 (LOG10), xix
base E (LOG), xix

log files, xxiii
PSpice, xxvi

log Probe commands, xxiii
logic expression, 292
LOGICEXP, 292, 293, 295
lossy transmission line, 51, 225
lot tolerance, 52, 96, 98, 349
LPNP device model, 51
lsb, 93, 349
LVLCOD, 102
LVLTIM, 102

M
M.H, 337
macro file, xxvii
MAG, 137
magnetic core, 161, 163
magnitude, 62, 73

M(x), functions, xix
master library file, 45
MAXFREQ, 307
maximum

(MAX), xix
MAXORD, 102
.MC, 47
memory primitives, 249

RAM, 283
ROM, 279

messages, 63, 308
DIGITAL INPUT VOLTAGE, 63
FREQUENCY, 63
GENERAL, 63
hazard and timing violation, 63
HOLD, 63
NET-STATE CONFLICT, 63
PERSISTENT HAZARD, 64

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

360

persistent hazards, 40
RELEASE, 63
SETUP, 63
Timing Violations, 63
WIDTH, 63
ZERO–DELAY– OSCILLATION, 64

metafile, 349
METHOD, 102
Microsoft compiler for the device equations option,

345
MIN_LO, 306
MINFREQ, 307
minimum (MIN), xix
MNTYMXDLY, 251
mobility, 181, 185, 186, 191, 240, 241, 349
.MODEL, 50
model

library, 45, 349
temperature customization, 53

model breakout parts
resistors, 216
D (diode), 132
GASFET (GaAsFET), 111
IGBT, 238
ISWITCH (current-controlled switch), 233
LPNP (bipolar transistor), 205
NJF (JFET), 154
NMOS (MOSFET), 177
NPN (bipolar transistor), 205
PJF (JFET), 154
PMOS (MOSFET), 177
PNP (bipolar transistor), 205
VSWITCH (voltage-controlled switch), 220
X (diode), 132

models, using in circuit designs, 106
Monte Carlo analysis, 37, 47, 76

default distribution values, 60
read-in error, 80

MOS.C and device model changes, 337
MOS.C and state vector information, 341
MOSFET, 105, 174

BSIM3 version 3.1 model description, 181
BSIM3 version 3.1 model parameters, 192
device declaration, 108
EKV version 2.6 model description, 179
EKV version 2.6 model parameters, 187
Level 4 description, 178

Level 6 advanced parameters, 181
Levels 1‚ 2‚ and 3 descriptions, 178
model declaration, 51
model parameters, 178

mouse, 349
msb, 93, 349
msim.ini, 45, 349
multi-bit A/D converter, 249, 286

timing model, 287
multi-bit D/A converter, 249, 286, 289

timing model, 289
MXPR macro, 338

N
N device, 324
Nagel, Lawrence, 339
NAND, 256
NAND3, 259
NBTG, 261
N-channel, 51

GaAsMESFET, 51
IGBT, 51
JFET, 51
NMOS, 51

nested subcircuits, 102
nesting, 236, 349
netlist

definition, 349
device declarations, 107
intrinsic device types, 107
proper syntax, 106

NIGBT device model, 51
NJF device model, 51
NMOS device model, 51
NOBIAS (.OPTIONS), 59
NODE (.OPTIONS), 59, 306
.NODESET, 46, 55, 76
nodeset, 30, 46, 55, 77, 349
NOECHO (.OPTIONS), 59
.NOISE, 56
noise

analysis, 56
bipolar transistor, 214
diode, 135
flicker, 126, 135, 159, 202, 214
JFET, 159

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

361

MOSFET, 202
shot, 126, 159, 202, 214
thermal, 126, 135, 159, 202, 214, 235

NOM.LIB, 45
nominal temperature, 87, 117, 130, 134, 156, 173,

198, 209, 218
NOMOD (.OPTIONS), 60
nonlinear controlled sources, 58
NOOUTMSG (.OPTIONS), 60
NOPAGE (.OPTIONS), 60
NOPRBMSG (.OPTIONS), 60
no-print value, 90
NOR, 256
NOR3, 259
NOREUSE (.OPTIONS), 60
NOREUSE flag, 60, 77, 349
NOSUBCKT, 75, 350
NPN bipolar transistor, 51
number of times to repeat (n), 312
NUMDGT (.OPTIONS), 62, 68, 350
numeric expression convention, xix
NXOR, 256
NXOR3, 259

O
O device, 328
OA, 256
object, 345, 350
OCT radix functions, 317
OMITTED, 339
.OP, 58
operator, 88, 350
.OPTIONS, 59, 61

ABSTOL, 61
CHGTOL, 61
CPTIME, 61
DEFAD, 61
DEFAS, 61
DEFL, 61
DEFW, 61
DIGDRVF, 61
DIGDRVZ, 61
DIGERRDEFAULT, 308
DIGERRLIMIT, 308
DIGFREQ, 61
DIGINITSTATE, 61

DIGIOLVL, 61
DIGMNTYMX, 61
DIGMNTYSCALE, 252
DIGOVRDRV, 61
DIGTYMXSCALE, 61
DISTRIBUTION, 60
EXPAND, 46
GMIN, 61
ITL1, 61
ITL2, 61
ITL4, 61
ITL5, 61
LIBRARY, 59
LIMPTS, 62
LIST, 59
NOBIAS, 59
NODE, 59
NOECHO, 59
NOMOD, 60
NOOUTMSG, 60
NOPAGE, 60
NOPRBMSG, 60
NOREUSE, 60
NUMDGT, 68
OPTS, 60
PIVREL, 62
PIVTOL, 62
RELTOL, 62
STEPGMIN, 60
TNOM, 62
VNTOL, 62
WIDTH, 68
ACCT, 59

options, xxv, 59
options not available in PSpice, 102

MAXORD, 102
OPTS (.OPTIONS), 60
OR, 256
OR3, 259
OUTPUT ALL, 47, 95, 96, 350
output file, xxvi

and flag options, 59
resistances, 89

output files
digital simulation results, 92

output variables
DC sweep, 70

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

362

transient analysis, 70

P
package, 350
page options for simulation output, 60
page, definition, 350
.PARAM, 65
parameter, 350

adding with the device equations option, 338
definition, 65
global, 112, 130, 133, 348
name change using the device equations option,

338
value calculation using the device equations

options, 339
parametric analysis, 79
PARAMS, 84

subcircuits, 236
part, 350

definition, 350
instance, 350

path definition, 296
PBTG, 261
P-channel, 51

JFET, 51
MOSFET, 51

peak amplitude, 150, 151
phase, 73
phase (P), xix
piecewise linear, 37
pin, 215, 291, 333, 350
pin current, 350
pin names equivalent to node names, 33
pins

and capacitor node polarity, 128
and inductor node polarity, 170
as external interface points of networks, 40
subcircuit nodes, 84
voltage out of range, 63

pin-to-pin delay (PINDLY), 294, 295, 296, 303
PIVREL (.OPTIONS), 62
PIVTOL (.OPTIONS), 62
PJF device model, 51
PLAND, 276
PLD, 86, 88, 275

overview, 275

PLNAND, 276
PLNOR, 276
PLNXOR, 276
PLOR, 276
.PLOT, 66
plot, 66
PLXOR, 276
PMOS device model, 51
PNP device model, 51
POLY, 350
polynomial transfer function (for ABM controlled

sources), 138
ports, 350

global, 348
power (PWR), xx, xxi
.prb file, xxvii
primitives, 246, 247, 295
.PRINT, 68
print, 68

step value, 90, 142
tables, 68

Probe, 69
data files, 58
output files, 39

.PROBE, 69
Probe command line options

-c, xxvi
-p, xxvii

programmable logic array PLD, 334
data values, 277
overview, 275
PLAND, 276
PLANDC, 276
PLNAND, 276
PLNANDC, 276
PLNOR, 276
PLNORC, 276
PLNXOR, 276
PLNXORC, 276
PLOR, 276
PLORC, 276
PLXOR, 276
PLXORC, 276
syntax, 276
timing model, 278
types, 248, 276

propagation delay, 252

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

363

PSpice
log file, xxvi

PSpice command line options
-d, xxvi
-l, xxvi
-o, xxvi

PSpice messages
hazard and timing violations, 63
Persistent Hazards, 40

PSPICE.MAK, 345
PULLDN, 273
PULLUP, 273
pullup and pulldown resistors, 248, 273

Q
QBAR, 69
quadratic temperature coefficient (TC2), 217
quasi-saturation effect (BJT), 212

R
R device, 215
R_I, 137
RAD, 137
RAM, 283
random access memory

timing model, 284
read only memory, 279

timing model, 282
real function (R), xx
real part, 73
recompiling and linking, 345
reference functions, 298

CHANGED, 298
CHANGED_HI, 298
CHANGED_LH, 298

relative accuracy, 62
RELEASETIME, 305
RELTOL (.OPTIONS), 62
REPEAT, 149, 313

ENDREPEAT, 149
FOREVER, 149

RES device model, 51
resistance multiplier, 217
resistor, 51, 105, 108, 215

model definition, 215

pullup and pulldown, 273
RMS, 56
roll-off

current, 206
ROM, 279
run, 137, 219, 350

Probe commands, xxiii

S
S device, 219
save

bias point to file, 75
.SAVEBIAS, 46, 75
scale factor, 61
SCBE, 181, 190, 350
schematic, 350
Schmitt trigger, 322
Sdt(x) integral function, xx
semiconductor models, 103
semiconductor parts, 132, 177
.SENS, 78
sensitivity

analysis, 78
worst-case analysis, 95

setpoint, 350
setting initial conditions, 43
SETUP_HOLD

constraint check, 304
SETUPTIME, 305
SGN(X) signum function, xx
shot noise, 126, 159, 202, 214
shunt conductance, 65
SIGNAME, 320, 327
signed power (PWRS), xx
SIMLIBPATH, 351
simulation, 137, 225, 351

lossy transmission lines, 225
transmission line, 223

simulation command line options
-bf, xxvi
-bn, xxvi
-bs, xxvi
-e, xxvi
-i, xxvi
-wDAT, xxvii
-wNO_NOTIFY, xxvii

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

364

-wONLY, xxvi
-wOUT, xxvii
-wPAUSE, xxvii
-wTXT, xxvii

SIN(x) function, xx
sine (SIN), xx
skip bias point, SKIPBP, 90
skipbp, 60, 90, 351
small-signal, 58

bias point, 43
DC gain, 89

small-signal distortion analysis, 102
source, 71
SPICE2 options, 102
SPICE2G, 340

PSpice differences, 102
square root (SQRT), xx
SRFF, 270
standard gates, 51, 247, 255, 256

AND, 256
ANDA, 256
AO, 256
AOI, 256
BUF
BUFA, 256
INV, 256
INVA, 256
NAND, 256
NANDA, 256
NOR, 256
NORA, 256
NXOR, 256
NXORA, 256
OA, 256
OAI, 256
OR, 256
ORA, 256
XOR, 256
XORA, 256

statement, 65, 77, 137, 161, 174, 351
Statz model, 110, 124, 351
.STEP, 79

usage examples, 81
step ceiling value, 90
step function (STP), xx
STEPGMIN (.OPTIONS), 60
stepping a resistor, 81

STIM, 311
.STIMLIB, 82
.STIMULUS, 83
stimulus definition, 83
stimulus devices, 246, 310

examples, 313
file stimulus, 317
stimulus generator, 311

stimulus library files, 82
STP(x), xx
struct m_, 340
subcircuit, 105, 107, 108, 225, 351

definition, 84
device declarations
instantiation, 84, 236
intrinsic device types
library, 45
usage examples, 86

.SUBCKT, 84
usage examples, 86

substrate, 71
sweep variable, 48, 76

DC analysis, 36
switch

current-controlled, 105, 107
voltage-controlled, 105, 109

switches, ideal, 220, 233
SXNAME, 330
symbol, 351
symbols

ideal switches, 220, 233
BBREAK (GaAsFET), 111
C (capacitor), 129
C_VAR (capacitor), 129
CBREAK (capacitor), 129
DBREAKx (diodes), 132
E (ABM controlled analog source), 138
EPOLY (ABM controlled analog source), 138
F (ABM controlled analog source), 138
FPOLY (ABM controlled analog source), 138
G (ABM controlled analog source), 138
GPOLY (ABM controlled analog source), 138
H (ABM controlled analog source), 138
HPOLY (ABM controlled analog source), 138
JBREAKx (JFET), 154
K_LINEAR (transformer), 163, 171
KBREAK (inductor coupling), 163

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

365

KCOUPLEn (transmission line coupling matrix),
227

L (inductor), 171
LBREAK (inductor), 172
MBREAKx (MOSFET), 177
QBREAKx (bipolar transistor), 205
R (resistor), 216
R_VAR (resistor), 216
RBREAK (resistor), 216
SBREAK (voltage-controlled switch), 220
T (transmission line), 226
TLOSSY (transmission line), 226
TnCOUPLED (transmission line), 227
TnCOUPLEDX (transmission line), 227
WBREAK (current-controlled switch), 233
XFRM_LINEAR (transformer), 163, 171
XFRM_NONLINEAR (nonlinear transformer),

163
ZBREAKN (IGBT), 238

syntax, xvii, 52, 83, 351

T
T device, 223
T_ABS (.MODEL), 53
T_MEASURED (.MODEL), 53
T_REL_GLOBAL (.MODEL), 53
T_REL_LOCAL (.MODEL), 53
table (TABLE), xx
tangent (TAN), xx
tangent hyperbolic (TANH), xx
TC, 217

1 (linear temperature coefficient), 217
2 (quadratic temperature coefficient), 217
E (exponential temperature coefficient), 217

.TEMP, 87
temperature, 65, 87

customization, 53
temperature customizing, 53
TEXT

subcircuit, 236
.TEXT, 88
text expressions, 88
text parameter definition, 88
TEXTINT, 88, 351
.TF, 89
thermal noise, 126, 135, 159, 202, 214, 235

thermal voltage, 65
tick number, 326, 351
TIMESCALE, 317, 331
TIMESTEP, 312, 314, 326, 330
timing constraint, 253
timing hazards

convergence, 63
cumulative ambiguity, 63

timing model, 251
delay line, 274
gated latch, 270
general discussion, 252
multi-bit A/D converter, 287
multi-bit D/A converter, 289
programmable logic array, 278
random access memory, 284
read only memory, 282

TNOM (.OPTIONS), 62
tolerances, 52, 98

DEV, 52
distribution name, 52
GAUSS, 52
LOT, 52
specification, 52
UNIFORM, 52
user-defined, 52

TOM model, 110, 351
topology, 77, 342
.TRAN, 90
transfer function, 89
transformer, 51
transient analysis, 41, 90

final time value
internal time step, 91
no-print value, 90
print step value, 90
SKIPBP, 90
step ceiling value, 90

transient bias point, 43
transistor, bipolar, 204
transition functions, 299

TRN_$H, 299
TRN_$L, 299
TRN_H$, 299
TRN_HL, 299
TRN_HZ, 299
TRN_L$, 299

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

366

TRN_LH, 299
TRN_LZ, 299
TRN_Z$, 299
TRN_ZH, 299
TRN_ZL, 299

transitions
file, 317

transmission line
ideal line, 224
illustration, 224, 225
lossy line, 225

transmission line coupling, 105, 109, 160, 167, 223
transmission line device, 223
transmission lines

coupled, 228
ideal, 226
lossy, 226
simulating, 228

TRISTATE, 296, 301
tri-state gates, 51, 248, 258, 259

AND3, 259
AND3A, 259
BUF3, 259
BUF3A, 259
INV3, 259
INV3A, 259
NAND3, 259
NAND3A, 259
NOR3, 259
NOR3A, 259
NXOR3, 259
NXOR3A, 259
OR3, 259
OR3A, 259
XOR3, 259
XOR3A, 259

TRN device model, 51
TSTEP, 142
TSTOP, 142
typographical conventions, xvi

U
U.C. Berkeley, 337

address, 203, 339
UADC device model, 51, 287
UBTG, 261

UDAC device model, 51, 289
UDLY device model, 51, 274
UEFF device model, 51, 265
UGATE, 293
UGATE device model, 51, 255, 292
UGFF device model, 51, 270
UIO device model, 51, 322
UPLD, 275
URAM, 283
UROM, 279
user-defined distribution, 37
UTGATE device model, 51, 258

V
VARY BOTH, 96, 351
VARY DEV, 95, 351
VARY LOT, 96, 351
.VECTOR, 92
VIEWsim A/D, 327
VNTOL (.OPTIONS), 62
Voltage Source

PWL Parameters, 148
voltage-controlled

current source, 105, 107, 136
switch, 51, 105, 109, 219
voltage source, 105, 107, 136

VSWITCH device model, 51
VTO temperature, 351

W
W device, 232
.WATCH, 94
watch analysis results, 94
.WCASE, 95
WHEN, 308
.WIDTH, 102

IN= option, 102
WIDTH (.OPTIONS), 62, 68, 99
WIDTH (constraint check), 306
wildcard characters, xxv
window menu, 351
Windows, xvi, 63
worst-case analysis, 37, 76, 95

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

367

X
X devices, 84
XOR, 256
XOR3, 259

Z
zero impedance voltage source, DAC, 289

