Chapter 8 The Enhanced Entity-Relationship (EER) Model

Fundamentals of Database Systems

Elmasri • Navathe

Addison-Wesley is an imprint of

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 8 Outline

- Subclasses, Superclasses, and Inheritance
- Specialization and Generalization
- Constraints and Characteristics of Specialization and Generalization Hierarchies
- Modeling of UNION Types Using Categories

Chapter 8 Outline (cont'd.)

- A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions
- Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams
- Data Abstraction, Knowledge Representation, and Ontology Concepts

The Enhanced Entity-Relationship (EER) Model

- Created to design more accurate database schemas
 - Reflect the data properties and constraints more precisely
- More complex requirements than traditional applications

Subclasses, Superclasses, and Inheritance

- EER model includes all modeling concepts of the ER model
- In addition, EER includes:
 - Subclasses and superclasses
 - Specialization and generalization
 - Category or union type
 - Attribute and relationship inheritance

Subclasses, Superclasses, and Inheritance (cont'd.)

Enhanced ER or EER diagrams

 Diagrammatic technique for displaying these concepts in an EER schema

Subtype or subclass of an entity type

- Subgroupings of entities that are meaningful
- Represented explicitly because of their significance to the database application

Subclasses, Superclasses, and Inheritance (cont'd.)

- Terms for relationship between a superclass and any one of its subclasses
 - Superclass/subclass
 - Supertype/subtype
 - Class/subclass relationship

Type inheritance

Subclass entity inherits all attributes and relationships of superclass

Specialization and Generalization

Specialization

- Process of defining a set of subclasses of an entity type
- Defined on the basis of some distinguishing characteristic of the entities in the superclass
- Subclass can define:
 - Specific attributes
 - Specific relationship types

PEARSON

Specialization and Generalization (cont'd.)

- Certain attributes may apply to some but not all entities of the superclass
- Some relationship types may be participated in only by members of the subclass

Generalization

- Reverse process of abstraction
- Generalize into a single superclass
 - Original entity types are special subclasses

Generalization

 Process of defining a generalized entity type from the given entity types

Constraints and Characteristics of Specialization and Generalization Hierarchies

- Constraints that apply to a single specialization or a single generalization
- Differences between specialization/ generalization lattices and hierarchies

Constraints on Specialization and Generalization

- May be several or one subclass
- Determine entity subtype:
 - Predicate-defined (or condition-defined) subclasses
 - Attribute-defined specialization
 - User-defined

Constraints on Specialization and Generalization (cont'd.)

Disjointness constraint

 Specifies that the subclasses of the specialization must be disjoint

Completeness (or totalness) constraint

- May be total or partial
- Disjointness and completeness constraints are independent

Specialization and Generalization Hierarchies and Lattices

Specialization hierarchy

- Every subclass participates as a subclass in only one class/subclass relationship
- Results in a tree structure or strict hierarchy

Specialization lattice

 Subclass can be a subclass in more than one class/subclass relationship

Addison-Wesley is an imprint of

Specialization and Generalization Hierarchies and Lattices (cont'd.)

Multiple inheritance

- Subclass with more than one superclass
- If attribute (or relationship) originating in the same superclass inherited more than once via different paths in lattice
 - Included only once in shared subclass

Single inheritance

Some models and languages limited to single inheritance

Addison-Wesley is an imprint of

Utilizing Specialization and Generalization in Refining Conceptual Schemas

Specialization process

- Start with entity type then define subclasses by successive specialization
- Top-down conceptual refinement process
- Bottom-up conceptual synthesis
 - Involves generalization rather than specialization

Modeling of UNION Types Using Categories

Union type or a category

- Represents a single superclass/subclass relationship with more than one superclass
- Subclass represents a collection of objects that is a subset of the UNION of distinct entity types
- Attribute inheritance works more selectively
- Category can be total or partial
- Some modeling methodologies do not have union types

A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions

- The UNIVERSITY Database Example
 - UNIVERSITY database
 - Students and their majors
 - Transcripts, and registration
 - University's course offerings

Design Choices for Specialization/Generalization

- Many specializations and subclasses can be defined to make the conceptual model accurate
- If subclass has few specific attributes and no specific relationships
 - Can be merged into the superclass

Design Choices for Specialization/Generalization (cont'd.)

- If all the subclasses of a specialization/ generalization have few specific attributes and no specific relationships
 - Can be merged into the superclass
 - Replace with one or more type attributes that specify the subclass or subclasses that each entity belongs to

Design Choices for Specialization/Generalization (cont'd.)

- Union types and categories should generally be avoided
- Choice of disjoint/overlapping and total/ partial constraints on specialization/ generalization
 - Driven by rules in miniworld being modeled

Formal Definitions for the EER Model Concepts

Class

- Set or collection of entities
- Includes any of the EER schema constructs of group entities

Subclass

 Class whose entities must always be a subset of the entities in another class

Specialization

Set of subclasses that have same superclass

Addison-Wesley is an imprint of

Formal Definitions for the EER Model Concepts (cont'd.)

Generalization

Generalized entity type or superclass

Predicate-defined

 Predicate on the attributes of is used to specify which entities in C are members of S

User-defined

Subclass that is not defined by a predicate

Formal Definitions for the EER Model Concepts (cont'd.)

Category

- Class that is a subset of the union of n defining superclasses
- Relationship type
 - Any class can participate in a relationship

Example of Other Notation

- Representing specialization and generalization in UML class diagrams
 - Basic notation
 - See Figure 8.10
 - Base class
 - Root superclass
 - Leaf classes
 - Subclasses (leaf nodes)

Figure 8.10

A UML class diagram corresponding to the EER diagram in Figure 8.7, illustrating UML notation for specialization/generalization.

Data Abstraction, Knowledge Representation, and Ontology Concepts

- Goal of knowledge representation (KR) techniques
 - Accurately model some domain of knowledge
 - Create an ontology that describes the concepts of the domain and how these concepts are interrelated
- Goals of KR are similar to those of semantic data models
 - Important similarities and differences

Classification and Instantiation

Classification

 Systematically assigning similar objects/entities to object classes/entity types

Instantiation

- Inverse of classification
- Generation and specific examination of distinct objects of a class

Classification and Instantiation (cont'd.)

Exception objects

- Differ in some respects from other objects of class
- KR schemes allow such class properties
- One class can be an instance of another class (called a meta-class)
 - Cannot be represented directly in EER model

Identification

- Abstraction process
- Classes and objects are made uniquely identifiable by means of some identifier
- Needed at two levels
 - To distinguish among database objects and classes
 - To identify database objects and to relate them to their real-world counterparts

Specialization and Generalization

Specialization

 Classify a class of objects into more specialized subclasses

Generalization

- Generalize several classes into a higher-level abstract class
- Includes the objects in all these classes

Aggregation and Association

Aggregation

 Abstraction concept for building composite objects from their component objects

Association

- Associate objects from several independent classes
- Main structural distinction
 - When an association instance is deleted
 - Participating objects may continue to exist

Figure 8.11

Aggregation. (a) The relationship type INTERVIEW. (b) Including JOB_OFFER in a ternary relationship type (incorrect). (c) Having the RESULTS_IN relationship participate in other relationships (not allowed in ER). (d) Using aggregation and a composite (molecular) object (generally not allowed in ER but allowed by some modeling tools). (e) Correct representation in ER.

Figure 8.11

Aggregation. (a) The relationship type INTERVIEW. (b) Including JOB_OFFER in a ternary relationship type (incorrect). (c) Having the RESULTS_IN relationship participate in other relationships (not allowed in ER). (d) Using aggregation and a composite (molecular) object (generally not allowed in ER but allowed by some modeling tools). (e) Correct representation in ER.

Ontologies and the Semantic Web

 Documents contain less structure than database information does

Semantic Web

 Allow meaningful information exchange and search among machines

Ontology

Specification of a conceptualization

Specification

 Language and vocabulary terms used to specify conceptualization

PEARSON

Summary

Enhanced ER or EER model

- Extensions to ER model that improve its representational capabilities
- Subclass and its superclass
- Category or union type
- Notation and terminology of UML for representing specialization and generalization

