
A

Learning Join Queries from User Examples

ANGELA BONIFATI, University of Lyon 1, University of Lille 1, Inria LINKS
RADU CIUCANU, University of Oxford, University of Lille 1, Inria LINKS
SŁAWEK STAWORKO, University of Lille 3, Inria LINKS, University of Edinburgh, DIACHRON, LFCS

We investigate the problem of learning join queries from user examples. The user is presented with a set

of candidate tuples and is asked to label them as positive or negative examples, depending on whether or

not she would like the tuples as part of the join result. The goal is to quickly infer an arbitrary n-ary join
predicate across an arbitrary number m of relations while keeping the number of user interactions as minimal

as possible. We assume no prior knowledge of the integrity constraints across the involved relations. Inferring
the join predicate across multiple relations when the referential constraints are unknown may occur in several

applications such as data integration, reverse engineering of database queries, and schema inference. In such

scenarios, the number of tuples involved in the join is typically large. We introduce a set of strategies that
let us inspect the search space and aggressively prune what we call “uninformative” tuples, and directly

present to the user the informative ones i.e., those that allow to quickly find the goal query that the user

has in mind. In this paper, we focus on the inference of joins with equality predicates and we also allow
disjunctive join predicates and projection in the queries. We precisely characterize the frontier between

tractability and intractability for the following problems of interest in these settings: consistency checking,

learnability, and deciding the informativeness of a tuple. Next, we propose several strategies for presenting
tuples to the user in a given order that lets minimize the number of interactions. We show the efficiency of

our approach through an experimental study on both benchmark and synthetic datasets.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Query formulation.

General Terms: Algorithms, Theory.

Additional Key Words and Phrases: SQL query discovery, reverse engineering, incomplete schema.

ACM Reference Format:
Angela Bonifati, Radu Ciucanu, and Sławek Staworko. 2015. Learning Join Queries from User Examples.
ACM Trans. Datab. Syst. V, N, Article A (January YYYY), 38 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The amount of data and the number of available data sources continue to grow at an
ever astounding rate allowing the users to satisfy more and more complex information
needs. However, expressing complex information needs requires the use of formalisms
for querying and integrating data sources that are typically mastered by only a small
group of adept users. In real life, casual users often have to combine raw data coming
from disparate data sources, with little or no knowledge of metadata and/or querying
formalisms. Such unqualified users need to resort to brute force solutions of manipu-
lating the data by hand. While there may exist providers of integrated data, the users
may be unsatisfied with the quality of their results.

The problem of assisting non-expert users to specify their queries has been recently
raised by [Jagadish et al. 2007; Nandi and Jagadish 2011]. More concretely, they have

Authors’ addresses: angela.bonifati@univ-lyon1.fr, radu.ciucanu@cs.ox.ac.uk, sstawork@inf.ed.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 0362-5915/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

From To Airline City Discount
Paris Lille AF NYC AA (1)
Paris Lille AF Paris None (2)

+ Paris Lille AF Lille AF (3)
+ Lille NYC AA NYC AA (4)

Lille NYC AA Paris None (5)
Lille NYC AA Lille AF (6)
NYC Paris AA NYC AA (7)

– NYC Paris AA Paris None (8)
NYC Paris AA Lille AF (9)
Paris NYC AF NYC AA (10)
Paris NYC AF Paris None (11)
Paris NYC AF Lille AF (12)

Fig. 1. Integrated table.

observed that “constructing a database query is often challenging for the user, com-
monly takes longer than the execution of the query itself, and does not use any insights
from the database”.

Nevertheless, join specification may become feasible for non-expert users whenever
they can easily access data and metadata altogether. This happens in traditional query
specification paradigms, such as query-by-example [Zloof 1975], that are typically cen-
tered around a single database. When it comes to consider raw data coming from differ-
ent data sources, such paradigms are not applicable any longer. The reason is twofold:
(i) such data may not carry pertinent metadata to be able to specify a join predicate
and (ii) value-based matching of tuples is unfeasible in most cases, due to a massive
number of tuples.

In this paper, we consider very simple user input via Boolean membership queries
(“Yes/No”) to assist unfamiliar users to write their queries upon integrated data. In
particular, we focus on two fundamental operators of any data integration or query-
ing tool: equijoins – combining data from multiple sources, and semijoins – filtering
data from one source based on the data from another source. Besides data integration,
such operators are sensible in many other applications, such as reverse engineering of
database queries and constraint inference in case of limited knowledge of the database
schemas. In particular, the queries that we investigate are of practical use in the con-
text of denormalized databases having a small number of relations with large numbers
of attributes.

Inference algorithms for schema mappings have been recently studied in [Alexe et al.
2011a; 2011b] by leveraging data examples. However, such examples are expected to
be provided by an expert user, namely the mapping designer, who is also responsible of
selecting the mappings that best fit them. Query learning for relational queries with
quantifiers has recently been addressed in [Abouzied et al. 2013; Abouzied et al. 2012].
There, the system starts from an initial formulation of the query and refines it based
on primary-foreign key relationships and the input from the user. We discuss in detail
the differences with our work at the end of this section. To the best of our knowledge,
ours is the first work that considers inference of joins via simple tuple labeling and
with no knowledge of integrity constraints.

Consider a scenario where a user working for a travel agency wants to build a list
of flight&hotel packages. The user is not acquainted with querying languages and can
access the information on flights and hotels in a denormalized table, result of some
data integration scenario, as in Figure 1.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:3

The airline operating every flight is known and some hotels offer a discount when
paired with a flight of a selected airline. Two queries can be envisioned: one that se-
lects travel packages consisting of a flight and a stay in a hotel and another one that
additionally ensures that the package is combined in a way allowing a discount. These
two queries correspond to the following equijoin predicates:

To “ City, (Q1)
To “ City^ Airline “ Discount. (Q2)

Note that since we assume no knowledge of the schema and of the integrity con-
straints, a number of other queries can possibly be formulated but we remove them
from consideration for the sake of simplicity and clarity of the example.

While the user may be unable to formulate her query, it is reasonable to assume that
she can indicate whether or not a given pair of flight and hotel is of interest to her. We
view this as labeling with ` and ´ the tuples from the integrated table (Figure 1). For
instance, suppose the user chooses the flight from Paris to Lille operated by Air France
(AF) and the hotel in Lille. This corresponds to labeling by ` the tuple (3).

Observe that both queries Q1 and Q2 are consistent with this labeling i.e., both
queries select the tuple (3). Naturally, the objective is to use the labeling of further
tuples to identify the goal query i.e., the query that the user has in mind. Not every
tuple can however serve this purpose. For instance, if the user labels next the tuple (4)
with `, both queries remain consistent. Intuitively, the labeling of the tuple (4) does
not contribute any new information about the goal query and is therefore uninforma-
tive, an important concept that we formalize in this paper. Since the input table may
contain a large number of tuples, it may be unfeasible for the user to label every tuple.

For such a reason, we aim at limiting the number of tuples that the user needs to
label in order to infer the goal query. More precisely, in this paper we propose solutions
that analyze and measure the potential information about the goal query that labeling
a tuple can contribute and present to the user tuples that maximize this measure. In
particular, since uninformative tuples do not contribute any additional information,
they would not be presented to the user. In the example of the flight&hotel packages,
a tuple whose labeling can distinguish between Q1 and Q2 is, for instance, the tuple
(8) because Q1 selects it and Q2 does not. If the user labels the tuple (8) with ´, then
the query Q2 is returned; otherwise Q1 is returned. We also point out that the use of
only positive examples, tuples labeled with `, is not sufficient to identify all possible
queries. As an example, queryQ2 is contained inQ1, and therefore, satisfies all positive
examples that Q1 does. Consequently, the use of negative examples, tuples with label
´, is necessary to distinguish between these two.

The foundations of such an interactive scenario for the inference of join queries have
been studied in [Bonifati et al. 2014a]. However, the problem setting considered there
is restricted to two relations on which only conjunctions of equality predicates can
be learned. This paper substantially extends the results of [Bonifati et al. 2014a], by
allowing (i) an arbitrary number of relations in the join inference and (ii) by adding
disjunction to the join predicates.

First, notice that the extension to an arbitrary number of relations is rather nat-
ural. For instance, in our motivating example one can consider multiple flights and
multiple hotels e.g., a user may be interested in a round trip with a stay in a hotel in
an intermediate city. We have considered such queries in a synthetic scenario in the
experimental evaluation.

Second, to illustrate a case when the disjunction is useful, assume for instance that
the user is interested in travel packages consisting of a flight and a stay in a hotel
(either in the source or destination city), combined in a way allowing a discount. This

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

query corresponds to the following disjunction of conjunctions of equijoin predicates:

pFrom “ City^ Airline “ Discountq _ pTo “ City^ Airline “ Discountq.

To infer such a query, the user has to label on the instance from Figure 1 the tuples (3)
and (7) as positive examples, and the tuples (8) and (11) as negative examples.

Summarizing, the main contributions of our paper are the following:

— We characterize the learnability of join queries using a definition based on the stan-
dard framework of language identification in the limit with polynomial time and
data [Gold 1967; 1978]. Essentially, we show that the equijoins are learnable (with
or without disjunction), while the semijoins are learnable only when disjunction is
allowed. In particular, to prove that the semijoins without disjunction are not learn-
able, we have used the intractability of the consistency checking, a fundamental prob-
lem underlying learning i.e., to decide whether there exists a query consistent with
a given set of examples.
Thus, we precisely characterize the frontier between the learnable and the non learn-
able cases depending on whether or not we allow disjunction and/or projection. We
point out that all these learnability results are novel w.r.t. previous work [Bonifati
et al. 2014a]. Moreover, consistency checking has been only studied in that work for
the simple case of two relations and without disjunction, and, additionally, the in-
tractability proof for consistency checking in the case of semijoins was missing.

— We focus on an interactive scenario inspired by the well-known framework of learn-
ing with membership queries [Angluin 1988], we characterize the potential informa-
tion that labeling a given tuple may contribute to the join inference process, and
identify uninformative tuples. More precisely, we propose two notions of uninforma-
tiveness, one based on the knowledge of the goal query and one not based on this
knowledge, and we show that the two notions are equivalent.
Then, we prove that for all aforementioned learnable cases, deciding whether a tuple
is informative can be tested in polynomial time. This is a non-trivial generalization of
a result given in [Bonifati et al. 2014a] only for two relations and without disjunction.
Additionally, we show that this problem remains intractable for semijoins without
disjunction, which is again a novel contribution w.r.t. [Bonifati et al. 2014a].

— We propose a set of strategies for interactively inferring a goal join query and we
show their efficiency within an experimental study on both TPC-H and synthetic
data. The experimental study significantly improves the analysis done in previous
work [Bonifati et al. 2014a] as here we consider all the queries of the TPC-H bench-
mark while they focused only on a small subset of the benchmark, limited to simple
joins on two tables. The queries that we report in this paper take in fact into ac-
count an arbitrary number of tables. Then, to cope with the absence of disjunction
in the TPC-H queries, we have defined a set of synthetic queries using such opera-
tor and implemented a synthetic dataset inspired by our motivating example. As a
consequence, all the empirical results on learning disjunctive joins are novel w.r.t.
previous work [Bonifati et al. 2014a].

Since our goal is to minimize the number of interactions with the user, our re-
search is of interest for novel database applications e.g., query processing using the
crowd [Franklin et al. 2011], where minimizing the number of interactions entails
lower financial costs. In particular, crowdsourced joins have been mainly defined in
terms of entity resolution, where joining two datasets means finding all pairs of tu-
ples that refer to the same entity [Marcus et al. 2011; Wang et al. 2013]. Conversely,
our goal is to handle arbitrary n-ary join predicates, thus targeting a quite different
and more intricate goal for the crowd i.e., inferring such join predicates from a set of
positive and negative labels.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:5

Moreover, our research also applies to schema mapping inference, assuming a less
expert user than in [Alexe et al. 2011a; 2011b]. Indeed, in our case the annotations
correspond to simple membership queries [Angluin 1988] to be answered even by a
user who is not familiar with schema mappings.

Organization
In Section 2, we introduce some preliminary notions. In Section 3, we define a frame-
work for learning join queries from a given set of examples and analyze the complex-
ity of two fundamental problems of interest: consistency checking and learnability. In
Section 4, we describe the studied interactive scenario and investigate the problem of
deciding the informativeness of a tuple. In Section 5, we propose practical strategies
of presenting tuples to the user, while in Section 6, we experimentally evaluate their
performance. Finally, we summarize the conclusions and outline directions of future
work in Section 7.

Related work
A wealth of research on using computational learning theory [Kearns and Vazirani
1994] has been recently conducted in databases [Abouzied et al. 2013; Bex et al. 2010;
Bonifati et al. 2014a; Bonifati et al. 2015; Lemay et al. 2010; Staworko and Wieczorek
2012; ten Cate et al. 2013]. Very recently, algorithms for learning relational queries
(e.g., quantifiers [Abouzied et al. 2013], joins [Bonifati et al. 2014a]), XML queries
(e.g., tree patterns [Staworko and Wieczorek 2012]), or graph queries (e.g., regular
path queries [Bonifati et al. 2015]) have been proposed. Besides learning queries, re-
searchers have investigated the learnability of relational schema mappings [ten Cate
et al. 2013], as well as schemas [Bex et al. 2010] and transformations [Lemay et al.
2010] for XML. In this section, we discuss the positioning of our own work w.r.t. these
and other papers.

Our work follows a very recent line of research on the inference of relational
queries [Bonifati et al. 2014a; Zhang et al. 2013; Tran et al. 2009; Das Sarma et al.
2010]. As already mentioned above, we significantly generalize [Bonifati et al. 2014a]
since we consider settings where we additionally allow the disjunction and an arbi-
trary number of relations. [Zhang et al. 2013] have focused on computing a join query
starting from a database instance, its complete schema, and an output table. Clearly,
their assumptions are different from ours. In particular, we do not assume any knowl-
edge of the integrity constraints or the query result. In our approach, the latter has
to be incrementally constructed via multiple interactions with the user, along with
the join predicate itself. [Zhang et al. 2013] consider more expressive queries than we
do, but when the integrity constraints are unknown, one can leverage our algorithms
to yield those and apply their approach thereafter. Moreover, [Tran et al. 2009] have
investigated the query by output problem: given a database instance, a query state-
ment and its output, construct an instance-equivalent query to the initial statement.
[Das Sarma et al. 2010] have studied the view definition problem i.e., given a database
instance and a corresponding view instance, find the most succinct and accurate view
definition. Both [Tran et al. 2009] and [Das Sarma et al. 2010] essentially use decision
trees to classify tuples as selected or not selected in the query output or in the view
output, respectively. We differ from their work in two ways: we do not know a priori
the query output, and we need to discover it from user interactions; we have no initial
query statement to start with.

The learnability definition that we employ in Section 3 is based on the standard
framework of language identification in the limit with polynomial time and data [Gold
1967; 1978] adapted to learning join queries. Then, the interactive scenario studied

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

in Section 4 is inspired by the well-known framework of learning with membership
queries [Angluin 1988].

A problem closely related to learning is definability. More precisely, [Bancilhon 1978]
and [Paredaens 1978] have studied the decision problem, given a pair of relational
instances, whether there exists a relational algebra expression which maps the first
instance to the second one. Their research led to the notion of BP-completeness. Their
results were later extended to the nested relational model [Van Gucht 1987] and to
sequences of input-output pairs [Fletcher et al. 2009]. Learning and definability have
in common the fact that they look for a query consistent with a set of examples. The
difference is that learning allows the query to select or not the tuples that are not
explicitly labeled as positive or negative examples while definability requires the query
to select nothing else than the set of positive examples (i.e., all the other tuples are
implicitly negative).

[Fan et al. 2011] have worked on discovering conditional functional dependencies
using data mining techniques. We focus on simpler join constraints, and exploit an
interactive scenario to discover them by interacting with the users.

Since our goal is to find the most informative tuples and ask the user to label them,
our research is also related to the work of [Yan et al. 2013]. However, we do not con-
sider keyword-based queries. Another work strongly related to ours has been done by
[Abouzied et al. 2013; Abouzied et al. 2012], who have formalized a query learning
model using membership questions [Angluin 1988]. They focus on learning quantified
Boolean queries for the nested relational model and their main results are optimal
algorithms for learning some subclasses of such queries [Abouzied et al. 2013] and a
system that helps users specify quantifiers [Abouzied et al. 2012]. Primary-foreign key
relationships between attributes are used to place quantified constraints and help the
user tune her query, whereas we do not assume such knowledge. The goal of their sys-
tem is somewhat different, in that their goal is to disambiguate a natural language
specification of the query, whereas we focus on raw data to guess the “unknown” query
that the user has in mind. The theoretical foundations of learning with membership
queries have been studied in the context of schema mappings [ten Cate et al. 2013].
Moreover, [Alexe et al. 2011a; 2011b] have proposed a system which allows a user to
interactively design and refine schema mappings via data examples. The problem of
discovering schema mappings from data instances have been also studied in [Gottlob
and Senellart 2010] and [Qian et al. 2012]. Our queries can be eventually seen as sim-
ple GAV mappings, even though our problem goes beyond data integration. Moreover,
our focus is on proposing tuples to the user, while [Alexe et al. 2011a; 2011b] assume
that an expert user chooses the data examples. Additionally, our notions of certain and
uninformative tuples have connections with the approach of [Cohen and Weiss 2013]
for XPath queries, even though joins are not considered there. Furthermore, our notion
of entropy of a tuple is related to the work of [Sellam and Kersten 2013] on exploratory
querying big data collections.

2. PRELIMINARIES
In this section, we define the basic concepts that we manipulate throughout the paper.
Additionally, we summarize in Table I the notations used in the paper.

Relations. A schema S is a finite set of relations S “ tR1, . . . , Rmu with implicitly
given sets of attributes attrspRiq (for 1 ď i ď m). We assume that these sets of at-
tributes are pairwise disjoint. We assume no other knowledge of the database schema,
in particular no knowledge of the integrity constraints between the relations. Given a
schema S , a signature is a subset of relations R Ď S . We naturally extend attrs to
signatures i.e., given a signature R, we have attrspRq “

Ť

RPR attrspRq.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:7

Table I. Table of notations.

Symbol Meaning
R Relation
S Schema i.e., set of relations
R Ď S Signature i.e., subset of the schema
attrspRq / attrspRq Set of attributes from a relation R / signature R
t : tA1, . . . , Aku Ñ U Tuple over attributes A1, . . . , Ak and of domain U
sigptq “ R Signature of tuple t, or alternatively, t is compatible with signature R
t1 ¨ t2 Tuple of signature R1 YR2 (if t1, t2 are of disjoint signatures R1,R2)
trAs The value of the attribute A in t
IpRq Instance of relation R i.e., a set of compatible tuples
IpRq Instance of signature R i.e., union of all IpRq for R P R
Ω Set of all pairs of attributes from different relations in S
θ Ď Ω Join predicate
Θ Ď 2Ω Disjunctive join predicate
q Join query
qpIq Answers of query q over instance I
R “ inSigpqq Input signature of q i.e., a nonempty subset of S
Ro “ outSigpqq Output signature of q i.e., a nonempty subset of R
JoinpRq Class of equijoins i.e, queries pR,R, θq
Join˙pR,Roq Class of semijoins i.e, queries pR,Ro , θq with Ro Ă R
UJoinpRq Class of disjunctive equijoins i.e, queries pR,R,Θq
UJoin˙pR,Roq Class of disjunctive semijoins i.e, queries pR,Ro ,Θq with Ro Ă R
DpR, Iq Cartesian product of instances of relations in R
p’θ RqpIq Answers of equijoin pR,R, θq over instance I
pRo ˙θ pRzRoqqpIq Answers of semijoin pR,Ro , θq over instance I
p’Θ RqpIq Answers of disjunctive equijoin pR,R,Θq over instance I
pRo ˙Θ pRzRoqqpIq Answers of disjunctive semijoin pR,Ro ,Θq over instance I
pt, αq Example (positive if α is ` or negative if α is –)
S Sample i.e., set of examples
K “ pR,Ro , Qq Learning setting (in signature R, out signature Ro , query class Q)
Join Class of settings pR,R,JoinpRqq for learning equijoins
Join˙ Class of settings pR,Ro ,Join˙pR,Roqq for learning semijoins
UJoin Class of settings pR,R,UJoinpRqq for learning disj. equijoins
UJoin˙ Class of settings pR,Ro ,UJoin˙pR,Roqq for learning disj. semijoins
IK Set of all tuples compatible with relations in R
EK Set of all examples compatible with Ro

LK Function mapping every query and instance to its set of examples
CONSK Consistency checking for a class of settings K
T ptq / T pXq Most specific join predicate selecting tuple t / set of tuples X
CKpI, Sq Set of all consistent queries w.r.t. instance I and sample S in setting K
Uninf KpI, Sq Set of all uninformative examples w.r.t. I and S in K
CertKpI, Sq Set of all certain examples w.r.t. I and S in K

Instances. We assume an infinite domain U that is a set of numerical constants with
equality “ and inequality ‰ defined in the natural way. Then, a tuple t over a set of
attributes tA1, . . . , Aku is a function t : tA1, . . . , Aku Ñ U that associates a value of
the domain to each attribute. Moreover, given a tuple t : tA1, . . . , Aku Ñ U , if there
exists a signature R Ď S such that

Ť

RPR attrspRq “ tA1, . . . , Aku, we say that R is the
signature of t i.e., sigptq “ R, or alternatively, that t is compatible with R.

Given two tuples t1 and t2 over disjoint signatures R1 and R2, respectively, by t1 ¨ t2
we denote the tuple t over the signature R1 YR2 such that trAs “ t1rAs for every at-
tribute A from attrspR1q and trAs “ t2rAs for every attribute A from attrspR2q. Further-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

more, an instance of a schema S is a function that associates to each relation R P S a
finite set of tuples tt1, . . . , tpu such that sigptiq “ tRu (for 1 ď i ď p). For each relation
R P S , we denote its corresponding set of tuples by IpRq. Moreover, given a signature
R Ď S , by IpRq “

Ť

RPR IpRq we denote the set of tuples from I corresponding to all
relations from R and we refer to it as the instance of R.

Example 2.1. In this example, for simplicity reasons, we use a schema of two rela-
tions S0 “ tR1, R2u with attrspR1q “ tA1, A2u and attrspR2q “ tB1, B2, B3u. Moreover,
take the following instance I that contains 4 tuples for R1 and 3 tuples for R2.

IpR1q “

A1 A2

t1 0 1
t2 0 2
t3 2 2
t4 1 0

IpR2q “

B1 B2 B3

t11 1 1 0
t12 0 1 2
t13 2 0 0

Queries. A query is basically a function that takes an instance and returns a set of
tuples. More formally, a query q has an input signature inSigpqq that is a non-empty set
of input relations and an output signature outSigpqq that is a non-empty set of output
relations that we assume being a subset of the input signature i.e., outSigpqq Ď inSigpqq.
We say that a query q is over a schema S , or alternatively, is compatible with S if
inSigpqq Ď S . Then, given a query q over a schema S and an instance I of S , the
answers to q over I, denoted qpIq, is a finite set of tuples of signature outSigpqq.

In this paper, we focus on four classes of join queries that we define in the remainder
of this section. To this purpose, let us first define, for a schema S , the set Ω such that

Ω “
ď

R,R1PS ,R‰R1

attrspRq ˆ attrspR1q.

Then, a join predicate is a subset θ Ď Ω. Moreover, a disjunctive join predicate is a
union of join predicates i.e., a subset Θ Ď 2Ω.

Classes of join queries. Given a schema S , a join query q is essentially a triple
that consists of a non-empty input signature inSigpqq Ď S , a non-empty output sig-
nature outSigpqq Ď inSigpqq, and a (disjunctive) join predicate i.e., it can be of the form
pR,Ro , θq or pR,Ro ,Θq, where R Ď S , Ro Ď R, R ‰ H, Ro ‰ H, and θ Ď Ω or Θ Ď 2Ω.
Given a class of join queries Q, we refer to R and Ro as the input signature inSigpQq
and the output signature outSigpQq of the class of queries Q, respectively.

Since we consider two possibilities for the relationship between R and Ro (they can
differ or not) and two possibilities for the join predicates (they can be disjunctive or
not), we obtain four classes of join queries that we define below, together with their
semantics. To be able to formalize their semantics, we introduce first the Cartesian
product of an instance I of a signature R Ď S that is DpR, Iq “

Ś

RPR IpRq. In the
rest of the paper, we model the notion of integrated table (cf. Introduction) with Carte-
sian product. Moreover, in the remainder we use the terms Cartesian product and
integrated table interchangeably.

The considered classes of queries are the following:

(1) JoinpRq (equijoins) – queries of the form pR,R, θq, where R Ď S , R ‰ H, and
θ Ď Ω. We always present such queries as p’θ Rq. Given an instance I of S , we
have:

p’θ RqpIq “ tt P DpR, Iq | @pA,A1q P θ. trAs “ trA1su.

(2) Join˙pR,Roq (semijoins) – queries of the form pR,Ro , θq, where R Ď S , Ro Ă R,
Ro ‰ H, and θ Ď Ω. We always present such queries as pRo ˙θ pRzRoqq. Given an

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:9

instance I of S , we have:

pRo˙θpRzRoqqpIq “ tt P DpRo , Iq | Dt
1 P DpRzRo , Iq. @pA,A

1q P θ. pt¨t1qrAs “ pt¨t1qrA1su.

(3) UJoinpRq (disjunctive equijoins) – queries of the form pR,R,Θq, where R Ď S ,
R ‰ H, and Θ Ď 2Ω. We always present such queries as p’Θ Rq. Given an instance
I of S , we have:

p’Θ RqpIq “ tt P DpR, Iq | Dθ P Θ. @pA,A1q P θ. trAs “ trA1su.

(4) UJoin˙pR,Roq (disjunctive semijoins) – queries of the form pR,Ro ,Θq, where R Ď

S , Ro Ă R, Ro ‰ H, and Θ Ď 2Ω. We always present such queries as pRo ˙Θ

pRzRoqq. Given an instance I of S , we have:

pRo ˙Θ pRzRoqqpIq “

tt P DpRo , Iq | Dt
1 P DpRzRo , Iq. Dθ P Θ. @pA,A1q P θ. pt ¨ t1qrAs “ pt ¨ t1qrA1su.

Notice that the four aforementioned classes of join queries correspond to four classes
of relational algebra expressions [Abiteboul et al. 1995]:

(1) equijoins: p’θ Rq “’Ź

pA,A1qPθ,APattrspRq,A1PattrspR1q RrAs“R
1rA1s pRq,

(2) semijoins: pRo ˙θ pRzRoqq “ ΠattrspRoqp’θ Rq,

(3) disjunctive equijoins: p’Θ Rq “
Ť

θPΘp’θ Rq,
(4) disjunctive semijoins: pRo ˙Θ pRzRoqq “ ΠattrspRoqp’Θ Rq.

When R and Ro differ, we say that the join result is projected on the relations of Ro .
Since a signature is a set of relations, we can either project on all attributes of a given
relation or on none of them, hence our definition does not directly allow projecting only
on a subset of the attributes of a relation. However, we point out that we can support
such cases by applying the following reduction: given a relation R such that we want
to project only on a subset of its attributes, it suffices to (i) vertically partition R in
two relations R1 and R2 containing the attributes that we want and we do not want to
project, respectively, and (ii) add the corresponding join condition between R1 and R2

to the goal join query.
Moreover, when the two signatures are known from the context, we often identify a

join query by its (disjunctive) join predicate.

Example 2.1 (continued). We illustrate the four classes of join queries. Take the sig-
natures R “ tR1, R2u, R1 “ tR1u, R2 “ tR2u, and the following join predicates:

θ1 “ tpA1, B1q, pA2, B3qu, θ2 “ tpA2, B2qu, θ3 “ tpA2, B1q, pA2, B2q, pA2, B3qu.

The answers over I to the queries defined by the aforementioned signatures and join
predicates are:

p’θ1 RqpIq “ tt2 ¨ t12, t4 ¨ t11u, pR1 ˙θ1 R2qpIq “ tt2, t4u,

p’θ2 RqpIq “ tt1 ¨ t11, t1 ¨ t12, t4 ¨ t13u, pR1 ˙θ2 R2qpIq “ tt1, t4u,

p’θ3 RqpIq “ H, pR1 ˙θ3 R2qpIq “ H.

Next, consider the disjunctive join predicates

Θ1 “ ttpA1, B1qu, tpA2, B3quu, Θ2 “ ttpA2, B2quu, Θ3 “ ttpA2, B1q, pA2, B2qu, tpA2, B3quu

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

The answers over I to the queries defined by the aforementioned signatures and dis-
junctive join predicates are:

p’Θ1
RqpIq “ tt1 ¨ t12, t2 ¨ t12, t3 ¨ t12, t3 ¨ t13, t4 ¨ t11, t4 ¨ t13u, pR1 ˙Θ1

R2qpIq “ IpR1q,

p’Θ2 RqpIq “ tt1 ¨ t11, t1 ¨ t12, t4 ¨ t13u, pR1 ˙Θ2
R2qpIq “ tt1, t4u,

p’Θ3 RqpIq “ tt1 ¨ t11, t2 ¨ t12, t3 ¨ t12, t4 ¨ t11, t4 ¨ t13u, pR1 ˙Θ3 R2qpIq “ IpR1q.

In the next sections, we study the problem of learning join queries from examples given
by the user.

3. LEARNING JOIN QUERIES FROM A SET OF EXAMPLES
In this section, we study the problem of learning join queries from a given set of ex-
amples. First, we define a learning framework (Section 3.1). Then, we investigate the
consistency checking problem (Section 3.2) that is fundamental for establishing our
learnability results (Section 3.3).

3.1. Learning framework
Assume a schema S . An example is a pair pt, αq, where t is a tuple and α P t`,´u. We
say that an example of the form pt,`q is a positive example while an example of the
form pt,´q is a negative example. Moreover, recall that a tuple t : tA1, . . . , Aku Ñ U is
compatible with a signature R Ď S if

Ť

RPR attrspRq “ tA1, . . . , Aku. Then, an example
pt, αq is compatible with a signature R if t is compatible with R. Also recall that by
DpR, Iq we denote the Cartesian product of the instance I of a signature R Ď S .

A learning setting is a tuple K “ pR,Ro ,Qq where

— R Ď S is the non-empty input signature of K i.e., inSigpKq “ R,
— Ro Ď R such that Ro ‰ H is the non-empty output signature of K i.e., outSigpKq “

Ro ,
— Q is a class of queries such that inSigpQq “ R and outSigpQq “ Ro .

For instance, take two non-empty signatures R Ď S and Ro Ă R. Then, the following
are examples of learning settings.

— pR,R,JoinpRqq for learning equijoins over R,
— pR,Ro ,Join˙pR,Roqq for learning semijoins over R and Ro ,
— pR,R,UJoinpRqq for learning disjunctive equijoins over R,
— pR,Ro ,UJoin˙pR,Roqq for learning disjunctive semijoins over R and Ro .

We illustrate learning settings in Example 3.1.

Example 3.1. Recall our Flight&Hotel running example from the Introduction,
whose Cartesian product is depicted in Figure 1. Assume that the first three attributes
(From, To, Airline) come from a relation Flight, and the other two attributes (City, Dis-
count) come from a relation Hotel. Take the following learning settings:

— ptFlight, Hotelu, tFlight, Hotelu,JoinptFlight, Hoteluqq. This is basically the learn-
ing setting that we illustrated in the Introduction. We can learn equijoins between
the two tables e.g., To “ City ^ Airline “ Discount, which selects travel packages
consisting of a flight and a hotel stay in the destination, combined in a way allowing
a discount.

— ptFlight, Hotelu, tFlightu,Join˙ptFlight, Hotelu, tFlightuqq. In this setting, the ex-
amples are tuples from the table Flight i.e., the table on which the result of the
join query is projected. We can learn the join predicate from the previous case, but
with a different semantics: it selects the flights for which there exists a hotel stay in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:11

the destination, combined in a way allowing a discount (we project away the infor-
mation concerning the hotel).

— ptFlight, Hotelu, tFlight, Hotelu,UJoinptFlight, Hoteluqq. In this setting, the exam-
ples are tuples from the Cartesian product of the two relations, and the disjunction
is allowed in the goal query. An example of query that can be learned in this setting
is pFrom “ City^Airline “ Discountq_ pTo “ City^Airline “ Discountq, which ba-
sically selects the travel packages consisting of a flight and a stay in a hotel (either
in the source or destination city), combined in a way allowing a discount.

— ptFlight, Hotelu, tFlightu,UJoin˙ptFlight, Hotelu, tFlightuqq. In this setting, the ex-
amples are tuples from the table Flight and disjunction is permitted in the goal
query. We can learn the join predicate from the previous case, but we now project
away the information concerning the hotel.

Next, we define four classes of learning settings i.e., one for each class of join queries.

— The class of settings for learning equijoins:

Join “ tpR,R,JoinpRqq | R Ď S such that R ‰ H for every schema S u.

— The class of settings for learning semijoins:

Join˙ “ tpR,Ro ,Join˙pR,Roqq |

R Ď S and Ro Ă R such that Ro ‰ H for every schema S u.

— The class of settings for learning disjunctive equijoins:

UJoin “ tpR,R,UJoinpRqq | R Ď S such that R ‰ H for every schema S u.

— The class of settings for learning disjunctive semijoins:

UJoin˙ “ tpR,Ro ,UJoin˙pR,Roqq |

R Ď S and Ro Ă R such that Ro ‰ H for every schema S u.

Additionally, given a setting K “ pR,Ro ,Qq, we define:

— The set IK “
Ť

RPR UattrspRq of all tuples compatible with relations in R.
— The set EK “ UattrspRoq ˆ t`,´u of all examples compatible with Ro .
— The function LK that maps every query q from Q and instance I Ď IK such that

inSigpqq “ sigpDpR, Iqq to the corresponding set of examples S Ď EK such that
outSigpqq “ sigpDpRo , Iqq i.e., LKpq, Iq “ qpIq ˆ t`u Y pDpRo , IqzqpIqq ˆ t´u.

Given a learning setting K “ pR,Ro ,Qq and an instance I Ď IK , a sample w.r.t. I and
K is a subset S Ď EK of examples pt, αq such that sigptq “ outSigpQq and α P t`,´u.
When it does not lead to confusion, we simply write that S is a sample or a sample over
I. For a sample S, we denote the set of positive examples tt P DpRo , Iq | pt,`q P Su by
S` and the set of negative examples tt P DpRo , Iq | pt,´q P Su by S´.

Moreover, given a learning setting K “ pR,Ro ,Qq, an instance I Ď IK , a sample
S Ď EK over I, and a query q P Q, we say that q is consistent with S if it selects all
positive examples and none of the negative ones i.e., S` Ď qpIq and S´ X qpIq “ H.
Naturally, the goal of learning should be the construction of a consistent join query.

When the class of queries is clear from the context, we may write that a (disjunctive)
join predicate is consistent with a sample rather than the query that it defines. For
instance, we may simply write that the join predicate θ is consistent with a sample S
instead of writing that the query p’θ Rq is consistent with S.

Next, we propose a definition of learnability based on the standard framework of
language identification in the limit with polynomial time and data [Gold 1967; 1978]

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

Table II. Summary of complexity results for consistency checking.

Equijoins Semijoins
Without disjunction PTIME (Theorem 3.4) NP-complete (Theorem 3.5)

With disjunction PTIME (Theorem 3.8) PTIME (Theorem 3.8)

adapted to learning join queries. A learning algorithm is an algorithm that takes an
instance and a sample, and returns a query in Q or a special value null.

Definition 3.2. A class of queries Q is learnable in polynomial time and data in its
corresponding learning setting K “ pinSigpQq, outSigpQq,Qq if there exists a polyno-
mial learning algorithm learner satisfying the following two conditions:

(1) Soundness. For every instance I Ď IK and every sample S Ď EK over I, the
algorithm learnerpI, Sq returns a query q P Q that is consistent with S or a special
null value if no such query exists.

(2) Completeness. For every query q P Q there exists an instance I Ď IK and a sam-
ple CS q Ď EK over I such that for every sample S that extends CS q consistently
with q i.e., CS q Ď S Ď LKpq, Iq, the algorithm learnerpI, Sq returns a query equiv-
alent to q. Furthermore, the size of CS q is polynomially bounded by the size of the
query.

The sample CS q is called the characteristic sample for q w.r.t. learner and K. For a
learning algorithm there may exist many such samples. The definition requires that a
characteristic sample exists. The soundness condition is a natural requirement while
the completeness condition guarantees that the learning algorithm constructs the goal
query from a sufficiently rich (but still polynomial) set of examples.

3.2. Consistency checking
As we have already pointed out in Definition 3.2, we aim at a polynomial learning algo-
rithm that returns a query that selects all positive examples and none of the negative
ones. To this purpose, we first investigate the consistency checking problem i.e., decid-
ing whether such a query exists. This also permits to check whether the user who has
provided the examples is honest, has not made any error, and therefore, has labeled
the tuples consistently with some goal join query that she has in mind.

More formally, the consistency checking for a class of learning settings K is the follow-
ing decision problem: given a setting K “ pR,Ro ,Qq from K, an instance I Ď IK , and
a sample S Ď EK over I, decide whether there exists a query q P Q that is consistent
with the sample. Consistency checking is parametrized by the learning setting and the
corresponding decision problem CONSK is:

tpK, I, Sq | K “ pR,Ro ,Qq P K, I Ď IK , S Ď EK . Dq P Q. S` Ď qpIq ^ S´ X qpIq “ Hu.

We summarize in Table II the complexity of consistency checking for the considered
classes of join queries and we present the proofs of these results in the rest of the
section.

3.2.1. Consistency checking for equijoins. First, we show that in the case of equijoins the
consistency checking has a simple solution that employs an elementary tool that we
introduce next. Given a tuple t P DpR, Iq, we define the most specific join predicate
selecting t as follows:

T ptq “ tpA,A1q | trAs “ trA1s ^A P attrspRq ^A1 P attrspR1q ^R ‰ R1u.

Additionally, we extend T to sets of tuples T pXq “
Ş

tPX T ptq. Our interest in T follows
from the observation that for a given set of tuples X, if θ is a join predicate selecting
X, then θ Ď T pXq.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:13

A1 A2 B1 B2 B3 T
t1 ¨ t

1
1 0 1 1 1 0 tpA1, B3q, pA2, B1q, pA2, B2qu

t1 ¨ t
1
2 0 1 0 1 2 tpA1, B1q, pA2, B2qu

t1 ¨ t
1
3 0 1 2 0 0 tpA1, B2q, pA1, B3qu

t2 ¨ t
1
1 0 2 1 1 0 tpA1, B3qu

+ t2 ¨ t12 0 2 0 1 2 tpA1, B1q, pA2, B3qu

t2 ¨ t
1
3 0 2 2 0 0 tpA1, B2q, pA1, B3q, pA2, B1qu

t3 ¨ t
1
1 2 2 1 1 0 H

– t3 ¨ t12 2 2 0 1 2 tpA1, B3q, pA2, B3qu

t3 ¨ t
1
3 2 2 2 0 0 tpA1, B1q, pA2, B1qu

+ t4 ¨ t11 1 0 1 1 0 tpA1, B1q, pA1, B2q, pA2, B3qu

t4 ¨ t
1
2 1 0 0 1 2 tpA1, B2q, pA2, B1qu

t4 ¨ t
1
3 1 0 2 0 0 tpA2, B2q, pA2, B3qu

Fig. 2. The Cartesian product R1 ˆ R2, the value of T for each of its tuples, and sample S0.

Example 2.1 (continued). In Figure 2 we present the Cartesian product R1 ˆR2, the
value of T for each tuple from it, and the sample S0 such that S0,` “ tt2 ¨ t

1
2, t4 ¨ t

1
1u and

S0,´ “ tt3 ¨ t
1
2u. The sample is consistent and the most specific consistent join predicate

is θ0 “ tpA1, B1q, pA2, B3qu. Another consistent join predicate (but not the most specific)
is θ10 “ tpA1, B1qu. On the other hand, the sample S10 such that S10,` “ tt1 ¨ t12, t1 ¨ t13u and
S10,´ “ tt3 ¨ t

1
1u is not consistent.

We next show that a sample S is consistent with a join predicate iff T pS`q selects no
negative example.

LEMMA 3.3. Given a setting K “ pR,R,JoinpRqq in Join, an instance I Ď IK , and
a sample S Ď EK over I, it holds that pK, I, Sq P CONSJoin iff S´ X p’T pS`q RqpIq “ H.

PROOF. For the if part, since T pS`q selects all positive examples (by definition) and
selects no negative tuple (by hypothesis) we infer that T pS`q is a predicate consistent
with the sample.

For the only if part, assume that there exists a predicate θ selecting all positive
examples and none of the negative ones. Since T pS`q is the most specific join predicate
selecting all positive examples, θ Ď T pS`q, and since θ selects no negative example,
neither does T pS`q. Hence, T pS`q is also a join predicate consistent with the set of
examples.

Next, we use the above Lemma to show the tractability of the consistency checking for
equijoins.

THEOREM 3.4. CONSJoin is in PTIME.

PROOF. Lemma 3.3 gives us a necessary and sufficient condition for solving this
problem i.e., testing whether the join predicate T pS`q selects any negative example.
First, we point out that for a tuple t P DpR, Iq, a simple algorithm computes T ptq and
implicitly T pS`q in polynomial time. Then, we have to check whether these queries
select any negative example, which can be also easily done in polynomial time.

3.2.2. Consistency checking for semijoins. Next, we show that for semijoins the funda-
mental decision problem of consistency checking is unfortunately intractable, even
when we consider two relations only, as we state below.

THEOREM 3.5. CONSJoin˙ is NP-complete. The result holds even when the schema
consists of two relations only.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

PROOF. To prove the membership of the problem to NP, we point out that a Turing
machine guesses a join predicate θ, which has polynomial size in the size of the input.
Then, we can easily check in polynomial time whether θ selects all positive examples
and none of the negative ones.

Next, we prove the NP-hardness of CONSJoin˙ by reduction from 3SAT, known as
being NP-complete. Given a formula ϕ “ c1^ . . .^ ck in 3CNF over the set of variables
tx1, . . . , xnu, we construct:

— A schema Sϕ “ tRϕ, Pϕu, where attrspRϕq “ tidR, A1, . . . , Anu and attrspPϕq “ tidP ,
Bt1, B

f
1 , . . . , B

t
n, B

f
nu, the input signature Rϕ “ Sϕ, the output signature Roϕ “ tRϕu.

— The learning setting Kϕ “ pRϕ,Roϕ,Join˙pRϕ,Roϕqq.
— The instance IϕpRϕq of the relation Rϕ that contains:

— For 1 ď i ď k, a tuple tR,i with tR,iridRs “ c`i and tR,irAjs “ j (for 1 ď j ď n),
— A tuple t1R,0 with t1R,0ridRs “ X and t1R,0rAjs “ j (for 1 ď j ď n),
— For 1 ď i ď n, a tuple t1R,i with tRiridRs “ x´i and t1R,irAjs “ j (for 1 ď j ď n).

— The instance IϕpPϕq of the relation Pϕ that contains:
— For 1 ď i ď k, let xk1 , xk2 , xk3 the variables used by ck, with k1, k2, k3 P t1, . . . , nu.

Then, we have a tuple for each of them, let it tP,il, with l P t1, 2, 3u such that
tP,ilridP s “ c`i , and for 1 ď j ď n:

$

’

&

’

%

tP,ilrB
t
js “ tP,ilrB

f
j s “ j if j ‰ kl,

tP,ilrB
t
js “ j, tP,ilrB

f
j s “K if j “ kl and xkl is a positive literal,

tP,ilrB
t
js “K, tP,ilrB

f
j s “ j otherwise.

— A tuple t1P,0 such that t1P,0ridP s “ Y and Bti “ Bfi “ i (for 1 ď i ď n).
— For 1 ď i ď n, a tuple t1P,i such that t1P,iridP s “ x´i and t1P,irB

t
js “ t1P,irB

f
j s “ j if

i ‰ j or t1P,i.rBtjs “ t1P,irB
f
j s “K otherwise (for 1 ď j ď n).

— The sample Sϕ Ď Rϕ ˆ t`,´u such that Sϕ,` “ ttR,1, . . . , tR,ku and Sϕ,´ “

tt1R,0, t
1
R,1, . . . t

1
R,nu.

For example, for ϕ0 “ px1 _  x2 _ x3q ^ p x1 _  x3 _ x4q, we construct Iϕ0pRϕ0q and
Iϕ0pPϕ0q, respectively as shown below:

Iϕ0pRϕ0q =

idR A1 A2 A3 A4

tR,1 c`1 1 2 3 4
tR,2 c`2 1 2 3 4
t1R,0 X 1 2 3 4
t1R,1 x´1 1 2 3 4
t1R,2 x´2 1 2 3 4
t1R,3 x´3 1 2 3 4
t1R,4 x´4 1 2 3 4

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:15

Iϕ0pPϕ0q =

idP Bt1 Bf1 Bt2 Bf2 Bt3 Bf3 Bt4 Bf4
tP,11 c`1 1 K 2 2 3 3 4 4
tP,12 c`1 1 1 K 2 3 3 4 4
tP,13 c`1 1 1 2 2 3 K 4 4
tP,21 c`2 K 1 2 2 3 3 4 4
tP,22 c`2 1 1 2 2 K 3 4 4
tP,23 c`2 1 1 2 2 3 3 4 K

t1P,0 Y 1 1 2 2 3 3 4 4
t1P,1 x´1 K K 2 2 3 3 4 4
t1P,2 x´2 1 1 K K 3 3 4 4
t1P,3 x´3 1 1 2 2 K K 4 4
t1P,4 x´4 1 1 2 2 3 3 K K

and the sample Sϕ0
such that Sϕ0,` “ ttR,1, tR,2u and Sϕ0,´ “ tt

1
R,0, t

1
R,1, t

1
R,2, t

1
R,3, t

1
R,4u.

We claim that ϕ is satisfiable iff pKϕ, Iϕ, Sϕq P CONSJoin˙ .
For the if part, let θ0 the join predicate that selects all positive examples and none

of the negatives. We observe from the instances of Rϕ and Pϕ that θ0 Ď tpidR, idP qu Y

tpAi, B
t
i q, pAi, B

f
i q | 1 ď i ď nu. Because Sϕ,´ is not empty, we infer that θ0 is not empty.

Moreover, we show that θ0 contains pidR, idP q and at least one of pAi, Bti q and pAi, Bfi q
(for 1 ď i ď n) by eliminating the other cases:

(1) If we assume that pidR, idP q R θ0, we infer that the negative example t1R,0 belongs
to pRoϕ ˙θ0 pRoϕzRϕqpIq, which contradicts the fact that θ0 is consistent with Sϕ.

(2) If we assume that there exists an 1 ď i ď n such that neither pAi, Bti q nor
pAi, B

f
i q belongs to θ0, we infer that the negative example t1R,i belongs to pRoϕ ˙θ0

pRoϕzRϕqpIq, which contradicts the fact that θ0 is consistent with Sϕ.

Thus, we know that pidR, idP q belongs to θ0 and at least one of pAi, Bti q and pAi, Bfi q also
belongs to θ0 (for 1 ď i ď n). From the construction of the instance we infer that there
exists a join between Ai and Bvi (with v P tt, fu) if the valuation encoded in v for xi does
not make false the clause whose number is encoded in idP (for 1 ď i ď nq. Moreover,
θ0 is consistent with Sϕ implies that for each tuple tR,i from R (with 1 ď i ď k), there
exists a tuple tP,il in P (with 1 ď l ď 3) such that tR,i ridRs “ tP,il ridP s and for 1 ď j ď n
there exists v P tt, fu such that tR,i rAj s “ tP,il rB

v
j s. Thus, the valuation encoded in the

Bvj ’s from θ0 (for 1 ď j ď n) satisfies ϕ.
For the only if part, take the valuation V : tx1, . . . , xnu Ñ ttrue, falseu that makes

ϕ true. We construct the join predicate θ0 that contains pidR, idP q and pAi, Bvii q where
vi P tt, fu corresponds to the valuation V pxiq. From the construction of IϕpPϕq, we infer
that for 1 ď i ď n and 1 ď j ď k, there exists 1 ď l ď 3 such that tP,jlridP s “ c`j
and tP,jlrB

vi
i s “ i. We infer that θ0 is consistent with Sϕ, and therefore, pKϕ, Iϕ, Sϕq P

CONSJoin˙ .
Clearly, the described reduction works in polynomial time.

3.2.3. Consistency checking for disjunctive equijoins and semijoins. We show that consistency
checking is tractable when adding the disjunction, both for equijoins and semijoins. We
start with the disjunctive semijoins and then we point out that the disjunctive equi-
joins enjoy the same computational properties since they are in fact a particular case.
Let us first present a necessary and sufficient condition for a sample to be consistent.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

Table III. Summary of learnability results.

Equijoins Semijoins
Without disjunction Yes (Theorem 3.9) No (Theorem 3.10)

With disjunction Yes (Theorem 3.11) Yes (Theorem 3.11)

LEMMA 3.6. Given a setting K “ pR,Ro ,UJoin˙pR,Roqq in UJoin˙, an instance
I Ď IK , and a sample S Ď EK over I, it holds that
pK, I, Sq P CONSUJoin˙ iff @t P S`. Dt1 P DpRzRo , Iq. @t

2 P S´. t
2 R pRo˙T pt¨t1qpRzRoqqpIq.

PROOF. For the if part, we construct a disjunctive join predicate Θ as follows. We
start with Θ “ H and for each t P S` we take a t1 P DpRzRo , Iq such that S´ X
pRo ˙T pt¨t1q pRzRoqqpIq “ H (we know by hypothesis that such a t1 does exist) and we
add T pt ¨ t1q to Θ. Notice that the constructed Θ selects all positive examples and none
of the negative ones, hence we infer that Θ is a disjunctive predicate consistent with
the sample.

For the only if part, assume that there exists a disjunctive join predicate Θ select-
ing all positive examples and none of the negative ones. Since Θ selects all positive
examples, we infer that for every t P S` there exists a predicate θ P Θ such that
t P pRo ˙θ pRzRoqqpIq and S´ X pRo ˙θ pRzRoqqpIq “ H. This implies that for ev-
ery t P S` there exists a predicate θ P Θ and a tuple t1 P DpRzRo , Iq such that
t ¨ t1 P p’θ RqpIq and S´ X pRo ˙θ pRzRoqqpIq “ H. Since for all such tuples t and
t1 the above θ is included in the most specific predicate T pt ¨ t1q and θ selects no nega-
tive, we infer that neither does T pt ¨ t1q, which concludes the proof.

In the particular case where the input and output signatures coincide, all t1 from
Lemma 3.6 are in fact empty tuples and Lemma 3.6 reduces to the following result.

COROLLARY 3.7. Given a setting K “ pR,R,UJoinpRqq in UJoin, an instance I Ď
IK , and a sample S Ď EK over I, it holds that

pK, I, Sq P CONSUJoin iff S´ X p’Ť

tPS`
tT ptqu RqpIq “ H.

Next, we show that consistency checking can be solved in polynomial time for disjunc-
tive equijoins and semijoins.

THEOREM 3.8. CONSUJoin and CONSUJoin˙ are in PTIME.

PROOF. Lemma 3.6 gives us a necessary and sufficient condition for solving the
consistency checking for disjunctive semijoins. First, we point out that for two tuples
t P S` and t1 P DpRzRo , Iq, a simple algorithm computes T pt¨t1q in polynomial time and
this has to be done for |S`|ˆ|DpRzRo , Iq| tuples. Then, we have to check whether these
queries select any negative example, which can be also easily done in polynomial time.
The aforementioned simple procedure can be also applied for disjunctive equijoins i.e.,
in the particular case where all t1 are empty tuples.

3.3. Learnability results
In this section, we use the developments from the previous section to characterize
the learnability of different classes of join queries. We summarize in Table III the
learnability results and we present the proofs in the rest of the section.

First, we show that the equijoins are learnable.

THEOREM 3.9. The equijoins are learnable in polynomial time and data i.e., in
settings from Join.

PROOF. Take a setting K “ pR,R,JoinpRqq in Join. Then, take an instance I Ď IK
and a sample S Ď EK over I. A simple polynomial algorithm outputs T pS`q if the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:17

sample is consistent or null otherwise. Recall that this can be decided in polynomial
time due to Theorem 3.4.

To show the completeness, we point out the construction, for every setting K “

pR,R,JoinpRqq in Join, for every query in JoinpRq, of an instance and of a polynomial
characteristic sample CS Ď EK . Take a query p’θ Rq in JoinpRq. Then, we need an
instance I Ď IK having a tuple t such that T ptq “ θ. The construction of such an
instance is straightforward. Assume that R “ tR1, . . . , Rnu. Then, we need that each
IpRiq contains a tuple ti (for 1 ď i ď n) and let t “ t1 ¨ . . . ¨ tn. To ensure that T ptq “
θ, we fill the values of attributes of the ti’s as follows: (i) for each equivalence class
in θ assign the same value to all respective attributes (but a different fresh value
for each equivalence class), and (ii) for each attribute not involved in equalities in θ
assign a different fresh value. Then, CS “ tpt,`qu. In practice, a characteristic sample
can appear on arbitrarily larger instances than the one that we used to illustrate its
existence. Actually, as long as it exists a tuple t such that T ptq “ θ, and the current
sample S contains pt,`q and extends CS consistently with the goal query, then our
learning algorithm is guaranteed to return the goal query.

Next, we show that the intractability of the consistency checking for semijoins implies
that the semijoins are not learnable.

THEOREM 3.10. The semijoins are not learnable in polynomial time and data i.e.,
in settings from Join˙. The result holds even when the schema consists of two relations
only.

PROOF. According to Definition 3.2, a learning algorithm should return null in poly-
nomial time if a query consistent with the sample does not exist. Since checking the
consistency of a sample is NP-complete (cf. Theorem 3.5), such an algorithm does not
exist, hence the semijoins are not learnable in polynomial time and data.

Finally, we show that both disjunctive equijoins and disjunctive semijoins are learn-
able.

THEOREM 3.11. The disjunctive equijoins and disjunctive semijoins are learnable
in polynomial time and data i.e., in settings from UJoin and UJoin˙, respectively.

PROOF. We show the soundness and completeness for the class of settings UJoin˙

and we point out that the same algorithm is applicable for the class of settings UJoin
that is a particular case where the input and output signatures coincide. Take a setting
K “ pR,Ro ,UJoin˙pR,Roqq in UJoin˙, an instance I Ď IK , and a sample S Ď EK over
I. If the sample is not consistent (decidable in polynomial time due to Theorem 3.8),
the learning algorithm returns null. If the sample is consistent, the learning algo-
rithm returns a consistent disjunctive join predicate constructed as follows: (i) start
with an empty Θ, (ii) for every t P S`, for every t1 P DpRzRo , Iq, if T pt ¨ t1q selects
no negative example, add T pt ¨ t1q to Θ (we know that such tuples t1 exist for ev-
ery t due to Lemma 3.6), (iii) eliminate the redundant predicates from Θ and return
Θ1 “ tθ P Θ | Eθ1 P Θ. θ1 Ă θu.

For example, if after (ii) we have Θ0 “ ttpA,Bqu, tpA,Bq, pC,Dqu, tpE,F quu, the
predicate tpA,Bq, pC,Dqu is redundant because every tuple selected by it is also se-
lected by tpA,Bqu. Thus, by removing the redundant predicate we obtain Θ10 “

ttpA,Bqu, tpE,F quu.
To show the completeness, we point out the construction, for every setting K “

pR,Ro ,UJoin˙pR,Roqq in UJoin˙, for every query in UJoin˙pR,Roq, of an instance
and of a polynomial characteristic sample. Take a disjunctive join predicate Θ that
defines a query pRo ˙Θ pRzRoqq. First, we eliminate the redundant join predicates in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

Θ and construct an equivalent disjunctive join predicate Θ1 “ tθ P Θ | Eθ1 P Θ. θ1 Ă θu.
Then, we construct an instance I Ď IK and a characteristic sample CS Ď EK over I as
follows:

— For every θ P Θ1, there exists a tuple t P DpRo , Iq and another t1 P DpRzRo , Iq such
that T pt ¨ t1q “ θ and t P CS`.

— For every θ P Θ, for every θ1 P tθztpA,A1qu | pA,A1q P θu, there exists a tuple t P
DpRo , Iq and another t1 P DpRzRo , Iq such that T pt ¨ t1q “ θ1 and t P CS´.

To fill the both types of tuples, we use the same simple technique described in the
proof of Theorem 3.9 i.e., (i) for each equivalence class in θ (or θ1 for the second type)
assign the same value to all respective attributes (but a different fresh value for each
equivalence class), and (ii) for each attribute not involved in equalities in θ (or θ1)
assign a different fresh value.

The positive examples ensure that the simple algorithm described at the beginning
of the proof retrieves from the instance each predicate from Θ1 while the negative
examples ensure that these predicates are indeed selected by the algorithm. To this
purpose, each negative example encodes a more general join predicate that the actual
one that we want the algorithm to select.

We end the proof by pointing out that the size of CS` is bounded by |Θ|while the size
of CS´ is bounded by |Θ| ˆmaxθPΘ |θ|, which means that the size of the characteristic
sample is polynomial in the size of the goal Θ.

4. LEARNING JOIN QUERIES FROM INTERACTIONS WITH THE USER
In this section, we study the problem of learning join queries from a different point
of view, where we start with an empty sample that we enrich during the interactions
with the user. First, we define our interactive scenario (Section 4.1). Then, we say a few
words about the instance-equivalent join queries that may be output by the learning
algorithm (Section 4.2). Moreover, we characterize the tuples that are uninformative
or informative w.r.t. the learning process (Section 4.3).

4.1. Interactive scenario
Let us now consider the following interactive scenario of join query inference. Take a
setting K “ pR,Ro ,Qq, an instance I Ď IK , and assume that the user has in mind a
query that belongs to the class of queries Q. The user is presented with a tuple from the
Cartesian product DpRo , Iq and indicates whether the tuple is selected or not by the
join query that she has in mind by labeling the tuple as a positive or negative example.
This process is repeated until a sufficient knowledge of the goal join query has been
accumulated (i.e., there exists at most one join query consistent with the user’s labels).

This scenario is inspired by the well-known framework of learning with membership
queries proposed by [Angluin 1988]. Especially with large instances, we would not like
that the user has to label all the tuples of the integrated table, but only a small subset
of them. Our goal is to minimize the number of interactions with the user while still
being computationally efficient. In this context, an interesting question is choosing the
right strategy of presenting tuples to the user. To answer this question, our approach
leads through the analysis of the potential information that labeling a given tuple may
contribute from the point of view of the inference process.

To this purpose, we first need to introduce some auxiliary notions. We assume the
existence of some goal join query qγ from Q and that the user labels the tuples in a
manner consistent with qγ . Furthermore, given an instance I Ď IK , we identify the
sample Sγ Ď EK over I corresponding to fully labeling the database instance:

Sγ` “ qγpIq and Sγ´ “ DpRo , Iq z q
γpIq.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:19

Moreover, given a setting K “ pR,Ro ,Qq, an instance I Ď IK , and a sample S Ď EK
over I, we identify the set of all queries that are consistent with S over I in K:

CKpI, Sq “ tq P Q | S` Ď qpIq and S´ X qpIq “ H.u.

When K is clear from the context, we write simply CpI, Sq instead of CKpI, Sq. Initially,
S “ H, and hence, CpI, Sq “ Q. Because S is consistent with qγ , the set CpI, Sq al-
ways contains qγ . Ideally, we would like to devise a strategy of presenting elements
of DpRo , Iq to the user to get us “quickly” from H to some S such that CpI, Sq “ tqγu.
Moreover, notice that for a consistent sample S and an unlabeled tuple t, the two pos-
sible labels of t split CpI, Sq in two disjoint subsets. Formally, we have the following.

LEMMA 4.1. Given a setting K “ pR,Ro ,Qq, an instance I Ď IK , a consistent
sample S Ď EK over I, and an unlabeled tuple t from DpRo , Iq, it holds that

CpI, Sq “ CpI, SYtpt,`quqYCpI, SYtpt,´quq and CpI, SYtpt,`quqXCpI, SYtpt,´quq “ H.

PROOF. The subset CpI, S Y tpt,`quq Ď CpI, Sq is the set of queries in CpI, Sq that
select t while the subset CpI, S Y tpt,´quq Ď CpI, Sq is the set of queries in CpI, Sq that
do not select t. Notice that the intersection of the two subsets is empty and their union
is CpI, Sq.

4.2. Instance-equivalent join predicates
It is important to note that in practice the content of the instance I may not be rich
enough to allow the exact identification of the goal query qγ i.e., when CpI, Sγq contains
elements other than qγ . In such a case, we want to return to the user a join query that
is equivalent to qγ w.r.t. the instance I, and hence, indistinguishable by the user.

For example, assuming that the goal query is a equijoin, we return to the user T pS`q,
which is equivalent to qγ over the instance I i.e., qγpIq “ p’T pS`q RqpIq, and hence in-
distinguishable by the user. To clarify when such a situation occurs, take the relations
P1, P2 with the instance I below:

P1 “
A1 A2

t1 1 1
P2 “

B1

t11 1

and the equijoin goal query qγ1 defined by the join predicate θ1 “ tpA1, B1qu. If we
present the only tuple of the Cartesian product to the user, she labels it as a positive
example, which yields the sample S1 “ tpt1 ¨ t

1
1,`qu. Then, CpI, S1q “ JoinptP1, P2uq and

all its elements are equivalent to qγ1 w.r.t. I. In particular, in this case we return to the
user the join predicate T pS1,`q “ tpA1, B1q, pA2, B1qu, where θ1 Ĺ T pS1,`q.

Another situation when we return an instance-equivalent join query is when qγpIq
is empty, and therefore, the user labels all given tuples as negative examples. In such
a case, we return to the user the most specific join query of that class. For example, if
the goal query is an equijoin, we return the query defined by T pS`q, which in this case
equals Ω, which again is equivalent to qγ over I.

4.3. Uninformative and informative tuples
In this section, we identify the tuples that do not yield new information when pre-
sented to the user. Before formally defining such tuples, we would like to intuitively
illustrate the notion of (un)informativeness via Example 4.2.

Example 4.2. Recall our Flight&Hotel running example from the Introduction,
whose Cartesian product is depicted in Figure 1. Assume that the first three at-
tributes (From, To, Airline) come from a relation Flight, and the other two attributes

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

(City, Discount) come from a relation Hotel. Then, assume that we are in the set-
ting ptFlight, Hotelu, tFlight, Hotelu,JoinptFlight, Hoteluqq, where we want to learn an
equijoin across the two relations.

If the user has labeled only the tuple (3), then notice that tuple (4) does not con-
tribute any new information about the goal query. Indeed, tuples (3) and (4) are
selected by precisely the same join predicates: H, To=City, Airline=Discount, and
To=City ^ Airline=Discount. Thus, we know that regardless the query that the user
had in mind when she labeled (3) as a positive example, she will also label (4) as a
positive one (of course provided that the user is consistent with herself).

On the other hand, if the user has labeled only the tuple (3), then the tuple (8) is still
informative for the learning process: if the user labels (8) as a positive example, we
know that To=City ^ Airline=Discount is no longer a candidate join predicate because
it does not select (8); conversely, if the user labels (8) as a negative example, we know
that H and To=City are no longer candidate join predicates because they both select
the negative example (8). Hence, we observe that both labelings of tuple (8) permit us
to filter the current set of candidate queries, in other words (8) is an informative tuple
for the learning process.

To formally define (un)informative tuples, take a setting K “ pR,Ro ,Qq and assume
that the user has in mind the goal query qγ that belongs to the class of queries Q. Let
us assume for a moment that the goal qγ is known. We say that an example pt, αq from
Sγ is uninformative for the query qγ w.r.t. an instance I Ď IK and a sample S Ď EK
over I if CpI, Sq “ CpI, SYtpt, αquq. In this case, we say that t is an uninformative tuple
w.r.t. I and S. Formally, we define the set Uninf KpI, Sq of all uninformative examples
w.r.t. I and S in a setting K:

Uninf KpI, Sq “ tpt, αq P Sγ | CKpI, Sq “ CKpI, S Y tpt, αququ.

When K is clear from the context, we write simply Uninf pI, Sq instead of Uninf KpI, Sq.
To illustrate the notion of uninformativeness, take the instance of the relations R1

and R2 from Example 2.1, the goal query qγ0 defined by the join predicate tpA2, B3qu,
and a sample S0 such that S0,` “ tt2 ¨ t

1
2u and S0,´ “ tt1 ¨ t

1
3u. Notice that the examples

pt4 ¨ t
1
1,`q and pt2 ¨ t11,´q are uninformative.

Ideally, a smart inference algorithm should avoid presenting uninformative tuples to
the user, but it is impossible to identify those tuples using the definition above without
the knowledge of qγ . This motivates us to introduce the notion of certain tuples w.r.t. an
instance I and a sample S, which is independent of the goal query qγ . Then, we prove
that the notions of uninformative and certain tuples are equivalent and we identify the
cases when testing the informativeness of a tuple can be done in polynomial time. We
also mention that the notion of certain tuples is inspired by possible world semantics
and certain answers [Imielinski and Lipski Jr. 1984] and already employed for XML
querying for non-expert users by [Cohen and Weiss 2013]. Formally, we define the set
CertKpI, Sq of all certain examples w.r.t. I and S in a setting K:

CertK` pI, Sq “ tt P DpRo , Iq | @q P CKpI, Sq. t P qpIqu,
CertK´ pI, Sq “ tt P DpRo , Iq | @q P CKpI, Sq. t R qpIqu,
CertKpI, Sq “ CertK` pI, Sq ˆ t`u Y CertK´ pI, Sq ˆ t´u.

When K is clear from the context, we write simply CertpI, Sq instead of CertKpI, Sq.
We assume w.l.o.g. that all samples that we manipulate are consistent. In case of an

inconsistent sample S, we have CpI, Sq “ H, in which case the notion of certain tuples

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:21

Table IV. Summary of complexity results for deciding the informativeness of a tuple.

Equijoins Semijoins
Without disjunction PTIME (Theorem 4.5) NP-complete (Theorem 4.6)

With disjunction PTIME (Theorem 4.5) PTIME (Theorem 4.5)

is of no interest. While the inclusion of CertpI, Sq in Uninf pI, Sq is rather expected, we
next show that the notions of uninformative and certain tuples are in fact equivalent.

LEMMA 4.3. Given a setting K “ pR,Ro ,Qq, an instance I Ď IK , and a consistent
sample S Ď EK over I, it holds that Uninf pI, Sq “ CertpI, Sq.

PROOF. First, we show the inclusion Uninf pI, Sq Ď CertpI, Sq. Case 1. Take a tuple
t such that pt,`q P Uninf pI, Sq. From the definition of C we know that for every query q
from CpI, SYtpt,`quq it holds that t P qpIq. Because CpI, Sq “ CpI, SYtpt,`quq, we infer
that for every query q from CpI, Sq it holds that t P qpIq, and therefore, t P Cert`pI, Sq.
Case 2. Take a tuple t such that pt,´q P Uninf pI, Sq. From the definition of C we know
that for every query q from CpI, S Y tpt,´quq it holds that t R qpIq. Because CpI, Sq “
CpI, S Y tpt,´quq, we infer that for every query q from CpI, Sq it holds that t R qpIq, and
therefore, t P Cert´pI, Sq.

Next, we prove the inclusion CertpI, Sq Ď Uninf pI, Sq. Case 1. Take a tuple t in
Cert`pI, Sq, which means that for every query q in CpI, Sq it holds that t P qpIq, which
implies CpI, Sq “ CpI, S Y tpt,`quq, hence pt,`q P Uninf pI, Sq. Case 2. Take a tuple t in
Cert´pI, Sq, which means that for every query q in CpI, Sq it holds that t R qpIq, which
implies CpI, Sq “ CpI, S Y tpt,´quq, in other words pt,´q P Uninf pI, Sq.

Recall that we have defined the uninformative tuples w.r.t. the goal query and we have
shown in Lemma 4.3 that Uninf pI, Sq “ CertpI, Sq, which means that we are able to
characterize the uninformative tuples by using only the given sample, without having
the knowledge of the goal query.

Next, let us also characterize the informative tuples i.e., those that contribute to the
learning process. Take a setting K “ pR,Ro ,Qq, an instance I Ď IK , a sample S Ď EK
over I, and an unlabeled tuple t from DpRo , Iq. We say that t is informative w.r.t. K, I,
and S if there does not exist a label α P t`,´u such that pt, αq P Uninf pI, Sq. When K,
I, and S are clear from the context, we may write simply that t is informative. Next,
we give a necessary and sufficient condition for a tuple to be informative.

LEMMA 4.4. Given a setting K “ pR,Ro ,Qq, an instance I Ď IK , a sample S Ď EK
over I, and an unlabeled tuple t from DpRo , Iq, t is informative iff both S Ytpt,`qu and
S Y tpt,´qu are consistent.

PROOF. From Lemma 4.3 and the definition of uninformative tuples, we infer that
given a label α P t`,´u, pt, αq P Uninf pI, Sq means CpI, Sq “ CpI, S Y tpt, αquq. By
Lemma 4.1, this is equivalent to CpI, S Y tpt, αquq “ H, which is furthermore equiv-
alent to saying that the sample S Y tpt, αqu is not consistent. In other words t is
uninformative iff there is a label α P t`,´u such that S Y tpt, αqu is not consistent,
which is equivalent to saying that t is informative iff both S Y tpt,`qu and S Y tpt,´qu
are consistent.

Consequently, we use the above characterization to analyze the complexity of deciding
whether a tuple is informative or not. We present the summary of complexity results
in Table IV and we prove them in the remainder.

First, we show that the tractability of the consistency checking implies the tractabil-
ity of deciding the informativeness of a tuple. This result is in fact a generalization of a
previous result presented in [Bonifati et al. 2014a], where only the setting of equijoins
without disjunction has been studied.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

THEOREM 4.5. Given a setting K “ pR,Ro ,Qq in Join, UJoin, or UJoin˙, an instance
I Ď IK , a sample S Ď EK over I, and an unlabeled tuple t from DpRo , Iq, deciding
whether t is informative is in PTIME.

PROOF. If K is in Join, the result follows from Lemma 4.4 and Theorem 3.4. If K is
in UJoin or UJoin˙, the result follows from Lemma 4.4 and Theorem 3.8.

Next, we show that it is intractable to decide the informativeness of a tuple when the
goal query is a semijoin.

THEOREM 4.6. Given a setting K “ pR,Ro ,Join˙pR,Roqq in Join˙, an instance
I Ď IK , a sample S Ď EK over I, and an unlabeled tuple t from DpRo , Iq, deciding
whether t is informative is NP-complete. The result holds even when the schema consists
of two relations only.

PROOF. To prove the membership of the problem to NP, we point out that a Turing
machine guesses a join predicate θ, which has polynomial size in the size of the input.
Then, we can easily check in polynomial time whether θ is consistent with both S Y
tpt,`qu and S Y tpt,´qu.

To prove the NP-hardness, take the same reduction from the proof of Theorem 3.5.
Then, add in the instance of Pϕ, for every 1 ď i ď k, one tuple t such that tridP s “
c`i , trBtns “ trBfns “K

1, and for every 1 ď j ď n ´ 1, trBtjs “ trBfj s “ j. Moreover,
we require K‰K1. For the formula ϕ0 from the proof of Theorem 3.5, add two tuples
pc`1 , 1, 1, 2, 2, 3, 3,K

1,K1q and pc`2 , 1, 1, 2, 2, 3, 3,K1,K1q.
Then, consider S1ϕ such that S1ϕ,` “ ttR,1, . . . , tR,ku and S1ϕ,´ “ tt1R,0, . . . , t

1
R,n´1u.

We claim that ϕ is satisfiable iff the tuple t1R,n is informative. By Lemma 4.4, this is
equivalent to saying that ϕ is satisfiable iff both S1ϕ Y tpt

1
R,n,`qu and S1ϕ Y tpt

1
R,n,´qu

are consistent. Notice that S1ϕ Y tpt1R,n,`qu is clearly consistent since the join pred-
icate tpidR, idP q, pA1, B

t
1q, pA1, B

f
1 q, . . . , pAn´1, B

t
n´1q, pAn´1, B

f
n´1qu selects all positive

and none of the negative tuples in S1ϕ Y tpt
1
R,n,`qu. Thus, we have to prove that ϕ is

satisfiable iff S1ϕ Y tpt1R,n,´qu is consistent, which follows exactly as in the proof of
Theorem 3.5.

We end this section by proposing additional characterizations of certain tuples that
hold when the input and output signatures coincide and that are useful in practice
(as we show later on in the paper when we discuss the lattice-based strategies). These
additional characterizations are interesting because they are not stated in terms of
consistency checking as in the general case (cf. Lemma 4.4). First, let us characterize
the certain tuples for equijoins.

LEMMA 4.7. Given a setting K “ pR,R,JoinpRqq in Join, an instance I Ď IK , a
consistent sample S Ď EK over I, and an unlabeled tuple t from DpRo , Iq, it holds that:

(1) t belongs to Cert`pI, Sq iff T pS`q Ď T ptq,
(2) t belongs to Cert´pI, Sq iff there exists a tuple t1 in S´ such that T pS`qXT ptq Ď T pt1q.

PROOF. (1). For the if part, assume T pS`q Ď T ptq. From the definitions of C and T ,
we infer that for every θ defining a query p’θ Rq in CpI, Sq, it holds that θ Ď T pS`q,
which furthermore, implies that θ Ď T ptq, hence t P p’θ RqpIq, in other words t P
Cert`pI, Sq.

For the only if part, assume t P Cert`pI, Sq, which means that for every q in CpI, Sq
it holds that t P qpIq. From the definitions of C and T , we infer that p’T pS`q Rq belongs
to CpI, Sq, and therefore, t P p’T pS`q RqpIq, which yields T pS`q Ď T ptq.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:23

(2). For the if part, take a tuple t1 in S´ such that T pS`q X T ptq Ď T pt1q. This implies
that for every q in CpI, SYtpt,`quq it holds that t1 P qpIq, hence CpI, SYtpt,`quq “ H. By
Lemma 4.1, we obtain CpI, SYtpt,´quq “ CpI, Sq, which means that pt,´q P Uninf pI, Sq,
and therefore, t P Cert´pI, Sq (by Lemma 4.3).

For the only if part, assume by absurd that for every t1 in S´ it holds that
T pS`q X T ptq Ę T pt1q, which implies that the set CpI, S Y tpt,`quq is non-empty, hence
CpSq ‰ CpI, S Y tpt,´quq (by Lemma 4.1). This implies that pt,´q R Uninf pI, Sq that is
equivalent by Lemma 4.3 to pt,´q R CertpI, Sq, which contradicts the hypothesis. We
conclude that there exists a tuple t1 in S´ such that T pS`q X T ptq Ď T pt1q.

Next, let us also characterize the certain tuples for disjunctive equijoins.

LEMMA 4.8. Given a setting K “ pR,R,UJoinpRqq in UJoin, an instance I Ď IK , a
consistent sample S Ď EK over I, and an unlabeled tuple t from DpRo , Iq, it holds that:

(1) t belongs to Cert`pI, Sq iff there exists a tuple t1 P S` such that T pt1q Ď T ptq.
(2) t belongs to Cert´pI, Sq iff there exists a tuple t1 P S´ such that T ptq Ď T pt1q.

PROOF. (1). For the if part, let t1 be a tuple in S` such that T pt1q Ď T ptq. From the
definitions of C and T , we infer that for every disjunctive join predicate Θ such that
p’Θ Rq P CpI, Sq there is a join predicate θ P Θ such that θ Ď T pt1q, hence θ Ď T ptq. This
implies that for every q P CpI, Sq it holds that t P qpIq, in other words t P Cert`pI, Sq.

For the only if part, assume by absurd that for every t1 P S` we have T pt1q Ę T ptq.
Then, take the query p’Ť

t1PS`
tT pt1qu Rq that belongs to CpI, Sq and that does not select

t. Consequently, t R Cert`pI, Sq, which contradicts the hypothesis. Thus, we conclude
that there is a tuple t1 P S` such that T pt1q Ď T ptq.

(2). For the if part, let t1 be the tuple in S´ such that T ptq Ď T pt1q. Then, from the
definitions of C and T , we infer that for every disjunctive join predicate Θ such that
p’Θ Rq P CpI, Sq, for every θ P Θ it holds that θ Ę T pt1q, hence θ Ę T ptq. This implies
that t R qpIq for every q P CpI, Sq, in other words t P Cert´pI, Sq.

For the only if part, assume by absurd that for every t1 P S´ we have T ptq Ę T pt1q.
This implies that p’Ť

t1PS`Yttu
tT pt1qu Rq belongs to CpI, Sq and selects t at the same time,

which contradicts the hypothesis that t P Cert´pI, Sq. Thus, we conclude that there
exists a tuple t1 P S´ such that T ptq Ď T pt1q.

5. STRATEGIES
In this section, we use the developments from the previous sections to propose effi-
cient strategies for interactively presenting tuples to the user. First, in Section 5.1,
we introduce the general interactive inference algorithm and we claim that there ex-
ists an optimal strategy that is however exponential. Consequently, we propose several
efficient strategies that we essentially classify in two categories: local and lookahead.
More precisely, in Section 5.2 we show that when the input and output signatures co-
incide, we can use the notion of lattice of join predicates to efficiently pre-process an
instance and to define the local strategies. Then, in Section 5.3 we propose the looka-
head strategies that work for all settings, being based on the notion of entropy of a
tuple that we develop there.

5.1. General interactive inference algorithm
Take a setting K “ pR,Ro ,Qq and an instance I Ď IK . A strategy Υ is a function that
takes as input a Cartesian product DpRo , Iq and a sample S Ď EK over I, and returns
a tuple t in DpRo , Iq. The general interactive inference algorithm (Algorithm 1) consists
of selecting a tuple w.r.t. a strategy Υ and asking the user to label it as a positive or

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

negative example; this process continues until the halt condition Γ is satisfied. The
algorithm continuously verifies the consistency of the sample, if at any moment the
user labels a tuple such that the sample becomes inconsistent, the algorithm raises an
exception.

We have chosen to investigate strategies that ask the user to label informative tuples
only because we aim to minimize the number of interactions. Therefore, the sample
that we incrementally construct is always consistent and our approach does not yield
any error in lines 6-7. In our approach, we choose the strongest halt condition i.e., to
stop the interactions when there is no informative tuple left:

Γ :“ @t P DpRo , Iq. Dα P t`,´u. pt, αq P S YUninf pI, Sq.

At the end of the interactive process, we return the most specific join query consistent
with the examples provided by the user (cf. the characterizations from Section 3 for
different variations of the goal query class). For instance, if our goal is to infer a join
query without projection and disjunction (i.e., an equijoin), we return θ “ T pS`q.

However, the halt condition Γ may be weaker in practice, as the user might decide
to stop the interactive process at an earlier time if, for instance, she finds some inter-
mediate most specific consistent query to be satisfactory.

Algorithm 1 General interactive inference algorithm.
Input: the Cartesian product DpRo , Iq
Output: a join query consistent with the user’s labels
Parameters: strategy Υ, halt condition Γ
1: let S “ H
2: while  Γ do
3: let t “ ΥpDpRo , Iq, Sq
4: query the user about the label α for t
5: S :“ S Y tpt, αqu
6: if S is not consistent then
7: error
8: return the most specific query selecting all positive examples

An optimal strategy exists and can be built by employing the standard construc-
tion of a minimax tree [Russell and Norvig 2010]. While the exact complexity of the
optimal strategy remains an open question, a straightforward implementation of min-
imax requires exponential time (and is in PSPACE), which unfortunately renders it
unusable in practice. As a consequence, we propose next a number of time-efficient
strategies that attempt to minimize the number of interactions with the user and that
we have implemented for our experimental study. For comparison we also introduce
the random strategy (RND) that at each step chooses randomly an informative tuple.

5.2. Settings where the input and output signatures coincide
When the input and output signatures coincide i.e., we have settings of the form
pR,R,Qq, the space of all potential join predicates expressible over a given instance
is captured by a lattice of join predicates (Section 5.2.1). This lattice permits to effi-
ciently pre-process the given instance (Section 5.2.2) and also to design some simple
yet effective strategies that we call local (Section 5.2.3). For ease of exposition of our
algorithms, in the remainder we denote the Cartesian product DpR, Iq simply by D.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:25

H

tpFrom,Cityqu tpTo,Cityqu tpAirline,Discountqu

tpFrom,City),(Airline,Discount)u tpTo,City),(Airline,Discountqu

Ω

tpFrom,Cityqu tpTo,Cityqu tpAirline,Discountqu

tpFrom,Cityq, pAirline,Discountqu tpTo,Cityq, pAirline,Discountqu

Fig. 3. Lattice of join predicates for the instance from Figure 1.

From To Airline City Discount T ptq
Paris Lille AF NYC AA H

Paris Lille AF Paris None tpFrom,Cityqu
Paris Lille AF Lille AF tpTo,Cityq, pAirline,Discountqu
NYC Paris AA NYC AA tpFrom,Cityq, pAirline,Discountqu
NYC Paris AA Paris None tpTo,Cityqu
Paris NYC AF Lille AF tpAirline,Discountqu

Fig. 4. Result of pre-processing for the Cartesian product from Figure 1.

5.2.1. Lattice of join predicates. The lattice of the join predicates is pPpΩq,Ďq with H

as its bottom-most node and Ω as its top-most node. We focus on non-nullable join
predicates i.e., join predicates that select at least one tuple, because we expect the user
to label at least one positive example during the interactive process. We also consider
Ω in case the user decides to label all tuples as negative. Naturally, the number of
non-nullable join predicates may still be exponential since all join predicates are non-
nullable iff there exist two tuples t P R and t1 P P such that trA1s “ . . . “ trAns “
t1rB1s “ . . . “ t1rBms.

We present in Figure 3 the lattice of join predicates for the instance from Figure 1
and in Figure 5 the lattice corresponding to the instance from Example 2.1. For both
of them, notice a set of non-nullable nodes and the Ω. We point out a correspondence
between the nodes and the tuples in the Cartesian productD: a tuple t P D corresponds
to a node of the lattice θ if T ptq “ θ. Not every node of the lattice has corresponding
tuples and in Figure 5 only nodes in boxes have corresponding tuples (cf. Figure 2).

The main insight behind the lattice-based local strategies is the following: each label
given by the user is propagated in the lattice using Lemma 4.7 if the goal query class
consists of equijoins or using Lemma 4.8 if the goal query class consists of disjunctive
equijoins. This allows us to prune parts of the lattice corresponding to the tuples that
become uninformative. Basically, labeling a tuple t corresponding to a node θ as posi-
tive renders tuples corresponding to all nodes above θ uninformative and possibly some
other nodes depending on tuples labeled previously (if the query class has no disjunc-
tion). Conversely, labeling t as negative prunes (at least) the part of the lattice below θ.
For instance, take the lattice from Figure 5, assume an empty sample, and take the join
predicate tpA1, B2q, pA1, B3qu and the corresponding tuple t˝ “ t1¨t

1
3. If the user labels t˝

as a positive example, then the tuple t2 ¨t13 corresponding to tpA1, B2q, pA1, B3q, pA2, B1qu

becomes uninformative (cf. Lemma 4.7 or Lemma 4.8, respectively). On the other hand,
if the user labels the tuple t˝ as a negative example, then the tuples t2 ¨ t11 and t3 ¨ t

1
1

corresponding to tpA1, B3qu and H respectively, become uninformative (cf. the same
two results). If we reason at the lattice level, the question “Which is the next tuple to

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

H

tpA1, B1qu tpA1, B2qu tpA1, B3qu tpA2, B1qu tpA2, B2qu tpA2, B3qu

{pA1, B1q,
pA2, B1q}

{pA1, B1q,
pA2, B2q}

{pA1, B1q,
pA2, B3q}

{pA1, B2q,
pA1, B3q}

{pA1, B2q,
pA2, B1q}

{pA1, B3q,
pA2, B3q}

{pA2, B2q,
pA2, B3q}

{pA1, B1q,
pA1, B2q

pA2, B3q}

{pA1, B2q,
pA1, B3q

pA2, B1q}

{pA1, B3q,
pA2, B1q

pA2, B2q}

Ω

tpA1, B1qu tpA1, B2qu tpA1, B3qu tpA2, B1qu tpA2, B2qu tpA2, B3qu

{pA1, B1q,
pA2, B1q}

{pA1, B1q,
pA2, B2q}

{pA1, B1q,
pA2, B3q}

{pA1, B2q,
pA1, B3q}

{pA1, B2q,
pA2, B1q}

{pA1, B3q,
pA2, B3q}

{pA2, B2q,
pA2, B3q}

{pA1, B1q,
pA1, B2q

pA2, B3q}

{pA1, B2q,
pA1, B3q

pA2, B1q}

{pA1, B3q,
pA2, B1q

pA2, B2q}

Fig. 5. Lattice of join predicates for the instance from Example 2.1.

present to the user?” intuitively becomes “Labeling which tuple allows us to prune as
much of the lattice as possible?”

5.2.2. Pre-processing. We employ a simple mechanism to pre-process the input in-
stance before asking the user to label any tuple. The idea is to remove redundant
tuples based on the lattice of join predicates as follows: for each predicate θ such that
there exists a tuple t in the Cartesian product D with T ptq “ θ, we take such a tuple t
from the instance and we add it to the pre-processed instance.

For example, for the instance from Figure 1, we keep only one tuple for each pred-
icate presented in a lattice node from Figure 3. Thus, we obtain the pre-processed
instance from Figure 4, where we also present on the last column the corresponding
T ptq for each tuple. Notice that with this simple pre-processing procedure we have
eliminated half of the tuples from the initial set, without altering the set of queries
that can be learned on this instance. From now on, whenever we refer to an instance
in the remainder, we mean in fact its pre-processed version where we have already
eliminated all redundant tuples.

Even though we can easily imagine minor cases where pre-processing does not elim-
inate any tuple (e.g., for the instance from Example 2.1 whose lattice we depict in
Figure 5), we have shown in the experimental study that it scales quite well for in-
stances of billions of tuples that can be reduced to smaller sets of hundreds of tuples
on which learning the goal query is clearly more efficient.

5.2.3. Local strategies. The principle behind the local strategies is that they propose
tuples to the user following a simple order on the lattice. We call these strategies local
because they do not take into account the quantity of information that labeling an
informative tuple could bring to the inference process. As such, they differ from the
lookahead strategies that we present in the next section. In this section we propose
two local strategies, which essentially correspond to two basic variants of navigating
in the lattice: the bottom-up strategy and the top-down strategy.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:27

The bottom-up strategy (BU) (Algorithm 2) intuitively navigates the lattice of join
predicates from the most general join predicate (H) towards the most specific one (Ω).
It visits a minimal node of the lattice that has a corresponding informative tuple and
asks the user to label it. If the label is positive, (at least) the part of the lattice above
the node is pruned. If the label is negative, the current node is pruned (since the nodes
below are not informative, they must have been pruned before). Recall the instance
from Example 2.1 and its corresponding lattice in Figure 5. The BU strategy asks
the user to label the tuple t0 “ t3 ¨ t

1
1 corresponding to H. If the label is positive, all

nodes of the lattice are pruned and the empty join predicate returned. If the label is
negative, the strategy selects the tuple t2 ¨ t11 corresponding to the node θ1 “ tpA1, B3qu

for labeling, etc. The BU strategy discovers quickly the goal join predicate H, but is
inadequate to discover join predicates of bigger size. In the worst case, when the user
provides only negative examples, the BU strategy might ask the user to label every
tuple from the (pre-processed) Cartesian product.

Algorithm 2 Bottom-up strategy BUpD,Sq

1: let m “ minpt|T ptq| | t P D such that t is informativeuq
2: return informative t such that |T ptq| “ m

The top-down strategy (TD) (Algorithm 3) intuitively starts to navigate in the lat-
tice of join predicates from the most specific join predicate (Ω) to the most general one
(H). It has basically two behaviors depending on the contents of the current sam-
ple. First, when there is no positive example yet (lines 1-2), this strategy chooses
a tuple t corresponding to a Ď-maximal join predicate i.e., whose T ptq has no other
non-nullable join predicate above it in the lattice (line 2). For example, for the in-
stance corresponding to the lattice from Figure 5, we first ask the user to label the
tuple corresponding to tpA1, B1q, pA1, B2q, pA2, B3qu, then the tuple corresponding to
tpA1, B2q, pA1, B3q, pA2, B1qu, etc. Note that the relative order among these tuples cor-
responding to Ď-maximal join predicates is arbitrary. If the user labels all Ď-maximal
join predicates as negative examples, we are able to infer the goal Ω without asking
her to label all the Cartesian product (using Lemma 4.7 or Lemma 4.8, depending on
whether or not disjunction is present in the goal query class). Thus, the TD strategy
overcomes the mentioned drawback of the BU. On the other hand, if there is at least
one positive example, then the goal join predicate is a non-nullable one, and the TD
strategy turns into BU (lines 3-5). As we later show in Section 6, the TD strategy seems
a good practical compromise.

Algorithm 3 Top-down strategy TDpD,Sq

1: if S` “ H then
2: return informative t such that Et1 P D. T ptq Ĺ T pt1q
3: else
4: let m “ minpt|T ptq| | t P D such that t is informativeuq
5: return informative t such that |T ptq| “ m

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

T u`t,S u´t,S entropyS
t1 ¨ t

1
1 tpA1, B3q, pA2, B1q, pA2, B2qu 0 2 (0,2)

t1 ¨ t
1
2 tpA1, B1q, pA2, B2qu 0 1 (0,1)

t1 ¨ t
1
3 tpA1, B2q, pA1, B3qu 1 2 (1,2)

t2 ¨ t
1
1 tpA1, B3qu 2 1 (1,2)

t2 ¨ t
1
2 tpA1, B1q, pA2, B3qu 1 1 (1,1)

t2 ¨ t
1
3 tpA1, B2q, pA1, B3q, pA2, B1qu 0 4 (0,4)

t3 ¨ t
1
1 H 11 0 (0,11)

t3 ¨ t
1
2 tpA1, B3q, pA2, B3qu 0 2 (0,2)

t3 ¨ t
1
3 tpA1, B1q, pA2, B1qu 0 1 (0,1)

t4 ¨ t
1
1 tpA1, B1q, pA1, B2q, pA2, B3qu 0 2 (0,2)

t4 ¨ t
1
2 tpA1, B2q, pA2, B1qu 1 1 (1,1)

t4 ¨ t
1
3 tpA2, B2q, pA2, B3qu 0 1 (0,1)

Fig. 6. The Cartesian product corresponding to the instance from Example 2.1 and the entropy for each
tuple, for an initial empty sample.

5.3. Lookahead strategies for general settings
In this section, we present the lookahead strategies. There are two key differences
between them and the local strategies: (i) they are defined independently of the lattice
of join predicates and can be thus employed in all considered settings (cf. Section 2);
(ii) for all such settings, they take into account the entropy of an informative tuple
i.e., the quantity of information that labeling that tuple could bring to the process
of inference. More precisely, they continuously interleave the user’s feedback and the
inference process by taking into account the labels already given by the user to adjust
the order of presenting new tuples for labeling. The notion of entropy that we develop
here is in fact a generalization of a previous notion from [Bonifati et al. 2014a].

We need to introduce first some auxiliary notions. Given an informative tuple t from
D and a sample S, let uαt,S be the number of tuples which become uninformative if the
tuple t is labeled with α:

uαt,S “ |Uninf pI, S Y tpt, αquq zUninf pI, Sq|.

Now, the entropy of an informative tuple t w.r.t. a sample S, denoted entropySptq, is the
pair pminpu`t,S , u

´
t,Sq,maxpu`t,S , u

´
t,Sqq, which captures the quantity of information that

labeling the tuple t can provide. The entropy of uninformative tuples is undefined,
however we never make use of it. In Figure 6 we present the entropy for each tuple
from the Cartesian product of the instance from Example 2.1, for an empty sample.

Given two entropies e “ pa, bq and e1 “ pa1, b1q, we say that e dominates e1 if a ě a1 and
b ě b1. For example, p1, 2q dominates p1, 1q and p0, 2q, but it does not dominate p2, 2q nor
p0, 3q. Next, given a set of entropies E, we define the skyline of E, denoted skylinepEq, as
the set of entropies e that are not dominated by any other entropy of E. For example,
for the set of entropies of the tuples from Figure 6, the skyline is tp1, 2q, p0, 11qu.

Next, we present the one-step lookahead skyline strategy (L1S) (Algorithm 4). We
illustrate this strategy for the instance from Example 2.1, for an initial empty sample.
First (line 1), we compute the entropy for each informative tuple from the Cartesian
product. This corresponds to computing the last column from Figure 6. Then (line 2),
we calculate the maximal value among all minimal values of the entropies computed
at the previous step. For our example, this value is 1. Finally (lines 3-4), we return an
informative tuple whose entropy is in the skyline of all entropies, and moreover, has as
minimal value the number computed at the previous step. For our example, the skyline
is tp1, 2q, p0, 11qu, thus the entropy corresponding to the value computed previously (i.e.,
1) is p1, 2q. Consequently, we return one of the tuples having the entropy p1, 2q, more

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:29

precisely either t1 ¨t13 or t2 ¨t11. Intuitively, according to L1S strategy, we choose to ask the
user to label a tuple which permits to eliminate at least one and at most two additional
tuples. Note that by min (resp. max) we denote the minimal (resp. maximal) value from
either a given set or a given pair of numbers, depending on the context.

Algorithm 4 One-step lookahead skyline L1SpD,Sq

1: let E “ tentropySptq | t P D such that t is informativeu
2: let m “ maxptminpeq | e P Euq
3: let e the entropy in skylinepEq such that minpeq “ m
4: return informative t such that entropySptq “ e

The L1S strategy naturally extends to k-steps lookahead skyline strategy (LkS). The
difference is that instead of taking into account the quantity of information that label-
ing one tuple could bring to the inference process, we take into account the quantity
of information for labeling k tuples. Note that if k is greater than the total number of
informative tuples in the Cartesian product, then the strategy becomes optimal and
thus inefficient. For such a reason, in the experiments we focus on a lookahead of two
steps, which is a good trade-off between keeping a relatively low computation time
and minimizing the number of interactions. Therefore, we present such strategy in the
remainder.

Algorithm 5 entropy2
Sptq

1: for α P t`,´u do
2: let S1 “ S Y tpt, αqu
3: if Et1 P D such that t1 is informative w.r.t. S1 then
4: let eα “ p8,8q
5: continue
6: let E “ H
7: for t1 P D s.t. t1 is informative w.r.t. S1 do
8: let u` “ |Uninf pI, S Y tpt, αq, pt1,`quq zUninf pI, Sq|
9: let u´ “ |Uninf pI, S Y tpt, αq, pt1,´quq zUninf pI, Sq|
10: E :“ E Y tpminpu`, u´q,maxpu`, u´qqu
11: let m “ maxptminpeq | e P Euq
12: let eα the entropy in skylinepEq s.t. minpeαq “ m
13: let m “ minptminpe`q,minpe´quq
14: return eα such that minpeαq “ m

We need to extend first the notion of entropy of a tuple to the notion of entropy2 of a
tuple. Given an informative tuple t and a sample S, the entropy2 of t w.r.t. S, denoted
entropy2

Sptq, intuitively captures the minimal quantity of information that labeling t
and another tuple can bring to the inference process. The construction of the entropy2

is quite technical (Algorithm 5) and we present an example below. Take the sample
S “ tpt1 ¨ t

1
3,`q, pt3 ¨ t

1
1,´qu. Note that Uninf pI, Sq “ tpt2 ¨ t

1
3,`q, pt1 ¨ t12,´q, pt2 ¨ t12,´q,

pt3 ¨ t
1
3,´q, pt4 ¨ t13,´qu. There are five informative tuples left: t1 ¨ t11, t2 ¨ t11, t3 ¨ t12, t4 ¨ t11,

and t4 ¨ t
1
2. Let compute now the entropy2 of t2 ¨ t11 w.r.t. S using Algorithm 5. First,

take α “ ` (line 1), then S1 “ S Y tpt2 ¨ t
1
1,`qu (line 2), note that there is no other

informative tuple left (line 3), and therefore, e` “ p8,8q (lines 4-5). This intuitively
means that given the sample S, if the user labels the tuple t2 ¨ t11 as positive example,
then there is no informative tuple left and we can stop the interactions. Next, take
α “ ´ (line 1), then S1 “ S Y tpt2 ¨ t

1
1,´qu (line 2), and the only tuples informative w.r.t.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

S1 are t4 ¨ t11 and t4 ¨ t12, we obtain E “ tp3, 3qu (lines 6-10), and e´ “ p3, 3q (lines 11-12).
Finally, entropy2

Spt2 ¨ t
1
1q “ p3, 3q (lines 13-14), which means that if we ask the user to

label the tuple t2 ¨ t11 and any arbitrary tuple afterwards, then there are at least three
other tuples that become uninformative. The computation of the entropies of the other
informative tuples w.r.t. S is done in a similar manner. The 2-steps lookahead skyline
strategy (L2S) (Algorithm 6) returns a tuple corresponding to the “best” entropy2 in a
similar manner to L1S. In fact, Algorithm 6 has been obtained from Algorithm 4 by
simply replacing entropy by entropy2. As we have already mentioned, the approach can
be easily generalized to entropyk and LkS, respectively.

Algorithm 6 Two-steps lookahead skyline L2SpD,Sq

1: let E “ tentropy2
Sptq | t P D such that t is informativeu

2: let m “ maxptminpeq | e P Euq
3: let e the entropy in skylinepEq such that minpeq “ m
4: return informative t such that entropy2

Sptq “ e

6. EXPERIMENTS
In this section, we present an experimental study devoted to gauging the efficiency
and effectiveness of the join inference strategies presented above. Precisely, we com-
pare three classes of strategies: the random strategy (RND), the local strategies (BU
and TD), and the lookahead strategies (L1S and L2S). For each input database instance
and for each goal query, we have considered three measures: the number of user inter-
actions (i.e., the number of tuples that need to be presented to the user to label as
examples in order to infer the join predicate), the total time needed to infer the goal
join predicate, and the time between examples, using each of the above strategies as
strategy Υ (cf. Section 5.1), and reiterating the user interactions until no informative
tuple is left (halt condition Γ). Throughout the experimental section, by join size we
intend the number of equalities from a (disjunctive) join predicate, while by lattice size
we denote the number of nodes in the lattice of join predicates (cf. Section 5.2.1).

In our experiments, we have employed two datasets: the TPC-H benchmark datasets
(Section 6.1) and a synthetic dataset we have built in the spirit of our introductory
motivating example on Flight&Hotel (Section 6.2). The presented results cover the
entirety of the TPC-H queries involving joins, as opposed to previous work [Bonifati
et al. 2014a], which only focused on simple joins corresponding to key-foreign key re-
lationships between pairs of tables. In fact, the queries reported in our work span
an arbitrary number of tables. Moreover, to cope with the lack of disjunction in the
TPC-H benchmark queries, we have built a synthetic Flight&Hotel dataset generator
to be able to gauge our learning algorithms when disjunction is allowed. We discuss
the results for the two datasets in Section 6.3 and we present the application of our
techniques to interactive join query specification in Section 6.4.

It is also important to point out that in our experiments we focused only on learning
settings where the input and output signatures coincide (i.e., on learning equijoins)
and there are several reasons for this choice. First, we wanted to be able to fairly
compare local and lookahead strategies (recall that the local strategies are meaning-
ful only in such learning settings). Second, we recall that when the input and output
signatures differ (i.e., for semijoins), there are cases where the problems of interest
become intractable (cf. Theorem 3.5 and Theorem 4.6). Third, we observe that in addi-
tion to the intractability of the problems of interest there is another important issue
that precludes in practice the learnability of semijoins, which is related to data visu-
alization (that we also detail in Section 6.4). Since we focused only on settings where

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:31

the input and output signatures coincide, we were also able to apply a pre-processing
technique in the spirit of Section 5.2.2 to remove redundant tuples before asking the
user to label any tuple. Thus, from an initial large instance we have constructed a pre-
processed smaller one that basically contains as many tuples as nodes in the lattice.

All our algorithms have been implemented in C. All our experiments were run on an
Intel Core i7 with 4ˆ 2.9 GHz CPU and 8 GB RAM.

6.1. Setup of experiments on TPC-H
The TPC-H benchmark1 contains the following eight tables (with the corresponding
abbreviation in parenthesis): part (P), supplier (S), partsupp (PS), lineitem (L), orders
(O), customer (C), nation (N), region (R).

Out of the 22 queries provided by the TPC-H benchmark, 20 exhibit join predi-
cates. Since many of the queries contain aggregates, arithmetic expressions, groupby
statements, etc. that fall beyond the scope of our learning techniques, and similarly
to [Zhang et al. 2013], we modify the TPC-H queries by dropping all such operators
while maintaining the join predicates. By performing this operation, some of the TPC-
H queries actually become equivalent. Thus, we obtain a total of 15 different queries
that we present in Table V. As an example, the first line of the table indicates that
the TPC-H queries 4 and 12 have the same join condition “L[orderkey] = O[orderkey]”
between the tables L and O. When a table appears more than once in a query, we
use Arabic numbers to differentiate between these occurrences (e.g., N1 and N2 for
query 7). Additionally, we saturate the join predicates by adding all join conditions
that result by transitivity e.g., for query 21 we have “L1[orderkey] = L2[orderkey]” and
“L1[orderkey] = L3[orderkey]” implies that “L2[orderkey] = L3[orderkey]”. In Table V,
we also illustrate the sizes of the considered joins, which span from 1 to 8.

In our TPC-H experiments, we used the instances found in the ref data directory
provided within the TPC-H benchmark to build the lattices on which the actual learn-
ing is done. There are eight such instances (that correspond to scaling factors from 1
to 100000), being of size in the order of MB. Basically, such instances are slightly dif-
ferent one from the other and, more importantly, they induce lattices of roughly same
size, corresponding to at most 200 elements (we report these numbers in Figure 7).
The main goal of our experiments was to check how many examples from the lattice
should the user label in order to learn an arbitrary query. With such a goal in mind,
it is important to pinpoint that the time for dataset pre-processing was not crucial for
our analysis (the former being of the order of thousands (seconds) per query). Finally,
since we observed high similarity across the results for the considered eight instances,
and for the sake of conciseness, we only report the results for only the extreme and
intermediate scaling factors i.e., 1, 100, and 100000.

We recall that our interactive strategies are ignoring the integrity constraints from
the TPC-H schema and propose tuples to present to the user only by reasoning on the
user annotations. The goal of such experiments on TPC-H is to evict the join predicates
that rely on integrity constraints and that belong to the user’s goal query. Nevertheless,
attributes other than the ones involved in the keys and foreign keys may be involved
in the join predicates as they exhibit compatible types. For instance, a value “15” of
an attribute of a tuple may as well represent a key, a size, a price, or a quantity, etc.
Actually, for a ref data instance corresponding to a higher scaling factor, the number
of equalities between such attributes exhibiting compatible types slightly decreases
because the domains of the attributes are sparser. This explains the fact that the in-
stances corresponding to larger scaling factors induce smaller lattices (cf. Figure 7).

1http://www.tpc.org/

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

Table V. The TPC-H joins.
Query Tables Join predicate Join size
4, 12 L, O L[orderkey] = O[orderkey] 1

13, 22 C, O C[custkey] = O[custkey] 1
14, 17, 19 L, P L[partkey] = P[partkey] 1

15 L, S L[suppkey] = S[suppkey] 1
11 PS, S, N PS[suppkey] = S[suppkey] ^ S[nationkey] = N[nationkey] 2
16 PS, S, P PS[partkey] = P[partkey] ^ PS[suppkey] = S[suppkey] 2

3, 18 C, O, L C[custkey] = O[custkey] ^ L[orderkey] = O[orderkey] 2

10 C, O, L, N
C[custkey] = O[custkey] ^ L[orderkey] = O[orderkey] ^
C[nationkey] = N[nationkey] 3

2 P, S, PS, N, R
PS[partkey] = P[partkey] ^ PS[suppkey] = S[suppkey] ^
S[nationkey] = N[nationkey] ^ N[regionkey] = R[regionkey] 4

7 S, L, O, C, N1, N2
S[suppkey] = L[suppkey] ^ L[orderkey] = O[orderkey] ^
C[custkey] = O[custkey] ^ S[nationkey] = N1[nationkey] ^
C[nationkey] = N2[nationkey]

5

20 P, S, PS, N, L

PS[partkey] = P[partkey] ^ PS[partkey] = L[partkey] ^
P[partkey] = L[partkey] ^ PS[suppkey] = S[suppkey] ^
PS[suppkey] = L[suppkey] ^ S[suppkey] = L[suppkey] ^
S[nationkey] = N[nationkey]

7

5 C, O, L, S, N, R

C[custkey] = O[custkey] ^ L[orderkey] = O[orderkey] ^
S[suppkey] = L[suppkey] ^ C[nationkey] = S[nationkey] ^
S[nationkey] = N[nationkey] ^ C[nationkey] = N[nationkey] ^
N[regionkey] = R[regionkey]

7

8 P, S, L, O, C, N1, N2, R

L[partkey] = P[partkey] ^ S[suppkey] = L[suppkey] ^
L[orderkey] = O[orderkey] ^ C[custkey] = O[custkey] ^
C[nationkey] = N1[nationkey] ^ N1[regionkey] = R[regionkey] ^
S[nationkey] = N2[nationkey]

7

9 P, S, L, PS, O, N

S[suppkey] = L[suppkey] ^ PS[suppkey] = L[suppkey] ^
PS[suppkey] = S[suppkey] ^ PS[partkey] = L[partkey] ^
L[partkey] = P[partkey] ^ PS[partkey] = P[partkey] ^
L[orderkey] = O[orderkey] ^ S[nationkey] = N[nationkey]

8

21 S, O, N, L1, L2, L3

L1[orderkey] = L2[orderkey] ^ L1[orderkey] = L3[orderkey] ^
L2[orderkey] = L3[orderkey] ^ L1[orderkey] = O[orderkey] ^
L2[orderkey] = O[orderkey] ^ L3[orderkey] = O[orderkey] ^
L1[suppkey] = S[suppkey] ^ S[nationkey] = N[nationkey]

8

As already mentioned, the lattice of join predicates is dependent of the query that
the user has in mind in the sense that the lattice is constructed based on the tables
that the user wants to join. This is rather a natural assumption, since we assume that
the user knows what tables are targeted by the query that she has in mind. The pre-
processing transforms these tables into a lattice on which the actual learning is done.
In situations where one relation appears more than once (as in some of the TPC-H
queries), we simply characterize the different copies of such relation with appropriate
aliases. Thus, we can accommodate join paths of arbitrary (albeit fixed) length, with
multiple occurrences of the same relation.

Notice that there are two aspects of complexity of the lattice. One of them is the
number of its elements, that we report in Figure 7 and changes from query to query
since each query is formulated over a different combination of tables. The other as-
pect is the size of an element of the lattice i.e., the number of equalities that can be
formulated over the given instance. For example, for our Flight&Hotel example, this
number is rather small (i.e., 3), but in cases such as those where a relation is taken
several times, the size of an element can easily become much larger (e.g., for the TPC-H
query 21, where Lineitem is taken 3 times, there are over 200 equalities, out of which
more than half are due to equalities between attributes of Lineitem coming from the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:33

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
n

u
m

b
er

 o
f 

ex
am

p
le

s

Join size

RND
BU
TD

L1S
L2S

Lattice

(a) TPC-H ref data SF 1.

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
n

u
m

b
er

 o
f 

ex
am

p
le

s

Join size

RND
BU
TD

L1S
L2S

Lattice

(b) TPC-H ref data SF 100.

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
n

u
m

b
er

 o
f 

ex
am

p
le

s

Join size

RND
BU
TD

L1S
L2S

Lattice

(c) TPC-H ref data SF 100000.

Fig. 7. Average number of examples for learning TPC-H joins.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
to

ta
l 

le
ar

n
in

g
 t

im
e 

(s
)

Join size

RND
BU

TD
L1S

L2S

(a) TPC-H ref data SF 1.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
to

ta
l 

le
ar

n
in

g
 t

im
e 

(s
)

Join size

RND
BU

TD
L1S

L2S

(b) TPC-H ref data SF 100.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
to

ta
l 

le
ar

n
in

g
 t

im
e 

(s
)

Join size

RND
BU

TD
L1S

L2S

(c) TPC-H ref data SF 100000.

Fig. 8. Average total learning time for the TPC-H joins.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
ti

m
e 

b
et

w
ee

n
 e

x
am

p
le

s 
(s

)

Join size

RND
BU

TD
L1S

L2S

(a) TPC-H ref data SF 1.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
ti

m
e 

b
et

w
ee

n
 e

x
am

p
le

s 
(s

)

Join size

RND
BU

TD
L1S

L2S

(b) TPC-H ref data SF 100.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 1  2  3  4  5  6  7  8

A
v

er
ag

e 
ti

m
e 

b
et

w
ee

n
 e

x
am

p
le

s 
(s

)

Join size

RND
BU

TD
L1S

L2S

(c) TPC-H ref data SF 100000.

Fig. 9. Average time between examples for the TPC-H joins.

various occurrences of that table). In such cases, we do not construct the lattice such
that it contains precisely one element per combination of equalities as described in Sec-
tion 5.2.2 (that could go in the worst case up to 2200 elements in the aforementioned
example), but we randomly extract a subset of it, that we fixed of size as large as the
number of equalities (e.g., 200). In fact, we empirically observed that constructing such
a subset is a reasonable choice since it allows the learnability of the goal query. Thus,
a value of 200 as a lattice size actually means 2002 possible Boolean values since each
element of the lattice has also size of 200 equalities.

We present the experimental results on TPC-H in Figure 7 (the number of needed
examples), Figure 8, (the total learning time), and Figure 9 (the time between two in-
teractions). We discuss these experiments along with the synthetic ones in Section 6.3.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

Table VI. The Flight&Hotel joins.
Query Tables Disjunctive join predicate Join size

1 F, H F.From = H.City _ F.To = H.City 2

2 F, H
(F.From = H.City _ F.To = H.City) ^
F.Airline = H.Discount 3

3 F1, H, F2
(F1.To = H.City _ H.City = F2.From) ^
(F1.Airline = H.Discount _ H.Discount = F2.Airline) 4

4 F1, H, F2

F1.To = H.City ^
F1.To = F2.From ^

H.City = F2.From ^

(F1.Airline = H.Discount _ H.Discount = F2.Airline)
5

5 F1, H, F2

F1.From = F2.To ^
F1.To = H.City ^
F1.To = F2.From ^

H.City = F2.From ^

(F1.Airline = H.Discount _ H.Discount = F2.Airline)

6

6 F1, H1, F2, H2

F1.To = H1.City ^
F1.To = F2.From ^

H1.City = F2.From ^

F2.To = H2.City ^
(F1.Airline = H1.Discount _ F2.Airline = H2.Discount)

6

7 F1, H1, F2, H2

F1.To = H1.City ^
F1.To = F2.From ^

H1.City = F2.From ^

F2.To = H2.City ^
(F1.Airline = H1.Discount _ F1.Airline = H2.Discount _
F2.Airline = H1.Discount _ F2.Airline = H2.Discount)

8

8 F1, H1, F2, H2

F1.To = H1.City ^
F1.To = F2.From ^

H1.City = F2.From ^

F2.To = H2.City ^
(F1.Airline = H1.Discount _ F1.Airline = H2.Discount) ^
(F2.Airline = H1.Discount _ F2.Airline = H2.Discount)

8

9 F1, H1, F2, H2

F1.From = F2.To ^
F1.From = H2.City ^
F1.To = H1.City ^
F1.To = F2.From ^

H1.City = F2.From ^

F2.To = H2.City ^
(F1.Airline = H1.Discount _ F1.Airline = H2.Discount _
F2.Airline = H1.Discount _ F2.Airline = H2.Discount)

10

10 F1, H1, F2, H2

F1.From = F2.To ^
F1.From = H2.City ^
F1.To = H1.City ^
F1.To = F2.From ^

H1.City = F2.From ^

F2.To = H2.City ^
(F1.Airline = H1.Discount _ F1.Airline = H2.Discount) ^
(F2.Airline = H1.Discount _ F2.Airline = H2.Discount)

10

6.2. Setup of experiments on synthetic data
Since the TPC-H join predicates have only conjunctions, we have implemented a syn-
thetic datasets generator to tweak our strategies also in the context of learning dis-
junctive join queries. We have generated tables of flights and hotels, in the spirit of
our motivating example. More precisely, the relation Flight has 3 attributes (From, To,
Airline) and the relation Hotel has 2 attributes (City, Discount). We abbreviate them
by F and H, respectively. Moreover, when a table appears more than once in a query,
we use Arabic numbers to differentiate between these occurrences (e.g., F1 and F2). In
Table VI, we present the list of studied queries, which contain between 2 and 10 equal-
ities. We have directly generated pre-processed instances based on the lattice. Their
size depends on how many times each table is used in the goal query. In particular, in
the considered queries (recall that we present them in Table VI), we may use (i) both

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:35

 0

 50

 100

 150

 200

 250

 300

 2  3  4  5  6  7  8  9  10

A
v

er
ag

e 
n

u
m

b
er

 o
f 

ex
am

p
le

s

Join size

RND
BU
TD

L1S
L2S

Lattice

(a) Average number of examples.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 2  3  4  5  6  7  8  9  10

A
v

er
ag

e 
to

ta
l 

le
ar

n
in

g
 t

im
e 

(s
)

Join size

RND
BU

TD
L1S

L2S

(b) Average total learning time.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 2  3  4  5  6  7  8  9  10

A
v

er
ag

e 
ti

m
e 

b
et

w
ee

n
 e

x
am

p
le

s 
(s

)

Join size

RND
BU

TD
L1S

L2S

(c) Average time between examples.

Fig. 10. Summary of results for the Flight&Hotel joins.

F and H exactly once, (ii) F twice and H once, or (iii) both F and H exactly twice. These
variations lead lattices from size 6 (that corresponds exactly to the one in Figure 3) to
around 300. We plot these sizes in Figure 10. We illustrate the experimental results in
Figure 10 for both number of examples and learning time, and we discuss them along
with the TPC-H ones in Section 6.3.

6.3. Discussion
In this section, we discuss the experimental results for the two aforementioned set-
tings.

First, we would like to point out that our implementation of queries and lattices is
not specific to the problem of learning join queries. Thus, our strategies are applica-
ble to any problem that can be reduced to finding informative nodes on a lattice, which
can be represented with any general encoding. More precisely, for both datasets, we im-
plemented a query as a Boolean array, having as length the total number of equalities
that can be formulated over the given instance. For example, for our Flight&Hotel run-
ning example, there are 3 such equalities (From=City, To=City, and Airline=Discount,
respectively), hence a query is a Boolean array of length 3. In particular, the query
To=City^Airline=Discount can be seen as [0,1,1]. Then, a lattice is a collection of such
Boolean arrays. For example, the lattice from Figure 3 can be seen as {[0,0,0], [0,0,1],
[0,1,0], [1,0,0], [0,1,1], [1,0,1]}. Hence, as long as a problem can be reduced to find-
ing informative nodes on a lattice, one can leverage our interactive strategies, which
therefore have applications beyond the classes of queries studied in the paper.

The lattice size intuitively captures the complexity of an instance i.e., the larger it
is, the more join predicates are in the lattice (cf. Section 5.2.1), and therefore, more
interactions are needed to infer a join query on that instance. This explains the ex-
perimental results for the number of needed examples that we show in Figure 7 and
Figure 10, respectively. We can observe that in the majority of cases TD and L2S are
better than the other strategies w.r.t. minimizing the number of interactions. However,
none of them seems to be a winning strategy overall. In fact, their performance essen-
tially depends on both the size of the join predicate (reported in Table V and Table VI)
and the lattice size (reported in Figure 7 and Figure 10), but also on whether or not we
allow disjunction in the goal query class.

It is important to point out that on all presented figures we included on the X axis
the size of the goal join query, which spans between 1 and 8 for TPC-H, and between 2
and 10 for Flight&Hotel. In each graph, a value corresponding to a certain join size is
actually obtained by averaging over all queries of that size. Thus, we can easily observe
that a goal query of smaller size can be learned with less interactions. Such a trend is
confirmed for each dataset.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

Next, let us discuss how the number of interactions needed for each strategy de-
pends on the lattice size. The essential insight is that L2S exhibits a better perfor-
mance than TD with significant lattice size. A large lattice entails a higher number
of join predicates in the lattice, and therefore, in such cases the inference requires
more interactions. This explains the fact that for the most complex TPC-H joins L2S
is the best strategy w.r.t. minimizing the number of examples. By opposite, with small
lattices, and, consequently, fewer join predicates, the lookahead strategy might not be
necessarily useful. Interestingly, when we also allow the disjunction in the synthetic
experiments, we observe that L2S is no longer better than TD either. Intuitively, this
happens because in the presence of disjunction the characterizations able to prune
parts of the lattice are less aggressive than without disjunction (cf. Lemma 4.7 and
Lemma 4.8, respectively). Thus, the entropies computed by the algorithm are smaller
and choosing the best one among them is not necessarily better than a simple, local
strategy.

Additionally, we observe that the total learning time for all strategies is always
within a reasonable range, even though it may vary within this range with the dif-
ferent strategies. While for the random and local strategies the total learning time is
always under a second, it can go up to at most a thousand of seconds for the lookahead
strategies for the most complex TPC-H queries. However, such queries are the ones on
which the lookahead strategy is most beneficial, which explains the difference in terms
of learning time. As for the time between two examples, for TPC-H it is of roughly up
to 10 seconds for two-steps lookahead, 1 second for one-step lookahead, and 0.01 sec-
onds for local and random strategies. For the Flight&Hotel synthetic queries that also
consider disjunction, the time between examples is always up to 3 seconds for two-step
lookahead and less than 0.1 seconds for the others. Thus, this time is reasonably small
for both datasets.

To summarize our experimental results, we point out that TD and L2S can be con-
sidered as a good trade-off between optimizing our antagonistic goals: minimizing both
the number of user examples and the learning time. More precisely, if on one hand we
have only conjunctions and a small lattice, or we allow disjunctions, TD is the best
strategy; conversely, if on the other hand we have only conjunctions and more complex
queries on dense lattices, L2S is the strategy to be chosen.

6.4. From query learning to query specification
As already mentioned at the beginning of the introduction, our study of query learn-
ing from examples is motivated by query specification for non-expert users. However,
in this paper we are not focusing on interactions with real users, as we did in a sys-
tem demonstration [Bonifati et al. 2014b]. The TPC-H datasets used in this paper are
not appropriate for a user study, for which smaller and more bearable datasets would
be needed in order to visualize the tuples. In our system demonstration, we mainly
used two datasets: Flight&Hotel (as described in the running example of this paper)
and sets of tagged images (e.g., the user can label pairs of images to learn queries
like: select all pairs of images having the same color, shape or shading, etc.). Although
the number of user examples for TPC-H can go up to 100, we point out that this up-
per bound corresponds to the most specific halt condition (i.e., presenting all tuples
until no informative tuple is left). In practice, the user might want to stop the inter-
actions earlier before this halt condition, and precisely, at the moment when she is
satisfied with an intermediate inferred query. Such flexible halt conditions have been
implemented in our system prototype and have been used with the customers of our
demonstration. Finally, we would like to argue that what counts is the time to label
the next tuple and that this time is reasonably small even for large datasets such as
TPC-H (as shown in Figure 9).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Learning Join Queries from User Examples A:37

Similarly to the experimental section of this paper, in our system we focused on set-
tings where the input and output signatures coincide (i.e., on equijoins). As for the
semijoins, we observed that in addition to the intractability of the problems of interest
(cf. Theorem 3.5 and Theorem 4.6) there is another important issue that precludes in
practice their learnability, which is related to data visualization. Notice that the data
visualization does not pose any problem for equijoins since the user can visualize a
tuple which contains all the information to permit her to decide whether she wants
the tuple or not. However, we observe that this cannot be also applied for semijoins. A
semijoin filters data from one source based on data from another source, hence show-
ing a tuple over the output signature does not contain enough information to permit
its labeling i.e., the user should also be provided with the second source, which can
potentially be very large.

7. CONCLUSIONS AND FUTURE WORK
We have focused on the inference of join queries without the knowledge of referen-
tial integrity constraints. We have studied various settings, depending on whether or
not we allow disjunction and/or projection in the queries. We have precisely character-
ized the frontier between tractability and intractability for the following problems of
interest in these settings: consistency checking, learnability, and deciding the informa-
tiveness of a tuple. Then, we have proposed several efficient strategies of presenting
tuples to the user and we have discussed their performance on the TPC-H benchmark
and synthetic datasets.

As future work, we would like to investigate the problem of learning join queries
in a context where the database instance is updated during the process i.e., the user
may add new tuples to the instance and label them as examples. Another interesting
direction for future work is to extend our approach to other algebraic operators. Ad-
ditionally, our study makes sense in realistic crowdsourcing scenarios, thus we could
think of crowd users to provide positive and negative examples for join inference. Fi-
nally, we think at employing our approach in data cleaning scenarios, where the user
may label pairs of possibly conflicting tuples and then our algorithms could infer the
conflicts that determined the user to label and a potential conflict resolution.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers, whose suggestions helped us to improve the presentation
of the paper.

REFERENCES
S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.
A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M. Hellerstein, and A. Silberschatz. 2013. Learning and

verifying quantified boolean queries by example. In PODS. 49–60.
A. Abouzied, J. M. Hellerstein, and A. Silberschatz. 2012. Playful Query Specification with DataPlay. PVLDB

5, 12 (2012), 1938–1941.
B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. 2011a. Designing and refining schema mappings via

data examples. In SIGMOD Conference. 133–144.
B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. 2011b. EIRENE: Interactive Design and Refinement of

Schema Mappings via Data Examples. PVLDB 4, 12 (2011), 1414–1417.
D. Angluin. 1988. Queries and concept learning. Machine Learning 2, 4 (1988), 319–342.
F. Bancilhon. 1978. On the Completeness of Query Languages for Relational Data Bases. In MFCS. 112–123.
G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. 2010. Learning Deterministic Regular Expressions for

the Inference of Schemas from XML Data. TWEB 4, 4 (2010).
A. Bonifati, R. Ciucanu, and A. Lemay. 2015. Learning Path Queries on Graph Databases. In EDBT. 109–

120.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 Angela Bonifati, Radu Ciucanu, and Sławek Staworko

A. Bonifati, R. Ciucanu, and S. Staworko. 2014a. Interactive Inference of Join Queries. In EDBT. 451–462.
A. Bonifati, R. Ciucanu, and S. Staworko. 2014b. Interactive Join Query Inference with JIM. PVLDB 7, 13

(2014), 1541–1544.
S. Cohen and Y. Weiss. 2013. Certain and Possible XPath Answers. In ICDT. 237–248.
A. Das Sarma, A. Parameswaran, H. Garcia-Molina, and J. Widom. 2010. Synthesizing view definitions from

data. In ICDT. 89–103.
W. Fan, F. Geerts, J. Li, and M. Xiong. 2011. Discovering Conditional Functional Dependencies. IEEE Trans.

Knowl. Data Eng. 23, 5 (2011), 683–698.
G. Fletcher, M. Gyssens, J. Paredaens, and D. Van Gucht. 2009. On the Expressive Power of the Relational

Algebra on Finite Sets of Relation Pairs. IEEE Trans. Knowl. Data Eng. 21, 6 (2009), 939–942.
M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. 2011. CrowdDB: answering queries with

crowdsourcing. In SIGMOD Conference. 61–72.
E. M. Gold. 1967. Language Identification in the Limit. Information and Control 10, 5 (1967), 447–474.
E. M. Gold. 1978. Complexity of Automaton Identification from Given Data. Information and Control 37, 3

(1978), 302–320.
G. Gottlob and P. Senellart. 2010. Schema mapping discovery from data instances. J. ACM 57, 2 (2010).
T. Imielinski and W. Lipski Jr. 1984. Incomplete Information in Relational Databases. J. ACM 31, 4 (1984),

761–791.
H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C. Yu. 2007. Making database

systems usable. In SIGMOD Conference. 13–24.
M. J. Kearns and U. V. Vazirani. 1994. An introduction to computational learning theory. MIT Press.
A. Lemay, S. Maneth, and J. Niehren. 2010. A learning algorithm for top-down XML transformations. In

PODS. 285–296.
A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. 2011. Human-powered Sorts and Joins. PVLDB 5,

1 (2011), 13–24.
A. Nandi and H. V. Jagadish. 2011. Guided Interaction: Rethinking the Query-Result Paradigm. PVLDB 4,

12 (2011), 1466–1469.
J. Paredaens. 1978. On the Expressive Power of the Relational Algebra. Inf. Process. Lett. 7, 2 (1978), 107–

111.
L. Qian, M. J. Cafarella, and H. V. Jagadish. 2012. Sample-driven schema mapping. In SIGMOD Conference.

73–84.
S. J. Russell and P. Norvig. 2010. Artificial Intelligence - A Modern Approach. Pearson Education.
T. Sellam and M. L. Kersten. 2013. Meet Charles, big data query advisor. In CIDR.
S. Staworko and P. Wieczorek. 2012. Learning Twig and Path Queries. In ICDT. 140–154.
B. ten Cate, V. Dalmau, and P. G. Kolaitis. 2013. Learning schema mappings. ACM Trans. Database Syst.

38, 4 (2013), 28.
Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. 2009. Query by output. In SIGMOD Conference. 535–548.
D. Van Gucht. 1987. On the Expressive Power of the Extended Relational Algebra for the Unnormalized

Relational Model. In PODS. 302–312.
J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. 2013. Leveraging transitive relations for crowdsourced

joins. In SIGMOD Conference. 229–240.
Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu. 2013. Actively Soliciting Feedback for Query Answers

in Keyword Search-Based Data Integration. PVLDB 6, 3 (2013), 205–216.
M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava. 2013. Reverse engineering complex join queries.

In SIGMOD Conference. 809–820.
M. M. Zloof. 1975. Query by Example. In AFIPS National Computer Conference. 431–438.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


