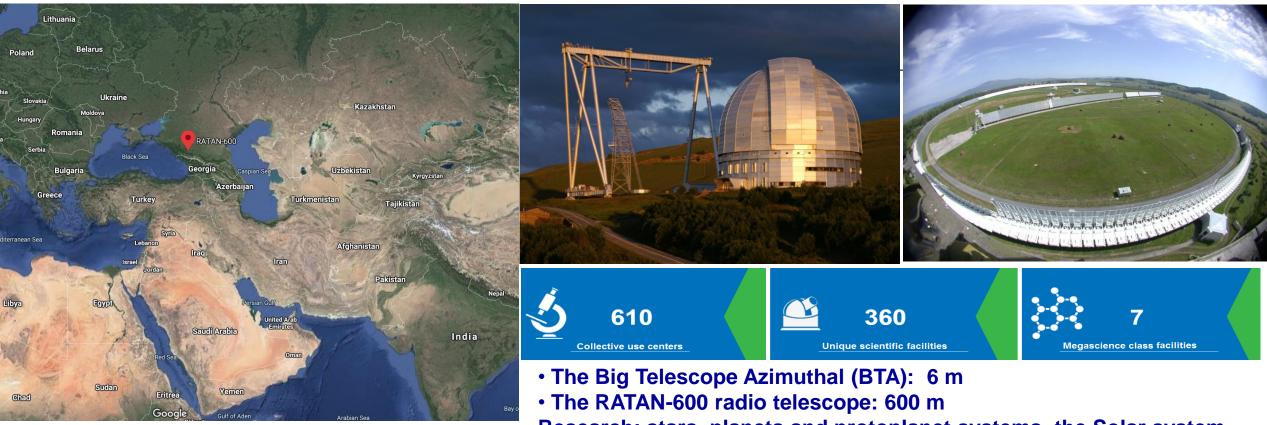
CREMLIN P_US

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072


Connecting Russian and European Measures for Large-scale Research Infrastructures

> Special Astrophysical Observatory of RAS the open access center

BTA & RATAN-600

Sotnikova Yulia V., Deputy Director

-L1. A location and the facility

Research: stars, planets and protoplanet systems, the Solar system and the Sun, the Galaxy, galaxies, CMB, the interstellar medium, Instruments and Methods.

Nizhny Arkhyz, Karachai-Cherkessian Republic Russia 369167 admsao@sao.ru

www.sao.ru +7(87878) 46336 +7(87878) 46315

- 2. The facility uniqueness

The **RATAN-600** is the world largest radio telescope with the variable profile antenna:

- a large geometric area and a high angular resolution;
- instantaneous radio spectra 1-30 GHz.

Methods:

- the flux density measurements at 1-30 GHz;
- the radio emission intensity and polarization measurements at 3-18 GHz;
- the flux density measurements at 5 GHz with a high time resolution.

The **BTA** is the largest Russian optical telescope:

- the mirror size;
- the relevant scientific equipment and methods;
- a geographical location.

Methods: - the galaxies' 3D panoramic spectroscopy;

- the speckle interferometry method;
- the high-resolution spectroscopy;
- the ultra-high time resolution photospectropolarimetry.

https://www.sao.ru/Doc-en/Telescopes/

- The Responsible Observer (RO) is the SAO scientific staff member who is in charge of the scientific method/methods.
- ✓ The Principal Investigator (PI) is a telescope user (both internal and external one).

The Responsible Observer rights:

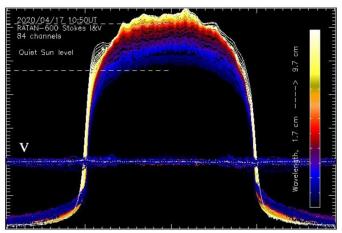
- ✓ A direct or remote access to the facilities;
- ✓ The equipment management;
- The telescope systems monitor (website, server);
- ✓ Make responsible technical decisions.

The Principal Investigator rights:

- ✓ Prepare the observational files/materials;
- Monitor telescope systems (the website, the server);
- Make responsible scientific decision (the observation strategy).

Access:

- the computers and local network;
- the software;
- the archive and the database;
- a transport and an accommodation.


The PI responsibility:

- The observational results reporting and publications;
- ✓ A reference to the using equipment.

Special Astrophysical Observatory of RAS

A		TCS state	TCS		CS online	pa TV		_Mise_	A
	(Re)Start Cycl	: 30s ▼	Size 1	20 🔻 Image	e: V	Veb1 🔻 160) •	
3	BT	A control info	ormatic	n and	schematic	vie	ew of telescop	pe position	
-		mection: On		Control	: Manual	Foo		Target: Hori	
-		ar time: 17 ^h 20 ⁱ						l time: 06 ^h 50 ^m	
- 1	-	≪ <u>WebCam</u>	~~~	Az	imuth	_	Zenith	P2 (500))
		0-	3	E				$\mathbf{\mathbf{\hat{b}}}$	
		Tel	escope:	-045°	59'40.6"		86°36'11.6"	231°19'42	.2"
			Object:		54'05.8"		75°09'59.7"	331°20'25	
			erence:		"0.00'00		+00°00'00.0"	+000°00'00	
			elocity:		0.00'00.0"		+00°00'00.0"	-00°00'00	.0"
		Con	rection:		0.00'00.0"		+0°00'00.0"		
			Input:	+059	22'46.4"		10°01'04.9"		
		Object	Alj	oha	Delta		D	ome	7
		Current:	09 ^h 30 ^m	04.59 ^s	-22°09'57.7	7"	Position:	-225°01'55.5"	
		Source:	06 ^h 06 ^m	44.85 ^s	+38°00'00.	0"	Difference:	+179°02'14.9"	
		Input:	06 ^h 06 ^m	44.85*	+38°00'00.	0"	Velocity:	+00°00'00.0"	
		Correction:	$+0^{h}00^{m}$	00.00 ^s	+0°00'00.0	"	Fo	ocus	

Available resource: the BTA control information (website)

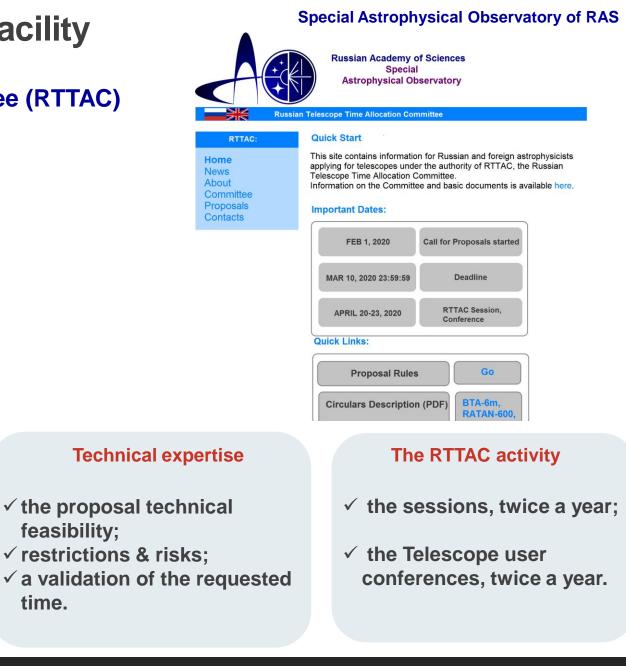
Available resource: the RATAN observation information (website)

4. A regulated access to the facility

The Russian Telescope Time Allocation Committee (RTTAC)

https://www.sao.ru/hg/Komitet/index-en.html

Observational requests are supported twice a year on the competitive basis only (for any users).



The RTTAC (by the Ministry of Science and Higher Education):

- The Committee Regulations.
- The Procedure rules.
- The Proposal Submission Regulations.
- Access to the scientific facility.
- The Observed Data Archives Regulations.

The Committee standard principles:

- positive decision of technical experts;
- scientific importance;
- efficiency of a program, publication;
- multi-wave and cooperative programs;
- development of new methods;
- support of young scientists.

feasibility:

time.

Special Astrophysical Observatory of RAS

5. Procedures and an internal access policies for external users

Big Telescopes	The online proposal system
BTA 6m	RATAN 600m
Online form	Online form
Information	Information

Access procedure

- ✓ The User registration (online proposal system);
- ✓ The Proposal registration (online proposal system);
- ✓ The technical expertise (the SAO technical expert);
- ✓ The scientific expertise (the RTTAC);
- A creation of a half year protocol for Telescopes observations (the RTTAC);
- ✓ A creation of a half year schedule (the SAO administration);
- ✓ Observations;
- ✓ Reporting/Publication.

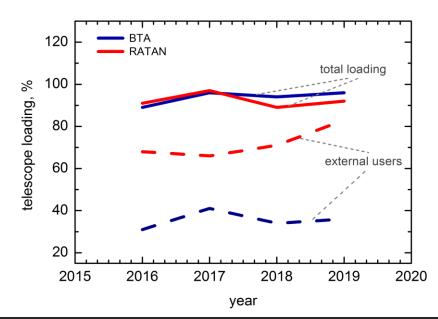
Key points

- ✓ free of charge, the competitive basis, twice a year;
- ✓ the same rules for all users;
- A, B, C and D priority of the proposal (the highest, high, low and rejected);
- \checkmark the top priority of the alert observations;
- ✓ the Telescope Users Conference;
- ✓ the access unit is 1 night or 1 day (BTA, RATAN-600);
- ✓ the compensation of lost observations is possible (the reserved time ~5-15%).
- \checkmark the technical period (~5-15%) for the telescopes maintenance.

The proposal

- A technical part: Title, Brief description, PI, Co-I, Proposal type (longterm, short-term, onetime), Period of time, Mode of observation, List of objects.
- A scientific part: Title, PI, Annotation, Type of objects, Scientific problem, Methods, Motivation, Publication.

5. Procedures and an internal access policies for external users


RATAN-600 Observation Schedule from January 1 to June 30, 2020. Executive Secretary: request@sao.ru

	North sector	South+Flat	South sector
Feed-cabin 1		Feed-cabin 3	Feed-cabin 2
	(01-31): Radio variability of the Galactic X-	(01-31): The Sun five-azimuth observations 4.	(01-31): Radio variability of the
	ray binaries with relativistic jets ¹ ,	Responsible Milenko V.S.	Galactic X-ray binaries with
	Trushkin S. (SAO RAS). Responsible Erkenov	Feed-cabin 2	relativistic jets1,
	A.K.	(01-31): Radio variability of the Galactic X-ray	Trushkin S. (SAO RAS).
J	(01-24): Radio properties of the Narrow-Line	binaries with relativistic jets ¹ , Trushkin S. (SAO	Responsible Erkenov A.K.
Α	Seyfert 1 Galaxies, Lahteenmaki Anne	RAS). Responsible Erkenov A.K.	
Ν	(Metsahovi Radio Observatory, Finland).	(01-31): Radio properties of the blazars on the	
U	Responsible: Erkenov A.K.	long time scales, Mufakharov T. (Shanghai	
Α	(01-24): Racho properties of the blazars on	Astronomical Observatory, China). Responsible:	
R	the long time scales, Mufakharov T.	Erkenov A.K.	
Y (Shanghai Astronomical Observatory, China).		(01-31): Radio properties of the Narrow-Line	
Responsible Erkenov A.K.		Seyfert 1 Galaxies, Lahteenmaki Anne (Metsahovi	
(25-31) Radio properties of OH Megamaser		Radio Observatory, Finland Responsible Erkenov	
(OHM) galaxies, Zhongzy Wu (Guizhou		А.К.	
	University, China). Responsible Erkenov A.K.	Feed-cabin 3	
		(10-31): The Sun multi-azimuth observations ⁵ .	
		Responsible Milenko V.S.	
<u>Res</u>	ponsible observer	Organization, country	schedule fragment
	Method Date	https://www.co	a ru/ratan/cabadula/2020/b
rincir	pal Investigator	mups://www.sa	o.ru/ratan/schedule/2020/ha

5. Telescope loading statistics

BTA


year	max., h	Real time, h		loading	external	year	max., h	Real time, h	
		overall	external		users	-		overall	externa
2016	2851	2542	790	89%	31%	2014	8784	8022	4600
2017	3323	3175	1309	96%	41%	2015	8760	8054	4228
2018	2397	2260	772	94%	34%	2016	8784	7992	5415
2019	3128	3007	1083	96%	36%	2017	8231	7973	5230

year	max., h	Real t	ime, h	loading	external
		overall	external		users
2014	8784	8022	4600	91%	57%
2015	8760	8054	4228	92%	52%
2016	8784	7992	5415	91%	68%
2017	8231	7973	5230	97%	66%
2018	8760	7812	5602	89%	71%
2019	6445	5968	5009	92%	83%

The reserved telescope time is ~5-15%; The telescopes maintenance is ~5-15%.

RATAN-600

7. Cooperation with the European RI facilities

Lists of the foreign RI facilities: <u>https://www.sao.ru/Doc-k8/Science/Public/</u>

The visit statistics

years	foreign visitors/instit utions	foreign conferences	visits to the foreign institutes
2010	66/42	24	33
2011	53/33	33	32
2012	19/11	43	39
2013	12/7	18	27
2014	26/15	26	15
2015	16/13	11	20
2016	34/26	2	6
2017	16/11	2	6
2018	23/?	15	44

The international cooperation as a part of joint observations:

- ✓ the SAO employees' visits of foreign observatories for observations or for the experience exchanging (~240);
- ✓ the SAO employees' visits of foreign organizations to participate in international conferences (~200);
- ✓ the international astrophysical conferences on the SAO RAS basis (18 ones since 2016, <u>www.sao.ru</u>).

GMRT - Giant Metrewave Radio Telescope

National Radio Astronomy Observatory

Radio Telescope Effelsberg

Metsähovi Radio Observatory

Atacama Large Millimeter Array

8. Brief analyses of the facility

Strengths:

- the largest Russian ground-based astronomical center;
- two large telescopes, both optical and radio ones;
- the unique methods and the equipment;
- the large scientific and engineering staff;
- the observatory edition "Astrophysical Bulletin".

Needs:

- the scientific cooperation expansion with international researchers;
- the long-term and close scientific links;
- the engineering staff supporting.

Russian Academy of Sciences Special Astrophysical Observatory

About us Divisions Telescopes Science Publications Education Service Contacts

Search

Events

https://www.sao.ru

 The XV Russian-Finnish Radio Astronomy Symposium "Multi-Wavelength Investigations of Solar and Stellar Activity and Active Galactic Nuclei" (September 14-18, 2020)
Archive

News

New luminous blue variables (LBV) in star-forming galaxy NGC4736. More...

Radius of the M giant IRC+00213 Measured for the First Time. More...

Formation of the Nearby Void catalog and a sample of Galaxies residing in them. More...

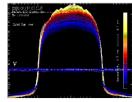
In 2018, we implemented the mode of fast radiometry with a discretization interval from 60 to 490 $\hat{1}$ %s at the 4.7 GHz sensitive radiometer for the first time. More...

Telescopes:

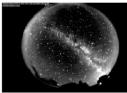
30.12.19 A new schedule of the Zeiss-1000 observations (the first half of 2020)

- 13.12.19 A new schedule of the RATAN-600 observations (the first half of 2020)
- 26.12.19 A new schedule of the BTA observations (the first half of 2020)

Publications:


10.02.20 Astrophysical Bulletin, vol. 75, number 1 is published. (Russian version)

Service:


17.04.20 Announce, news, discussion (restricted)

Telescope Zeiss-1000 online

Daily Monitoring of the Sun

All-Sky online

Sections:

✓Telescopes

- ✓ Open access center/Unique scientific equipment
- ✓ Russian Telescope Time Allocation Committee
- ✓ Online forms for proposals
- ✓ Schedule of observations
- ✓Instrumentation and methods
- ✓ General observation data archive of SAO RAS
- ✓Telescopes observational reports
- ✓ Science
- ✓ Publications

11. Contact details

Head of the Open Access Center: Head of the BTA: Head of the RATAN-600: Vlasyuk Valeri V., Director, vvlas@sao.ru Kudryavtsev Dmitry O., Deputy Director, dkudr@sao.ru Sotnikova Yulia V., Deputy Director, lacerta999@gmail.com

SAO RAS, www.sao.ru Nizhny Arkhyz, Karachai-Cherkessian Republic Russia 369167 admsao@sao.ru, +7(87878) 46336 , +7(87878) 46315

