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Our goal in this paper is to explain and to make precise several “folk
theorems” involving the Mandelbrot set and the Farey tree [D].

Recall that the Mandelbrot set is the parameter plane for iteration of the
complex quadratic function Q.(z) = 2%+ ¢. Here the parameter ¢ is complex.
The Mandelbrot set M consists of those ¢ values for which the orbit of 0,
i.e., the sequence 0,Q.(0), Q.(Q.(0)) = Q*(0),Q3(0), ... is bounded.

One reason for singling out the orbit of 0 is the following important fact
from complex dynamics: If (). possesses an attracting cycle, then the orbit
of 0, the critical point, must converge to that cycle. Recall that a cycle is an
orbit zg, Qc(20), ... Q%(20) = zo that returns to itself after n iterations. Such
a cycle is called attracting if all sufficiently nearby orbits tend to the cycle.

Since 0 tends to an attracting cycle of ()., it follows that (). admits at
most one attracting cycle. Also, such a ¢-value must lie in M since the orbit
of 0 is bounded. In fact, the c-values for which ). has an attracting cycle
comprise all of the visible interior of the Mandelbrot set’. (One of the main
conjectures concerning M is that its interior consists of only c-values for
which there is an attracting cycle.)

As is well known, the Mandelbrot set consists of a basic cardioid shape
from which hang numerous “bulbs” or “decorations.” See Figure 1. Basically,
each of these bulbs consist of a large disk which is directly attached to the
cardioid, together with numerous other smaller decorations and a prominent
“antenna.” We will make these terms precise below. See Figure 1.

1By visible, we mean that nobody has ever found experimentally or otherwise a com-
ponent of the interior that does not have this property.



Figure 1: The Mandelbrot set.

The large disk turns out to contain c-values for which (). admits an at-
tracting cycle with period g and rotation number p/q. That is, the attracting
cycle of (). tends to rotate about a central fixed point, turning approximately
p/q revolutions at each iteration. For this reason, this bulb is called the p/q
bulb. It is a fact that each of the c-values in this bulb have essentially the
same dynamical behavior.

One of the surprising folk theorems we discuss below is that we can rec-
ognize the p/g-bulb from the geometry of the bulb itself. That is, we can
read off dynamical information from the geometric information contained in
the Mandelbrot set.

For example, the 2/5 bulb is displayed in Figure 2. For any c-value in
this large disk, Q. features an attracting cycle with rotation number 2/5.
Note that the 2/5 bulb possesses an antenna-like structure that features
a junction point from which five spokes emanate. One of these spokes is
attached directly to the 2/5 bulb; we call this spoke the principal spoke.
Now look at the “smallest” of the non-principal spokes. Note that this spoke
is located, roughly speaking, 2/5 of a turn in the counterclockwise direction
from the principal spoke. This is how we identify this bulb as the 2/5-bulb.

As another example, in Figure 3 we display the 3/7 bulb. Note that this
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Figure 2: The 2/5 bulb.

Figure 3: The 3/7 bulb.
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bulb has 7 spokes emanating from the junction point, and the smallest is
located 3/7 of a turn in the counterclockwise direction from the principal
spoke. This then is the folk theorem: You can recognize the p/q bulb by
locating the “smallest” spoke in the antenna and determining its location
relative to the principal spoke. Of course, the word “smallest” needs some
clarification here; our goal in this paper is to make this notion precise. As
an additional disclaimer, this folk theorem is only about 80% true using the
Euclidean notion of “smallness” or Lebesgue measure. Our goal is to provide
a somewhat different framework in which this result is always true.

There is more to the story of interplay between the geometry of the Man-
delbrot set and the corresponding dynamics. In Figure 4, we display the 1/2
and 1/3 bulbs. The 1/2 bulb is the large bulb to the left; the 1/3 bulb is
the topmost bulb. In between these two bulbs are infinitely many smaller
bulbs, but the largest we recognize as the 2/5 bulb. Now note that 2/5 can
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be obtained from 1/2 and 1/3 by “Farey addition”:
1 1 2

29375
That is, to obtain the largest bulb between two given bulbs (in a particular
ordering), we simply add the corresponding fractions just the way we always
wanted to add them, namely by adding the numerators and adding the de-
nominators. This is the second of the folk theorems we discuss below. In
particular it follows that the size of bulbs is determined by the Farey tree,
as we will show in section 6.
As a second example, note that

2.8 5
557 12
and that the 5/12 bulb is the largest between the 2/5 and 3/7 bulbs. See

Figure 5.
While we will not give complete proofs of each of these folk theorems in
this paper, we will indicate some of the combinatorial arguments involved in
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making the statements precise. For more folk theorems and complete proofs,
we refer to [D1].

1 The Farey Tree

Before discussing the Mandelbrot set, we recall a few facts about the Farey
tree. The Farey tree is a tree containing all of the rationals between 0 and
1. At each stage of its construction, the Farey tree consists of a finite list
of rationals. Adjacent rationals in this list are called Farey neighbors. The
inductive step in the construction of the tree is: Each pair of Farey neigh-
bors produces a Farey child, which is the rational between the two whose
denominator is the smallest. Naturally, the rationals that produce a Farey
child are called its Farey parents.

One of the most intriguing features of the Farey tree is that we obtain
Farey children by Farey addition. That is, the fraction between the Farey
neighbors a/3 and +/4§ is given by

That is, to obtain the fraction between two Farey neighbors whose denomina-
tor is the smallest, we simply add the numerators and add the denominators
of the parents to obtain the child.

We begin the construction of the tree with the pair of rationals 0 and 1
which we write as 0/1 and 1/1. Their child is 1/2, so the second stage of the
construction gives the list

0o 1 1
1 2 1
At the next stage we obtain two new Farey children
0 1 2 1
1 3 2 3 1
At generation four we find
0 1 2 1 3 2 3 1
4 3 5 2 5 3 4 1



It is a fact that the Farey tree contains all rationals. See [GT] or [F] for more
details.

One other fact that we will use is that a/3 and v/ are Farey neighbors
if and only if ad — y3 = £1. Consequently, we have

a v 1

B8 By
This is easily proved by induction.

2 The Mandelbrot Set

Recall that the Mandelbrot set M is a picture of the parameter plane for the
quadratic function Q.(z) = z? + ¢. Specifically, the Mandelbrot set is:

M = {c| Q7(0) is bounded }.

Thus M gives a picture of those c-values for which the orbit of 0 under Q).
does not tend to oco.

The visible bulbs in M correspond to ¢-values for which (). has an at-
tracting cycle of some given period. For example, the main central cardioid
in M consists of c-values for which (). has an attracting fixed point. This
can be seen by solving for the fixed points

22+c:z

that are attracting

|Qu(2)] = [22] < L.
Solving these equations simultaneously, we see that the boundary of this
region is given by

where z = %627”0. That is,

parametrizes the boundary of the cardioid. At ¢(0), Q4) has a fixed point
that is neutral; the derivative of ()4 at this fixed point is e?mif
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For each rational value of 6, there is a bulb tangent to the main cardioid
at ¢(#). For c-values in the bulb attached to the cardioid at ¢(p/q), @, has
an attracting cycle of period g. We call this bulb the p/q bulb attached to
the main cardioid and denote it by B,,.

It is known that, as ¢ passes from the main cardioid, through ¢(p/q), and
into B,/,, Q. undergoes a p/g-bifurcation. By this we mean: when c lies in
the main cardioid near ¢(p/q), Q. has an attracting fixed point with a nearby
repelling cycle of period ¢q. At ¢(p/q) the attracting fixed point and repelling
cycle merge to produce the neutral fixed point with derivative e2™/¢, When
cliesin B4, (). now has an attracting cycle of period ¢ and a repelling fixed
point.

When ¢ = ¢(p/q), the local (linearized) dynamics are given by rotation
through angle 27(p/q). As a consequence, for nearby ¢ € B,/,, the attract-
ing cycle rotates about the repelling fixed point by jumping approximately
27(p/q) radians at each iteration. For more details see [B].

3 Angle doubling mod 1

In order to use the fundamental results of Douady and Hubbard [DH] re-
garding the Mandelbrot set we need to digress to recall some facts about the
doubling function. The doubling function is defined on the circle considered
as the reals modulo one and is given by D(#) = 26 mod 1.

We need two facts about D:

Fact 1: The angle 6 is periodic under D iff 4 is a rational of the form p/q
(in lowest terms) with ¢ odd.
For example, the D-orbit of 1/3 is
1 2 1
37373

which has period 2. The rational 1/7 has period 3 under doubling:
1 R 2 R 4 R 1
[ Y

while 1/5 has period 4:

1—>2—>4—> —
) ) 5 )



The rationals with even denominator are eventually periodic but not pe-
riodic. For example, 1/6 lies on an eventual 2-cycle

and 1/8 is eventually fixed:

1 1 1 151
Sttt e R
A second important fact about doubling is that we can read off the binary

expansion of # by noting the itinerary of 6 in the circle relative to D. To
define the itinerary, we denote the upper semicircle 0 < 6 < 1/2 by Iy and
the lower semicircle 1/2 < @ < 1 by [;. Given 6, we attach an infinite string
of 0’s and 1’s to @ as follows: The itinerary of § is B(0) = (sps152...) where
s; is either 0 or 1 and s; = 0 if D/(0) € Iy, s; = 1 if D7(0) € I;. That is, we
simply watch the orbit of § in the circle under doubling and assign 0 or 1 to
the itinerary whenever D?(#) lands in the arc Iy or 1.

Fact 2: The itinerary B(f) is the binary expansion of 6.

For example, if § = 1/3, then § € I, while D(#) € I, and D?*(8) = 6.
Hence B(1/3) is the repeating sequence 01, which of course is the binary
expansion of 1/3. Similarly, B(1/7) = 001 while B(1/5) = 0011.

4 External rays

In order to make precise the folk theorems mentioned in the introduction, we
recall some of the beautiful results of Douady and Hubbard [DH1] regarding
the external rays of the Mandelbrot set.

Let F denote the exterior of the unit circle in the plane, i.e.,

E={z||z| > 1}.

According to Douady and Hubbard, there is a unique analytic isomorphism
® mapping F to the exterior of the Mandelbrot set. The mapping ¢ takes
positive reals to positive reals. This mapping is the uniformization of the
exterior of the Mandelbrot set, or the exterior Riemann map.



The importance of ® stems from the fact that the image under ® of
the straight rays # = constant in £ have dynamical significance. In the
Mandelbrot set, we define the external ray with external angle §y to be the
®-image of § = . 1t is known that an external ray whose angle 6, is rational
actually “lands” on M. That is

. 2mif

11_r>r11 O(re ™)
exists and is a unique point on the boundary of M. This ¢-value is called
the landing point of the ray with angle 6,.

For example, the ray with angle 0 lies on the real axis and lands on M
at the cusp of the main cardioid, namely ¢ = 1/4. Also, the ray with angle
1/2 lies on the negative real axis and lands on M at the tip of the “tail” of
M which can be shown to be ¢ = —2.

Consider now the interior of M. The interior consists of infinitely many
simply connected regions. A bulb of M is a component of the interior of
M in which each c¢-value corresponds to a quadratic function which admits
an attracting cycle. The period of this cycle is constant over each bulb. In
many cases, a bulb is attached to a component of lower period at a unique
point called the root point of the component.

The important result of Douady and Hubbard is:

Theorem. Suppose a bulb B consists of c-values for which the quadratic
map has an attracting g-cycle. Then the root point of this bulb is the landing
point of exactly 2 rays, and the angles of each of these rays have period g
under doubling.

Thus the angles of the external rays of M determine the ordering of the
bulbs in M. For example, the large bulb directly to the left of the main
cardioid is the 1/2 bulb, so two rays with period 2 under doubling must land
there. Now the only angles with period 2 under doubling are 1/3 and 2/3,
so these are the angles of the rays that land at the root point of B ;.

Now consider the 1/3 bulb atop the main cardioid. This bulb lies “be-
tween” the rays 0 and 1/3. There are only two angles between 0 and 1/3
that have period 3 under doubling, namely 1/7 and 2/7, so these are the rays
that land at the root point of By /3.

The 2/5 bulb lies between the 1/3 and 1/2 bulbs. Hence the rays that
land of ¢(2/5) must have period 5 under doubling and lie between 2/7 and
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Figure 6: Rays landing on the Mandelbrot set.

1/3. The only angles that have this property are 9/31 and 10/31, so these
rays must land at ¢(2/5). See Figure 6.

These ideas allow us to measure the “largeness” or “smallness” of portions
of the Mandelbrot set. Suppose we have two rays with angles §_ and 6, that
both land at a point ¢, in the boundary of M.

Then, by the isomorphism @, all rays with angles between #_ and 6, must
approach the component of M — {c.} cut off by §_ and 6,. (We remark that
it is not known that all such rays actually land on M - indeed, this is the
major open conjecture about M.) Thus it is natural to measure the size of
this portion of M by the length of the interval [§_,0,].

The root point of the p/q bulb of M divides M into two sets. The
component containing the p/q bulbs is called the p/q limb. We can then
measure the size of the p/g limb if we know the external rays that land on
the root point of the p/q bulb. This is the subject of the next section.
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5 Rays landing on the p/q bulb

In order to make the notion of “large” or “small” precise in the statement of
the folk theorems, we need a way to determine the angles of the rays landing
at the root point of B,/,. We denote the angles of these two rays in binary

by s+(p/q), where s_(p/q) < s+(p/q). We call s_(p/q) the lower angle of

By, and sy (p/q) the upper angle.

As we will see, s1(p/q) is a string of ¢ digits (0 or 1) and so s+ (p/q)
denotes the infinite repeating sequence whose basic block is s1. Douady and
Hubbard [DH] have a geometric method involving Julia sets to determine
these angles. Our method is more combinatorial and resembles algorithms
due to Atela [A], LaVaurs [L], and Lau and Schleicher [LS].

To describe this algorithm, let R,/, denote rotation of the unit circle
through p/q turns, i.e.,

R

We will consider the itineraries of points in the unit circle under R using two

(9) — 627ri(6’+p/q).

p/4q

different partitions of the circle.

The lower partition of the circle is defined as follows. Let I = {00 <
0 <1—p/q}tand Iy ={0|1—p/q < 0 < 1}. Note that the boundary point 0
belongs to I7 and —p/q =1 —p/q belongs to I;. We then define s_(p/q) to
be the itinerary of p/q under R/, relative to this partition. We call s_(p/q)
the lower ilinerary of p/q. That is, s_(p/q) = s1...s, where s; is either 0 or
1 and the digit s; = 0 iff R’;'(p/q) € I . Otherwise, s; = 1.

p/4q

For example, s_(1/3) = 001 since
Iy = (0,2/3]
Iy = (2/3,1]

and the orbit % — % — 1 — % lies in Iy, Iy, I7, respectively.
Similarly, s_(2/5) = 01001 since

Iy = (0,3/5
I = (3/5,1]

andtheorbitis§—>§—>é—>§—>0—>§....
We also define the upper partition I and I as follows

I = [0,1-p/q)
I = [1—p/q1).
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The upper itinerary of p/q, s+(p/q), is then the itinerary of p/q relative
to this partition. Note that I and I;" differ from I; and I only at the
endpoints.

For example, s, (1/3) = 010 since the orbit is + — 2 — 0--- and

If = [0,2/3)
IFo= [2/3,1).

This orbit starts in I3, hops to I, and then returns to I before cycling.
For 2/5, we have

If [0,3/5)
IF = [3/5,1)

and s;(2/5) = 01010.
The following theorem provides the algorithm for computing the angles
of rays landing at ¢(p/q). For a proof, we refer to [DH] and [D1].

Theorem. The two rays landing at the root point ¢(p/q) of the p/q bulb are
s-(p/q) and s,(p/q).

Note that si1(p/q) differ only in their last two digits (provided ¢ > 2).
Indeed we may write

s—(plq) = s1...8,-201
s+(plq) = s1...84-210

The reason for this is that the upper and lower itineraries are the same except
at BZ/_qQ(p/q) = —p/q and RZ/_; (p/q) = 0, which form the endpoints of the
two partitions of the circle.

We now define the size of the p/q limb to be the length of the interval
[s—(p/q),s+(p/q)]. That is, the size of the p/q limb is given by the number of
external rays that approach this limb. We may compute size of these bulbs
explicitly by using the fact that si(p/q) differ only in the last two digits.

Theorem. The size of the p/q limb is 1/(2¢ —1). That is

1
20 —1°

s+(p/q) —s-(p/a) =
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Figure 7: Size of the 2/5 and 1/3 limbs of M.

Proof. We write the binary expansion of the difference in the form

s+(p/q) —s-(p/q)

1 1 1 1
9q—1 + 929—1 + 93¢—1 T (2_q
1 29 1 21
=1 901 20 201

1
20 —1°

DO

1 1
‘|‘27q‘|-2Tq—|-...

)

As we see in Figure 7, the visual size of the bulbs does indeed correspond
to the size as defined above.

6 The Size of Limbs and the Farey Tree

In this section we relate the size of a p/q limb to the size of the limbs corre-
sponding to the Farey parents of p/q. The following Proposition relates the
upper and lower itineraries of p/q and its Farey parents.
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Proposition. Suppose

0<2<dcn
g 6
are the Farey parents of p/q. Then the lower itinerary s_(p/q) consists of the
first q digits of the upper angle sy(a/3) of the smaller parent, and the upper

itinerary sy (p/q) consists of the first q digits of the lower angle s_(v/d) of
the larger parent.
Proof. We prove this result for s;(p/q); the proof in the case of s_(p/q) is

similar.
From Section 1, we have

|2
|
S
—_

Consider the orbits of p/q and v/ relative to the respective rotations R,,
and R. /5. Since v/d rotates faster than p/q, the distance between these orbits
advances by 1/4 at each iteration. We thus have

: j+1
7/5(7/5) ;/q(P/Q) = q—(;-

It follows that R;/q(p/q) lies within 1/ units of Riﬁ(’y/(s) provided j < ¢—1.
Since points on the orbit of v/ under R,/s lie exactly 1/6 units apart on
the circle, it follows that the first ¢ — 1 entries in the itineraries of p/q and
v/0 are the same, provided we choose the lower itinerary for v/§ and the
upper itinerary for p/q. The reason for this is that the orbit of v/4 lies ahead
of that of p/q in the counterclockwise direction, but by no more than 1/
units. Choosing the upper itinerary for p/q and the lower for ~/§ forces the
corresponding digits to be the same.

When j = ¢ — 1, we have R,/,(p/q) = 0 and

R (18) = Ryl ) = 5 = 5

Hence

R G/9) = 5.

Therefore the gth digit in s+(p/q) is 0 and so is the gth digit of /4, as long
as v/ # 1. This completes the proof.
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In case one of the Farey parents are 0 or 1, we must modify the above
proposition.

Proposition. Suppose thal a Farey parent of p/q is 0. Then the q digils in
the lower itinerary of p/q are given by

s—(p/q) =0...01.

If a Farey parent of p/q is 1, then we have

s+(p/q) =1...10.

Proof. For s_(p/q), we first note that, since 0/1 is a Farey parent, we

must have p = 1. Thus, s_(p/q) is given by the itinerary of 1/¢ under
counterclockwise rotation by 1/¢ units. We therefore have

Iy =(0,(¢g—=1)/ql, Iy =((qg—1)/q,1].

It follows that the first ¢ — 1 digits of s_(1/q) are 0, and the last digit is 1.
The case where a Farey parent is 1/1 is similar, since in this case p = ¢—1.

We now complete the proof of one of the folk theorems mentioned in the
introduction.

Theorem. Suppose a/3 < v/ are the Farey parents of p/q. Then the size
of the p/q limb is larger than the size of any other limb between the o/3 and
v/0 limbs.

Proof. Assume first that neither of the parents are 0 or 1. By the previous

propositions, we have that s_(p/q) and s;(a/3) agree in their first ¢ digits.
Using these binary representations, we have

s_(p/q) — s+(a/B) < Qiq
Similarly
s_(v/90) —s4(p/q) < Qiq

This implies that the arc of rays between the p/q limb and either of its
parents’ limbs has length no larger than 1/2?. Thus any limb between them
has size smaller than 1/27.
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From the previous section, we know that

1
20 —1

s+(p/q) —s-(p/a) =

As this quantity is larger than 1/27, it follows that the p/q limb attracts the
largest number of rays between its two parents.

In case one of the parents of 1/¢ is 0, then we have that the size of the 1/¢
bulb is 1/(2? — 1) as above while the gap between 0 and s_(p/q) =0...01 is
also 1/(2? —1). But then any limb between the 1/¢ limb and the cusp of the
cardioid must have size strictly smaller than 1/(2? — 1), again showing that
the 1/g limb is the largest. The gap between the limbs of 1/¢ and its other
Farey parent 1/(q+ 1) is handled as above.

The case of Farey parent 1 is handled similarly.

7 Conclusion

The technique of measuring the size of certain portions of the Mandelbrot
set by the length of the interval of rays that land on that portion provides
justification for other folk theorems involving the size of M. For example,
this is the same technique that is used to identify the p/q bulb using the
“lengths” of the spokes in its antenna. Once we know these rays, we can
easily compute the lengths of the various spokes.

As an example of this, it can be shown that the two rays that land at the
junction point of the antenna adjacent to the principal spoke are given by
s_5y and s4;5- where we have dropped the p/q for clarity. These two rays
are therefore given by preperiodic binary sequences that begin to repeat only
after the gth entry.

This fact shows that the vast majority of rays that land on the p/q limb
actually approach the spokes of the antenna. For we have the following
ordering of the rays landing on the p/q bulb:

50 < 5_37 < 5.5° < 51
It is easy to check using the above techniques that the length of the arc of
rays approaching the antenna between s_57 and s,.5_ is

1 2

201 24(20-1)
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This number is much larger than the length of the arc between 5= and s_35¢
or between 5 and s;35_, each of which has length

1
24(24-1)

We can also use these two rays separating the principal spoke from the
rest of the antenna to determine a list of the ¢ rays that land on the junction
point. Then using the techniques above we can determine that the shortest is
located p/q turns in the counterclockwise direction from the principal spoke.

See [D1] for details.
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