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Introduction

There is an increasing interest in long time studying of reaction-diffusion
equations and their generalizations (e.g. [6], [1], [2], [3], [11]). For such con-
siderations it is necessary to have global (for all 1 >0) in time estimates of solutions
and their different norms. We give here such global bounds for the Sobolev and
Holder norms of solutions and their spatial derivatives, then we are able to show
global existence of solutions. Our estimates are obtained using the J. Moser
method [9], as developed recently N. Alikakos [1], [2].

Summary. The essence of this reasoning is as follows; if we assume for the
coefficients a;;, b;, f of (10) (§2) some independent of time smoothness conditions,
then two global in time a priori estimates

0) lu(t, )l 120y < const., |Jult, ) L2y < const.

are necessary and sufficient for global estimates ((22)) of Holder norms of the
solution u as well as its existence. Estimates (0) are satisfied in particular if f,
b; are dominated (compare (a) in Theorem 1, (d) in Theorem 2) by the first positive
eigenvalue of the linear problem

0 ov \ _
{ 5 (@ 5y =
v=0 on 0.

Preliminaries. R* =[O0, o), {-,-) isthe scalar product in L*Q), |Q|-means
the Lebesgue measure of Q, Fu(t, x) denotes (u=u(t, x), xe R") the vector
(Ou[0x,-+-, Ouldx,).

By the Steklov average of the function u(t, x) we mean

1 t+h
u(t, x) 1= u(z, x)dz, h > 0.
t

We use here the usual notation for Sobolev spaces; L?, H}, W2-? (see [6], [7],
[12]) and for the Holder spaces ([7]; C instead of H); Ci*v(Q), Cl*a/2.2+2(]D),
Also the symbols (e.g.) Cl,(R*; L*(Q)) are used in the usual sense [12].

Throughout the work non-specified integrals are taken over Q< R", all
sums are taken from 1 to n.
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We need the following;

Lemma 1. Let xe C'([0, o)) and ye C%[0, ), let o, y>0, f, A>0 and
ne[0, 1) be real constants. If

0 < Ax(t) < y(v) for t>=0,
x'(t) < o — By(1) + py"(?)

then 0< x(t) <max {x(0); ro/A}, t =0, where r, denotes the unique positive root
of the equation; a— pr+yr1=0.

Proof. Clearly for y(tf)>r, the right side of the differential inequality is
negative, hence x is decreasing. So if x(0)>ry/4, then x decreases until reaching
ro/A (possibly at t=c0), but if x(0)<r,/A then x could never be grater than ry/A.

Remark 1. Considering a little more general differential inequality
x'(1) < ot) — py(1) + y()y"(1),

where «, y are non-negative continuous functions, o(t), y(¥)—0 as t— o0, one can
verify that (under assumptions of Lemma 1) lim sup,., , x(t) <O or equivalently
lim,_, ,, x(#)=0.

We need also the following lemma concerning weak derivatives:

Lemma 2. Assume ue H'(Q)N L*(Q),ve H{(Q) N L*(Q). Thenuve H(Q),
and (for the Sobolev derivatives)

(uv),, = u, v + uv,,.

We left an easy proof. As a consequence of Lemma 2, for the powers of
u e H{(Q) n L*(Q) (for Sobolev derivatives)

u*),, = ku, u*1.
The following lemma concerns the ¢-derivatives:

Lemma 3. When ue Y={v; v, v,e LX[0, T]; L*(Q))}, then

(i) wu is equal (a.e.) to a function (denoted further by u) in C°([0, T];
L*(Q)),

(i) for all pe N holds (- ~distributional derivative with values in L*(Q)):
Jor all 0K T, <T,<T

<M(T2, : )’ up(TZ’ ) )> - <u(T13 : )> up(TD )>

T>
=(p+1) _[r, {uft,-), ur(t,-))dt.
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The proof is an easy consequence of Chapt. IV of [5].
Note that Lemma 3 remains valid (for distributional derivatives with values
in L?(Q)) also for

ue ¥ = {v; ve C%[0, T]; L*(Q)), v, LX[0, T]; LAQ))}.

§1. A priori L* bounds

Let xe Q< R", Q a bounded domain with 0Qe C!, D=R* xQ. Consider
the following problem;

(1) ut = Z g’“ (aij(t’ X, U, Vu)) + 2 bi(t: X, U, Vu)uxi +f(t: X, U, Vu)
i, i i

with the initial-boundary conditions
) u=0 on 02, u0,x)=uyx).
The main part of (1) is assumed to be elliptic

Jap>0 X a;(t, x, u, Fuyu,, > ae > u,
i, J

uniformly in (¢, x, u, Fu)e R* x Qx Rx R"=:4. Moreover

|aij(t3 X, U, P)| <~|a(t: X)l lul + Ial(t7 X)l lP| >

a, a; € L*(D). By a weak solution of (1)-(2) we understand the function ue
L2, (R*; HY(Q)), u,e LL,(R*; L¥(Q)), satisfying for almost all te R* and all
ne HyQ)

3 Gt n> = = [T aynedx + | S b + | fad.
tJ i

Note (see [12]) that u is equivalent to a function in C{,(R™*; L%(Q)), hence it is
reasonable to take u, from L2?(Q2). This definition has rather formal character
here. Its sources are in the results of J. L. Lions; for existence questions see [7].

The following theorem is connected with [117]. Its proof is given along the

lines as proposed in Theorem 3.1 of [1];

Theorem 1. Assume there exists a weak solution u of (1)~(2) belonging to
L3 (R*; L™(Q)n HY(Q)) with u,e LL(R*; L*(Q)), and let |b|<B, f locally
bounded,

iC, D>0 uf(t, x, u, Fu) < Cu? + D in the set A.

Anyone of the conditions:
(@) f(t, x,0, p)=0 (pe R"), there exists 6>0 such that Of[ou<M(ay,—9)
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(4 as in (4), b;=0, i=1,--,n
(b) lullL2qy—>0 when t—oo, then gives |ulprq,—0, pell, ), when

t—o0. If we assume only
(¢) the L)) norm of u is bounded globally in t, then the same is true
for its L* norm.

Proof. We show first that (a)=(b). Take the test function in (3) equal to
u (this belongs to L® n H}) to obtain

ugy, Uy = — JZ a;{(t, x, u, Fu)u,dx
i,

+f[f(t, x, u, Pu)—f(t, x, 0, Fu)]u dx

< — aojz (u,)?dx +faf (t, x, i, Fu)u?dx.

With the use of (a), Poincaré inequality;
(4) Voe Hy(Q) Alvltae) < Ivlliie) = 17vli20),

A=A(n, 2)>0, and Lemma 1.2, Chapt. III of [12] we get:

a5 H ullza) < — 20A[ullfaq,

or equivalently

u(t, )iz e) < lluolize) exp (—2841).

Moreover now C=2A(ay,—0), D=0.

Now we show that (c) implies the L*(Q) boundedness. Take as the test
function in (3) u2*~! (this belongs to H{ n L® as follows from Lemma 2), trans-
form the components in the following way:

- Z aij(t: X, U, V“) (uZR—l)xidx
i,j
e e o e 3
i,j ¢

= — qg(2k—1)22- 2k f S [(n?"), J2dx.
To estimate the next component

f 2 buuu*ldx = 21"‘]2 bi(u? 1), u " dx
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we must use Holder inequality and the consequence (compare [1], p. 209) of the
Nirenberg-Gagliardo interpolation inequality ([7], Th. 2.2, Chapt. II, §2-for
functions vanishing at 0Q):

Vwe H§(£) ||W”L2(Q) < B(n, Q) ”VW”?AZ(Q)HWIH‘T(BQ),

where 0=n/n+2. This, with the use of Young’s inequality (see [7]) with m=1/6
is transformable into: for every w e H{(Q)

) Wiz < ellFwlize + Colwliig,
where ¢ is an arbitrary positive number, C,=const. ¢7"/2.  We thus have

jz bu, u? ~ldx

<Bn 21 fz [ ), ]2 dx) <fu2kdx i

Bn 21_"”7”2’(_1“1,2(9) : [8”Vuzk—IHLl(:))"‘C.s”uzk_l”Ll(Q)]l/Z

<
< Bn\/gzl_k”Vquﬂ“iZ(m + Bn\/f; zl_k”Vuzk_1”L2(Q)Hu2k‘1”1,1(9)-

We also have:

< (C+D)fu2"dx + DJ‘uz"”dx
< (C+D)[¢] Vuzkﬂ”%%m‘*'Ca'”uzk—l“%!(g)] + DJ.uzk_ldx-
Denoting v:=u?""", gathering estimates, we obtain:
(6) 2% u,, u 1y < |Foll3ao [—ao(2k—1)227* + 2Bn\/5 +(C+ D)e'2¥]
+ ”VU”LZ(Q) ”UHL‘(Q)ZBH\/Q + [2kD“U”L1(Q)+2k(C+D)Ce'“U”%l(g)]-
Choose ¢ and &'(k)=g, such that
2Bn\/e = ay/2, (C+D)ei2* = ay/2

(hence the first bracket is less than or equal to —a,), denote the inductive bound
of ||v]}20) by my:=sup. |lu(t,-)]$5xq) integrate over any interval [Ty, T,]
and use Lemma 1 to get the integral inequality

fuzk(Tz, x)dx —Ju”‘(Tl, x)dx <JT2 (right side of (6)) dt.
T

Since u € C},(R*; L*(R2)), then the same reasoning as in the proof of Lemma 1
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shows that its theses are preserved:
fuz"(t, x)dx
< ’max{fu%k(x)dx, 1611—0 [Bnm,_1\/C,Jaq +(24C+D)Cymi_, +2Dm,_,

+(Brmy 1/ CJlag)M 12

Noting that ¢ is independent of k and &, =a,/2¥*}(C+ D), we have C,=const.,
Ce,=const. 2(*1)n/2  and the estimate of fuz"dx may be rewritten (with new

constants independent of k) as: k=2, 3,---
% fuzk(t, X)dx
< max {Iu%k(x)dx, mZ_ (B + C2k+Dn/2+ky mk_12"5E )
J

Since k<(k+ 1)n, taking the 2* roots of both sides of (7) and supremum at the
left side, we obtain (the 2* root is an increasing function):
(8) m# ™" < max UluollLox (@) [Mz - 1(§+ C20k+1)3n/2) ¢ my_,2D]>7*} .
Since u, € L*(Q), then
luollLex oy < clluollL=) < cilluollrzy; k=1,2,--, ¢ =max{l, |Q|}

(f flugllL~#0 then also |lugyl[2>0). We must show that the sequence m2 "
which is convergent to sup,., |u(t, )|l =(q) (see [13] p. 34), is bounded.

Take x; =max {sup,, [u(t,-)|r2@) 1} and increase the constant Cto C=
max {c4, 1, B, C, D}. Clearly m2 " is dominated by the solution x, of the
recurrence, k=2, 3,---

X = max {cy ||[uollL2xqy, [x251(B+ Cr20+13n/2) 4 2k 10k f]275Y

It is easy to verify (since x,>1, C'>1) that both x, >1, k=1, 2,--.. Now the
bracket [ ] will be dominated by

x£i136'2(k+1)3n/2,
and clearly x, <xj;, k€ N, where x; =x, and
Fr -k
X = max {c;|luoll 12y Xix-1[3C 20e+1)3n/27275%

Since C'>cf, xi>|ugll 2 then for k=2 the maximum is attained on the
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second term. But the sequence {x,} is increasing (' >1), hence the maximum
is always attained on second term

x,: — x;c_l[?)é'.?.(k“):‘”/z]z_k
or by induction

(9) SUPs=o ”u(ta ’)“L‘”(Q) < Xow

= max {sup |[u(t, )l Lace), 1}3C'(2P)>"/2

where P: =T, (2¥)2"*<o0. Hence we have the L” bound.

There are two possibilities to show that (b) gives L?(2) convergence. Since
(through just shown) (b) implies the L*(L2) boundedness (by M), we can use the
estimate (p >2)

1/p
lu(, ) Loy < M(p_z)/p<ju2dx> — 0, t—> 00;

and then for pe[l, 2) Holder inequality. Another possibility is to combine
inductively (6) with Remark 1.

§2. Estimates of Holder norms

We are now able to estimate first order spatial derivatives of solutions,
however not for such a general form of the equation as (1). Consider the problem

(i9j=13"" n)

_ 0 ou ou
(10) = % 5% (a0 fe )+ T b G+ (% w T

(11) u=0 on 0Q, u0,x)=uxx)eC¥Q).

The main part a;;€ CY(Q), i, j=1,---, n, is assumed to be elliptic (constant a,>0),
b;e C%(Q), |b;| < B, and for this paragraph we assume that the solution u of (10),
(11) is globally bounded in time; |u| <M. The continuous function f is assumed
to satisfy in the set K:=R* xQx[—M, M]x R” a uniform Lipschitz condition
with respect to t (constant N) and Fu;

|f(t, %, u, ul )—f (5, x, u, Vuy)l < N33 M{;;ﬂ)_

2

to be differentiable in u; df/0u < N,, and to be globally bounded in K; |f|<M;.
These assumptions gives in particular (compare [4] p. 202) uniqueness of the
classical solution of (10), (11). In this paragraph we do not want to use too
sharp smoothness assumptions for u; let the classical solution u exists and belongs
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to C{;:2(D) (classical solution with bounded derivatives u, , u,, u,,, in any compact
subset of D). We are able to formulate

Theorem 2. If one of the following conditions holds:

(d) 36>0(N{+N,)/A+(N3+B)/n/i<ao—35 (A from (4)),

(€) llulli2) is bounded independently of time, then u, is bounded in
both LP(Q), pe[1, o), independently of time.

Proof. Take the Steklov average of both sides of (10), differentiate the result
with respect to t and multiply in L2(Q) by u?; !, k=1, 2,---, to get

d J’ f 0 < ou,, e
27k uiy dx = ——( a; (x) ’>u2 ldx
ht x_ J axj ht

+f2b<x) . +ff,,tu,,;1dx.

For the first right side component we have
Oty -1
jz Ox; 4ij 0x; uhitdx

6” 5 K
=— Z ;J"“a}h’t* ox, (u3;"YHYdx

<—ao@ -2 x| Lo @i [ax,

because u,, =0 on 022. For the second one

> bix) —%—ul’L u3; " l'dx

— 2074 [ 3 B0 W) (U e
\1/2
fz B[ (u3*" ‘)x‘]zdxnfu%’,‘dx> .
With the use of conditions assumed for f:
13 [ £ u i
:fug;‘—l LA h %, w4 b, %), Pu(+h, X))
—f(ta X, u(t, X), Vu(ta x))]dx

< N1Iluh,|2"—1dx + NZJ uz;dx + N3fz EE’L |y |21 dx
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< (N1+N2)fu%fdx + leu%’,‘”dx

+ N, I;J‘; (uh,xiu%;‘"1“1)2dxnju%;‘dxj|1/2 )
For k=1 the last expression is estimated with the use of Poincaré and Cauchy
inequalities:
f Jutndx
S [AUN;+N,+eN;/2)+N; V/n_/7l] NV upell 3200y + (N1/280) 1€9].

When gyN,/A<J, then from (12) and the above estimates it follows that

(14) A undiaa < — 31l ey + (N1 /o) 1921,

so using Lemma 1
2 2 N,I

s My < max{ 14, ul Fcans - €21}
0

This through the limit passage h\,0 shows that (d)=-(e) (compare the comment

after formula (16)).
For k=2, 3,--- it follows from the previous estimates with the use of (5),

that (v:=u?;""):

[T bt + udutitdx
< Pvlli o) [6(N1+N2)+2'"*n(N;3 + B)e']
+ [P oll 22! *n(N;+ B)C.||v] 1(n)
+ (N1 +Ny)C.lvllfioy+ NilvllLio) -
Choosing &(k)=g¢, and & such that the bracket after ||[Fv|sq, is less than g,27*
we arrive at the estimate

(15)

d -
Lol < [— a0 =122 +aol 1P olace)

+ 2n(N 3+ B)C |V v 20y IV L1y
+ 2K[(N1 + N,)C. vl 71y + Nillvli o)l
< - ‘10”70”%2(9) + 2n(N; +B)Cs’mk—1HVv”L2(Q)

+ 2K[(Ny+N)C.mi_; + Nymy_4],
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where we denote the (inductive) bound by my_;:=supg« ||t 1. We then get
from Lemma 1 a global in time estimate (for explicit v);

(16) fuﬁf(t, x)dx
< max{ f u2(0, x)dx, L (ro0t (|7 0]2:)) of the right side of (15))} .

After the limit passage h™\,0 this estimate remains valid for fu?“dx. Note only
that, in the presence of our smoothness assumptions for u, u,(0, x) can be found
through the limit passage :\,0 from the equation (10), then its L2“(Q) norm
will be estimated by W2:2“(Q) or C%Q) norm of u,. However we have only
the L2* estimates, k=2, 3,---, and this in the scale of L? spaces is equivalent to
global estimates of u, in both L?(Q). Our proof is over.

The result of Theorem 2 will be used to obtain global in time estimates of
certain norms of the solution u. Consider our parabolic equation with arbitrarily
fixed t>0 (this moment a parameter) as the elliptic problem:

0 Ou ou _ _ 7
(a7 % g (a0 5 )+ Do) e = [=f( x w Pw+ud = 1, )
u=0 on 02 (now letdQeC?),

where f is bounded in both LP(Q) independently of ¢ (|f|<M,). For this kind
of problem the solution (which coincide with u(#, x)) belongs to W2-7(Q) (compare
[8, p. 161], [10, 2.5]) and satisfies the estimate

(18) flu(z, ')“WZ’P(!)) const. (“f”LP(Q)'*‘ [lu(t, ')”Ll(Q))

<
< const. (||f~”LP(Q)+M|Q|)-

It follows from (18) with p>n+1 and Sobolev Imbedding Theorem ([6], [10],
[12]) '

Wkr(Q) S Civv(Q), 0<v<k—nlp—j,
that (p>n+1)
(19) [lu(z, ')||c1+V(§) < const. ”u(t,')uwz,p(m,

where 1 —n/p=v>1/(n+1). This together with (18) means that Fue L*(R™*;
C¥(Q)) with global in ¢ bound for ||Fullcvg,. Moreover as a result of Theorem 2
for every p>1, u,e L°(R*; L?(Q)). Fix an arbitrary T >0, then for p=p,>
2n+2 and the full gradient of u:

(uy Pu) e L(R* 3 L(Q)) < LP(D*T),
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where D*T=Dn {(t, x); t<t<t+ T}, t-arbitrary. Again through the Sobolev
Theorem, actually in R"*!

20) ue CHrDtTy, n=1/2,

with the norm bounded independently of r and T. Tt follows from Lemma 3.1,
Chapt. II, §3 of [7], (19) and (20) that Fu satisfies in D global in time Holder
condition with respect to t, with exponent d=puv/(1+v) (6§ <v/2). This together
with (19) gives our fundamental estimate:

2n Vue C%2:5D),

where the Holder norm of Fu is estimated globally in time.

§3. Global existence of solutions

The estimate (21) will be used to show global existence of the solution of (10)-
(11). This will be done by a standard method as indicated below. Additionally
to the conditions assumed in §2 let a;; belongs to C'*%(Q), i, j=1,---, n, b; e C*(£),
and f satisfies a uniform Hélder condition in the set K (exponent a) with respect
to x. It then follows from Theorem 9, p. 205 of [4];

Proposition 1. Let u,e C**%(Q), 0QeC*>'* and let the compatibility
conditions ug=0 on 092,

0 Ju, ) B
,ZJ axi-<aif ox + (0, x,0,Fuy) =0 on 0Q
be satisfied. Then under assumptions (c) in Theorem 1 and (e) in Theorem 2

there exists a unique solution u of (10), (11). It is globally bounded in
C'+v/2.2%3(D) with y=min {a, J}.

Proof. Existence of such a solution in any finite cylinder [0, H] x Q follows
from the results of A. Friedman [4]. Note only that as a consequence of (21)
and our smoothness assumptions the composite function f(t, x, u, Fu) belongs
to C?/27(D). Denoting f(f, x, u, Fu)=:g(t, x) and adopting for a moment
Friedman’s notation ([4] p. 63) it thus follows from the Schauder interior esti-
mates ([4] p. 64) that in any bounded cylinder D:*T (>0 arbitrary, T>0 fixed)

|u12+}' < K(Iu|0+ ldzgiy)a

where K is independent of 7. Next since our boundary data and the lateral
surface are independent of time and the Schauder boundary estimates has local
character ([4] p. 121), it follows that
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22) [l ctovsn2inipy < cOnSt. .
This completes the proof.

Remark 2. Nobody could expect global a priori estimates when the con-
ditions of the type (a), (d) are disturbed in both set 4. Let w,(x)%0 be the
eigenfunction corresponding to the first positive eigenvalue A of the linear problem

_ 0 ow \ _ .
LW = l’zj Ag;c—-f aij(x) ET)C;) = }.W, Wlag = O .

Then clearly u(t, x):=w,(x) exp (et), £>0, is an unbounded solution of
[ u, = Lu + (A+¢)u,
u(0, x) = wi(x), ulzo=0.

Remark 3. There are two main consequences of global a priori estimates
(22) important for long time studies of solutions of (10), (11).

1) The trajectories are compact in C%(Q) phase space — this is needed in
the LaSalle invariance principle ([6] p. 91) type arguments,

2) Through the Ascoli-Arzela theorem one can extract a sequence of times
{t,}nens 1,/ 00, such that u(z,, x)—v(x) in C*Q), ut,, x)—w(x) in COQ), n— oo,
and if f(¢t,, x,-,-)—g(x,-,-), then

_ 0 ov ov
o (x) —;ZJ %, <aij ox; >+ ; biTxi + g(x, v, Fv),

v=0o0n 0Q. So the limit function v is a solution of an elliptic type problem.

This however is not usually enough for existence of lim,. ., u(t, x); for
example any periodic, non-constant trajectorie of (10) (with f periodic) satisfies
2) but has no such a limit. :

Note also that the estimate (18) ensures through Rellich’s type theorem (c.f.
[12], Chapt. II, §1) compactness of trajectories in W1-4(Q); g >1 — this together
with (16) (weak compactness of u, in LP(Q)) remains to justify the passage with
t to infinity for parabolic problems in weak formulation.

Remark 4. We have restricted our considerations here to the first boundary
problem, but a parallel reasoning (see Summary) is possible for other types of
boundary conditions; compare [3] for the analogon of our Theorem 2.
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