On the Non-Local Problem with a Functional for Parabolic Equation

By

J. CHABROWSKI

(University of Queensland, Australia)

§ 1. Introduction.

Consider a linear equation of parabolic type

(1)
$$Lu = \sum_{i,j=1}^{n} a_{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b_i(x,t)u_{x_i} + c(x,t)u - u_t = f(x,t)$$

in $D=\Omega\times(0,T]$, where Ω is a bounded domain in R_n . We denote by Γ the lateral surface of D, i.e., $\Gamma=\partial\Omega\times[0,T]$. In this paper we investigate the following non-local problem: given functions f, ϕ and ψ defined on D, Γ and $\overline{\Omega}$ respectively, find a solution of (1) satisfying the conditions

(2)
$$u(x,t) = \phi(x,t) \quad \text{on } \Gamma$$

and

(3)
$$u(x,0)+F(x,u(\cdot,\cdot))=\Psi(x) \quad \text{on } \Omega,$$

where F is a mapping on $\overline{\Omega} \times C(\overline{D})$ having the following property: for every $x \in \Omega$ and $u \in C(\overline{D})$ there exists a point

$$(\tilde{x}, \tilde{t}) \in \overline{D}$$
 with $\tilde{t} > 0$ such that $|F(x, u(\cdot, \cdot))| \le |u(\tilde{x}, \tilde{t})|$.

In section 2 we establish the uniqueness of the solution of the problem (1), (2) and (3) and give an apriori bound for the solution in terms of f, ϕ and Ψ . In Theorem 3 of section 3 we establish the existence of a solution of the non-local problem, with

$$F(x, u(\cdot, \cdot)) = \int_{D} u(y, \tau) d\mu^{x}(y, \tau).$$

The results are then applied to derive the existence and uniqueness of a solution of the non-local problem in an infinite strip. In particular we establish an integral representation of a solution of the non-local problem in $R_n \times (0, T]$ and give a construction of a solution with $\Psi \in L^p$. Most of the theorems of this paper extend the

results of Chabrowski [4], where the non-local problem, with the condition (3) replaced by

(3')
$$u(x,0) + \sum_{i=1}^{N} \beta_i(x)u(x, T_i) = \Psi(x) \quad \text{on } \Omega,$$

was investigated. Finally we point out that a certain class of non-local problems was studied by Bicadze and Samarskii [2]. Subsequently their results were extended by Kerefov [6] and Vabishchevich [8]. In particular the latter authors investigated the non-local problem (1), (2) and (3') with N=1.

§ 2. Uniqueness and a priori bounds.

Throughout this section we make the following assumption

(A) The coefficients a_{ij} , $b_i(i, j=1, \dots, n)$ and c are continuous on D and $c(x, t) \le 0$ on D. Furthermore for every vector $\xi \in R_n$ and all $(x, t) \in D$

$$\sum_{i,j=1}^{n} a_{ij}(x,t) \xi_{i} \xi_{j} > 0.$$

By $C^{2,1}(D)$ we denote the set of functions u continuous on D with their derivatives $\partial u/\partial x_i$, $\partial^2 u/\partial x_i \partial x_j$ $(i, j=1, \dots, n)$ and $\partial u/\partial t$ (at t=T the derivative is understood as the lefthand derivative).

Lemma 1. Suppose that the mapping F has the following property

(B) for every $x \in \Omega$ and every $u \in C(\overline{D})$ there exists a point $(\tilde{x}, \tilde{t}) \in \overline{D}$ with $\tilde{t} > 0$ such that

$$|F(x, u(\cdot, \cdot))| \leq |u(\tilde{x}, \tilde{t})|.$$

Then the problem (1), (2) and (3) has at most one solution in $C^{2,1}(D) \cap C(\overline{D})$.

Proof. Let $u \in C^{2,1}(D) \cap C(\overline{D})$ be a solution of the homogeneous problem

$$Lu=0$$
 in D ,
 $u=0$ on Γ

and

$$u(x, 0) + F(x, u(\cdot, \cdot)) = 0$$
 on Ω .

Suppose that $u \not\equiv 0$. We may assume that u takes on a negative value at certain point of \overline{D} . By the strong maximum principle (Friedman [5], Chapter 2) there exists a point $x_0 \in \Omega$ such that $u(x_0, 0) = \min_{\overline{D}} u < 0$. By the property (B) there exists a point $(x_1, T_1) \in \overline{D}$ with $T_1 > 0$ such that

$$|u(x_0, 0)| \le |F(x_0, u(\cdot, \cdot))| \le |u(x_1, T_1)|.$$

It is clear that $x_1 \in \Omega$. If $u(x_1, T_1) \le 0$ we get a contradiction. Hence $u(x_1, T_1) > 0$ and consequently there exists a point $x_2 \in \Omega$ such that $u(x_2, 0) = \max_{\overline{D}} u > 0$. Again by the property (B) we can find a point $(x_3, T_3) \in \overline{D}$ with T_3 such that

$$u(x_2, 0) = |F(x_2, u(\cdot, \cdot))| \le |u(x_3, T_3)|.$$

It is obvious that $x_3 \in \Omega$. If $u(x_3, T_3) \ge 0$ we get a contradiction, hence $u(x_3, T_3) < 0$. Now we must distinguish two cases

$$|u(x_0, 0)| < u(x_2, 0)$$
 and $u(x_2, 0) \le |u(x_0, 0)|$.

In the first case we have

$$|u(x_0, 0)| < u(x_2, 0) \le |u(x_3, T_3)|$$
.

Since both values $u(x_0, 0)$ and $u(x_3, T_3)$ are negative u attains its negative minimum at (x_3, T_3) and we arrive at a contradiction. Similarly in the second case

$$u(x_2, 0) < |u(x_0, 0)| < |u(x_1, T_1)| = u(x_1, T_1)$$

and u takes on a positive maximum at (x_1, T_1) and again we arrive at a contradiction.

Lemma 2. Suppose that the mapping F has the following properties.

- (C₁) $-1 \le F(x, 1)$ for every $x \in \Omega$.
- (C₂) For every point $x_0 \in \Omega$ such that $F(x_0, 1) > -1$, $F(x_0, \cdot)$ is decreasing and $F(x_0, l) = F(x_0, 1)l$ for every constant l.
- (C₃) For every point $x_0 \in \Omega$ such that $F(x_0, 1) = -1$ and every $u \in C(\overline{D})$ there exists a point $(x_1, t_1) \in \overline{D}$ with $t_1 > 0$ such that

$$-F(x_0, u(\cdot, \cdot)) \leq u(x_1, T_1).$$

Let $u \in C^{2,1}(D) \cap C(\overline{D})$. If $Lu \ge 0 \ (\le 0)$ in D, $u(x, t) \le 0 \ (\ge 0)$ on Γ and $u(x, 0) + F(x, u(\cdot, \cdot)) \le 0 \ (\ge 0)$ on Ω , then $u(x, t) \le 0 \ (\ge 0)$ on \overline{D} .

Proof. It suffices to prove the first part of the theorem. We may assume that there exists $x_0 \in \Omega$ such that $u(x_0, 0) = \max_{\overline{D}} u > 0$. Now we distinguish two cases: $F(x_0, 1) > -1$ and $F(x_0, 1) = -1$. In the first case it follows from (C_2) that

$$u(x_0, 0) + F(x_0, 1)u(x_0, 0) < u(x_0, 0) + F(x_0, u) < 0$$

and consequently $u(x_0, 0) \le 0$ and we get a contradiction. In the second case there exists a point $(x_1, t_1) \in \overline{D}$ such that

$$u(x_0, 0) \le -F(x_0, u) \le u(x_1, t_1)$$

and u takes on a positive maximum at $(x_1, t_1) \in D$ and again we arrive at a contradiction.

From Lemma 2 we deduce the following a priori bound for a solution of the problem (1), (2) and (3).

Lemma 3. Let $c(x, t) \le -d$ in D, where d is a positive constant and let the assumptions (C_1) , (C_2) and (C_3) of Lemma 2 hold and moreover suppose that

(C₄) for every $x \in \Omega$, F(x, u) is linear in $u \in C(\overline{D})$ and furthermore for every $0 < \beta < d$ there exists a positive constant $\Upsilon(\beta) < 1$ such that

$$-F(x, e^{-\beta t}) \le \Upsilon(\beta)$$
 for all $x \in \Omega$.

If $u \in C^{2,1}(D) \cap C(\overline{D})$ is a solution of the problem (1), (2) and (3) then for every $\beta \leq d$

$$|u(x,t)| \le (d-\beta)^{-1}e^{\beta T} \sup_{p} |f(x,t)| + e^{\beta T} \sup_{r} |\phi(x,t)| + (1-\gamma(\beta))^{-1} \sup_{q} |\Psi(x)|$$

on \overline{D} .

Proof. Let $u(x, t) = v(x, t)e^{-\beta t}$, where $0 < \beta < d$. Then v satisfies the equation

$$L_1 v = \sum_{i,j=1}^n a_{ij}(x,t) v_{x_i x_j} + \sum_{i=1}^n b_i(x,t) v_{x_i} + (c(x,t) + \beta) v - v_t = e^{\beta t} f(x,t)$$

in D with $c(x, t) + \beta < \beta - d < 0$ on D and the conditions

$$v(x, t) = \phi(x, t)e^{\beta t}$$
 on Γ ,

and

$$v(x, 0) + F(x, ve^{-\beta t}) = \Psi(x)$$
 on Ω .

We may assume that

$$M=e^{\beta t}\sup_{n}|f(x,t)|<\infty, \qquad M_1=e^{\beta T}\sup_{n}|\phi(x,t)|<\infty$$

and $M_2 = \sup_D |\Psi(x)| < \infty$ since otherwise there is nothing to prove. Put

$$w = v - \frac{M}{d - \beta} - M_1 - \frac{M_2}{1 - \gamma}$$
.

Then

$$L_1 w = f e^{\beta t} - (c + \beta) \frac{M}{d - \beta} - (c + \beta) M_1 - (c + \beta) \frac{M_2}{1 - \gamma} \ge 0$$

in D,

$$w(x, t) \leq 0$$
 on Γ

and

$$w(x, 0) + F(x, e^{-\beta t}w) = \Psi - \frac{M}{d-\beta} - M_1 - \frac{M_2}{1-\gamma} - F\left(x, e^{-\beta t} \frac{M}{1-\beta}\right)$$
$$-F(x, e^{-\beta t}M_1) - F\left(x, \frac{M_2}{1-\gamma} e^{-\beta t}\right)$$
$$\leq M_2 \left(1 - \frac{1}{1-\gamma} + \frac{\gamma}{1-\gamma}\right) + (\gamma - 1)M_1 + (\gamma - 1)\frac{M}{1-\beta} \leq 0$$

on Ω . Lemma 2 implies that $w \le 0$ on \overline{D} . Similarly we can establish the inequality

$$v(x,t) \ge -\frac{M}{d-\beta} - M_1 - \frac{M_2}{1-\gamma}$$

considering the auxiliary function

$$z(x, t) = v(x, t) + \frac{M}{d-\beta} + M_1 + \frac{M_2}{1-\gamma}$$

From the proof of Lemma 2 the following result is obtained.

Lemma 4. Suppose that the mapping F has the following properties.

- (D₁) -1 < F(x, 1) for every $x \in \Omega$.
- (D₂) For every $x \in \Omega$ F(x, u) is decreasing in u in $C(\overline{D})$ and F(x, l) = lF(x, 1) for every constant l.

Let $u \in C^{2,1}(D) \cap C(\overline{D})$. If $Lu \ge 0 \ (\le 0)$ in D, $u(x, t) \le 0 \ (\ge 0)$ on Γ and $u(x, 0) + F(x, u(\cdot, \cdot)) \le 0 \ (\ge 0)$ on Ω , then $u(x, t) \le 0 \ (\ge 0)$ on \overline{D} .

Using Lemma 4 one can establish the following version of Lemma 3 with the assumption $c(x, t) \le -d$ in D omitted.

Lemma 5. Let $-(1/T+1) \le F(x,1)$ on Ω and assume that for every $x \in \Omega$ F(x,u) is linear in $u \in C(\overline{D})$ and that F(x,u) is decreasing in u. If $u \in C^{2,1}(D) \cap C(\overline{D})$ is a solution of the problem (1), (2) and (3) then

$$|u(x, t)| \le (T+1) \sup_{D} |f(x, t)| + \sup_{T} |\phi(x, t)| + \frac{T+1}{T} \sup_{Q} |\Psi(x)|$$

for all $(x, t) \in \overline{D}$.

To prove the last a priori bound we use Lemma 4 with the auxiliary functions

$$v(x, t) = u(x, t) \pm \left[(t+1) \sup_{D} |f(x, t)| + \sup_{T} |\phi(x, t)| + \frac{T+1}{T} \sup_{\Omega} |\Psi(x)| \right].$$

§ 3. Existence of solution in a bounded cylinder.

For the existence we shall need the following assumptions

(A₁) There exist positive constants λ_0 and λ_1 such that

$$|\lambda_0|\xi| \leq \sum_{i,j=1}^n a_{ij}(x,t)\xi_i\xi_j \leq \lambda_1|\xi|^2$$

for all $(x, t) \in D$, $a_{ij} = a_{ji}$ $(i, j = 1, \dots, n)$.

(A₂) The coefficients a_{ij} , b_i ($i, j=1, \dots, n$), c and f are Hölder continuous in D (exponent α).

Moreover we assume that $\partial \Omega \in C^{2+\alpha}$. Under these assumptions the Green function $G(x, t; y, \tau)$ $(x, y \in \Omega, \tau < t)$ for the operator L exists (see Friedman [5], p. 81-85).

Let $D_r = \Omega \times [r, T]$, where r > 0. In this section we assume that the mapping F is given by the formula

(4)
$$F(x, u) = \int_{D} u(y, \tau) d\mu^{x}(y, \tau),$$

where $\{\mu^x\}$ $(x \in \overline{\Omega})$ is a family of signed Borel measures on \overline{D} with compact supports in \overline{D}_r .

Theorem 1. Let the assumptions (A_1) and (A_2) hold. Assume that $c(x, t) \le 0$ in D and that a family of signed Borel measures $\{\mu^x\}$ $(x \in \overline{\Omega})$ has the following properties

(i) $|\mu^x| \leq 1$ for all $x \in \overline{\Omega}$ and for every $u \in C(\overline{D})$ the integral $\int_D u(y, \tau) d\mu^x(y, \tau)$ is continuous on $\overline{\Omega}$.

(ii)
$$\int_{D} \left[\int_{\Omega} G(y, \tau; z, 0) \phi(z) dz \right] d\mu^{x}(y, \tau) = 0,$$

and

$$\int_{D} \left[\int_{0}^{\tau} G(y,\tau;z,\delta) f(z,\delta) dz d\delta \right] d\mu^{x}(y,\tau) = 0$$

on $\partial \Omega$ for every $\phi \in L^2(\Omega)$ and $f \in C(\overline{D})$ respectively.

If $\Psi \in C(\overline{\Omega})$ and $\Psi(x)=0$ on $\partial\Omega$, then the problem (1), (2) and (3) with $\phi \equiv 0$ has a unique solution in $C^{2,1}(D) \cap C(\overline{D})$.

Proof. It is obvious that the mapping F satisfies the condition (B) of Lemma 1. We try to find a solution in the form

(5)
$$u(x,t) = \int_{\Omega} G(x,t;y,0)u(y,0)dy - \int_{0}^{t} \int_{\Omega} G(x,t;y,\tau)f(y,\tau)dyd\tau,$$

where $u(\cdot, 0) \in C(\overline{\Omega})$ is to be determined. The condition (3) (with F given by (4)) leads to the integral equation

(6)
$$u(x,0) + \int_{D} \left[\int_{\Omega} G(y,\tau;z,0) u(z,0) dz \right] d\mu^{x}(y,\tau)$$
$$= \Psi(x) + \int_{D} \left[\int_{0}^{\tau} d\delta \int_{\Omega} G(y,\tau;z,\delta) f(z,\delta) \right] d\mu^{x}(y,\tau).$$

It is easy to show that the linear mapping of $L^2(\Omega)$ into $L^2(\Omega)$ given by

$$T\phi(x) = \int_{D} \left[\int_{Q} G(y, \tau; z, 0) \phi(z) dz \right] d\mu^{x}(y, \tau)$$

is compact. The homogeneous equation

$$\phi(x) + \int_{D} \left[\int_{\Omega} G(y, \tau; z, 0) \phi(z) dz \right] d\mu^{x}(y, \tau) = 0$$

has only the trivial solution in $L^2(\Omega)$. Indeed if ϕ is a soultion in $L^2(\Omega)$ of the above equation, then by the assumptions (i) and (ii) $\phi \in C(\overline{\Omega})$ and $\phi(x)=0$ on $\partial\Omega$. Hence the integral

$$u(x,t) = \int_{\Omega} G(x,t;y,0)\phi(y)dy$$

is a solution in $C^{2,1}(D) \cap C(\overline{D})$ of the homogeneous problem (1), (2) and (3). By Lemma 1 $u \equiv 0$ and consequently $\phi \equiv 0$. By the Fredholm theory of compact operators the equation (6) has a unique solution $u(\cdot, 0)$ in $L^2(\Omega)$. It follows from the assumption (i) and (ii) that the integral

$$\int_{D} \left[\int_{0}^{\tau} d\delta \int_{\Omega} G(y, \tau; z, \delta) f(z, \delta) dz \right] d\mu^{x}(y, \tau)$$

is continuous on Ω and vanishes on $\partial\Omega$, hence $u(\cdot, 0) \in C(\overline{\Omega})$ and u(y, 0)=0 on $\partial\Omega$. Thus the formula (4) gives a solution in $C^{2,1}(D) \cap C(\overline{D})$ to the problem (1), (2) and (3).

We briefly mention here that Lemma 1 and the method used in the proof of Theorem 1 lead to the existence and the uniqueness of a solution to the non-local problem with the condition (3) replaced by

(7)
$$u(x,0)+g\left(\int_{D}u(y,\tau)d\mu^{x}(y,\tau)\right)=\Psi(x),$$

where g is a Lipschitz continuous function on $(-\infty, \infty)$.

Theorem 2. Suppose that the assumptions of Theorem 1 hold. Let g be a function on $(-\infty, \infty)$ such that g(0)=0 and that

$$|g(u_1)-g(u_2)| \leq A|u_1-u_2|$$

for all u_1 and u_2 in $(-\infty, \infty)$, where A < 1 is a positive constant. If $\Psi \in C(\overline{\Omega})$ and $\Psi(x) = 0$ on $\partial \Omega$, then the problem (1), (2) and (7) (with $\phi \equiv 0$) has a unique solution in $C^{2,1}(D) \cap C(\overline{D})$.

Proof. We try to find a solution in the form (4), where $u(\cdot, 0) \in C(\overline{\Omega})$ is to be determined. The condition (6) leads to the equation

$$u(x,0) + g\left(\int_{D} \left[\int_{\Omega} G(y,\tau;z,0)u(z,0)dz\right] d\mu^{x}(y,\tau) - \int_{D} \left[\int_{0}^{\tau} \int_{\Omega} G(y,\tau;z,\delta)f(z,\delta)dzd\delta\right] d\mu^{x}(y,\tau)\right) = \Psi(x)$$

on Ω . Define the mapping $T: C(\overline{\Omega}) \to C(\overline{\Omega})$ by the formula

$$v(x,0) = Tu = -g \left(\int_{D} \left[\int_{\Omega} G(y,\tau;z,0) u(z,0) dz \right] d\mu^{x}(y,\tau) - \int_{D} \left[\int_{0}^{\tau} \int_{\Omega} G(y,\tau;z,\delta) f(z,\delta) dz d\delta \right] d\mu^{x}(y,\tau) \right) + \Psi(x),$$

where $C(\overline{\Omega})$ is equipped with the supremum norm. It is easy to see that T is a contraction mapping. Consequently by the Banach fixed point theorem there exists a unique solution $u(\cdot,0) \in C(\overline{\Omega})$. Since g(0)=0 it follows from the assumption (ii) that $u(\cdot,0)=0$ on $\partial\Omega$ and the formula (5) gives a solution to the problem (1), (2) and (7).

Theorem 2 continues to hold if A=1 provided $c(x, t) \le -d$ on D, where d is a positive constant. Indeed using the transformation $u(x, t) = e^{-\beta t}v(x, t)$, where $0 \le \beta \le d$, we reduce this case to the case with a Lipschitz constant less than 1.

In the next two theorems (Theorems 3 and 4 below) we assume that the mapping F is given by the following formula

(8)
$$F(x, u(\cdot, \cdot)) = -\int_{D} u(y, \tau) d\mu^{x}(y, \tau),$$

where $\{\mu^x\}$ $(x \in \Omega)$ is a family of non-negative Borel measures on \overline{D} with compact supports in D_r , r>0. The proofs are based on a priori bounds given in Lemma 3 and 4.

Theorem 3. Let the assumptions (A_1) and (A_2) hold, and let $c(x, t) \leq -d$ on D where d is a positive constant. Suppose that $\{\mu^x\}$ $(x \in \overline{\Omega})$ is a family of non-negative Borel measures on D satisfying the following conditions

(i) for every $u \in C(\overline{D})$, $\int_{D} u(y, \tau) d\mu^{x}(y, \tau)$ is a continuous function on $\overline{\Omega}$ and $\mu^{x}(D) \leq 1$ for all $x \in \overline{\Omega}$,

(ii)
$$\int_{D} \left[\int_{\Omega} G(y, \tau; z, 0) \phi(z) dz \right] d\mu^{x}(y, \tau) = 0$$

and

$$\int_{D} \left[\int_{0}^{\tau} G(y, \tau; z, \delta) f(z, \delta) dz d\delta \right] d\mu^{x}(y, \tau) = 0$$

on $\partial \Omega$ for every $\phi \in L^2(\Omega)$ and $f \in C(\overline{D})$ respectively.

Let ϕ and Ψ be continuous functions on Γ and $\overline{\Omega}$ respectively and moreover assume that there exists a continuous extension Φ of ϕ into \overline{D} such that

$$\Psi(x) - \Phi(x, 0) + \int_{D} \Phi(y, \tau) d\mu^{x}(y, \tau) = 0 \quad on \, \partial\Omega.$$

Then the problem (1), (2) and (3) has a unique solution $n C^{2,1}(D) \cap C(\overline{D})$.

Proof. We first assume that $\Phi \equiv 0$ on \overline{D} , hence $\Psi(x) = 0$ on $\partial \Omega$. We try to find a solution in the form (5), where $u(\cdot, 0) \in C(\overline{\Omega})$ is to be determined. The condition (3) leads to the Fredholm integral equation of the first kind

$$u(x,0) - \int_{D} \left[\int_{\Omega} G(y,\tau;z,0) v(z) dz \right] d\mu^{x}(y,\tau)$$

$$= \Psi(x) - \int_{D} \left[\int_{0}^{\tau} \int_{\Omega} G(y,\tau;z,\delta) f(z,\delta) dz d\delta \right] d\mu^{x}(y,\tau)$$

on Ω . By the same argument as in Theorem 1 we show that the above equation has a unique solution u in $L^2(\Omega)$. If follows from (i) and (ii) that $u(\cdot, 0) \in C(\overline{\Omega})$ and $u(y, \tau) = 0$ on $\partial \Omega$ and the formula (5) gives a solution in this case.

Suppose next that $\phi \not\equiv 0$, but assume that the extension Φ belongs to $\overline{C}^{2+\alpha}(D)$. Introducing $v=u-\Phi$ we immediately obtain, by the previous result the existence of a solution v to $Lv=f-L\Phi$, which vanishes on Γ and satisfies the condition

$$v(x, 0) - \int_{D} v(y, \tau) d\mu^{x}(y, \tau) = \Psi(x) - \Phi(x, 0) + \int_{D} \Phi(y, \tau) d\mu^{x}(y, \tau)$$

on Ω . Finally we consider the general case, where Φ is only assumed to be continuous. By Theorem 2 in Friedman [5] p. 60 and the Weierstrass approximation theorem there exists a sequence of polynomials Φ_m on \overline{D} which approximates Φ uniformly on \overline{D} . Now we define a sequence of functions $\{\Psi_m\}$ on $\partial\Omega$ by the formula

$$\Psi_m(x) = \Phi_m(x, 0) - \int_D \Phi_m(y, \tau) d\mu^x(y, \tau)$$

 $m=1,\,2,\,\cdots$. Since $\lim_{m\to\infty} \Psi_m(x)=\Psi(x)$ uniformly on $\partial\Omega$, one can construct a sequence of functions $\{\tilde{\Psi}_m\}$ in $C(\overline{\Omega})$ such that $\lim_{m\to\infty} \tilde{\Psi}_m(x)=\Psi(x)$ uniformly on $\overline{\Omega}$ and $\tilde{\Psi}_m(x)=\Psi_m(x)$ on $\partial\Omega$ for all m. By what we have already proved there exist solutions to the problem

$$Lu_m = f(x, t)$$
 in D
 $u_m(x, t) = \Phi_m(x, t)$ on Γ ,

and

$$u_m(x, 0) - \int_D u_m(y, \tau) d\mu^x(y, \tau) = \tilde{\Psi}_m(x)$$
 on Ω .

By Lemma 3 the sequence $\{u_m\}$ is uniformly convergent on \overline{D} to a function $u \in C(\overline{D})$. It is clear that u satisfies the conditions (2) and (4). Using Friedman-Schauder interior estimates (Friedman [5], Theorem 5 p. 64) one can easily prove that u satisfies the equation (1).

Remark. In the above proof we followed the argument used in the proof of Theorem 9 in Friedman [5] (p. 70–71). For the definition of the space $\overline{C}^{2+\alpha}(D)$ see Friedman [5] (p. 61–62).

We conclude this section with result which readily follows from Lemma 4 and the argument given in the proof of Theorem 3.

Theorem 4. Let the hypothesis (A_1) and (A_2) hold and let $c(x, t) \le 0$ in D. Assume that $\{\mu^x\}$ $(x \in \overline{\Omega})$ is a family of non-negative Borel measures on D satisfying the condition (ii) of Theorem 1 and

(i'') For every $u \in C(\overline{D})$, $\int_D u(y, \tau) d\mu^x(y, \tau)$ is a continuous function on $\overline{\Omega}$ and $\mu^x(D) < (1/1 + T)$ for all $x \in \overline{\Omega}$.

Let ϕ and Ψ be continuous functions on Γ and $\overline{\Omega}$ respectively and finally assume that there exists a continuous extension Φ of ϕ into \overline{D} such that

$$\Psi(x) - \Phi(x, 0) + \int_{D} \Phi(y, \tau) d\mu^{x}(y, \tau) = 0$$

on $\partial\Omega$. Then the problem (1), (2) and (3) has a unique solution in $C^{2,1}(D)\cap C(\overline{D})$.

To illustrate the results of this section consider the following example. Let $T_i \in (0, T]$ $(i=1, \dots, N)$ and put

$$d\mu^x = \sum_{i=1}^N \beta_i(x) d\delta_{(x,T_i)},$$

where $\beta_i \in C(\overline{\Omega})$ $(i=1, \dots, N)$, $0 \le \sum_{i=1}^N \beta_i(x) \le 1$ on $\overline{\Omega}$ and $\delta_{(x,T_i)}$ denotes the Dirac measure concentrated at (x, T_i) . Since $G(x, t; y, \tau) = 0$ for $x \in \partial \Omega$, $y \in \Omega$ and $t > \tau$, the assumptions (i) and (ii) of Theorem 3 are obviously satisfied. Theorem 3 yields the existence of a unique solution in $C^{2,1}(D) \cap C(\overline{D})$ to the problem (1), (2) and (3) provided

$$\Psi(x) = \phi(x, 0) - \sum_{i=1}^{N} \beta_i(x)\phi(x, T_i)$$
 on $\partial \Omega$.

Here the condition (3) takes the form

(9)
$$u(x,0) - \sum_{i=1}^{N} \beta_i(x)u(x,T_i) = \Psi(x) \quad \text{on } \Omega.$$

The finite sum in (8) can be replaced by an infinite series, i.e., the condition (8) becomes

(9')
$$u(x,0) - \sum_{i=1}^{\infty} \beta_i(x)u(x,T_i) = \Psi(x) \quad \text{on } \Omega,$$

where $\sum_{i=1}^{\infty} \beta_i(x)$ converges uniformly on $\overline{\Omega}$ and $\inf_i T_i > 0$. The non-local problem (1), (2) and (9) (or (9')) has been studied in [4].

§ 4. Existence of solution in $R_n \times (0, T]$.

Throughout this section we make the following assumptions.

(B₁) There exist positive constants λ_0 and λ_1 such that for every vector $\xi \in R_n$

$$|\lambda_0|\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x,t)\xi_i\xi_j \leq \lambda_1|\xi|^2$$

for all $(x, t) \in R_n \times [0, T]$, $a_{ij} = a_{ji}$ $(i, j = 1, \dots, n)$.

(B₂) The coefficients a_{ij} , b_i ($i, j=1, \dots, n$) and c are bounded and Hölder continuous on $R_n \times [0, T]$ and moreover $c(x, t) \le -d$, where d is a positive constant.

Let $H(x, \delta) = \prod_{i=1}^{n} \cosh \delta x_i$. It is clear that there exist positive constants γ and δ_0 such that

$$LH \le -\gamma H$$
 in $R_n \times [0, T]$

for all $0 < \delta \le \delta_0$.

(B₃) Let $\{\mu^x\}$ $(x \in R_n)$ be a family of non-negative Borel measures on $R_n \times [0, T]$ with compact supports in $R_n \times [r, T]$, where r > 0 such that

$$\int_0^T \int_{R_n} \exp\left(\delta_0 \sum_{i=1}^n |y_i|\right) d\mu^x(y, \tau) \le 1$$

for all $x \in R_n$.

We shall say that a function u defined on $R_n \times [0, T]$ belongs to $E(R_n \times [0, T])$ if there exist positive constants M and $\delta < \delta_0$ such that

$$|u(x, t)| \leq M \exp\left(\delta \sum_{i=1}^{n} |x_i|\right)$$

for all $(x, t) \in R_n \times [0, T]$.

We shall say that a function v defined on R_n belongs to $E(R_n)$ if there exist positive constants M and $\delta < \delta_0$ such that

$$|v(x)| \leq M \exp\left(\delta \sum_{i=1}^{n} |x_i|\right)$$

for all $x \in R_n$.

In the following theorem we establish the existence of a solution of the equation (1) satisfying the condition

(10)
$$u(x,0) - \int_0^T \int_{R_n} u(y,\tau) d\mu^x(y,\tau) = \Psi(x) \quad \text{on } R_n.$$

For an increasing sequence $\{P_m\}$ of positive numbers tending to infinity we put

$$D_m = (|x| < P_m) \times (0, T)$$
 and $\Gamma_m = (|x| = P_m) \times [0, T]$.

Theorem 5. Assume that there exists a sequence of cylinders D_m (described above) such that the restriction $\{\mu^x\}$ $(x \in \overline{D}_m)$ to the cylinder D_m satisfies the conditions (i) and (ii) of Theorem 3 for every m. If $f \in E(R_n \times [0, T])$ is an Hölder continuous function on compact subsets of $R_n \times [0, T]$ and $\Psi \in C(R_n) \cap E(R_n)$, then there exists a unique solution in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T]) \cap E(R_n \times [0, T])$ of the problem (1), (10).

Proof. The proof is similar to that of Theorem III in [1] (see also Krzyżański [7]). It is clear that there exist positive constants M and $\delta < \delta_0$ such that

$$|f(x, t)| \le M \exp(\delta \sum_{i=1}^{n} |x_i|)$$
 and $|\Psi(x)| \le M \exp(\delta \sum_{i=1}^{n} |x_i|)$

on $R_n \times [0, T]$ and R_n respectively. Let $\phi(x, t)$ be a continuous function on $R_n \times [0, T]$ such that

$$|\phi(x, t)| \le M \exp\left(\delta \sum_{i=1}^{n} |x_i|\right)$$
 on $R_n \times [0, T]$,
 $\phi(x, 0) = \Psi(x)$ on R_n and $\phi(x, t) = 0$ on $R_n \times [r, T]$.

By Theorem 3, there exists for every m a unique solution in $C^{2,1}(D_m) \cap C(\overline{D}_m)$ of the problem

$$Lu_m = f \quad \text{in } D_m$$

$$u_m(x, t) = \phi(x, t) \quad \text{on } \Gamma_m$$

and

$$u_m(x,0) - \int_{D_m} u_m(y,\tau) d\mu^x(y,\tau) = \Psi(x)$$
 for $|x| < P_m$.

Now we extend u_m into the strip $R_n \times [0, T]$ by defining $u_m(x, t) = \phi(x, t)$ on $R_n \times [0, T] - \overline{D}_m$ $(m = 1, 2, \cdots)$. Put

$$u_m(x, t) = v_m(x, t)H(x, \delta)$$
 $m=1, 2, \cdots$

The function v_m satisfies the equation

(11)
$$\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^{2} v_{m}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} \left(b_{i}(x,t) + \frac{2}{H(x,\delta)} \sum_{j=1}^{n} a_{ij}(x,t) \frac{\partial H}{\partial x_{j}} \right) \frac{\partial v_{m}}{\partial x_{i}}$$
$$+ (H(x,\delta)^{-1}LH) v_{m} - \frac{\partial v_{m}}{\partial t} = H(x,\delta)^{-1} f(x,t)$$

in D_m and the following conditions

$$v_m(x, t) = \phi(x, t)H(x, \delta)^{-1}$$
 on Γ_m

and

$$v_m(x, t) - \int_{D_m} H(x, \delta)^{-1} v_m(y, \tau) H(y, \tau) d\mu^x(y, \tau) = H(x, \delta)^{-1} \Psi(x)$$

for $|x| < P_m$. It follows from Lemma 3 that $|v(x, t)| \le M_1$ in $R_n \times [0, T]$ for all m, where M_1 is a positive constant independent of m. Now let $\delta < \delta_1 < \delta_0$ and put

$$u_n(x, t) = \overline{v}_n(x, t)H(x, \delta_1)$$

and

$$u_{pq}(x, t) = u_p(x, t) - u_q(x, t) = H(x, \delta_1)[\bar{v}_p(x, t) - \bar{v}_q(x, t)] = H(x, \delta_1)\bar{v}_{pq}(x, t)$$

for p < q. The function \bar{v}_{pq} satisfies the homogeneous equation (11) with $H(x, \delta)$ replaced by $H(x, \delta_1)$ and moreover

$$\overline{v}_{pq}(x,t) = H(x,\delta_1)^{-1} [\phi(x,t) - u_p(x,t)]$$
 on Γ_p

and

$$\bar{v}_{pq}(x,0) - \int_{D_m} \bar{v}_{pq}(y,\tau) H(y,\delta_1) H(x,\delta_1)^{-1} d\mu^x(y,\tau) = 0$$

for $|x| < P_p$. Since $\lim_{|x| \to \infty} H(x, \delta)H(x, \delta_1)^{-1} = 0$, it follows from Lemma 3 that the sequence $\{u_m\}$ satisfies the uniform Cauchy condition on every compact subset of $R_n \times [0, T]$. Put $\lim_{p \to \infty} \bar{v}_p(x, t) = v(x, t)$ and $u(x, t) = v(x, t)H(x, \delta_1)$ on $R_n \times [0, T]$. It is obvious that $u \in E(R_n \times [0, T])$ is continuous on $R_n \times [0, T]$ and satisfies (10) by the Lebesgue Dominated Convergence Theorem. The fact that u satisfies the equation (1) follows from the Friedman-Schauder interior estimates.

To establish the uniqueness, let $u \in C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T]) \cap E(R_n \times [0, T])$ be a solution of the problem (1) and (10) (with $f \equiv 0$ and $\Psi \equiv 0$). There exist positive constants M and $\delta < \delta_0$ such that $|u(x, t)| \leq MH(x, \delta)$ on $R_n \times [0, T]$. Now choose $\delta < \delta_1 < \delta_0$ and put $u(x, t) = v(x, t)H(x, \delta_1)$. Given $\epsilon > 0$ we can find a positive number R such that $|v(x, t)| < \epsilon$ for $(x, t) \in (|x| \geq R) \times [0, T]$. Since v satisfies the homogeneous equation (11) with $H(x, \delta)$ replaced by $H(x, \delta_1)$, it follows from Lemma 3 that

$$|v(x,t)| \le \varepsilon e^{\beta T}$$
 on $(|x| \le R) \times [0,T]$,

where $0 < \beta < d$ and the uniqueness easily follows.

Remark. Let

$$d\mu^x = \sum_{i=1}^N \beta_i(x) d\delta_{(x,T_i)},$$

where $T_i \in (0, T]$ $(i=1, \dots, N)$, $\beta_i \in C(R_n)$ $(i=1, \dots, N)$ and $0 \le \sum_{i=1}^{N} \beta_i(x) \le 1$ on R_n . By virtue of properties of the Green function in a cylinder the assumptions (i) and (ii) of Theorem 3 are trivially satisfied. Theorem 5 yields the existence and uniqueness of a solution of (1) satisfying

$$u(x, 0) - \sum_{i=1}^{N} \beta_i(x)u(x, T_i) = \Psi(x)$$
 on R_n .

It follows from the proof of Theorem 5 that the assumption (B_3) is irrelevant because in this case the approximating sequence v_m satisfies the condition

$$v_m(x, 0) - \sum_{i=1}^{N} \beta_i(x) v_m(x, T_i) = \Psi(x) H(x, \delta)^{-1}$$
 for $|x| < R_m$.

If f and Ψ are bounded functions the assumption (B₃) can be replaced by weaker condition

(B'₃) Let $\{\mu^x\}$ ($x \in R_n$) be a family of signed Borel measures with compact supports in $R_n \times [r, T]$, r > 0, such that

$$|\mu^x|(R_n\times[0,T])\leq 1$$

for all $x \in R_n$ and assume that $\int_0^T \int_{R_n} v(y, \tau) d\mu^x(y, \tau)$ is continuous on R_n for every continuous bounded function v on $R_n \times [0, T]$.

Let $C_b(R_n \times [0, T])$ denote the space of continuous and bounded functions on $R_n \times [0, T]$ equipped with supremum norm.

Theorem 6. Suppose that the assumptions (B_1) , (B_2) and (B'_3) hold. If f is a bounded function on $R_n \times [0, T]$ and Ψ is a continuous bounded function on R_n , then the problem (1), (10) has a bounded solution in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T])$.

Proof. Introduce the transformation $u(x, t) = v(x, t)e^{-\beta t}$, where $0 < \beta < d$, then

$$L_1 v = \sum_{i,j=1}^n a_{ij}(x,t) v_{x_i x_j} + \sum_{i=1}^n b_i(x,t) v_{x_i} + (c(x,t) + \beta) v - v_t = f(x,t) e^{\beta t}$$

on $R_n \times (0, T]$. Let $\Gamma(x, t; y, \tau)$, where $x, y \in R_n$, $0 \le \tau < t \le T$, be the fundamental solution for the operator L_1 . Since $c(x, t) + \beta < 0$ on $R_n \times [0, T]$

$$\int_{\mathbb{R}_n} \Gamma(x, t; y, \tau) dy \leq 1$$

for all $x, y \in R_n$ and $0 \le \tau < t \le T$ (see Friedman [5]). Consider the mapping S: $C_b(R_n \times [0, T]) \to C_b(R_n \times [0, T])$ given by the following formula

$$v(x, t) = Sw(x, t) = \int_{R_n} \Gamma(x, t; y, 0) \int_0^T \int_{R_n} e^{-\beta \tau} w(z, \tau) d\mu^y(z, \tau) dy$$
$$+ \int_{R_n} \Gamma(x, t; y, 0) \Psi(y) dy - \int_0^t \int_{R_n} \Gamma(x, t; y, \tau) f(y, \tau) dy d\tau.$$

It is clear that if $w \in C_b(R_n \times [0, T])$ then Sw satisfies the equation $L_1v = f$ in $R_n \times (0, T]$ and

$$v(x,0) = \int_0^T \int_{R_n} e^{-\beta \tau} w(y,\tau) d\mu^x(y,\tau) + \Psi(x) \quad \text{on } R_n.$$

Since supp $\mu^x \subset R_n \times [r, T]$ for all $x \in R_n$, S is a contraction and the result follows from the Banach fixed point theorem.

We are unable to prove the uniqueness of a solution under the hypothesis of Theorem 6. In Theorem 7 below we establish the uniqueness of a solution in the case where the measure satisfies the condition

$$d\mu^{x}(y,\tau) = \beta(x)d\delta_{x}(y)d\nu^{x}(\tau),$$

where $0 \le \beta(x) \le 1$, $\beta \in C(R_n)$, δ_x denotes the Dirac measure on R_n concentrated at $x \in R_n$ and $\{\nu^x\}$ $(x \in R_n)$ is a family of non-negative Borel measures on [0, T] such that supp $\nu^x \subset [r, T]$, r > 0 and $\nu^x([0, T]) \le 1$ for all $x \in R_n$. Moreover we assume

that the integral $\int_0^T v(x, \tau) d\nu^x(\tau)$ is continuous on R_n for every continuous bounded function v on $R_n \times [0, T]$.

Theorem 7. Suppose that the hypothesis (B_1) , (B_2) and (B_3'') hold. If f is a bounded function on $R_n \times [0, T]$ and Hölder continuous on every compact subset of $R_n \times [0, T]$ and Ψ is a continuous bounded function on R_n , then the problem (1), (10) has a unique bounded solution in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T])$.

The existence of a solution follows from Theorem 6. The uniqueness can be proved using the method given in the proof of Theorem 5.

We note here that under the assumptions of Theorem 6 one can establish the existence of a solution of (1) satisfying the condition

$$u(x, 0) - g\left(\int_0^T \int_{R_n} u(y, \tau) d\mu^x(y, \tau)\right) = \Psi(x)$$

on R_n , where g is a Lipschitz function with a constant less than 1 and g(0) = 0.

§ 5. Integral representation of solutions.

Throughout this section we make the assumptions (B_1) , (B_2) and (B_3) . In the sequel we shall need the following lemma, the proof of which is routine.

Lemma 6. Let f and Ψ be bounded functions on $R_n \times [0, T]$ and R_n respectively. If u is a solution in $E(R_n \times [0, T]) \cap C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T])$ of the problem (1), (10) then for every $0 < \beta < d$

$$|u(x,t)| \le (d-\beta)^{-1} e^{\beta T} \sup_{R_n \times [0,T]} |f(x,t)| + (1-e^{-\beta T})^{-1} \sup_{R_n} |\Psi(x)|$$

on $R_n \times [0, T]$.

Theorem 8. Suppose that the hypothesis of Theorem 5 hold. Let Ψ be a bounded and continuous function on R_n and f a bounded function on $R_n \times [0, T]$ and Hölder continuous on every compact subset of $R_n \times [0, T]$. Then the solution of the problem (1), (10) is given by the formula

(12)
$$u(x,t) = \int_{R_n} M(x,t,y) [\Psi(y) + F(y)] dy$$

for all $(x, t) \in R_n \times (0, T]$, where

$$F(x) = -\int_0^T \int_{R_n} \left[\int_0^\tau \int_{R_n} \Gamma(y, \tau; z, \delta) f(z, \delta) dz d\delta \right] d\mu^x(y, \tau)$$

and the kernel function M(x, t, y) has the following properties

$$M(x, t, \cdot) \in L^p(R_n)$$

for all $(x, t) \in R_n \times (0, T]$ and $1 \le p < \infty$, M(x, t, y) as a function of (x, t) satisfies the equation LM = 0 in $R_n \times (0, T]$ for almost all $y \in R_n$ and moreover M satisfies the equation

(13)
$$M(x, t, w) = -\int_{\mathbb{R}_n} \Gamma(x, t; y, 0) \left[\int_0^T \int_{\mathbb{R}_n} M(z, \tau, w) d\mu^y(z, \tau) \right] dy + \Gamma(x, t; w, 0)$$

for all $(x, t) \in R_n \times (0, T]$ and almost all $w \in R_n$.

Proof. We assume initially that $f \equiv 0$. Let Ψ be a continuous and bounded function in $L^p(R_n)$. By Lemma 6 the unique solution of the problem (1), (10) in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T]) \cap E(R_n \times (0, T])$ is bounded on $R_n \times [0, T]$. First we prove that for each $\delta > 0$ there exists a positive constant $C(\delta)$ such that

$$|u(x,t)| \leq C(\delta) \|\Psi\|_{L^{p}(R_{n})}$$

on $R_n \times [\delta, T]$. To prove (14) we first assume that $\mu^x(R_n \times [0, T]) \leq \beta_0$ on R_n , where $0 < \beta_0 < 1$. Consider the Cauchy problem for the homogeneous equation (1) with the initial condition

$$z(x, 0) = \int_{0}^{T} \int_{\mathbb{R}^{n}} u(y, \tau) d\mu^{x}(y, \tau) + \Psi(x).$$

The unique solution z in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T]) \cap E(R_n \times [0, T])$ is given by

$$z(x,t) = \int_{R_n} \Gamma(x,t;y,0) \int_0^T \int_{R_n} u(z,\tau) d\mu^y(z,\tau) dy + \int_{R_n} \Gamma(x,t;y,0) \Psi(y) dy$$

for all $(x, t) \in R_n \times (0, T]$ (Friedman [5], p. 26). Since u is a solution of the same problem we obtain

(15)
$$u(x,t) = \int_{\mathbb{R}^n} \Gamma(x,t;y,0) \int_0^T \int_{\mathbb{R}^n} u(z,\tau) d\mu^y(z,\tau) dy + \int_{\mathbb{R}^n} \Gamma(x,t;y,0) \Psi(y) dy$$

for all $(x, t) \in R_n \times (0, T]$. Now it is well known that

(16)
$$0 < \Gamma(x, t; y, 0) \le C_1 t^{-n/2} \exp\left(-\mathcal{H} \frac{|x-y|^2}{t}\right)$$

for all $(x, t) \in R_n \times (0, T]$ and $y \in R_n$, where C_1 and \mathcal{H} are positive constants (Friedman [5], p. 24). Applying the Hölder inequality we derive from (15) and (16) that

(17)
$$\sup_{R_n \times [r,T]} |u(x,t)| \leq C_1 (1-\beta_0)^{-1} r^{-n/2p} \left(\int_{R_n} e^{-q \mathscr{H}|x|^2} dx \right)^{1/q} \left(\int_{R_n} |\Psi(x)|^p dx \right)^{1/p},$$

where 1/p+1/q=1 (with obvious modification if p=1). Using again the representation (15) and the estimates (16) and (17) we obtain

(18)
$$|u(x,t)| \leq [\beta_0(1-\beta_0)^{-1}C_1C_2 + C_1C_3t^{-n/p}] ||\Psi||_{L^p(R_n)}$$

for all $(x, t) \in R_n \times (0, T]$, where

$$C_2 = r^{-n/2p} \left(\int_{R_n} e^{-x^p q|x|^2} dx \right)^{1/q}$$
 and $C_3 = \left(\int_{R_n} e^{-qx^p |x|^2} dx \right)^{1/q}$,

and the estimate (14) easily follows. By (14) the mapping $\Psi \to u(x, t)$ defines a linear functional on $C_b(R_n) \cap L^p(R_n)$ continuous on L^p -norm. Consequently the representation (12) follows from the Riesz representation theorem of a linear continuous functional on $L^p(R_n)$. To derive (13) observe that by (12) and (15) we have for every continuous bounded function Ψ

$$\int_{R_n} M(x, t, w) \Psi(w) dw = \int_{R_n} \Gamma(x, t; y, 0) \left[\int_0^T \int_{R_n} M(z, \tau, w) \Psi(w) dz \right] d\mu^y(z, \tau) dy$$
$$+ \int_{R_n} \Gamma(x, t; w, 0) \Psi(w) dw.$$

Consequently if we fix $(x, t) \in R_n \times (0, T]$, applying Fubini's theorem, we obtain the identity (13) for almost all $w \in R_n$. Now choose $w \in R_n$ such that the integral

$$\int_{R_n} \Gamma(x, T; y, 0) \left[\int_0^T \int_{R_n} M(z, \tau, w) d\mu^y(z, \tau) \right] dy$$

is finite. Then by Theorem 1 in Watson [8] the integral

$$\int_{R_n} \Gamma(x, t; y, 0) \left[\int_0^T \int_{R_n} M(z, \tau, w) d\mu^y(z, \tau) \right] dy$$

is finite for all $(x, t) \in R_n \times (0, T]$ and represents a solution of the equation Lv = 0 in $R_n \times (0, T]$ and the last assertion of the theorem follows. The general case follows by means of the following transformations

$$u(x, t) = e^{-\beta t}v(x, t)$$
, where $0 < \beta < d$

and

$$z(x, t) = u(x, t) + \int_0^t d\tau \int_{R_n} \Gamma(x, t; y, \tau) f(y, \tau) dy.$$

Similarly in the case of a bounded cylinder one can prove

Theorem 9. Suppose the assumptions of Theorem 1 hold. Let u be a solution in $C^{2,1}(D) \cap C(\overline{D})$ of the problem (1), (2) and (3) with $\phi \equiv 0$. Then

$$u(x, t) = \int_{\Omega} m(x, t, y) [\Psi(y) + F(y)] dy$$

for all $(x, t) \in D$, where

$$F(x) = -\int_{D} \left[\int_{0}^{\tau} \int_{\Omega} G(y, \tau; z, \delta) f(z, \delta) dz d\delta \right] d\mu^{x}(y, \tau) \quad on \ \Omega,$$

and the kernel function m(x, t, y) has the following properties:

$$m(x, t, \cdot) \in L^p(\Omega) \quad 1 \le p < \infty \quad \text{for all } (x, t) \in D,$$

m(x, t, y) as a function of (x, t) satisfies the equation Lm = 0 for almost all $y \in \Omega$. Moreover

$$m(x, t, w) = -\int_{\Omega} G(x, t; y, 0) \left[\int_{\Omega} m(z, \tau, w) d\mu^{y}(z, \tau) \right] dy + G(x, t; w, 0)$$

for all $(x, t) \in D$ and almost all $y \in \Omega$.

§ 6. Some generalizations of non-local problem.

It follows from Theorem 8 (the inequality (14)) that the problem (1), (10) can be solved for $\Psi \in L^p(R_n)$ $1 \le p < \infty$, but this requires a new formulation of the condition (10).

We shall say that a function u(x, t) defined on $R_n \times (0, T]$ has a parabolic limit at $y \in R_n$ if there exists a number b such that for all $\gamma > 0$, we have

$$\lim_{\substack{(x,t)\to(y,0)\\|x-y|<\tau\sqrt{t}}}u(x,t)=b.$$

We express this briefly by writing $p - \lim_{(x,t) \to (y,0)} u(x,t) = b$. (See Chabrowski [3], p. 257).

Let $\Psi \in L^p(R_n)$. We shall say that a function u belonging to $C^{2,1}(R_n \times (0, T])$ is a solution of the problem (1), (10) if it satisfies the equation (1) in $R_n \times (0, T]$ and

(19)
$$p - \lim_{(x,t) \to (y,0)} u(x,t) = \int_0^T \int_{R_n} u(z,\tau) d\mu^y(z,\tau) + \Psi(x)$$

for almost all $y \in R_n$.

Theorem 10. Suppose the hypothesis of Theorem 5 hold. If $\Psi \in L^p(R_n)$, $1 \le p \le \infty$ and f is a bounded function on $R_n \times [0, T]$ and Hölder continuous on every compact subset of $R_n \times [0, T]$, then there exists a solution of the problem (1), (10).

Proof. Let $\{\Psi_r\}$ be a sequence of function in $C(R_n)$ with compact supports which converges in L^p to Ψ . By Theorem 5 and Lemma 6 there exists a unique

bounded solution u_r in $C^{2,1}(R_n\times(0,T])\cap C(R_n\times[0,T])$ to the problem

$$Lu_r = f \quad \text{in } R_n \times (0, T],$$

$$u_r(x, 0) - \int_0^T \int_{R_n} u_r(y, \tau) d\mu^x(y, \tau) = \Psi_r(x) \quad \text{on } R_n$$

It follows from (14) that

$$|u_r(x,t)-u_s(x,t)| \leq C(\delta) \|\Psi_r-\Psi_s\|_{L^p}$$

for all $(x, t) \in R_n \times [\delta, T]$. Hence u_r converges uniformly on $R_n \times [\delta, T]$ for every $\delta > 0$ to a continuous function u(x, t) on $R_n \times (0, T]$. As in the proof of Theorem 8 it is easy to establish the representation

$$u_{\tau}(x,t) = \int_{R_n} \Gamma(x,t;y,0) \int_0^T \int_{R_n} u(z,\tau) d\mu^{y}(z,\tau) + \int_{R_n} \Gamma(x,t;y,0) \Psi(y) dy$$
$$- \int_0^t d\tau \int_{R_n} \Gamma(x,t;y,\tau) f(y,\tau) dy$$

for all $(x, t) \in R_n \times (0, T]$, $r = 1, 2, \cdots$. Letting $r \to \infty$ we obtain

$$u(x,t) = \int_{R_n} \Gamma(x,t;y,0) \int_0^T \int_{R_n} u(z,\tau) d\mu^y(z,\tau) + \int_{R_n} \Gamma(x,t;y,0) \Psi(y) dy$$
$$- \int_0^t d\tau \int_{R_n} \Gamma(x,t;y,\tau) f(y,\tau) dy$$

on $R_n \times (0, T]$. Since u is bounded on $R_n \times [\delta, T]$ for every $\delta > 0$ and supp $\mu^y \subset R_n \times [r, T]$ for all $y \in R_n$ it is easy to see that u satisfies the equation (1) in $R_n \times (0, T]$. It follows from Theorem 3.1 in Chabrowski [3] that

$$p - \lim_{(x,t)\to(y,0)} u(x,t) = \int_0^T \int_{R_n} u(z,\tau) d\mu^y(z,\tau) + \Psi(y)$$

for almost all $y \in R_n$.

Finally consider the non-local problem with the condition (10) replaced by

(20)
$$u(x,0) - \beta(x) \int_0^T \int_{R_n} u(y,\tau) d\mu(y,\tau) = \Psi(x) \quad \text{on } R_n,$$

where μ is a non-negative Borel measure on $R_n \times [0, T]$ such that supp $\mu \subset R_n \times [r, T]$, r > 0, and

$$\int_0^T \! \int_{R_n} \exp\left(\delta_0 \sum_{i=1}^n |y_i|\right) d\mu(y,\tau) \leq 1.$$

If $\beta \in C(R_n)$, $0 \le \beta(x) \le 1$ on R_n and has a compact support in R_n , then there exists an increasing sequence of cylinders $\{D_m\}$ satisfying the assumptions (i) and (ii) of

Theorem 3 and such that $\bigcup_{m\geq 1} D_m = R_n \times (0, T]$. Consequently Theorem 5 guarantees the existence of a solution of the problem (1), (10) provided $\Psi \in C(R_n) \cap E(R_n)$ and $f \in E(R_n \times [0, T])$ and is Hölder continuous on every compact subset of $R_n \times [0, T]$.

Lemma 7. Suppose that the hypotheses (B_1) , (B_2) and (B_3) hold. Assume that $\beta_i \in C_0(R_n)$, $0 \le \beta_i(x) \le 1$ on R_n (i=1,2). Assume further that f is a bounded function on $R_n \times [0, T]$ and Hölder continuous on every compact subset of $R_n \times [0, T]$ and that Ψ is a continuous and bounded function on R_n . If u_i (i=1,2) are solutions in $C^{2,1}(R_n \times (0,T]) \cap C(R_n \times [0,T]) \cap E(R_n \times [0,T])$ of the problem (1), (20) with $\beta = \beta_i$ (i=1,2) then

(21)
$$|u_1(x,t)-u_2(x,t)| \leq K_1 \sup_{R_n \times \{r,T\}} |u_1(x,t)| \sup_{R_n} |\beta_1(x)-\beta_2(x)|$$

for all $(x, t) \in R_n \times [0, T]$, where K_1 is a positive constant independent of u_1 and u_2 , and moreover for every $\delta > 0$ there exists a positive constant K_2 independent of u_1 and u_2

such that

(22)
$$|u_1(x,t) - u_2(x,t)| \leq K_2(\delta) \sup_{R_n \times [r,T]} |u(x,t)| ||\beta_1 - \beta_2||_{L^p}$$

for all $(x, t) \in R_n \times [\delta, T]$, $1 \le p < \infty$.

Proof. The proof of the estimates (21) and (22) is similar to that of the estimate (14). Therefore we only sketch the proof of the estimate (22). As in Lemma 6 we establish the representation

$$u_{i}(x, t) = \int_{R_{n}} \Gamma(x, t; y, 0) \beta(y) \int_{0}^{T} \int_{R_{n}} u_{i}(z, \tau) d\mu(z, \tau) dy$$
$$+ \int_{R_{n}} \Gamma(x, t; y, 0) \Psi(y) dy - \int_{0}^{t} d\tau \int_{R_{n}} \Gamma(x, t; y, \tau) f(y, \tau) dy$$

on $R_n \times (0, T]$. Hence

(23)
$$u_{1}(x, t) - u_{2}(x, t) = \int_{R_{n}} \Gamma(x, t; y, 0) [\beta_{1}(y) - \beta_{2}(y)] \int_{0}^{T} \int_{R_{n}} u_{1}(z, \tau) d\mu(z, \tau) dy$$
$$+ \int_{R_{n}} \Gamma(x, t; y, 0) \beta_{2}(y) \int_{0}^{T} \int_{R_{n}} [u_{1}(z, \tau) - u_{2}(z, \tau)] d\mu(z, \tau) dy$$

on $R_n \times (0, T]$. Assume first that $0 \le \beta_1(x) \le \delta < 1$ (i = 1, 2), where γ is a constant. Since $\int_{R_n} \Gamma(x, t; y, 0) dy \le 1$ on $R_n \times (0, T]$ the identity (23) implies

$$\sup_{R_n \times [r,T]} |u_1(x,t) - u_2(x,t)| \leq (1-\gamma)^{-1} \sup_{R_n \times [r,T]} |u_1(x,t)| \sup_{R_n} |\beta_1(x) - \beta_2(x)|.$$

Applying again the identity (23) we derive the estimate (21). In the general case we use the transformation $u(x, t) = e^{-rt}v(x, t)$, where 0 < r < d.

Let
$$\tilde{C}(R_n) = \{u; u \in C(R_n) \text{ and } \lim_{|x| \to \infty} u(x) = 0\}.$$

Theorem 11. Let the hypothesis (B_1) , (B_2) and (B_3) hold and let $\beta \in \tilde{C}(R_n)$ and $0 \le \beta(x) \le 1$ on R_n . Assume that f is a bounded function on R_n and Hölder continuous on every compact subset of $R_n \times [0, T]$ and that Ψ is a continuous bounded function on R_n . Then there exists a unique bounded solution in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T])$ of the problem (1), (20).

Approximating β by a sequence of functions in $C_0(R_n)$ the above result easily follows from the estimate (21) and the Friedman-Schauder interior estimates.

Theorem 12. Let the hypothesis (B_1) , (B_2) and (B_3) hold. If f is a bounded function on $R_n \times [0, T]$ and Hölder continuous on every compact subset of $R_n \times [0, T]$, $\Psi \in L^p(R_n)$, $\beta \in L^p(R_n)$ $1 \le p < \infty$ and $0 \le \beta(x) \le 1$ on R_n , then there exists a solution of the problem (1), (20), where the condition (20) is understood in the sense of the parabolic limit.

Proof. Let $\{\Psi_m\}$ be a sequence of functions in $C_b(R_n) \cap L^p(R_n)$ and $\{\beta_m\}$ be a sequence of functions in $C_o(R_n)$ converging in L^p to Ψ and β respectively. For every m there exists a unique solution u_m in $C^{2,1}(R_n \times (0, T]) \cap C(R_n \times [0, T])$ of the problem

$$Lu_m = f \quad \text{in } R_n \times (0, T],$$

$$u_m(x, 0) - \beta_m(x) \int_0^T \int_{R_n} u(y, \tau) d\mu(y, \tau) = \Psi(x) \quad \text{on } R_n.$$

By the estimate (14) the sequence $\{u_m\}$ is uniformly bounded on every strip $R_n \times [\delta, T]$, $\delta > 0$. Let q > s, it is obvious that

$$\begin{split} u_{q}(x,\,t) - u_{s}(x,\,t) &= \int_{R_{n}} \Gamma(x,\,t\,;\,y,\,0) [\beta_{q}(y) - \beta_{s}(y)] \int_{0}^{T} \int_{R_{n}} u_{q}(z,\,\tau) d\mu(z,\,\tau) dy \\ &+ \int_{R_{n}} \Gamma(x,\,t\,;\,y,\,0) \beta_{q}(y) \int_{0}^{T} \int_{R_{n}} [u_{q}(z,\,\tau) - u_{s}(z,\,\tau)] d\mu(z,\,\tau) dy \\ &+ \int_{R_{n}} \Gamma(x,\,t\,;\,y,\,0) [\Psi_{q}(y) - \Psi_{s}(y)] dy \end{split}$$

on $R_n \times (0, T]$. A sin the proof of Lemma 7 one can easily show that for every $\delta > 0$ there is a positive constant $C(\delta)$ such that

$$\sup_{R_n \times [\bar{s},T]} |u_q(x,t) - u_s(x,t)| \leq C(\delta) [\|\beta_q - \beta_s\|_{L^p} \sup_{R_n \times [\tau,T]} |u_q(x,t)| + \|\Psi_q - \Psi_s\|_{L^p}].$$

The result easily follows from the Friedman-Schauder interior estimates.

References

- [1] Besala, P., On solutions of Fourier's first problem for a systems of non-linear parabolic equations in an unbounded domain, Ann. Polon. Math., 13 (1963), 247-265.
- [2] Bicadze, A. V. and Samarskii, A. A., On some simple generalizations of linear elliptic boundary problems, Dokl. Akad. Nauk. SSSR, 185 (1969), 398-400.
- [3] Chabrowski, J., Representation theorems for parabolic systems, J. Austral. Math. Soc., (Series A), 32 (1982), 246-288.
- [4] —, On non-local problems for parabolic equations, Nagoya Math. J., 93 (1984), 109–131.
- [5] Friedman, A., Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964.
- [6] Kerefov, A. A., Non-local boundary value problems for parabolic equation, Differencial'nye Uravnenija, 15 (1979), 52-55.
- [7] Krzyzański, M., Sur les solutions de l'équation linéaire du type parabolique déterminées par les conditions initiales, Annales de la Societé Polonaise de Mathématique, 18 (1945), 145-156, and note complémentaire, ibidem, 20 (1947), 7-9.
- [8] Vabishchevich, P. N., Non-local parabolic problems and the inverse heat-conduction problem, Differencial'nye Uravnenija, 17 (1981), 761-765.
- [9] Watson, N. A., Uniqueness and representation theorems for parabolic equations, J. London Math. Soc., (2), 8 (1974), 311-321.

nuna adreso:
Department of Mathematics
University of Queensland
ST. LUCIA, Queensland 4067
Australia

(Ricevita la 9-an de majo, 1983)