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§1. Introduction.

Consider a linear equation of parabolic type

(1) Lu= Zn: a;(x, t)uximj—{—}ﬁ b(x, yu,, +c(x, u—u,= f(x, t)
i,7=1 =1

in D=2X (0, T], where 2 is a bounded domain in R,. We denote by I” the lateral

surface of D, ie., ['=02X[0, T]. In this paper we investigate the following non-

local problem: given functions f, ¢ and + defined on D, I" and Q respectively, find

a solution of (1) satisfying the conditions

(2) u(x, t)=¢(x, t) on I’
and
(3) u(x, )+ F(x, u(-, -)=%(x)  on L,

where F is a mapping on £ X C(D) having the following property: for every x e 2
and u € C(D) there exists a point

(X,7)e D with >0 suchthat |F(x,u(-, )| <|w(X D).

In section 2 we establish the uniqueness of the solution of the problem (1), (2)
and (3) and give an apriori bound for the solution in terms of f, ¢ and 7. In
Theorem 3 of section 3 we establish the existence of a solution of the non-local
problem, with

Fe,u(, ) = 1, (2, )

The results are then applied to derive the existence and uniqueness of a solution of
the non-local problem in an infinite strip. In particular we establish an integral
representation of a solution of the non-local problem in R, X (0, T] and give a con-
struction of a solution with ¥ ¢ L?. Most of the theorems of this paper extend the
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results of Chabrowski [4], where the non-local problem, with the condition (3)
replaced by

(3 u(x, 0)+ 3 B(JuCx, T)=¥(x)  on £,

was investigated. Finally we point out that a certain class of non-local problems
was studied by Bicadze and Samarskii [2]. Subsequently their results were extended
by Kerefov [6] and Vabishchevich [8]. In particular the latter authors investigated
the non-local problem (1), (2) and (3’) with N=1.

§2. Uniqueness and a priori bounds.

Throughout this section we make the following assumption
(A) The coefficients a;;, b(i,j=1, ---,n) and ¢ are continuous on D and
c(x,t)<0 on D. Furthermore for every vector & ¢ R, and all (x, t) e D

aij(xa t)$i§j>0-

n
t,5=1

By C*'(D) we denote the set of functions u continuous on D with their deriva-
tives ou/ox,, 0°u/ox,0x,; (i,j=1, - - -, n) and du/dt (at t=T the derivative is understood
as the lefthand derivative).

Lemma 1. Suppose that the mapping F has the following property
(B) for every x e 2 and every u e C(D) there exists a point (%, {) e D with >0
such that

| ECe, ul-, D] < Jux, D]
Then the problem (1), (2) and (3) has at most one solution in C*Y(D) N C(D).
Proof. Letue C>(D)(N C(D) be a solution of the homogeneous problem
Lu=0 in D,
u=0 on [’
and
u(x, 0)+F(x, u(-, -))=0 on £.

Suppose that uz=0. We may assume that » takes on a negative value at certain
point of D. By the strong maximum principle (Friedman [5], Chapter 2) there exists
a point x, € £ such that u(x,, 0)=min;u<0. By the property (B) there exists a
point (x,, T}) € D with T,>0 such that

| (o, 0) | | Fxo, (-, #))| < fulxy, T
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It is clear that x, € 2. If u(x,, T,)<0 we get a contradiction. Hence u(x,, T,)>0
and consequently there exists a point x, € 2 such that u(x,, 0)=max; u>0. Again
by the property (B) we can find a point (x;, 7;) € D with T such that

u(x;, 0)= | F(x,, u(-, )| < |ulxs, To)l.

It is obvious that x, ¢ 2. If u(x,, 7,) >0 we get a contradiction, hence u(x,, T;)<<O.
Now we must distinguish two cases

|u(x,, 0)| <u(x,, 0) and  u(x,, 0)<|u(x,, 0)].
In the first case we have
lu(xm 0) | <u(x,, 0)< I u(x;, Ts) I .

Since both values u(x,, 0) and u(x,, T;) are negative # attains its negative minimum
at (x,, T,) and we arrive at a contradiction. Similarly in the second case
u(xz, 0)< |y, 0) | < |ulxy, T0) | =u(xy, T1)

and u takes on a positive maximum at (x,, 7;) and again we arrive at a contradiction.

Lemma 2. Suppose that the mapping F has the following properties.

(C) —1<F(x,1) for every x e L.

(C,) For every point x, € £ such that F(x,, 1)> —1, F(x,,-) is decreasing and
F(x,, )= F(x,, 1)I for every constant I.

(C,) For every point x, € 2 such that F(x,, 1)=—1 and every u e C(D) there
exists a point (x,, t,) € D with t,>0 such that

_F(xoa Ll(-, '))éll(xl, 711)

Let ue C*(D)NC(D). If Lu>0 (<0) in D, u(x,t)<0 (=>0) on I' and
u(x, 0)+ F(x, u(-, -))<0 (=>0) on 2, then u(x, t)<0 (>0) on D.

Proof. It suffices to prove the first part of the theorem. We may assume that
there exists x, € 2 such that u(x,, 0)=maxzu>0. Now we distinguish two cases:
F(x,1)> —1 and F(x,, )= —1. In the first case it follows from (C,) that

u('x()a 0)+F(x05 l)u(-x()a O)éu('xm 0)+F(X0, M)SO

and consequently u(x,, 0)<<0 and we get a contradiction. In the second case there
exists a point (x,, #,) € D such that

u(x,, 0)< — F(xp, u)<u(x,, t,)

and u takes on a positive maximum at (x,, #,) € D and again we arrive at a contradic-
tion.
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From Lemma 2 we deduce the following a priori bound for a solution of the
problem (1), (2) and (3).

Lemma 3. Let c¢(x, )< —d in D, where d is a positive constant and let the
assumptions (C,), (C,) and (C,) of Lemma 2 hold and moreover suppose that

(C) for every xe R, F(x,u) is linear in ue C(D) and furthermore for every
0<B<d there exists a positive constant 7(B)<1 such that

—F(x, e ") <1(p) for all x e Q.

If u e C>(D)N C(D) is a solution of the problem (1), (2) and (3) then for every
p<d

|uCx, )] <(d—p)~"e” sup | flx, )|+ sup [ g(x, 1) |+(1 —7(8)) " sup| ¥'(x))|

on D.

Proof. Let u(x, t)=u(x, t)e #*, where 0<C3<d. Then v satisfies the equation

L= 37 ay(x, DVape,+ 3 bix, D0, + (e, 1)+ Hv—v,— e f(x, 1)

i1
in D with ¢(x, 1)+ p<B—d<0 cn D and the conditions
u(x, 1) =¢(x, t)e’* on [,
and
u(x, 0)+ F(x, ve ) =T (x) on .
‘We may assume that

M=ef sup|f(x, t)]| <oo, M,=e"sup | g(x, 1)]| < oo
D I

and M,=sup, | ¥ (x)| < oo since otherwise there is nothing to prove. Put

w:v——A—l——Ml— M, .
d— 1—71
Then
Lw=fe#—(c+8) M _(c+pM—(c+p) M2 >0
d—p 1—71
in D,

w(x, 1)<0 on I’
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and

w(x, 0)+ F(x, e‘ﬁtw):w_‘%_Ml_ 11‘_{27’ —F(x, e-ft M )

— F(x, e“’”Ml)—~F(x, M, e‘f”)

| r M
<M2(1— ) r— DM +T—1)-M_ <0
con(1t- Lo L)+ e— s

on 2. Lemma 2 implies that w<<0 on D. Similarly we can establish the inequality

My M,

U(X, t)z_ﬁ 1_r

considering the auxiliary function

M,
1—7°

M
D) =v(x, )+ + M,
z(x, )=v(x, t)+ d_ﬁ+ +

From the proof of Lemma 2 the following result is obtained.

Lemma 4. Suppose that the mapping F has the following properties.

(D)) —1<F(x,1) for every x e L.

(D,) For every x e 2 F(x, u) is decreasing in u in C(D) and F(x,1)=IF(x, 1)
for every constant /.

Let ue C*(D)NC(D). If Lu>0 (<0) in D, u(x,t)<0 (=0) on I' and
u(x, 0)+F(x, u(-, -))<0 (=0) on Q, then u(x, 1)<0 (>0) on D.

Using Lemma 4 one can establish the following version of Lemma 3 with the
assumption ¢(x, 1)< —d in D omitted.

Lemma 5. Let —(1/T+1)<F(x,1) on 2 and assume that for every xe £
F(x, u) is linear in u ¢ C(D) and that F(x, u) is decreasing in u. If ue C>'(D)N C(D)
is a solution of the problem (1), (2) and (3) then

T+1
T

|, ] <(T+1) sup | £, )] +sup | §0x, )] + L1 sup | ()|

for all (x,t) e D.
To prove the last a priori bound we use Lemma 4 with the auxiliary functions

T+1
T

o )=uCx, 0= [+ sup | £x, 1) + sup | 60x, 0] +LEL sup | 7).
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§3. Existence of solution in a bounded cylinder.

For the existence we shall need the following assumptions
(A,) There exist positive constants 4, and 2, such that

RIE1< 3 alx Da&,< e

forall (x,t) e D, a;;=a;, (i,j=1, - - -, n).

(A;) The coefficients a;;, b; (i, j=1, - - -, n), ¢ and f are Holder continuous in
D (exponent «).

Moreover we assume that 02 € C***. Under these assumptions the Green

function G(x, t; y,7) (x,ye 2, z<t) for the operator L exists (see Friedman [5],
p- 81-85).

Let D,=0X[r, T], where r>0. In this section we assume that the mapping
F is given by the formula

(4) F(x, u) :L u(y, Ddp(y, o),

where {¢"} (x € Q) is a family of signed Borel measures on D with compact supports
in D,.

Theorem 1. Let the assumptions (A,) and (A,) hold. Assume that c(x, t)<0 in
D and that a family of signed Borel measures {11*} (x € Q) has the following properties
(1) | p®| <1 forall x e Q and for every u € C(D) the integral I u(y, o)dp*(y, ©)

D

is continuous on 1.
@) [ [[. 607z 06@dz| ez, =0,
and
L [ J Gy, 732, 0/, 5)dzd5] A (y, ©)=0

on 0%2 for every ¢ € LX(2) and f e C(D) respectively.
If U e C(2) and ¥(x)=0 on 38R, then the problem (1), (2) and (3) with ¢=0 has
a unique solution in C*'(D)N C(D).

Proof. It is obvious that the mapping F satisfies the condition (B) of Lemma 1.
We try to find a solution in the form

(5) s =] GCx 133,000, 0dy—| | GCx, 133 Df(r, Dy,

where u(-, 0) ¢ C(2) is to be determined. The condition (3) (with F given by (4))
leads to the integral equation
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(6) u(x, 0)+ J ) UQ G(y, 7; 7, O)uz, O)dz] A (y, ©)
=@ +[ |[[@5] 60.e520/c 0| .

It is easy to show that the linear mapping of L*(2) into L*({2) given by

T(x) :ID [ J Gz O)¢(z)dz] du(y, ©)

is compact. The homogeneous equation

609+ [ 6073 2 0p@dz | de(r, ) =0

has only the trivial solution in L*(2). Indeed if ¢ is a soultion in L*(2) of the above
equation, then by the assumptions (i) and (ii) ¢ € C(2) and ¢(x)=0 on 32. Hence
the integral

u(x, )= G(x, t: 3, gy

is a solution in C*Y(D) C(D) of the homogeneous problem (1), (2) and (3). By
Lemma 1 ¥=0 and consequently ¢=0. By the Fredholm theory of compact opera-
tors the equation (6) has a unique solution u(-,0) in L*(2). It follows from the
assumption (i) and (ii) that the integral

j » U o daf , G550/ 5)0’2] dp(y, 7)

is continuous on £ and vanishes on 842, hence u(-, 0) ¢ C(2) and u(y, 0)=0 on 92.
Thus the formula (4) gives a solution in C*>'(D)N C(D) to the problem (1), (2) and

Q).

We briefly mention here that Lemma 1 and the method used in the proof of
Theorem 1 lead to the existence and the uniqueness of a solution to the non-local
problem with the condition (3) replaced by

(7) e, 0+ ([ uCr, 2, 9) =¥ ),

where g is a Lipschitz continuous function on (— oo, o0).

Theorem 2. Suppose that the assumptions of Theorem 1 hold. Let g be a func-
tion on (— oo, o0) such that g(0)=0 and that

|g(u) —g(uy) | <A|uy—u]
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Jor all u, and u, in (— oo, o0), where A<1 is a positive constant. If U e C(2) and
U(x)=0 on 082, then the problem (1), (2) and (7) (with $=0) has a unique solution in
C*>(D)N C(D).

Proof. We try to find a solution in the form (4), where u(-, 0) € C(2) is to be
determined. The condition (6) leads to the equation

u(x,0)+g (JD U:) G(y, t; z, O)u(z, O)dz] dp*(y, )
_ f ) UO j G320, a)dzda] du(, T)) —T(x)

on 2. Define the mapping T: C(2)—C(£2) by the formula

o(x, 0)=Tu=—g (L [ J Gy, 7 7 Oz, O)dz] A (, ©)
_ f ) [ I O L GOy, 73 2, 8) (=, 5)dzd5] dp(, T)) FUW),

where C(Q) is equipped with the supremum norm. It is easy to see that T is a con-
traction mapping. Consequently by the Banach fixed point theorem there exists a
unique solution u(-, 0) ¢ C(£2). Since g(0)=0 it follows from the assumption (ii)
that u(-,0)=0 on 02 and the formula (5) gives a solution to the problem (1), (2)
and (7).

Theorem 2 continues to hold if 4A=1 provided c¢(x, 1)< —d on D, where d is
a positive constant. Indeed using the transformation u(x, t)=e *‘v(x, t), where
0<p<d, we reduce this case to the case with a Lipschitz constant less than 1.

In the next two theorems (Theorems 3 and 4 below) we assume that the map-
ping Fis given by the following formula

(8) Fxu(, ) == [ u(r, (3, 2,

where {¢"} (x € £2) is a family of non-negative Borel measures on D with compact
supports in D,, r>0. The proofs are based on a priori bounds given in Lemma 3
and 4.

Theorem 3. Let the assumptions (A,) and (A,) hold, and let c(x, )<< —d on D
where d is a positive constant. Suppose that {yi*} (x € Q) is a family of non-negative
Borel measures on D satisfying the following conditions

(i) foreveryue C(D), J u(y, o©)dp*(y, ) is a continuous function on Q and
D
1 (D)<1 for all x ¢ O,
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(i) J ) Ug Gy, 73 z, 0)¢(z)dz] d(y, ©)=0
and

JD U: G(y, 732, 0) f(z, 5)dzd5] dp(y, ©)=0

on 39 for every ¢ e LX) and f e C(D) respectively.

Let ¢ and ¥ be continuous functions on I' and Q respectively and moreover as-
sume that there exists a continuous extension @ of ¢ into D such that

T (x)— D(x, 0)+L O(y, )dp(y, )=0  on 3%.

Then the problem (1), (2) and (3) has a unique solution n C*>'(D) (N C(D).

Proof. We first assume that @®=0 on D, hence ¥'(x)=0 on 922. We try to find
a solution in the form (5), where u(-, 0) ¢ C(2) is to be determined. The condition
(3) leads to the Fredholm integral equation of the first kind

u(x, 0) —ID Ug Gy, 7; 2, O)v(z)dz] A (v, 7)
W (x)— f ) [ J 0 J G720/ 5)dzd5] A (y, )

on 2. By the same argument as in Theorem 1 we show that the above equation has
a unique solution u in LXQ). If follows from (i) and (i) that u(-,0) e C(2) and
u(y, 7)=0 on 92 and the formula (5) gives a solution in this case.

Suppose next that ¢=0, but assume that the extension @ belongs to C***(D).
Introducing v=u—® we immediately obtain, by the previous result the existence of
a solution v to Lv=f— L®, which vanishes on /" and satisfies the condition

u(x, 0) —jD v, (Y, ©) =T () —D(x, 0>+jD B(y, Ddp(y, 7)

on £. Finally we consider the general case, where @ is only assumed to be con-
tinuous. By Theorem 2 in Friedman [5] p. 60 and the Weierstrass approximation
theorem there exists a sequence of polynomials @, on D which approximates @
uniformly on D. Now we define a sequence of functions {¥,,} on 9£2 by the formula

¥ (x) =B, (x, 0)— j 0,0, (3, )
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m=1,2, --.. Sincelim ¥, (x)=¥(x) uniformly on 9, one can construct a sequence
of functions {¥,} in C(2) such that lim ¥,(x)=¥(x) uniformly on £ and

T ()= ,(x) ondf for all m. By what we have already proved there exist solu-
tions to the problem

Lu,=f(x, 1) in D
Un(X, 1)=0,(x, 1) on I,

and
(60— | (3, I, =T () 0n 2.
D

By Lemma 3 the sequence {u,,} is uniformly convergent on D to a function u € C(D).
It is clear that u satisfies the conditions (2) and (4). Using Friedman-Schauder
interior estimates (Friedman [5], Theorem 5 p. 64) one can easily prove that « satisfies
the equation (1).

Remark. In the above proof we followed the argument used in the proof of
Theorem 9 in Friedman [5] (p. 70-71). For the definition of the space C%**(D) see
Friedman [5] (p. 61-62).

We conclude this section with result which readily follows from Lemma 4 and
the argument given in the proof of Theorem 3.

Theorem 4. Let the hypothesis (A)) and (A,) hold and let c¢(x, t)<0 in D. As-
sume that {y°} (x e Q) is a family of non-negative Borel measures on D satisfying the
condition (ii) of Theorem 1 and

(i) For everyue C(D),J u(y, ©du(y, 7) is a continuous function on 2 and
D

(DY (A/1+T) for all x e 0.
Let ¢ and ¥ be continuous functions on I" and  respectively and finally assume
that there exists a continuous extension @ of ¢ into D such that

T =0, 00+ | 00, (3, ) =0
D
on 080. Then the problem (1), (2) and (3) has a unique solution in C>'(D)(\ C(D).

To illustrate the results of this section consider the following example. Let
T,¢(0, T} (i=1, ---, N) and put

N
dﬂx = ; ﬁz(x)da(w, T3)
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_ N _
where 8, € C(2) (i=1, ---, N), 0<>  B(x)<1 on £ and 4§, denotes the Dirac
i=1

measure concentrated at (x, 7;). Since G(x, ¢;y,7)=0for x € 02, ye 2 and r >,
the assumptions (i) and (ii) of Theorem 3 are obviously satisfied. Theorem 3 yields
the existence of a unique solution in C*>(D)N C(D) to the problem (1), (2) and (3)
provided

U(x)=(x, 0)— i B.()4(x, T)  on aQ.

Here the condition (3) takes the form

(9) u(x, 0)— 3 pxux, T)=U(x)  on Q.

=1

The finite sum in (8) can be replaced by an infinite series, i.e., the condition (8)
becomes

(9) u(x, 0)— i B(X)u(x, T)=¥(x)  on @,

where i} B4(x) converges uniformly on 2 and inf 7,>>0. The non-local problem (1),
t=1 i
(2) and (9) (or (9’)) has been studied in [4].

8§4. Existence of solution in R, < (0, T].

Throughout this section we make the following assumptions.
(B,) There exist positive constants 4, and 4, such that for every vector & € R,

&< i a;(x, 1)§:&; <A &F

t,5=1

for all (x,¢) e R, X[0, T, a;;=a,, (i,j=1, - - -, n).
(B,) The coefficients a,;, b; (i, j=1, - - -, n) and c are bounded and Hélder con-
tinuous on R, X [0, T] and moreover c(x, t)< —d, where d is a positive constant.

n
Let H(x, 0)= [] cosh dx;. Itis clear that there exist positive constants 7 and
i=1

J, such that
LH< —TH in R, X[0, T]

for all 0<<§<a,.
(B,) Let{¢"} (x € R,) be a family of non-negative Borel measures on R, X [0, T]
with compact supports in R, X [r, T], where >0 such that

J : f 2, P 0 Zi i Ddp(y, ) <1



112 J. CHABROWSKI

for all x e R,,.
We shall say that a function u defined on R, X [0, T] belongs to E(R, X [0, T])
if there exist positive constants M and §<§, such that

U, )| <M exp (33 |x.)

for all (x, ¢t) € R, X [0, T].
We shall say that a function v defined on R, belongs to E(R,) if there exist
positive constants M and §<<4, such that

0G| M exp (3 331D

for all x ¢ R,.
In the following theorem we establish the existence of a solution of the equa-
tion (1) satisfying the condition

(10) u(x, 0)_LTL w(y, i (y, )=T(x)  on R,.

For an increasing sequence {P,,} of positive numbers tending to infinity we put
D, =(x|<P,)X(0,T] and [',=(x[=P,)XI[0,T]

Theorem 5. Assume that there exists a sequence of cylinders D, (described above)
such that the restriction {y*} (x € D,;) to the cylinder D, satisfies the conditions (i)
and (ii) of Theorem 3 for every m. If f e E(R, X [0, T]) is an Hélder continuous func-
tion on compact subsets of R,X[0, T] and ¥ e C(R,)N E(R,), then there exists a
unique solution in C>*(R, X (0, TDN C(R, X [0, THN E(R, X [0, T)) of the problem (1),
(10).

Proof. The proof is similar to that of Theorem III in [1] (see also Krzyzanski
[7]). Itis clear that there exist positive constants M and §<d, such that

fGo DI<Mexp (33 |x) and |F(|<M exp (33 |x.)

on R,X[0,7T] and R, respectively. Let ¢(x,7) be a continuous function on
R, X [0, T] such that

|p(x, £) | <M exp (6 §|xi D on R, X0, T],
é(x, 0)=¥(x) on R, and ¢(x, 1)=0 on R, X[r, T].

By Theorem 3, there exists for every m a unique solution in C>'(D,)N C(D,,)
of the problem
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Lu,=f in D,
U, (x, )=g¢(x, t) onl,

and
u (x, 0)—j (3, (v, ) =T(x)  for |x|<P,.

Now we extend u,, into the strip R, X[0, 7] by defining u,(x,t)=d¢(x,?) on
R,x[0, T]—D,, (m=1,2, --.). Put

u,(x, t)=v,(x, t)H(x, d) m=1,2, ---

The function v,, satisfies the equation

< o*v u < 2 u oH ) ov
11 > a(x, t LA bix, )+ —2 > a,(x, )22 ) %n
an 2,4 i(x, 1) ox o, 1221: (x, 1)+ Hx. 3) ;:1 a;(x, 1) o, ) o

W _ H(x, 5 fx, 1)

+(H(x, 6)"'LH)v,, — ~

in D,, and the following conditions
Un(x, )=¢(x, )H(x, 6)~* on/l',

and
vae, )= | HCx, 0) 0,0 DH, D (0, ) =H(x, 0) T ()

for |x|<P,. It follows from Lemma 3 that |v(x, ¢)|<M, in R, X][0, T] for all m,
where M, is a positive constant independent of m. Now let §<4,<d, and put

u,(x, t)=0,(x, t)H(x, d,)
and
Upg(X, 1) =, (X, 1) —1i,(X, 1) =H(x, 8,)[U,(X, 1) —Ty(x, t)]= H(X, 5)Tp4(, 1)

for p<q. The function 7,, satisfies the homogeneous equation (11) with H(x, §)
replaced by H(x, §;) and moreover

Upo(x, 1)=H(x, 3,)'[¢(x, 1) —u,(x, )] onl’,

and

Bpu 0= 000 DH(, 0)HCx, 8) (3, ©)=0
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for |x|<P,. Since lim H(x, §)H(x, d,)"'=0, it follows from Lemma 3 that the

z]—>co

sequence {u,} satisfies the uniform Cauchy condition on every compact subset of
R, X[0, T]. Put lim T,(x, t)=uv(x, t) and u(x, t)=uv(x, t)H(x, §;) on R,X][0, T].

p—oo

It is obvious that u € E(R, X [0, T]) is continuous on R, X [0, T] and satisfies (10) by
the Lebesgue Dominated Convergence Theorem. The fact that « satisfies the equa-
tion (1) follows from the Friedman-Schauder interior estimates.

To establish the uniqueness, let u e C>(R, X0, TDN C(R, X[0, TDN E(R, X
[0, T]) be a solution of the problem (1) and (10) (with f/=0 and ¥ =0). There exist
positive constants M and §<<4d, such that |u(x, t)|<MH(x, 6) on R, X[0, T]. Now
choose §<9,<9, and put u(x, t)=v(x, t)H(x,d,). Given € >0 we can find a
positive number R such that |[v(x, #)|<< e for (x,?)e ((x|>R)X[0, T]. Since v
satisfies the homogeneous equation (11) with H(x, ) replaced by H(x, d,), it follows
from Lemma 3 that

[u(x, 1)|<eef”  on (|x|<R)XI0, T,
where 0<3<d and the uniqueness easily follows.

Remark. Let
N
dy’ = ZJ BA(X)dd 1,5

N
where T € (0, T1(i=1, ---, N), B, e C(R,) (i=1, -- -, N)and 0< > B.(x)<1 on R,.
i=1

By virtue of properties of the Green function in a cylinder the assumptions (i) and
(ii) of Theorem 3 are trivially satisfied. Theorem 5 yields the existence and unique-
ness of a solution of (1) satisfying

u(x, 0)— 33 p(u(x, T)=U(x)  on R,

It follows from the proof of Theorem 5 that the assumption (B,) is irrelevant because
in this case the approximating sequence v,, satisfies the condition

Un(x, 0)— 3T B0, T)=FWH(x, &) for |x|<R,.

If fand ¥ are bounded functions the assumption (B,) can be replaced by weaker
condition

(B3) Let {¢°} (x € R,) be a family of signed Borel measures with compact sup-
ports in R, X [r, T, >0, such that

|7 |(R, X [0, TP
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’ _
for all x € R, and assume thatJ J v(y, t)dp*(y, r) is continuous on R, for every
0 Ry

continuous bounded function v on R, X [0, T].
Let C,(R, X][0, T]) denote the space of continuous and bounded functions on
R, %[0, T] equipped with supremum norm.

Theorem 6. Suppose that the assumptions (B,), (B,) and (B;) hold. If f is a
bounded function on R, X [0, T| and ¥ is a continuous bounded function on R,, then the
problem (1), (10) has a bounded solution in C*>'(R, X (0, T)) N C(R, X [0, T]).

Proof. Introduce the transformation u(x, t)=uv(x, t)e™#’, where 0<8<d, then

Ly= il ;% )y, + Z bu(x, £)0,, -+ (c(x, 1)+ B)v—v, = F(x, £)eP*

7=

on R, X (0, T]. LetI'(x,t;y, ), where x,ye R,, 0<r<t<T, be the fundamental
solution for the operator L,. Since c¢(x, )+ <0 on R, X[0, T]

I'(x, t;y, 0)dy<l

Rp

for all x,ye R, and 0<r<t<T (see Friedman [5]). Consider the mapping S
Cy(R, X0, TD—C,(R, X[0, T]) given by the following formula

u(x, 1) = Swix, 1) = J I'(x, 1y, O)JTJ e~ 5 w(z, 2)dp(z, D)y
Ry 0 Ry
+] . I'(x, t;, O)W(y)dy—fJR I'(x, t; 3, 0) f(y, ©)dydz.

It is clear that if we C,(R,X[0, T]) then Sw satisfies the equation Lv=f in
R, x (0, T] and

v(x, O)—_—LT jR e w(y, Ddp*(y, ©) + ¥ (x) on R,.

Since supp p*C R, X[r, T]for all x e R,, Sis a contraction and the result follows
from the Banach fixed point theorem.

We are unable to prove the uniqueness of a solution under the hypothesis of
Theorem 6. In Theorem 7 below we establish the uniqueness of a solution in the
case where the measure satisfies the condition

(BY) dp*(y, ©)=B(x)dd.(y)dv"(2),

where 0<<8(x)<1, B e C(R,), J, denotes the Dirac measure on R, concentrated at
xeR, and {v°} (xe R,) is a family of non-negative Borel measures on [0, 7] such
that supp v*C[r, T], r>0 and v*([0, T])<1 for all xe R,. Moreover we assume
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T
that the integralf u(x, t)dv®(7) is continuous on R, for every continuous bounded
0

function v on R, X [0, T7].

Theorem 7. Suppose that the hypothesis (B,), (B,) and (BY) hold. If f is a
bounded function on R,X[0, T] and Hélder continuous on every compact subset of
R, XI[0, T] and ¥ is a continuous bounded function on R,, then the problem (1), (10)
has a unique bounded solution in C*'(R, X (0, T) N C(R, X [0, T)).

The existence of a solution follows from Theorem 6. The uniqueness can be
proved using the method given in the proof of Theorem 5.

We note here that under the assumptions of Theorem 6 one can establish the
existence of a solution of (1) satisfying the condition

T
ux, O—g ([ | w0 D3, 9)) =70
on R,, where g is a Lipschitz function with a constant less than 1 and g(0)=0.

§5. Integral representation of solutions.

Throughout this section we make the assumptions (B,), (B,) and (B,).
In the sequel we shall need the following lemma, the proof of which is routine.

Lemma 6. Let f and ¥ be bounded functions on R, X [0, T] and R, respectively.
If u is a solution in E(R, X [0, T) N C*> (R, X (0, T)N C(R, X [0, T]) of the problem
(1), (10) then for every 0<p<d

|ux, )| <(@—p)~ e S;g?ﬂlf(x, H[+A—e) 7 sup [F(x)]

on R, X[0, T].

Theorem 8. Suppose that the hypothesis of Theorem 5 hold. Let ¥ be a bounded
and continuous function on R, and f a bounded function on R, X [0, T] and Hélder con-
tinuous on every compact subset of R, X [0, T|. Then the solution of the problem (1),

(10) is given by the formula
12 uCx, )= [ MCx, £, )E )+ F Iy
for all (x,t) e R, X (0, T, where

F)=— j : LUO f T0.5:2.0/@ a)dzda] A (y, ©)

and the kernel function M(x, t, y) has the following properties
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M(xa z, ) € Lp(R’n)

forall (x,t) e R, X0, T]and 1< p<oo, M(x,t,y)asa function of (x, t) satisfies the
equation LM=0 in R, X (0, T] for almost all y € R, and moreover M satisfies the
equation

(13) M(x, t,w)= ——IRﬂF(x, t; »,0) U: jRn M(z, r, wydu!(z, 7.')] dy+I'(x, t;w,0)

for all (x,t) e R, X (0, T] and almost all w e R,,.

Proof. We assume initially that f=0. Let ¥ be a continuous and bounded
function in L?(R,). By Lemma 6 the unique solution of the problem (1), (10) in
C>'(R, X (0, TDNC(R, X[0, TDN E(R, X (0, T] is bounded on R, X[0, T]. First
we prove that for each >0 there exists a positive constant C(d) such that

(14 lu(x, )< CONY llzr

on R, x[d, T]. To prove (14) we first assume that p*(R, X [0, T)<B, on R,, where
0<p,<1. Consider the Cauchy problem for the homogeneous equation (1) with the
initial condition

T
2(x, 0) =j0 j (s (3, DT ).
The unique solution z in C*'(R, X (0, TP N C(R, X[0, TDN E(R, X [0, T]) is given by
2(x, t)=j I'x, 159, 0) j i j w(z, Dz, r)dy+j I'(x, t; 9, OF (»dy
Ry 0 Ry Rnp

for all (x, t) e R, X (0, T'] (Friedman [5], p. 26). Since u is a solution of the same
problem we obtain

as)  u(x, t)=j I'(x, t;7,0) j i j u(z, Hdp(z, r)dy+j I'(x, t; v, 0T (Y)dy
Ry 0 JRn Rp
for all (x,¢) e R, X (0, 7). Now it is well known that

(16) 0<I'(x, 15 ¥, )< it~ exp (_%Lx:ﬂz)

for all (x, t) e R, X (0, 7] and y € R,, where C, and 5% are positive constants (Fried-
man [5], p. 24). Applying the Holder inequality we derive from (15) and (16) that

a7 Supﬂlu(x, )| < C(1—By)~r=m2» (J

RaX[r,

1/q 1/p
e‘q”"’””dx) (J |Qf(x);pdx) ,
Ry

n
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where 1/p+1/g=1 (with obvious modification if p=1). Using again the representa-
tion (15) and the estimates (16) and (17) we obtain

(18) lu(x, |<[Bo(1 — B0 'CLCo+ CLCot " ?1|¥ | 1o g

for all (x, ¢) € R, X (0, T, where

1/q

1
C2=r‘”/2p(f e“”q‘mdx) " and csz(j e‘q”""’”'gdx) ,
Ry Ra

and the estimate (14) easily follows. By (14) the mapping ¥ —u(x, t) defines a linear
functional on C,(R,) N L?(R,) continuous on L?-norm. Consequently the representa-
tion (12) follows from the Riesz representation theorem of a linear continuous func-
tional on L?(R,). To derive (13) observe that by (12) and (15) we have for every
continuous bounded function ¥

MGt W ()= J (13,0 [ j : JRnM(z, . w)mw)dz] (2, ©)dy
+ I TG 13w, OF (W)

Consequently if we fix (x, ) € R, X (0, T], applying Fubini’s theorem, we obtain the
identity (13) for almost all w e R,. Now choose w € R, such that the integral

Ln[’(x, T: ,0) ”OT JRnM(z, o, wdp'(z, f)] dy

is finite. Then by Theorem 1 in Watson [8] the integral
T
ree 53,0 MG e widwz 0y
Ry 0 Ry

is finite for all (x, #) € R, X (0, 7] and represents a solution of the equation Lv=0 in
R, X (0, T] and the last assertion of the theorem follows. The general case follows
by means of the following transformations

u(x, t)y=e " *u(x, t), where 0<< f<d

and
2(x, £)=u(x, t)+I: dr f TG 150,910, Dy

Similarly in the case of a bounded cylinder one can prove

Theorem 9. Suppose the assumptions of Theorem 1 hold. Let u be a solution in
C>(D)N C(D) of the problem (1), (2) and (3) with $=0. Then
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uCx, )= mx, &, D)+ FO)dy
Jor all (x, t) e D, where
F(x)= “‘[D U: L) G(y, 732, 0)f(z, 5)dzd5] dp*(y, t) on £,

and the kernel function m(x, t, y) has the following properties:
m(x,t, ) e LP(2) 1<p<o forall (x,t)e D,

m(x, t, y) as a function of (x,t) satisfies the equation Lm=0 for almost all y e Q.
Moreover

m(x, 1, w)=— [ Gx, 133, 0| | mie, 7 iz, ) |dy+ G, 15w, 0)
2 D
Jor all (x, t) e D and almost all y e .

§ 6. Some generalizations of non-local problem.

It follows from Theorem 8 (the inequality (14)) that the problem (1), (10) can
be solved for ¥ e L?(R,) 1< p< oo, but this requires a new formulation of the con-
dition (10).

We shall say that a function u(x, ¢) defined on R, X (0, 7] has a parabolic limit
at y € R, if there exists a number b such that for all >0, we have

lim u(x, t)=b.

(z,t)—(y,0)
lz—yl<rvi

We express this briefly by writing p— lim  wu(x, t)=>b. (See Chabrowski [3],

(x,8)—(y,0)
p- 257).
Let ¥ e L?(R,). We shall say that a function u belonging to C>'(R,, X (0, T)) is
a solution of the problem (1), (10) if it satisfies the equation (1) in R, X (0, T] and

T
(19) p— lim uGen=| | uadw 0+
@58)=(¥,0) 0J R,

for almost all y € R,,.
Theorem 10. Suppose the hypothesis of Theorem 5 hold. If ¥ e L*(R,), 1<p

< oo and f is a bounded function on R, X [0, T] and Hélder continuous on every compact
subset of R, X [0, T, then there exists a solution of the problem (1), (10).

Proof. Let {¥',} be a sequence of function in C(R,) with compact supports
which converges in L? to ¥. By Theorem 5 and Lemma 6 there exists a unique
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bounded solution u, in C*(R, X (0, TT) N C(R,, X [0, T]) to the problem
Lu, =f in R, X (09 T1],
T
u 0= [ | w0, 9=T,)  on R,
0J Ry
It follows from (14) that
[ur(x: t) —us(xa Z)IS C((S) H wr—ws ”Ll’

for all (x, t) € R, X[, T]. Hence u, converges uniformly on R, X[d, T] for every
0>0 to a continuous function u(x, t) on R, X (0, T]. As in the proof of Theorem 8
it is easy to establish the representation

wGe 0= I 0 [ e adeG o+| Ty, 0000
~[Lac | 160509
for all (x,#)e R, X, T],r=1,2,.---.. Letting r—oco we obtain
ue. = [ It 0 [ e odee 9+ [ T 19,000y
—f: dc JR I'(x, 2,5, 2)f(y, ©)dy
on R,X(0,T]. Since u is bounded on R,X[d, T] for every 6>0 and supp u*

CR,X[r, T] for all ye R, it is easy to see that u satisfies the equation (1) in
R, X< (0, T]. It follows from Theorem 3.1 in Chabrowski [3] that

p— lim @ 0={ [ uede+T0)

(x,t)—(y,0)

for almost all y € R,.
Finally consider the non-local problem with the condition (10) replaced by

20) ux, 0— 00| [ ur, ddu(n 9= on R,

where 4 is a non-negative Borel measure on R, X [0, 7] such that supp pC R, X [r, T],
r>0, and

I oT J 2, P O é | yiDdu(y, <1

If B e C(R,), 0<B(x)<1 on R, and has a compact support in R,, then there exists
an increasing sequence of cylinders {D,} satisfying the assumptions (i) and (ii) of
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Theorem 3 and such that | D,,=R,X (0, T]. Consequently Theorem 5 guarantees

mz1

the existence of a solution of the problem (1), (10) provided ¥ ¢ C(R,) N E(R,) and
fe E(R, %[0, T]) and is Holder continuous on every compact subsat of R, X [0, T].

Lemma 7. Suppose that the hypotheses (B,), (B,) and (B,) hold. Assume that
Bie C(R,), 0LB.(x)<1on R, (i=1,2). Assume further that f is a bounded function
on R, X [0, T and Hélder continuous on every compact subset of R, X [0, T] and that
¥ is a continuous and bounded function on R,. If u, (i=1,2) are solutions in
C* (R, X0, TDN C(R,X[0, TDN E(R, X [0, T]) of the problem (1), (20) with =},
(i=1, 2) then

@ e, ) —te, D<Ky sup _|u(x, 1)|sup|5.)— )|

Jor all (x,t) e R, X[0, T], where K, is a positive constant independent of u, and u,, and
moreover for every 6 >0 there exists a positive constant K, independent of u, and u,

such that
22) le,(x, 8) —uy(x, 1) |<<Ky(0) RnS:JEIT) leu(xa 1By — Bl v

Jorall (x,t)e R, X[0, T], 1< p<oo.

Proof. The proof of the estimates (21) and (22) is similar to that of the
estimate (14). Therefore we only sketch the proof of the estimate (22). As in
Lemma 6 we establish the representation

ute, = ICe 133,080 [z dutz, 2yay
+[ Te 000y~ de [ 1en 5,0/, 9y

on R, X (0, T]. Hence

@) e n—uln0=[ I3, 080—pON [ e odue, 9
+[ ey, 0800 [ G 9 —uz Ndutz, oy

on R, X (0, T]. Assume first that 0<<B,(x)<<6<<1 (i=1, 2), where 7 is a constant.
Since I'(x,t;v,0dy<1 on R, X (0, T] the identity (23) implies

Ry

sup ] lu(x, 1) —u(x, )|<(A—7)"" su : luy(x, )] sgp | B1(x) — Ba(x)].

Rax[r,T RaXx[r,T
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Applying again the identity (23) we derive the estimate (21). In the general case we
use the transformation u(x, t)=e"""v(x, t), where 0<r<d.

Let C(R,)={u;ue C(R,) and lim u(x)=0}.

x| —o0

Theorem 11. Let the hypothesis (B,), (B,) and (B;) hold and let f8 e C'(Rn) and
0<B(x)<1 on R,. Assume that f is a bounded function on R, and Hdélder continuous
on every compact subset of R, X [0, T] and that ¥ is a continuous bounded function on
R,. Then there exists a unique bounded solution in C> (R, X (0, T)N C(R, X [0, T])
of the problem (1), (20).

Approximating 8 by a sequence of functions in Cy(R,) the above result easily
follows from the estimate (21) and the Friedman-Schauder interior estimates.

Theorem 12. Let the hypothesis (B,), (B,) and (B,) hold. If f is a bounded func-
tion on R,X[0, T] and Holder continuous on every compact subset of R,X[0, T,
Uel?R,),Bel?(R,) 1<p<oo and 0<B(x)<1 on R,, then there exists a solution
of the problem (1), (20), where the condition (20) is understood in the sense of the
parabolic limit.

Proof. Let {¥',} be a sequence of functions in C,(R,) N L?(R,) and {B,,} be a
sequence of functions in C,(R,) converging in L? to ¥ and j respectively. For every
m there exists a unique solution u, in C*'(R,X(0, TN C(R,X[0, T]) of the
problem

Lu,—f  in R,X(0, T,
el 0)—/3m(x)j:jR u(y, Dy, )=U(x)  on R,

By the estimate (14) the sequence {u,} is uniformly bounded on every strip
R,X[6, T], 60>0. Let g>s, it is obvious that

e, ) —ue, )=[ T, 13, 08— N [ oz, Ddutz, Dy
+[ 10800 [ e 9—u e Ddy
+[ T 10, 0 (0)—7.0Nay

on R, X(0, T]. A sin the proof of Lemma 7 one can easily show that for every 6 >0
there is a positive constant C(9) such that

sup |, (x, 1) —uy(x, )| <CO B —PFollzr sup _ |ug(%, O +1¥ ¢ —¥ ol 2o]-

RaX[s,T]
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The result easily follows from the Friedman-Schauder interior estimates.

(1]
[21]
[3]
[4]
[5]
[61]
[7]

[8]
[9]

References

Besala, P., On solutions of Fourier’s first problem for a systems of non-linear parabolic
equations in an unbounded domain, Ann. Polon. Math., 13 (1963), 247-265.

Bicadze, A. V. and Samarskii, A. A., On some simple generalizations of linear elliptic
boundary problems, Dokl. Akad. Nauk. SSSR, 185 (1969), 398-400.

Chabrowski, J., Representation theorems for parabolic systems, J. Austral. Math. Soc.,
(Series A), 32 (1982), 246-288.

, On non-local problems for parabolic equations, Nagoya Math. J., 93 (1984),
109-131.

Friedman, A., Partial differential equations of parabolic type, Prentice-Hall, Engle-
wood Cliffs, N. J., 1964.

Kerefov, A. A., Non-local boundary value problems for parabolic equation, Differen-
cial’'nye Uravnenija, 15 (1979), 52-55.

Krzyzanski, M., Sur les solutions de I’équation linéaire du type parabolique déter-
minées par les conditions initiales, Annales de la Societé Polonaise de Mathématique,
18 (1945), 145-156, and note complémentaire, ibidem, 20 (1947), 7-9.
Vabishchevich, P. N., Non-local parabolic problems and the inverse heat-conduction
problem, Differencial’'nye Uravnenija, 17 (1981), 761-765.

Watson, N. A., Uniqueness and representation theorems for parabolic equations, J.
London Math. Soc., (2), 8 (1974), 311-321.

nuna adreso:

Department of Mathematics
University of Queensland

ST. LUCIA, Queensland 4067
Australia

(Ricevita la 9-an de majo, 1983)



	§1. Introduction.
	§2. Uniqueness and a priori bounds.
	§3. Existence of solution in a bounded cylinder.
	§4. Existence of solution in $\mathrm{R}_{n}\times(0, \mathrm{T}]$ .
	§5. Integral representation of solutions.
	§6. Some generalizations of non-local problem.
	References

