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§1. Introduction

We consider a system of nonlinear difference equations of the form

(E) yx—D=f(x, ¥(x)),

where x is a complex variable, y is a complex n-dimensional vector with components
{»,}, and f(x, ) is an n-dimensional vector whose components are holomorphic and
bounded functions of x and y for

(LD >R, Jargx|<Z, [yl|l=max]|y,|<é

where R, is sufficiently large and §, is sufficiently small. For a row vector k with
components {k,} non-negative integers and a column vector z with components {z,},
the symbol z* stands for the scalar expression zf*-zf*...zE» and |k| denotes the
length k,+k,+ - - - +k,. We have an expansion

1.2) JC, y)=fi(x)+Ax)y+ WZIg S

which is uniformly convergent for (1.1). Here the coefficients fi(x), f.(x), |k|=2 are
n-dimensional vectors and A(x) is an n by n matrix with components holomorphic
and bounded for |x|>R,, |arg x[<%. We assume that the components of these

coefficients admit asymptotic expression in powers of x™! as x tends to infinity

through the sector |arg x| <-§—.
The matrix 4, which is defined by
(1.3) A,= lim A(x)

T—oo

larg z|<z/2

plays an important role in the study of the behavior of local solutions. The case of
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a single nonlinear difference equation has been studied by several authors, for ex-
ample, J. Horn [4], S. Tanaka [7] and K. Takano [5]. W. A. Harris Jr. and Y.
Sibuya [2], [3] have treated the case of a system of nonlinear difference equations
under the hypothesis that the matrix 4,—17 is nonsingular, 7 being the unit matrix of
order n. K. Takano [6] has developed his previous paper [5] to the case when one
and only one of the eigenvalues of the matrix 4, is equal to unity and the others are

neither zero nor unity in absolute value.
In our paper we discuss the case when the matrix A4, is equal to the unit matrix:

(1.4) A=1.

Our results are summerized in the following three theorems. Throughout this paper
we use ¢ for an arbitrary pre-assigned positive number, R and § for sufficiently large
and small positive numbers respectively.

Theorem 1. If there exists a formal power series solution

(1.5 P pix’
j=1

Sfor equation (E), where p;, j=1, 2,- - -, are n-dimensional constant vectors, then there
exists an actual solution ¢(x) of equation (E) holomorphic in a domain of the form

1.6) |x|>R, |argxl<%—e

and asymptotically developable into the formal solution as x tends to infinity through
the sector (1.6).

Remark 1. As can be easily verified, a sufficient condition for equation (E) to
possess a formal solution of the form (1.5) is that the matrix which is defined by

(.7 A= 1lim

L—co
larg x| <=x/2

A(x)

-1

has no eigenvalues equal to a positive integer and moreover

Fi(X)=0x"?), filx)=0(x""), |k|=2.

By using the particular solution ¢,(x) obtained in Theorem 1, we apply the trans-
formation

1.8) HX) = go(x) +2(x),

then the transformed equation possesses the identically zero solution as a particular
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solution. Hence the system is reduced to an equation of the form (E) with fi(x)=

0. But the sector |arg x| <% must be replaced by a slightly narrower one:
T
arg x|<——e.
|arg x[<—-—e

Theorem 2. We consider the system of linear difference equations
(E) y(x—1)=A(x)y(x),

which consists of the linear part of (E) with f(x)=0. Let A be of Jordan’s canonical
form:

le W
g Ay
A= &,
271—1
en—lsz
with
(1.9) Re ,ZRe 4, ---<Re4,.

By applying an appropriate transformation of the form

(1.10) Y(x)= I+ P(x))u(x),
we can transform (E,) into the system of equations of the form
(ED u(x—1) =+ Ax"' 4 B(x))u(x),

with the following properties:

(i) P(x) is an n by n matrix function which is holomorphic in a domain of the
form (1.6) and asymptotically developable into a power series in x~' as x tends to in-
finity through the sector |arg x|<zm/2—e¢,

(ii) B(x) is a lower triangular matrix whose components b, (x) are monomials in
x~! of the form b, (x)=b,x ***"1 such that if b,,+0, then the quantity 2,— A, must
be equal to a positive integer.

Remark 2. The assumption that the matrix A is of Jordan’s canonical form
with inequality (1.9) can be always satisfied by carrying out, if necessary, a linear
transformation with constant coefficients. By applying transformation (1.10) to e-
quation (E) with f,(x)=0, the matrix A(x) is reduced to the matrix of the form 7+
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Ax'+B(x). The vectors corresponding to f,(x), |k|=2, are holomorphic and
bounded functions of x having the same asymptotic property as before.

Theorem 3 (Main Theorem). Let A and B(x) be the same as in Theorem 2.
Then we consider the system of nonlinear difference equations ‘

(E) Y= D=+ 457+ B@W + 3 D",

where the power series in the right hand side is again uniformly convergent for a do-
main of the form (1.1). Assume that all the eigenvalues of /A have positive real part
and they satisfy inequalities

{1.11n O0<Re ;,<Re 4,<---ZRe1,.
Assume moreover that
(1.12) AR=0(1,  [k|=2.
Then there exists a transformation y(x)=¢(x, u(x)) of the form
1.13) y(x)zu(x)+[ké2pk(x)U(x)’°
such that equation (E,) is transformed into the system of the form

u(x—1) =14 2x"Huy(x),
u(x—1) =1+ 2,x"Du,(x)+e,_1x""u,_(x)

3 ey (), (),
r=2,3,---,m,
where

(i) pu(x), |k|=2, are n-dimensional vector functions holomorphic and bounded
in a domain of the form (1.6) and asymptotically developable into power series in x™*

as x tends to infinity through the sector |arg x|<C % —e,

(ii) S, is a finite set of row vectors k=(k,, - - -, k,)) such that k, =k, ,=---=
k,=0 and 2,—k,2,— - - - —k,_,A,_, are positive integers,

(iii)) ¢, (ke S, r=2,3, - - -, n) are constants,

(iv) the power series in u appearing in the right hand side of (1.13)
(1.14) u—i—]klZ;2 Pe(x)u®

is uniformly convergent for
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T
<‘—_53

1.15 x|>R, |ar KLY
(1.15) | x| ] gx[<2 € 5

x
arg =

/2.7
j:1a2) e, N, Hu“<5,

so that its sum ¢(x, u) represents there a holomorphic and bounded function of (x, u).

Remark 3. If we substitute a general solution u,(x) of reduced equation (EJ)
for u in (1.14), the resulting expression

Bo(X) + (14 P(x))p(x, 1,(x))

represents a local solution of equation (E) provided that the values of (x, u,(x))
satisfy inequalities (1.15).

Remark 4. 1If, instead of assuming condition (1.11) as in Theorem 3, we as-
sume a milder condition

Re,<---<Re1,<0<Re 1, ,< --<Re2a,
then we have a particular solution of the form
Y= 21 POu () () =12,
yi(X) =u;(x)+ IkIZ;I21);];(36)%1(36)’”“- (X)), j=t+1,142, -, m,
where the functions u,(x), j=¢+1, t+2, - - -, n, must satisfy the equations
U, (x—D)=14+2,, . x Hu,, (%),
1, (= 1) = (1o 604, () 42, _ =1, _ () + _z_:“ b, x4y (x)
+ 2 CTRX‘“’““““*"‘*’“"‘*"l‘lumj(;c et (x),
kES;,
r=t+2,t4+3, ---,n,

and S; denote a subset of the finite set of row vectors k=(k,, - - -, k,) such that
() k=k,=---=k,=k,=k,,,=--=k,=0,
(i) A,— 2352141 k,4, is a positive integer.

§ 2. Proof of Theorem 1

In order to prove Theorem 1 (in this section) and in order to prove convergence
of the formal transformation appearing in Theorem 3 (in section 5), we want to ap-
ply a fixed-point theorem in the function space.

Fixed-Point Theorem.
Let D be a domain in C™, C being the complex plane, F be a family of holo-
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morphic functions ¢(x): D—C™, and T be a mapping from Finto F. We assume
the following:

(i) Fis convex,

(ii) Fis closed in the sense of uniform convergence on compact sets,

(iii) If a sequence {¢,(x)}7-, is convergent on each compact subset of the do-
main D, then the same is true for the sequence {T'¢,(x)}7.,,

(iv) TF is locally uniformly bounded in the domain D.

Under these assumptions there exists a fixed point @(x) such that the equation
Td(x)=¢(x) holds.

To prove Theorem 1, let N be any large positive integer and let us put
) N-1
2.1) dy(x)= Zl pix.
=
We apply for equation (E) a transformation such that

2.2) Y(X) =7(x)+ g (x).

Then equation (E) is transformed into an equation of the form

(E) (x— D) =/fu(x, (x)),
where
(2.3) S D=1%, 9+ ¢y (x)) — gy(x—1).

It is easily verified that
24 I/ DS anlx T+ A +a lx]7) [19],
2.5) £ Ce D—fa e IS A+a |x[7) [lp—7|),
for

|x|>Rj, largXI<%, I71<d%, |171I<5%

by choosing positive numbers «, ay, R} and dy appropriately.
We denote by F the family of the functions 5(x) which are holomorphic in a
domain of the form

2.6) D(RN)E{x;|x|>RN,largxl<%—e},

and satisfy there
(2.7) 7)) [=Ky |x]77,
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where R, and K, are to be determined in a suitable way.
Let & be a positive number such that 0<x<cos (—7;— —e). As can be easily veri-
fied, the following inequalities
(2.8) 1+ <l—jelx],  (=j=N)

hold in the domain D(R}), by choosing R}, sufficiently large.
The positive integer N and positive numbers K,, and Ry are to be determined

so that

1/N
2.9) N>Z K> % R >max {(—KA> , Ry, Rﬁé}.
K Ne—a oy

We define a mapping 7" on F by
(2.10) Ty(x)=fy(x+1, p(x+1)).

In order to prove that the mapping 7 is well defined, we show that inequalities
X+ >Ry, Jargx|<Z, [+ DII<d

hold for x e D(Ry) and 7(x) e F. It is evident that if an x is in D(Ry), then the
x+1 is also in D(Ry). Therefore 5(x-+1) is well defined. By using the inequality
R, >R}, in (2.9), we have |x+1|>R}. Now we have

[7(x+DI=Ky|x+1]"" by (2.7)
<K Ri¥<3y by (2.9).

Thus, it has been shown that the mapping 7 is well defined.
In addition, following inequalities

/(e + 1, plx+ 1) ||
Say [x+17 7+ +alx+117) [9(x+1) | by 2.4
S(ay+aky) [x+ 17"+ Ky [x+1[7" by (2.7)
<(ay+aKy) | x| 4 Ky x|"(1— Nk | x| ™) by (2.8)
<Ky|x|"¥ by (2.9)

derive that T maps each function belonging to F into F.
It is evident that we can apply Fixed-Point Theorem to the present case. Hence
there is a solution 7,(x) for equation (E’) holomorphic in D(Ry) with ||7,(x)|=O(x~").
In order to prove the uniqueness of a solution, assume that there exists another
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solution 7,(x) for equation (E’) holomorphic in D(Ry) with ||7,(x)||=0(x"7). We
have in D(Ry)

l|76(x) — 7, () |
= f(x+1, go(x+ 1)) —fu(x+1, pu(x+ 1)) ||
S +a|x|™) lIp(x+1D)—np(x+ D] by (2.5)
<K(l+4a|x|™ Y |x|™" (K: a constant >0).

Let us set
o(X)=[/7(x) =1 xI",  x e D(Ry)
then we can easily verify that ¢(x) is bounded and satisfies
o) =(1—WNe—a) | x| o(x+1).

Hence we have

o(x)< ﬁ <1 i N'C—O“)K’ (K’: a constant >0),
i=0 | x|+J

for an arbitrary positive integer m. By virtue of the relation

lim ﬁ (1 =

m—oo j=0

_N/c——oz)
|x|+j

we have g(x)=0; that is, 7,(x) =7,(x).
In order to prove the asymptotic developability of a solution, let us denote 7, (x)
the unique solution given above. The function y,(x) given by

Yu(X) =75 (X)+ (%)

is a solution of equation (E) holomorphic in D(Ry).

For our purpose, it is sufficient to prove that this function does not depend on
N. To do this, let M be any integer larger than N. By the same reasoning as
above, the expression

Yu(X) =75 (X) + §(X)
is also a solution of equation (E) holomorphic in D(R,). Obviously the function
M-1 .
Vu(X)— g () =7u(x) + .ZN px~’
7=
is a holomorphic solution for equation (E’) in D(R,,) and satisfies the order condition

172(%) — g (¥) || = O(x~").
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By the uniqueness of a solution, we must have the identity
) M-1 .
(%) + Zijx_jEnN(x),
7=
in the common part of D(Ry) and D(R,). Consequently we get

Yu(X)=yy(x).

Thus the proof of Theorem 1 is accomplished.

§3. Proof of Theorem 2
By applying transformation (1.10) to equation (£,), we have

3.1 I+ Px—1)u(x— )=+ Ax"'+ AX)I + P(x)u(x).
Let B(x) be an n by n matrix function satisfying

(3.2) (I+ Ax7'+ AC)YI+ P(x)) = (I+ P(x — 1))T+ 4x ™'+ B(x)).
Namely,

(3.3) P(x—1)(I+ Ax + B(x))= I+ Ax "'+ A(x)) P(x) + A(x) — B(x).

Our aim is to determine P(x) so that B(x) may take a form as simple as pos-
sible. Let us substitute formal power series

oo o = co j—1 >
G4 Bax ea, Zra B{E (7R
j=2 j=0 j=1

Jj=1 \r=0 r

for A(x), B(x), P(x) and P(x—1) in equation (3.3) respectively. By equating coeffi-
cients of like powers of the both sides, we have following recursive relations:
B,=0, B,=0,
P1+P1A_/1P1=A2_‘Bza

(3.5) mP,+P, A—AP,=A,,.—B, ,+M,,

where M, is a polynomial in matrices 4,,:--, 4,, By,---, B, P,---, P,_, and
A. Comparing the (r, s) elements of both sides of equation (3.5), we get

(3.6) (m—2,+2)P i =A7  — B+ M +e, [P0 —e PR

Now we introduce the linear order “<”’ in the set of the indices of an » by n matrix
such that:
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(', s")<(r, s) means that (i) s’>s, otherwise
(ii)s’=s and r' <r.
Under this linear order condition, the element P2 ~"*and P]**' are considered as
known quantities. Now we put
B;‘,f+1__:0’ if Zr—237&m9

(3.7) .
By oa=Ay .+ My +e, (Prtt—e P, if 2, —2A,=m.

By considering assumption (1.9), if 1,— 2, is a positive integer m, then r must be
larger than s. Thus, it has been verified that the matrix B (x) is of the form stated
at (i) in Theorem 2.

In order to prove holomorphy of P(x), we use Theorem 1. We take the s-th
column of both sides of equation (3.3):

(1 +2sx_1)ps(x— l)+ EsX™ ps+1(x_ 1) + i . bjs(x)pj(x_ 1)
J=8+

=+ Ax7'+ AQ)p(x) +dy(x),

where p,(x) and d,(x), j=1, 2,- - -, n, are the j-th column vectors of matrices P(x)
and A(x)— B(x) respectively. Rewriting the above equation, we see that p,(x) sa-
tisfies an equation of the form

(3.8) Pix—1)=Fo(¥)+ T+ Ax"+ A(x)p().

By using Theorem 1, we can conclude that the statement with respect to the matrix
P(x) in Theorem 2 holds.

§4. Construction of formal transformation in Theorem 3

Instead of constructing formal transformation (1.13) directly, it is convenient
to apply transformations of the following form

Y= (+ X g (o,
) =)+ T g,

......

successively. Let

YO)=um()+ T QRGO
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be the composite of the first m transformations above. If we make m tend to in-
finity, then we have a desired formal transformation. So we want to stress a trans-
formation of the form

@D YO=uC)+ T "

with g,(x)=0(x"Y).
By applying transformation (4.1) to equation (E,), we have
u(x—1)=(+ Ax™"+ B(x))(u(x)+ WZ.:N q()u(x)")
(42 + 3 )+ )"
— mgN qu(x — D+ Ax "+ B)u(x)+ - - )+ - - -

Rewriting the right hand side, we have
4.3) u(x—1)=I+ Ax~'+ B(x))u(x)+ ”“Z>]2 g (u(x)®.

It is evident that
4.9 gi(x)=fx),  for|k|<N.
The term gk(x)u(x)" with |k|= N is picked up only in the expression
(I+ Ax7 + B(x)qu(x)u(x)* +f(x)u(x)*
— % aa(x— DU+ Ax7 + B

Considering that the matrix 74 Ax~'+4 B(x) is of lower triangular form, we introduce
in the set of n-dimensional row vectors with length N, a linear order “<” such
that:

h<k means that 4, <k, for some i, 1<i<n—1, and
h;=k;, for all j<i.

Then the g,(x)’s with |k|=N are written as follows:

80 = I+ Ax 7+ B+ — gu(x— D] (142,57
- WZ::N gn(x—1)cgn(X),

h<k

4.5)

where c,,(x) are polynomials in x~* with ¢,,(x)=0(x"!). Namely we have
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TT (42,5 YYoig(x—1)

j=1

=+ Ax""+ B(x))q(x) +fu(x)— [hlZle gn(x— Dcgn(x%) — gu(X).

h<k

(4.6)

Let us substitute formal power series

o oo i—1 - . L A il
@ Taxy B (e D Bea
7= J=

i=1 lr=0 Jj=0

for q,(x), g.(x—1), fL(X)— DI gu(x—Dcir(x), g,(x) in equation (4.6) respectively.
|h|=N
h<k

By equating coefficients of like powers of the both sides, we have following recursive

relations:

g0=09 g1=0
(A+kDI— Mg, =v,—g,,

(4'8) ((m—l—kZ)I—A)qm:vm+1—gm+1+wm,
with a simplified notation
4.9) ki=ka+---+k,2,,

where w,, is a linear combination of ¢,,- - -, ¢g,,_, With coefficients n by » matrices.
Taking the r-th elements of both sides of equation (4.8), we get

4.10) (m—2,+kNDqg, =1 — &1+ Whte_qn
Since g7/, r’<r, are already determined, we put

r =0, for 2, —ki+m,
4.11) Ems =
Emi1=Vmir+Whte, g5, for 2, —ki=m.
Thus equation (4.6) has a formal power series solution. Moreover equation (4.6)
can be rewritten of the form

qr(x— l)ifNo(x)+ I+ Ax +§(x))41k(x)-

Hence by applying Theorem 1, it is shown that the functions g,(x) have the asym-
ptotic property. As the function p,(x) appearing in the composite transformation
(1.13) is a polynomial in g,(x), with |#|<|k|, we have the statement (i) in Theorem 3.

By assumption (1.11), the relation 1,—kAi=m, (m: an integer >0) derives that
k,=k,.,=---=k,=0. Hence, if the r-th element g;(x) of the vector g,(x) is not
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identically zero, then it must take the form as follows:

(412) g;(x)zCrkx"17+70111+---+Ic,-_lz,,_1_1.

89

Hence, if we apply to equation (E,) the composite transformation (1.13), then by
virtue of equation (4.4), (4.12), we have equation (EJ) stated in Theorem 3 in section

1.
§5. Convergence of formal transformation in Theorem 3
We will write equation (E3) simply as follows:

5.1 u(x—1)=G(x, u(x)).

Solving this equation conversely with respect to u(x), we have

u(x)=H(x, u(x—1)); or

(5.2) _
uj(x):Hj(x7 u(x— 1)): J=1a 2:' MRER /(S

The proof of convergence of (1.14) is based on the Fixed-Point Theorem.

any large positive integer and let us set
(5-3) $u(x, Wy=u+ 3, p()u,
TEise

with simplified notations

kp=kym~+ - - - +kyp,,

5.4
(CX) w=Rex, j=1,2,---,n

Let N be

Let u(x) be a holomorphic and bounded solution of reduced equation (E3).

We apply for equation (E,) the transformation

(55 Y(X)=(x)+ gn(x, u(x)).
Then we have

(5.6) 7(x— D =fx(x, u(x), 7(x)),
where

S (%, u, p)=UT+ Ax™"+ B(X))(7+ u(X,4))

(57) + 3G+ gl ) = p(x—1, GCx, ).

It is easily verified that

(5.8 W, u, Il Seen| x| ulld + (1 +ad x| 7],
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(5.9) s 1, ) — %y 1, DS+ x| [l

for

x> Ry, Jarg x|<Z—e, [Jul,=max|u, [/ <o,
j=1

~

<4y, l7I<4y,

by choosing positive numbers «, ay, Ry, dy and 4y appropriately.
Let F be the family of functions ¢(x, #) which are holomorphic in a domain
D,(Ry, dy) of the form

DRy, 3)={(x, w3 |xI>Ry, jarg x|< e,

(5.10)
arg 2 |< 2 e, 1<jsn, |lul,<dy),
12
and satisfy there
(5.11) | (%, w)|| < Ky [max{|x|™, [[u|}]",

where Ry, Ky, dy are to be determined in a suitable way.
Let £ be a positive number defined in section 2, and 2 be a complex number.
As can be easily verified, the following inequalities

(5.12) 2+ DN S 1—jl 2] [x], j=1,2,---, N
hold for
[XI> Ry, Jarg x|<T-—e, arg—xz— <2
by choosing R}, sufficiently large. We can assume that
n—1 n n
(5.13) Zlel+ 20 bl 2, keZl le | <k mlnll l

if necessary by carrying out a linear transformation with constant coefficients. Let
L, o and B be positive numbers such that

(5.14) Slel+ 51+ 5 3 leal<L<rmin|)

r=1 r,8=1

0<p<y, ( m=111 |2,]— )
0< f< min {x, p}.
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It is easily verified that

(1= |=Dx[")<1—plx[",  r=1,2,--,n

(5.15) .
(1—min {&, p}|x|")¥<<1—NB|x|™,

for |x|>Rjy, if Ry is sufficiently large.
Now we take a positive integer N and positive numbers K, d5 and Ry so that

N>Z, K> | 5,<min {6, (K7},
(5.16) B8 NB—a
R, >max {35', Ry, Ry}

We define a mapping 7" on F by
(5.17) To(x, )=Fu(x+ 1, HG+1, u), g(x+ 1, H(x+ 1, w)).
First, we will show that
(5.18) | HGe+1, 1) ,< 35,
(5.19) d(x+1, H(x+1, w)[|<dy,

for (x, u) in Dy(Ry, 65). We have

lHl(x+ 13 U)l
=142+ D7 |
== [x[)max {|x[7, ||u,}]" by (5.12)

S —&|4|—L)|x|7)max {[x]|, [Jul]}.
Assuming that

|H,(x+1, 0|  (=IH,D
<(1—(|2;|— Dl x| Dmax {| x|, lull 7, j<r

we have

|H,(x+1, 1)
SI+2,0+ D7 Ny [+-le ol X7 H, i

2 byl )
+k§s |C,,kal-#r+lc,u—l lHllkl' . "Hr—1|kr‘1],
<A —k|2, ]| x|"HA+L|x|"Hmax {|x] 7%, || u| " by (5.14)
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== (&[4, |— D) x| Hmax {x|, |[a]}]*".
By induction, we thus have

IH(x+1, W[, =(A—p|x|7)-max {{x|7, [[«[l.}, by (5.15)

(5.20)
<max {Ry, 6y} =08,<d%, by (5.16).

Inequality (5.18) is thus proved. Then we have

I(e+1, Hx+1, )|
< Ky [max {x+ 11, | Hox+ 1L, 0[] by (5.11)
< Ky[max {R5", 3,)1" by (5.18)
<K,o¥< A, by (5.16).

Thus the mapping 7 is well defined.
In order to prove that TFC F, we must show that

(5.21) | T(x, u) || < Ky[max {|x|™, [|ull "
We have

IfvCe+1, Hx+1, u), g(x+1, H(x+1, w)||
Say|x+17HE+L w)[[f +1+alx+ 1) g(x+1, Hx+1, w)||
by (5.8)
Say x| [max {{x]7 Jull ]V e x| gx+1, Hx+1, )|
+g(x+1, Hx+1,u)| by (5.20)
= (ay+aKy)|x|™" [max {|x[7, [[u|| "
+ Kylmax { x|~ (1 —&|x|™), (1 —p|x|™") max {{x|7, ||u{}}]"
by (5.20)
=(ay+aKy)|x | [max {x|7, [[u|}"
+Ky(1—Ng|x|")max {{ x|, [Ju] " by (5.15)
< Ky[max {|x|™, ||u [|.}]".
Thus inequality (5.21) is verified. By virtue of Fixed-Point Theorem, there exists a

function ¢,(x, u) corresponding to a fixed point, which is holomorphic in D,(Ry, dy)
and satisfies

(5.22) Bo(x, W) =fu(x+1, H(x+1, u), ¢(x+1, H(x+1, u))),
and

(5.23) 1 9o(x, 2)|| = Ky[max {|x|™, [Ju],}]".
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In order to prove the uniqueness of our solution, suppose that there is another
solution ¢,(x, u). By using u(x) with

uCo) . <oy
we have
[ o, u(x)) — ¢:(x, u(x)) ||
S=(+a x| [[go(x+1, u(x+1))—g(x+1, u(x+ D) | by (5.9)
S(I+a|x|")K[max {| x|, | H(x+1, u(x))||}]¥ (K: a constant>0)
=(I+a|x|")K[max {{x|™, ||u(x)|[,}]" by (5.20).
Let us set

a(x)=||go(x, u(x)) — i(x, u(x)) || [max {|x|7*, [|u(x) [},
for (x, u(x)) in DRy, 3y). We can easily verify that ¢(x) is bounded and satisfies
o) =(1—=(Np—a) |x] Ha(x+1).
Hence we get o(x)=0 as in section 2. Namely
Po(X, u(x)) = $i(x, u(x)).

As the function u(x) is chosen arbitrarily, so long as it is a holomorphic solution of
(E2) with |lu(x)||,<dy, we conclude that

¢0('x: u)E¢1(x= u) iIl DZ(RNa 5N)

We denote P,(x, u) instead of ¢(x, u). We can prove as in section 2 that the sum
Py(x, u)+ ¢y(x, u) is independent of N. This proves the uniform convergence of
the formal transformation in Theorem 3.
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