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1. Introduction.

In 1919 T. H. Gronwall [1] made use of a lemma which, in a generalized form,
is a basic tool in the theory of ordinary differential equations. The following gen-
eralization of the original lemma is known as Gronwall’s Lemma [2].

Gronwall’s Lemma. Suppose $u(t)$ , $¥phi(t)$ , and $k(t)$ are real valued continuous
functions for $t¥in[a, b]$ . Suppose $k(t)$ is nonnegative on $[a, b]$ and

$ u(t)¥leq¥phi(t)+¥int_{a}^{t}k(¥tau)u(¥tau)d¥tau$ , $t$ $[¥mathrm{a}, b]$ .

Then

$ u(t)¥leq¥phi(t)+¥int_{a}^{t}k(¥tau)¥exp[¥int_{¥tau}^{t}k(s)ds]¥phi(¥tau)d¥tau$ , $t¥in[a, b]$ . (1)

If $¥phi^{¥prime}(t)$ is continuous the estimate (1) may be given in the form (see e.g., [3])

$ u(t)¥leq¥exp[¥int_{a}^{t}k(¥tau)d¥tau]¥phi(a)+¥int_{a}^{t}¥exp[¥int_{¥tau}^{t}k(s)ds]¥phi^{¥prime}(¥tau)d¥tau$ . (2)

The importance of the inequalities (1) and (2), of course, lies in the fact that the
right hand side of each is independent of $u(t)$ .

This useful lemma has been generalized in many ways and these generalizations
have a variety of applications. The purpose of this paper is to establish a gen-
eralization of the lemma for a class of systems of multiple Volterra integral equa-
tions. We will also see that both estimates, (1) and (2), have natural analogues
for these systems.

We will introduce a fundamental solution for the Volterra equation under con-
sideration as the solution of a related Volterra equation. This fundamental solution,
which is a generalization of the fundamental matrix in ordinary differential equations,

is the generalization of the function $¥exp[¥int_{¥tau}^{x}k(s)ds]$ appearing in (1) and (2).

A generalization of Gronwall’s Lemma for a scalar equation in one independent
variable has been given in terms of a resolvent kernel [4] while others have been
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obtained for equations in several variables in terms of the Riemann function [5],

[6], [7]. The fundamental solution introduced here is related to both the resolvent
and the Riemann function. We will investigate these relations and show that the
result established here may be used to obtain several generalizations given by other
authors.

The main result is given in Section 2 and is established by applying a theorem
valid in partially ordered Banach spaces. Section 3 is devoted to a discussion of
the relationships between the result given here and generalizations obtained by other
authors.

Although we do not consider them here, our generalization has several appli-
cations. In particular the author has used this result to obtain stability results for
systems of multiple Volterra equations. These stability results will appear elsewhere.

2. Main Result.

Unless specified otherwise we will adopt the following notation for the remainder
of the paper. Let $R$ denote the reals. Let $x=(x_{1}, x_{2}, ¥cdots, X_{n})¥in R^{n}$, $x¥leq y$ iff $ x_{i}¥leq$

$y_{i}$ for $1¥leq i¥leq n$ , and for $a$ , $b¥in R^{n}$ then $[a, b]=¥{x|x¥in R^{n}, a¥leq x¥leq b¥}$. Let $|$ $|$ be an
arbitrary vector norm on $R^{n}$ and let $||M||=¥sup_{|x|=1}|Mx|$ be the norm of an $m¥times n$

matrix $M$ . Let $¥alpha_{k}$ denote any combination of the integers $¥{1, 2, ¥cdots, n¥}$ taken $k$ at
a time. We will assume that the elements in any combination $¥alpha_{k}=¥{i_{1}, i_{2^{ }},¥cdots, i_{k}¥}$

have been ordered $(¥mathrm{i}.¥mathrm{e}., i_{1}<i_{2}<¥mathrm{r}¥cdot¥cdot<i_{k})$ . Given the combination $¥alpha_{k}$ we let $¥alpha_{¥mathrm{k}}^{¥prime}=$

$¥{1,2, ¥cdots, n¥}-¥alpha_{k}$ .
Let $¥alpha_{k}=¥{i_{1}, i_{2^{ }},¥cdots, i_{k}¥}$ . For $x$ $¥in R^{n}$ we define $x_{a}k=(x_{i_{1}}, x_{i_{2}}, ¥cdots, ¥chi_{i_{k}})$ . We de-

note the multiple integral symbol $¥int_{a_{i_{1}}}^{x_{i_{1}}}¥int_{a_{i_{2}}}^{x_{i_{2}}}¥cdots¥int_{a_{ik}}^{x_{i_{k}}}$ by $¥int_{a_{ak}}^{x_{a}}k$ and the sequence of differ-

entials $dr_{t_{k}}dr_{i_{k-l}}¥cdots dr_{i_{1}}$ by $dr_{a}k$ . If $g:R^{n}¥rightarrow R^{m}$ , we define the partial derivative
For $x$ , $y¥in R^{n}$ we introduce the following: let

$g_{x_{i_{1}}x_{i_{2}}x_{i_{k}}}¥cdots=g_{x_{a}}k$ .

$w_{i}(x, y;¥alpha_{k})=¥left¥{¥begin{array}{l}x_{i}¥mathrm{i}¥mathrm{f}i¥not¥in¥alpha_{k}¥¥y_{i}¥mathrm{i}¥mathrm{f}i¥in¥alpha_{k}¥end{array}¥right.$

and $w(x, y;¥alpha_{k})=(w_{1}(x, y,.. ¥alpha_{k}), w_{2}(x, y;¥alpha_{k}), ¥cdots, w_{n}(x, y;¥alpha_{k}))$ .

Let $u$ , $¥phi:[a, b]¥rightarrow R^{m}$ and for each $¥alpha_{k}$ , $1¥leq k¥leq n$ , let $K_{a}k(x, r_{a}k)$ be an $m¥times m$

matrix function for $x¥in[a, b]$ , $a_{a}k¥leq r_{a}k¥leq x_{a}k¥leq b_{a}k$. We then consider the linear
system of $m$ Volterra integral equations in $n$ independent variables of the form

$u(x)=¥phi(x)+1¥leq ah¥leq n¥sum_{k}¥int_{a_{ah}}^{x_{a}}kK_{a}k(x, r_{a}kh)u(w(x, r;¥alpha_{k}))dr_{a}$. (3)

It may be shown that if $¥phi(x)$ and the matrix functions $K_{a}k(x, r_{a}k)$ are continuous
then Equation (3) has a unique continuous solution on $[a, b]$ . Also, we observe
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that there are 2$n-1$ integrals appearing in Equation (3). We simplify the notation
further by using $¥sum$ to mean

$1¥leq¥sum_{k}ah¥leq n$

We now define the fundamental solution for Equation (3).
Definition. Suppose the matrix function $A(x;¥xi)$ satisfies the equation

$A(x;¥xi)=I+¥sum¥int_{¥xi_{a}}^{x_{a}}kkK_{a}k(x, r_{ak})A(w(x, r;¥alpha_{k});¥xi)dr_{ak}$ (4)

for $a¥leq¥xi¥leq x¥leq b$ . Then $A(x;¥xi)$ is called a fundamental solution for Equation (3).
If the functions $K_{ah}(x, r_{a}k)$ are continuous it may be shown that $A(x;¥xi)$ exists,

is unique, and is continuous for $a¥leq¥xi¥leq x¥leq b$ . The following theorem, which may
be verified directly, gives the solution of Equation (3) in terms of the fundamental
solution. The two forms for the solution of Equation (3) given in this theorem
allow us to establish analogues for inequalities (1) and (2).

Theorem 1. Suppose $¥phi(x)$ is continuous on $[a, b]$ and each matrix function
$K_{ah}(x, r_{a}h)$ is continuous for $x¥in[a, b]$ , $a_{ak}¥leq r_{ak}¥leq x_{a}k¥leq b_{a}k$ .

i) If each $A_{¥epsilon_{a}}k(x;¥xi)$ is continuous for $a¥leq¥xi¥leq x¥leq b$ then the unique continuous
solution of Equation (3) on $[a, b]$ is

$u(x)=¥phi(x)+¥sum(-1)^{k}¥int_{a_{a}}^{x_{ak}}kA_{r_{a}}k(x;w(x, r;¥alpha_{k}))¥phi(w(x, r;¥alpha_{k}))dr_{a}k$ . (5)

$¥mathrm{i}¥mathrm{i})$ If each $¥phi_{x_{a}}k$ is continuous on $[a, b]$ then the unique continuous solution of
Equation (3) is

$u(x)=A(x;a)¥phi(a)+¥sum¥int_{a_{a}}^{x_{a}}kkA(x;w(a, r;¥alpha_{h}))¥phi_{r_{a}}k(w(a, r;¥alpha_{k}))dr_{ak}$ . (6)

Our main result is based on Theorem 1 and the following theorem which may
be found in [8].

Theorem 2. Suppose $F$ is a complete metric space and is partially ordered in
such a way, that if an increasing sequence $(g_{n})¥subset F$ has the limit $g_{0}$ , then $g_{n}<g_{0}$ for
all $n$ . Suppose $T$ is an order preserving $(f_{1}<f_{2}¥Rightarrow Tf_{1}<Tf_{2})$ contraction on $F$ and $f_{0}$

is the unique fixed point of T. Then $f¥in F$ and $f<Tf$ implies $f<f_{0}$ .

For any real $¥lambda$ consider the space $C_{¥lambda}[a, b]$ consisting of the set of continuous

functions $g:[a, b]¥rightarrow R^{m}$ normed by $||g||_{¥lambda}=¥sup_{x¥in[a,b]}¥{|g(x)|¥exp[-¥lambda(¥sum_{i=1}^{n}x_{i})]¥}$ . It may

be shown that $C_{¥lambda}[a, b]$ is a Banach space. Let $K¥subset C,[a, b]$ be the positive cone of
functions such that $¥phi(x)=(¥phi_{1}(x), ¥phi_{2}(x), ¥cdots, ¥phi_{m}(x))¥in K$ iff $¥phi_{i}(x)¥geq 0,1¥leq i¥leq m$ . We
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consider the partial order on $C_{¥lambda}[a, b]$ defined such that $g_{1}<g_{2}$ iff $g_{2}-g_{1}¥in K$ . We
notice that this partial order has the property that if $(g_{n})$ is an increasing sequence
in $C_{¥lambda}[a, b]$ converging to $g_{0}$ , then $g_{n}<g_{0}$ for all $n$ .

We now have the following generalization of Gronwall’s Lemma.

Theorem 3. Suppose $¥phi(x)$ is continuous on $[a, b]$ and for each $¥alpha_{k}$ with $1¥leq k$

$¥leq n$ the $m¥times m$ matrix function $K_{a}k(x, r_{a}k)$ is continuous and has nonnegative ele-
ments. If $u:[a, b]¥rightarrow R^{m}$ is continuous and

$u(x)<¥phi(x)+¥sum¥int_{a_{a}}^{x_{a}}kkK_{ak}(x, r_{a}k)u(w(x, r;¥alpha_{k}))dr_{a}k$

for $x$ $¥in[a, b]$ then $u(x)<v(x)$ where $v(x)$ is the unique continuous solution of Equa-
tion (3) on $[a, b]$ . If in addition each $A_{¥xi_{a}}k(x;¥xi)$ is continuous on $a¥leq¥xi¥leq x¥leq b$ then

$u(x)<¥phi(x)+¥sum(-1)^{k}¥int_{a_{a}}^{x_{a}}kkA_{r_{a}}k(x;w(x, r;¥alpha_{k}))¥phi(w(x, r;¥alpha_{k}))dr_{a}k$ . (7)

Or if instead we make the additional assumption that each $¥phi_{x_{ah}}(x)$ is continuous on
$[a, b]$ then

$u(x)<A(x;a)¥phi(a)+¥sum¥int_{a_{a}}^{x_{a}}khA(x;w(a, r;¥alpha_{k}))¥phi_{r_{a_{k}}}(w(a, r;¥alpha_{k}))dr_{a}h$ . (8)

Proof. The continuity of each $K_{a}k(x, r_{a}k)$ on the compact domain implies there
is a constant $M>0$ such that $||K_{a}k(x, r_{a}k)||¥leq M$ for each $¥alpha_{k}$ . Choose $¥lambda_{0}$ so that $¥lambda_{0}>1$

and $¥frac{M(2^{n}-1)}{¥lambda_{0}}<1$ . Define $T$ on $C_{¥lambda_{0}}[a, b]$ such that for $g$ $¥in C_{¥lambda_{0}}[a, b]$ then

$(Tg)(x)=¥phi(x)+¥sum¥int_{a_{ak}}^{x_{a}}kK_{a}k(x, r_{a}k)g(w(x, r;¥alpha_{k}))dr_{a}k$ .

It follows from the continuity of the functions $¥phi(x)$ , $g(x)$ , and $K_{a}k(x, r_{a}k)$ that $(Tg)(x)$

is continuous on $[a, b]$ .
Take $g_{1}$ , $g_{2}¥in C_{¥lambda_{0}}[a, b]$ . Then we have

$|(Tg_{1})(x)-(Tg_{2})(x)|$

$¥leq¥sum¥int_{a_{ak}}^{x_{¥alpha}}kM|g_{1}(w(x, r;¥alpha_{k}))-g_{2}(w(x, r;¥alpha_{k}))|$

. $¥exp[-¥lambda_{0}(¥sum_{i=1}^{n}w_{i}(x, r;¥alpha_{h}))]¥exp[¥lambda_{0}(¥sum_{i=1}^{n}w_{i}(x, r;¥alpha_{k})]dr_{a}k$

$¥leq M||g_{1}-g_{2}||_{¥lambda_{0}}¥sum¥int_{a_{a}}^{x_{a}}kk¥exp[¥lambda_{0}(¥sum_{i=1}^{n}w_{i}(x, r;¥alpha_{k}))]dr_{a}k$
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$¥leq M||g_{1}-g_{2}||_{¥lambda_{0}}¥sum¥frac{1}{¥lambda_{0}^{k}}¥exp[¥lambda_{0}(¥sum_{i=1}^{n}x_{i})]$

$¥leq¥frac{M(2^{n}-1)}{¥lambda_{0}}||g_{1}-g_{2}||_{¥lambda_{0}}¥exp[¥lambda_{0}(¥sum_{i=1}^{n}x_{i})]$ .

Therefore $||Tg_{1}-Tg_{2}||_{¥lambda_{0}}¥leq¥frac{M(2^{n}-1)}{¥lambda_{0}}||g_{1}-g_{2}||_{¥lambda_{0}}$ and $T$ is a contraction on $C_{¥lambda_{0}}[a, b]$ .

Now suppose $g_{1}$ , $g_{2}¥in C_{¥lambda_{0}}[a,xb]$ such that $g_{1}<g_{2}$ . Then since the elements
in each $K_{ak}(x, r_{a}k)$ are nonnegative we see that $K_{a}k(x, r_{a}k)g_{l}(w(x, r;¥alpha_{k}))<$

$K_{a}k(x, r_{¥alpha}k)g_{2}(w(x, r;¥alpha_{k}))$ for each $¥alpha_{k}$ . Thus $Tg_{l}<Tg_{2}$ and $T$ is order preserving.
The result now follows directly from Theorems 1 and 2. $¥mathrm{I}$

We note that our method of proof depends on the proper choice of norm on
the space of continuous functions. For further discussion of this idea and related
topics, the reader is referred to a paper by Chu and Diaz [9].

In the case when $m=n=14$ and $K_{1}(x, r)=k(r)$ ($x,$ $r$ real) we see the $A(x;r)=$

$¥exp[¥int_{r}^{x}k(s)ds]$ and estimates (7) and (8) reduce to estimates (1) and (2) respec-

tively. The form of the estimates (7) and (8) suggest that the fundamental solution
defined above is the natural generalization of the exponential function appearing in
Gronwall’s Lemma; in fact the fundamental solution defined here is a generalization
of the fundamental matrix in the theory of ordinary differential equations.

3. Generah.zations Related to Theorem 3.

We now turn our attention to a discussion of several generalizations of Gronwall’ $¥mathrm{s}$

Lemma and show how some of these may be obtained from Theorem 3.
Chu and Metcalf [4] have given the following extension of Gronwall’s Lemma

for scalar integral equations in one variable $(x, ¥xi, r¥in R)$ : Suppose the functions $u$

and $¥phi$ are continuous on [0, 1] and $K(x, ¥xi)$ is continuous and nonnegative on $ 0¥leq¥xi$

$¥leq x¥leq 1$ . If

$u(x)¥leq¥phi(x)+¥int_{0}^{x}K(x, r)u(r)dr$, $¥mathrm{o}¥leq x¥leq 1$ ,

then

$u(x)¥leq¥phi(x)+¥int_{0}^{x}H(x, r)¥phi(r)dr$ , $¥mathrm{o}¥leq x¥leq 1$ ,

where $H(x, ¥xi)=¥sum_{i=1}^{¥infty}K_{t}(x, ¥xi)$ , $0¥leq¥xi¥leq x¥leq 1$ , is the resolvent kernel, and $K_{i}(i=1,2, ¥cdots)$

are the iterated kernels of $K$ .
It may be shown [10] that the resolvent kernel $H(x, r)$ satisfies the integral

equation
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$H(x, ¥xi)=K(x, ¥xi)+¥int_{¥xi}^{x}K(x, r)H(r, ¥xi)dr$ .

Under the assumption that $A_{¥xi}(x;¥xi)$ is continuous for $0¥leq¥xi¥leq x¥leq 1$ we see from
Equation (4) that

$A_{¥xi}(x;¥xi)=-K(x, ¥xi)+¥int_{¥xi}^{x}K(x, r)A_{¥xi}(r;¥xi)dr$

in this case. Hence, by uniqueness, we see that $A_{¥xi}(x;¥xi)=-H(x, ¥xi)$ . Using this
fact and Theorem 3 in the form of inequality (7) (with $m=n=1$ and $a=0$) we
obtain the result given by Chu and Metcalf.

Conlan and Diaz [11] have used the following generalization of Gronwall’s
Lemma to study existence and uniqueness for an $¥mathrm{n}$-th order hyperbolic partial dif-
ferential equation: If $¥gamma$ , $M$, and $L$ are nonnegative constants, if in the region
$0¥leq x¥leq b$ $(b ¥in R^{n}, b>0, b<¥infty)$ the real valued function $u(x)$ is continuous and non-
negative, and if

$u(x)¥leq¥gamma+L1¥leq k¥leq kn-1¥sum_{a}¥int_{¥mathrm{o}_{ak}}^{x_{a_{¥mathrm{k}}}}u(w(x, r;¥alpha_{k}))dr_{a}k+M¥int_{0}^{x}u(r)dr$

for $x¥in[0, b]$ , then $u(x)¥leq¥gamma K$ for $x¥in[0, b]$ where $K$ is a constant depending on $L$ ,
$M$ , and $b$ . We see that under the assumptions made by Conlan and Diaz, Theorem
3 may be applied directly and inequality (8) implies $ u(x)¥leq A(x;0)¥gamma$ . Their result
then follows from the continuity of $A(x;0)$ on $[0, b]$ .

Other generalizations have been given when $u(x)$ satisfies the following special
inequality $(K_{a}k¥equiv 0,1¥leq¥alpha_{k}¥leq n-1, K_{a_{n}}(x, r)¥equiv K(r))$

$u(x)<¥phi(x)+¥int_{a}^{x}K(r)u(r)dr$, $(a, x, r¥in R^{n})$ . (9)

In order to establish the connection between these generalizations and that given in
Theorem 3 we introduce the matrix function $¥overline{A}(x;¥xi)$ satisfying the equation

$¥overline{A}(x;¥xi)=I+(-1)^{n}¥int_{¥xi}^{x}¥overline{A}(r;¥xi)K(r)dr$, $a¥leq x¥leq¥xi¥leq b$ . (10)

If $K(x)$ is continuous on $[a, b]$ , which will be assumed here, it may be shown that
Equation (10) has a unique solution continuous in $¥mathrm{x}$ and $¥xi$ . When $n=1$ we see
that $¥overline{A}(x;¥xi)$ is the transpose of a fundamental matrix for the adjoint system. We
also note that if $m=1$ then $¥overline{A}(x;¥xi)$ is the so called Riemann function [12] for the
hyperbolic equation $u_{x}(x)=K(x)u(x)$ . If $A(x;¥xi)$ is the fundamental solution for
the equation associated with inequality (9) then it is possible to establish the follow-
ing reciprocity relation:
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$A(x;¥xi)=¥overline{A}(¥xi; x)$ , $a¥leq¥xi¥leq x¥leq b$ . (11)

We will now use Equation (11) to obtain the special form of the estimate (7)
when $u(x)$ satisfies inequality (9). Using Equation (11), Equation (10), and the
continuity of $¥overline{A}(x;¥xi)$ in its first variable we see that for each $¥alpha_{k}$ with $1¥leq k¥leq n-1$

$A_{¥xi_{a}}k(¥chi;¥xi)=(-1)^{n}¥int_{x_{a_{k}^{¥prime}}}^{¥xi_{a_{k}^{J}}}¥overline{A}(w(r, ¥xi; ¥alpha_{k});x)K(w(r, ¥xi; _{¥alpha_{k}))dr_{a}}¥acute{k}$
(12)

and

$A_{¥xi}(x;¥xi)=(-1)^{n}¥overline{A}(¥xi; x)K(¥xi)$ (13)

for $a¥leq x¥leq¥xi¥leq b$ . It follows from Equation (12) that $A_{¥xi_{a}}k(x;w(x, ¥xi; ¥alpha_{k}))=0$ for
each $¥alpha_{k}$ with $1¥leq k¥leq n-1$ . Using this fact, Equation (13), and Equation (11) again
we see that (7) now becomes

$u(x)<¥phi(x)+¥int_{a}^{x}A(x;r)K(r)¥phi(r)dr$. (14)

Snow [5], [6] has used a different method to obtain two generalizations of
Gronwall’s Lemma when $n=2$ and $u(x)$ satisfies an inequality of the form (9),
Since the result given in [5] follows from the one given in [6] we show that the
main result in [6] follows from Theorem 3 above. Changing notation so that $x$ , $y$ ,
$a$ , $b$ , $r$ , $s¥in R$ we have the following statement of Snow’s Theorem: Suppose $D$ is
a domain in $R^{2}$ and $u$ , $¥phi:D¥rightarrow R^{m}$ are continuous on $D$ . Suppose $K(x, y)$ is a con-
tinuous symmetric $m¥times m$ matrix function having non-negative elements on $D$ . Let
$P_{0}(a, b)$ and $P(x, y)$ be points in $D$ such that $(a, b)¥leq(x, y)$ and let $G$ be the rectangle
having the line joining $P_{0}P$ as its diagonal. Suppose the matrix $V(r, s;x, y)$ satisfies
the characteristic value problem

$V_{rs}(r, s;x, y)=K(r, s)V(r, s;x, y)$ , $V(x, s;x, y)=V(r, y;x, y)=I$. (13)

Let $D^{+}$ be the connected subdomain of $D$ containing $P$ and on which $V(r, s;x, y)$

has nonnegative elements. If $G¥subset D^{+}$ and $u(x, y)$ satisfies

$u(x, y¥phi(x, y)+)<¥int_{a}^{x}¥int_{b}^{y}K(r, s)u(r, s)dsdr$ (16)

then

$u(x, y¥phi(x, y)+)<¥int_{a}^{x}¥int_{b}^{y}V^{T}(r, s;x, y)K(r, s)¥phi(r, s)dsdr$

where $V^{T}$ is the transpose of $V$ .
Let $A(x, y;¥xi, ¥eta)$ be the fundamental solution for the equation associated with
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(16). If we assume $G¥subset D$ we see that under Snow’s hypotheses Theorem 3, where
the estimate (7) now takes the form given in (14), implies

$u(x, y)<¥emptyset(x, y)+¥int_{a}^{x}¥int_{b}^{y}A(x, y;r, s)K(r, s)¥phi(r, s)dsdr$ . (17)

Integrating the equation in problem (15) and using the characteristic data we have

$V(¥xi, ¥eta; x, y)=I+¥int_{¥xi}^{x}¥int_{¥eta}^{y}K(r, s)V(r, s;x, y)dsdr$ , $(¥xi, ¥eta)¥leq(x, y)$ . (18)

Comparing Equation (18) with the Equation (10) for $¥overline{A}$ , using Equation (11), and
using the symmetry of $K(x, y)$ we see that $¥overline{A}(¥xi, ¥eta; x, y)=V^{T}(¥xi, ¥eta; x, y)=A(x,y;¥xi, ¥eta)$

and hence we obtam. the estimate obtained by Snow.
We point out that provided $G¥subset D$ we obtam. the estimate (17) with no assump-

tion that $A(x, y;¥xi, ¥eta)$ have nonnegative elements on a subregion $D^{+}¥supset G$ . In fact,
under the hypothesis that $K(x, y)$ has nonnegative elements it follows from Theorem
3 that $A(x, y;¥xi, ¥eta)$ has nonnegative elements for all $(¥xi, ¥eta)¥in G$ . We also note that
the estimate (17) is valid without the symmetry assumption on the matrix $K(x, y)$ .

More recently Young [7] has generalized Snow’s method for a scalar inequality
of the form (9) in $n$ independent variables. Returning to the notation used earlier
we have the following statement of Young’s extension: Let $¥Omega$ be an open set in
$R^{n}$ and let $a$ , $ x¥in¥Omega$ such that $a<x$ . Suppose $u(x)$ , $¥phi(x)$ , and $k(x)¥geq 0$ are real
valued and continuous on $¥Omega$ . Let $V(¥xi; x)$ be the solution of the characteristic
value problem

$(-1)^{n}v_{¥xi}(¥xi; x)=k(¥xi)v(¥xi; x)$ , $v(¥xi; x)=1$ for $¥xi_{i}=x_{¥dot{¥iota}}$ , $1¥leq i¥leq n$ . (19)

Let $¥Omega^{+}$ be the connected subdomain of $¥Omega$ containing $x$ such that $v(¥xi; x)¥geq 0$ for all
$¥xi¥in¥Omega^{+}$ . If $[a, x]¥subset¥Omega^{+}$ and

$u(x)¥leq¥phi(x)+¥int_{a}^{x}k(r)u(r)dr$ (20)

then

$u(x)¥leq¥phi(x)+¥int_{a}^{x}¥phi(r)k(r)v(r;x)dr$ .

Suppose $[a, x]¥subset¥Omega$ . It follows from problem (19) that $v(¥xi; x)$ is the solution
of the equation

$v(¥xi; x)=1+(-1)^{n}¥int_{x}^{¥xi}k(r)v(r;x)dr$ . (21)

Comparing (21) with Equation (10) and making use of Equation (11) we see that
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$v(¥xi; x)=¥overline{A}(¥xi; x)=A(x;¥xi)$ , $¥xi¥leq x$ . Using this in (14) with $m=1$ and $K(x)¥equiv k(x)$

we obtain Young’s conclusion.
Walter [13] has also given a generalization for a scalar inequality of the form

(9) in $n$ independent variables. Walter’s concluding estimate is given in terms of
a function $h^{*}(x, ¥xi)$ defined as a series of functions determined from an iteration pro-
cedure. It may be shown that the function $h^{*}(x, ¥xi)$ and the fundamental solution
$A(x;¥xi)$ for this case are identical and hence our result is consistent with the result
given in [13].
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