Molecular Orbital Diagrams of more complicated molecules

✓
$$XH_2 (D_{\infty h})$$

✓ $H_2O (C_{2v})$
→ $SF_6 (O_h)$

First let's consider the sulfur orbitals

• we need to consider their symmetry

• and, we need to consider their energy

)= degenerate since $(\mathbf{d}_{\mathbf{xz}}, \mathbf{d}_{\mathbf{yz}}, \mathbf{d}_{\mathbf{xy}})$ they can be interconverted by symmetry operations (C₄)

Figure 19-1 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

point **between** the axes

For orbitals to possess the same energy (ie, be degenerate), there has to be a symmetry element which interconverts them

Therefore, $E(p_z) = E(p_y) = E(p_x)$

Figure 19-22 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F. A. Armstrong

What symmetry do these orbitals have?

The cubic groups (continued)							Synametry				the central atom's atomic orbitals
doubly degenerate											
0 _h (<i>m</i> 3 <i>m</i>)	E	8C ₃	6C ₂	6C ₄	$3C_2 = (= C_4^2)$	i	6S ₄	85 ₆	$3\sigma_h$	6σ _d	h = 48 Sulfur s-orbital
A _{1g}	1	1	1	1	1	1	1	1	1	1	$x^2 + y^2 + z^2$
A _{2g}	1	1	-1	-1	1	1	-1	1	1	-1	Sulfur d-orbitals (O)
Eg	2	-1	0	0	2	2	0	-1	2	0	$(2z^2 - x^2 - y^2) x^2 - y^2)$
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	$(R_x, R_y R_z)$
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1	(xy, yz, zx)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	Sulfur d-orbital
A _{2u}	1		trinly	degene	rate ¹	-1	1	-1	-1	1	(<i>π</i>-type)
En	2	-1	0	0	2	-2	0	1	-2	0	Sulfur p-orbitals
T _{1u}	3	0	-1	1	-1	-3	-1	0	1	^{foliow} 1	(x, y, z)
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1	

triply degenerate (originally all five d-orbitals were degenerate)

notice how the degeneracy of the sulfur's d-orbitals is "lifted" upon interaction with the six F's

Sulfur AO's (atomic orbitals)

 $\underline{2p_z \ p_x \ p_y}$

Fluorine's AO's

too low in E to interact with the <u>2s</u> sulfur orbitals

The sulfur d_{xz} only interacts with fluorines that lie along the x- and z-axes

The sulfur d_{yz} only interacts with fluorines that lie along the y- and z-axes

The sulfur d_{xy} only interacts with fluorines that lie along the x- and y-axes