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Abstract

The Mobius strip is a well-known surface with only one side and only one boundary. It has
many curious properties, and has several technical applications in other disciplines such as physics
and chemistry. In this paper, the structure and topological properties of Mobius strip dissection are
studied.

A model of Mébius strip can be created by taking a paper strip and giving it a half-twist, and
then joining the ends of the strip together to form a loop. Cutting a Mobius strip differently yields
different strips including different length, width and half-twists. The structures of these strips are
given respectively after 1/ 7 cutting and »n equal cutting of a Mébius strip. Moreover, the

results are generalized to the dissection of Paradromic rings with extra twists.

Denote the result of bisecting a Paradromic ring with m half-twists by P, , . The structures
and topological properties are investigated using knot theory. Firstly, it is proved that Pm)2 is

equivalent to (m,2)— torus link 7

ma - Secondly, the linking number, crossing number and

unknotting number of Pm’2 are determined. Finally, the coloring of Pm,2 is discussed, the

sufficient and necessary condition, the coloring scheme, and the minimum number of colors for
p -coloring are given respectively.

Keywords: Mobius strip; Paradromic ring; dissection; structure; torus link; topological
properties

(Note: The result in this English version is strengthened for that we find all p® p -colorings in

Theorem 5, while in previous Chinese version we only gave one p -coloring)
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1. Introduction

The Mobius strip or Mdbius band is a surface with only one side and only one boundary
component. It was discovered independently by the German mathematicians August Ferdinand
Mobius and Johann Benedict Listing in 1858. It can easily be created by taking a rectangular strip
of paper and giving it a half-twist (180 degree twist), and then joining the ends of the strip

together to form a loop, as shown in Figure 1.
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Figure | Mobius strip

The Mobius strip has fascinated both mathematicians and laypeople ever since Mobius
discovered it in the nineteenth century and presented it as an object of mathematical interest. As
the years passed, the popularity and application of the strip grew, and today it is an integral part of

mathematics, magic, science, art, engineering, literature, and music (see [1-4] for details).

A MG&bius strip can be represented parametrically by *®

x=(r+scos(t/2))cost
y=(r+scos(t/2))sint
z=ssin(t/2)

Where s€(—w/2,w/2), t €[0,27). This creates a Mobius strip of width w whose center

circle has radius r, lies in the xy plane and is centered at (0, 0, 0). The parameter ¢ runs
around the strip while s moves from one edge to the other. Parametric surfaces of Mobius strip
drawn with MATLAB are shown in Figure 2, and corresponding MATLAB program codes are
provided in appendix 1 and appendix 2.
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(a) color display (b) gray scale display
Figure 2 Mobius strip created with MATLAB
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Cutting a Mobius strip differently yields different strips including different length, width and
half-twists. In this paper, the structure and topological properties of Mdbius strip dissection are
studied. The structures of these strips are given respectively after 1/ cutting and 7 equal
cutting of a Mobius strip. Moreover, the results are generalized to the dissection of Paradromic
rings with extra twists.

Denote the result of bisecting a Paradromic ring with m half-twists by P, ,. The

structures and topological properties are investigated using knot theory. Firstly, it is proved that

P, , is equivalent to (m,2)—torus link 7, ,. Secondly, the linking number, crossing number

and unknotting number of Pm,2 are determined. Finally, the coloring of P%2 is discussed, the

sufficient and necessary condition, the coloring scheme, and the minimum number of colors for
p -coloring are given respectively.

2. Structure of Mdbius strip dissection

In this section, the structures of these strips are given respectively after 1/ 7 cutting and 7
equal cutting of a Mdbius strip. Moreover, the results are generalized to the dissection of
Paradromic rings with extra twists.

Take a rectangular strip of paper and join the two ends of the strip together so that it has a
180 degree twist, we get a Mobius strip. Suppose that the length, width and twist degree of the

paper stripbe /,w, 7 (7 =180").

Consider two cutting ways:

1/ n cutting --the strip is cut alonga 1/# of the way from the edge;
n equal cutting --the strip is cut along 7 equally dividing lines.

2.1 1/n cutting and 7 equal cutting of a Mobius strip

A result about 1/ 7 cutting of a M&bius strip is stated without proof in [8] and [2]. Some part
result about 7 equal cutting of a Mdbius strip is found and proved in [5]. We summarize the
results and give a general result in Theorem 1 below, and present a proof using MATLAB sketch.

Theorem 1 The results about 1/ 7 cutting and # equal cutting of a Mobius strip are
stated in Table 1.

Table 1 Structure of 1/ 7 cuttingand 72  equal cutting of a Mébius strip

cutting ways number | linked | length | width twist degree | sided
1/n n=2 1 2/ w/2 4 two-sided
cutting | n#2 1 linked | 2/ w/n 4 two-sided
1 / wn=2)/n| x one-sided
n n=2k k linked | 2/ w/n 4r two-sided
equal n=2k+1 |1 linked | / w/n V4 one-sided
cutting k 21 w/n 4 two-sided
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Proof (1) Considerl/ n cutting of a Mébius strip.

For n =2, the cutting line is center circle lies in the xy plane. The cutting result is a strip

with length 2/, width w/ 2, twist degree 47 , and two-sided, as shown in Figure 3.

12HH

Figure 3 1/2 cutting of Mdbius strip
An explanation for twist degree 47 appeared in [7] and shown in Figure 4. Make a Mgbius
strip lie flat as Figure 4(a). There is one crossing of the edge with itself at C. When Fig.4(a) is cut
along the center line and opened slightly, Fig.4(b), we see that the original twist shows in two
places A and B, giving 2 twists to the new loop, but there is also a crossing of the loop with itself
at C’, corresponding to the crossed edge C in Fig.4(a). Consider this new crossed part C’, with
edges x and y emphasized in Fig.4(c). Pull it out as per the arrows to find that we get 2 more

twists, which added to the first two give a total of 4.
Ji =
| x R
|| Y

(a) lie flat (b) 1/2 cutting (c) 2 more twists

Figure 4 twist degree is 477

For n# 2, the cutting sketch with MATLAB is shown in Figure 5, and corresponding
MATLAB codes are provided in appendix 3. We obtain two linked strips. One is the fringe part,
which is a strip with length2/ ,width w/n, twist degree 47 ,and two-sided, as shown in

Fig.5(b). The other is the middle part, which is a strip with length /,width w(n—2)/n, twist

degree 7, and one-sided, as shown in Fig.5(c).

= Ao WP A i B 7 B

(a) 1/n cutting (b) the fringe part (c) the middle part

Figure 5 1/ cutting of Mébius strip
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(2) Consider n equal cutting of a Mdbius strip.

There are two cases: #n isevenand 7 is odd. We only consider the case for 7z is even.

We prove by induction on 7.

When 7 =2, we know that 2 equal cutting is 1/2 cutting. So from (1) by 2 equal cutting we
obtain a strip with length 2/ ,width w/ 2, twist degree 47 ,and two-sided.

Suppose the result holds when 7 =2k, thatis, 2k equal cutting yields & strips with

length 2/ ,width w/ (2k), twist degree 47 ,and two-sided.

Consider n=2k+2.The 2k+2 equal cutting can be completed through two steps:

firstly 1/(2k+2) cutting, by (1) this produces two linked strips: the fringe part is a strip with

length 2/ ,width w/ (2k +2), twist degree 47 ,and two-sided; the middle part is a strip with

length /,width
w=2w/Q2k+2) =w2k)/ 2k +2)

twist degree 7, and one-sided. Secondly, 2k equal cutting of the middle part, by the induction
hypothesis we get k strips with length 2/ ,width

(W(2k)/ (2k+2))/ 2k)=w/(2k+2)
twist degree 47 ,and two-sided. Thus, we obtain k+1 strips with length 2/ ,width

w/ 2k +2), twist degree 47 ,and two-sided.

2.2 1/ncutting and 7 equal cutting of a Paradromic ring

Taking a rectangular strip of paper, giving it 2 half-twists and reconnecting the ends of the

[10,11,2

strip produces figure called a Paradromic ring ] Suppose that the length, width and twist

degree of the paper stripbe [, w,mm ,m >1. A Paradromic ring is a generation of a Mdbius
strip. Paradromic ring is one-sided if #2 is odd, two-sided if 2 is even. Note that the new strips
obtained in Theorem 1 are Paradromic rings, or linked Paradromic rings.
The parametric equation of Paradromic ring is
x=(r+scos(mt/2))cost
y=(r+scos(mt/2))sint

z=gssin(mt/?2)
wheres € (—w/2,w/2), t €[0,27) . The sketches by MATLAB are given in Figure 6 when

m=2,3,4,5.
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(c) m=4

Figure 6 Paradromic ring with half-twists 2,3,4,5
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(b) m=3

‘2

(]

(d) m=5

It is known that a Paradromic ring with m half-twists, when bisected, becomes a strip with

m+11ull twists ?. Some examples was given about cutting of a Paradromic ring in [10-13]. Our

second result gives the structure of cutting of a Paradromic ring.

Theorem 2 The structure of cutting of a Paradromic ring is stated in Table 2.

Table 2 Structure of 1/# cuttingand 72 equal cutting of a Paradromic ring

cutting ways m number | linked | length | width twist sided
degree
1/n n=2 odd |1 21 w/2 (Zm+2)7 | 2-sided
cutting even |2 linked | / w/2 mr 2-sided
n#2 odd |1 21 w/n (2m+2)7 | 2-sided
1 linked |/ wn-2)/n | mr 1-sided
odd 2 linked | / wl/n, mrx 2-sided
wn-1)/n
n n=2k odd k linked | 2/ w/n @2m+2)r | 2-sided
equal (_k >1) -
: even | 2k linked / w/n mr 2-sided
cutting
n=2k+1 | odd 1 / w/n mr 1-sided
k linked | 2/ w/n (2m+2)7 | 2-sided
odd 2k+1 | linked |/ w/n mrw 2-sided

Proof We complete the proof by the following steps.

(1) First consider three basic cuttings such as 1/2 cutting for m =2, 1/2 cutting for m =3,

and 1/n (n#2) cutting for m=3.

The 1/2 cutting of a Paradromic ring for m =2 creates a link, consisting of 2 two-side

strips with length /, width w/ 2, and twist degree 27 . This result is shown in Fig.7, where the

upper part and lower part are depicted respectively in Fig.7(b), s€(0,w/2)
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se(-w/2,0).

(a) 1/2 cutting (b) the upper part of 1/2 cutting (c) the lower part of 1/2 cutting
Figure 7 1/2 cutting of Paradromic ring with =2
The 1/2 cutting of a Paradromic ring for m =3 creates a loop, which is a two-side strip
with length 2/, width w/2, and twist degree 87 . This result is shown in Fig.8, where the

upper part and lower part are depicted respectively in Fig.7(b) and (c). Note that these two parts
connect together at the planez =0.

V2B B TSR T i

(a) 1/2 cutting (b) the upper part of 1/2 cutting (c) the lower part of 1/2 cutting

Figure 8 1/2 cutting of Paradromic ring with m =3

The 1/n (n#2) cutting of a Paradromic ring for m =3 creates two linked strips. One is
the fringe part, which is a strip with length2/ ,width w/n, twist degree 87 ,and two-sided, as
shown in Fig.9(b). The other is the middle part, which is a strip with length / ,width

w(n—2)/n, twist degree 37, and one-sided, as shown in Fig.9(c).

R 1 YT M5

I A
f : ’?4::522) kS 55“..52)
(a) 1/n cutting of Paradromic ring (b) the fringe part (c) the middle part

Figure 9 1/n cutting of Paradromic ring with m =3
(2) Consider #n equal cutting of a Paradromic ring.
We give the structure using recursive method. We only consider the case when m is odd.

2k equal cutting can be completed through 1/7 cutting in turn.

Firstly, 1/2k cutting of a Paradromic ring results in two linked strips. Where the fringe part

is a two-sided strip with length 2/ ,width W/ (2k) , twist degree (2m + 2)7 ; the middle part is
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a one-sided strip with length /,width
w=2w/(2k)=w2k-2)/(2k)
twist degree m .
Secondly, 1/(2k —2) cutting of the middle part results in two linked strips. Where the

fringe part is a two-sided strip with length 2/ ,width
W2k -2)/(2k))/ (2k-2)=w/(2k)

twist degree (2m + 2) 7 ; the middle part is a one-sided strip with length /,width

w2k -2)/ (2k)-2w/ (2k) =w(2k —4)/ (2k)
twist degree mr .

Goon 1/(2k—-4) cutting for the new middle part, after (k—1)-th cutting, we obtain two
linked strips: the fringe part is a two-sided strip with length 2/ ,width W/ (2k) twist degree

(2m + 2) 7 ; the middle part is a one-sided strip with length /,width W(2)/(2k) ,twist degree

mri .
Finally, 1/2 cutting this middle part creates a two-sided strip with length 2/ ,width

w/(2k) jtwist degree (2m+2)r .

To sum up, 1/ 2k cutting of a Paradromic ring results in k linked strips, all with

length 2/ ,width w/(2k) twist degree (2m+2)7 .

The case for 2k +1 cutting of a Paradromic ring is similar.
3 The structure and topological properties of a Paradromic ring cutting

For a Paradromic ring cutting, we have known some properties including length, width, twist
degree, one-sided or two-sided in Section 2. In this section, we continue to investigate the
structure and other topological properties such as linking number, crossing number, unknotting

number and coloring number.

We only consider 1/2 cutting of a Paradromic ring. Let F, , denote the new strip

obtained by 1/2 cutting of a Paradromic ring.

3.1 The structure of a Paradromic ring cutting

It follows from Theorem 2 we know that if m is even, then ijz is a link consisting of two
two-sided strips with length /, width w/2 and m half-twists; if m is odd, then P,, isa
two-sided strip with length 2/, width w/2 and 2m+2 half-twists, and it is a knot in deed. See
Fig.10 for details.
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(b)Hopf link

AD

Please refer to [14,15] for knot theory. It was guessed that there is some relationship between

(d) trefoil knot

Figure 10 P, , and knot (link)

a Paradromic ring and a torus links in [16,17]. We will prove that P, , is torus link in Theorem 3.

A knot (or link) is a torus knot (or link) if it is equivalent to a knot (or link) that can be drawn

without any points of intersection on the trivial torus. A (g,r)—torus knot (link) 7, is a torus
knot (or link) characterized by the number of times ¢ that it circles around the meridian of the
torus and the number of times r that it circles around the longitude of the torus. 7,, is a knot if
and only if (g,7)=1, that is, ¢ and r are relatively prime. 7, is a link with d=(q,r)
component if (g,7)>1, and each component are knot equivalentto 7,

Atorus knot 7;, and its diagram are depicted in Fig.11. Two torus knots 7;, and 7, are

depicted in Fig.12. Where the MATLAB program sketching 7;, is given in appendix 4.

A ) LA

(a) torus knot T; 5 (b) diagram of T; 5

Figure 11  torus knot T; 5 and diagram

Page - 346



S17

Figure 12 torus knot Ts’zand ];,2

It follows from Fig.10, Fig.1l and the property of torus link we know P, ,=T,,
when m = 2,3 . The statement is true for all .

Theorem 3 Pm 5 Tm 5.

Proof First, note that the torus link 7, , is the boundary of a Paradromic ring with m

O L
O

Figurel3 torus link T m2 is the boundary of a Paradromic ring

half-twists for all m.

A ¢

Secondly, the diagram of P, , is equivalent to that of the boundary of a Paradromic ring.

Fig.14 shows the projections of the boundaries and center circles of Paradromic rings P, , for

m=4,5to plane Z =0, where the MATLAB program is given in appendix 5.

25 = o
16 r' "‘-\\II
1 i |
08 f
of |
a5
\ I
A 1
15 B E = /
— 2 o = F
‘7-1‘5 2 -I‘5 ; ;.‘: o ‘DTS‘ 1 15 2 28
(a) Paradromic ring with m=4 (b) the projections of the boundaries and center circle
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m=5

o I
- o M
|
|

o8

08

Y38 2 8 a4 08 0 06

(c) Paradromic ring with m=5 (d) the projections of the boundaries and center circle

Figure 14 Paradromic ring and the projections of the boundaries

Finally, we get P, , =T,

m2*

3.2 Topological properties of of a Paradromic ring cutting

Please refer to [14,15] for the definitions and the properties of linking number, crossing

number, and unknotting number of knot (link). The determination for these topological invariants

is an important and extremely difficult problem. Fortunately, the linking number /(7, ) , crossing
number ¢(7,,), and unknotting number u(7,,) for torus link 7, is known. So, we get the

corresponding numbers for 7, ,: I(T,,)=q/2 if q is even, (T, ,)=q, u(T,,)=(q-1)/2 if

g is odd. Thus by Theorem 3 we get
Corollary 4 The linking number, crossing number, and unknotting number of P, , are
I(P,,)=m/2 if m iseven,
c(b,,)=m,

u(P,,)=(m-1)/2 if m isodd.

Let L be aknot (link), and D be a diagram of L, p an integer greater than 1. Let
x,y,z denote integers which label the over arc and two under arcs, respectively, at a crossing of

D . The crossing satisfies the condition of p -colorability if
2x =y+z (mod p)

We say L is p- colorable if there is a diagram D of L such that the arcs of D can be labeled,
or colored, with the numbers 0,1,---,p—1 so that at least two numbers are used and every
crossing satisfies the condition of p-colorability. The numbers 0,1,---,p—1 are called colors.
The specific colors assigned to the arcs make up a p-coloring of D. A p-coloring where every

arc is assigned the same color is called a trivial coloring.
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X1

Xs
: '2 )
Xz :
Figure 17 a 3- coloring of 7,

The minimum number of p -coloring of L, is defined to be the minimum number of colors
for all p-coloring of all diagram D of L, denoted by min COIPL . This is an invariant which is,

in general, very difficult to evaluate.
There are some researches on p -colorability, minimum number of p -coloring of torus

link 7, . We list two results here (19:2021)

(1) Suppose T, isatorusknotand p is prime.
(LLI)If g and r arebothodd, then 7,, isnot p-colorable.
(1.2)If g isoddand r iseven,then 7, 1is p-colorableifandonlyif plq

=<m,p>, if<m,p>e{2,3}
(2)mincol L =4, if<m,p>=5
€Bk+2],if<m,p>=2k+1k>2

Where <m, p > stand for the least common prim divisor of m, p .

So, p -colorability, minimum number of p -coloring of P,, has been known. In the
following, we focus on p -coloring scheme of P, ,.
The diagram of P,, (m=2k+1) is shown in Fig.18. By Corollary 4, there are m

crossings, denoted by c¢,,c,, **,c The over arcs corresponding to crossing ¢,,c,,**,C

m* m

denoted bya,,a,, -+,a,. Let the color of a,bex;,i=1,2,---,m. Then p-coloring (scheme)

> m

of P,, canbe denoted by a vector x = (x;,"*+,X,,"*, X, ).
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v_1
v_2lktHl
N -
v_ck o 2kl c_l
c 2
o 2k
o 21 c_3

v 2l

Figure 18 diagram of Pm )

The p-coloring of P, , is given in the Theorem 5.

Theorem S (1) Suppose pis prime, then P, , is p - colorable if and only if p|m .

=p, if p=23

(2) mincol P, , =4, if p=5

eB,(p+3)/2],if p>5

Where pis prime divisor of m .

(3)If m iseven,then P,, is2- colorable.

If m is odd, and if p is the least prime divisor of m, thenP,, is p- colorable.

Further, there are a total of p’ p-colorings. In particular, if m= p, the total of p’

p -colorings are

x:(xl’...’xi’...’xm)'

:Cl(p_lsp_23'"329150)'+Cz(2335'”7p_2ap_15091)'

Where ¢,c, are arbitrary elements in F, = {0,1,---, p—1}, and the operations are in the finite

Proof We only prove (3) for odd m.

that p is the least prime divisor. Let a p -coloring of P

m,2

be

“,X,,-,x, ). Then x=(x,--,x,,~--,x,) satisfies the following system (1) of
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linear equations module p.
2x, —x, —x,, = 0(mod p)
—Xx, +2x, —x, = 0(mod p)
: )
=X, ,+2x, ,—x, =0(mod p)

-x,—x, , +2x, = 0(mod p)

Its coefficient matrix

2 -1 0 - 0 -1
-1 2 -1 - 0 0
A=
o o o - 2 -l
-1 0 0 -1 2
Constant matrix
b=(0,0,-,0)"

Where b'is the transpose of b, A isa matrix of order m .
Note that

O0<x,<p-1,i=12,---,m
The system (1) of linear equations module p is equivalent to the system (2) of linear equations

over the finite field F -

2x,—x,—x,=0
-x, +2x,—x,=0

@

-x, ,+2x,,—x, =0

-x,—x, ,+2x, =0

The coefficient matrix over I , is denoted still by

2 -1.0 - 0 -1

-1 2 -1 - 0 O
A=

0 0 0 2 -1

-1 0 O -1 2

A is a matrix of order m .
If the rank of A is 7, then the number of the fundamental system of solutions of (2) is

m -7, the number of total solutions of (2) is p" .

After elementary row transformation, A becomes
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2 -1 0o - 0 0 -1

0 3/2 -1 - 0 0 —-1/2

0o 0 4/3 - 0 0 -1/3

0 O 0 - (m-1)/(m-2) -1 —1/(m-2)
0 O 0o - 0 m/(m—-1) —m/(m—-1)
0 O 0 - 0 0 0

The rank of A is m—2, the number of the fundamental system of solutions of (2) is 2, the
number of total solutions of (2) is p2 .
In particular, if m = p, after calculation, we get a fundamental system of solutions
(p-L,p-2,---,2,1,0),(2,3,---,p—2,p—1,0,1)".
So, the general solution is given by:

x:(xl’...’xi’...,xm)'

= Cl(p—Lp—2,'",2,1,0)'+6’2(2,3,---,p—2,p—1,0,1)'
Where ¢,,c, are arbitrary elements in F = {0,1,---, p—1}. Thus we obtained the total of

p* p-colorings of P, ,.

Remark It follows from Theorem 5(3) that if m = p, the total of p*> p-colorings are

x:(xl,...,xi’...’xm)'

:cl(p_lap_27'"529150)'+c2(293a"'7p_27p_19091)'

Where ¢,c, are arbitrary elements in £, = {0,1,---, p—1}.

So, write ¢, =c, +j, where j is arbitrary element in F »- We can state the p-colorings in

following way:
x=c¢(p-Lp-2,-,2,1,0)+c,(2,3,---,p=2,p—1,0,1)"
=(c,+))(p-1,p-2,---,2,1,0)'+¢,(2,3,---, p—2,p—1,0,1)’
=c,(LL---, L)+ j(p-Lp-2,---,2,1,0)' (*)

Where ¢,,j are arbitrary elements in £, = {0,1,---, p—1}.

Two p-colorings of P, , are equivalent if they are the same under the rotation of P, ,. So,
for fixed j, p-colorings in (*) for different c,are equivalent. Thus, In all p® p-colorings of
P, , we have p different p -colorings of P,, , which corresponding to different

j=0,1,---,p—2, p—1(letc,=0):
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0,0,---,0,0)',
(p_lap_za"':lao)'a
(p_zvp_49"'9290)'7

SN

(2a4a'”:p_2’0)'
(1:25“'3p_1’0)'

If m=kp, the total of p> p-colorings can be obtained from the case of m=p by

repeating k times.

By the above theorems, we have the structure and topological properties of 1/2 cutting of

a Paradromic ring P, , , as shown in Table 3.

Table 3  structure and topological properties of cutting of a Paradromic ring

1/2 cutting
m odd even
number 1 2
linked knot link
length 21 [
width w/2 w/2
twist degree Cm+2)x mr
one-sided or two-sided two-sided two-sided
linking number m/?2
crossing number m m
unknotting number (m—1)/2
p -colorable the least prime divisor of m 2
minimum number of colors | 2,3,4, or(3,(p+3)/2] 2

For example, when m =5, 1/2 cutting of Paradromic ring with length / ,width w twist
degree 57 produces a two-sided strip with length 2/ ,widthw/ 2 ,twist degree 127 ;it is a knot
with crossing number 5, unknotting number 2, 5- colorable, the minimum number of colors is 4.
When m =6, 1/2 cutting of Paradromic ring with length / ,width w ,twist degree 67 produces two
linked two-sided strip with length / ,width w/ 2 ,twist degree 6 ;it is a knot with linking number 3,

crossing number 6, 2- colorable, the minimum number of colors is 2.

4 Summary

We consider 1/ 7 cutting and 7 equal cutting of a Mdbius strip, obtain the structures of the
new strips. Moreover, the results are generalized to the dissection of Paradromic rings with extra
twists. The results are complete and proofs are given.

We use MATLAB software to sketch the Mdbius strip, Paradromic ring and their dissection.
This method is effective and is proved to be feasible.

We prove that the result of bisecting a Paradromic ring with m half-twists is equivalent to
torus knot, and then give all p -colorings of 1/2 cutting of a Paradromic ring through solving the

system of linear equations over finite field F y
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Appendices

Appendix 1. The MATLAB program to plot Mobius strip
function z=mobius(r,w)

r=2;w=1; Yoo [ 1) 2142 R 2,71 1) 0 5 M 1
s=linspace(-w/2,w/2,3);
t=linspace(0,2*pi,30);

[s,t]=meshgrid(s,t);
x=(r+w.*s.*cos(t/2)).*cos(t);
y=(r+w.*s.*cos(t/2)).*sin(t);
z=w.*s.*sin(t/2);

surf(x,y,z)

axis equal

title(‘ B Lt 2 W77 )

Appendix 2. Animation for definition of Mobius strip

clear all;clc;close all;

u=linspace(-1/2,1/2,3);

t=linspace(0,2*pi,40);

[X,Y ]=meshgrid(u,t);

x =(2+X.*c0s(0.5*Y)/2).*cos(Y);

y =(2+X.*c0s(0.5*Y)/2).*sin(Y);

7z=X.*sin(0.5*Y)/2;

SH=surf(x,y,z);

shading interp

axis([-22-22 -2 2]);

for k=1:40;
t=linspace(0,pi*k/20,k*20);
[X,Y ]=meshgrid(u,t);
x =(1+X.*c0s(0.5*Y)/2).*cos(Y);
y =(1+X.*c0s(0.5*Y)/2).*sin(Y);
z=X.*sin(0.5*Y)/2;
set(SH,'XData',x,"YData',y,'ZData',z,'CData',z);
saveas(gcf,['P',num2str(k),".jpg']);
pause(0.1);

end

clc;clear;close all;

A=imread('P40.jpg");

B=A(300:570,375:830,1:end);
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imshow(B,[]);

SS=sum(A,3);

[x,y]=find(SS<255%*3);

x1=min(x(1:end));

x2=max(x(1:end));

y1=min(y(1:end));

y2=max(y(1:end));

for k=1:40;
A=imread(['P',num2str(k),".jpg']);
B=A(x1:x2,y1:y2,1:end);
imwrite(B,['Q',num2str(k),".jpg']);

end

Appendix 3. 1/n cutting of Mobius strip
clear

close all

cle

=2;w=1;

m=1;

p=1/3;

s=[-w/2,-p,p,w/2];
t=linspace(0,2*pi,30);
[s,t]=meshgrid(s,t);
x=(rtw.*s.*cos(t.*m/2)).*cos(t);
y=(r+w.*s.*cos(t.*m/2)).*sin(t);
7z=w.*s.*sin(t.*m/2);

surf(x,y,z)

axis equal

title('L/nZ3 ")

figure

s=[-p.pl;
t=linspace(0,2*pi,30);
[s,t]=meshgrid(s,t);
x=(r+w.*s.*cos(t.*m/2)).*cos(t);
y=(r+w.*s.*cos(t.*m/2)).*sin(t);
z=w.*s.*sin(t.*m/2);

surf(x,y,z)

axis equal
title('1/n43- % (1) 7 (]335 53+")
figure

s=[-w/2,-p];
t=linspace(0,2*pi,30);
[s,t]=meshgrid(s,t);
x=(r+w.*s.*cos(t.*m/2)).*cos(t);
y=(r+w.*s.*cos(t.*m/2)).*sin(t);
7z=w.*s.*sin(t.*m/2);

surf(x,y,z)

hold on

s=[p,w/2];
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t=linspace(0,2*pi,30);
[s,t]=meshgrid(s,t);
x=(r+w.*s.*cos(t.*m/2)).*cos(t);
y=(r+w.*s.*cos(t.*m/2)).*sin(t);
z=w.*s.*sin(t.*m/2);

surf(x,y,z)

hold off

axis equal
title('1/n3 % ()P 53)

end

Appendix 4. Torus knot
a=7;b=2;c=3;
u=linspace(0,2*pi,20);
v=linspace(0,2*pi,40);
[u,v]=meshgrid(u,v);
x=(atb*cos(u)).*cos(v);
y=(atb*cos(u)).*sin(v);
z=c*sin(u);
mhndl=mesh(x,y,z);

set(mhndl,'EdgeColor',[.6,.6,.6],'FaceAlpha',0.5,'EdgeAlpha',0.5);

axis equal
t=linspace(0,2*pi,200);
x=(atb*cos(5*t)).*cos(2*t);
y=(atb*cos(5*t)).*sin(2*t);
z=c*sin(5*t);
lhndl=line(x,y,z);
set(lhndl,'Color',[.625,0,0],'LineWidth',2)
view(135,30)

(3.5 Space Curves in

Matlab http://msenux.redwoods.edu/Math4Textbook/Plotting/SpaceCurves.pdf)

Appendix 5. Projection of Paradromic ring
clear

close all

cle

r=2;w=1; m=5;

p=0;

s=[-w/2,-p,p,w/2];
t=linspace(0,2*pi,30);
[s,t]=meshgrid(s,t);
x=(rtw.*s.*cos(t.*m/2)).*cos(t);
y=(r+w.*s.*cos(t.*m/2)).*sin(t);
z=w.*s.*sin(t.*m/2);

surf(x,y,z)

axis equal

figure

plot3(x,y,z)

view(0,90)
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