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Abstract

The Möbius strip is a well-known surface with only one side and only one boundary. It has 
many curious properties, and has several technical applications in other disciplines such as physics 
and chemistry. In this paper, the structure and topological properties of Möbius strip dissection are 
studied.  

A model of Möbius strip can be created by taking a paper strip and giving it a half-twist, and 
then joining the ends of the strip together to form a loop. Cutting a Möbius strip differently yields 
different strips including different length, width and half-twists. The structures of these strips are 
given respectively after 1/ cutting and  equal cutting of a Möbius strip. Moreover, the 
results are generalized to the dissection of Paradromic rings with extra twists. 

n n

Denote the result of bisecting a Paradromic ring with  half-twists by . The structures 

and topological properties are investigated using knot theory. Firstly, it is proved that  is 

equivalent to ( , torus link . Secondly, the linking number, crossing number and 

unknotting number of  are determined. Finally, the coloring of  is discussed, the 

sufficient and necessary condition, the coloring scheme, and the minimum number of colors for 

m ,2mP

,2

,2mP

2)m � ,2mT

,2mP mP

p -coloring are given respectively. 

Keywords Möbius strip Paradromic ring dissection structure torus link topological 
properties

Note: The result in this English version is strengthened for that we find all 2p p -colorings in 

Theorem 5, while in previous Chinese version we only gave one p -coloring
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1 Introduction 

The Möbius strip or Möbius band is a surface with only one side and only one boundary 
component. It was discovered independently by the German mathematicians August Ferdinand 
Möbius and Johann Benedict Listing in 1858. It can easily be created by taking a rectangular strip 
of paper and giving it a half-twist (180 degree twist), and then joining the ends of the strip 
together to form a loop, as shown in Figure 1.  

   
Figure 1  Möbius strip 

The Möbius strip has fascinated both mathematicians and laypeople ever since Möbius 
discovered it in the nineteenth century and presented it as an object of mathematical interest. As 
the years passed, the popularity and application of the strip grew, and today it is an integral part of 
mathematics, magic, science, art, engineering, literature, and music (see [1-4] for details).

A Möbius strip can be represented parametrically by

( cos( / 2))cos
( cos( / 2))sin

sin( / 2)

x r s t t
y r s t t

z s t

� �#
% � �&
% �(

Where ( / 2, / 2),  [0,2s w w t )	" � "

r

. This creates a Möbius strip of width  whose center 

circle has radius , lies in the 

w

xy  plane and is centered at (0, 0, 0). The parameter  runs 
around the strip while 

t

s  moves from one edge to the other. Parametric surfaces of Möbius strip 
drawn with MATLAB are shown in Figure 2, and corresponding MATLAB program codes are 
provided in appendix 1 and appendix 2. 

    
              (a) color display                                       (b) gray scale display

                           Figure 2  Möbius strip created with MATLAB 
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Cutting a Möbius strip differently yields different strips including different length, width and 
half-twists. In this paper, the structure and topological properties of Möbius strip dissection are 
studied. The structures of these strips are given respectively after 1/ cutting and  equal 
cutting of a Möbius strip. Moreover, the results are generalized to the dissection of Paradromic 
rings with extra twists. 

n n

Denote the result of bisecting a Paradromic ring with  half-twists by . The 

structures and topological properties are investigated using knot theory. Firstly, it is proved that 

 is equivalent to ( , torus link . Secondly, the linking number, crossing number 

and unknotting number of  are determined. Finally, the coloring of  is discussed, the 

sufficient and necessary condition, the coloring scheme, and the minimum number of colors for 

m ,2mP

,2mP 2)m �

,2mP

,2mT

,2mP

p -coloring are given respectively. 

2 Structure of Möbius strip dissection 
In this section, the structures of these strips are given respectively after cutting and 

equal cutting of a Möbius strip. Moreover, the results are generalized to the dissection of 
Paradromic rings with extra twists. 

1 / n n

Take a rectangular strip of paper and join the two ends of the strip together so that it has a 
180 degree twist, we get a Möbius strip. Suppose that the length, width and twist degree of the 

paper strip be , ,l w 0 ( 180 )	 	 �

Consider two cutting ways: 
1/ n cutting --the strip is cut along a  of the way from the edge; 1 / n
n  equal cutting --the strip is cut along  equally dividing lines. n

2.1 cutting and  equal cutting of a Möbius strip1/ n n

A result about cutting of a Möbius strip is stated without proof in [8] and [2]. Some part 
result about  equal cutting of a Möbius strip is found and proved in [5]. We summarize the 
results and give a general result in Theorem 1 below, and present a proof using MATLAB sketch.

1/ n
n

Theorem 1  The results about cutting and  equal cutting of a Möbius strip are 
stated in Table 1.

1/ n n

Table 1  Structure of cutting and equal cutting of a Möbius strip1/ n n
cutting ways number linked length width twist degree sided 
1/ n
cutting 

2n � 1 2l / 2w 4	 two-sided 
2n < 1 linked 2l /w n 4	 two-sided 

1 l ( 2) /w n n� 	 one-sided 

n
equal
cutting 

2n k� k linked 2l /w n 4	 two-sided 
2n k� �1 1 linked l /w n 	 one-sided 

k 2l /w n 4	 two-sided 
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Proof  (1) Consider1/ cutting of a Möbius strip.n

For , the cutting line is center circle lies in the 2n � xy  plane. The cutting result is a strip 

with length , width , twist degree 2l / 2w 4	 , and two-sided, as shown in Figure 3.

Figure 3  1/2 cutting of Möbius strip  

An explanation for twist degree 4	 appeared in [7] and shown in Figure 4. Make a Möbius 
strip lie flat as Figure 4(a). There is one crossing of the edge with itself at C. When Fig.4(a) is cut 
along the center line and opened slightly, Fig.4(b), we see that the original twist shows in two 
places A and B, giving 2 twists to the new loop, but there is also a crossing of the loop with itself 
at C’, corresponding to the crossed edge C in Fig.4(a). Consider this new crossed part C’, with 
edges x  and  emphasized in Fig.4(c). Pull it out as per the arrows to find that we get 2 more 
twists, which added to the first two give a total of 4.

y

(a) lie flat (b) 1/2 cutting                      (c) 2 more twists

Figure 4  twist degree is 4	
For , the cutting sketch with MATLAB is shown in Figure 5, and corresponding 

MATLAB codes are provided in appendix 3. We obtain two linked strips. One is the fringe part, 
which is a strip with length 2 ,width , twist degree 

2n <

l /w n 4	 ,and two-sided, as shown in 

Fig.5(b). The other is the middle part, which is a strip with length ,width , twist 

degree 

l ( 2) /w n n�

	 , and one-sided, as shown in Fig.5(c).

     (a)  cutting (b) the fringe part                      (c) the middle part1/ n

Figure 5   cutting of Möbius strip  1/ n
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(2) Consider  equal cutting of a Möbius strip.  n
There are two cases:  is even and  is odd. We only consider the case for  is even. n n n
We prove by induction on .n
When , we know that 2 equal cutting is 1/2 cutting. So from (1) by 2 equal cutting we 

obtain a strip with length 2 ,width , twist degree 
2n �

l / 2w 4	 ,and two-sided.  
Suppose the result holds when 2n k� , that is,  equal cutting yields  strips with 

length ,width , twist degree 

2k k

2l / (2 )w k 4	 ,and two-sided.  

Consider . The 2n k� � 2 22k �  equal cutting can be completed through two steps: 

firstly  cutting, by (1) this produces two linked strips: the fringe part is a strip with 

length ,width , twist degree 

1/ (2k

2l

2)�

/ (2w k � 2) 4	 ,and two-sided; the middle part is a strip with 

length ,widthl

2 / (2 2)w w k� � (2 ) / (2 2)w k k� �

twist degree 	 , and one-sided. Secondly, equal cutting of the middle part, by the induction 
hypothesis we get  strips with length ,width

2k
k 2l

( (2 ) / (2 2)) / (2 )w k k k� = / (2 2)w k �

twist degree 4	 ,and two-sided. Thus, we obtain 1k �  strips with length ,width

, twist degree 

2l

/ (2 2)w k � 4	 ,and two-sided.  

2.2 cutting and  equal cutting of a Paradromic ring1/ n n
Taking a rectangular strip of paper, giving it half-twists and reconnecting the ends of the 

strip produces figure called a Paradromic ring[10,11,2]. Suppose that the length, width and twist 
degree of the paper strip be , ,

m

l w m	 , . A Paradromic ring is a generation of a Möbius 
strip. Paradromic ring is one-sided if is odd, two-sided if is even. Note that the new strips 
obtained in Theorem 1 are Paradromic rings, or linked Paradromic rings.  

1m +
m m

The parametric equation of Paradromic ring is 

( cos( / 2))cos
( cos( / 2))sin

sin( / 2)

x r s mt t
y r s mt t

z s mt

� �#
% � �&
% �(

where ( / 2, / 2),  [0,2s w w t )	" � "

2,3,4,5

The sketches by MATLAB are given in Figure 6 when  

.m �
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(a) m=2                               (b) m=3

     
 (c) m=4                                 (d) m=5 

Figure 6  Paradromic ring with half-twists 2,3,4,5 

It is known that a Paradromic ring with half-twists, when bisected, becomes a strip with 
full twists [2]. Some examples was given about cutting of a Paradromic ring in [10-13]. Our 

second result gives the structure of cutting of a Paradromic ring. 

m
1m �

Theorem 2  The structure of cutting of a Paradromic ring is stated in Table 2.

Table 2  Structure of cutting and equal cutting of a Paradromic ring1/ n n
cutting ways m number linked length width twist

degree 
sided

1/ n
cutting 

2n � odd 1 2l / 2w (2 2)m 	� 2-sided
even 2 linked l / 2w m	 -sided

2n < odd 1
linked 

2l /w n (2 2)m 	� -sided
1 l ( 2w n ) / n� m	 1-sided

odd 2 linked l /w n
( 1) / nw n �

m	 2-sided

n
equal
cutting 

2n k� odd k linked 
( 1)k �

2l /w n (2 2)m 	� -sided

even 2k linked l /w n m	 -sided

2n k� �1 odd 1
linked 

l /w n m	 1-sided
k 2l /w n (2 2)m 	� 2-sided

odd 2 1�k linked l /w n m	 -sided
Proof  We complete the proof by the following steps.
(1) First consider three basic cuttings such as 1/2 cutting for 2m � , 1/2 cutting for ,

and cutting for .
3m �

1/ n 2n < 3m �
The 1/2 cutting of a Paradromic ring for 2m �  creates a link, consisting of 2 two-side 

strips with length , width , and twist degree l / 2w 2	 . This result is shown in Fig.7, where the 

upper part and lower part are depicted respectively in Fig.7(b), (0, / 2)s w"   and (c), 

Page - 343



( / 2,0s w" � ) .

   
(a) 1/2 cutting (b) the upper part of 1/2 cutting              (c) the lower part of 1/2 cutting  

                     Figure 7  1/2 cutting of Paradromic ring with 2m �

The 1/2 cutting of a Paradromic ring for 3m �  creates a loop, which is a two-side strip 
with length , width , and twist degree 2l / 2w 8	 . This result is shown in Fig.8, where the 
upper part and lower part are depicted respectively in Fig.7(b) and (c). Note that these two parts 
connect together at the plane .0�z

(a) 1/2 cutting                     (b) the upper part of 1/2 cutting        (c) the lower part of 1/2 cutting

             Figure 8  1/2 cutting of Paradromic ring with 3m �

The cutting of a Paradromic ring for 1/ n 2n < 3m �  creates two linked strips. One is 
the fringe part, which is a strip with length ,width , twist degree 2l / nw 8	 ,and two-sided, as 
shown in Fig.9(b). The other is the middle part, which is a strip with length l ,width 

, twist degree ( 2w n � ) / n 3	 , and one-sided, as shown in Fig.9(c).

(a)  cutting of Paradromic ring (b) the fringe part                       (c) the middle part1/ n

Figure 9  cutting of Paradromic ring with 1/ n 3m �

(2) Consider  equal cutting of a Paradromic ring.  n
We give the structure using recursive method. We only consider the case when  is odd. m
2k equal cutting can be completed through  cutting in turn.1/ n
Firstly, cutting of a Paradromic ring results in two linked strips. Where the fringe part 

is a two-sided strip with length ,width , twist degree 

1 / 2k

2l / (2 )w k (2 2)m 	� ; the middle part is 
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a one-sided strip with length ,width  l

(2 / 2 ) (2 2) / (2 )w w k w k k� � �

twist degree m	 .

Secondly, cutting of the middle part results in two linked strips. Where the 

fringe part is a two-sided strip with length ,width  

1 / (2 2)k �

2l

( ( ) / (2 )) / (2 2) / (2w k k k w k� � �2 2 )

twist degree (2 2)m 	� ; the middle part is a one-sided strip with length ,width  l

(2 2 (2 ) 2 / (2 ) (2 4) / (2 )w k k w k w k k� � � �) /

twist degree m	 .

Go on cutting for the new middle part, after 1 / (2 4)k � ( 1)k � -th cutting, we obtain two 

linked strips: the fringe part is a two-sided strip with length 2 ,width ,twist degree l / (2 )w k

(2 2)m 	�

m

; the middle part is a one-sided strip with length ,width ,twist degree l (2) / (2w )k

	 .
Finally,  cutting this middle part creates a two-sided strip with length 2 ,width 

,twist degree 

1/ 2 l

/ (2 )w k (2 2)m 	� .

To sum up, cutting of a Paradromic ring results in  linked strips, all with 

length ,width ,twist degree 

1 / 2k

/ (2w

k

2l )k (2 2)m 	� .

The case for 2k 1� cutting of a Paradromic ring is similar. 

3  The structure and topological properties of a Paradromic ring cutting

For a Paradromic ring cutting, we have known some properties including length, width, twist 
degree, one-sided or two-sided in Section 2. In this section, we continue to investigate the 
structure and other topological properties such as linking number, crossing number, unknotting 
number and coloring number. 

We only consider  cutting of a Paradromic ring. Let  denote the new strip 

obtained by  cutting of a Paradromic ring.

1/ 2 ,2mP

1/ 2

3.1  The structure of a Paradromic ring cutting

It follows from Theorem 2 we know that if  is even, then  is a link consisting of two 

two-sided strips with length , width  and  half-twists; if m  is odd, then  is a 

two-sided strip with length , width  and 

m

m
,2mP

l

2l

/ 2w

/ 2w
,2mP

2 2m �  half-twists, and it is a knot in deed. See 

Fig.10 for details. 
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(a) (m=2)                                        (b)Hopf link
,2mP

        

        (b) (m=3)                                       (d) trefoil knot 
,2mP

Figure 10  and knot (link),2mP

Please refer to [14,15] for knot theory. It was guessed that there is some relationship between 

a Paradromic ring and a torus links in [16,17]. We will prove that  is torus link in Theorem 3. ,2mP

A knot (or link) is a torus knot (or link) if it is equivalent to a knot (or link) that can be drawn 

without any points of intersection on the trivial torus. A ( , )q r � torus knot (link)  is a torus 

knot (or link) characterized by the number of times  that it circles around the meridian of the 

torus and the number of times  that it circles around the longitude of the torus.  is a knot if 

and only if , that is,  and  are relatively prime.  is a link with 

component if , and each component are knot equivalent to .

,q rT

,q rT

q

r

( , ) 1q r �

( , ) 1q r �

q r ,q rT

q dT

( , )d q r�

/ , /r d

A torus knot  and its diagram are depicted in Fig.11. Two torus knots  and  are 

depicted in Fig.12. Where the MATLAB program sketching  is given in appendix 4. 

3,2T 5,2T 9,2T

5,2T

             (a) torus knot                             (b) diagram of  3,2T 3,2T

Figure 11  torus knot and diagram 3,2T
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Figure 12  torus knot and5,2T 9,2T

It follows from Fig.10, Fig.11 and the property of torus link we know 

when . The statement is true for all .

,2 ,2m mP T�

2,3m � m

Theorem 3  .,2 ,2m mP T�

Proof  First , note that the torus link  is the boundary of a Paradromic ring with 

half-twists for all .

,2mT m

m

Figure13  torus link is the boundary of a Paradromic ring,2mT

Secondly,  the diagram of  is equivalent to that of the boundary of a Paradromic ring. 

Fig.14 shows the projections of the boundaries and center circles of Paradromic rings  for 

to plane 

,2mP

,2mP

4,5m � 0Z � , where the MATLAB program is given in appendix 5. 

(a) Paradromic ring with m=4          (b) the projections of the boundaries and center circle 
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(c) Paradromic ring with m=5        (d) the projections of the boundaries and center circle 

Figure 14  Paradromic ring and the projections of the boundaries 

Finally, we get ,2 ,2m mP T� .

3.2  Topological properties of of a Paradromic ring cutting

Please refer to [14,15] for the definitions and the properties of linking number, crossing 
number, and unknotting number of knot (link). The determination for these topological invariants 

is an important and extremely difficult problem. Fortunately, the linking number , crossing 

number , and unknotting number  for torus link  is known. So, we get the 

corresponding numbers for :

,( )q rl T

,( )q rc T ,( )q ru T

/ 2q

,q rT

,2qT ,2( )ql T �  if  is even, q ,2( )qc T q� ,  if 

 is odd. Thus by Theorem 3 we get  

,2( ) (q q� �1) / 2u T

q

Corollary 4  The linking number, crossing number, and unknotting number of are,2mP

,2( ) / 2ml P m�  if  is even,  m

,2( )mc P m� ,

,2( ) ( 1) / 2mu P m� �  if m  is odd. 

Let  be a knot (link), and be a diagram of ,  an integer greater than 1.  Let L D L p
, ,x y z

D
 denote integers which label the over arc and two under arcs, respectively, at a crossing of 

. The crossing satisfies the condition of -colorability if p

2x y z� � (mod  )p

We say  is - colorable if there is a diagram of such that the arcs of can be labeled, 
or colored, with the numbers 0,

L p D L D
1, , 1p ��

p
 so that at least two numbers are used and every 

crossing satisfies the condition of -colorability. The numbers 0,1, , 1p ��

D p
 are called colors. 

The specific colors assigned to the arcs make up a -coloring of . A -coloring where every 
arc is assigned the same color is called a trivial coloring.  

p
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Figure 17  a 3- coloring of

3,2T

The minimum number of -coloring of , is defined to be the minimum number of colors 

for all -coloring of all diagram of , denoted by . This is an invariant which is, 

in general, very difficult to evaluate.  

p L

p D L min col pL

There are some researches on -colorability,  minimum number of -coloring of torus 

link .  We list two results here [19,20,21].

p p

,q rT

(1) Suppose  is a torus knot and  is prime. ,q rT p

(1.1) If  and  are both odd, then  is not -colorable. q r ,q rT p

(1.2) If  is odd and  is even, then  is -colorable if and only if q r ,q rT p |p q

(2) min col pL
= , ,    , {2,3} 

=4,        , =5
3, 2] , =2 1, 2

m p m p
m p

k m p k k

� � � �"#
% � �&
%" � � � � �(

Where  stand for the least common prim divisor of .,m p� � ,m p

So, -colorability, minimum number of -coloring of  has been known. In the 

following, we focus on -coloring scheme of .

p p

,2m

,2mP

p P

The diagram of  ( ) is shown in Fig.18.  By Corollary 4, there are 

crossings, denoted by c c .  The over arcs corresponding to crossing c c

denoted by a a .  Let the color of be

,2mP

, ma

2 1m k� �

1 2, , , mc�

m

, mc1 2, ,�

1 2, ,� ia ix , 1, 2, ,i m� �

, )i m

. Then -coloring (scheme) 

of  can be denoted by a vector 

p

,2mP 1( , , ,x x x x� � � .
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Figure 18  diagram of ,2mP

The -coloring of  is given in the Theorem 5. p ,2mP

Theorem 5  (1) Suppose is prime, then  is - colorable if and only if .p ,2mP p |p m

(2) ,2min col p mP
= ,                  =2,3 
=4,                      =5

3, ( 3) / 2] >5

p p
p

p p

#
%
&
%" �(

Where is prime divisor of .p m

 (3) If  is even, then  is 2- colorable.   m ,2mP

If  is odd, and if  is the least prime divisor of , then  is - colorable.  

Further there are a total of -colorings.  In particular,  if m

m p m ,2mP

p

p

2p p � , the total of 

-colorings are 

2p

p

1

1 2

( , , , , ) '
 ( 1, 2, , 2,1,0) ' (2,3, , 2, 1,0,1)

i mx x x x
c p p c p p

�
� � � � � �

� �

� � '

pWhere  are arbitrary elements in 1 2,c c {0,1, , 1}pF � �� , and the operations are in the finite 

field .pF

Proof  We only prove (3) for odd .m

Suppose that  is the least prime divisor. Let a -coloring of  be p

)m

p ,2mP

1( , , , ,ix x x� � � x . Then 1( , , , , )i mx x x x� � �  satisfies the following system (1) of 
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linear equations module .p

1 2

1 2 3

2 1

1 1

2 0(mod
2 0(mod

2 0(mo
2 0(mod

m

m m m

m m

x x x p)
)

d )
)

x x x p

x x x p
x x x p
� �

�

� � �#
% � � � �%%
&
%� � � �%
� � � �%(

�                (1) 

Its coefficient matrix 

2 1 0 0 1
1 2 1 0 0

0 0 0 2 1
1 0 0 1 2

A

� �
 �
� 
� �� 

� 
�
� 


�� 

� 
� �� �

�

�

�

�

�

Constant matrix 

(0,0, ,0) 'b � �

Where is the transpose of ,  is a matrix of order .'b b A m
Note that 

0 1,  1, 2,i ,x p i, , � � � m

The system (1) of linear equations module  is equivalent to the system (2) of linear equations 

over the finite field 

p

pF .

1 2

1 2 3

2 1

1 1

2 0
2 0

2 0
2 0

m

m m m

m m

x x x
x x x

x x x
x x x
� �

�

� � �
� � � �

� � � �
� � � �

�

#
%
%%
&
%
%
%(

F

                        (2) 

The coefficient matrix over is denoted still by  p

2 1 0 0 1
1 2 1 0 0

0 0 0 2 1
1 0 0 1 2

A

� �
 �
� 
� �� 

� 
�
� 


�� 

� 
� �� �

�

�

�

�

�

A  is a matrix of order .m
If the rank of A  is r then the number of the fundamental system of solutions of (2) is 

- the number of total solutions of (2) is m r m rp � .

After elementary row transformation,  becomes  A
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2 1 0 0 0 1
0 3 / 2 1 0 0 1/ 2
0 0 4 / 3 0 0 1/ 3

0 0 0 ( 1) / ( 2) 1 1/ ( 2)
0 0 0 0 / ( 1) / ( 1)
0 0 0 0 0 0

m m m
m m m m

� �
 �
� 
� �� 

� 
�
� 

� 

� 
� � � � �
� 


� � �� 

� 

� �

�

�

�

� � � � � � �

�

�

�

The rank of A  is  the number of the fundamental system of solutions of (2) is 2, the 

number of total solutions of (2) is 

2m �
2p .

In particular, if , after calculation, we get a fundamental system of solutions 

.   

m p�

2,p p� �( 1, , 2,1,0) ', (2,3, , 2, 1,0,1) 'p p� �� �

So, the general solution is given by: 

1

1 2

( , , , , ) '
 ( 1, 2, , 2,1,0) ' (2,3, , 2, 1,0,1)

i mx x x x
c p p c p p

�
� � � � � �

� �

� � '

pWhere  are arbitrary elements in 1 2,c c {0,1, , 1}pF � �� . Thus we obtained the total of 

-colorings of .2p p ,2mP

Remark  It follows from Theorem 5(3) that if m p� , the total of -colorings are 2p p

1

1 2

( , , , , ) '
 ( 1, 2, , 2,1,0) ' (2,3, , 2, 1,0,1)

i mx x x x
c p p c p p

�
� � � � � �

� �

� � '

Where  are arbitrary elements in 1 2,c c {0,1, , 1}pF p� �� .

So, write , where 1 2c c� � j j  is arbitrary element in . We can state the -colorings in 

following way: 

pF p

1 2

2 2

2

( 1, 2, , 2,1,0) ' (2,3, , 2, 1,0,1) '
  ( )( 1, 2, , 2,1,0) ' (2,3, , 2, 1,0,1) '
  (1,1, ,1,1) ' ( 1, 2, , 2,1,0) '                                            (*)

x c p p c p p
c j p p c p p

c j p p

� � � � � �
� � � � � � �
� � � �

� �

� �

� �

Where  are arbitrary elements in 2 ,c j {0,1, , 1}pF p� �� .

Two -colorings of  are equivalent if they are the same under the rotation of . So, 

for fixed

p ,2mP ,2mP

j , -colorings in (*) for different are equivalent. Thus, In all -colorings of 

, we have  different -colorings of , which corresponding to different 

(let c ):

p 2c 2p p

,2mP p

p �
p

0
,2mP

0,1 2, 1j ,� ,� p � 2 �
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(0,0, ,0,0) ',
( 1, 2, ,1,0) ',
( 2, 4, , 2,0) ',

,
(2, 4, , 2,0) '
(1, 2, , 1,0) '                                      

p p
p p

p
p

� �
� �

�
�

�

�

�

�

�

�

If , the total of -colorings can be obtained from the case of  by 

repeating times.    

m kp�

k

2p p m p�

By the above theorems, we have the structure and topological properties of  cutting of 

a Paradromic ring , as shown in Table 3. 

1 / 2

,2mP

Table 3  structure and topological properties of cutting of a Paradromic ring 

1 / 2  cutting 
m odd even 
number 1 2 
linked knot link 
length 2l l
width / 2w / 2w
twist degree (2 2)m 	� m	
one-sided or two-sided two-sided two-sided 
linking number / 2m
crossing number m m
unknotting number ( 1) /m 2�

p -colorable the least prime divisor of m 2
minimum number of colors 2,3,4 or 3, ( 3) / 2]p � 2

For example, when =5, 1/2 cutting of Paradromic ring with length l ,width w ,twist
degree5

m
	 produces a two-sided strip with length ,width ,twist degree122l / 2w 	 ;it is a knot 

with crossing number 5  unknotting number 2, 5- colorable the minimum number of colors is 4. 
When =6, 1/2 cutting of Paradromic ring with length l ,width ,twist degree 6m w 	 produces two 
linked two-sided strip with length ,width ,twist degree 6l / 2w 	 ;it is a knot with linking number 3
crossing number 6, 2- colorable the minimum number of colors is 2. 

4  Summary   
We consider cutting and  equal cutting of a Möbius strip, obtain the structures of the 

new strips. Moreover, the results are generalized to the dissection of Paradromic rings with extra 
twists. The results are complete and proofs are given.  

1 / n n

We use MATLAB software to sketch the Möbius strip, Paradromic ring and their dissection. 
This method is effective and is proved to be feasible. 

We prove that the result of bisecting a Paradromic ring with  half-twists is equivalent to 
torus knot, and then give all 

m
p -colorings of 1/2 cutting of a Paradromic ring through solving the 

system of linear equations over finite field .pF
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Appendices
Appendix 1. The MATLAB program to plot Mobius strip 
function z=mobius(r,w) 
r=2;w=1; % 2, 1
s=linspace(-w/2,w/2,3); 
t=linspace(0,2*pi,30); 
[s,t]=meshgrid(s,t); 
x=(r+w.*s.*cos(t/2)).*cos(t); 
y=(r+w.*s.*cos(t/2)).*sin(t); 
z=w.*s.*sin(t/2); 
surf(x,y,z) 
axis equal 
title(‘ ’) 

Appendix 2.  Animation for definition of Mobius strip 
clear all;clc;close all; 
u=linspace(-1/2,1/2,3);
t=linspace(0,2*pi,40); 
[X,Y]=meshgrid(u,t);    
x =(2+X.*cos(0.5*Y)/2).*cos(Y); 
y =(2+X.*cos(0.5*Y)/2).*sin(Y); 
z=X.*sin(0.5*Y)/2;
SH=surf(x,y,z); 
shading interp 
axis([-2 2 -2 2 -2 2]); 
for k=1:40; 
    t=linspace(0,pi*k/20,k*20); 
    [X,Y]=meshgrid(u,t);    
    x =(1+X.*cos(0.5*Y)/2).*cos(Y); 
    y =(1+X.*cos(0.5*Y)/2).*sin(Y); 
    z=X.*sin(0.5*Y)/2; 
    set(SH,'XData',x,'YData',y,'ZData',z,'CData',z); 
    saveas(gcf,['P',num2str(k),'.jpg']); 
    pause(0.1); 
end
clc;clear;close all; 
A=imread('P40.jpg'); 
B=A(300:570,375:830,1:end); 
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imshow(B,[]); 
SS=sum(A,3); 
[x,y]=find(SS<255*3); 
x1=min(x(1:end)); 
x2=max(x(1:end)); 
y1=min(y(1:end)); 
y2=max(y(1:end)); 
for k=1:40; 
    A=imread(['P',num2str(k),'.jpg']); 
    B=A(x1:x2,y1:y2,1:end); 
    imwrite(B,['Q',num2str(k),'.jpg']); 
end

Appendix 3.  1/n cutting of Mobius strip 
clear 
close all 
clc 
r=2;w=1;
m=1; 
p=1/3; 
s=[-w/2,-p,p,w/2]; 
t=linspace(0,2*pi,30); 
[s,t]=meshgrid(s,t); 
x=(r+w.*s.*cos(t.*m/2)).*cos(t); 
y=(r+w.*s.*cos(t.*m/2)).*sin(t); 
z=w.*s.*sin(t.*m/2); 
surf(x,y,z) 
axis equal 
title('1/n ')
figure 
s=[-p,p]; 
t=linspace(0,2*pi,30); 
[s,t]=meshgrid(s,t); 
x=(r+w.*s.*cos(t.*m/2)).*cos(t); 
y=(r+w.*s.*cos(t.*m/2)).*sin(t); 
z=w.*s.*sin(t.*m/2); 
surf(x,y,z) 
axis equal 
title('1/n ') 
figure 
s=[-w/2,-p]; 
t=linspace(0,2*pi,30); 
[s,t]=meshgrid(s,t); 
x=(r+w.*s.*cos(t.*m/2)).*cos(t); 
y=(r+w.*s.*cos(t.*m/2)).*sin(t); 
z=w.*s.*sin(t.*m/2); 
surf(x,y,z) 
hold on 
s=[p,w/2];
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22 / 22

t=linspace(0,2*pi,30); 
[s,t]=meshgrid(s,t); 
x=(r+w.*s.*cos(t.*m/2)).*cos(t); 
y=(r+w.*s.*cos(t.*m/2)).*sin(t); 
z=w.*s.*sin(t.*m/2); 
surf(x,y,z) 
hold off 
axis equal 
title('1/n ') 
end

Appendix 4.  Torus knot 
a=7;b=2;c=3; 
u=linspace(0,2*pi,20); 
v=linspace(0,2*pi,40); 
[u,v]=meshgrid(u,v); 
x=(a+b*cos(u)).*cos(v);
y=(a+b*cos(u)).*sin(v);
z=c*sin(u); 
mhndl=mesh(x,y,z); 
set(mhndl,'EdgeColor',[.6,.6,.6],'FaceAlpha',0.5,'EdgeAlpha',0.5); 
axis equal 
t=linspace(0,2*pi,200); 
x=(a+b*cos(5*t)).*cos(2*t); 
y=(a+b*cos(5*t)).*sin(2*t);
z=c*sin(5*t); 
lhndl=line(x,y,z); 
set(lhndl,'Color',[.625,0,0],'LineWidth',2) 
view(135,30) 

3.5 Space Curves in 
Matlab http://msenux.redwoods.edu/Math4Textbook/Plotting/SpaceCurves.pdf

Appendix 5.  Projection of Paradromic ring 
clear 
close all 
clc 
r=2;w=1; m=5; 
p=0; 
s=[-w/2,-p,p,w/2]; 
t=linspace(0,2*pi,30); 
[s,t]=meshgrid(s,t); 
x=(r+w.*s.*cos(t.*m/2)).*cos(t); 
y=(r+w.*s.*cos(t.*m/2)).*sin(t); 
z=w.*s.*sin(t.*m/2); 
surf(x,y,z) 
axis equal 
figure 
plot3(x,y,z)  
view(0,90)  
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